blob: c7395d97e4cb7c33f26925569adff8f7e3007d4e [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100181#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200182#define WMULT_SHIFT 32
183
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100184static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200185{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100186 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200197 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100198 lw->inv_weight = WMULT_CONST / w;
199}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200200
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200225 }
226
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200229
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200236}
237
238
239const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200240
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
Peter Zijlstra8f488942009-07-24 12:25:30 +0200256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
Peter Zijlstrab7581492008-04-19 19:45:00 +0200264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
Paul Turneraff3e492012-10-04 13:18:30 +0200285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200287
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800305
306 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200307 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200308 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
Peter Zijlstrab7581492008-04-19 19:45:00 +0200320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
Peter Zijlstra464b7522008-10-24 11:06:15 +0200339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
Peter Zijlstra8f488942009-07-24 12:25:30 +0200382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200388
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
392}
393
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200394#define entity_is_task(se) 1
395
Peter Zijlstrab7581492008-04-19 19:45:00 +0200396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200401 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200402}
403
Peter Zijlstrab7581492008-04-19 19:45:00 +0200404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
Peter Zijlstrab7581492008-04-19 19:45:00 +0200426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
Peter Zijlstra464b7522008-10-24 11:06:15 +0200440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
Peter Zijlstrab7581492008-04-19 19:45:00 +0200445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700447static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
Andrei Epure1bf08232013-03-12 21:12:24 +0200454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200455{
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200457 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459
Andrei Epure1bf08232013-03-12 21:12:24 +0200460 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200461}
462
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
Fabio Checconi54fdc582009-07-16 12:32:27 +0200472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100490 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
Andrei Epure1bf08232013-03-12 21:12:24 +0200496 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200502}
503
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200504/*
505 * Enqueue an entity into the rb-tree:
506 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200524 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200536 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200537 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200541}
542
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200544{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100550 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200551
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200553}
554
Peter Zijlstra029632f2011-10-25 10:00:11 +0200555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200556{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200563}
564
Rik van Rielac53db52011-02-01 09:51:03 -0500565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200579
Balbir Singh70eee742008-02-22 13:25:53 +0530580 if (!last)
581 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100582
583 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200584}
585
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100590int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700591 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100592 loff_t *ppos)
593{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100595 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100608#undef WRT_SYSCTL
609
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100610 return 0;
611}
612#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200613
614/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200615 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200616 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200618{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200619 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200621
622 return delta;
623}
624
625/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200626 * The idea is to set a period in which each task runs once.
627 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200628 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100636 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200637
638 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100639 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200641 }
642
643 return period;
644}
645
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200650 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200651 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200653{
Mike Galbraith0a582442009-01-02 12:16:42 +0100654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200655
Mike Galbraith0a582442009-01-02 12:16:42 +0100656 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100657 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200658 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662
Mike Galbraith0a582442009-01-02 12:16:42 +0100663 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200664 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100669 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100670 }
671 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200672}
673
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200674/*
Andrei Epure660cc002013-03-11 12:03:20 +0200675 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200676 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200677 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200678 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200680{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200682}
683
Alex Shia75cdaa2013-06-20 10:18:47 +0800684#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100685static unsigned long task_h_load(struct task_struct *p);
686
Alex Shia75cdaa2013-06-20 10:18:47 +0800687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200706/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100707 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200708 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200709static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200710{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200711 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200712 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100713 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
715 if (unlikely(!curr))
716 return;
717
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100720 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200721
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200722 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100723
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
Ingo Molnarf977bb42009-09-13 18:15:54 +0200736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100737 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700738 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100739 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200742}
743
744static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200748}
749
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200750/*
751 * Task is being enqueued - update stats:
752 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200754{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200759 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200760 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200761}
762
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200763static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200765{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200775 }
776#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300777 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200778}
779
780static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200782{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200787 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200788 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
797 /*
798 * We are starting a new run period:
799 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200801}
802
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200807#ifdef CONFIG_NUMA_BALANCING
808/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200812 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200818
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
Mel Gorman598f0ec2013-10-07 11:28:55 +0100830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
Mel Gorman3a7053b2013-10-07 11:29:00 +0100875/*
876 * Once a preferred node is selected the scheduler balancer will prefer moving
877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878 * scans. This will give the process the chance to accumulate more faults on
879 * the preferred node but still allow the scheduler to move the task again if
880 * the nodes CPUs are overloaded.
881 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100882unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100883
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100884static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
885{
886 rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
888}
889
890static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
891{
892 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
894}
895
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100896struct numa_group {
897 atomic_t refcount;
898
899 spinlock_t lock; /* nr_tasks, tasks */
900 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100901 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100902 struct list_head task_list;
903
904 struct rcu_head rcu;
Mel Gorman989348b2013-10-07 11:29:40 +0100905 unsigned long total_faults;
906 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100907};
908
Mel Gormane29cf082013-10-07 11:29:22 +0100909pid_t task_numa_group_id(struct task_struct *p)
910{
911 return p->numa_group ? p->numa_group->gid : 0;
912}
913
Mel Gormanac8e8952013-10-07 11:29:03 +0100914static inline int task_faults_idx(int nid, int priv)
915{
916 return 2 * nid + priv;
917}
918
919static inline unsigned long task_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_faults)
922 return 0;
923
924 return p->numa_faults[task_faults_idx(nid, 0)] +
925 p->numa_faults[task_faults_idx(nid, 1)];
926}
927
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100928static inline unsigned long group_faults(struct task_struct *p, int nid)
929{
930 if (!p->numa_group)
931 return 0;
932
Mel Gorman989348b2013-10-07 11:29:40 +0100933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100934}
935
936/*
937 * These return the fraction of accesses done by a particular task, or
938 * task group, on a particular numa node. The group weight is given a
939 * larger multiplier, in order to group tasks together that are almost
940 * evenly spread out between numa nodes.
941 */
942static inline unsigned long task_weight(struct task_struct *p, int nid)
943{
944 unsigned long total_faults;
945
946 if (!p->numa_faults)
947 return 0;
948
949 total_faults = p->total_numa_faults;
950
951 if (!total_faults)
952 return 0;
953
954 return 1000 * task_faults(p, nid) / total_faults;
955}
956
957static inline unsigned long group_weight(struct task_struct *p, int nid)
958{
Mel Gorman989348b2013-10-07 11:29:40 +0100959 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100960 return 0;
961
Mel Gorman989348b2013-10-07 11:29:40 +0100962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100963}
964
Mel Gormane6628d52013-10-07 11:29:02 +0100965static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100966static unsigned long source_load(int cpu, int type);
967static unsigned long target_load(int cpu, int type);
968static unsigned long power_of(int cpu);
969static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100970
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100971/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100972struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100973 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100974 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100975
976 /* Total compute capacity of CPUs on a node */
977 unsigned long power;
978
979 /* Approximate capacity in terms of runnable tasks on a node */
980 unsigned long capacity;
981 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100982};
Mel Gormane6628d52013-10-07 11:29:02 +0100983
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100984/*
985 * XXX borrowed from update_sg_lb_stats
986 */
987static void update_numa_stats(struct numa_stats *ns, int nid)
988{
Peter Zijlstra5eca82a2013-11-06 18:47:57 +0100989 int cpu, cpus = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100990
991 memset(ns, 0, sizeof(*ns));
992 for_each_cpu(cpu, cpumask_of_node(nid)) {
993 struct rq *rq = cpu_rq(cpu);
994
995 ns->nr_running += rq->nr_running;
996 ns->load += weighted_cpuload(cpu);
997 ns->power += power_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +0100998
999 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001000 }
1001
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001002 /*
1003 * If we raced with hotplug and there are no CPUs left in our mask
1004 * the @ns structure is NULL'ed and task_numa_compare() will
1005 * not find this node attractive.
1006 *
1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1008 * and bail there.
1009 */
1010 if (!cpus)
1011 return;
1012
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 ns->has_capacity = (ns->nr_running < ns->capacity);
1016}
1017
Mel Gorman58d081b2013-10-07 11:29:10 +01001018struct task_numa_env {
1019 struct task_struct *p;
1020
1021 int src_cpu, src_nid;
1022 int dst_cpu, dst_nid;
1023
1024 struct numa_stats src_stats, dst_stats;
1025
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001026 int imbalance_pct, idx;
1027
1028 struct task_struct *best_task;
1029 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001030 int best_cpu;
1031};
1032
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001033static void task_numa_assign(struct task_numa_env *env,
1034 struct task_struct *p, long imp)
1035{
1036 if (env->best_task)
1037 put_task_struct(env->best_task);
1038 if (p)
1039 get_task_struct(p);
1040
1041 env->best_task = p;
1042 env->best_imp = imp;
1043 env->best_cpu = env->dst_cpu;
1044}
1045
1046/*
1047 * This checks if the overall compute and NUMA accesses of the system would
1048 * be improved if the source tasks was migrated to the target dst_cpu taking
1049 * into account that it might be best if task running on the dst_cpu should
1050 * be exchanged with the source task
1051 */
Rik van Riel887c2902013-10-07 11:29:31 +01001052static void task_numa_compare(struct task_numa_env *env,
1053 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001054{
1055 struct rq *src_rq = cpu_rq(env->src_cpu);
1056 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 struct task_struct *cur;
1058 long dst_load, src_load;
1059 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001060 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001061
1062 rcu_read_lock();
1063 cur = ACCESS_ONCE(dst_rq->curr);
1064 if (cur->pid == 0) /* idle */
1065 cur = NULL;
1066
1067 /*
1068 * "imp" is the fault differential for the source task between the
1069 * source and destination node. Calculate the total differential for
1070 * the source task and potential destination task. The more negative
1071 * the value is, the more rmeote accesses that would be expected to
1072 * be incurred if the tasks were swapped.
1073 */
1074 if (cur) {
1075 /* Skip this swap candidate if cannot move to the source cpu */
1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1077 goto unlock;
1078
Rik van Riel887c2902013-10-07 11:29:31 +01001079 /*
1080 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001081 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001082 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001083 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001084 imp = taskimp + task_weight(cur, env->src_nid) -
1085 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001086 /*
1087 * Add some hysteresis to prevent swapping the
1088 * tasks within a group over tiny differences.
1089 */
1090 if (cur->numa_group)
1091 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001092 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001093 /*
1094 * Compare the group weights. If a task is all by
1095 * itself (not part of a group), use the task weight
1096 * instead.
1097 */
1098 if (env->p->numa_group)
1099 imp = groupimp;
1100 else
1101 imp = taskimp;
1102
1103 if (cur->numa_group)
1104 imp += group_weight(cur, env->src_nid) -
1105 group_weight(cur, env->dst_nid);
1106 else
1107 imp += task_weight(cur, env->src_nid) -
1108 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001109 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001110 }
1111
1112 if (imp < env->best_imp)
1113 goto unlock;
1114
1115 if (!cur) {
1116 /* Is there capacity at our destination? */
1117 if (env->src_stats.has_capacity &&
1118 !env->dst_stats.has_capacity)
1119 goto unlock;
1120
1121 goto balance;
1122 }
1123
1124 /* Balance doesn't matter much if we're running a task per cpu */
1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1126 goto assign;
1127
1128 /*
1129 * In the overloaded case, try and keep the load balanced.
1130 */
1131balance:
1132 dst_load = env->dst_stats.load;
1133 src_load = env->src_stats.load;
1134
1135 /* XXX missing power terms */
1136 load = task_h_load(env->p);
1137 dst_load += load;
1138 src_load -= load;
1139
1140 if (cur) {
1141 load = task_h_load(cur);
1142 dst_load -= load;
1143 src_load += load;
1144 }
1145
1146 /* make src_load the smaller */
1147 if (dst_load < src_load)
1148 swap(dst_load, src_load);
1149
1150 if (src_load * env->imbalance_pct < dst_load * 100)
1151 goto unlock;
1152
1153assign:
1154 task_numa_assign(env, cur, imp);
1155unlock:
1156 rcu_read_unlock();
1157}
1158
Rik van Riel887c2902013-10-07 11:29:31 +01001159static void task_numa_find_cpu(struct task_numa_env *env,
1160 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001161{
1162 int cpu;
1163
1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 /* Skip this CPU if the source task cannot migrate */
1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1167 continue;
1168
1169 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001170 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001171 }
1172}
1173
Mel Gorman58d081b2013-10-07 11:29:10 +01001174static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001175{
Mel Gorman58d081b2013-10-07 11:29:10 +01001176 struct task_numa_env env = {
1177 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001178
Mel Gorman58d081b2013-10-07 11:29:10 +01001179 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001180 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001181
1182 .imbalance_pct = 112,
1183
1184 .best_task = NULL,
1185 .best_imp = 0,
1186 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001187 };
1188 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001189 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001190 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001191 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001192
Mel Gorman58d081b2013-10-07 11:29:10 +01001193 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001194 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 * imbalance and would be the first to start moving tasks about.
1196 *
1197 * And we want to avoid any moving of tasks about, as that would create
1198 * random movement of tasks -- counter the numa conditions we're trying
1199 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001200 */
Mel Gormane6628d52013-10-07 11:29:02 +01001201 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001203 if (sd)
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001205 rcu_read_unlock();
1206
Rik van Riel46a73e82013-11-11 19:29:25 -05001207 /*
1208 * Cpusets can break the scheduler domain tree into smaller
1209 * balance domains, some of which do not cross NUMA boundaries.
1210 * Tasks that are "trapped" in such domains cannot be migrated
1211 * elsewhere, so there is no point in (re)trying.
1212 */
1213 if (unlikely(!sd)) {
1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1215 return -EINVAL;
1216 }
1217
Rik van Riel887c2902013-10-07 11:29:31 +01001218 taskweight = task_weight(p, env.src_nid);
1219 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001220 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001222 taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001224 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001225
Rik van Riele1dda8a2013-10-07 11:29:19 +01001226 /* If the preferred nid has capacity, try to use it. */
1227 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001228 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001229
1230 /* No space available on the preferred nid. Look elsewhere. */
1231 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001232 for_each_online_node(nid) {
1233 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001234 continue;
1235
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001236 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001237 taskimp = task_weight(p, nid) - taskweight;
1238 groupimp = group_weight(p, nid) - groupweight;
1239 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001240 continue;
1241
1242 env.dst_nid = nid;
1243 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001244 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001245 }
1246 }
1247
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001248 /* No better CPU than the current one was found. */
1249 if (env.best_cpu == -1)
1250 return -EAGAIN;
1251
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001252 sched_setnuma(p, env.dst_nid);
1253
Rik van Riel04bb2f92013-10-07 11:29:36 +01001254 /*
1255 * Reset the scan period if the task is being rescheduled on an
1256 * alternative node to recheck if the tasks is now properly placed.
1257 */
1258 p->numa_scan_period = task_scan_min(p);
1259
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001260 if (env.best_task == NULL) {
1261 int ret = migrate_task_to(p, env.best_cpu);
1262 return ret;
1263 }
1264
1265 ret = migrate_swap(p, env.best_task);
1266 put_task_struct(env.best_task);
1267 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001268}
1269
Mel Gorman6b9a7462013-10-07 11:29:11 +01001270/* Attempt to migrate a task to a CPU on the preferred node. */
1271static void numa_migrate_preferred(struct task_struct *p)
1272{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001273 /* This task has no NUMA fault statistics yet */
1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1275 return;
1276
1277 /* Periodically retry migrating the task to the preferred node */
1278 p->numa_migrate_retry = jiffies + HZ;
1279
Mel Gorman6b9a7462013-10-07 11:29:11 +01001280 /* Success if task is already running on preferred CPU */
Rik van Riel1e3646f2013-10-07 11:29:38 +01001281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001282 return;
1283
Mel Gorman6b9a7462013-10-07 11:29:11 +01001284 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001285 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001286}
1287
Rik van Riel04bb2f92013-10-07 11:29:36 +01001288/*
1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290 * increments. The more local the fault statistics are, the higher the scan
1291 * period will be for the next scan window. If local/remote ratio is below
1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293 * scan period will decrease
1294 */
1295#define NUMA_PERIOD_SLOTS 10
1296#define NUMA_PERIOD_THRESHOLD 3
1297
1298/*
1299 * Increase the scan period (slow down scanning) if the majority of
1300 * our memory is already on our local node, or if the majority of
1301 * the page accesses are shared with other processes.
1302 * Otherwise, decrease the scan period.
1303 */
1304static void update_task_scan_period(struct task_struct *p,
1305 unsigned long shared, unsigned long private)
1306{
1307 unsigned int period_slot;
1308 int ratio;
1309 int diff;
1310
1311 unsigned long remote = p->numa_faults_locality[0];
1312 unsigned long local = p->numa_faults_locality[1];
1313
1314 /*
1315 * If there were no record hinting faults then either the task is
1316 * completely idle or all activity is areas that are not of interest
1317 * to automatic numa balancing. Scan slower
1318 */
1319 if (local + shared == 0) {
1320 p->numa_scan_period = min(p->numa_scan_period_max,
1321 p->numa_scan_period << 1);
1322
1323 p->mm->numa_next_scan = jiffies +
1324 msecs_to_jiffies(p->numa_scan_period);
1325
1326 return;
1327 }
1328
1329 /*
1330 * Prepare to scale scan period relative to the current period.
1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1334 */
1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1339 if (!slot)
1340 slot = 1;
1341 diff = slot * period_slot;
1342 } else {
1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1344
1345 /*
1346 * Scale scan rate increases based on sharing. There is an
1347 * inverse relationship between the degree of sharing and
1348 * the adjustment made to the scanning period. Broadly
1349 * speaking the intent is that there is little point
1350 * scanning faster if shared accesses dominate as it may
1351 * simply bounce migrations uselessly
1352 */
1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1356 }
1357
1358 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 task_scan_min(p), task_scan_max(p));
1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1361}
1362
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001363static void task_numa_placement(struct task_struct *p)
1364{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001365 int seq, nid, max_nid = -1, max_group_nid = -1;
1366 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001367 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001368 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001369
Hugh Dickins2832bc12012-12-19 17:42:16 -08001370 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001371 if (p->numa_scan_seq == seq)
1372 return;
1373 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001374 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001375
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001376 /* If the task is part of a group prevent parallel updates to group stats */
1377 if (p->numa_group) {
1378 group_lock = &p->numa_group->lock;
1379 spin_lock(group_lock);
1380 }
1381
Mel Gorman688b7582013-10-07 11:28:58 +01001382 /* Find the node with the highest number of faults */
1383 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001384 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001385 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001386
Mel Gormanac8e8952013-10-07 11:29:03 +01001387 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001388 long diff;
1389
Mel Gormanac8e8952013-10-07 11:29:03 +01001390 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001391 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001392
Mel Gormanac8e8952013-10-07 11:29:03 +01001393 /* Decay existing window, copy faults since last scan */
1394 p->numa_faults[i] >>= 1;
1395 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001396 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001397 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001398
1399 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001400 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001401 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001402 if (p->numa_group) {
1403 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001404 p->numa_group->faults[i] += diff;
1405 p->numa_group->total_faults += diff;
1406 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001407 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001408 }
1409
Mel Gorman688b7582013-10-07 11:28:58 +01001410 if (faults > max_faults) {
1411 max_faults = faults;
1412 max_nid = nid;
1413 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001414
1415 if (group_faults > max_group_faults) {
1416 max_group_faults = group_faults;
1417 max_group_nid = nid;
1418 }
1419 }
1420
Rik van Riel04bb2f92013-10-07 11:29:36 +01001421 update_task_scan_period(p, fault_types[0], fault_types[1]);
1422
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001423 if (p->numa_group) {
1424 /*
1425 * If the preferred task and group nids are different,
1426 * iterate over the nodes again to find the best place.
1427 */
1428 if (max_nid != max_group_nid) {
1429 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001430
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001431 for_each_online_node(nid) {
1432 weight = task_weight(p, nid) + group_weight(p, nid);
1433 if (weight > max_weight) {
1434 max_weight = weight;
1435 max_nid = nid;
1436 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001437 }
1438 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001439
1440 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001441 }
1442
Mel Gorman6b9a7462013-10-07 11:29:11 +01001443 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001444 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001445 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001446 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001447 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001448 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001449}
1450
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001451static inline int get_numa_group(struct numa_group *grp)
1452{
1453 return atomic_inc_not_zero(&grp->refcount);
1454}
1455
1456static inline void put_numa_group(struct numa_group *grp)
1457{
1458 if (atomic_dec_and_test(&grp->refcount))
1459 kfree_rcu(grp, rcu);
1460}
1461
Mel Gorman3e6a9412013-10-07 11:29:35 +01001462static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1463 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001464{
1465 struct numa_group *grp, *my_grp;
1466 struct task_struct *tsk;
1467 bool join = false;
1468 int cpu = cpupid_to_cpu(cpupid);
1469 int i;
1470
1471 if (unlikely(!p->numa_group)) {
1472 unsigned int size = sizeof(struct numa_group) +
Mel Gorman989348b2013-10-07 11:29:40 +01001473 2*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001474
1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1476 if (!grp)
1477 return;
1478
1479 atomic_set(&grp->refcount, 1);
1480 spin_lock_init(&grp->lock);
1481 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001482 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001483
1484 for (i = 0; i < 2*nr_node_ids; i++)
Mel Gorman989348b2013-10-07 11:29:40 +01001485 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001486
Mel Gorman989348b2013-10-07 11:29:40 +01001487 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001488
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001489 list_add(&p->numa_entry, &grp->task_list);
1490 grp->nr_tasks++;
1491 rcu_assign_pointer(p->numa_group, grp);
1492 }
1493
1494 rcu_read_lock();
1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1496
1497 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001498 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001499
1500 grp = rcu_dereference(tsk->numa_group);
1501 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001502 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001503
1504 my_grp = p->numa_group;
1505 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001506 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001507
1508 /*
1509 * Only join the other group if its bigger; if we're the bigger group,
1510 * the other task will join us.
1511 */
1512 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001513 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001514
1515 /*
1516 * Tie-break on the grp address.
1517 */
1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001519 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001520
Rik van Rieldabe1d92013-10-07 11:29:34 +01001521 /* Always join threads in the same process. */
1522 if (tsk->mm == current->mm)
1523 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001524
Rik van Rieldabe1d92013-10-07 11:29:34 +01001525 /* Simple filter to avoid false positives due to PID collisions */
1526 if (flags & TNF_SHARED)
1527 join = true;
1528
Mel Gorman3e6a9412013-10-07 11:29:35 +01001529 /* Update priv based on whether false sharing was detected */
1530 *priv = !join;
1531
Rik van Rieldabe1d92013-10-07 11:29:34 +01001532 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001533 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001534
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001535 rcu_read_unlock();
1536
1537 if (!join)
1538 return;
1539
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001540 double_lock(&my_grp->lock, &grp->lock);
1541
Mel Gorman989348b2013-10-07 11:29:40 +01001542 for (i = 0; i < 2*nr_node_ids; i++) {
1543 my_grp->faults[i] -= p->numa_faults[i];
1544 grp->faults[i] += p->numa_faults[i];
1545 }
1546 my_grp->total_faults -= p->total_numa_faults;
1547 grp->total_faults += p->total_numa_faults;
1548
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001549 list_move(&p->numa_entry, &grp->task_list);
1550 my_grp->nr_tasks--;
1551 grp->nr_tasks++;
1552
1553 spin_unlock(&my_grp->lock);
1554 spin_unlock(&grp->lock);
1555
1556 rcu_assign_pointer(p->numa_group, grp);
1557
1558 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001559 return;
1560
1561no_join:
1562 rcu_read_unlock();
1563 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001564}
1565
1566void task_numa_free(struct task_struct *p)
1567{
1568 struct numa_group *grp = p->numa_group;
1569 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001570 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001571
1572 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001573 spin_lock(&grp->lock);
Mel Gorman989348b2013-10-07 11:29:40 +01001574 for (i = 0; i < 2*nr_node_ids; i++)
1575 grp->faults[i] -= p->numa_faults[i];
1576 grp->total_faults -= p->total_numa_faults;
1577
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001578 list_del(&p->numa_entry);
1579 grp->nr_tasks--;
1580 spin_unlock(&grp->lock);
1581 rcu_assign_pointer(p->numa_group, NULL);
1582 put_numa_group(grp);
1583 }
1584
Rik van Riel82727012013-10-07 11:29:28 +01001585 p->numa_faults = NULL;
1586 p->numa_faults_buffer = NULL;
1587 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001588}
1589
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001590/*
1591 * Got a PROT_NONE fault for a page on @node.
1592 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001593void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001594{
1595 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001596 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001597 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001598
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001599 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001600 return;
1601
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001602 /* for example, ksmd faulting in a user's mm */
1603 if (!p->mm)
1604 return;
1605
Rik van Riel82727012013-10-07 11:29:28 +01001606 /* Do not worry about placement if exiting */
1607 if (p->state == TASK_DEAD)
1608 return;
1609
Mel Gormanf809ca92013-10-07 11:28:57 +01001610 /* Allocate buffer to track faults on a per-node basis */
1611 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001613
Mel Gorman745d6142013-10-07 11:28:59 +01001614 /* numa_faults and numa_faults_buffer share the allocation */
1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001616 if (!p->numa_faults)
1617 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001618
1619 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001621 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001623 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001624
Mel Gormanfb003b82012-11-15 09:01:14 +00001625 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001626 * First accesses are treated as private, otherwise consider accesses
1627 * to be private if the accessing pid has not changed
1628 */
1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1630 priv = 1;
1631 } else {
1632 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001633 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001634 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001635 }
1636
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001637 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001638
Rik van Riel2739d3e2013-10-07 11:29:41 +01001639 /*
1640 * Retry task to preferred node migration periodically, in case it
1641 * case it previously failed, or the scheduler moved us.
1642 */
1643 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001644 numa_migrate_preferred(p);
1645
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001646 if (migrated)
1647 p->numa_pages_migrated += pages;
1648
Mel Gormanac8e8952013-10-07 11:29:03 +01001649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001651}
1652
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001653static void reset_ptenuma_scan(struct task_struct *p)
1654{
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1657}
1658
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001659/*
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1662 */
1663void task_numa_work(struct callback_head *work)
1664{
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001668 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001669 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001670 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001671 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001672
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674
1675 work->next = work; /* protect against double add */
1676 /*
1677 * Who cares about NUMA placement when they're dying.
1678 *
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1682 * work.
1683 */
1684 if (p->flags & PF_EXITING)
1685 return;
1686
Mel Gorman930aa172013-10-07 11:29:37 +01001687 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001690 }
1691
1692 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001693 * Enforce maximal scan/migration frequency..
1694 */
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1697 return;
1698
Mel Gorman598f0ec2013-10-07 11:28:55 +01001699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1702 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001703
Mel Gormanfb003b82012-11-15 09:01:14 +00001704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 return;
1707
Mel Gormane14808b2012-11-19 10:59:15 +00001708 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1711 */
1712 p->node_stamp += 2 * TICK_NSEC;
1713
Mel Gorman9f406042012-11-14 18:34:32 +00001714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 if (!pages)
1718 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001719
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001720 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001721 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001722 if (!vma) {
1723 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001724 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001725 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001726 }
Mel Gorman9f406042012-11-14 18:34:32 +00001727 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001729 continue;
1730
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001731 /*
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1736 */
1737 if (!vma->vm_mm ||
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 continue;
1740
Mel Gorman3c67f472013-12-18 17:08:40 -08001741 /*
1742 * Skip inaccessible VMAs to avoid any confusion between
1743 * PROT_NONE and NUMA hinting ptes
1744 */
1745 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1746 continue;
1747
Mel Gorman9f406042012-11-14 18:34:32 +00001748 do {
1749 start = max(start, vma->vm_start);
1750 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1751 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001752 nr_pte_updates += change_prot_numa(vma, start, end);
1753
1754 /*
1755 * Scan sysctl_numa_balancing_scan_size but ensure that
1756 * at least one PTE is updated so that unused virtual
1757 * address space is quickly skipped.
1758 */
1759 if (nr_pte_updates)
1760 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001761
Mel Gorman9f406042012-11-14 18:34:32 +00001762 start = end;
1763 if (pages <= 0)
1764 goto out;
1765 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001766 }
1767
Mel Gorman9f406042012-11-14 18:34:32 +00001768out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001769 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001770 * It is possible to reach the end of the VMA list but the last few
1771 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1772 * would find the !migratable VMA on the next scan but not reset the
1773 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001774 */
1775 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001776 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001777 else
1778 reset_ptenuma_scan(p);
1779 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001780}
1781
1782/*
1783 * Drive the periodic memory faults..
1784 */
1785void task_tick_numa(struct rq *rq, struct task_struct *curr)
1786{
1787 struct callback_head *work = &curr->numa_work;
1788 u64 period, now;
1789
1790 /*
1791 * We don't care about NUMA placement if we don't have memory.
1792 */
1793 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1794 return;
1795
1796 /*
1797 * Using runtime rather than walltime has the dual advantage that
1798 * we (mostly) drive the selection from busy threads and that the
1799 * task needs to have done some actual work before we bother with
1800 * NUMA placement.
1801 */
1802 now = curr->se.sum_exec_runtime;
1803 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1804
1805 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001806 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001807 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001808 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001809
1810 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1811 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1812 task_work_add(curr, work, true);
1813 }
1814 }
1815}
1816#else
1817static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1818{
1819}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001820
1821static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1822{
1823}
1824
1825static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1826{
1827}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001828#endif /* CONFIG_NUMA_BALANCING */
1829
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001830static void
1831account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001834 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001835 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001836#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001837 if (entity_is_task(se)) {
1838 struct rq *rq = rq_of(cfs_rq);
1839
1840 account_numa_enqueue(rq, task_of(se));
1841 list_add(&se->group_node, &rq->cfs_tasks);
1842 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001843#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001844 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001845}
1846
1847static void
1848account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1849{
1850 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001851 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001852 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001853 if (entity_is_task(se)) {
1854 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301855 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001856 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001857 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001858}
1859
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001860#ifdef CONFIG_FAIR_GROUP_SCHED
1861# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001862static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1863{
1864 long tg_weight;
1865
1866 /*
1867 * Use this CPU's actual weight instead of the last load_contribution
1868 * to gain a more accurate current total weight. See
1869 * update_cfs_rq_load_contribution().
1870 */
Alex Shibf5b9862013-06-20 10:18:54 +08001871 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001872 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001873 tg_weight += cfs_rq->load.weight;
1874
1875 return tg_weight;
1876}
1877
Paul Turner6d5ab292011-01-21 20:45:01 -08001878static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001879{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001880 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001881
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001882 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001883 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001884
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001885 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001886 if (tg_weight)
1887 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001888
1889 if (shares < MIN_SHARES)
1890 shares = MIN_SHARES;
1891 if (shares > tg->shares)
1892 shares = tg->shares;
1893
1894 return shares;
1895}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001896# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001897static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001898{
1899 return tg->shares;
1900}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001901# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001902static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1903 unsigned long weight)
1904{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001905 if (se->on_rq) {
1906 /* commit outstanding execution time */
1907 if (cfs_rq->curr == se)
1908 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001909 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001910 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001911
1912 update_load_set(&se->load, weight);
1913
1914 if (se->on_rq)
1915 account_entity_enqueue(cfs_rq, se);
1916}
1917
Paul Turner82958362012-10-04 13:18:31 +02001918static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1919
Paul Turner6d5ab292011-01-21 20:45:01 -08001920static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001921{
1922 struct task_group *tg;
1923 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001924 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001925
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001926 tg = cfs_rq->tg;
1927 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001928 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001929 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001930#ifndef CONFIG_SMP
1931 if (likely(se->load.weight == tg->shares))
1932 return;
1933#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001934 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001935
1936 reweight_entity(cfs_rq_of(se), se, shares);
1937}
1938#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001939static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001940{
1941}
1942#endif /* CONFIG_FAIR_GROUP_SCHED */
1943
Alex Shi141965c2013-06-26 13:05:39 +08001944#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001945/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001946 * We choose a half-life close to 1 scheduling period.
1947 * Note: The tables below are dependent on this value.
1948 */
1949#define LOAD_AVG_PERIOD 32
1950#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1951#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1952
1953/* Precomputed fixed inverse multiplies for multiplication by y^n */
1954static const u32 runnable_avg_yN_inv[] = {
1955 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1956 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1957 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1958 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1959 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1960 0x85aac367, 0x82cd8698,
1961};
1962
1963/*
1964 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1965 * over-estimates when re-combining.
1966 */
1967static const u32 runnable_avg_yN_sum[] = {
1968 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1969 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1970 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1971};
1972
1973/*
Paul Turner9d85f212012-10-04 13:18:29 +02001974 * Approximate:
1975 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1976 */
1977static __always_inline u64 decay_load(u64 val, u64 n)
1978{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001979 unsigned int local_n;
1980
1981 if (!n)
1982 return val;
1983 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1984 return 0;
1985
1986 /* after bounds checking we can collapse to 32-bit */
1987 local_n = n;
1988
1989 /*
1990 * As y^PERIOD = 1/2, we can combine
1991 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1992 * With a look-up table which covers k^n (n<PERIOD)
1993 *
1994 * To achieve constant time decay_load.
1995 */
1996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1997 val >>= local_n / LOAD_AVG_PERIOD;
1998 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001999 }
2000
Paul Turner5b51f2f2012-10-04 13:18:32 +02002001 val *= runnable_avg_yN_inv[local_n];
2002 /* We don't use SRR here since we always want to round down. */
2003 return val >> 32;
2004}
2005
2006/*
2007 * For updates fully spanning n periods, the contribution to runnable
2008 * average will be: \Sum 1024*y^n
2009 *
2010 * We can compute this reasonably efficiently by combining:
2011 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2012 */
2013static u32 __compute_runnable_contrib(u64 n)
2014{
2015 u32 contrib = 0;
2016
2017 if (likely(n <= LOAD_AVG_PERIOD))
2018 return runnable_avg_yN_sum[n];
2019 else if (unlikely(n >= LOAD_AVG_MAX_N))
2020 return LOAD_AVG_MAX;
2021
2022 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2023 do {
2024 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2025 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2026
2027 n -= LOAD_AVG_PERIOD;
2028 } while (n > LOAD_AVG_PERIOD);
2029
2030 contrib = decay_load(contrib, n);
2031 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002032}
2033
2034/*
2035 * We can represent the historical contribution to runnable average as the
2036 * coefficients of a geometric series. To do this we sub-divide our runnable
2037 * history into segments of approximately 1ms (1024us); label the segment that
2038 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2039 *
2040 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2041 * p0 p1 p2
2042 * (now) (~1ms ago) (~2ms ago)
2043 *
2044 * Let u_i denote the fraction of p_i that the entity was runnable.
2045 *
2046 * We then designate the fractions u_i as our co-efficients, yielding the
2047 * following representation of historical load:
2048 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2049 *
2050 * We choose y based on the with of a reasonably scheduling period, fixing:
2051 * y^32 = 0.5
2052 *
2053 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2054 * approximately half as much as the contribution to load within the last ms
2055 * (u_0).
2056 *
2057 * When a period "rolls over" and we have new u_0`, multiplying the previous
2058 * sum again by y is sufficient to update:
2059 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2060 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2061 */
2062static __always_inline int __update_entity_runnable_avg(u64 now,
2063 struct sched_avg *sa,
2064 int runnable)
2065{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002066 u64 delta, periods;
2067 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002068 int delta_w, decayed = 0;
2069
2070 delta = now - sa->last_runnable_update;
2071 /*
2072 * This should only happen when time goes backwards, which it
2073 * unfortunately does during sched clock init when we swap over to TSC.
2074 */
2075 if ((s64)delta < 0) {
2076 sa->last_runnable_update = now;
2077 return 0;
2078 }
2079
2080 /*
2081 * Use 1024ns as the unit of measurement since it's a reasonable
2082 * approximation of 1us and fast to compute.
2083 */
2084 delta >>= 10;
2085 if (!delta)
2086 return 0;
2087 sa->last_runnable_update = now;
2088
2089 /* delta_w is the amount already accumulated against our next period */
2090 delta_w = sa->runnable_avg_period % 1024;
2091 if (delta + delta_w >= 1024) {
2092 /* period roll-over */
2093 decayed = 1;
2094
2095 /*
2096 * Now that we know we're crossing a period boundary, figure
2097 * out how much from delta we need to complete the current
2098 * period and accrue it.
2099 */
2100 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002101 if (runnable)
2102 sa->runnable_avg_sum += delta_w;
2103 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002104
Paul Turner5b51f2f2012-10-04 13:18:32 +02002105 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002106
Paul Turner5b51f2f2012-10-04 13:18:32 +02002107 /* Figure out how many additional periods this update spans */
2108 periods = delta / 1024;
2109 delta %= 1024;
2110
2111 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2112 periods + 1);
2113 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2114 periods + 1);
2115
2116 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2117 runnable_contrib = __compute_runnable_contrib(periods);
2118 if (runnable)
2119 sa->runnable_avg_sum += runnable_contrib;
2120 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002121 }
2122
2123 /* Remainder of delta accrued against u_0` */
2124 if (runnable)
2125 sa->runnable_avg_sum += delta;
2126 sa->runnable_avg_period += delta;
2127
2128 return decayed;
2129}
2130
Paul Turner9ee474f2012-10-04 13:18:30 +02002131/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002132static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002133{
2134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2136
2137 decays -= se->avg.decay_count;
2138 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002139 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002140
2141 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2142 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002143
2144 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002145}
2146
Paul Turnerc566e8e2012-10-04 13:18:30 +02002147#ifdef CONFIG_FAIR_GROUP_SCHED
2148static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2149 int force_update)
2150{
2151 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002152 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002153
2154 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2155 tg_contrib -= cfs_rq->tg_load_contrib;
2156
Alex Shibf5b9862013-06-20 10:18:54 +08002157 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2158 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002159 cfs_rq->tg_load_contrib += tg_contrib;
2160 }
2161}
Paul Turner8165e142012-10-04 13:18:31 +02002162
Paul Turnerbb17f652012-10-04 13:18:31 +02002163/*
2164 * Aggregate cfs_rq runnable averages into an equivalent task_group
2165 * representation for computing load contributions.
2166 */
2167static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2168 struct cfs_rq *cfs_rq)
2169{
2170 struct task_group *tg = cfs_rq->tg;
2171 long contrib;
2172
2173 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002174 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Paul Turnerbb17f652012-10-04 13:18:31 +02002175 sa->runnable_avg_period + 1);
2176 contrib -= cfs_rq->tg_runnable_contrib;
2177
2178 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2179 atomic_add(contrib, &tg->runnable_avg);
2180 cfs_rq->tg_runnable_contrib += contrib;
2181 }
2182}
2183
Paul Turner8165e142012-10-04 13:18:31 +02002184static inline void __update_group_entity_contrib(struct sched_entity *se)
2185{
2186 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2187 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002188 int runnable_avg;
2189
Paul Turner8165e142012-10-04 13:18:31 +02002190 u64 contrib;
2191
2192 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002193 se->avg.load_avg_contrib = div_u64(contrib,
2194 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002195
2196 /*
2197 * For group entities we need to compute a correction term in the case
2198 * that they are consuming <1 cpu so that we would contribute the same
2199 * load as a task of equal weight.
2200 *
2201 * Explicitly co-ordinating this measurement would be expensive, but
2202 * fortunately the sum of each cpus contribution forms a usable
2203 * lower-bound on the true value.
2204 *
2205 * Consider the aggregate of 2 contributions. Either they are disjoint
2206 * (and the sum represents true value) or they are disjoint and we are
2207 * understating by the aggregate of their overlap.
2208 *
2209 * Extending this to N cpus, for a given overlap, the maximum amount we
2210 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2211 * cpus that overlap for this interval and w_i is the interval width.
2212 *
2213 * On a small machine; the first term is well-bounded which bounds the
2214 * total error since w_i is a subset of the period. Whereas on a
2215 * larger machine, while this first term can be larger, if w_i is the
2216 * of consequential size guaranteed to see n_i*w_i quickly converge to
2217 * our upper bound of 1-cpu.
2218 */
2219 runnable_avg = atomic_read(&tg->runnable_avg);
2220 if (runnable_avg < NICE_0_LOAD) {
2221 se->avg.load_avg_contrib *= runnable_avg;
2222 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2223 }
Paul Turner8165e142012-10-04 13:18:31 +02002224}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002225#else
2226static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2227 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002228static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2229 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002230static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002231#endif
2232
Paul Turner8165e142012-10-04 13:18:31 +02002233static inline void __update_task_entity_contrib(struct sched_entity *se)
2234{
2235 u32 contrib;
2236
2237 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2238 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2239 contrib /= (se->avg.runnable_avg_period + 1);
2240 se->avg.load_avg_contrib = scale_load(contrib);
2241}
2242
Paul Turner2dac7542012-10-04 13:18:30 +02002243/* Compute the current contribution to load_avg by se, return any delta */
2244static long __update_entity_load_avg_contrib(struct sched_entity *se)
2245{
2246 long old_contrib = se->avg.load_avg_contrib;
2247
Paul Turner8165e142012-10-04 13:18:31 +02002248 if (entity_is_task(se)) {
2249 __update_task_entity_contrib(se);
2250 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002251 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002252 __update_group_entity_contrib(se);
2253 }
Paul Turner2dac7542012-10-04 13:18:30 +02002254
2255 return se->avg.load_avg_contrib - old_contrib;
2256}
2257
Paul Turner9ee474f2012-10-04 13:18:30 +02002258static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2259 long load_contrib)
2260{
2261 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2262 cfs_rq->blocked_load_avg -= load_contrib;
2263 else
2264 cfs_rq->blocked_load_avg = 0;
2265}
2266
Paul Turnerf1b17282012-10-04 13:18:31 +02002267static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2268
Paul Turner9d85f212012-10-04 13:18:29 +02002269/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002270static inline void update_entity_load_avg(struct sched_entity *se,
2271 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002272{
Paul Turner2dac7542012-10-04 13:18:30 +02002273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2274 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002275 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002276
Paul Turnerf1b17282012-10-04 13:18:31 +02002277 /*
2278 * For a group entity we need to use their owned cfs_rq_clock_task() in
2279 * case they are the parent of a throttled hierarchy.
2280 */
2281 if (entity_is_task(se))
2282 now = cfs_rq_clock_task(cfs_rq);
2283 else
2284 now = cfs_rq_clock_task(group_cfs_rq(se));
2285
2286 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002287 return;
2288
2289 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002290
2291 if (!update_cfs_rq)
2292 return;
2293
Paul Turner2dac7542012-10-04 13:18:30 +02002294 if (se->on_rq)
2295 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002296 else
2297 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2298}
2299
2300/*
2301 * Decay the load contributed by all blocked children and account this so that
2302 * their contribution may appropriately discounted when they wake up.
2303 */
Paul Turneraff3e492012-10-04 13:18:30 +02002304static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002305{
Paul Turnerf1b17282012-10-04 13:18:31 +02002306 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002307 u64 decays;
2308
2309 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002310 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002311 return;
2312
Alex Shi25099402013-06-20 10:18:55 +08002313 if (atomic_long_read(&cfs_rq->removed_load)) {
2314 unsigned long removed_load;
2315 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002316 subtract_blocked_load_contrib(cfs_rq, removed_load);
2317 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002318
Paul Turneraff3e492012-10-04 13:18:30 +02002319 if (decays) {
2320 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2321 decays);
2322 atomic64_add(decays, &cfs_rq->decay_counter);
2323 cfs_rq->last_decay = now;
2324 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002325
2326 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002327}
Ben Segall18bf2802012-10-04 12:51:20 +02002328
2329static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2330{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002331 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002332 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002333}
Paul Turner2dac7542012-10-04 13:18:30 +02002334
2335/* Add the load generated by se into cfs_rq's child load-average */
2336static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002337 struct sched_entity *se,
2338 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002339{
Paul Turneraff3e492012-10-04 13:18:30 +02002340 /*
2341 * We track migrations using entity decay_count <= 0, on a wake-up
2342 * migration we use a negative decay count to track the remote decays
2343 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002344 *
2345 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2346 * are seen by enqueue_entity_load_avg() as a migration with an already
2347 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002348 */
2349 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002350 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002351 if (se->avg.decay_count) {
2352 /*
2353 * In a wake-up migration we have to approximate the
2354 * time sleeping. This is because we can't synchronize
2355 * clock_task between the two cpus, and it is not
2356 * guaranteed to be read-safe. Instead, we can
2357 * approximate this using our carried decays, which are
2358 * explicitly atomically readable.
2359 */
2360 se->avg.last_runnable_update -= (-se->avg.decay_count)
2361 << 20;
2362 update_entity_load_avg(se, 0);
2363 /* Indicate that we're now synchronized and on-rq */
2364 se->avg.decay_count = 0;
2365 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002366 wakeup = 0;
2367 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002368 /*
2369 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2370 * would have made count negative); we must be careful to avoid
2371 * double-accounting blocked time after synchronizing decays.
2372 */
2373 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2374 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002375 }
2376
Paul Turneraff3e492012-10-04 13:18:30 +02002377 /* migrated tasks did not contribute to our blocked load */
2378 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002379 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002380 update_entity_load_avg(se, 0);
2381 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002382
Paul Turner2dac7542012-10-04 13:18:30 +02002383 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002384 /* we force update consideration on load-balancer moves */
2385 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002386}
2387
Paul Turner9ee474f2012-10-04 13:18:30 +02002388/*
2389 * Remove se's load from this cfs_rq child load-average, if the entity is
2390 * transitioning to a blocked state we track its projected decay using
2391 * blocked_load_avg.
2392 */
Paul Turner2dac7542012-10-04 13:18:30 +02002393static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002394 struct sched_entity *se,
2395 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002396{
Paul Turner9ee474f2012-10-04 13:18:30 +02002397 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002398 /* we force update consideration on load-balancer moves */
2399 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002400
Paul Turner2dac7542012-10-04 13:18:30 +02002401 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002402 if (sleep) {
2403 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2404 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2405 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002406}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002407
2408/*
2409 * Update the rq's load with the elapsed running time before entering
2410 * idle. if the last scheduled task is not a CFS task, idle_enter will
2411 * be the only way to update the runnable statistic.
2412 */
2413void idle_enter_fair(struct rq *this_rq)
2414{
2415 update_rq_runnable_avg(this_rq, 1);
2416}
2417
2418/*
2419 * Update the rq's load with the elapsed idle time before a task is
2420 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2421 * be the only way to update the runnable statistic.
2422 */
2423void idle_exit_fair(struct rq *this_rq)
2424{
2425 update_rq_runnable_avg(this_rq, 0);
2426}
2427
Paul Turner9d85f212012-10-04 13:18:29 +02002428#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002429static inline void update_entity_load_avg(struct sched_entity *se,
2430 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002431static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002432static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002433 struct sched_entity *se,
2434 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002435static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002436 struct sched_entity *se,
2437 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002438static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2439 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002440#endif
2441
Ingo Molnar2396af62007-08-09 11:16:48 +02002442static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002443{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002444#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002445 struct task_struct *tsk = NULL;
2446
2447 if (entity_is_task(se))
2448 tsk = task_of(se);
2449
Lucas De Marchi41acab82010-03-10 23:37:45 -03002450 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002452
2453 if ((s64)delta < 0)
2454 delta = 0;
2455
Lucas De Marchi41acab82010-03-10 23:37:45 -03002456 if (unlikely(delta > se->statistics.sleep_max))
2457 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002458
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002459 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002460 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002461
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002462 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002463 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002464 trace_sched_stat_sleep(tsk, delta);
2465 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002466 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002467 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002468 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002469
2470 if ((s64)delta < 0)
2471 delta = 0;
2472
Lucas De Marchi41acab82010-03-10 23:37:45 -03002473 if (unlikely(delta > se->statistics.block_max))
2474 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002475
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002476 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002477 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002478
Peter Zijlstrae4143142009-07-23 20:13:26 +02002479 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002480 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002481 se->statistics.iowait_sum += delta;
2482 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002483 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002484 }
2485
Andrew Vaginb781a602011-11-28 12:03:35 +03002486 trace_sched_stat_blocked(tsk, delta);
2487
Peter Zijlstrae4143142009-07-23 20:13:26 +02002488 /*
2489 * Blocking time is in units of nanosecs, so shift by
2490 * 20 to get a milliseconds-range estimation of the
2491 * amount of time that the task spent sleeping:
2492 */
2493 if (unlikely(prof_on == SLEEP_PROFILING)) {
2494 profile_hits(SLEEP_PROFILING,
2495 (void *)get_wchan(tsk),
2496 delta >> 20);
2497 }
2498 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002499 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002500 }
2501#endif
2502}
2503
Peter Zijlstraddc97292007-10-15 17:00:10 +02002504static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2505{
2506#ifdef CONFIG_SCHED_DEBUG
2507 s64 d = se->vruntime - cfs_rq->min_vruntime;
2508
2509 if (d < 0)
2510 d = -d;
2511
2512 if (d > 3*sysctl_sched_latency)
2513 schedstat_inc(cfs_rq, nr_spread_over);
2514#endif
2515}
2516
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002517static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002518place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2519{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002520 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002521
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002522 /*
2523 * The 'current' period is already promised to the current tasks,
2524 * however the extra weight of the new task will slow them down a
2525 * little, place the new task so that it fits in the slot that
2526 * stays open at the end.
2527 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002528 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002529 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002530
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002531 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002532 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002533 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002534
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002535 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002536 * Halve their sleep time's effect, to allow
2537 * for a gentler effect of sleepers:
2538 */
2539 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2540 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002541
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002542 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002543 }
2544
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002545 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302546 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002547}
2548
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002549static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2550
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002551static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002552enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002553{
2554 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002555 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302556 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002557 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002558 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002559 se->vruntime += cfs_rq->min_vruntime;
2560
2561 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002562 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002563 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002564 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002565 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002566 account_entity_enqueue(cfs_rq, se);
2567 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002568
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002569 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002570 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002571 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002572 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002573
Ingo Molnard2417e52007-08-09 11:16:47 +02002574 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002575 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002576 if (se != cfs_rq->curr)
2577 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002578 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002579
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002580 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002581 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002582 check_enqueue_throttle(cfs_rq);
2583 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002584}
2585
Rik van Riel2c13c9192011-02-01 09:48:37 -05002586static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002587{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002588 for_each_sched_entity(se) {
2589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2590 if (cfs_rq->last == se)
2591 cfs_rq->last = NULL;
2592 else
2593 break;
2594 }
2595}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002596
Rik van Riel2c13c9192011-02-01 09:48:37 -05002597static void __clear_buddies_next(struct sched_entity *se)
2598{
2599 for_each_sched_entity(se) {
2600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 if (cfs_rq->next == se)
2602 cfs_rq->next = NULL;
2603 else
2604 break;
2605 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002606}
2607
Rik van Rielac53db52011-02-01 09:51:03 -05002608static void __clear_buddies_skip(struct sched_entity *se)
2609{
2610 for_each_sched_entity(se) {
2611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2612 if (cfs_rq->skip == se)
2613 cfs_rq->skip = NULL;
2614 else
2615 break;
2616 }
2617}
2618
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002619static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002621 if (cfs_rq->last == se)
2622 __clear_buddies_last(se);
2623
2624 if (cfs_rq->next == se)
2625 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002626
2627 if (cfs_rq->skip == se)
2628 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002629}
2630
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002631static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002632
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002633static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002634dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002635{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002636 /*
2637 * Update run-time statistics of the 'current'.
2638 */
2639 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002640 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002641
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002642 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002643 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002644#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002645 if (entity_is_task(se)) {
2646 struct task_struct *tsk = task_of(se);
2647
2648 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002649 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002650 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002651 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002652 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002653#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002654 }
2655
Peter Zijlstra2002c692008-11-11 11:52:33 +01002656 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002657
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002658 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002659 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002660 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002661 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002662
2663 /*
2664 * Normalize the entity after updating the min_vruntime because the
2665 * update can refer to the ->curr item and we need to reflect this
2666 * movement in our normalized position.
2667 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002668 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002669 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002670
Paul Turnerd8b49862011-07-21 09:43:41 -07002671 /* return excess runtime on last dequeue */
2672 return_cfs_rq_runtime(cfs_rq);
2673
Peter Zijlstra1e876232011-05-17 16:21:10 -07002674 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002675 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002676}
2677
2678/*
2679 * Preempt the current task with a newly woken task if needed:
2680 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002681static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002682check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002683{
Peter Zijlstra11697832007-09-05 14:32:49 +02002684 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002685 struct sched_entity *se;
2686 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002687
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002688 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002689 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002690 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002691 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002692 /*
2693 * The current task ran long enough, ensure it doesn't get
2694 * re-elected due to buddy favours.
2695 */
2696 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002697 return;
2698 }
2699
2700 /*
2701 * Ensure that a task that missed wakeup preemption by a
2702 * narrow margin doesn't have to wait for a full slice.
2703 * This also mitigates buddy induced latencies under load.
2704 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002705 if (delta_exec < sysctl_sched_min_granularity)
2706 return;
2707
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002708 se = __pick_first_entity(cfs_rq);
2709 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002710
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002711 if (delta < 0)
2712 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002713
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002714 if (delta > ideal_runtime)
2715 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002716}
2717
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002718static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002719set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002720{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002721 /* 'current' is not kept within the tree. */
2722 if (se->on_rq) {
2723 /*
2724 * Any task has to be enqueued before it get to execute on
2725 * a CPU. So account for the time it spent waiting on the
2726 * runqueue.
2727 */
2728 update_stats_wait_end(cfs_rq, se);
2729 __dequeue_entity(cfs_rq, se);
2730 }
2731
Ingo Molnar79303e92007-08-09 11:16:47 +02002732 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002733 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002734#ifdef CONFIG_SCHEDSTATS
2735 /*
2736 * Track our maximum slice length, if the CPU's load is at
2737 * least twice that of our own weight (i.e. dont track it
2738 * when there are only lesser-weight tasks around):
2739 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002740 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002741 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002742 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2743 }
2744#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002745 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002746}
2747
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002748static int
2749wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2750
Rik van Rielac53db52011-02-01 09:51:03 -05002751/*
2752 * Pick the next process, keeping these things in mind, in this order:
2753 * 1) keep things fair between processes/task groups
2754 * 2) pick the "next" process, since someone really wants that to run
2755 * 3) pick the "last" process, for cache locality
2756 * 4) do not run the "skip" process, if something else is available
2757 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002758static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002759{
Rik van Rielac53db52011-02-01 09:51:03 -05002760 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002761 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002762
Rik van Rielac53db52011-02-01 09:51:03 -05002763 /*
2764 * Avoid running the skip buddy, if running something else can
2765 * be done without getting too unfair.
2766 */
2767 if (cfs_rq->skip == se) {
2768 struct sched_entity *second = __pick_next_entity(se);
2769 if (second && wakeup_preempt_entity(second, left) < 1)
2770 se = second;
2771 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002772
Mike Galbraithf685cea2009-10-23 23:09:22 +02002773 /*
2774 * Prefer last buddy, try to return the CPU to a preempted task.
2775 */
2776 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2777 se = cfs_rq->last;
2778
Rik van Rielac53db52011-02-01 09:51:03 -05002779 /*
2780 * Someone really wants this to run. If it's not unfair, run it.
2781 */
2782 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2783 se = cfs_rq->next;
2784
Mike Galbraithf685cea2009-10-23 23:09:22 +02002785 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002786
2787 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002788}
2789
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002790static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2791
Ingo Molnarab6cde22007-08-09 11:16:48 +02002792static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002793{
2794 /*
2795 * If still on the runqueue then deactivate_task()
2796 * was not called and update_curr() has to be done:
2797 */
2798 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002799 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002800
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002801 /* throttle cfs_rqs exceeding runtime */
2802 check_cfs_rq_runtime(cfs_rq);
2803
Peter Zijlstraddc97292007-10-15 17:00:10 +02002804 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002805 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002806 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002807 /* Put 'current' back into the tree. */
2808 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002809 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002810 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002811 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002812 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002813}
2814
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002815static void
2816entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002817{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002818 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002819 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002820 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002821 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002822
Paul Turner43365bd2010-12-15 19:10:17 -08002823 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002824 * Ensure that runnable average is periodically updated.
2825 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002826 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002827 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002828 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002829
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002830#ifdef CONFIG_SCHED_HRTICK
2831 /*
2832 * queued ticks are scheduled to match the slice, so don't bother
2833 * validating it and just reschedule.
2834 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002835 if (queued) {
2836 resched_task(rq_of(cfs_rq)->curr);
2837 return;
2838 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002839 /*
2840 * don't let the period tick interfere with the hrtick preemption
2841 */
2842 if (!sched_feat(DOUBLE_TICK) &&
2843 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2844 return;
2845#endif
2846
Yong Zhang2c2efae2011-07-29 16:20:33 +08002847 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002848 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002849}
2850
Paul Turnerab84d312011-07-21 09:43:28 -07002851
2852/**************************************************
2853 * CFS bandwidth control machinery
2854 */
2855
2856#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002857
2858#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002859static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002860
2861static inline bool cfs_bandwidth_used(void)
2862{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002863 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002864}
2865
Ben Segall1ee14e62013-10-16 11:16:12 -07002866void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02002867{
Ben Segall1ee14e62013-10-16 11:16:12 -07002868 static_key_slow_inc(&__cfs_bandwidth_used);
2869}
2870
2871void cfs_bandwidth_usage_dec(void)
2872{
2873 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002874}
2875#else /* HAVE_JUMP_LABEL */
2876static bool cfs_bandwidth_used(void)
2877{
2878 return true;
2879}
2880
Ben Segall1ee14e62013-10-16 11:16:12 -07002881void cfs_bandwidth_usage_inc(void) {}
2882void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002883#endif /* HAVE_JUMP_LABEL */
2884
Paul Turnerab84d312011-07-21 09:43:28 -07002885/*
2886 * default period for cfs group bandwidth.
2887 * default: 0.1s, units: nanoseconds
2888 */
2889static inline u64 default_cfs_period(void)
2890{
2891 return 100000000ULL;
2892}
Paul Turnerec12cb72011-07-21 09:43:30 -07002893
2894static inline u64 sched_cfs_bandwidth_slice(void)
2895{
2896 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2897}
2898
Paul Turnera9cf55b2011-07-21 09:43:32 -07002899/*
2900 * Replenish runtime according to assigned quota and update expiration time.
2901 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2902 * additional synchronization around rq->lock.
2903 *
2904 * requires cfs_b->lock
2905 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002906void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002907{
2908 u64 now;
2909
2910 if (cfs_b->quota == RUNTIME_INF)
2911 return;
2912
2913 now = sched_clock_cpu(smp_processor_id());
2914 cfs_b->runtime = cfs_b->quota;
2915 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2916}
2917
Peter Zijlstra029632f2011-10-25 10:00:11 +02002918static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2919{
2920 return &tg->cfs_bandwidth;
2921}
2922
Paul Turnerf1b17282012-10-04 13:18:31 +02002923/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2924static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2925{
2926 if (unlikely(cfs_rq->throttle_count))
2927 return cfs_rq->throttled_clock_task;
2928
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002929 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002930}
2931
Paul Turner85dac902011-07-21 09:43:33 -07002932/* returns 0 on failure to allocate runtime */
2933static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002934{
2935 struct task_group *tg = cfs_rq->tg;
2936 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002937 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002938
2939 /* note: this is a positive sum as runtime_remaining <= 0 */
2940 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2941
2942 raw_spin_lock(&cfs_b->lock);
2943 if (cfs_b->quota == RUNTIME_INF)
2944 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002945 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002946 /*
2947 * If the bandwidth pool has become inactive, then at least one
2948 * period must have elapsed since the last consumption.
2949 * Refresh the global state and ensure bandwidth timer becomes
2950 * active.
2951 */
2952 if (!cfs_b->timer_active) {
2953 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002954 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002955 }
Paul Turner58088ad2011-07-21 09:43:31 -07002956
2957 if (cfs_b->runtime > 0) {
2958 amount = min(cfs_b->runtime, min_amount);
2959 cfs_b->runtime -= amount;
2960 cfs_b->idle = 0;
2961 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002962 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002963 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002964 raw_spin_unlock(&cfs_b->lock);
2965
2966 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002967 /*
2968 * we may have advanced our local expiration to account for allowed
2969 * spread between our sched_clock and the one on which runtime was
2970 * issued.
2971 */
2972 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2973 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002974
2975 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002976}
2977
2978/*
2979 * Note: This depends on the synchronization provided by sched_clock and the
2980 * fact that rq->clock snapshots this value.
2981 */
2982static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2983{
2984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002985
2986 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002987 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002988 return;
2989
2990 if (cfs_rq->runtime_remaining < 0)
2991 return;
2992
2993 /*
2994 * If the local deadline has passed we have to consider the
2995 * possibility that our sched_clock is 'fast' and the global deadline
2996 * has not truly expired.
2997 *
2998 * Fortunately we can check determine whether this the case by checking
2999 * whether the global deadline has advanced.
3000 */
3001
3002 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3003 /* extend local deadline, drift is bounded above by 2 ticks */
3004 cfs_rq->runtime_expires += TICK_NSEC;
3005 } else {
3006 /* global deadline is ahead, expiration has passed */
3007 cfs_rq->runtime_remaining = 0;
3008 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003009}
3010
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003011static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003012{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003013 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003014 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003015 expire_cfs_rq_runtime(cfs_rq);
3016
3017 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003018 return;
3019
Paul Turner85dac902011-07-21 09:43:33 -07003020 /*
3021 * if we're unable to extend our runtime we resched so that the active
3022 * hierarchy can be throttled
3023 */
3024 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3025 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003026}
3027
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003028static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003029void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003030{
Paul Turner56f570e2011-11-07 20:26:33 -08003031 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003032 return;
3033
3034 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3035}
3036
Paul Turner85dac902011-07-21 09:43:33 -07003037static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3038{
Paul Turner56f570e2011-11-07 20:26:33 -08003039 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003040}
3041
Paul Turner64660c82011-07-21 09:43:36 -07003042/* check whether cfs_rq, or any parent, is throttled */
3043static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3044{
Paul Turner56f570e2011-11-07 20:26:33 -08003045 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003046}
3047
3048/*
3049 * Ensure that neither of the group entities corresponding to src_cpu or
3050 * dest_cpu are members of a throttled hierarchy when performing group
3051 * load-balance operations.
3052 */
3053static inline int throttled_lb_pair(struct task_group *tg,
3054 int src_cpu, int dest_cpu)
3055{
3056 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3057
3058 src_cfs_rq = tg->cfs_rq[src_cpu];
3059 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3060
3061 return throttled_hierarchy(src_cfs_rq) ||
3062 throttled_hierarchy(dest_cfs_rq);
3063}
3064
3065/* updated child weight may affect parent so we have to do this bottom up */
3066static int tg_unthrottle_up(struct task_group *tg, void *data)
3067{
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070
3071 cfs_rq->throttle_count--;
3072#ifdef CONFIG_SMP
3073 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003074 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003075 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003076 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003077 }
3078#endif
3079
3080 return 0;
3081}
3082
3083static int tg_throttle_down(struct task_group *tg, void *data)
3084{
3085 struct rq *rq = data;
3086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3087
Paul Turner82958362012-10-04 13:18:31 +02003088 /* group is entering throttled state, stop time */
3089 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003090 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003091 cfs_rq->throttle_count++;
3092
3093 return 0;
3094}
3095
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003096static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003097{
3098 struct rq *rq = rq_of(cfs_rq);
3099 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3100 struct sched_entity *se;
3101 long task_delta, dequeue = 1;
3102
3103 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3104
Paul Turnerf1b17282012-10-04 13:18:31 +02003105 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003106 rcu_read_lock();
3107 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3108 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003109
3110 task_delta = cfs_rq->h_nr_running;
3111 for_each_sched_entity(se) {
3112 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3113 /* throttled entity or throttle-on-deactivate */
3114 if (!se->on_rq)
3115 break;
3116
3117 if (dequeue)
3118 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3119 qcfs_rq->h_nr_running -= task_delta;
3120
3121 if (qcfs_rq->load.weight)
3122 dequeue = 0;
3123 }
3124
3125 if (!se)
3126 rq->nr_running -= task_delta;
3127
3128 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003129 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003130 raw_spin_lock(&cfs_b->lock);
3131 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003132 if (!cfs_b->timer_active)
3133 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003134 raw_spin_unlock(&cfs_b->lock);
3135}
3136
Peter Zijlstra029632f2011-10-25 10:00:11 +02003137void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003138{
3139 struct rq *rq = rq_of(cfs_rq);
3140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3141 struct sched_entity *se;
3142 int enqueue = 1;
3143 long task_delta;
3144
Michael Wang22b958d2013-06-04 14:23:39 +08003145 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003146
3147 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003148
3149 update_rq_clock(rq);
3150
Paul Turner671fd9d2011-07-21 09:43:34 -07003151 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003152 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003153 list_del_rcu(&cfs_rq->throttled_list);
3154 raw_spin_unlock(&cfs_b->lock);
3155
Paul Turner64660c82011-07-21 09:43:36 -07003156 /* update hierarchical throttle state */
3157 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3158
Paul Turner671fd9d2011-07-21 09:43:34 -07003159 if (!cfs_rq->load.weight)
3160 return;
3161
3162 task_delta = cfs_rq->h_nr_running;
3163 for_each_sched_entity(se) {
3164 if (se->on_rq)
3165 enqueue = 0;
3166
3167 cfs_rq = cfs_rq_of(se);
3168 if (enqueue)
3169 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3170 cfs_rq->h_nr_running += task_delta;
3171
3172 if (cfs_rq_throttled(cfs_rq))
3173 break;
3174 }
3175
3176 if (!se)
3177 rq->nr_running += task_delta;
3178
3179 /* determine whether we need to wake up potentially idle cpu */
3180 if (rq->curr == rq->idle && rq->cfs.nr_running)
3181 resched_task(rq->curr);
3182}
3183
3184static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3185 u64 remaining, u64 expires)
3186{
3187 struct cfs_rq *cfs_rq;
3188 u64 runtime = remaining;
3189
3190 rcu_read_lock();
3191 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3192 throttled_list) {
3193 struct rq *rq = rq_of(cfs_rq);
3194
3195 raw_spin_lock(&rq->lock);
3196 if (!cfs_rq_throttled(cfs_rq))
3197 goto next;
3198
3199 runtime = -cfs_rq->runtime_remaining + 1;
3200 if (runtime > remaining)
3201 runtime = remaining;
3202 remaining -= runtime;
3203
3204 cfs_rq->runtime_remaining += runtime;
3205 cfs_rq->runtime_expires = expires;
3206
3207 /* we check whether we're throttled above */
3208 if (cfs_rq->runtime_remaining > 0)
3209 unthrottle_cfs_rq(cfs_rq);
3210
3211next:
3212 raw_spin_unlock(&rq->lock);
3213
3214 if (!remaining)
3215 break;
3216 }
3217 rcu_read_unlock();
3218
3219 return remaining;
3220}
3221
Paul Turner58088ad2011-07-21 09:43:31 -07003222/*
3223 * Responsible for refilling a task_group's bandwidth and unthrottling its
3224 * cfs_rqs as appropriate. If there has been no activity within the last
3225 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3226 * used to track this state.
3227 */
3228static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3229{
Paul Turner671fd9d2011-07-21 09:43:34 -07003230 u64 runtime, runtime_expires;
3231 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003232
3233 raw_spin_lock(&cfs_b->lock);
3234 /* no need to continue the timer with no bandwidth constraint */
3235 if (cfs_b->quota == RUNTIME_INF)
3236 goto out_unlock;
3237
Paul Turner671fd9d2011-07-21 09:43:34 -07003238 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3239 /* idle depends on !throttled (for the case of a large deficit) */
3240 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003241 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003242
Paul Turnera9cf55b2011-07-21 09:43:32 -07003243 /* if we're going inactive then everything else can be deferred */
3244 if (idle)
3245 goto out_unlock;
3246
Ben Segall927b54f2013-10-16 11:16:22 -07003247 /*
3248 * if we have relooped after returning idle once, we need to update our
3249 * status as actually running, so that other cpus doing
3250 * __start_cfs_bandwidth will stop trying to cancel us.
3251 */
3252 cfs_b->timer_active = 1;
3253
Paul Turnera9cf55b2011-07-21 09:43:32 -07003254 __refill_cfs_bandwidth_runtime(cfs_b);
3255
Paul Turner671fd9d2011-07-21 09:43:34 -07003256 if (!throttled) {
3257 /* mark as potentially idle for the upcoming period */
3258 cfs_b->idle = 1;
3259 goto out_unlock;
3260 }
Paul Turner58088ad2011-07-21 09:43:31 -07003261
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003262 /* account preceding periods in which throttling occurred */
3263 cfs_b->nr_throttled += overrun;
3264
Paul Turner671fd9d2011-07-21 09:43:34 -07003265 /*
3266 * There are throttled entities so we must first use the new bandwidth
3267 * to unthrottle them before making it generally available. This
3268 * ensures that all existing debts will be paid before a new cfs_rq is
3269 * allowed to run.
3270 */
3271 runtime = cfs_b->runtime;
3272 runtime_expires = cfs_b->runtime_expires;
3273 cfs_b->runtime = 0;
3274
3275 /*
3276 * This check is repeated as we are holding onto the new bandwidth
3277 * while we unthrottle. This can potentially race with an unthrottled
3278 * group trying to acquire new bandwidth from the global pool.
3279 */
3280 while (throttled && runtime > 0) {
3281 raw_spin_unlock(&cfs_b->lock);
3282 /* we can't nest cfs_b->lock while distributing bandwidth */
3283 runtime = distribute_cfs_runtime(cfs_b, runtime,
3284 runtime_expires);
3285 raw_spin_lock(&cfs_b->lock);
3286
3287 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3288 }
3289
3290 /* return (any) remaining runtime */
3291 cfs_b->runtime = runtime;
3292 /*
3293 * While we are ensured activity in the period following an
3294 * unthrottle, this also covers the case in which the new bandwidth is
3295 * insufficient to cover the existing bandwidth deficit. (Forcing the
3296 * timer to remain active while there are any throttled entities.)
3297 */
3298 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003299out_unlock:
3300 if (idle)
3301 cfs_b->timer_active = 0;
3302 raw_spin_unlock(&cfs_b->lock);
3303
3304 return idle;
3305}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003306
Paul Turnerd8b49862011-07-21 09:43:41 -07003307/* a cfs_rq won't donate quota below this amount */
3308static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3309/* minimum remaining period time to redistribute slack quota */
3310static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3311/* how long we wait to gather additional slack before distributing */
3312static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3313
Ben Segalldb06e782013-10-16 11:16:17 -07003314/*
3315 * Are we near the end of the current quota period?
3316 *
3317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3318 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3319 * migrate_hrtimers, base is never cleared, so we are fine.
3320 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003321static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3322{
3323 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3324 u64 remaining;
3325
3326 /* if the call-back is running a quota refresh is already occurring */
3327 if (hrtimer_callback_running(refresh_timer))
3328 return 1;
3329
3330 /* is a quota refresh about to occur? */
3331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3332 if (remaining < min_expire)
3333 return 1;
3334
3335 return 0;
3336}
3337
3338static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3339{
3340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3341
3342 /* if there's a quota refresh soon don't bother with slack */
3343 if (runtime_refresh_within(cfs_b, min_left))
3344 return;
3345
3346 start_bandwidth_timer(&cfs_b->slack_timer,
3347 ns_to_ktime(cfs_bandwidth_slack_period));
3348}
3349
3350/* we know any runtime found here is valid as update_curr() precedes return */
3351static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3352{
3353 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3354 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3355
3356 if (slack_runtime <= 0)
3357 return;
3358
3359 raw_spin_lock(&cfs_b->lock);
3360 if (cfs_b->quota != RUNTIME_INF &&
3361 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3362 cfs_b->runtime += slack_runtime;
3363
3364 /* we are under rq->lock, defer unthrottling using a timer */
3365 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3366 !list_empty(&cfs_b->throttled_cfs_rq))
3367 start_cfs_slack_bandwidth(cfs_b);
3368 }
3369 raw_spin_unlock(&cfs_b->lock);
3370
3371 /* even if it's not valid for return we don't want to try again */
3372 cfs_rq->runtime_remaining -= slack_runtime;
3373}
3374
3375static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3376{
Paul Turner56f570e2011-11-07 20:26:33 -08003377 if (!cfs_bandwidth_used())
3378 return;
3379
Paul Turnerfccfdc62011-11-07 20:26:34 -08003380 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003381 return;
3382
3383 __return_cfs_rq_runtime(cfs_rq);
3384}
3385
3386/*
3387 * This is done with a timer (instead of inline with bandwidth return) since
3388 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3389 */
3390static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3391{
3392 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3393 u64 expires;
3394
3395 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003396 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003397 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3398 raw_spin_unlock(&cfs_b->lock);
3399 return;
3400 }
3401
Paul Turnerd8b49862011-07-21 09:43:41 -07003402 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3403 runtime = cfs_b->runtime;
3404 cfs_b->runtime = 0;
3405 }
3406 expires = cfs_b->runtime_expires;
3407 raw_spin_unlock(&cfs_b->lock);
3408
3409 if (!runtime)
3410 return;
3411
3412 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3413
3414 raw_spin_lock(&cfs_b->lock);
3415 if (expires == cfs_b->runtime_expires)
3416 cfs_b->runtime = runtime;
3417 raw_spin_unlock(&cfs_b->lock);
3418}
3419
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003420/*
3421 * When a group wakes up we want to make sure that its quota is not already
3422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3423 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3424 */
3425static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3426{
Paul Turner56f570e2011-11-07 20:26:33 -08003427 if (!cfs_bandwidth_used())
3428 return;
3429
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003430 /* an active group must be handled by the update_curr()->put() path */
3431 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3432 return;
3433
3434 /* ensure the group is not already throttled */
3435 if (cfs_rq_throttled(cfs_rq))
3436 return;
3437
3438 /* update runtime allocation */
3439 account_cfs_rq_runtime(cfs_rq, 0);
3440 if (cfs_rq->runtime_remaining <= 0)
3441 throttle_cfs_rq(cfs_rq);
3442}
3443
3444/* conditionally throttle active cfs_rq's from put_prev_entity() */
3445static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3446{
Paul Turner56f570e2011-11-07 20:26:33 -08003447 if (!cfs_bandwidth_used())
3448 return;
3449
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003450 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3451 return;
3452
3453 /*
3454 * it's possible for a throttled entity to be forced into a running
3455 * state (e.g. set_curr_task), in this case we're finished.
3456 */
3457 if (cfs_rq_throttled(cfs_rq))
3458 return;
3459
3460 throttle_cfs_rq(cfs_rq);
3461}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003462
Peter Zijlstra029632f2011-10-25 10:00:11 +02003463static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3464{
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, slack_timer);
3467 do_sched_cfs_slack_timer(cfs_b);
3468
3469 return HRTIMER_NORESTART;
3470}
3471
3472static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3473{
3474 struct cfs_bandwidth *cfs_b =
3475 container_of(timer, struct cfs_bandwidth, period_timer);
3476 ktime_t now;
3477 int overrun;
3478 int idle = 0;
3479
3480 for (;;) {
3481 now = hrtimer_cb_get_time(timer);
3482 overrun = hrtimer_forward(timer, now, cfs_b->period);
3483
3484 if (!overrun)
3485 break;
3486
3487 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3488 }
3489
3490 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3491}
3492
3493void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3494{
3495 raw_spin_lock_init(&cfs_b->lock);
3496 cfs_b->runtime = 0;
3497 cfs_b->quota = RUNTIME_INF;
3498 cfs_b->period = ns_to_ktime(default_cfs_period());
3499
3500 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3501 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3502 cfs_b->period_timer.function = sched_cfs_period_timer;
3503 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3504 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3505}
3506
3507static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3508{
3509 cfs_rq->runtime_enabled = 0;
3510 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3511}
3512
3513/* requires cfs_b->lock, may release to reprogram timer */
3514void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3515{
3516 /*
3517 * The timer may be active because we're trying to set a new bandwidth
3518 * period or because we're racing with the tear-down path
3519 * (timer_active==0 becomes visible before the hrtimer call-back
3520 * terminates). In either case we ensure that it's re-programmed
3521 */
Ben Segall927b54f2013-10-16 11:16:22 -07003522 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3523 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3524 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003525 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003526 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003527 raw_spin_lock(&cfs_b->lock);
3528 /* if someone else restarted the timer then we're done */
3529 if (cfs_b->timer_active)
3530 return;
3531 }
3532
3533 cfs_b->timer_active = 1;
3534 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3535}
3536
3537static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3538{
3539 hrtimer_cancel(&cfs_b->period_timer);
3540 hrtimer_cancel(&cfs_b->slack_timer);
3541}
3542
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003543static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003544{
3545 struct cfs_rq *cfs_rq;
3546
3547 for_each_leaf_cfs_rq(rq, cfs_rq) {
3548 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3549
3550 if (!cfs_rq->runtime_enabled)
3551 continue;
3552
3553 /*
3554 * clock_task is not advancing so we just need to make sure
3555 * there's some valid quota amount
3556 */
3557 cfs_rq->runtime_remaining = cfs_b->quota;
3558 if (cfs_rq_throttled(cfs_rq))
3559 unthrottle_cfs_rq(cfs_rq);
3560 }
3561}
3562
3563#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003564static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3565{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003566 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003567}
3568
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003569static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003570static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3571static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003572static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003573
3574static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3575{
3576 return 0;
3577}
Paul Turner64660c82011-07-21 09:43:36 -07003578
3579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3580{
3581 return 0;
3582}
3583
3584static inline int throttled_lb_pair(struct task_group *tg,
3585 int src_cpu, int dest_cpu)
3586{
3587 return 0;
3588}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003589
3590void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3591
3592#ifdef CONFIG_FAIR_GROUP_SCHED
3593static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003594#endif
3595
Peter Zijlstra029632f2011-10-25 10:00:11 +02003596static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3597{
3598 return NULL;
3599}
3600static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003601static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003602
3603#endif /* CONFIG_CFS_BANDWIDTH */
3604
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003605/**************************************************
3606 * CFS operations on tasks:
3607 */
3608
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003609#ifdef CONFIG_SCHED_HRTICK
3610static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3611{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003612 struct sched_entity *se = &p->se;
3613 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3614
3615 WARN_ON(task_rq(p) != rq);
3616
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003617 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003618 u64 slice = sched_slice(cfs_rq, se);
3619 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3620 s64 delta = slice - ran;
3621
3622 if (delta < 0) {
3623 if (rq->curr == p)
3624 resched_task(p);
3625 return;
3626 }
3627
3628 /*
3629 * Don't schedule slices shorter than 10000ns, that just
3630 * doesn't make sense. Rely on vruntime for fairness.
3631 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003632 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003633 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003634
Peter Zijlstra31656512008-07-18 18:01:23 +02003635 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003636 }
3637}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003638
3639/*
3640 * called from enqueue/dequeue and updates the hrtick when the
3641 * current task is from our class and nr_running is low enough
3642 * to matter.
3643 */
3644static void hrtick_update(struct rq *rq)
3645{
3646 struct task_struct *curr = rq->curr;
3647
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003648 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003649 return;
3650
3651 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3652 hrtick_start_fair(rq, curr);
3653}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303654#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003655static inline void
3656hrtick_start_fair(struct rq *rq, struct task_struct *p)
3657{
3658}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003659
3660static inline void hrtick_update(struct rq *rq)
3661{
3662}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003663#endif
3664
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003665/*
3666 * The enqueue_task method is called before nr_running is
3667 * increased. Here we update the fair scheduling stats and
3668 * then put the task into the rbtree:
3669 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003670static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003671enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003672{
3673 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003674 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003675
3676 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003677 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003678 break;
3679 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003680 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003681
3682 /*
3683 * end evaluation on encountering a throttled cfs_rq
3684 *
3685 * note: in the case of encountering a throttled cfs_rq we will
3686 * post the final h_nr_running increment below.
3687 */
3688 if (cfs_rq_throttled(cfs_rq))
3689 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003690 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003691
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003692 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003693 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003694
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003695 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003696 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003697 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003698
Paul Turner85dac902011-07-21 09:43:33 -07003699 if (cfs_rq_throttled(cfs_rq))
3700 break;
3701
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003702 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003703 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003704 }
3705
Ben Segall18bf2802012-10-04 12:51:20 +02003706 if (!se) {
3707 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003708 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003709 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003710 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003711}
3712
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003713static void set_next_buddy(struct sched_entity *se);
3714
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003715/*
3716 * The dequeue_task method is called before nr_running is
3717 * decreased. We remove the task from the rbtree and
3718 * update the fair scheduling stats:
3719 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003720static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003721{
3722 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003723 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003724 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003725
3726 for_each_sched_entity(se) {
3727 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003728 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003729
3730 /*
3731 * end evaluation on encountering a throttled cfs_rq
3732 *
3733 * note: in the case of encountering a throttled cfs_rq we will
3734 * post the final h_nr_running decrement below.
3735 */
3736 if (cfs_rq_throttled(cfs_rq))
3737 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003738 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003739
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003740 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003741 if (cfs_rq->load.weight) {
3742 /*
3743 * Bias pick_next to pick a task from this cfs_rq, as
3744 * p is sleeping when it is within its sched_slice.
3745 */
3746 if (task_sleep && parent_entity(se))
3747 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003748
3749 /* avoid re-evaluating load for this entity */
3750 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003751 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003752 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003753 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003754 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003755
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003756 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003757 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003758 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003759
Paul Turner85dac902011-07-21 09:43:33 -07003760 if (cfs_rq_throttled(cfs_rq))
3761 break;
3762
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003763 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003764 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003765 }
3766
Ben Segall18bf2802012-10-04 12:51:20 +02003767 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003768 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003769 update_rq_runnable_avg(rq, 1);
3770 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003771 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003772}
3773
Gregory Haskinse7693a32008-01-25 21:08:09 +01003774#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003775/* Used instead of source_load when we know the type == 0 */
3776static unsigned long weighted_cpuload(const int cpu)
3777{
Alex Shib92486c2013-06-20 10:18:50 +08003778 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003779}
3780
3781/*
3782 * Return a low guess at the load of a migration-source cpu weighted
3783 * according to the scheduling class and "nice" value.
3784 *
3785 * We want to under-estimate the load of migration sources, to
3786 * balance conservatively.
3787 */
3788static unsigned long source_load(int cpu, int type)
3789{
3790 struct rq *rq = cpu_rq(cpu);
3791 unsigned long total = weighted_cpuload(cpu);
3792
3793 if (type == 0 || !sched_feat(LB_BIAS))
3794 return total;
3795
3796 return min(rq->cpu_load[type-1], total);
3797}
3798
3799/*
3800 * Return a high guess at the load of a migration-target cpu weighted
3801 * according to the scheduling class and "nice" value.
3802 */
3803static unsigned long target_load(int cpu, int type)
3804{
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long total = weighted_cpuload(cpu);
3807
3808 if (type == 0 || !sched_feat(LB_BIAS))
3809 return total;
3810
3811 return max(rq->cpu_load[type-1], total);
3812}
3813
3814static unsigned long power_of(int cpu)
3815{
3816 return cpu_rq(cpu)->cpu_power;
3817}
3818
3819static unsigned long cpu_avg_load_per_task(int cpu)
3820{
3821 struct rq *rq = cpu_rq(cpu);
3822 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003823 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003824
3825 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003826 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003827
3828 return 0;
3829}
3830
Michael Wang62470412013-07-04 12:55:51 +08003831static void record_wakee(struct task_struct *p)
3832{
3833 /*
3834 * Rough decay (wiping) for cost saving, don't worry
3835 * about the boundary, really active task won't care
3836 * about the loss.
3837 */
3838 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3839 current->wakee_flips = 0;
3840 current->wakee_flip_decay_ts = jiffies;
3841 }
3842
3843 if (current->last_wakee != p) {
3844 current->last_wakee = p;
3845 current->wakee_flips++;
3846 }
3847}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003848
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003849static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003850{
3851 struct sched_entity *se = &p->se;
3852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003853 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003854
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003855#ifndef CONFIG_64BIT
3856 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003857
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003858 do {
3859 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3860 smp_rmb();
3861 min_vruntime = cfs_rq->min_vruntime;
3862 } while (min_vruntime != min_vruntime_copy);
3863#else
3864 min_vruntime = cfs_rq->min_vruntime;
3865#endif
3866
3867 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003868 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003869}
3870
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003871#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003872/*
3873 * effective_load() calculates the load change as seen from the root_task_group
3874 *
3875 * Adding load to a group doesn't make a group heavier, but can cause movement
3876 * of group shares between cpus. Assuming the shares were perfectly aligned one
3877 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003878 *
3879 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3880 * on this @cpu and results in a total addition (subtraction) of @wg to the
3881 * total group weight.
3882 *
3883 * Given a runqueue weight distribution (rw_i) we can compute a shares
3884 * distribution (s_i) using:
3885 *
3886 * s_i = rw_i / \Sum rw_j (1)
3887 *
3888 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3889 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3890 * shares distribution (s_i):
3891 *
3892 * rw_i = { 2, 4, 1, 0 }
3893 * s_i = { 2/7, 4/7, 1/7, 0 }
3894 *
3895 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3896 * task used to run on and the CPU the waker is running on), we need to
3897 * compute the effect of waking a task on either CPU and, in case of a sync
3898 * wakeup, compute the effect of the current task going to sleep.
3899 *
3900 * So for a change of @wl to the local @cpu with an overall group weight change
3901 * of @wl we can compute the new shares distribution (s'_i) using:
3902 *
3903 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3904 *
3905 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3906 * differences in waking a task to CPU 0. The additional task changes the
3907 * weight and shares distributions like:
3908 *
3909 * rw'_i = { 3, 4, 1, 0 }
3910 * s'_i = { 3/8, 4/8, 1/8, 0 }
3911 *
3912 * We can then compute the difference in effective weight by using:
3913 *
3914 * dw_i = S * (s'_i - s_i) (3)
3915 *
3916 * Where 'S' is the group weight as seen by its parent.
3917 *
3918 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3919 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3920 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003921 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003922static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003923{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003924 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003925
Mel Gorman58d081b2013-10-07 11:29:10 +01003926 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003927 return wl;
3928
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003929 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003930 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003931
Paul Turner977dda72011-01-14 17:57:50 -08003932 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003933
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003934 /*
3935 * W = @wg + \Sum rw_j
3936 */
3937 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003938
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003939 /*
3940 * w = rw_i + @wl
3941 */
3942 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003943
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003944 /*
3945 * wl = S * s'_i; see (2)
3946 */
3947 if (W > 0 && w < W)
3948 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003949 else
3950 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003951
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003952 /*
3953 * Per the above, wl is the new se->load.weight value; since
3954 * those are clipped to [MIN_SHARES, ...) do so now. See
3955 * calc_cfs_shares().
3956 */
Paul Turner977dda72011-01-14 17:57:50 -08003957 if (wl < MIN_SHARES)
3958 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003959
3960 /*
3961 * wl = dw_i = S * (s'_i - s_i); see (3)
3962 */
Paul Turner977dda72011-01-14 17:57:50 -08003963 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003964
3965 /*
3966 * Recursively apply this logic to all parent groups to compute
3967 * the final effective load change on the root group. Since
3968 * only the @tg group gets extra weight, all parent groups can
3969 * only redistribute existing shares. @wl is the shift in shares
3970 * resulting from this level per the above.
3971 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003972 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003973 }
3974
3975 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003976}
3977#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003978
Mel Gorman58d081b2013-10-07 11:29:10 +01003979static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003980{
Peter Zijlstra83378262008-06-27 13:41:37 +02003981 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003982}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003983
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003984#endif
3985
Michael Wang62470412013-07-04 12:55:51 +08003986static int wake_wide(struct task_struct *p)
3987{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003988 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003989
3990 /*
3991 * Yeah, it's the switching-frequency, could means many wakee or
3992 * rapidly switch, use factor here will just help to automatically
3993 * adjust the loose-degree, so bigger node will lead to more pull.
3994 */
3995 if (p->wakee_flips > factor) {
3996 /*
3997 * wakee is somewhat hot, it needs certain amount of cpu
3998 * resource, so if waker is far more hot, prefer to leave
3999 * it alone.
4000 */
4001 if (current->wakee_flips > (factor * p->wakee_flips))
4002 return 1;
4003 }
4004
4005 return 0;
4006}
4007
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004008static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004009{
Paul Turnere37b6a72011-01-21 20:44:59 -08004010 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004011 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004012 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004013 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004014 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004015 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004016
Michael Wang62470412013-07-04 12:55:51 +08004017 /*
4018 * If we wake multiple tasks be careful to not bounce
4019 * ourselves around too much.
4020 */
4021 if (wake_wide(p))
4022 return 0;
4023
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004024 idx = sd->wake_idx;
4025 this_cpu = smp_processor_id();
4026 prev_cpu = task_cpu(p);
4027 load = source_load(prev_cpu, idx);
4028 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004029
4030 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004031 * If sync wakeup then subtract the (maximum possible)
4032 * effect of the currently running task from the load
4033 * of the current CPU:
4034 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004035 if (sync) {
4036 tg = task_group(current);
4037 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004038
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004039 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004040 load += effective_load(tg, prev_cpu, 0, -weight);
4041 }
4042
4043 tg = task_group(p);
4044 weight = p->se.load.weight;
4045
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004046 /*
4047 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004048 * due to the sync cause above having dropped this_load to 0, we'll
4049 * always have an imbalance, but there's really nothing you can do
4050 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004051 *
4052 * Otherwise check if either cpus are near enough in load to allow this
4053 * task to be woken on this_cpu.
4054 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004055 if (this_load > 0) {
4056 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004057
4058 this_eff_load = 100;
4059 this_eff_load *= power_of(prev_cpu);
4060 this_eff_load *= this_load +
4061 effective_load(tg, this_cpu, weight, weight);
4062
4063 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4064 prev_eff_load *= power_of(this_cpu);
4065 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4066
4067 balanced = this_eff_load <= prev_eff_load;
4068 } else
4069 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004070
4071 /*
4072 * If the currently running task will sleep within
4073 * a reasonable amount of time then attract this newly
4074 * woken task:
4075 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004076 if (sync && balanced)
4077 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004078
Lucas De Marchi41acab82010-03-10 23:37:45 -03004079 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004080 tl_per_task = cpu_avg_load_per_task(this_cpu);
4081
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004082 if (balanced ||
4083 (this_load <= load &&
4084 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004085 /*
4086 * This domain has SD_WAKE_AFFINE and
4087 * p is cache cold in this domain, and
4088 * there is no bad imbalance.
4089 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004090 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004091 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004092
4093 return 1;
4094 }
4095 return 0;
4096}
4097
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004098/*
4099 * find_idlest_group finds and returns the least busy CPU group within the
4100 * domain.
4101 */
4102static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004103find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004104 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004105{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004106 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004107 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004108 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004109
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004110 do {
4111 unsigned long load, avg_load;
4112 int local_group;
4113 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004114
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004115 /* Skip over this group if it has no CPUs allowed */
4116 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004117 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004118 continue;
4119
4120 local_group = cpumask_test_cpu(this_cpu,
4121 sched_group_cpus(group));
4122
4123 /* Tally up the load of all CPUs in the group */
4124 avg_load = 0;
4125
4126 for_each_cpu(i, sched_group_cpus(group)) {
4127 /* Bias balancing toward cpus of our domain */
4128 if (local_group)
4129 load = source_load(i, load_idx);
4130 else
4131 load = target_load(i, load_idx);
4132
4133 avg_load += load;
4134 }
4135
4136 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004137 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004138
4139 if (local_group) {
4140 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004141 } else if (avg_load < min_load) {
4142 min_load = avg_load;
4143 idlest = group;
4144 }
4145 } while (group = group->next, group != sd->groups);
4146
4147 if (!idlest || 100*this_load < imbalance*min_load)
4148 return NULL;
4149 return idlest;
4150}
4151
4152/*
4153 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4154 */
4155static int
4156find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4157{
4158 unsigned long load, min_load = ULONG_MAX;
4159 int idlest = -1;
4160 int i;
4161
4162 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004163 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004164 load = weighted_cpuload(i);
4165
4166 if (load < min_load || (load == min_load && i == this_cpu)) {
4167 min_load = load;
4168 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004169 }
4170 }
4171
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004172 return idlest;
4173}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004174
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004175/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004176 * Try and locate an idle CPU in the sched_domain.
4177 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004178static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004179{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004180 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004181 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004182 int i = task_cpu(p);
4183
4184 if (idle_cpu(target))
4185 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004186
4187 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004188 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004189 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004190 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4191 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004192
4193 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004194 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004195 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004196 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004197 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004198 sg = sd->groups;
4199 do {
4200 if (!cpumask_intersects(sched_group_cpus(sg),
4201 tsk_cpus_allowed(p)))
4202 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004203
Linus Torvalds37407ea2012-09-16 12:29:43 -07004204 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004205 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004206 goto next;
4207 }
4208
4209 target = cpumask_first_and(sched_group_cpus(sg),
4210 tsk_cpus_allowed(p));
4211 goto done;
4212next:
4213 sg = sg->next;
4214 } while (sg != sd->groups);
4215 }
4216done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004217 return target;
4218}
4219
4220/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004221 * sched_balance_self: balance the current task (running on cpu) in domains
4222 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4223 * SD_BALANCE_EXEC.
4224 *
4225 * Balance, ie. select the least loaded group.
4226 *
4227 * Returns the target CPU number, or the same CPU if no balancing is needed.
4228 *
4229 * preempt must be disabled.
4230 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004231static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004232select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004233{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004234 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004235 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004236 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004237 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004238 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004239
Peter Zijlstra29baa742012-04-23 12:11:21 +02004240 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004241 return prev_cpu;
4242
Peter Zijlstra0763a662009-09-14 19:37:39 +02004243 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004244 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004245 want_affine = 1;
4246 new_cpu = prev_cpu;
4247 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004248
Peter Zijlstradce840a2011-04-07 14:09:50 +02004249 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004250 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004251 if (!(tmp->flags & SD_LOAD_BALANCE))
4252 continue;
4253
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004254 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004255 * If both cpu and prev_cpu are part of this domain,
4256 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004257 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004258 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4259 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4260 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004261 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004262 }
4263
Alex Shif03542a2012-07-26 08:55:34 +08004264 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004265 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004266 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004267
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004268 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004269 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004270 prev_cpu = cpu;
4271
4272 new_cpu = select_idle_sibling(p, prev_cpu);
4273 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004274 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004275
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004276 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004277 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004278 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004279 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004280
Peter Zijlstra0763a662009-09-14 19:37:39 +02004281 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004282 sd = sd->child;
4283 continue;
4284 }
4285
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004286 if (sd_flag & SD_BALANCE_WAKE)
4287 load_idx = sd->wake_idx;
4288
4289 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004290 if (!group) {
4291 sd = sd->child;
4292 continue;
4293 }
4294
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004295 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004296 if (new_cpu == -1 || new_cpu == cpu) {
4297 /* Now try balancing at a lower domain level of cpu */
4298 sd = sd->child;
4299 continue;
4300 }
4301
4302 /* Now try balancing at a lower domain level of new_cpu */
4303 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004304 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004305 sd = NULL;
4306 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004307 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004308 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004309 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004310 sd = tmp;
4311 }
4312 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004313 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004314unlock:
4315 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004316
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004317 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004318}
Paul Turner0a74bef2012-10-04 13:18:30 +02004319
4320/*
4321 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4322 * cfs_rq_of(p) references at time of call are still valid and identify the
4323 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4324 * other assumptions, including the state of rq->lock, should be made.
4325 */
4326static void
4327migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4328{
Paul Turneraff3e492012-10-04 13:18:30 +02004329 struct sched_entity *se = &p->se;
4330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4331
4332 /*
4333 * Load tracking: accumulate removed load so that it can be processed
4334 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4335 * to blocked load iff they have a positive decay-count. It can never
4336 * be negative here since on-rq tasks have decay-count == 0.
4337 */
4338 if (se->avg.decay_count) {
4339 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004340 atomic_long_add(se->avg.load_avg_contrib,
4341 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004342 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004343}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004344#endif /* CONFIG_SMP */
4345
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004346static unsigned long
4347wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004348{
4349 unsigned long gran = sysctl_sched_wakeup_granularity;
4350
4351 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004352 * Since its curr running now, convert the gran from real-time
4353 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004354 *
4355 * By using 'se' instead of 'curr' we penalize light tasks, so
4356 * they get preempted easier. That is, if 'se' < 'curr' then
4357 * the resulting gran will be larger, therefore penalizing the
4358 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4359 * be smaller, again penalizing the lighter task.
4360 *
4361 * This is especially important for buddies when the leftmost
4362 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004363 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004364 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004365}
4366
4367/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004368 * Should 'se' preempt 'curr'.
4369 *
4370 * |s1
4371 * |s2
4372 * |s3
4373 * g
4374 * |<--->|c
4375 *
4376 * w(c, s1) = -1
4377 * w(c, s2) = 0
4378 * w(c, s3) = 1
4379 *
4380 */
4381static int
4382wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4383{
4384 s64 gran, vdiff = curr->vruntime - se->vruntime;
4385
4386 if (vdiff <= 0)
4387 return -1;
4388
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004389 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004390 if (vdiff > gran)
4391 return 1;
4392
4393 return 0;
4394}
4395
Peter Zijlstra02479092008-11-04 21:25:10 +01004396static void set_last_buddy(struct sched_entity *se)
4397{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4399 return;
4400
4401 for_each_sched_entity(se)
4402 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004403}
4404
4405static void set_next_buddy(struct sched_entity *se)
4406{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4408 return;
4409
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004412}
4413
Rik van Rielac53db52011-02-01 09:51:03 -05004414static void set_skip_buddy(struct sched_entity *se)
4415{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004416 for_each_sched_entity(se)
4417 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004418}
4419
Peter Zijlstra464b7522008-10-24 11:06:15 +02004420/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004421 * Preempt the current task with a newly woken task if needed:
4422 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004423static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004424{
4425 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004426 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004427 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004428 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004429 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004430
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004431 if (unlikely(se == pse))
4432 return;
4433
Paul Turner5238cdd2011-07-21 09:43:37 -07004434 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004435 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004436 * unconditionally check_prempt_curr() after an enqueue (which may have
4437 * lead to a throttle). This both saves work and prevents false
4438 * next-buddy nomination below.
4439 */
4440 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4441 return;
4442
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004443 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004444 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004445 next_buddy_marked = 1;
4446 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004447
Bharata B Raoaec0a512008-08-28 14:42:49 +05304448 /*
4449 * We can come here with TIF_NEED_RESCHED already set from new task
4450 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004451 *
4452 * Note: this also catches the edge-case of curr being in a throttled
4453 * group (e.g. via set_curr_task), since update_curr() (in the
4454 * enqueue of curr) will have resulted in resched being set. This
4455 * prevents us from potentially nominating it as a false LAST_BUDDY
4456 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304457 */
4458 if (test_tsk_need_resched(curr))
4459 return;
4460
Darren Harta2f5c9a2011-02-22 13:04:33 -08004461 /* Idle tasks are by definition preempted by non-idle tasks. */
4462 if (unlikely(curr->policy == SCHED_IDLE) &&
4463 likely(p->policy != SCHED_IDLE))
4464 goto preempt;
4465
Ingo Molnar91c234b2007-10-15 17:00:18 +02004466 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004467 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4468 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004469 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004470 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004471 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004472
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004473 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004474 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004475 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004476 if (wakeup_preempt_entity(se, pse) == 1) {
4477 /*
4478 * Bias pick_next to pick the sched entity that is
4479 * triggering this preemption.
4480 */
4481 if (!next_buddy_marked)
4482 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004483 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004484 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004485
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004486 return;
4487
4488preempt:
4489 resched_task(curr);
4490 /*
4491 * Only set the backward buddy when the current task is still
4492 * on the rq. This can happen when a wakeup gets interleaved
4493 * with schedule on the ->pre_schedule() or idle_balance()
4494 * point, either of which can * drop the rq lock.
4495 *
4496 * Also, during early boot the idle thread is in the fair class,
4497 * for obvious reasons its a bad idea to schedule back to it.
4498 */
4499 if (unlikely(!se->on_rq || curr == rq->idle))
4500 return;
4501
4502 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4503 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004504}
4505
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004506static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004507{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004508 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004509 struct cfs_rq *cfs_rq = &rq->cfs;
4510 struct sched_entity *se;
4511
Tim Blechmann36ace272009-11-24 11:55:45 +01004512 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004513 return NULL;
4514
4515 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004516 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004517 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004518 cfs_rq = group_cfs_rq(se);
4519 } while (cfs_rq);
4520
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004521 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004522 if (hrtick_enabled(rq))
4523 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004524
4525 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004526}
4527
4528/*
4529 * Account for a descheduled task:
4530 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004531static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004532{
4533 struct sched_entity *se = &prev->se;
4534 struct cfs_rq *cfs_rq;
4535
4536 for_each_sched_entity(se) {
4537 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004538 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004539 }
4540}
4541
Rik van Rielac53db52011-02-01 09:51:03 -05004542/*
4543 * sched_yield() is very simple
4544 *
4545 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4546 */
4547static void yield_task_fair(struct rq *rq)
4548{
4549 struct task_struct *curr = rq->curr;
4550 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4551 struct sched_entity *se = &curr->se;
4552
4553 /*
4554 * Are we the only task in the tree?
4555 */
4556 if (unlikely(rq->nr_running == 1))
4557 return;
4558
4559 clear_buddies(cfs_rq, se);
4560
4561 if (curr->policy != SCHED_BATCH) {
4562 update_rq_clock(rq);
4563 /*
4564 * Update run-time statistics of the 'current'.
4565 */
4566 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004567 /*
4568 * Tell update_rq_clock() that we've just updated,
4569 * so we don't do microscopic update in schedule()
4570 * and double the fastpath cost.
4571 */
4572 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004573 }
4574
4575 set_skip_buddy(se);
4576}
4577
Mike Galbraithd95f4122011-02-01 09:50:51 -05004578static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4579{
4580 struct sched_entity *se = &p->se;
4581
Paul Turner5238cdd2011-07-21 09:43:37 -07004582 /* throttled hierarchies are not runnable */
4583 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004584 return false;
4585
4586 /* Tell the scheduler that we'd really like pse to run next. */
4587 set_next_buddy(se);
4588
Mike Galbraithd95f4122011-02-01 09:50:51 -05004589 yield_task_fair(rq);
4590
4591 return true;
4592}
4593
Peter Williams681f3e62007-10-24 18:23:51 +02004594#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004595/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004596 * Fair scheduling class load-balancing methods.
4597 *
4598 * BASICS
4599 *
4600 * The purpose of load-balancing is to achieve the same basic fairness the
4601 * per-cpu scheduler provides, namely provide a proportional amount of compute
4602 * time to each task. This is expressed in the following equation:
4603 *
4604 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4605 *
4606 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4607 * W_i,0 is defined as:
4608 *
4609 * W_i,0 = \Sum_j w_i,j (2)
4610 *
4611 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4612 * is derived from the nice value as per prio_to_weight[].
4613 *
4614 * The weight average is an exponential decay average of the instantaneous
4615 * weight:
4616 *
4617 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4618 *
4619 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4620 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4621 * can also include other factors [XXX].
4622 *
4623 * To achieve this balance we define a measure of imbalance which follows
4624 * directly from (1):
4625 *
4626 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4627 *
4628 * We them move tasks around to minimize the imbalance. In the continuous
4629 * function space it is obvious this converges, in the discrete case we get
4630 * a few fun cases generally called infeasible weight scenarios.
4631 *
4632 * [XXX expand on:
4633 * - infeasible weights;
4634 * - local vs global optima in the discrete case. ]
4635 *
4636 *
4637 * SCHED DOMAINS
4638 *
4639 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4640 * for all i,j solution, we create a tree of cpus that follows the hardware
4641 * topology where each level pairs two lower groups (or better). This results
4642 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4643 * tree to only the first of the previous level and we decrease the frequency
4644 * of load-balance at each level inv. proportional to the number of cpus in
4645 * the groups.
4646 *
4647 * This yields:
4648 *
4649 * log_2 n 1 n
4650 * \Sum { --- * --- * 2^i } = O(n) (5)
4651 * i = 0 2^i 2^i
4652 * `- size of each group
4653 * | | `- number of cpus doing load-balance
4654 * | `- freq
4655 * `- sum over all levels
4656 *
4657 * Coupled with a limit on how many tasks we can migrate every balance pass,
4658 * this makes (5) the runtime complexity of the balancer.
4659 *
4660 * An important property here is that each CPU is still (indirectly) connected
4661 * to every other cpu in at most O(log n) steps:
4662 *
4663 * The adjacency matrix of the resulting graph is given by:
4664 *
4665 * log_2 n
4666 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4667 * k = 0
4668 *
4669 * And you'll find that:
4670 *
4671 * A^(log_2 n)_i,j != 0 for all i,j (7)
4672 *
4673 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4674 * The task movement gives a factor of O(m), giving a convergence complexity
4675 * of:
4676 *
4677 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4678 *
4679 *
4680 * WORK CONSERVING
4681 *
4682 * In order to avoid CPUs going idle while there's still work to do, new idle
4683 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4684 * tree itself instead of relying on other CPUs to bring it work.
4685 *
4686 * This adds some complexity to both (5) and (8) but it reduces the total idle
4687 * time.
4688 *
4689 * [XXX more?]
4690 *
4691 *
4692 * CGROUPS
4693 *
4694 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4695 *
4696 * s_k,i
4697 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4698 * S_k
4699 *
4700 * Where
4701 *
4702 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4703 *
4704 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4705 *
4706 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4707 * property.
4708 *
4709 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4710 * rewrite all of this once again.]
4711 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004712
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004713static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4714
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004715enum fbq_type { regular, remote, all };
4716
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004717#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004718#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004719#define LBF_DST_PINNED 0x04
4720#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004721
4722struct lb_env {
4723 struct sched_domain *sd;
4724
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004725 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304726 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004727
4728 int dst_cpu;
4729 struct rq *dst_rq;
4730
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304731 struct cpumask *dst_grpmask;
4732 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004733 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004734 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004735 /* The set of CPUs under consideration for load-balancing */
4736 struct cpumask *cpus;
4737
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004738 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004739
4740 unsigned int loop;
4741 unsigned int loop_break;
4742 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004743
4744 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004745};
4746
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004747/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004748 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004749 * Both runqueues must be locked.
4750 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004751static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004752{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004753 deactivate_task(env->src_rq, p, 0);
4754 set_task_cpu(p, env->dst_cpu);
4755 activate_task(env->dst_rq, p, 0);
4756 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004757}
4758
4759/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004760 * Is this task likely cache-hot:
4761 */
4762static int
4763task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4764{
4765 s64 delta;
4766
4767 if (p->sched_class != &fair_sched_class)
4768 return 0;
4769
4770 if (unlikely(p->policy == SCHED_IDLE))
4771 return 0;
4772
4773 /*
4774 * Buddy candidates are cache hot:
4775 */
4776 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4777 (&p->se == cfs_rq_of(&p->se)->next ||
4778 &p->se == cfs_rq_of(&p->se)->last))
4779 return 1;
4780
4781 if (sysctl_sched_migration_cost == -1)
4782 return 1;
4783 if (sysctl_sched_migration_cost == 0)
4784 return 0;
4785
4786 delta = now - p->se.exec_start;
4787
4788 return delta < (s64)sysctl_sched_migration_cost;
4789}
4790
Mel Gorman3a7053b2013-10-07 11:29:00 +01004791#ifdef CONFIG_NUMA_BALANCING
4792/* Returns true if the destination node has incurred more faults */
4793static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4794{
4795 int src_nid, dst_nid;
4796
4797 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4798 !(env->sd->flags & SD_NUMA)) {
4799 return false;
4800 }
4801
4802 src_nid = cpu_to_node(env->src_cpu);
4803 dst_nid = cpu_to_node(env->dst_cpu);
4804
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004805 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004806 return false;
4807
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004808 /* Always encourage migration to the preferred node. */
4809 if (dst_nid == p->numa_preferred_nid)
4810 return true;
4811
Rik van Riel887c2902013-10-07 11:29:31 +01004812 /* If both task and group weight improve, this move is a winner. */
4813 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4814 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004815 return true;
4816
4817 return false;
4818}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004819
4820
4821static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4822{
4823 int src_nid, dst_nid;
4824
4825 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4826 return false;
4827
4828 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4829 return false;
4830
4831 src_nid = cpu_to_node(env->src_cpu);
4832 dst_nid = cpu_to_node(env->dst_cpu);
4833
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004834 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004835 return false;
4836
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004837 /* Migrating away from the preferred node is always bad. */
4838 if (src_nid == p->numa_preferred_nid)
4839 return true;
4840
Rik van Riel887c2902013-10-07 11:29:31 +01004841 /* If either task or group weight get worse, don't do it. */
4842 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4843 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004844 return true;
4845
4846 return false;
4847}
4848
Mel Gorman3a7053b2013-10-07 11:29:00 +01004849#else
4850static inline bool migrate_improves_locality(struct task_struct *p,
4851 struct lb_env *env)
4852{
4853 return false;
4854}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004855
4856static inline bool migrate_degrades_locality(struct task_struct *p,
4857 struct lb_env *env)
4858{
4859 return false;
4860}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004861#endif
4862
Peter Zijlstra029632f2011-10-25 10:00:11 +02004863/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004864 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4865 */
4866static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004867int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004868{
4869 int tsk_cache_hot = 0;
4870 /*
4871 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004872 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004873 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004874 * 3) running (obviously), or
4875 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004876 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004877 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4878 return 0;
4879
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004880 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004881 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304882
Lucas De Marchi41acab82010-03-10 23:37:45 -03004883 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304884
Peter Zijlstra62633222013-08-19 12:41:09 +02004885 env->flags |= LBF_SOME_PINNED;
4886
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304887 /*
4888 * Remember if this task can be migrated to any other cpu in
4889 * our sched_group. We may want to revisit it if we couldn't
4890 * meet load balance goals by pulling other tasks on src_cpu.
4891 *
4892 * Also avoid computing new_dst_cpu if we have already computed
4893 * one in current iteration.
4894 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004895 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304896 return 0;
4897
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004898 /* Prevent to re-select dst_cpu via env's cpus */
4899 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4900 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004901 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004902 env->new_dst_cpu = cpu;
4903 break;
4904 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304905 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004906
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004907 return 0;
4908 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304909
4910 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004911 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004912
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004913 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004914 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004915 return 0;
4916 }
4917
4918 /*
4919 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004920 * 1) destination numa is preferred
4921 * 2) task is cache cold, or
4922 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004923 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004924 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004925 if (!tsk_cache_hot)
4926 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004927
4928 if (migrate_improves_locality(p, env)) {
4929#ifdef CONFIG_SCHEDSTATS
4930 if (tsk_cache_hot) {
4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4932 schedstat_inc(p, se.statistics.nr_forced_migrations);
4933 }
4934#endif
4935 return 1;
4936 }
4937
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004938 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004939 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004940
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004941 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004942 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004943 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004944 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004945
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004946 return 1;
4947 }
4948
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004949 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4950 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004951}
4952
Peter Zijlstra897c3952009-12-17 17:45:42 +01004953/*
4954 * move_one_task tries to move exactly one task from busiest to this_rq, as
4955 * part of active balancing operations within "domain".
4956 * Returns 1 if successful and 0 otherwise.
4957 *
4958 * Called with both runqueues locked.
4959 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004960static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004961{
4962 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004963
Peter Zijlstra367456c2012-02-20 21:49:09 +01004964 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004965 if (!can_migrate_task(p, env))
4966 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004967
Peter Zijlstra367456c2012-02-20 21:49:09 +01004968 move_task(p, env);
4969 /*
4970 * Right now, this is only the second place move_task()
4971 * is called, so we can safely collect move_task()
4972 * stats here rather than inside move_task().
4973 */
4974 schedstat_inc(env->sd, lb_gained[env->idle]);
4975 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004976 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004977 return 0;
4978}
4979
Peter Zijlstraeb953082012-04-17 13:38:40 +02004980static const unsigned int sched_nr_migrate_break = 32;
4981
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004982/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004983 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004984 * this_rq, as part of a balancing operation within domain "sd".
4985 * Returns 1 if successful and 0 otherwise.
4986 *
4987 * Called with both runqueues locked.
4988 */
4989static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004990{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004991 struct list_head *tasks = &env->src_rq->cfs_tasks;
4992 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004993 unsigned long load;
4994 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004995
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004996 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004997 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004998
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004999 while (!list_empty(tasks)) {
5000 p = list_first_entry(tasks, struct task_struct, se.group_node);
5001
Peter Zijlstra367456c2012-02-20 21:49:09 +01005002 env->loop++;
5003 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005004 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005005 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005006
5007 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005008 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005009 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005010 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005011 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005012 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005013
Joonsoo Kimd3198082013-04-23 17:27:40 +09005014 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005015 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005016
Peter Zijlstra367456c2012-02-20 21:49:09 +01005017 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005018
Peter Zijlstraeb953082012-04-17 13:38:40 +02005019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005020 goto next;
5021
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005022 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005023 goto next;
5024
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005025 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005026 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005027 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005028
5029#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005030 /*
5031 * NEWIDLE balancing is a source of latency, so preemptible
5032 * kernels will stop after the first task is pulled to minimize
5033 * the critical section.
5034 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005035 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005036 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005037#endif
5038
Peter Zijlstraee00e662009-12-17 17:25:20 +01005039 /*
5040 * We only want to steal up to the prescribed amount of
5041 * weighted load.
5042 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005043 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005044 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005045
Peter Zijlstra367456c2012-02-20 21:49:09 +01005046 continue;
5047next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005048 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005049 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005050
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005051 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005052 * Right now, this is one of only two places move_task() is called,
5053 * so we can safely collect move_task() stats here rather than
5054 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005055 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005056 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005057
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005058 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005059}
5060
Peter Zijlstra230059de2009-12-17 17:47:12 +01005061#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005062/*
5063 * update tg->load_weight by folding this cpu's load_avg
5064 */
Paul Turner48a16752012-10-04 13:18:31 +02005065static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005066{
Paul Turner48a16752012-10-04 13:18:31 +02005067 struct sched_entity *se = tg->se[cpu];
5068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005069
Paul Turner48a16752012-10-04 13:18:31 +02005070 /* throttled entities do not contribute to load */
5071 if (throttled_hierarchy(cfs_rq))
5072 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005073
Paul Turneraff3e492012-10-04 13:18:30 +02005074 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005075
Paul Turner82958362012-10-04 13:18:31 +02005076 if (se) {
5077 update_entity_load_avg(se, 1);
5078 /*
5079 * We pivot on our runnable average having decayed to zero for
5080 * list removal. This generally implies that all our children
5081 * have also been removed (modulo rounding error or bandwidth
5082 * control); however, such cases are rare and we can fix these
5083 * at enqueue.
5084 *
5085 * TODO: fix up out-of-order children on enqueue.
5086 */
5087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5088 list_del_leaf_cfs_rq(cfs_rq);
5089 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005090 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005091 update_rq_runnable_avg(rq, rq->nr_running);
5092 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005093}
5094
Paul Turner48a16752012-10-04 13:18:31 +02005095static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005096{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005097 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005098 struct cfs_rq *cfs_rq;
5099 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005100
Paul Turner48a16752012-10-04 13:18:31 +02005101 raw_spin_lock_irqsave(&rq->lock, flags);
5102 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005103 /*
5104 * Iterates the task_group tree in a bottom up fashion, see
5105 * list_add_leaf_cfs_rq() for details.
5106 */
Paul Turner64660c82011-07-21 09:43:36 -07005107 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005108 /*
5109 * Note: We may want to consider periodically releasing
5110 * rq->lock about these updates so that creating many task
5111 * groups does not result in continually extending hold time.
5112 */
5113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005114 }
Paul Turner48a16752012-10-04 13:18:31 +02005115
5116 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005117}
5118
Peter Zijlstra9763b672011-07-13 13:09:25 +02005119/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005120 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005121 * This needs to be done in a top-down fashion because the load of a child
5122 * group is a fraction of its parents load.
5123 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005124static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005125{
Vladimir Davydov68520792013-07-15 17:49:19 +04005126 struct rq *rq = rq_of(cfs_rq);
5127 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005128 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005129 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005130
Vladimir Davydov68520792013-07-15 17:49:19 +04005131 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005132 return;
5133
Vladimir Davydov68520792013-07-15 17:49:19 +04005134 cfs_rq->h_load_next = NULL;
5135 for_each_sched_entity(se) {
5136 cfs_rq = cfs_rq_of(se);
5137 cfs_rq->h_load_next = se;
5138 if (cfs_rq->last_h_load_update == now)
5139 break;
5140 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005141
Vladimir Davydov68520792013-07-15 17:49:19 +04005142 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005143 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005144 cfs_rq->last_h_load_update = now;
5145 }
5146
5147 while ((se = cfs_rq->h_load_next) != NULL) {
5148 load = cfs_rq->h_load;
5149 load = div64_ul(load * se->avg.load_avg_contrib,
5150 cfs_rq->runnable_load_avg + 1);
5151 cfs_rq = group_cfs_rq(se);
5152 cfs_rq->h_load = load;
5153 cfs_rq->last_h_load_update = now;
5154 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005155}
5156
Peter Zijlstra367456c2012-02-20 21:49:09 +01005157static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005158{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005159 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005160
Vladimir Davydov68520792013-07-15 17:49:19 +04005161 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005162 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5163 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005164}
5165#else
Paul Turner48a16752012-10-04 13:18:31 +02005166static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005167{
5168}
5169
Peter Zijlstra367456c2012-02-20 21:49:09 +01005170static unsigned long task_h_load(struct task_struct *p)
5171{
Alex Shia003a252013-06-20 10:18:51 +08005172 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005173}
5174#endif
5175
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005176/********** Helpers for find_busiest_group ************************/
5177/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005178 * sg_lb_stats - stats of a sched_group required for load_balancing
5179 */
5180struct sg_lb_stats {
5181 unsigned long avg_load; /*Avg load across the CPUs of the group */
5182 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005183 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005184 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005185 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005186 unsigned int sum_nr_running; /* Nr tasks running in the group */
5187 unsigned int group_capacity;
5188 unsigned int idle_cpus;
5189 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005190 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005191 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005192#ifdef CONFIG_NUMA_BALANCING
5193 unsigned int nr_numa_running;
5194 unsigned int nr_preferred_running;
5195#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005196};
5197
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005198/*
5199 * sd_lb_stats - Structure to store the statistics of a sched_domain
5200 * during load balancing.
5201 */
5202struct sd_lb_stats {
5203 struct sched_group *busiest; /* Busiest group in this sd */
5204 struct sched_group *local; /* Local group in this sd */
5205 unsigned long total_load; /* Total load of all groups in sd */
5206 unsigned long total_pwr; /* Total power of all groups in sd */
5207 unsigned long avg_load; /* Average load across all groups in sd */
5208
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005209 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005210 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005211};
5212
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005213static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5214{
5215 /*
5216 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5217 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5218 * We must however clear busiest_stat::avg_load because
5219 * update_sd_pick_busiest() reads this before assignment.
5220 */
5221 *sds = (struct sd_lb_stats){
5222 .busiest = NULL,
5223 .local = NULL,
5224 .total_load = 0UL,
5225 .total_pwr = 0UL,
5226 .busiest_stat = {
5227 .avg_load = 0UL,
5228 },
5229 };
5230}
5231
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005232/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005233 * get_sd_load_idx - Obtain the load index for a given sched domain.
5234 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305235 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005236 *
5237 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005238 */
5239static inline int get_sd_load_idx(struct sched_domain *sd,
5240 enum cpu_idle_type idle)
5241{
5242 int load_idx;
5243
5244 switch (idle) {
5245 case CPU_NOT_IDLE:
5246 load_idx = sd->busy_idx;
5247 break;
5248
5249 case CPU_NEWLY_IDLE:
5250 load_idx = sd->newidle_idx;
5251 break;
5252 default:
5253 load_idx = sd->idle_idx;
5254 break;
5255 }
5256
5257 return load_idx;
5258}
5259
Li Zefan15f803c2013-03-05 16:07:11 +08005260static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005261{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005262 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005263}
5264
5265unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5266{
5267 return default_scale_freq_power(sd, cpu);
5268}
5269
Li Zefan15f803c2013-03-05 16:07:11 +08005270static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005271{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005272 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005273 unsigned long smt_gain = sd->smt_gain;
5274
5275 smt_gain /= weight;
5276
5277 return smt_gain;
5278}
5279
5280unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5281{
5282 return default_scale_smt_power(sd, cpu);
5283}
5284
Li Zefan15f803c2013-03-05 16:07:11 +08005285static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005286{
5287 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005288 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005289
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005290 /*
5291 * Since we're reading these variables without serialization make sure
5292 * we read them once before doing sanity checks on them.
5293 */
5294 age_stamp = ACCESS_ONCE(rq->age_stamp);
5295 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005296
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005297 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005298
5299 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005300 /* Ensures that power won't end up being negative */
5301 available = 0;
5302 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005303 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005304 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305
Nikhil Rao1399fa72011-05-18 10:09:39 -07005306 if (unlikely((s64)total < SCHED_POWER_SCALE))
5307 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005308
Nikhil Rao1399fa72011-05-18 10:09:39 -07005309 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005310
5311 return div_u64(available, total);
5312}
5313
5314static void update_cpu_power(struct sched_domain *sd, int cpu)
5315{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005316 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005317 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005318 struct sched_group *sdg = sd->groups;
5319
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005320 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5321 if (sched_feat(ARCH_POWER))
5322 power *= arch_scale_smt_power(sd, cpu);
5323 else
5324 power *= default_scale_smt_power(sd, cpu);
5325
Nikhil Rao1399fa72011-05-18 10:09:39 -07005326 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005327 }
5328
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005329 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005330
5331 if (sched_feat(ARCH_POWER))
5332 power *= arch_scale_freq_power(sd, cpu);
5333 else
5334 power *= default_scale_freq_power(sd, cpu);
5335
Nikhil Rao1399fa72011-05-18 10:09:39 -07005336 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005337
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005338 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005339 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005340
5341 if (!power)
5342 power = 1;
5343
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005344 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005345 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005346}
5347
Peter Zijlstra029632f2011-10-25 10:00:11 +02005348void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005349{
5350 struct sched_domain *child = sd->child;
5351 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005352 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005353 unsigned long interval;
5354
5355 interval = msecs_to_jiffies(sd->balance_interval);
5356 interval = clamp(interval, 1UL, max_load_balance_interval);
5357 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005358
5359 if (!child) {
5360 update_cpu_power(sd, cpu);
5361 return;
5362 }
5363
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005364 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005365
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005366 if (child->flags & SD_OVERLAP) {
5367 /*
5368 * SD_OVERLAP domains cannot assume that child groups
5369 * span the current group.
5370 */
5371
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005372 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305373 struct sched_group_power *sgp;
5374 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005375
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305376 /*
5377 * build_sched_domains() -> init_sched_groups_power()
5378 * gets here before we've attached the domains to the
5379 * runqueues.
5380 *
5381 * Use power_of(), which is set irrespective of domains
5382 * in update_cpu_power().
5383 *
5384 * This avoids power/power_orig from being 0 and
5385 * causing divide-by-zero issues on boot.
5386 *
5387 * Runtime updates will correct power_orig.
5388 */
5389 if (unlikely(!rq->sd)) {
5390 power_orig += power_of(cpu);
5391 power += power_of(cpu);
5392 continue;
5393 }
5394
5395 sgp = rq->sd->groups->sgp;
5396 power_orig += sgp->power_orig;
5397 power += sgp->power;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005398 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005399 } else {
5400 /*
5401 * !SD_OVERLAP domains can assume that child groups
5402 * span the current group.
5403 */
5404
5405 group = child->groups;
5406 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005407 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005408 power += group->sgp->power;
5409 group = group->next;
5410 } while (group != child->groups);
5411 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005412
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005413 sdg->sgp->power_orig = power_orig;
5414 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005415}
5416
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005417/*
5418 * Try and fix up capacity for tiny siblings, this is needed when
5419 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5420 * which on its own isn't powerful enough.
5421 *
5422 * See update_sd_pick_busiest() and check_asym_packing().
5423 */
5424static inline int
5425fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5426{
5427 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005428 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005429 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005430 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005431 return 0;
5432
5433 /*
5434 * If ~90% of the cpu_power is still there, we're good.
5435 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005436 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005437 return 1;
5438
5439 return 0;
5440}
5441
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005442/*
5443 * Group imbalance indicates (and tries to solve) the problem where balancing
5444 * groups is inadequate due to tsk_cpus_allowed() constraints.
5445 *
5446 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5447 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5448 * Something like:
5449 *
5450 * { 0 1 2 3 } { 4 5 6 7 }
5451 * * * * *
5452 *
5453 * If we were to balance group-wise we'd place two tasks in the first group and
5454 * two tasks in the second group. Clearly this is undesired as it will overload
5455 * cpu 3 and leave one of the cpus in the second group unused.
5456 *
5457 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005458 * by noticing the lower domain failed to reach balance and had difficulty
5459 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005460 *
5461 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305462 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005463 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005464 * to create an effective group imbalance.
5465 *
5466 * This is a somewhat tricky proposition since the next run might not find the
5467 * group imbalance and decide the groups need to be balanced again. A most
5468 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005469 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005470
Peter Zijlstra62633222013-08-19 12:41:09 +02005471static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472{
Peter Zijlstra62633222013-08-19 12:41:09 +02005473 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005474}
5475
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005476/*
5477 * Compute the group capacity.
5478 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005479 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5480 * first dividing out the smt factor and computing the actual number of cores
5481 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005482 */
5483static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5484{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005485 unsigned int capacity, smt, cpus;
5486 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005487
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005488 power = group->sgp->power;
5489 power_orig = group->sgp->power_orig;
5490 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005491
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005492 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5493 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5494 capacity = cpus / smt; /* cores */
5495
5496 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005497 if (!capacity)
5498 capacity = fix_small_capacity(env->sd, group);
5499
5500 return capacity;
5501}
5502
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005503/**
5504 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5505 * @env: The load balancing environment.
5506 * @group: sched_group whose statistics are to be updated.
5507 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5508 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005509 * @sgs: variable to hold the statistics for this group.
5510 */
5511static inline void update_sg_lb_stats(struct lb_env *env,
5512 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005513 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005514{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005515 unsigned long nr_running;
5516 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005517 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005518
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005519 memset(sgs, 0, sizeof(*sgs));
5520
Michael Wangb94031302012-07-12 16:10:13 +08005521 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005522 struct rq *rq = cpu_rq(i);
5523
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005524 nr_running = rq->nr_running;
5525
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005526 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005527 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005528 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005529 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005530 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005531
5532 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005533 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005534#ifdef CONFIG_NUMA_BALANCING
5535 sgs->nr_numa_running += rq->nr_numa_running;
5536 sgs->nr_preferred_running += rq->nr_preferred_running;
5537#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005538 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005539 if (idle_cpu(i))
5540 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005541 }
5542
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005543 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005544 sgs->group_power = group->sgp->power;
5545 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005546
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005547 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005548 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005549
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005550 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005551
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005552 sgs->group_imb = sg_imbalanced(group);
5553 sgs->group_capacity = sg_capacity(env, group);
5554
Nikhil Raofab47622010-10-15 13:12:29 -07005555 if (sgs->group_capacity > sgs->sum_nr_running)
5556 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005557}
5558
5559/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005560 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005561 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005562 * @sds: sched_domain statistics
5563 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005564 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005565 *
5566 * Determine if @sg is a busier group than the previously selected
5567 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005568 *
5569 * Return: %true if @sg is a busier group than the previously selected
5570 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005571 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005572static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005573 struct sd_lb_stats *sds,
5574 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005575 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005576{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005577 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005578 return false;
5579
5580 if (sgs->sum_nr_running > sgs->group_capacity)
5581 return true;
5582
5583 if (sgs->group_imb)
5584 return true;
5585
5586 /*
5587 * ASYM_PACKING needs to move all the work to the lowest
5588 * numbered CPUs in the group, therefore mark all groups
5589 * higher than ourself as busy.
5590 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5592 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005593 if (!sds->busiest)
5594 return true;
5595
5596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5597 return true;
5598 }
5599
5600 return false;
5601}
5602
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005603#ifdef CONFIG_NUMA_BALANCING
5604static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5605{
5606 if (sgs->sum_nr_running > sgs->nr_numa_running)
5607 return regular;
5608 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5609 return remote;
5610 return all;
5611}
5612
5613static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5614{
5615 if (rq->nr_running > rq->nr_numa_running)
5616 return regular;
5617 if (rq->nr_running > rq->nr_preferred_running)
5618 return remote;
5619 return all;
5620}
5621#else
5622static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5623{
5624 return all;
5625}
5626
5627static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5628{
5629 return regular;
5630}
5631#endif /* CONFIG_NUMA_BALANCING */
5632
Michael Neuling532cb4c2010-06-08 14:57:02 +10005633/**
Hui Kang461819a2011-10-11 23:00:59 -04005634 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005635 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005636 * @sds: variable to hold the statistics for this sched_domain.
5637 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005638static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005639{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005640 struct sched_domain *child = env->sd->child;
5641 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005642 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005643 int load_idx, prefer_sibling = 0;
5644
5645 if (child && child->flags & SD_PREFER_SIBLING)
5646 prefer_sibling = 1;
5647
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005648 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005649
5650 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005651 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005652 int local_group;
5653
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005654 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005655 if (local_group) {
5656 sds->local = sg;
5657 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005658
5659 if (env->idle != CPU_NEWLY_IDLE ||
5660 time_after_eq(jiffies, sg->sgp->next_update))
5661 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005662 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005663
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005664 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005665
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005666 if (local_group)
5667 goto next_group;
5668
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005669 /*
5670 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005671 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005672 * and move all the excess tasks away. We lower the capacity
5673 * of a group only if the local group has the capacity to fit
5674 * these excess tasks, i.e. nr_running < group_capacity. The
5675 * extra check prevents the case where you always pull from the
5676 * heaviest group when it is already under-utilized (possible
5677 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005678 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005679 if (prefer_sibling && sds->local &&
5680 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005681 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005682
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005683 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005684 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005685 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005686 }
5687
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005688next_group:
5689 /* Now, start updating sd_lb_stats */
5690 sds->total_load += sgs->group_load;
5691 sds->total_pwr += sgs->group_power;
5692
Michael Neuling532cb4c2010-06-08 14:57:02 +10005693 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005694 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005695
5696 if (env->sd->flags & SD_NUMA)
5697 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005698}
5699
Michael Neuling532cb4c2010-06-08 14:57:02 +10005700/**
5701 * check_asym_packing - Check to see if the group is packed into the
5702 * sched doman.
5703 *
5704 * This is primarily intended to used at the sibling level. Some
5705 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5706 * case of POWER7, it can move to lower SMT modes only when higher
5707 * threads are idle. When in lower SMT modes, the threads will
5708 * perform better since they share less core resources. Hence when we
5709 * have idle threads, we want them to be the higher ones.
5710 *
5711 * This packing function is run on idle threads. It checks to see if
5712 * the busiest CPU in this domain (core in the P7 case) has a higher
5713 * CPU number than the packing function is being run on. Here we are
5714 * assuming lower CPU number will be equivalent to lower a SMT thread
5715 * number.
5716 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005717 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005718 * this CPU. The amount of the imbalance is returned in *imbalance.
5719 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005720 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005721 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005722 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005723static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005724{
5725 int busiest_cpu;
5726
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005727 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005728 return 0;
5729
5730 if (!sds->busiest)
5731 return 0;
5732
5733 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005734 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005735 return 0;
5736
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005737 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005738 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5739 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005740
Michael Neuling532cb4c2010-06-08 14:57:02 +10005741 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005742}
5743
5744/**
5745 * fix_small_imbalance - Calculate the minor imbalance that exists
5746 * amongst the groups of a sched_domain, during
5747 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005748 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005750 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005751static inline
5752void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005753{
5754 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5755 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005756 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005757 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005758
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005759 local = &sds->local_stat;
5760 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005761
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005762 if (!local->sum_nr_running)
5763 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5764 else if (busiest->load_per_task > local->load_per_task)
5765 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005766
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005767 scaled_busy_load_per_task =
5768 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005769 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005770
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005771 if (busiest->avg_load + scaled_busy_load_per_task >=
5772 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005773 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005774 return;
5775 }
5776
5777 /*
5778 * OK, we don't have enough imbalance to justify moving tasks,
5779 * however we may be able to increase total CPU power used by
5780 * moving them.
5781 */
5782
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005783 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005784 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005785 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005786 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005787 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005788
5789 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005791 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005792 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005793 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005794 min(busiest->load_per_task,
5795 busiest->avg_load - tmp);
5796 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005797
5798 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005799 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005800 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005801 tmp = (busiest->avg_load * busiest->group_power) /
5802 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005803 } else {
5804 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005805 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005806 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005807 pwr_move += local->group_power *
5808 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005809 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005810
5811 /* Move if we gain throughput */
5812 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005813 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005814}
5815
5816/**
5817 * calculate_imbalance - Calculate the amount of imbalance present within the
5818 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005819 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005820 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005821 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005822static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005823{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005824 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005825 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005826
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005827 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005828 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005829
5830 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005831 /*
5832 * In the group_imb case we cannot rely on group-wide averages
5833 * to ensure cpu-load equilibrium, look at wider averages. XXX
5834 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005835 busiest->load_per_task =
5836 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005837 }
5838
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005839 /*
5840 * In the presence of smp nice balancing, certain scenarios can have
5841 * max load less than avg load(as we skip the groups at or below
5842 * its cpu_power, while calculating max_load..)
5843 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005844 if (busiest->avg_load <= sds->avg_load ||
5845 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005846 env->imbalance = 0;
5847 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005848 }
5849
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005850 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005851 /*
5852 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005853 * Except of course for the group_imb case, since then we might
5854 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005855 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005856 load_above_capacity =
5857 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005858
Nikhil Rao1399fa72011-05-18 10:09:39 -07005859 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005860 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005861 }
5862
5863 /*
5864 * We're trying to get all the cpus to the average_load, so we don't
5865 * want to push ourselves above the average load, nor do we wish to
5866 * reduce the max loaded cpu below the average load. At the same time,
5867 * we also don't want to reduce the group load below the group capacity
5868 * (so that we can implement power-savings policies etc). Thus we look
5869 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005870 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005871 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872
5873 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005874 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005875 max_pull * busiest->group_power,
5876 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005877 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005878
5879 /*
5880 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005881 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005882 * a think about bumping its value to force at least one task to be
5883 * moved
5884 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005885 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005886 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005887}
Nikhil Raofab47622010-10-15 13:12:29 -07005888
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005889/******* find_busiest_group() helpers end here *********************/
5890
5891/**
5892 * find_busiest_group - Returns the busiest group within the sched_domain
5893 * if there is an imbalance. If there isn't an imbalance, and
5894 * the user has opted for power-savings, it returns a group whose
5895 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5896 * such a group exists.
5897 *
5898 * Also calculates the amount of weighted load which should be moved
5899 * to restore balance.
5900 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005901 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005902 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005903 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 * - If no imbalance and user has opted for power-savings balance,
5905 * return the least loaded group whose CPUs can be
5906 * put to idle by rebalancing its tasks onto our group.
5907 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005908static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005909{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005910 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005911 struct sd_lb_stats sds;
5912
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005913 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005914
5915 /*
5916 * Compute the various statistics relavent for load balancing at
5917 * this level.
5918 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005919 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005920 local = &sds.local_stat;
5921 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005922
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005923 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5924 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005925 return sds.busiest;
5926
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005927 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005928 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005929 goto out_balanced;
5930
Nikhil Rao1399fa72011-05-18 10:09:39 -07005931 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005932
Peter Zijlstra866ab432011-02-21 18:56:47 +01005933 /*
5934 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005935 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005936 * isn't true due to cpus_allowed constraints and the like.
5937 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005938 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005939 goto force_balance;
5940
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005941 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005942 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5943 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005944 goto force_balance;
5945
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005946 /*
5947 * If the local group is more busy than the selected busiest group
5948 * don't try and pull any tasks.
5949 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005950 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005951 goto out_balanced;
5952
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005953 /*
5954 * Don't pull any tasks if this group is already above the domain
5955 * average load.
5956 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005957 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005958 goto out_balanced;
5959
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005960 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005961 /*
5962 * This cpu is idle. If the busiest group load doesn't
5963 * have more tasks than the number of available cpu's and
5964 * there is no imbalance between this and busiest group
5965 * wrt to idle cpu's, it is balanced.
5966 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005967 if ((local->idle_cpus < busiest->idle_cpus) &&
5968 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005969 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005970 } else {
5971 /*
5972 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5973 * imbalance_pct to be conservative.
5974 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005975 if (100 * busiest->avg_load <=
5976 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005977 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005978 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005979
Nikhil Raofab47622010-10-15 13:12:29 -07005980force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005981 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005982 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005983 return sds.busiest;
5984
5985out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005986 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005987 return NULL;
5988}
5989
5990/*
5991 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5992 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005993static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005994 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005995{
5996 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005997 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005998 int i;
5999
Peter Zijlstra6906a402013-08-19 15:20:21 +02006000 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006001 unsigned long power, capacity, wl;
6002 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006003
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006004 rq = cpu_rq(i);
6005 rt = fbq_classify_rq(rq);
6006
6007 /*
6008 * We classify groups/runqueues into three groups:
6009 * - regular: there are !numa tasks
6010 * - remote: there are numa tasks that run on the 'wrong' node
6011 * - all: there is no distinction
6012 *
6013 * In order to avoid migrating ideally placed numa tasks,
6014 * ignore those when there's better options.
6015 *
6016 * If we ignore the actual busiest queue to migrate another
6017 * task, the next balance pass can still reduce the busiest
6018 * queue by moving tasks around inside the node.
6019 *
6020 * If we cannot move enough load due to this classification
6021 * the next pass will adjust the group classification and
6022 * allow migration of more tasks.
6023 *
6024 * Both cases only affect the total convergence complexity.
6025 */
6026 if (rt > env->fbq_type)
6027 continue;
6028
6029 power = power_of(i);
6030 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006031 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006032 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006033
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006034 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006035
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006036 /*
6037 * When comparing with imbalance, use weighted_cpuload()
6038 * which is not scaled with the cpu power.
6039 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006040 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006041 continue;
6042
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006043 /*
6044 * For the load comparisons with the other cpu's, consider
6045 * the weighted_cpuload() scaled with the cpu power, so that
6046 * the load can be moved away from the cpu that is potentially
6047 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006048 *
6049 * Thus we're looking for max(wl_i / power_i), crosswise
6050 * multiplication to rid ourselves of the division works out
6051 * to: wl_i * power_j > wl_j * power_i; where j is our
6052 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006053 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006054 if (wl * busiest_power > busiest_load * power) {
6055 busiest_load = wl;
6056 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006057 busiest = rq;
6058 }
6059 }
6060
6061 return busiest;
6062}
6063
6064/*
6065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6066 * so long as it is large enough.
6067 */
6068#define MAX_PINNED_INTERVAL 512
6069
6070/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006071DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006072
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006073static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006074{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006075 struct sched_domain *sd = env->sd;
6076
6077 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006078
6079 /*
6080 * ASYM_PACKING needs to force migrate tasks from busy but
6081 * higher numbered CPUs in order to pack all tasks in the
6082 * lowest numbered CPUs.
6083 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006084 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006085 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006086 }
6087
6088 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6089}
6090
Tejun Heo969c7922010-05-06 18:49:21 +02006091static int active_load_balance_cpu_stop(void *data);
6092
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006093static int should_we_balance(struct lb_env *env)
6094{
6095 struct sched_group *sg = env->sd->groups;
6096 struct cpumask *sg_cpus, *sg_mask;
6097 int cpu, balance_cpu = -1;
6098
6099 /*
6100 * In the newly idle case, we will allow all the cpu's
6101 * to do the newly idle load balance.
6102 */
6103 if (env->idle == CPU_NEWLY_IDLE)
6104 return 1;
6105
6106 sg_cpus = sched_group_cpus(sg);
6107 sg_mask = sched_group_mask(sg);
6108 /* Try to find first idle cpu */
6109 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6110 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6111 continue;
6112
6113 balance_cpu = cpu;
6114 break;
6115 }
6116
6117 if (balance_cpu == -1)
6118 balance_cpu = group_balance_cpu(sg);
6119
6120 /*
6121 * First idle cpu or the first cpu(busiest) in this sched group
6122 * is eligible for doing load balancing at this and above domains.
6123 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006124 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006125}
6126
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006127/*
6128 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6129 * tasks if there is an imbalance.
6130 */
6131static int load_balance(int this_cpu, struct rq *this_rq,
6132 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006133 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006134{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306135 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006136 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006137 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006138 struct rq *busiest;
6139 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006140 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006141
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006142 struct lb_env env = {
6143 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006144 .dst_cpu = this_cpu,
6145 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306146 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006147 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006148 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006149 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006150 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006151 };
6152
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006153 /*
6154 * For NEWLY_IDLE load_balancing, we don't need to consider
6155 * other cpus in our group
6156 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006157 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006158 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006159
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006160 cpumask_copy(cpus, cpu_active_mask);
6161
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006162 schedstat_inc(sd, lb_count[idle]);
6163
6164redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006165 if (!should_we_balance(&env)) {
6166 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006167 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006168 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006169
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006170 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006171 if (!group) {
6172 schedstat_inc(sd, lb_nobusyg[idle]);
6173 goto out_balanced;
6174 }
6175
Michael Wangb94031302012-07-12 16:10:13 +08006176 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006177 if (!busiest) {
6178 schedstat_inc(sd, lb_nobusyq[idle]);
6179 goto out_balanced;
6180 }
6181
Michael Wang78feefc2012-08-06 16:41:59 +08006182 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006183
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006184 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006185
6186 ld_moved = 0;
6187 if (busiest->nr_running > 1) {
6188 /*
6189 * Attempt to move tasks. If find_busiest_group has found
6190 * an imbalance but busiest->nr_running <= 1, the group is
6191 * still unbalanced. ld_moved simply stays zero, so it is
6192 * correctly treated as an imbalance.
6193 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006194 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006195 env.src_cpu = busiest->cpu;
6196 env.src_rq = busiest;
6197 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006198
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006199more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006200 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006201 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306202
6203 /*
6204 * cur_ld_moved - load moved in current iteration
6205 * ld_moved - cumulative load moved across iterations
6206 */
6207 cur_ld_moved = move_tasks(&env);
6208 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006209 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006210 local_irq_restore(flags);
6211
6212 /*
6213 * some other cpu did the load balance for us.
6214 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306215 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6216 resched_cpu(env.dst_cpu);
6217
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006218 if (env.flags & LBF_NEED_BREAK) {
6219 env.flags &= ~LBF_NEED_BREAK;
6220 goto more_balance;
6221 }
6222
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306223 /*
6224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6225 * us and move them to an alternate dst_cpu in our sched_group
6226 * where they can run. The upper limit on how many times we
6227 * iterate on same src_cpu is dependent on number of cpus in our
6228 * sched_group.
6229 *
6230 * This changes load balance semantics a bit on who can move
6231 * load to a given_cpu. In addition to the given_cpu itself
6232 * (or a ilb_cpu acting on its behalf where given_cpu is
6233 * nohz-idle), we now have balance_cpu in a position to move
6234 * load to given_cpu. In rare situations, this may cause
6235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6236 * _independently_ and at _same_ time to move some load to
6237 * given_cpu) causing exceess load to be moved to given_cpu.
6238 * This however should not happen so much in practice and
6239 * moreover subsequent load balance cycles should correct the
6240 * excess load moved.
6241 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306243
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006244 /* Prevent to re-select dst_cpu via env's cpus */
6245 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6246
Michael Wang78feefc2012-08-06 16:41:59 +08006247 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306248 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006249 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306250 env.loop = 0;
6251 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006252
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306253 /*
6254 * Go back to "more_balance" rather than "redo" since we
6255 * need to continue with same src_cpu.
6256 */
6257 goto more_balance;
6258 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006259
Peter Zijlstra62633222013-08-19 12:41:09 +02006260 /*
6261 * We failed to reach balance because of affinity.
6262 */
6263 if (sd_parent) {
6264 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6265
6266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6267 *group_imbalance = 1;
6268 } else if (*group_imbalance)
6269 *group_imbalance = 0;
6270 }
6271
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006272 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006273 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006274 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306275 if (!cpumask_empty(cpus)) {
6276 env.loop = 0;
6277 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006278 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306279 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006280 goto out_balanced;
6281 }
6282 }
6283
6284 if (!ld_moved) {
6285 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006286 /*
6287 * Increment the failure counter only on periodic balance.
6288 * We do not want newidle balance, which can be very
6289 * frequent, pollute the failure counter causing
6290 * excessive cache_hot migrations and active balances.
6291 */
6292 if (idle != CPU_NEWLY_IDLE)
6293 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006294
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006295 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296 raw_spin_lock_irqsave(&busiest->lock, flags);
6297
Tejun Heo969c7922010-05-06 18:49:21 +02006298 /* don't kick the active_load_balance_cpu_stop,
6299 * if the curr task on busiest cpu can't be
6300 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006301 */
6302 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006303 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006304 raw_spin_unlock_irqrestore(&busiest->lock,
6305 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006306 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006307 goto out_one_pinned;
6308 }
6309
Tejun Heo969c7922010-05-06 18:49:21 +02006310 /*
6311 * ->active_balance synchronizes accesses to
6312 * ->active_balance_work. Once set, it's cleared
6313 * only after active load balance is finished.
6314 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006315 if (!busiest->active_balance) {
6316 busiest->active_balance = 1;
6317 busiest->push_cpu = this_cpu;
6318 active_balance = 1;
6319 }
6320 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006321
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006322 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006323 stop_one_cpu_nowait(cpu_of(busiest),
6324 active_load_balance_cpu_stop, busiest,
6325 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006326 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006327
6328 /*
6329 * We've kicked active balancing, reset the failure
6330 * counter.
6331 */
6332 sd->nr_balance_failed = sd->cache_nice_tries+1;
6333 }
6334 } else
6335 sd->nr_balance_failed = 0;
6336
6337 if (likely(!active_balance)) {
6338 /* We were unbalanced, so reset the balancing interval */
6339 sd->balance_interval = sd->min_interval;
6340 } else {
6341 /*
6342 * If we've begun active balancing, start to back off. This
6343 * case may not be covered by the all_pinned logic if there
6344 * is only 1 task on the busy runqueue (because we don't call
6345 * move_tasks).
6346 */
6347 if (sd->balance_interval < sd->max_interval)
6348 sd->balance_interval *= 2;
6349 }
6350
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006351 goto out;
6352
6353out_balanced:
6354 schedstat_inc(sd, lb_balanced[idle]);
6355
6356 sd->nr_balance_failed = 0;
6357
6358out_one_pinned:
6359 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006360 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006361 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006362 (sd->balance_interval < sd->max_interval))
6363 sd->balance_interval *= 2;
6364
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006365 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006366out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006367 return ld_moved;
6368}
6369
6370/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006371 * idle_balance is called by schedule() if this_cpu is about to become
6372 * idle. Attempts to pull tasks from other CPUs.
6373 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006374void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006375{
6376 struct sched_domain *sd;
6377 int pulled_task = 0;
6378 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006379 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006380
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006381 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006382
6383 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6384 return;
6385
Peter Zijlstraf492e122009-12-23 15:29:42 +01006386 /*
6387 * Drop the rq->lock, but keep IRQ/preempt disabled.
6388 */
6389 raw_spin_unlock(&this_rq->lock);
6390
Paul Turner48a16752012-10-04 13:18:31 +02006391 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006392 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006393 for_each_domain(this_cpu, sd) {
6394 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006395 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006396 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006397
6398 if (!(sd->flags & SD_LOAD_BALANCE))
6399 continue;
6400
Jason Low9bd721c2013-09-13 11:26:52 -07006401 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6402 break;
6403
Peter Zijlstraf492e122009-12-23 15:29:42 +01006404 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006405 t0 = sched_clock_cpu(this_cpu);
6406
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006407 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006408 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006409 sd, CPU_NEWLY_IDLE,
6410 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006411
6412 domain_cost = sched_clock_cpu(this_cpu) - t0;
6413 if (domain_cost > sd->max_newidle_lb_cost)
6414 sd->max_newidle_lb_cost = domain_cost;
6415
6416 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006417 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006418
6419 interval = msecs_to_jiffies(sd->balance_interval);
6420 if (time_after(next_balance, sd->last_balance + interval))
6421 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006422 if (pulled_task) {
6423 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006424 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006425 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006426 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006427 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006428
6429 raw_spin_lock(&this_rq->lock);
6430
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006431 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6432 /*
6433 * We are going idle. next_balance may be set based on
6434 * a busy processor. So reset next_balance.
6435 */
6436 this_rq->next_balance = next_balance;
6437 }
Jason Low9bd721c2013-09-13 11:26:52 -07006438
6439 if (curr_cost > this_rq->max_idle_balance_cost)
6440 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006441}
6442
6443/*
Tejun Heo969c7922010-05-06 18:49:21 +02006444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6445 * running tasks off the busiest CPU onto idle CPUs. It requires at
6446 * least 1 task to be running on each physical CPU where possible, and
6447 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006448 */
Tejun Heo969c7922010-05-06 18:49:21 +02006449static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006450{
Tejun Heo969c7922010-05-06 18:49:21 +02006451 struct rq *busiest_rq = data;
6452 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006453 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006454 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006455 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006456
6457 raw_spin_lock_irq(&busiest_rq->lock);
6458
6459 /* make sure the requested cpu hasn't gone down in the meantime */
6460 if (unlikely(busiest_cpu != smp_processor_id() ||
6461 !busiest_rq->active_balance))
6462 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006463
6464 /* Is there any task to move? */
6465 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006466 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006467
6468 /*
6469 * This condition is "impossible", if it occurs
6470 * we need to fix it. Originally reported by
6471 * Bjorn Helgaas on a 128-cpu setup.
6472 */
6473 BUG_ON(busiest_rq == target_rq);
6474
6475 /* move a task from busiest_rq to target_rq */
6476 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006477
6478 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006479 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006480 for_each_domain(target_cpu, sd) {
6481 if ((sd->flags & SD_LOAD_BALANCE) &&
6482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6483 break;
6484 }
6485
6486 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006487 struct lb_env env = {
6488 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006489 .dst_cpu = target_cpu,
6490 .dst_rq = target_rq,
6491 .src_cpu = busiest_rq->cpu,
6492 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006493 .idle = CPU_IDLE,
6494 };
6495
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006496 schedstat_inc(sd, alb_count);
6497
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006498 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006499 schedstat_inc(sd, alb_pushed);
6500 else
6501 schedstat_inc(sd, alb_failed);
6502 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006503 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006504 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006505out_unlock:
6506 busiest_rq->active_balance = 0;
6507 raw_spin_unlock_irq(&busiest_rq->lock);
6508 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006509}
6510
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006511#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006512/*
6513 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006514 * - When one of the busy CPUs notice that there may be an idle rebalancing
6515 * needed, they will kick the idle load balancer, which then does idle
6516 * load balancing for all the idle CPUs.
6517 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006518static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006519 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006520 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006521 unsigned long next_balance; /* in jiffy units */
6522} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006523
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006524static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006525{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006526 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006527
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006528 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6529 return ilb;
6530
6531 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006532}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006533
6534/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6537 * CPU (if there is one).
6538 */
6539static void nohz_balancer_kick(int cpu)
6540{
6541 int ilb_cpu;
6542
6543 nohz.next_balance++;
6544
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006545 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006546
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006547 if (ilb_cpu >= nr_cpu_ids)
6548 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006549
Suresh Siddhacd490c52011-12-06 11:26:34 -08006550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006551 return;
6552 /*
6553 * Use smp_send_reschedule() instead of resched_cpu().
6554 * This way we generate a sched IPI on the target cpu which
6555 * is idle. And the softirq performing nohz idle load balance
6556 * will be run before returning from the IPI.
6557 */
6558 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006559 return;
6560}
6561
Alex Shic1cc0172012-09-10 15:10:58 +08006562static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006563{
6564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6565 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6566 atomic_dec(&nohz.nr_cpus);
6567 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6568 }
6569}
6570
Suresh Siddha69e1e812011-12-01 17:07:33 -08006571static inline void set_cpu_sd_state_busy(void)
6572{
6573 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306574 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006575
Suresh Siddha69e1e812011-12-01 17:07:33 -08006576 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306577 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006578
6579 if (!sd || !sd->nohz_idle)
6580 goto unlock;
6581 sd->nohz_idle = 0;
6582
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306583 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006584unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006585 rcu_read_unlock();
6586}
6587
6588void set_cpu_sd_state_idle(void)
6589{
6590 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306591 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006592
Suresh Siddha69e1e812011-12-01 17:07:33 -08006593 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306594 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006595
6596 if (!sd || sd->nohz_idle)
6597 goto unlock;
6598 sd->nohz_idle = 1;
6599
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306600 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006601unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006602 rcu_read_unlock();
6603}
6604
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006605/*
Alex Shic1cc0172012-09-10 15:10:58 +08006606 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006607 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006608 */
Alex Shic1cc0172012-09-10 15:10:58 +08006609void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006610{
Suresh Siddha71325962012-01-19 18:28:57 -08006611 /*
6612 * If this cpu is going down, then nothing needs to be done.
6613 */
6614 if (!cpu_active(cpu))
6615 return;
6616
Alex Shic1cc0172012-09-10 15:10:58 +08006617 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6618 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006619
Alex Shic1cc0172012-09-10 15:10:58 +08006620 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6621 atomic_inc(&nohz.nr_cpus);
6622 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006623}
Suresh Siddha71325962012-01-19 18:28:57 -08006624
Paul Gortmaker0db06282013-06-19 14:53:51 -04006625static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006626 unsigned long action, void *hcpu)
6627{
6628 switch (action & ~CPU_TASKS_FROZEN) {
6629 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006630 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006631 return NOTIFY_OK;
6632 default:
6633 return NOTIFY_DONE;
6634 }
6635}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636#endif
6637
6638static DEFINE_SPINLOCK(balancing);
6639
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006640/*
6641 * Scale the max load_balance interval with the number of CPUs in the system.
6642 * This trades load-balance latency on larger machines for less cross talk.
6643 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006644void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006645{
6646 max_load_balance_interval = HZ*num_online_cpus()/10;
6647}
6648
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006649/*
6650 * It checks each scheduling domain to see if it is due to be balanced,
6651 * and initiates a balancing operation if so.
6652 *
Libinb9b08532013-04-01 19:14:01 +08006653 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654 */
6655static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6656{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006657 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006658 struct rq *rq = cpu_rq(cpu);
6659 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006660 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006661 /* Earliest time when we have to do rebalance again */
6662 unsigned long next_balance = jiffies + 60*HZ;
6663 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006664 int need_serialize, need_decay = 0;
6665 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006666
Paul Turner48a16752012-10-04 13:18:31 +02006667 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006668
Peter Zijlstradce840a2011-04-07 14:09:50 +02006669 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006670 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006671 /*
6672 * Decay the newidle max times here because this is a regular
6673 * visit to all the domains. Decay ~1% per second.
6674 */
6675 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6676 sd->max_newidle_lb_cost =
6677 (sd->max_newidle_lb_cost * 253) / 256;
6678 sd->next_decay_max_lb_cost = jiffies + HZ;
6679 need_decay = 1;
6680 }
6681 max_cost += sd->max_newidle_lb_cost;
6682
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006683 if (!(sd->flags & SD_LOAD_BALANCE))
6684 continue;
6685
Jason Lowf48627e2013-09-13 11:26:53 -07006686 /*
6687 * Stop the load balance at this level. There is another
6688 * CPU in our sched group which is doing load balancing more
6689 * actively.
6690 */
6691 if (!continue_balancing) {
6692 if (need_decay)
6693 continue;
6694 break;
6695 }
6696
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006697 interval = sd->balance_interval;
6698 if (idle != CPU_IDLE)
6699 interval *= sd->busy_factor;
6700
6701 /* scale ms to jiffies */
6702 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006703 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006704
6705 need_serialize = sd->flags & SD_SERIALIZE;
6706
6707 if (need_serialize) {
6708 if (!spin_trylock(&balancing))
6709 goto out;
6710 }
6711
6712 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006713 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006714 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006715 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006716 * env->dst_cpu, so we can't know our idle
6717 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006718 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006719 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006720 }
6721 sd->last_balance = jiffies;
6722 }
6723 if (need_serialize)
6724 spin_unlock(&balancing);
6725out:
6726 if (time_after(next_balance, sd->last_balance + interval)) {
6727 next_balance = sd->last_balance + interval;
6728 update_next_balance = 1;
6729 }
Jason Lowf48627e2013-09-13 11:26:53 -07006730 }
6731 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006732 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006733 * Ensure the rq-wide value also decays but keep it at a
6734 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006735 */
Jason Lowf48627e2013-09-13 11:26:53 -07006736 rq->max_idle_balance_cost =
6737 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006738 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006739 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006740
6741 /*
6742 * next_balance will be updated only when there is a need.
6743 * When the cpu is attached to null domain for ex, it will not be
6744 * updated.
6745 */
6746 if (likely(update_next_balance))
6747 rq->next_balance = next_balance;
6748}
6749
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006750#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006751/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006752 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006753 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6754 */
6755static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6756{
6757 struct rq *this_rq = cpu_rq(this_cpu);
6758 struct rq *rq;
6759 int balance_cpu;
6760
Suresh Siddha1c792db2011-12-01 17:07:32 -08006761 if (idle != CPU_IDLE ||
6762 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6763 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006764
6765 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006766 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006767 continue;
6768
6769 /*
6770 * If this cpu gets work to do, stop the load balancing
6771 * work being done for other cpus. Next load
6772 * balancing owner will pick it up.
6773 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006774 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006775 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006776
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006777 rq = cpu_rq(balance_cpu);
6778
6779 raw_spin_lock_irq(&rq->lock);
6780 update_rq_clock(rq);
6781 update_idle_cpu_load(rq);
6782 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006783
6784 rebalance_domains(balance_cpu, CPU_IDLE);
6785
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006786 if (time_after(this_rq->next_balance, rq->next_balance))
6787 this_rq->next_balance = rq->next_balance;
6788 }
6789 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006790end:
6791 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006792}
6793
6794/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006795 * Current heuristic for kicking the idle load balancer in the presence
6796 * of an idle cpu is the system.
6797 * - This rq has more than one task.
6798 * - At any scheduler domain level, this cpu's scheduler group has multiple
6799 * busy cpu's exceeding the group's power.
6800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6801 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006802 */
6803static inline int nohz_kick_needed(struct rq *rq, int cpu)
6804{
6805 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006806 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306807 struct sched_group_power *sgp;
6808 int nr_busy;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006809
Suresh Siddha1c792db2011-12-01 17:07:32 -08006810 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006811 return 0;
6812
Suresh Siddha1c792db2011-12-01 17:07:32 -08006813 /*
6814 * We may be recently in ticked or tickless idle mode. At the first
6815 * busy tick after returning from idle, we will update the busy stats.
6816 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006817 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006818 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006819
6820 /*
6821 * None are in tickless mode and hence no need for NOHZ idle load
6822 * balancing.
6823 */
6824 if (likely(!atomic_read(&nohz.nr_cpus)))
6825 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006826
6827 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006828 return 0;
6829
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006830 if (rq->nr_running >= 2)
6831 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006832
Peter Zijlstra067491b2011-12-07 14:32:08 +01006833 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306834 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006835
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306836 if (sd) {
6837 sgp = sd->groups->sgp;
6838 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6839
6840 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006841 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006842 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306843
6844 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6845
6846 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6847 sched_domain_span(sd)) < cpu))
6848 goto need_kick_unlock;
6849
Peter Zijlstra067491b2011-12-07 14:32:08 +01006850 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006851 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006852
6853need_kick_unlock:
6854 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006855need_kick:
6856 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006857}
6858#else
6859static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6860#endif
6861
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006862/*
6863 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006864 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006865 */
6866static void run_rebalance_domains(struct softirq_action *h)
6867{
6868 int this_cpu = smp_processor_id();
6869 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006870 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006871 CPU_IDLE : CPU_NOT_IDLE;
6872
6873 rebalance_domains(this_cpu, idle);
6874
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006875 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006876 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006877 * balancing on behalf of the other idle cpus whose ticks are
6878 * stopped.
6879 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006880 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006881}
6882
6883static inline int on_null_domain(int cpu)
6884{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006885 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006886}
6887
6888/*
6889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006890 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006891void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006892{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006893 /* Don't need to rebalance while attached to NULL domain */
6894 if (time_after_eq(jiffies, rq->next_balance) &&
6895 likely(!on_null_domain(cpu)))
6896 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006897#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006898 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006899 nohz_balancer_kick(cpu);
6900#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006901}
6902
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006903static void rq_online_fair(struct rq *rq)
6904{
6905 update_sysctl();
6906}
6907
6908static void rq_offline_fair(struct rq *rq)
6909{
6910 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006911
6912 /* Ensure any throttled groups are reachable by pick_next_task */
6913 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006914}
6915
Dhaval Giani55e12e52008-06-24 23:39:43 +05306916#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006917
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006918/*
6919 * scheduler tick hitting a task of our scheduling class:
6920 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006921static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006922{
6923 struct cfs_rq *cfs_rq;
6924 struct sched_entity *se = &curr->se;
6925
6926 for_each_sched_entity(se) {
6927 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006928 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006929 }
Ben Segall18bf2802012-10-04 12:51:20 +02006930
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006931 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006932 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006933
Ben Segall18bf2802012-10-04 12:51:20 +02006934 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006935}
6936
6937/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006938 * called on fork with the child task as argument from the parent's context
6939 * - child not yet on the tasklist
6940 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006941 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006942static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006943{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006944 struct cfs_rq *cfs_rq;
6945 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006946 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006947 struct rq *rq = this_rq();
6948 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006949
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006950 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006951
Peter Zijlstra861d0342010-08-19 13:31:43 +02006952 update_rq_clock(rq);
6953
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006954 cfs_rq = task_cfs_rq(current);
6955 curr = cfs_rq->curr;
6956
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006957 /*
6958 * Not only the cpu but also the task_group of the parent might have
6959 * been changed after parent->se.parent,cfs_rq were copied to
6960 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6961 * of child point to valid ones.
6962 */
6963 rcu_read_lock();
6964 __set_task_cpu(p, this_cpu);
6965 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006966
Ting Yang7109c442007-08-28 12:53:24 +02006967 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006968
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006969 if (curr)
6970 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006971 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006972
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006973 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006974 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006975 * Upon rescheduling, sched_class::put_prev_task() will place
6976 * 'current' within the tree based on its new key value.
6977 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006978 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306979 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006980 }
6981
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006982 se->vruntime -= cfs_rq->min_vruntime;
6983
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006984 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006985}
6986
Steven Rostedtcb469842008-01-25 21:08:22 +01006987/*
6988 * Priority of the task has changed. Check to see if we preempt
6989 * the current task.
6990 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006991static void
6992prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006993{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006994 if (!p->se.on_rq)
6995 return;
6996
Steven Rostedtcb469842008-01-25 21:08:22 +01006997 /*
6998 * Reschedule if we are currently running on this runqueue and
6999 * our priority decreased, or if we are not currently running on
7000 * this runqueue and our priority is higher than the current's
7001 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007002 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01007003 if (p->prio > oldprio)
7004 resched_task(rq->curr);
7005 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007006 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007007}
7008
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007009static void switched_from_fair(struct rq *rq, struct task_struct *p)
7010{
7011 struct sched_entity *se = &p->se;
7012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7013
7014 /*
7015 * Ensure the task's vruntime is normalized, so that when its
7016 * switched back to the fair class the enqueue_entity(.flags=0) will
7017 * do the right thing.
7018 *
7019 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7020 * have normalized the vruntime, if it was !on_rq, then only when
7021 * the task is sleeping will it still have non-normalized vruntime.
7022 */
7023 if (!se->on_rq && p->state != TASK_RUNNING) {
7024 /*
7025 * Fix up our vruntime so that the current sleep doesn't
7026 * cause 'unlimited' sleep bonus.
7027 */
7028 place_entity(cfs_rq, se, 0);
7029 se->vruntime -= cfs_rq->min_vruntime;
7030 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007031
Alex Shi141965c2013-06-26 13:05:39 +08007032#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007033 /*
7034 * Remove our load from contribution when we leave sched_fair
7035 * and ensure we don't carry in an old decay_count if we
7036 * switch back.
7037 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007038 if (se->avg.decay_count) {
7039 __synchronize_entity_decay(se);
7040 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007041 }
7042#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007043}
7044
Steven Rostedtcb469842008-01-25 21:08:22 +01007045/*
7046 * We switched to the sched_fair class.
7047 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007048static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007049{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007050 if (!p->se.on_rq)
7051 return;
7052
Steven Rostedtcb469842008-01-25 21:08:22 +01007053 /*
7054 * We were most likely switched from sched_rt, so
7055 * kick off the schedule if running, otherwise just see
7056 * if we can still preempt the current task.
7057 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007058 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007059 resched_task(rq->curr);
7060 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007061 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007062}
7063
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007064/* Account for a task changing its policy or group.
7065 *
7066 * This routine is mostly called to set cfs_rq->curr field when a task
7067 * migrates between groups/classes.
7068 */
7069static void set_curr_task_fair(struct rq *rq)
7070{
7071 struct sched_entity *se = &rq->curr->se;
7072
Paul Turnerec12cb72011-07-21 09:43:30 -07007073 for_each_sched_entity(se) {
7074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7075
7076 set_next_entity(cfs_rq, se);
7077 /* ensure bandwidth has been allocated on our new cfs_rq */
7078 account_cfs_rq_runtime(cfs_rq, 0);
7079 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007080}
7081
Peter Zijlstra029632f2011-10-25 10:00:11 +02007082void init_cfs_rq(struct cfs_rq *cfs_rq)
7083{
7084 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007085 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7086#ifndef CONFIG_64BIT
7087 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7088#endif
Alex Shi141965c2013-06-26 13:05:39 +08007089#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007090 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007091 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007092#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007093}
7094
Peter Zijlstra810b3812008-02-29 15:21:01 -05007095#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007096static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007097{
Paul Turneraff3e492012-10-04 13:18:30 +02007098 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007099 /*
7100 * If the task was not on the rq at the time of this cgroup movement
7101 * it must have been asleep, sleeping tasks keep their ->vruntime
7102 * absolute on their old rq until wakeup (needed for the fair sleeper
7103 * bonus in place_entity()).
7104 *
7105 * If it was on the rq, we've just 'preempted' it, which does convert
7106 * ->vruntime to a relative base.
7107 *
7108 * Make sure both cases convert their relative position when migrating
7109 * to another cgroup's rq. This does somewhat interfere with the
7110 * fair sleeper stuff for the first placement, but who cares.
7111 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007112 /*
7113 * When !on_rq, vruntime of the task has usually NOT been normalized.
7114 * But there are some cases where it has already been normalized:
7115 *
7116 * - Moving a forked child which is waiting for being woken up by
7117 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007118 * - Moving a task which has been woken up by try_to_wake_up() and
7119 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007120 *
7121 * To prevent boost or penalty in the new cfs_rq caused by delta
7122 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7123 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007124 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007125 on_rq = 1;
7126
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007127 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007128 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7129 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007130 if (!on_rq) {
7131 cfs_rq = cfs_rq_of(&p->se);
7132 p->se.vruntime += cfs_rq->min_vruntime;
7133#ifdef CONFIG_SMP
7134 /*
7135 * migrate_task_rq_fair() will have removed our previous
7136 * contribution, but we must synchronize for ongoing future
7137 * decay.
7138 */
7139 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7140 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7141#endif
7142 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007143}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007144
7145void free_fair_sched_group(struct task_group *tg)
7146{
7147 int i;
7148
7149 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7150
7151 for_each_possible_cpu(i) {
7152 if (tg->cfs_rq)
7153 kfree(tg->cfs_rq[i]);
7154 if (tg->se)
7155 kfree(tg->se[i]);
7156 }
7157
7158 kfree(tg->cfs_rq);
7159 kfree(tg->se);
7160}
7161
7162int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7163{
7164 struct cfs_rq *cfs_rq;
7165 struct sched_entity *se;
7166 int i;
7167
7168 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7169 if (!tg->cfs_rq)
7170 goto err;
7171 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7172 if (!tg->se)
7173 goto err;
7174
7175 tg->shares = NICE_0_LOAD;
7176
7177 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7178
7179 for_each_possible_cpu(i) {
7180 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7181 GFP_KERNEL, cpu_to_node(i));
7182 if (!cfs_rq)
7183 goto err;
7184
7185 se = kzalloc_node(sizeof(struct sched_entity),
7186 GFP_KERNEL, cpu_to_node(i));
7187 if (!se)
7188 goto err_free_rq;
7189
7190 init_cfs_rq(cfs_rq);
7191 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7192 }
7193
7194 return 1;
7195
7196err_free_rq:
7197 kfree(cfs_rq);
7198err:
7199 return 0;
7200}
7201
7202void unregister_fair_sched_group(struct task_group *tg, int cpu)
7203{
7204 struct rq *rq = cpu_rq(cpu);
7205 unsigned long flags;
7206
7207 /*
7208 * Only empty task groups can be destroyed; so we can speculatively
7209 * check on_list without danger of it being re-added.
7210 */
7211 if (!tg->cfs_rq[cpu]->on_list)
7212 return;
7213
7214 raw_spin_lock_irqsave(&rq->lock, flags);
7215 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7216 raw_spin_unlock_irqrestore(&rq->lock, flags);
7217}
7218
7219void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7220 struct sched_entity *se, int cpu,
7221 struct sched_entity *parent)
7222{
7223 struct rq *rq = cpu_rq(cpu);
7224
7225 cfs_rq->tg = tg;
7226 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007227 init_cfs_rq_runtime(cfs_rq);
7228
7229 tg->cfs_rq[cpu] = cfs_rq;
7230 tg->se[cpu] = se;
7231
7232 /* se could be NULL for root_task_group */
7233 if (!se)
7234 return;
7235
7236 if (!parent)
7237 se->cfs_rq = &rq->cfs;
7238 else
7239 se->cfs_rq = parent->my_q;
7240
7241 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007242 /* guarantee group entities always have weight */
7243 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007244 se->parent = parent;
7245}
7246
7247static DEFINE_MUTEX(shares_mutex);
7248
7249int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7250{
7251 int i;
7252 unsigned long flags;
7253
7254 /*
7255 * We can't change the weight of the root cgroup.
7256 */
7257 if (!tg->se[0])
7258 return -EINVAL;
7259
7260 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7261
7262 mutex_lock(&shares_mutex);
7263 if (tg->shares == shares)
7264 goto done;
7265
7266 tg->shares = shares;
7267 for_each_possible_cpu(i) {
7268 struct rq *rq = cpu_rq(i);
7269 struct sched_entity *se;
7270
7271 se = tg->se[i];
7272 /* Propagate contribution to hierarchy */
7273 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007274
7275 /* Possible calls to update_curr() need rq clock */
7276 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007277 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007278 update_cfs_shares(group_cfs_rq(se));
7279 raw_spin_unlock_irqrestore(&rq->lock, flags);
7280 }
7281
7282done:
7283 mutex_unlock(&shares_mutex);
7284 return 0;
7285}
7286#else /* CONFIG_FAIR_GROUP_SCHED */
7287
7288void free_fair_sched_group(struct task_group *tg) { }
7289
7290int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7291{
7292 return 1;
7293}
7294
7295void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7296
7297#endif /* CONFIG_FAIR_GROUP_SCHED */
7298
Peter Zijlstra810b3812008-02-29 15:21:01 -05007299
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007300static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007301{
7302 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007303 unsigned int rr_interval = 0;
7304
7305 /*
7306 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7307 * idle runqueue:
7308 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007309 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007310 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007311
7312 return rr_interval;
7313}
7314
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007315/*
7316 * All the scheduling class methods:
7317 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007318const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007319 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007320 .enqueue_task = enqueue_task_fair,
7321 .dequeue_task = dequeue_task_fair,
7322 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007323 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007324
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007325 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007326
7327 .pick_next_task = pick_next_task_fair,
7328 .put_prev_task = put_prev_task_fair,
7329
Peter Williams681f3e62007-10-24 18:23:51 +02007330#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007331 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007332 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007333
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007334 .rq_online = rq_online_fair,
7335 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007336
7337 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007338#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007339
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007340 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007341 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007342 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007343
7344 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007345 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007346 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007347
Peter Williams0d721ce2009-09-21 01:31:53 +00007348 .get_rr_interval = get_rr_interval_fair,
7349
Peter Zijlstra810b3812008-02-29 15:21:01 -05007350#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007351 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007352#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007353};
7354
7355#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007356void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007357{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007358 struct cfs_rq *cfs_rq;
7359
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007360 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007361 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007362 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007363 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007364}
7365#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007366
7367__init void init_sched_fair_class(void)
7368{
7369#ifdef CONFIG_SMP
7370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7371
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007372#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007373 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007374 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007375 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007376#endif
7377#endif /* SMP */
7378
7379}