blob: d26a16e4543710cd8252111d9b009c678b5bf24b [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100891static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892{
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895}
896
897static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898{
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901}
902
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100903struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100908 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100909 struct list_head task_list;
910
911 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100912 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100913 atomic_long_t faults[0];
914};
915
Mel Gormane29cf082013-10-07 11:29:22 +0100916pid_t task_numa_group_id(struct task_struct *p)
917{
918 return p->numa_group ? p->numa_group->gid : 0;
919}
920
Mel Gormanac8e8952013-10-07 11:29:03 +0100921static inline int task_faults_idx(int nid, int priv)
922{
923 return 2 * nid + priv;
924}
925
926static inline unsigned long task_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933}
934
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100935static inline unsigned long group_faults(struct task_struct *p, int nid)
936{
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942}
943
944/*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950static inline unsigned long task_weight(struct task_struct *p, int nid)
951{
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963}
964
965static inline unsigned long group_weight(struct task_struct *p, int nid)
966{
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
Rik van Rielca28aa52013-10-07 11:29:32 +0100977 return 1000 * group_faults(p, nid) / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100978}
979
Mel Gormane6628d52013-10-07 11:29:02 +0100980static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100981static unsigned long source_load(int cpu, int type);
982static unsigned long target_load(int cpu, int type);
983static unsigned long power_of(int cpu);
984static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100985
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100986/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100987struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100988 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100989 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100997};
Mel Gormane6628d52013-10-07 11:29:02 +0100998
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100999/*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002static void update_numa_stats(struct numa_stats *ns, int nid)
1003{
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018}
1019
Mel Gorman58d081b2013-10-07 11:29:10 +01001020struct task_numa_env {
1021 struct task_struct *p;
1022
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
1025
1026 struct numa_stats src_stats, dst_stats;
1027
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001032 int best_cpu;
1033};
1034
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001035static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037{
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046}
1047
1048/*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
Rik van Riel887c2902013-10-07 11:29:31 +01001054static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001056{
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001062 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
Rik van Riel887c2902013-10-07 11:29:31 +01001081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001083 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001084 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001085 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001094 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001111 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155assign:
1156 task_numa_assign(env, cur, imp);
1157unlock:
1158 rcu_read_unlock();
1159}
1160
Rik van Riel887c2902013-10-07 11:29:31 +01001161static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001163{
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001172 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001173 }
1174}
1175
Mel Gorman58d081b2013-10-07 11:29:10 +01001176static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001177{
Mel Gorman58d081b2013-10-07 11:29:10 +01001178 struct task_numa_env env = {
1179 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180
Mel Gorman58d081b2013-10-07 11:29:10 +01001181 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001182 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001189 };
1190 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001191 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001192 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001193 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001194
Mel Gorman58d081b2013-10-07 11:29:10 +01001195 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001202 */
Mel Gormane6628d52013-10-07 11:29:02 +01001203 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001206 rcu_read_unlock();
1207
Rik van Riel887c2902013-10-07 11:29:31 +01001208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001210 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001211 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001214 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001215
Rik van Riele1dda8a2013-10-07 11:29:19 +01001216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001218 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001224 continue;
1225
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001226 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001230 continue;
1231
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001234 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001235 }
1236 }
1237
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001242 sched_setnuma(p, env.dst_nid);
1243
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001252}
1253
Mel Gorman6b9a7462013-10-07 11:29:11 +01001254/* Attempt to migrate a task to a CPU on the preferred node. */
1255static void numa_migrate_preferred(struct task_struct *p)
1256{
1257 /* Success if task is already running on preferred CPU */
1258 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001259 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1260 /*
1261 * If migration is temporarily disabled due to a task migration
1262 * then re-enable it now as the task is running on its
1263 * preferred node and memory should migrate locally
1264 */
1265 if (!p->numa_migrate_seq)
1266 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001267 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001268 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001269
1270 /* This task has no NUMA fault statistics yet */
1271 if (unlikely(p->numa_preferred_nid == -1))
1272 return;
1273
1274 /* Otherwise, try migrate to a CPU on the preferred node */
1275 if (task_numa_migrate(p) != 0)
1276 p->numa_migrate_retry = jiffies + HZ*5;
1277}
1278
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001279static void task_numa_placement(struct task_struct *p)
1280{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001281 int seq, nid, max_nid = -1, max_group_nid = -1;
1282 unsigned long max_faults = 0, max_group_faults = 0;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001283 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001284
Hugh Dickins2832bc12012-12-19 17:42:16 -08001285 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001286 if (p->numa_scan_seq == seq)
1287 return;
1288 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001289 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001290 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001291
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001292 /* If the task is part of a group prevent parallel updates to group stats */
1293 if (p->numa_group) {
1294 group_lock = &p->numa_group->lock;
1295 spin_lock(group_lock);
1296 }
1297
Mel Gorman688b7582013-10-07 11:28:58 +01001298 /* Find the node with the highest number of faults */
1299 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001300 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001301 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001302
Mel Gormanac8e8952013-10-07 11:29:03 +01001303 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001304 long diff;
1305
Mel Gormanac8e8952013-10-07 11:29:03 +01001306 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001307 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001308
Mel Gormanac8e8952013-10-07 11:29:03 +01001309 /* Decay existing window, copy faults since last scan */
1310 p->numa_faults[i] >>= 1;
1311 p->numa_faults[i] += p->numa_faults_buffer[i];
1312 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001313
1314 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001315 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001316 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001317 if (p->numa_group) {
1318 /* safe because we can only change our own group */
1319 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001320 atomic_long_add(diff, &p->numa_group->total_faults);
1321 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001322 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001323 }
1324
Mel Gorman688b7582013-10-07 11:28:58 +01001325 if (faults > max_faults) {
1326 max_faults = faults;
1327 max_nid = nid;
1328 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001329
1330 if (group_faults > max_group_faults) {
1331 max_group_faults = group_faults;
1332 max_group_nid = nid;
1333 }
1334 }
1335
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001336 if (p->numa_group) {
1337 /*
1338 * If the preferred task and group nids are different,
1339 * iterate over the nodes again to find the best place.
1340 */
1341 if (max_nid != max_group_nid) {
1342 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001343
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001344 for_each_online_node(nid) {
1345 weight = task_weight(p, nid) + group_weight(p, nid);
1346 if (weight > max_weight) {
1347 max_weight = weight;
1348 max_nid = nid;
1349 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001350 }
1351 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001352
1353 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001354 }
1355
Mel Gorman6b9a7462013-10-07 11:29:11 +01001356 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001357 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001358 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001359 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001360 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001361 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001362}
1363
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001364static inline int get_numa_group(struct numa_group *grp)
1365{
1366 return atomic_inc_not_zero(&grp->refcount);
1367}
1368
1369static inline void put_numa_group(struct numa_group *grp)
1370{
1371 if (atomic_dec_and_test(&grp->refcount))
1372 kfree_rcu(grp, rcu);
1373}
1374
1375static void double_lock(spinlock_t *l1, spinlock_t *l2)
1376{
1377 if (l1 > l2)
1378 swap(l1, l2);
1379
1380 spin_lock(l1);
1381 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1382}
1383
Mel Gorman3e6a9412013-10-07 11:29:35 +01001384static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1385 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001386{
1387 struct numa_group *grp, *my_grp;
1388 struct task_struct *tsk;
1389 bool join = false;
1390 int cpu = cpupid_to_cpu(cpupid);
1391 int i;
1392
1393 if (unlikely(!p->numa_group)) {
1394 unsigned int size = sizeof(struct numa_group) +
1395 2*nr_node_ids*sizeof(atomic_long_t);
1396
1397 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1398 if (!grp)
1399 return;
1400
1401 atomic_set(&grp->refcount, 1);
1402 spin_lock_init(&grp->lock);
1403 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001404 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001405
1406 for (i = 0; i < 2*nr_node_ids; i++)
1407 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1408
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001409 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1410
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001411 list_add(&p->numa_entry, &grp->task_list);
1412 grp->nr_tasks++;
1413 rcu_assign_pointer(p->numa_group, grp);
1414 }
1415
1416 rcu_read_lock();
1417 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1418
1419 if (!cpupid_match_pid(tsk, cpupid))
1420 goto unlock;
1421
1422 grp = rcu_dereference(tsk->numa_group);
1423 if (!grp)
1424 goto unlock;
1425
1426 my_grp = p->numa_group;
1427 if (grp == my_grp)
1428 goto unlock;
1429
1430 /*
1431 * Only join the other group if its bigger; if we're the bigger group,
1432 * the other task will join us.
1433 */
1434 if (my_grp->nr_tasks > grp->nr_tasks)
1435 goto unlock;
1436
1437 /*
1438 * Tie-break on the grp address.
1439 */
1440 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1441 goto unlock;
1442
Rik van Rieldabe1d92013-10-07 11:29:34 +01001443 /* Always join threads in the same process. */
1444 if (tsk->mm == current->mm)
1445 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001446
Rik van Rieldabe1d92013-10-07 11:29:34 +01001447 /* Simple filter to avoid false positives due to PID collisions */
1448 if (flags & TNF_SHARED)
1449 join = true;
1450
Mel Gorman3e6a9412013-10-07 11:29:35 +01001451 /* Update priv based on whether false sharing was detected */
1452 *priv = !join;
1453
Rik van Rieldabe1d92013-10-07 11:29:34 +01001454 if (join && !get_numa_group(grp))
1455 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001456
1457unlock:
1458 rcu_read_unlock();
1459
1460 if (!join)
1461 return;
1462
1463 for (i = 0; i < 2*nr_node_ids; i++) {
1464 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1465 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1466 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001467 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1468 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001469
1470 double_lock(&my_grp->lock, &grp->lock);
1471
1472 list_move(&p->numa_entry, &grp->task_list);
1473 my_grp->nr_tasks--;
1474 grp->nr_tasks++;
1475
1476 spin_unlock(&my_grp->lock);
1477 spin_unlock(&grp->lock);
1478
1479 rcu_assign_pointer(p->numa_group, grp);
1480
1481 put_numa_group(my_grp);
1482}
1483
1484void task_numa_free(struct task_struct *p)
1485{
1486 struct numa_group *grp = p->numa_group;
1487 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001488 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001489
1490 if (grp) {
1491 for (i = 0; i < 2*nr_node_ids; i++)
1492 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1493
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001494 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1495
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001496 spin_lock(&grp->lock);
1497 list_del(&p->numa_entry);
1498 grp->nr_tasks--;
1499 spin_unlock(&grp->lock);
1500 rcu_assign_pointer(p->numa_group, NULL);
1501 put_numa_group(grp);
1502 }
1503
Rik van Riel82727012013-10-07 11:29:28 +01001504 p->numa_faults = NULL;
1505 p->numa_faults_buffer = NULL;
1506 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001507}
1508
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001509/*
1510 * Got a PROT_NONE fault for a page on @node.
1511 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001512void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001513{
1514 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001515 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001516 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001517
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001518 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001519 return;
1520
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001521 /* for example, ksmd faulting in a user's mm */
1522 if (!p->mm)
1523 return;
1524
Rik van Riel82727012013-10-07 11:29:28 +01001525 /* Do not worry about placement if exiting */
1526 if (p->state == TASK_DEAD)
1527 return;
1528
Mel Gormanf809ca92013-10-07 11:28:57 +01001529 /* Allocate buffer to track faults on a per-node basis */
1530 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001531 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001532
Mel Gorman745d6142013-10-07 11:28:59 +01001533 /* numa_faults and numa_faults_buffer share the allocation */
1534 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001535 if (!p->numa_faults)
1536 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001537
1538 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001539 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001540 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001541 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001542
Mel Gormanfb003b82012-11-15 09:01:14 +00001543 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001544 * First accesses are treated as private, otherwise consider accesses
1545 * to be private if the accessing pid has not changed
1546 */
1547 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1548 priv = 1;
1549 } else {
1550 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001551 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001552 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001553 }
1554
1555 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001556 * If pages are properly placed (did not migrate) then scan slower.
1557 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001558 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001559 if (!migrated) {
1560 /* Initialise if necessary */
1561 if (!p->numa_scan_period_max)
1562 p->numa_scan_period_max = task_scan_max(p);
1563
1564 p->numa_scan_period = min(p->numa_scan_period_max,
1565 p->numa_scan_period + 10);
1566 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001567
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001568 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001569
Mel Gorman6b9a7462013-10-07 11:29:11 +01001570 /* Retry task to preferred node migration if it previously failed */
1571 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1572 numa_migrate_preferred(p);
1573
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001574 if (migrated)
1575 p->numa_pages_migrated += pages;
1576
Mel Gormanac8e8952013-10-07 11:29:03 +01001577 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001578}
1579
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001580static void reset_ptenuma_scan(struct task_struct *p)
1581{
1582 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1583 p->mm->numa_scan_offset = 0;
1584}
1585
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001586/*
1587 * The expensive part of numa migration is done from task_work context.
1588 * Triggered from task_tick_numa().
1589 */
1590void task_numa_work(struct callback_head *work)
1591{
1592 unsigned long migrate, next_scan, now = jiffies;
1593 struct task_struct *p = current;
1594 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001595 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001596 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001597 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001598 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001599
1600 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1601
1602 work->next = work; /* protect against double add */
1603 /*
1604 * Who cares about NUMA placement when they're dying.
1605 *
1606 * NOTE: make sure not to dereference p->mm before this check,
1607 * exit_task_work() happens _after_ exit_mm() so we could be called
1608 * without p->mm even though we still had it when we enqueued this
1609 * work.
1610 */
1611 if (p->flags & PF_EXITING)
1612 return;
1613
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001614 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1615 mm->numa_next_scan = now +
1616 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1617 mm->numa_next_reset = now +
1618 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1619 }
1620
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001621 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001622 * Reset the scan period if enough time has gone by. Objective is that
1623 * scanning will be reduced if pages are properly placed. As tasks
1624 * can enter different phases this needs to be re-examined. Lacking
1625 * proper tracking of reference behaviour, this blunt hammer is used.
1626 */
1627 migrate = mm->numa_next_reset;
1628 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001629 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001630 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1631 xchg(&mm->numa_next_reset, next_scan);
1632 }
1633
1634 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001635 * Enforce maximal scan/migration frequency..
1636 */
1637 migrate = mm->numa_next_scan;
1638 if (time_before(now, migrate))
1639 return;
1640
Mel Gorman598f0ec2013-10-07 11:28:55 +01001641 if (p->numa_scan_period == 0) {
1642 p->numa_scan_period_max = task_scan_max(p);
1643 p->numa_scan_period = task_scan_min(p);
1644 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001645
Mel Gormanfb003b82012-11-15 09:01:14 +00001646 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001647 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1648 return;
1649
Mel Gormane14808b2012-11-19 10:59:15 +00001650 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001651 * Delay this task enough that another task of this mm will likely win
1652 * the next time around.
1653 */
1654 p->node_stamp += 2 * TICK_NSEC;
1655
Mel Gorman9f406042012-11-14 18:34:32 +00001656 start = mm->numa_scan_offset;
1657 pages = sysctl_numa_balancing_scan_size;
1658 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1659 if (!pages)
1660 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001661
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001662 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001663 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001664 if (!vma) {
1665 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001666 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001667 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001668 }
Mel Gorman9f406042012-11-14 18:34:32 +00001669 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001670 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001671 continue;
1672
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001673 /*
1674 * Shared library pages mapped by multiple processes are not
1675 * migrated as it is expected they are cache replicated. Avoid
1676 * hinting faults in read-only file-backed mappings or the vdso
1677 * as migrating the pages will be of marginal benefit.
1678 */
1679 if (!vma->vm_mm ||
1680 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1681 continue;
1682
Mel Gorman9f406042012-11-14 18:34:32 +00001683 do {
1684 start = max(start, vma->vm_start);
1685 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1686 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001687 nr_pte_updates += change_prot_numa(vma, start, end);
1688
1689 /*
1690 * Scan sysctl_numa_balancing_scan_size but ensure that
1691 * at least one PTE is updated so that unused virtual
1692 * address space is quickly skipped.
1693 */
1694 if (nr_pte_updates)
1695 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001696
Mel Gorman9f406042012-11-14 18:34:32 +00001697 start = end;
1698 if (pages <= 0)
1699 goto out;
1700 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001701 }
1702
Mel Gorman9f406042012-11-14 18:34:32 +00001703out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001704 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001705 * If the whole process was scanned without updates then no NUMA
1706 * hinting faults are being recorded and scan rate should be lower.
1707 */
1708 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1709 p->numa_scan_period = min(p->numa_scan_period_max,
1710 p->numa_scan_period << 1);
1711
1712 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1713 mm->numa_next_scan = next_scan;
1714 }
1715
1716 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001717 * It is possible to reach the end of the VMA list but the last few
1718 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1719 * would find the !migratable VMA on the next scan but not reset the
1720 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001721 */
1722 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001723 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001724 else
1725 reset_ptenuma_scan(p);
1726 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001727}
1728
1729/*
1730 * Drive the periodic memory faults..
1731 */
1732void task_tick_numa(struct rq *rq, struct task_struct *curr)
1733{
1734 struct callback_head *work = &curr->numa_work;
1735 u64 period, now;
1736
1737 /*
1738 * We don't care about NUMA placement if we don't have memory.
1739 */
1740 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1741 return;
1742
1743 /*
1744 * Using runtime rather than walltime has the dual advantage that
1745 * we (mostly) drive the selection from busy threads and that the
1746 * task needs to have done some actual work before we bother with
1747 * NUMA placement.
1748 */
1749 now = curr->se.sum_exec_runtime;
1750 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1751
1752 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001753 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001754 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001755 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001756
1757 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1758 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1759 task_work_add(curr, work, true);
1760 }
1761 }
1762}
1763#else
1764static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1765{
1766}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001767
1768static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1769{
1770}
1771
1772static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1773{
1774}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001775#endif /* CONFIG_NUMA_BALANCING */
1776
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001777static void
1778account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1779{
1780 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001781 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001782 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001783#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001784 if (entity_is_task(se)) {
1785 struct rq *rq = rq_of(cfs_rq);
1786
1787 account_numa_enqueue(rq, task_of(se));
1788 list_add(&se->group_node, &rq->cfs_tasks);
1789 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001790#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001791 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001792}
1793
1794static void
1795account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1796{
1797 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001798 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001799 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001800 if (entity_is_task(se)) {
1801 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301802 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001803 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001804 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001805}
1806
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001807#ifdef CONFIG_FAIR_GROUP_SCHED
1808# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001809static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1810{
1811 long tg_weight;
1812
1813 /*
1814 * Use this CPU's actual weight instead of the last load_contribution
1815 * to gain a more accurate current total weight. See
1816 * update_cfs_rq_load_contribution().
1817 */
Alex Shibf5b9862013-06-20 10:18:54 +08001818 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001819 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001820 tg_weight += cfs_rq->load.weight;
1821
1822 return tg_weight;
1823}
1824
Paul Turner6d5ab292011-01-21 20:45:01 -08001825static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001826{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001827 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001828
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001829 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001830 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001831
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001832 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001833 if (tg_weight)
1834 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001835
1836 if (shares < MIN_SHARES)
1837 shares = MIN_SHARES;
1838 if (shares > tg->shares)
1839 shares = tg->shares;
1840
1841 return shares;
1842}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001843# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001844static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001845{
1846 return tg->shares;
1847}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001848# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001849static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1850 unsigned long weight)
1851{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001852 if (se->on_rq) {
1853 /* commit outstanding execution time */
1854 if (cfs_rq->curr == se)
1855 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001856 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001857 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001858
1859 update_load_set(&se->load, weight);
1860
1861 if (se->on_rq)
1862 account_entity_enqueue(cfs_rq, se);
1863}
1864
Paul Turner82958362012-10-04 13:18:31 +02001865static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1866
Paul Turner6d5ab292011-01-21 20:45:01 -08001867static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001868{
1869 struct task_group *tg;
1870 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001871 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001872
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001873 tg = cfs_rq->tg;
1874 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001875 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001876 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001877#ifndef CONFIG_SMP
1878 if (likely(se->load.weight == tg->shares))
1879 return;
1880#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001881 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001882
1883 reweight_entity(cfs_rq_of(se), se, shares);
1884}
1885#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001886static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001887{
1888}
1889#endif /* CONFIG_FAIR_GROUP_SCHED */
1890
Alex Shi141965c2013-06-26 13:05:39 +08001891#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001892/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001893 * We choose a half-life close to 1 scheduling period.
1894 * Note: The tables below are dependent on this value.
1895 */
1896#define LOAD_AVG_PERIOD 32
1897#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1898#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1899
1900/* Precomputed fixed inverse multiplies for multiplication by y^n */
1901static const u32 runnable_avg_yN_inv[] = {
1902 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1903 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1904 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1905 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1906 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1907 0x85aac367, 0x82cd8698,
1908};
1909
1910/*
1911 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1912 * over-estimates when re-combining.
1913 */
1914static const u32 runnable_avg_yN_sum[] = {
1915 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1916 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1917 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1918};
1919
1920/*
Paul Turner9d85f212012-10-04 13:18:29 +02001921 * Approximate:
1922 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1923 */
1924static __always_inline u64 decay_load(u64 val, u64 n)
1925{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001926 unsigned int local_n;
1927
1928 if (!n)
1929 return val;
1930 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1931 return 0;
1932
1933 /* after bounds checking we can collapse to 32-bit */
1934 local_n = n;
1935
1936 /*
1937 * As y^PERIOD = 1/2, we can combine
1938 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1939 * With a look-up table which covers k^n (n<PERIOD)
1940 *
1941 * To achieve constant time decay_load.
1942 */
1943 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1944 val >>= local_n / LOAD_AVG_PERIOD;
1945 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001946 }
1947
Paul Turner5b51f2f2012-10-04 13:18:32 +02001948 val *= runnable_avg_yN_inv[local_n];
1949 /* We don't use SRR here since we always want to round down. */
1950 return val >> 32;
1951}
1952
1953/*
1954 * For updates fully spanning n periods, the contribution to runnable
1955 * average will be: \Sum 1024*y^n
1956 *
1957 * We can compute this reasonably efficiently by combining:
1958 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1959 */
1960static u32 __compute_runnable_contrib(u64 n)
1961{
1962 u32 contrib = 0;
1963
1964 if (likely(n <= LOAD_AVG_PERIOD))
1965 return runnable_avg_yN_sum[n];
1966 else if (unlikely(n >= LOAD_AVG_MAX_N))
1967 return LOAD_AVG_MAX;
1968
1969 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1970 do {
1971 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1972 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1973
1974 n -= LOAD_AVG_PERIOD;
1975 } while (n > LOAD_AVG_PERIOD);
1976
1977 contrib = decay_load(contrib, n);
1978 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001979}
1980
1981/*
1982 * We can represent the historical contribution to runnable average as the
1983 * coefficients of a geometric series. To do this we sub-divide our runnable
1984 * history into segments of approximately 1ms (1024us); label the segment that
1985 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1986 *
1987 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1988 * p0 p1 p2
1989 * (now) (~1ms ago) (~2ms ago)
1990 *
1991 * Let u_i denote the fraction of p_i that the entity was runnable.
1992 *
1993 * We then designate the fractions u_i as our co-efficients, yielding the
1994 * following representation of historical load:
1995 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1996 *
1997 * We choose y based on the with of a reasonably scheduling period, fixing:
1998 * y^32 = 0.5
1999 *
2000 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2001 * approximately half as much as the contribution to load within the last ms
2002 * (u_0).
2003 *
2004 * When a period "rolls over" and we have new u_0`, multiplying the previous
2005 * sum again by y is sufficient to update:
2006 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2007 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2008 */
2009static __always_inline int __update_entity_runnable_avg(u64 now,
2010 struct sched_avg *sa,
2011 int runnable)
2012{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002013 u64 delta, periods;
2014 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002015 int delta_w, decayed = 0;
2016
2017 delta = now - sa->last_runnable_update;
2018 /*
2019 * This should only happen when time goes backwards, which it
2020 * unfortunately does during sched clock init when we swap over to TSC.
2021 */
2022 if ((s64)delta < 0) {
2023 sa->last_runnable_update = now;
2024 return 0;
2025 }
2026
2027 /*
2028 * Use 1024ns as the unit of measurement since it's a reasonable
2029 * approximation of 1us and fast to compute.
2030 */
2031 delta >>= 10;
2032 if (!delta)
2033 return 0;
2034 sa->last_runnable_update = now;
2035
2036 /* delta_w is the amount already accumulated against our next period */
2037 delta_w = sa->runnable_avg_period % 1024;
2038 if (delta + delta_w >= 1024) {
2039 /* period roll-over */
2040 decayed = 1;
2041
2042 /*
2043 * Now that we know we're crossing a period boundary, figure
2044 * out how much from delta we need to complete the current
2045 * period and accrue it.
2046 */
2047 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002048 if (runnable)
2049 sa->runnable_avg_sum += delta_w;
2050 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002051
Paul Turner5b51f2f2012-10-04 13:18:32 +02002052 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002053
Paul Turner5b51f2f2012-10-04 13:18:32 +02002054 /* Figure out how many additional periods this update spans */
2055 periods = delta / 1024;
2056 delta %= 1024;
2057
2058 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2059 periods + 1);
2060 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2061 periods + 1);
2062
2063 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2064 runnable_contrib = __compute_runnable_contrib(periods);
2065 if (runnable)
2066 sa->runnable_avg_sum += runnable_contrib;
2067 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002068 }
2069
2070 /* Remainder of delta accrued against u_0` */
2071 if (runnable)
2072 sa->runnable_avg_sum += delta;
2073 sa->runnable_avg_period += delta;
2074
2075 return decayed;
2076}
2077
Paul Turner9ee474f2012-10-04 13:18:30 +02002078/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002079static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002080{
2081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2082 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2083
2084 decays -= se->avg.decay_count;
2085 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002086 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002087
2088 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2089 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002090
2091 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002092}
2093
Paul Turnerc566e8e2012-10-04 13:18:30 +02002094#ifdef CONFIG_FAIR_GROUP_SCHED
2095static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2096 int force_update)
2097{
2098 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002099 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002100
2101 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2102 tg_contrib -= cfs_rq->tg_load_contrib;
2103
Alex Shibf5b9862013-06-20 10:18:54 +08002104 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2105 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002106 cfs_rq->tg_load_contrib += tg_contrib;
2107 }
2108}
Paul Turner8165e142012-10-04 13:18:31 +02002109
Paul Turnerbb17f652012-10-04 13:18:31 +02002110/*
2111 * Aggregate cfs_rq runnable averages into an equivalent task_group
2112 * representation for computing load contributions.
2113 */
2114static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2115 struct cfs_rq *cfs_rq)
2116{
2117 struct task_group *tg = cfs_rq->tg;
2118 long contrib;
2119
2120 /* The fraction of a cpu used by this cfs_rq */
2121 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2122 sa->runnable_avg_period + 1);
2123 contrib -= cfs_rq->tg_runnable_contrib;
2124
2125 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2126 atomic_add(contrib, &tg->runnable_avg);
2127 cfs_rq->tg_runnable_contrib += contrib;
2128 }
2129}
2130
Paul Turner8165e142012-10-04 13:18:31 +02002131static inline void __update_group_entity_contrib(struct sched_entity *se)
2132{
2133 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2134 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002135 int runnable_avg;
2136
Paul Turner8165e142012-10-04 13:18:31 +02002137 u64 contrib;
2138
2139 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002140 se->avg.load_avg_contrib = div_u64(contrib,
2141 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002142
2143 /*
2144 * For group entities we need to compute a correction term in the case
2145 * that they are consuming <1 cpu so that we would contribute the same
2146 * load as a task of equal weight.
2147 *
2148 * Explicitly co-ordinating this measurement would be expensive, but
2149 * fortunately the sum of each cpus contribution forms a usable
2150 * lower-bound on the true value.
2151 *
2152 * Consider the aggregate of 2 contributions. Either they are disjoint
2153 * (and the sum represents true value) or they are disjoint and we are
2154 * understating by the aggregate of their overlap.
2155 *
2156 * Extending this to N cpus, for a given overlap, the maximum amount we
2157 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2158 * cpus that overlap for this interval and w_i is the interval width.
2159 *
2160 * On a small machine; the first term is well-bounded which bounds the
2161 * total error since w_i is a subset of the period. Whereas on a
2162 * larger machine, while this first term can be larger, if w_i is the
2163 * of consequential size guaranteed to see n_i*w_i quickly converge to
2164 * our upper bound of 1-cpu.
2165 */
2166 runnable_avg = atomic_read(&tg->runnable_avg);
2167 if (runnable_avg < NICE_0_LOAD) {
2168 se->avg.load_avg_contrib *= runnable_avg;
2169 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2170 }
Paul Turner8165e142012-10-04 13:18:31 +02002171}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002172#else
2173static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2174 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002175static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2176 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002177static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002178#endif
2179
Paul Turner8165e142012-10-04 13:18:31 +02002180static inline void __update_task_entity_contrib(struct sched_entity *se)
2181{
2182 u32 contrib;
2183
2184 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2185 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2186 contrib /= (se->avg.runnable_avg_period + 1);
2187 se->avg.load_avg_contrib = scale_load(contrib);
2188}
2189
Paul Turner2dac7542012-10-04 13:18:30 +02002190/* Compute the current contribution to load_avg by se, return any delta */
2191static long __update_entity_load_avg_contrib(struct sched_entity *se)
2192{
2193 long old_contrib = se->avg.load_avg_contrib;
2194
Paul Turner8165e142012-10-04 13:18:31 +02002195 if (entity_is_task(se)) {
2196 __update_task_entity_contrib(se);
2197 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002198 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002199 __update_group_entity_contrib(se);
2200 }
Paul Turner2dac7542012-10-04 13:18:30 +02002201
2202 return se->avg.load_avg_contrib - old_contrib;
2203}
2204
Paul Turner9ee474f2012-10-04 13:18:30 +02002205static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2206 long load_contrib)
2207{
2208 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2209 cfs_rq->blocked_load_avg -= load_contrib;
2210 else
2211 cfs_rq->blocked_load_avg = 0;
2212}
2213
Paul Turnerf1b17282012-10-04 13:18:31 +02002214static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2215
Paul Turner9d85f212012-10-04 13:18:29 +02002216/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002217static inline void update_entity_load_avg(struct sched_entity *se,
2218 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002219{
Paul Turner2dac7542012-10-04 13:18:30 +02002220 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2221 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002222 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002223
Paul Turnerf1b17282012-10-04 13:18:31 +02002224 /*
2225 * For a group entity we need to use their owned cfs_rq_clock_task() in
2226 * case they are the parent of a throttled hierarchy.
2227 */
2228 if (entity_is_task(se))
2229 now = cfs_rq_clock_task(cfs_rq);
2230 else
2231 now = cfs_rq_clock_task(group_cfs_rq(se));
2232
2233 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002234 return;
2235
2236 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002237
2238 if (!update_cfs_rq)
2239 return;
2240
Paul Turner2dac7542012-10-04 13:18:30 +02002241 if (se->on_rq)
2242 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002243 else
2244 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2245}
2246
2247/*
2248 * Decay the load contributed by all blocked children and account this so that
2249 * their contribution may appropriately discounted when they wake up.
2250 */
Paul Turneraff3e492012-10-04 13:18:30 +02002251static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002252{
Paul Turnerf1b17282012-10-04 13:18:31 +02002253 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002254 u64 decays;
2255
2256 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002257 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002258 return;
2259
Alex Shi25099402013-06-20 10:18:55 +08002260 if (atomic_long_read(&cfs_rq->removed_load)) {
2261 unsigned long removed_load;
2262 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002263 subtract_blocked_load_contrib(cfs_rq, removed_load);
2264 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002265
Paul Turneraff3e492012-10-04 13:18:30 +02002266 if (decays) {
2267 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2268 decays);
2269 atomic64_add(decays, &cfs_rq->decay_counter);
2270 cfs_rq->last_decay = now;
2271 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002272
2273 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002274}
Ben Segall18bf2802012-10-04 12:51:20 +02002275
2276static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2277{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002278 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002279 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002280}
Paul Turner2dac7542012-10-04 13:18:30 +02002281
2282/* Add the load generated by se into cfs_rq's child load-average */
2283static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002284 struct sched_entity *se,
2285 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002286{
Paul Turneraff3e492012-10-04 13:18:30 +02002287 /*
2288 * We track migrations using entity decay_count <= 0, on a wake-up
2289 * migration we use a negative decay count to track the remote decays
2290 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002291 *
2292 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2293 * are seen by enqueue_entity_load_avg() as a migration with an already
2294 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002295 */
2296 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002297 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002298 if (se->avg.decay_count) {
2299 /*
2300 * In a wake-up migration we have to approximate the
2301 * time sleeping. This is because we can't synchronize
2302 * clock_task between the two cpus, and it is not
2303 * guaranteed to be read-safe. Instead, we can
2304 * approximate this using our carried decays, which are
2305 * explicitly atomically readable.
2306 */
2307 se->avg.last_runnable_update -= (-se->avg.decay_count)
2308 << 20;
2309 update_entity_load_avg(se, 0);
2310 /* Indicate that we're now synchronized and on-rq */
2311 se->avg.decay_count = 0;
2312 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002313 wakeup = 0;
2314 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002315 /*
2316 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2317 * would have made count negative); we must be careful to avoid
2318 * double-accounting blocked time after synchronizing decays.
2319 */
2320 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2321 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002322 }
2323
Paul Turneraff3e492012-10-04 13:18:30 +02002324 /* migrated tasks did not contribute to our blocked load */
2325 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002326 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002327 update_entity_load_avg(se, 0);
2328 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002329
Paul Turner2dac7542012-10-04 13:18:30 +02002330 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002331 /* we force update consideration on load-balancer moves */
2332 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002333}
2334
Paul Turner9ee474f2012-10-04 13:18:30 +02002335/*
2336 * Remove se's load from this cfs_rq child load-average, if the entity is
2337 * transitioning to a blocked state we track its projected decay using
2338 * blocked_load_avg.
2339 */
Paul Turner2dac7542012-10-04 13:18:30 +02002340static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002341 struct sched_entity *se,
2342 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002343{
Paul Turner9ee474f2012-10-04 13:18:30 +02002344 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002345 /* we force update consideration on load-balancer moves */
2346 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002347
Paul Turner2dac7542012-10-04 13:18:30 +02002348 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002349 if (sleep) {
2350 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2351 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2352 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002353}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002354
2355/*
2356 * Update the rq's load with the elapsed running time before entering
2357 * idle. if the last scheduled task is not a CFS task, idle_enter will
2358 * be the only way to update the runnable statistic.
2359 */
2360void idle_enter_fair(struct rq *this_rq)
2361{
2362 update_rq_runnable_avg(this_rq, 1);
2363}
2364
2365/*
2366 * Update the rq's load with the elapsed idle time before a task is
2367 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2368 * be the only way to update the runnable statistic.
2369 */
2370void idle_exit_fair(struct rq *this_rq)
2371{
2372 update_rq_runnable_avg(this_rq, 0);
2373}
2374
Paul Turner9d85f212012-10-04 13:18:29 +02002375#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002376static inline void update_entity_load_avg(struct sched_entity *se,
2377 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002378static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002379static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002380 struct sched_entity *se,
2381 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002382static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002383 struct sched_entity *se,
2384 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002385static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2386 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002387#endif
2388
Ingo Molnar2396af62007-08-09 11:16:48 +02002389static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002390{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002391#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002392 struct task_struct *tsk = NULL;
2393
2394 if (entity_is_task(se))
2395 tsk = task_of(se);
2396
Lucas De Marchi41acab82010-03-10 23:37:45 -03002397 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002398 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002399
2400 if ((s64)delta < 0)
2401 delta = 0;
2402
Lucas De Marchi41acab82010-03-10 23:37:45 -03002403 if (unlikely(delta > se->statistics.sleep_max))
2404 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002405
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002406 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002407 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002408
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002409 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002410 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002411 trace_sched_stat_sleep(tsk, delta);
2412 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002413 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002414 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002415 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002416
2417 if ((s64)delta < 0)
2418 delta = 0;
2419
Lucas De Marchi41acab82010-03-10 23:37:45 -03002420 if (unlikely(delta > se->statistics.block_max))
2421 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002422
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002423 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002424 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002425
Peter Zijlstrae4143142009-07-23 20:13:26 +02002426 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002427 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002428 se->statistics.iowait_sum += delta;
2429 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002430 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002431 }
2432
Andrew Vaginb781a602011-11-28 12:03:35 +03002433 trace_sched_stat_blocked(tsk, delta);
2434
Peter Zijlstrae4143142009-07-23 20:13:26 +02002435 /*
2436 * Blocking time is in units of nanosecs, so shift by
2437 * 20 to get a milliseconds-range estimation of the
2438 * amount of time that the task spent sleeping:
2439 */
2440 if (unlikely(prof_on == SLEEP_PROFILING)) {
2441 profile_hits(SLEEP_PROFILING,
2442 (void *)get_wchan(tsk),
2443 delta >> 20);
2444 }
2445 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002446 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002447 }
2448#endif
2449}
2450
Peter Zijlstraddc97292007-10-15 17:00:10 +02002451static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2452{
2453#ifdef CONFIG_SCHED_DEBUG
2454 s64 d = se->vruntime - cfs_rq->min_vruntime;
2455
2456 if (d < 0)
2457 d = -d;
2458
2459 if (d > 3*sysctl_sched_latency)
2460 schedstat_inc(cfs_rq, nr_spread_over);
2461#endif
2462}
2463
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002464static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002465place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2466{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002467 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002468
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002469 /*
2470 * The 'current' period is already promised to the current tasks,
2471 * however the extra weight of the new task will slow them down a
2472 * little, place the new task so that it fits in the slot that
2473 * stays open at the end.
2474 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002475 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002476 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002477
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002478 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002479 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002480 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002481
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002482 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002483 * Halve their sleep time's effect, to allow
2484 * for a gentler effect of sleepers:
2485 */
2486 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2487 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002488
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002489 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002490 }
2491
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002492 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302493 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002494}
2495
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002496static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2497
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002498static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002499enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002500{
2501 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002502 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302503 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002504 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002505 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002506 se->vruntime += cfs_rq->min_vruntime;
2507
2508 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002509 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002510 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002511 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002512 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002513 account_entity_enqueue(cfs_rq, se);
2514 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002515
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002516 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002517 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002518 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002519 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002520
Ingo Molnard2417e52007-08-09 11:16:47 +02002521 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002522 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002523 if (se != cfs_rq->curr)
2524 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002525 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002526
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002527 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002528 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002529 check_enqueue_throttle(cfs_rq);
2530 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002531}
2532
Rik van Riel2c13c9192011-02-01 09:48:37 -05002533static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002534{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002535 for_each_sched_entity(se) {
2536 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2537 if (cfs_rq->last == se)
2538 cfs_rq->last = NULL;
2539 else
2540 break;
2541 }
2542}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002543
Rik van Riel2c13c9192011-02-01 09:48:37 -05002544static void __clear_buddies_next(struct sched_entity *se)
2545{
2546 for_each_sched_entity(se) {
2547 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2548 if (cfs_rq->next == se)
2549 cfs_rq->next = NULL;
2550 else
2551 break;
2552 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002553}
2554
Rik van Rielac53db52011-02-01 09:51:03 -05002555static void __clear_buddies_skip(struct sched_entity *se)
2556{
2557 for_each_sched_entity(se) {
2558 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2559 if (cfs_rq->skip == se)
2560 cfs_rq->skip = NULL;
2561 else
2562 break;
2563 }
2564}
2565
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002566static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2567{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002568 if (cfs_rq->last == se)
2569 __clear_buddies_last(se);
2570
2571 if (cfs_rq->next == se)
2572 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002573
2574 if (cfs_rq->skip == se)
2575 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002576}
2577
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002578static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002579
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002580static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002581dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002582{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002583 /*
2584 * Update run-time statistics of the 'current'.
2585 */
2586 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002587 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002588
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002589 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002590 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002591#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002592 if (entity_is_task(se)) {
2593 struct task_struct *tsk = task_of(se);
2594
2595 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002596 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002597 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002598 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002599 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002600#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002601 }
2602
Peter Zijlstra2002c692008-11-11 11:52:33 +01002603 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002604
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002605 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002606 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002607 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002608 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002609
2610 /*
2611 * Normalize the entity after updating the min_vruntime because the
2612 * update can refer to the ->curr item and we need to reflect this
2613 * movement in our normalized position.
2614 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002615 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002616 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002617
Paul Turnerd8b49862011-07-21 09:43:41 -07002618 /* return excess runtime on last dequeue */
2619 return_cfs_rq_runtime(cfs_rq);
2620
Peter Zijlstra1e876232011-05-17 16:21:10 -07002621 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002622 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002623}
2624
2625/*
2626 * Preempt the current task with a newly woken task if needed:
2627 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002628static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002629check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002630{
Peter Zijlstra11697832007-09-05 14:32:49 +02002631 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002632 struct sched_entity *se;
2633 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002634
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002635 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002636 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002637 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002638 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002639 /*
2640 * The current task ran long enough, ensure it doesn't get
2641 * re-elected due to buddy favours.
2642 */
2643 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002644 return;
2645 }
2646
2647 /*
2648 * Ensure that a task that missed wakeup preemption by a
2649 * narrow margin doesn't have to wait for a full slice.
2650 * This also mitigates buddy induced latencies under load.
2651 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002652 if (delta_exec < sysctl_sched_min_granularity)
2653 return;
2654
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002655 se = __pick_first_entity(cfs_rq);
2656 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002657
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002658 if (delta < 0)
2659 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002660
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002661 if (delta > ideal_runtime)
2662 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002663}
2664
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002665static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002666set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002667{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002668 /* 'current' is not kept within the tree. */
2669 if (se->on_rq) {
2670 /*
2671 * Any task has to be enqueued before it get to execute on
2672 * a CPU. So account for the time it spent waiting on the
2673 * runqueue.
2674 */
2675 update_stats_wait_end(cfs_rq, se);
2676 __dequeue_entity(cfs_rq, se);
2677 }
2678
Ingo Molnar79303e92007-08-09 11:16:47 +02002679 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002680 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002681#ifdef CONFIG_SCHEDSTATS
2682 /*
2683 * Track our maximum slice length, if the CPU's load is at
2684 * least twice that of our own weight (i.e. dont track it
2685 * when there are only lesser-weight tasks around):
2686 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002687 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002688 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002689 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2690 }
2691#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002692 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002693}
2694
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002695static int
2696wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2697
Rik van Rielac53db52011-02-01 09:51:03 -05002698/*
2699 * Pick the next process, keeping these things in mind, in this order:
2700 * 1) keep things fair between processes/task groups
2701 * 2) pick the "next" process, since someone really wants that to run
2702 * 3) pick the "last" process, for cache locality
2703 * 4) do not run the "skip" process, if something else is available
2704 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002705static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002706{
Rik van Rielac53db52011-02-01 09:51:03 -05002707 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002708 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002709
Rik van Rielac53db52011-02-01 09:51:03 -05002710 /*
2711 * Avoid running the skip buddy, if running something else can
2712 * be done without getting too unfair.
2713 */
2714 if (cfs_rq->skip == se) {
2715 struct sched_entity *second = __pick_next_entity(se);
2716 if (second && wakeup_preempt_entity(second, left) < 1)
2717 se = second;
2718 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002719
Mike Galbraithf685cea2009-10-23 23:09:22 +02002720 /*
2721 * Prefer last buddy, try to return the CPU to a preempted task.
2722 */
2723 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2724 se = cfs_rq->last;
2725
Rik van Rielac53db52011-02-01 09:51:03 -05002726 /*
2727 * Someone really wants this to run. If it's not unfair, run it.
2728 */
2729 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2730 se = cfs_rq->next;
2731
Mike Galbraithf685cea2009-10-23 23:09:22 +02002732 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002733
2734 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002735}
2736
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002737static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2738
Ingo Molnarab6cde22007-08-09 11:16:48 +02002739static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002740{
2741 /*
2742 * If still on the runqueue then deactivate_task()
2743 * was not called and update_curr() has to be done:
2744 */
2745 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002746 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002747
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002748 /* throttle cfs_rqs exceeding runtime */
2749 check_cfs_rq_runtime(cfs_rq);
2750
Peter Zijlstraddc97292007-10-15 17:00:10 +02002751 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002752 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002753 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002754 /* Put 'current' back into the tree. */
2755 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002756 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002757 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002758 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002759 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002760}
2761
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002762static void
2763entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002764{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002765 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002766 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002767 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002768 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002769
Paul Turner43365bd2010-12-15 19:10:17 -08002770 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002771 * Ensure that runnable average is periodically updated.
2772 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002773 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002774 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002775 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002776
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002777#ifdef CONFIG_SCHED_HRTICK
2778 /*
2779 * queued ticks are scheduled to match the slice, so don't bother
2780 * validating it and just reschedule.
2781 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002782 if (queued) {
2783 resched_task(rq_of(cfs_rq)->curr);
2784 return;
2785 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002786 /*
2787 * don't let the period tick interfere with the hrtick preemption
2788 */
2789 if (!sched_feat(DOUBLE_TICK) &&
2790 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2791 return;
2792#endif
2793
Yong Zhang2c2efae2011-07-29 16:20:33 +08002794 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002795 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002796}
2797
Paul Turnerab84d312011-07-21 09:43:28 -07002798
2799/**************************************************
2800 * CFS bandwidth control machinery
2801 */
2802
2803#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002804
2805#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002806static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002807
2808static inline bool cfs_bandwidth_used(void)
2809{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002810 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002811}
2812
2813void account_cfs_bandwidth_used(int enabled, int was_enabled)
2814{
2815 /* only need to count groups transitioning between enabled/!enabled */
2816 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002817 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002818 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002819 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002820}
2821#else /* HAVE_JUMP_LABEL */
2822static bool cfs_bandwidth_used(void)
2823{
2824 return true;
2825}
2826
2827void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2828#endif /* HAVE_JUMP_LABEL */
2829
Paul Turnerab84d312011-07-21 09:43:28 -07002830/*
2831 * default period for cfs group bandwidth.
2832 * default: 0.1s, units: nanoseconds
2833 */
2834static inline u64 default_cfs_period(void)
2835{
2836 return 100000000ULL;
2837}
Paul Turnerec12cb72011-07-21 09:43:30 -07002838
2839static inline u64 sched_cfs_bandwidth_slice(void)
2840{
2841 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2842}
2843
Paul Turnera9cf55b2011-07-21 09:43:32 -07002844/*
2845 * Replenish runtime according to assigned quota and update expiration time.
2846 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2847 * additional synchronization around rq->lock.
2848 *
2849 * requires cfs_b->lock
2850 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002851void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002852{
2853 u64 now;
2854
2855 if (cfs_b->quota == RUNTIME_INF)
2856 return;
2857
2858 now = sched_clock_cpu(smp_processor_id());
2859 cfs_b->runtime = cfs_b->quota;
2860 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2861}
2862
Peter Zijlstra029632f2011-10-25 10:00:11 +02002863static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2864{
2865 return &tg->cfs_bandwidth;
2866}
2867
Paul Turnerf1b17282012-10-04 13:18:31 +02002868/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2869static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2870{
2871 if (unlikely(cfs_rq->throttle_count))
2872 return cfs_rq->throttled_clock_task;
2873
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002874 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002875}
2876
Paul Turner85dac902011-07-21 09:43:33 -07002877/* returns 0 on failure to allocate runtime */
2878static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002879{
2880 struct task_group *tg = cfs_rq->tg;
2881 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002882 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002883
2884 /* note: this is a positive sum as runtime_remaining <= 0 */
2885 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2886
2887 raw_spin_lock(&cfs_b->lock);
2888 if (cfs_b->quota == RUNTIME_INF)
2889 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002890 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002891 /*
2892 * If the bandwidth pool has become inactive, then at least one
2893 * period must have elapsed since the last consumption.
2894 * Refresh the global state and ensure bandwidth timer becomes
2895 * active.
2896 */
2897 if (!cfs_b->timer_active) {
2898 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002899 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002900 }
Paul Turner58088ad2011-07-21 09:43:31 -07002901
2902 if (cfs_b->runtime > 0) {
2903 amount = min(cfs_b->runtime, min_amount);
2904 cfs_b->runtime -= amount;
2905 cfs_b->idle = 0;
2906 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002907 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002908 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002909 raw_spin_unlock(&cfs_b->lock);
2910
2911 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002912 /*
2913 * we may have advanced our local expiration to account for allowed
2914 * spread between our sched_clock and the one on which runtime was
2915 * issued.
2916 */
2917 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2918 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002919
2920 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002921}
2922
2923/*
2924 * Note: This depends on the synchronization provided by sched_clock and the
2925 * fact that rq->clock snapshots this value.
2926 */
2927static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2928{
2929 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002930
2931 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002932 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002933 return;
2934
2935 if (cfs_rq->runtime_remaining < 0)
2936 return;
2937
2938 /*
2939 * If the local deadline has passed we have to consider the
2940 * possibility that our sched_clock is 'fast' and the global deadline
2941 * has not truly expired.
2942 *
2943 * Fortunately we can check determine whether this the case by checking
2944 * whether the global deadline has advanced.
2945 */
2946
2947 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2948 /* extend local deadline, drift is bounded above by 2 ticks */
2949 cfs_rq->runtime_expires += TICK_NSEC;
2950 } else {
2951 /* global deadline is ahead, expiration has passed */
2952 cfs_rq->runtime_remaining = 0;
2953 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002954}
2955
2956static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2957 unsigned long delta_exec)
2958{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002959 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002960 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002961 expire_cfs_rq_runtime(cfs_rq);
2962
2963 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002964 return;
2965
Paul Turner85dac902011-07-21 09:43:33 -07002966 /*
2967 * if we're unable to extend our runtime we resched so that the active
2968 * hierarchy can be throttled
2969 */
2970 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2971 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002972}
2973
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002974static __always_inline
2975void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002976{
Paul Turner56f570e2011-11-07 20:26:33 -08002977 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002978 return;
2979
2980 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2981}
2982
Paul Turner85dac902011-07-21 09:43:33 -07002983static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2984{
Paul Turner56f570e2011-11-07 20:26:33 -08002985 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002986}
2987
Paul Turner64660c82011-07-21 09:43:36 -07002988/* check whether cfs_rq, or any parent, is throttled */
2989static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2990{
Paul Turner56f570e2011-11-07 20:26:33 -08002991 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002992}
2993
2994/*
2995 * Ensure that neither of the group entities corresponding to src_cpu or
2996 * dest_cpu are members of a throttled hierarchy when performing group
2997 * load-balance operations.
2998 */
2999static inline int throttled_lb_pair(struct task_group *tg,
3000 int src_cpu, int dest_cpu)
3001{
3002 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3003
3004 src_cfs_rq = tg->cfs_rq[src_cpu];
3005 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3006
3007 return throttled_hierarchy(src_cfs_rq) ||
3008 throttled_hierarchy(dest_cfs_rq);
3009}
3010
3011/* updated child weight may affect parent so we have to do this bottom up */
3012static int tg_unthrottle_up(struct task_group *tg, void *data)
3013{
3014 struct rq *rq = data;
3015 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3016
3017 cfs_rq->throttle_count--;
3018#ifdef CONFIG_SMP
3019 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003020 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003021 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003022 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003023 }
3024#endif
3025
3026 return 0;
3027}
3028
3029static int tg_throttle_down(struct task_group *tg, void *data)
3030{
3031 struct rq *rq = data;
3032 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3033
Paul Turner82958362012-10-04 13:18:31 +02003034 /* group is entering throttled state, stop time */
3035 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003036 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003037 cfs_rq->throttle_count++;
3038
3039 return 0;
3040}
3041
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003042static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003043{
3044 struct rq *rq = rq_of(cfs_rq);
3045 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3046 struct sched_entity *se;
3047 long task_delta, dequeue = 1;
3048
3049 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3050
Paul Turnerf1b17282012-10-04 13:18:31 +02003051 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003052 rcu_read_lock();
3053 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3054 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003055
3056 task_delta = cfs_rq->h_nr_running;
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3059 /* throttled entity or throttle-on-deactivate */
3060 if (!se->on_rq)
3061 break;
3062
3063 if (dequeue)
3064 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3065 qcfs_rq->h_nr_running -= task_delta;
3066
3067 if (qcfs_rq->load.weight)
3068 dequeue = 0;
3069 }
3070
3071 if (!se)
3072 rq->nr_running -= task_delta;
3073
3074 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003075 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003076 raw_spin_lock(&cfs_b->lock);
3077 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3078 raw_spin_unlock(&cfs_b->lock);
3079}
3080
Peter Zijlstra029632f2011-10-25 10:00:11 +02003081void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003082{
3083 struct rq *rq = rq_of(cfs_rq);
3084 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3085 struct sched_entity *se;
3086 int enqueue = 1;
3087 long task_delta;
3088
Michael Wang22b958d2013-06-04 14:23:39 +08003089 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003090
3091 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003092
3093 update_rq_clock(rq);
3094
Paul Turner671fd9d2011-07-21 09:43:34 -07003095 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003096 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003097 list_del_rcu(&cfs_rq->throttled_list);
3098 raw_spin_unlock(&cfs_b->lock);
3099
Paul Turner64660c82011-07-21 09:43:36 -07003100 /* update hierarchical throttle state */
3101 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3102
Paul Turner671fd9d2011-07-21 09:43:34 -07003103 if (!cfs_rq->load.weight)
3104 return;
3105
3106 task_delta = cfs_rq->h_nr_running;
3107 for_each_sched_entity(se) {
3108 if (se->on_rq)
3109 enqueue = 0;
3110
3111 cfs_rq = cfs_rq_of(se);
3112 if (enqueue)
3113 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3114 cfs_rq->h_nr_running += task_delta;
3115
3116 if (cfs_rq_throttled(cfs_rq))
3117 break;
3118 }
3119
3120 if (!se)
3121 rq->nr_running += task_delta;
3122
3123 /* determine whether we need to wake up potentially idle cpu */
3124 if (rq->curr == rq->idle && rq->cfs.nr_running)
3125 resched_task(rq->curr);
3126}
3127
3128static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3129 u64 remaining, u64 expires)
3130{
3131 struct cfs_rq *cfs_rq;
3132 u64 runtime = remaining;
3133
3134 rcu_read_lock();
3135 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3136 throttled_list) {
3137 struct rq *rq = rq_of(cfs_rq);
3138
3139 raw_spin_lock(&rq->lock);
3140 if (!cfs_rq_throttled(cfs_rq))
3141 goto next;
3142
3143 runtime = -cfs_rq->runtime_remaining + 1;
3144 if (runtime > remaining)
3145 runtime = remaining;
3146 remaining -= runtime;
3147
3148 cfs_rq->runtime_remaining += runtime;
3149 cfs_rq->runtime_expires = expires;
3150
3151 /* we check whether we're throttled above */
3152 if (cfs_rq->runtime_remaining > 0)
3153 unthrottle_cfs_rq(cfs_rq);
3154
3155next:
3156 raw_spin_unlock(&rq->lock);
3157
3158 if (!remaining)
3159 break;
3160 }
3161 rcu_read_unlock();
3162
3163 return remaining;
3164}
3165
Paul Turner58088ad2011-07-21 09:43:31 -07003166/*
3167 * Responsible for refilling a task_group's bandwidth and unthrottling its
3168 * cfs_rqs as appropriate. If there has been no activity within the last
3169 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3170 * used to track this state.
3171 */
3172static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3173{
Paul Turner671fd9d2011-07-21 09:43:34 -07003174 u64 runtime, runtime_expires;
3175 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003176
3177 raw_spin_lock(&cfs_b->lock);
3178 /* no need to continue the timer with no bandwidth constraint */
3179 if (cfs_b->quota == RUNTIME_INF)
3180 goto out_unlock;
3181
Paul Turner671fd9d2011-07-21 09:43:34 -07003182 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3183 /* idle depends on !throttled (for the case of a large deficit) */
3184 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003185 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003186
Paul Turnera9cf55b2011-07-21 09:43:32 -07003187 /* if we're going inactive then everything else can be deferred */
3188 if (idle)
3189 goto out_unlock;
3190
3191 __refill_cfs_bandwidth_runtime(cfs_b);
3192
Paul Turner671fd9d2011-07-21 09:43:34 -07003193 if (!throttled) {
3194 /* mark as potentially idle for the upcoming period */
3195 cfs_b->idle = 1;
3196 goto out_unlock;
3197 }
Paul Turner58088ad2011-07-21 09:43:31 -07003198
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003199 /* account preceding periods in which throttling occurred */
3200 cfs_b->nr_throttled += overrun;
3201
Paul Turner671fd9d2011-07-21 09:43:34 -07003202 /*
3203 * There are throttled entities so we must first use the new bandwidth
3204 * to unthrottle them before making it generally available. This
3205 * ensures that all existing debts will be paid before a new cfs_rq is
3206 * allowed to run.
3207 */
3208 runtime = cfs_b->runtime;
3209 runtime_expires = cfs_b->runtime_expires;
3210 cfs_b->runtime = 0;
3211
3212 /*
3213 * This check is repeated as we are holding onto the new bandwidth
3214 * while we unthrottle. This can potentially race with an unthrottled
3215 * group trying to acquire new bandwidth from the global pool.
3216 */
3217 while (throttled && runtime > 0) {
3218 raw_spin_unlock(&cfs_b->lock);
3219 /* we can't nest cfs_b->lock while distributing bandwidth */
3220 runtime = distribute_cfs_runtime(cfs_b, runtime,
3221 runtime_expires);
3222 raw_spin_lock(&cfs_b->lock);
3223
3224 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3225 }
3226
3227 /* return (any) remaining runtime */
3228 cfs_b->runtime = runtime;
3229 /*
3230 * While we are ensured activity in the period following an
3231 * unthrottle, this also covers the case in which the new bandwidth is
3232 * insufficient to cover the existing bandwidth deficit. (Forcing the
3233 * timer to remain active while there are any throttled entities.)
3234 */
3235 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003236out_unlock:
3237 if (idle)
3238 cfs_b->timer_active = 0;
3239 raw_spin_unlock(&cfs_b->lock);
3240
3241 return idle;
3242}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003243
Paul Turnerd8b49862011-07-21 09:43:41 -07003244/* a cfs_rq won't donate quota below this amount */
3245static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3246/* minimum remaining period time to redistribute slack quota */
3247static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3248/* how long we wait to gather additional slack before distributing */
3249static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3250
3251/* are we near the end of the current quota period? */
3252static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3253{
3254 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3255 u64 remaining;
3256
3257 /* if the call-back is running a quota refresh is already occurring */
3258 if (hrtimer_callback_running(refresh_timer))
3259 return 1;
3260
3261 /* is a quota refresh about to occur? */
3262 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3263 if (remaining < min_expire)
3264 return 1;
3265
3266 return 0;
3267}
3268
3269static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3270{
3271 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3272
3273 /* if there's a quota refresh soon don't bother with slack */
3274 if (runtime_refresh_within(cfs_b, min_left))
3275 return;
3276
3277 start_bandwidth_timer(&cfs_b->slack_timer,
3278 ns_to_ktime(cfs_bandwidth_slack_period));
3279}
3280
3281/* we know any runtime found here is valid as update_curr() precedes return */
3282static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3283{
3284 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3285 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3286
3287 if (slack_runtime <= 0)
3288 return;
3289
3290 raw_spin_lock(&cfs_b->lock);
3291 if (cfs_b->quota != RUNTIME_INF &&
3292 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3293 cfs_b->runtime += slack_runtime;
3294
3295 /* we are under rq->lock, defer unthrottling using a timer */
3296 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3297 !list_empty(&cfs_b->throttled_cfs_rq))
3298 start_cfs_slack_bandwidth(cfs_b);
3299 }
3300 raw_spin_unlock(&cfs_b->lock);
3301
3302 /* even if it's not valid for return we don't want to try again */
3303 cfs_rq->runtime_remaining -= slack_runtime;
3304}
3305
3306static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3307{
Paul Turner56f570e2011-11-07 20:26:33 -08003308 if (!cfs_bandwidth_used())
3309 return;
3310
Paul Turnerfccfdc62011-11-07 20:26:34 -08003311 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003312 return;
3313
3314 __return_cfs_rq_runtime(cfs_rq);
3315}
3316
3317/*
3318 * This is done with a timer (instead of inline with bandwidth return) since
3319 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3320 */
3321static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3322{
3323 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3324 u64 expires;
3325
3326 /* confirm we're still not at a refresh boundary */
3327 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3328 return;
3329
3330 raw_spin_lock(&cfs_b->lock);
3331 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3332 runtime = cfs_b->runtime;
3333 cfs_b->runtime = 0;
3334 }
3335 expires = cfs_b->runtime_expires;
3336 raw_spin_unlock(&cfs_b->lock);
3337
3338 if (!runtime)
3339 return;
3340
3341 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3342
3343 raw_spin_lock(&cfs_b->lock);
3344 if (expires == cfs_b->runtime_expires)
3345 cfs_b->runtime = runtime;
3346 raw_spin_unlock(&cfs_b->lock);
3347}
3348
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003349/*
3350 * When a group wakes up we want to make sure that its quota is not already
3351 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3352 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3353 */
3354static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3355{
Paul Turner56f570e2011-11-07 20:26:33 -08003356 if (!cfs_bandwidth_used())
3357 return;
3358
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003359 /* an active group must be handled by the update_curr()->put() path */
3360 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3361 return;
3362
3363 /* ensure the group is not already throttled */
3364 if (cfs_rq_throttled(cfs_rq))
3365 return;
3366
3367 /* update runtime allocation */
3368 account_cfs_rq_runtime(cfs_rq, 0);
3369 if (cfs_rq->runtime_remaining <= 0)
3370 throttle_cfs_rq(cfs_rq);
3371}
3372
3373/* conditionally throttle active cfs_rq's from put_prev_entity() */
3374static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3375{
Paul Turner56f570e2011-11-07 20:26:33 -08003376 if (!cfs_bandwidth_used())
3377 return;
3378
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003379 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3380 return;
3381
3382 /*
3383 * it's possible for a throttled entity to be forced into a running
3384 * state (e.g. set_curr_task), in this case we're finished.
3385 */
3386 if (cfs_rq_throttled(cfs_rq))
3387 return;
3388
3389 throttle_cfs_rq(cfs_rq);
3390}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003391
Peter Zijlstra029632f2011-10-25 10:00:11 +02003392static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3393{
3394 struct cfs_bandwidth *cfs_b =
3395 container_of(timer, struct cfs_bandwidth, slack_timer);
3396 do_sched_cfs_slack_timer(cfs_b);
3397
3398 return HRTIMER_NORESTART;
3399}
3400
3401static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3402{
3403 struct cfs_bandwidth *cfs_b =
3404 container_of(timer, struct cfs_bandwidth, period_timer);
3405 ktime_t now;
3406 int overrun;
3407 int idle = 0;
3408
3409 for (;;) {
3410 now = hrtimer_cb_get_time(timer);
3411 overrun = hrtimer_forward(timer, now, cfs_b->period);
3412
3413 if (!overrun)
3414 break;
3415
3416 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3417 }
3418
3419 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3420}
3421
3422void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3423{
3424 raw_spin_lock_init(&cfs_b->lock);
3425 cfs_b->runtime = 0;
3426 cfs_b->quota = RUNTIME_INF;
3427 cfs_b->period = ns_to_ktime(default_cfs_period());
3428
3429 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3430 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3431 cfs_b->period_timer.function = sched_cfs_period_timer;
3432 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3433 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3434}
3435
3436static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3437{
3438 cfs_rq->runtime_enabled = 0;
3439 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3440}
3441
3442/* requires cfs_b->lock, may release to reprogram timer */
3443void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3444{
3445 /*
3446 * The timer may be active because we're trying to set a new bandwidth
3447 * period or because we're racing with the tear-down path
3448 * (timer_active==0 becomes visible before the hrtimer call-back
3449 * terminates). In either case we ensure that it's re-programmed
3450 */
3451 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3452 raw_spin_unlock(&cfs_b->lock);
3453 /* ensure cfs_b->lock is available while we wait */
3454 hrtimer_cancel(&cfs_b->period_timer);
3455
3456 raw_spin_lock(&cfs_b->lock);
3457 /* if someone else restarted the timer then we're done */
3458 if (cfs_b->timer_active)
3459 return;
3460 }
3461
3462 cfs_b->timer_active = 1;
3463 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3464}
3465
3466static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3467{
3468 hrtimer_cancel(&cfs_b->period_timer);
3469 hrtimer_cancel(&cfs_b->slack_timer);
3470}
3471
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003472static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003473{
3474 struct cfs_rq *cfs_rq;
3475
3476 for_each_leaf_cfs_rq(rq, cfs_rq) {
3477 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3478
3479 if (!cfs_rq->runtime_enabled)
3480 continue;
3481
3482 /*
3483 * clock_task is not advancing so we just need to make sure
3484 * there's some valid quota amount
3485 */
3486 cfs_rq->runtime_remaining = cfs_b->quota;
3487 if (cfs_rq_throttled(cfs_rq))
3488 unthrottle_cfs_rq(cfs_rq);
3489 }
3490}
3491
3492#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003493static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3494{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003495 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003496}
3497
3498static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3499 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003500static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3501static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003502static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003503
3504static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3505{
3506 return 0;
3507}
Paul Turner64660c82011-07-21 09:43:36 -07003508
3509static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3510{
3511 return 0;
3512}
3513
3514static inline int throttled_lb_pair(struct task_group *tg,
3515 int src_cpu, int dest_cpu)
3516{
3517 return 0;
3518}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003519
3520void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3521
3522#ifdef CONFIG_FAIR_GROUP_SCHED
3523static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003524#endif
3525
Peter Zijlstra029632f2011-10-25 10:00:11 +02003526static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3527{
3528 return NULL;
3529}
3530static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003531static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003532
3533#endif /* CONFIG_CFS_BANDWIDTH */
3534
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003535/**************************************************
3536 * CFS operations on tasks:
3537 */
3538
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003539#ifdef CONFIG_SCHED_HRTICK
3540static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3541{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003542 struct sched_entity *se = &p->se;
3543 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3544
3545 WARN_ON(task_rq(p) != rq);
3546
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003547 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003548 u64 slice = sched_slice(cfs_rq, se);
3549 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3550 s64 delta = slice - ran;
3551
3552 if (delta < 0) {
3553 if (rq->curr == p)
3554 resched_task(p);
3555 return;
3556 }
3557
3558 /*
3559 * Don't schedule slices shorter than 10000ns, that just
3560 * doesn't make sense. Rely on vruntime for fairness.
3561 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003562 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003563 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003564
Peter Zijlstra31656512008-07-18 18:01:23 +02003565 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003566 }
3567}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003568
3569/*
3570 * called from enqueue/dequeue and updates the hrtick when the
3571 * current task is from our class and nr_running is low enough
3572 * to matter.
3573 */
3574static void hrtick_update(struct rq *rq)
3575{
3576 struct task_struct *curr = rq->curr;
3577
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003578 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003579 return;
3580
3581 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3582 hrtick_start_fair(rq, curr);
3583}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303584#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003585static inline void
3586hrtick_start_fair(struct rq *rq, struct task_struct *p)
3587{
3588}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003589
3590static inline void hrtick_update(struct rq *rq)
3591{
3592}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003593#endif
3594
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003595/*
3596 * The enqueue_task method is called before nr_running is
3597 * increased. Here we update the fair scheduling stats and
3598 * then put the task into the rbtree:
3599 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003600static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003601enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003602{
3603 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003604 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003605
3606 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003607 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003608 break;
3609 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003610 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003611
3612 /*
3613 * end evaluation on encountering a throttled cfs_rq
3614 *
3615 * note: in the case of encountering a throttled cfs_rq we will
3616 * post the final h_nr_running increment below.
3617 */
3618 if (cfs_rq_throttled(cfs_rq))
3619 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003620 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003621
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003622 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003623 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003624
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003625 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003626 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003627 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003628
Paul Turner85dac902011-07-21 09:43:33 -07003629 if (cfs_rq_throttled(cfs_rq))
3630 break;
3631
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003632 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003633 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003634 }
3635
Ben Segall18bf2802012-10-04 12:51:20 +02003636 if (!se) {
3637 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003638 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003639 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003640 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641}
3642
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003643static void set_next_buddy(struct sched_entity *se);
3644
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003645/*
3646 * The dequeue_task method is called before nr_running is
3647 * decreased. We remove the task from the rbtree and
3648 * update the fair scheduling stats:
3649 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003650static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003651{
3652 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003653 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003654 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003655
3656 for_each_sched_entity(se) {
3657 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003658 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003659
3660 /*
3661 * end evaluation on encountering a throttled cfs_rq
3662 *
3663 * note: in the case of encountering a throttled cfs_rq we will
3664 * post the final h_nr_running decrement below.
3665 */
3666 if (cfs_rq_throttled(cfs_rq))
3667 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003668 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003669
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003670 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003671 if (cfs_rq->load.weight) {
3672 /*
3673 * Bias pick_next to pick a task from this cfs_rq, as
3674 * p is sleeping when it is within its sched_slice.
3675 */
3676 if (task_sleep && parent_entity(se))
3677 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003678
3679 /* avoid re-evaluating load for this entity */
3680 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003681 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003682 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003683 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003684 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003685
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003686 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003687 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003688 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003689
Paul Turner85dac902011-07-21 09:43:33 -07003690 if (cfs_rq_throttled(cfs_rq))
3691 break;
3692
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003693 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003694 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003695 }
3696
Ben Segall18bf2802012-10-04 12:51:20 +02003697 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003698 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003699 update_rq_runnable_avg(rq, 1);
3700 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003701 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003702}
3703
Gregory Haskinse7693a32008-01-25 21:08:09 +01003704#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003705/* Used instead of source_load when we know the type == 0 */
3706static unsigned long weighted_cpuload(const int cpu)
3707{
Alex Shib92486c2013-06-20 10:18:50 +08003708 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003709}
3710
3711/*
3712 * Return a low guess at the load of a migration-source cpu weighted
3713 * according to the scheduling class and "nice" value.
3714 *
3715 * We want to under-estimate the load of migration sources, to
3716 * balance conservatively.
3717 */
3718static unsigned long source_load(int cpu, int type)
3719{
3720 struct rq *rq = cpu_rq(cpu);
3721 unsigned long total = weighted_cpuload(cpu);
3722
3723 if (type == 0 || !sched_feat(LB_BIAS))
3724 return total;
3725
3726 return min(rq->cpu_load[type-1], total);
3727}
3728
3729/*
3730 * Return a high guess at the load of a migration-target cpu weighted
3731 * according to the scheduling class and "nice" value.
3732 */
3733static unsigned long target_load(int cpu, int type)
3734{
3735 struct rq *rq = cpu_rq(cpu);
3736 unsigned long total = weighted_cpuload(cpu);
3737
3738 if (type == 0 || !sched_feat(LB_BIAS))
3739 return total;
3740
3741 return max(rq->cpu_load[type-1], total);
3742}
3743
3744static unsigned long power_of(int cpu)
3745{
3746 return cpu_rq(cpu)->cpu_power;
3747}
3748
3749static unsigned long cpu_avg_load_per_task(int cpu)
3750{
3751 struct rq *rq = cpu_rq(cpu);
3752 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003753 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003754
3755 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003756 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003757
3758 return 0;
3759}
3760
Michael Wang62470412013-07-04 12:55:51 +08003761static void record_wakee(struct task_struct *p)
3762{
3763 /*
3764 * Rough decay (wiping) for cost saving, don't worry
3765 * about the boundary, really active task won't care
3766 * about the loss.
3767 */
3768 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3769 current->wakee_flips = 0;
3770 current->wakee_flip_decay_ts = jiffies;
3771 }
3772
3773 if (current->last_wakee != p) {
3774 current->last_wakee = p;
3775 current->wakee_flips++;
3776 }
3777}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003778
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003779static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003780{
3781 struct sched_entity *se = &p->se;
3782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003783 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003784
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003785#ifndef CONFIG_64BIT
3786 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003787
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003788 do {
3789 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3790 smp_rmb();
3791 min_vruntime = cfs_rq->min_vruntime;
3792 } while (min_vruntime != min_vruntime_copy);
3793#else
3794 min_vruntime = cfs_rq->min_vruntime;
3795#endif
3796
3797 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003798 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003799}
3800
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003801#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003802/*
3803 * effective_load() calculates the load change as seen from the root_task_group
3804 *
3805 * Adding load to a group doesn't make a group heavier, but can cause movement
3806 * of group shares between cpus. Assuming the shares were perfectly aligned one
3807 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003808 *
3809 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3810 * on this @cpu and results in a total addition (subtraction) of @wg to the
3811 * total group weight.
3812 *
3813 * Given a runqueue weight distribution (rw_i) we can compute a shares
3814 * distribution (s_i) using:
3815 *
3816 * s_i = rw_i / \Sum rw_j (1)
3817 *
3818 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3819 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3820 * shares distribution (s_i):
3821 *
3822 * rw_i = { 2, 4, 1, 0 }
3823 * s_i = { 2/7, 4/7, 1/7, 0 }
3824 *
3825 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3826 * task used to run on and the CPU the waker is running on), we need to
3827 * compute the effect of waking a task on either CPU and, in case of a sync
3828 * wakeup, compute the effect of the current task going to sleep.
3829 *
3830 * So for a change of @wl to the local @cpu with an overall group weight change
3831 * of @wl we can compute the new shares distribution (s'_i) using:
3832 *
3833 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3834 *
3835 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3836 * differences in waking a task to CPU 0. The additional task changes the
3837 * weight and shares distributions like:
3838 *
3839 * rw'_i = { 3, 4, 1, 0 }
3840 * s'_i = { 3/8, 4/8, 1/8, 0 }
3841 *
3842 * We can then compute the difference in effective weight by using:
3843 *
3844 * dw_i = S * (s'_i - s_i) (3)
3845 *
3846 * Where 'S' is the group weight as seen by its parent.
3847 *
3848 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3849 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3850 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003851 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003852static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003853{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003854 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003855
Mel Gorman58d081b2013-10-07 11:29:10 +01003856 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003857 return wl;
3858
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003859 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003860 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003861
Paul Turner977dda72011-01-14 17:57:50 -08003862 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003863
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003864 /*
3865 * W = @wg + \Sum rw_j
3866 */
3867 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003868
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003869 /*
3870 * w = rw_i + @wl
3871 */
3872 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003873
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003874 /*
3875 * wl = S * s'_i; see (2)
3876 */
3877 if (W > 0 && w < W)
3878 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003879 else
3880 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003881
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003882 /*
3883 * Per the above, wl is the new se->load.weight value; since
3884 * those are clipped to [MIN_SHARES, ...) do so now. See
3885 * calc_cfs_shares().
3886 */
Paul Turner977dda72011-01-14 17:57:50 -08003887 if (wl < MIN_SHARES)
3888 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003889
3890 /*
3891 * wl = dw_i = S * (s'_i - s_i); see (3)
3892 */
Paul Turner977dda72011-01-14 17:57:50 -08003893 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003894
3895 /*
3896 * Recursively apply this logic to all parent groups to compute
3897 * the final effective load change on the root group. Since
3898 * only the @tg group gets extra weight, all parent groups can
3899 * only redistribute existing shares. @wl is the shift in shares
3900 * resulting from this level per the above.
3901 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003902 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003903 }
3904
3905 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003906}
3907#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003908
Mel Gorman58d081b2013-10-07 11:29:10 +01003909static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003910{
Peter Zijlstra83378262008-06-27 13:41:37 +02003911 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003912}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003913
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003914#endif
3915
Michael Wang62470412013-07-04 12:55:51 +08003916static int wake_wide(struct task_struct *p)
3917{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003918 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003919
3920 /*
3921 * Yeah, it's the switching-frequency, could means many wakee or
3922 * rapidly switch, use factor here will just help to automatically
3923 * adjust the loose-degree, so bigger node will lead to more pull.
3924 */
3925 if (p->wakee_flips > factor) {
3926 /*
3927 * wakee is somewhat hot, it needs certain amount of cpu
3928 * resource, so if waker is far more hot, prefer to leave
3929 * it alone.
3930 */
3931 if (current->wakee_flips > (factor * p->wakee_flips))
3932 return 1;
3933 }
3934
3935 return 0;
3936}
3937
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003938static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003939{
Paul Turnere37b6a72011-01-21 20:44:59 -08003940 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003941 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003942 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003943 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003944 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003945 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003946
Michael Wang62470412013-07-04 12:55:51 +08003947 /*
3948 * If we wake multiple tasks be careful to not bounce
3949 * ourselves around too much.
3950 */
3951 if (wake_wide(p))
3952 return 0;
3953
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003954 idx = sd->wake_idx;
3955 this_cpu = smp_processor_id();
3956 prev_cpu = task_cpu(p);
3957 load = source_load(prev_cpu, idx);
3958 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003959
3960 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003961 * If sync wakeup then subtract the (maximum possible)
3962 * effect of the currently running task from the load
3963 * of the current CPU:
3964 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003965 if (sync) {
3966 tg = task_group(current);
3967 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003968
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003969 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003970 load += effective_load(tg, prev_cpu, 0, -weight);
3971 }
3972
3973 tg = task_group(p);
3974 weight = p->se.load.weight;
3975
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003976 /*
3977 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003978 * due to the sync cause above having dropped this_load to 0, we'll
3979 * always have an imbalance, but there's really nothing you can do
3980 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003981 *
3982 * Otherwise check if either cpus are near enough in load to allow this
3983 * task to be woken on this_cpu.
3984 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003985 if (this_load > 0) {
3986 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003987
3988 this_eff_load = 100;
3989 this_eff_load *= power_of(prev_cpu);
3990 this_eff_load *= this_load +
3991 effective_load(tg, this_cpu, weight, weight);
3992
3993 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3994 prev_eff_load *= power_of(this_cpu);
3995 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3996
3997 balanced = this_eff_load <= prev_eff_load;
3998 } else
3999 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004000
4001 /*
4002 * If the currently running task will sleep within
4003 * a reasonable amount of time then attract this newly
4004 * woken task:
4005 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004006 if (sync && balanced)
4007 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004008
Lucas De Marchi41acab82010-03-10 23:37:45 -03004009 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004010 tl_per_task = cpu_avg_load_per_task(this_cpu);
4011
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004012 if (balanced ||
4013 (this_load <= load &&
4014 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004015 /*
4016 * This domain has SD_WAKE_AFFINE and
4017 * p is cache cold in this domain, and
4018 * there is no bad imbalance.
4019 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004020 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004021 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004022
4023 return 1;
4024 }
4025 return 0;
4026}
4027
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004028/*
4029 * find_idlest_group finds and returns the least busy CPU group within the
4030 * domain.
4031 */
4032static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004033find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004034 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004035{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004036 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004037 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004038 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004039
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004040 do {
4041 unsigned long load, avg_load;
4042 int local_group;
4043 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004044
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004045 /* Skip over this group if it has no CPUs allowed */
4046 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004047 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004048 continue;
4049
4050 local_group = cpumask_test_cpu(this_cpu,
4051 sched_group_cpus(group));
4052
4053 /* Tally up the load of all CPUs in the group */
4054 avg_load = 0;
4055
4056 for_each_cpu(i, sched_group_cpus(group)) {
4057 /* Bias balancing toward cpus of our domain */
4058 if (local_group)
4059 load = source_load(i, load_idx);
4060 else
4061 load = target_load(i, load_idx);
4062
4063 avg_load += load;
4064 }
4065
4066 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004067 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004068
4069 if (local_group) {
4070 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004071 } else if (avg_load < min_load) {
4072 min_load = avg_load;
4073 idlest = group;
4074 }
4075 } while (group = group->next, group != sd->groups);
4076
4077 if (!idlest || 100*this_load < imbalance*min_load)
4078 return NULL;
4079 return idlest;
4080}
4081
4082/*
4083 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4084 */
4085static int
4086find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4087{
4088 unsigned long load, min_load = ULONG_MAX;
4089 int idlest = -1;
4090 int i;
4091
4092 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004093 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004094 load = weighted_cpuload(i);
4095
4096 if (load < min_load || (load == min_load && i == this_cpu)) {
4097 min_load = load;
4098 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004099 }
4100 }
4101
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004102 return idlest;
4103}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004104
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004105/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004106 * Try and locate an idle CPU in the sched_domain.
4107 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004108static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004109{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004110 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004111 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004112 int i = task_cpu(p);
4113
4114 if (idle_cpu(target))
4115 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004116
4117 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004118 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004119 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004120 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4121 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004122
4123 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004124 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004125 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004126 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004127 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004128 sg = sd->groups;
4129 do {
4130 if (!cpumask_intersects(sched_group_cpus(sg),
4131 tsk_cpus_allowed(p)))
4132 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004133
Linus Torvalds37407ea2012-09-16 12:29:43 -07004134 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004135 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004136 goto next;
4137 }
4138
4139 target = cpumask_first_and(sched_group_cpus(sg),
4140 tsk_cpus_allowed(p));
4141 goto done;
4142next:
4143 sg = sg->next;
4144 } while (sg != sd->groups);
4145 }
4146done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004147 return target;
4148}
4149
4150/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004151 * sched_balance_self: balance the current task (running on cpu) in domains
4152 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4153 * SD_BALANCE_EXEC.
4154 *
4155 * Balance, ie. select the least loaded group.
4156 *
4157 * Returns the target CPU number, or the same CPU if no balancing is needed.
4158 *
4159 * preempt must be disabled.
4160 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004161static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004162select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004163{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004164 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004165 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004166 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004167 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004168 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004169
Peter Zijlstra29baa742012-04-23 12:11:21 +02004170 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004171 return prev_cpu;
4172
Peter Zijlstra0763a662009-09-14 19:37:39 +02004173 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004174 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004175 want_affine = 1;
4176 new_cpu = prev_cpu;
4177 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004178
Peter Zijlstradce840a2011-04-07 14:09:50 +02004179 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004180 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004181 if (!(tmp->flags & SD_LOAD_BALANCE))
4182 continue;
4183
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004184 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004185 * If both cpu and prev_cpu are part of this domain,
4186 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004187 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004188 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4189 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4190 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004191 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004192 }
4193
Alex Shif03542a2012-07-26 08:55:34 +08004194 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004195 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004196 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004197
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004198 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004199 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004200 prev_cpu = cpu;
4201
4202 new_cpu = select_idle_sibling(p, prev_cpu);
4203 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004204 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004205
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004206 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004207 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004208 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004209 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004210
Peter Zijlstra0763a662009-09-14 19:37:39 +02004211 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004212 sd = sd->child;
4213 continue;
4214 }
4215
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004216 if (sd_flag & SD_BALANCE_WAKE)
4217 load_idx = sd->wake_idx;
4218
4219 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004220 if (!group) {
4221 sd = sd->child;
4222 continue;
4223 }
4224
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004225 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004226 if (new_cpu == -1 || new_cpu == cpu) {
4227 /* Now try balancing at a lower domain level of cpu */
4228 sd = sd->child;
4229 continue;
4230 }
4231
4232 /* Now try balancing at a lower domain level of new_cpu */
4233 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004234 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004235 sd = NULL;
4236 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004237 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004238 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004239 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004240 sd = tmp;
4241 }
4242 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004243 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004244unlock:
4245 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004246
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004247 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004248}
Paul Turner0a74bef2012-10-04 13:18:30 +02004249
4250/*
4251 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4252 * cfs_rq_of(p) references at time of call are still valid and identify the
4253 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4254 * other assumptions, including the state of rq->lock, should be made.
4255 */
4256static void
4257migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4258{
Paul Turneraff3e492012-10-04 13:18:30 +02004259 struct sched_entity *se = &p->se;
4260 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4261
4262 /*
4263 * Load tracking: accumulate removed load so that it can be processed
4264 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4265 * to blocked load iff they have a positive decay-count. It can never
4266 * be negative here since on-rq tasks have decay-count == 0.
4267 */
4268 if (se->avg.decay_count) {
4269 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004270 atomic_long_add(se->avg.load_avg_contrib,
4271 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004272 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004273}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004274#endif /* CONFIG_SMP */
4275
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004276static unsigned long
4277wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004278{
4279 unsigned long gran = sysctl_sched_wakeup_granularity;
4280
4281 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004282 * Since its curr running now, convert the gran from real-time
4283 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004284 *
4285 * By using 'se' instead of 'curr' we penalize light tasks, so
4286 * they get preempted easier. That is, if 'se' < 'curr' then
4287 * the resulting gran will be larger, therefore penalizing the
4288 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4289 * be smaller, again penalizing the lighter task.
4290 *
4291 * This is especially important for buddies when the leftmost
4292 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004293 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004294 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004295}
4296
4297/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004298 * Should 'se' preempt 'curr'.
4299 *
4300 * |s1
4301 * |s2
4302 * |s3
4303 * g
4304 * |<--->|c
4305 *
4306 * w(c, s1) = -1
4307 * w(c, s2) = 0
4308 * w(c, s3) = 1
4309 *
4310 */
4311static int
4312wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4313{
4314 s64 gran, vdiff = curr->vruntime - se->vruntime;
4315
4316 if (vdiff <= 0)
4317 return -1;
4318
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004319 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004320 if (vdiff > gran)
4321 return 1;
4322
4323 return 0;
4324}
4325
Peter Zijlstra02479092008-11-04 21:25:10 +01004326static void set_last_buddy(struct sched_entity *se)
4327{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004328 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4329 return;
4330
4331 for_each_sched_entity(se)
4332 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004333}
4334
4335static void set_next_buddy(struct sched_entity *se)
4336{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004337 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4338 return;
4339
4340 for_each_sched_entity(se)
4341 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004342}
4343
Rik van Rielac53db52011-02-01 09:51:03 -05004344static void set_skip_buddy(struct sched_entity *se)
4345{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004346 for_each_sched_entity(se)
4347 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004348}
4349
Peter Zijlstra464b7522008-10-24 11:06:15 +02004350/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004351 * Preempt the current task with a newly woken task if needed:
4352 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004353static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004354{
4355 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004356 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004357 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004358 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004359 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004360
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004361 if (unlikely(se == pse))
4362 return;
4363
Paul Turner5238cdd2011-07-21 09:43:37 -07004364 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004365 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004366 * unconditionally check_prempt_curr() after an enqueue (which may have
4367 * lead to a throttle). This both saves work and prevents false
4368 * next-buddy nomination below.
4369 */
4370 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4371 return;
4372
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004373 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004374 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004375 next_buddy_marked = 1;
4376 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004377
Bharata B Raoaec0a512008-08-28 14:42:49 +05304378 /*
4379 * We can come here with TIF_NEED_RESCHED already set from new task
4380 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004381 *
4382 * Note: this also catches the edge-case of curr being in a throttled
4383 * group (e.g. via set_curr_task), since update_curr() (in the
4384 * enqueue of curr) will have resulted in resched being set. This
4385 * prevents us from potentially nominating it as a false LAST_BUDDY
4386 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304387 */
4388 if (test_tsk_need_resched(curr))
4389 return;
4390
Darren Harta2f5c9a2011-02-22 13:04:33 -08004391 /* Idle tasks are by definition preempted by non-idle tasks. */
4392 if (unlikely(curr->policy == SCHED_IDLE) &&
4393 likely(p->policy != SCHED_IDLE))
4394 goto preempt;
4395
Ingo Molnar91c234b2007-10-15 17:00:18 +02004396 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004397 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4398 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004399 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004400 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004401 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004402
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004403 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004404 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004405 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004406 if (wakeup_preempt_entity(se, pse) == 1) {
4407 /*
4408 * Bias pick_next to pick the sched entity that is
4409 * triggering this preemption.
4410 */
4411 if (!next_buddy_marked)
4412 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004413 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004414 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004415
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004416 return;
4417
4418preempt:
4419 resched_task(curr);
4420 /*
4421 * Only set the backward buddy when the current task is still
4422 * on the rq. This can happen when a wakeup gets interleaved
4423 * with schedule on the ->pre_schedule() or idle_balance()
4424 * point, either of which can * drop the rq lock.
4425 *
4426 * Also, during early boot the idle thread is in the fair class,
4427 * for obvious reasons its a bad idea to schedule back to it.
4428 */
4429 if (unlikely(!se->on_rq || curr == rq->idle))
4430 return;
4431
4432 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4433 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004434}
4435
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004436static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004437{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004438 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004439 struct cfs_rq *cfs_rq = &rq->cfs;
4440 struct sched_entity *se;
4441
Tim Blechmann36ace272009-11-24 11:55:45 +01004442 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004443 return NULL;
4444
4445 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004446 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004447 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004448 cfs_rq = group_cfs_rq(se);
4449 } while (cfs_rq);
4450
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004451 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004452 if (hrtick_enabled(rq))
4453 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004454
4455 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004456}
4457
4458/*
4459 * Account for a descheduled task:
4460 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004461static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004462{
4463 struct sched_entity *se = &prev->se;
4464 struct cfs_rq *cfs_rq;
4465
4466 for_each_sched_entity(se) {
4467 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004468 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004469 }
4470}
4471
Rik van Rielac53db52011-02-01 09:51:03 -05004472/*
4473 * sched_yield() is very simple
4474 *
4475 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4476 */
4477static void yield_task_fair(struct rq *rq)
4478{
4479 struct task_struct *curr = rq->curr;
4480 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4481 struct sched_entity *se = &curr->se;
4482
4483 /*
4484 * Are we the only task in the tree?
4485 */
4486 if (unlikely(rq->nr_running == 1))
4487 return;
4488
4489 clear_buddies(cfs_rq, se);
4490
4491 if (curr->policy != SCHED_BATCH) {
4492 update_rq_clock(rq);
4493 /*
4494 * Update run-time statistics of the 'current'.
4495 */
4496 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004497 /*
4498 * Tell update_rq_clock() that we've just updated,
4499 * so we don't do microscopic update in schedule()
4500 * and double the fastpath cost.
4501 */
4502 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004503 }
4504
4505 set_skip_buddy(se);
4506}
4507
Mike Galbraithd95f4122011-02-01 09:50:51 -05004508static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4509{
4510 struct sched_entity *se = &p->se;
4511
Paul Turner5238cdd2011-07-21 09:43:37 -07004512 /* throttled hierarchies are not runnable */
4513 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004514 return false;
4515
4516 /* Tell the scheduler that we'd really like pse to run next. */
4517 set_next_buddy(se);
4518
Mike Galbraithd95f4122011-02-01 09:50:51 -05004519 yield_task_fair(rq);
4520
4521 return true;
4522}
4523
Peter Williams681f3e62007-10-24 18:23:51 +02004524#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004525/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004526 * Fair scheduling class load-balancing methods.
4527 *
4528 * BASICS
4529 *
4530 * The purpose of load-balancing is to achieve the same basic fairness the
4531 * per-cpu scheduler provides, namely provide a proportional amount of compute
4532 * time to each task. This is expressed in the following equation:
4533 *
4534 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4535 *
4536 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4537 * W_i,0 is defined as:
4538 *
4539 * W_i,0 = \Sum_j w_i,j (2)
4540 *
4541 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4542 * is derived from the nice value as per prio_to_weight[].
4543 *
4544 * The weight average is an exponential decay average of the instantaneous
4545 * weight:
4546 *
4547 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4548 *
4549 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4550 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4551 * can also include other factors [XXX].
4552 *
4553 * To achieve this balance we define a measure of imbalance which follows
4554 * directly from (1):
4555 *
4556 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4557 *
4558 * We them move tasks around to minimize the imbalance. In the continuous
4559 * function space it is obvious this converges, in the discrete case we get
4560 * a few fun cases generally called infeasible weight scenarios.
4561 *
4562 * [XXX expand on:
4563 * - infeasible weights;
4564 * - local vs global optima in the discrete case. ]
4565 *
4566 *
4567 * SCHED DOMAINS
4568 *
4569 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4570 * for all i,j solution, we create a tree of cpus that follows the hardware
4571 * topology where each level pairs two lower groups (or better). This results
4572 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4573 * tree to only the first of the previous level and we decrease the frequency
4574 * of load-balance at each level inv. proportional to the number of cpus in
4575 * the groups.
4576 *
4577 * This yields:
4578 *
4579 * log_2 n 1 n
4580 * \Sum { --- * --- * 2^i } = O(n) (5)
4581 * i = 0 2^i 2^i
4582 * `- size of each group
4583 * | | `- number of cpus doing load-balance
4584 * | `- freq
4585 * `- sum over all levels
4586 *
4587 * Coupled with a limit on how many tasks we can migrate every balance pass,
4588 * this makes (5) the runtime complexity of the balancer.
4589 *
4590 * An important property here is that each CPU is still (indirectly) connected
4591 * to every other cpu in at most O(log n) steps:
4592 *
4593 * The adjacency matrix of the resulting graph is given by:
4594 *
4595 * log_2 n
4596 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4597 * k = 0
4598 *
4599 * And you'll find that:
4600 *
4601 * A^(log_2 n)_i,j != 0 for all i,j (7)
4602 *
4603 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4604 * The task movement gives a factor of O(m), giving a convergence complexity
4605 * of:
4606 *
4607 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4608 *
4609 *
4610 * WORK CONSERVING
4611 *
4612 * In order to avoid CPUs going idle while there's still work to do, new idle
4613 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4614 * tree itself instead of relying on other CPUs to bring it work.
4615 *
4616 * This adds some complexity to both (5) and (8) but it reduces the total idle
4617 * time.
4618 *
4619 * [XXX more?]
4620 *
4621 *
4622 * CGROUPS
4623 *
4624 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4625 *
4626 * s_k,i
4627 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4628 * S_k
4629 *
4630 * Where
4631 *
4632 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4633 *
4634 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4635 *
4636 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4637 * property.
4638 *
4639 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4640 * rewrite all of this once again.]
4641 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004642
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004643static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4644
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004645enum fbq_type { regular, remote, all };
4646
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004647#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004648#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004649#define LBF_DST_PINNED 0x04
4650#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004651
4652struct lb_env {
4653 struct sched_domain *sd;
4654
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004655 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304656 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004657
4658 int dst_cpu;
4659 struct rq *dst_rq;
4660
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304661 struct cpumask *dst_grpmask;
4662 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004663 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004664 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004665 /* The set of CPUs under consideration for load-balancing */
4666 struct cpumask *cpus;
4667
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004668 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004669
4670 unsigned int loop;
4671 unsigned int loop_break;
4672 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004673
4674 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004675};
4676
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004677/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004678 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004679 * Both runqueues must be locked.
4680 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004681static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004682{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004683 deactivate_task(env->src_rq, p, 0);
4684 set_task_cpu(p, env->dst_cpu);
4685 activate_task(env->dst_rq, p, 0);
4686 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004687#ifdef CONFIG_NUMA_BALANCING
4688 if (p->numa_preferred_nid != -1) {
4689 int src_nid = cpu_to_node(env->src_cpu);
4690 int dst_nid = cpu_to_node(env->dst_cpu);
4691
4692 /*
4693 * If the load balancer has moved the task then limit
4694 * migrations from taking place in the short term in
4695 * case this is a short-lived migration.
4696 */
4697 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4698 p->numa_migrate_seq = 0;
4699 }
4700#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004701}
4702
4703/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004704 * Is this task likely cache-hot:
4705 */
4706static int
4707task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4708{
4709 s64 delta;
4710
4711 if (p->sched_class != &fair_sched_class)
4712 return 0;
4713
4714 if (unlikely(p->policy == SCHED_IDLE))
4715 return 0;
4716
4717 /*
4718 * Buddy candidates are cache hot:
4719 */
4720 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4721 (&p->se == cfs_rq_of(&p->se)->next ||
4722 &p->se == cfs_rq_of(&p->se)->last))
4723 return 1;
4724
4725 if (sysctl_sched_migration_cost == -1)
4726 return 1;
4727 if (sysctl_sched_migration_cost == 0)
4728 return 0;
4729
4730 delta = now - p->se.exec_start;
4731
4732 return delta < (s64)sysctl_sched_migration_cost;
4733}
4734
Mel Gorman3a7053b2013-10-07 11:29:00 +01004735#ifdef CONFIG_NUMA_BALANCING
4736/* Returns true if the destination node has incurred more faults */
4737static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4738{
4739 int src_nid, dst_nid;
4740
4741 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4742 !(env->sd->flags & SD_NUMA)) {
4743 return false;
4744 }
4745
4746 src_nid = cpu_to_node(env->src_cpu);
4747 dst_nid = cpu_to_node(env->dst_cpu);
4748
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004749 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004750 return false;
4751
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004752 /* Always encourage migration to the preferred node. */
4753 if (dst_nid == p->numa_preferred_nid)
4754 return true;
4755
Rik van Riel887c2902013-10-07 11:29:31 +01004756 /* If both task and group weight improve, this move is a winner. */
4757 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4758 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004759 return true;
4760
4761 return false;
4762}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004763
4764
4765static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4766{
4767 int src_nid, dst_nid;
4768
4769 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4770 return false;
4771
4772 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4773 return false;
4774
4775 src_nid = cpu_to_node(env->src_cpu);
4776 dst_nid = cpu_to_node(env->dst_cpu);
4777
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004778 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004779 return false;
4780
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004781 /* Migrating away from the preferred node is always bad. */
4782 if (src_nid == p->numa_preferred_nid)
4783 return true;
4784
Rik van Riel887c2902013-10-07 11:29:31 +01004785 /* If either task or group weight get worse, don't do it. */
4786 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4787 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004788 return true;
4789
4790 return false;
4791}
4792
Mel Gorman3a7053b2013-10-07 11:29:00 +01004793#else
4794static inline bool migrate_improves_locality(struct task_struct *p,
4795 struct lb_env *env)
4796{
4797 return false;
4798}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004799
4800static inline bool migrate_degrades_locality(struct task_struct *p,
4801 struct lb_env *env)
4802{
4803 return false;
4804}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004805#endif
4806
Peter Zijlstra029632f2011-10-25 10:00:11 +02004807/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004808 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4809 */
4810static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004811int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004812{
4813 int tsk_cache_hot = 0;
4814 /*
4815 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004816 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004817 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004818 * 3) running (obviously), or
4819 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004820 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004821 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4822 return 0;
4823
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004824 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004825 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304826
Lucas De Marchi41acab82010-03-10 23:37:45 -03004827 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304828
Peter Zijlstra62633222013-08-19 12:41:09 +02004829 env->flags |= LBF_SOME_PINNED;
4830
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304831 /*
4832 * Remember if this task can be migrated to any other cpu in
4833 * our sched_group. We may want to revisit it if we couldn't
4834 * meet load balance goals by pulling other tasks on src_cpu.
4835 *
4836 * Also avoid computing new_dst_cpu if we have already computed
4837 * one in current iteration.
4838 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004839 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304840 return 0;
4841
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004842 /* Prevent to re-select dst_cpu via env's cpus */
4843 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4844 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004845 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004846 env->new_dst_cpu = cpu;
4847 break;
4848 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304849 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004850
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004851 return 0;
4852 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304853
4854 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004855 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004856
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004857 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004858 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004859 return 0;
4860 }
4861
4862 /*
4863 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004864 * 1) destination numa is preferred
4865 * 2) task is cache cold, or
4866 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004867 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004868 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004869 if (!tsk_cache_hot)
4870 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004871
4872 if (migrate_improves_locality(p, env)) {
4873#ifdef CONFIG_SCHEDSTATS
4874 if (tsk_cache_hot) {
4875 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4876 schedstat_inc(p, se.statistics.nr_forced_migrations);
4877 }
4878#endif
4879 return 1;
4880 }
4881
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004882 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004883 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004884
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004885 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004886 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004887 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004888 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004889
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004890 return 1;
4891 }
4892
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004893 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4894 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004895}
4896
Peter Zijlstra897c3952009-12-17 17:45:42 +01004897/*
4898 * move_one_task tries to move exactly one task from busiest to this_rq, as
4899 * part of active balancing operations within "domain".
4900 * Returns 1 if successful and 0 otherwise.
4901 *
4902 * Called with both runqueues locked.
4903 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004904static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004905{
4906 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004907
Peter Zijlstra367456c2012-02-20 21:49:09 +01004908 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004909 if (!can_migrate_task(p, env))
4910 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004911
Peter Zijlstra367456c2012-02-20 21:49:09 +01004912 move_task(p, env);
4913 /*
4914 * Right now, this is only the second place move_task()
4915 * is called, so we can safely collect move_task()
4916 * stats here rather than inside move_task().
4917 */
4918 schedstat_inc(env->sd, lb_gained[env->idle]);
4919 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004920 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004921 return 0;
4922}
4923
Peter Zijlstraeb953082012-04-17 13:38:40 +02004924static const unsigned int sched_nr_migrate_break = 32;
4925
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004926/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004927 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004928 * this_rq, as part of a balancing operation within domain "sd".
4929 * Returns 1 if successful and 0 otherwise.
4930 *
4931 * Called with both runqueues locked.
4932 */
4933static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004934{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004935 struct list_head *tasks = &env->src_rq->cfs_tasks;
4936 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004937 unsigned long load;
4938 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004939
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004940 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004941 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004942
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004943 while (!list_empty(tasks)) {
4944 p = list_first_entry(tasks, struct task_struct, se.group_node);
4945
Peter Zijlstra367456c2012-02-20 21:49:09 +01004946 env->loop++;
4947 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004948 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004949 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004950
4951 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004952 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004953 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004954 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004955 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004956 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004957
Joonsoo Kimd3198082013-04-23 17:27:40 +09004958 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004959 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004960
Peter Zijlstra367456c2012-02-20 21:49:09 +01004961 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004962
Peter Zijlstraeb953082012-04-17 13:38:40 +02004963 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004964 goto next;
4965
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004966 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004967 goto next;
4968
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004969 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004970 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004971 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004972
4973#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004974 /*
4975 * NEWIDLE balancing is a source of latency, so preemptible
4976 * kernels will stop after the first task is pulled to minimize
4977 * the critical section.
4978 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004979 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004980 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004981#endif
4982
Peter Zijlstraee00e662009-12-17 17:25:20 +01004983 /*
4984 * We only want to steal up to the prescribed amount of
4985 * weighted load.
4986 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004987 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004988 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004989
Peter Zijlstra367456c2012-02-20 21:49:09 +01004990 continue;
4991next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004992 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004993 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004994
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004995 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004996 * Right now, this is one of only two places move_task() is called,
4997 * so we can safely collect move_task() stats here rather than
4998 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004999 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005000 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005001
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005002 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005003}
5004
Peter Zijlstra230059de2009-12-17 17:47:12 +01005005#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005006/*
5007 * update tg->load_weight by folding this cpu's load_avg
5008 */
Paul Turner48a16752012-10-04 13:18:31 +02005009static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005010{
Paul Turner48a16752012-10-04 13:18:31 +02005011 struct sched_entity *se = tg->se[cpu];
5012 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005013
Paul Turner48a16752012-10-04 13:18:31 +02005014 /* throttled entities do not contribute to load */
5015 if (throttled_hierarchy(cfs_rq))
5016 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005017
Paul Turneraff3e492012-10-04 13:18:30 +02005018 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005019
Paul Turner82958362012-10-04 13:18:31 +02005020 if (se) {
5021 update_entity_load_avg(se, 1);
5022 /*
5023 * We pivot on our runnable average having decayed to zero for
5024 * list removal. This generally implies that all our children
5025 * have also been removed (modulo rounding error or bandwidth
5026 * control); however, such cases are rare and we can fix these
5027 * at enqueue.
5028 *
5029 * TODO: fix up out-of-order children on enqueue.
5030 */
5031 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5032 list_del_leaf_cfs_rq(cfs_rq);
5033 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005034 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005035 update_rq_runnable_avg(rq, rq->nr_running);
5036 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005037}
5038
Paul Turner48a16752012-10-04 13:18:31 +02005039static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005040{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005041 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005042 struct cfs_rq *cfs_rq;
5043 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005044
Paul Turner48a16752012-10-04 13:18:31 +02005045 raw_spin_lock_irqsave(&rq->lock, flags);
5046 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005047 /*
5048 * Iterates the task_group tree in a bottom up fashion, see
5049 * list_add_leaf_cfs_rq() for details.
5050 */
Paul Turner64660c82011-07-21 09:43:36 -07005051 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005052 /*
5053 * Note: We may want to consider periodically releasing
5054 * rq->lock about these updates so that creating many task
5055 * groups does not result in continually extending hold time.
5056 */
5057 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005058 }
Paul Turner48a16752012-10-04 13:18:31 +02005059
5060 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005061}
5062
Peter Zijlstra9763b672011-07-13 13:09:25 +02005063/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005064 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005065 * This needs to be done in a top-down fashion because the load of a child
5066 * group is a fraction of its parents load.
5067 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005068static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005069{
Vladimir Davydov68520792013-07-15 17:49:19 +04005070 struct rq *rq = rq_of(cfs_rq);
5071 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005072 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005073 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005074
Vladimir Davydov68520792013-07-15 17:49:19 +04005075 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005076 return;
5077
Vladimir Davydov68520792013-07-15 17:49:19 +04005078 cfs_rq->h_load_next = NULL;
5079 for_each_sched_entity(se) {
5080 cfs_rq = cfs_rq_of(se);
5081 cfs_rq->h_load_next = se;
5082 if (cfs_rq->last_h_load_update == now)
5083 break;
5084 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005085
Vladimir Davydov68520792013-07-15 17:49:19 +04005086 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005087 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005088 cfs_rq->last_h_load_update = now;
5089 }
5090
5091 while ((se = cfs_rq->h_load_next) != NULL) {
5092 load = cfs_rq->h_load;
5093 load = div64_ul(load * se->avg.load_avg_contrib,
5094 cfs_rq->runnable_load_avg + 1);
5095 cfs_rq = group_cfs_rq(se);
5096 cfs_rq->h_load = load;
5097 cfs_rq->last_h_load_update = now;
5098 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005099}
5100
Peter Zijlstra367456c2012-02-20 21:49:09 +01005101static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005102{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005103 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005104
Vladimir Davydov68520792013-07-15 17:49:19 +04005105 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005106 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5107 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005108}
5109#else
Paul Turner48a16752012-10-04 13:18:31 +02005110static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005111{
5112}
5113
Peter Zijlstra367456c2012-02-20 21:49:09 +01005114static unsigned long task_h_load(struct task_struct *p)
5115{
Alex Shia003a252013-06-20 10:18:51 +08005116 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005117}
5118#endif
5119
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005120/********** Helpers for find_busiest_group ************************/
5121/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005122 * sg_lb_stats - stats of a sched_group required for load_balancing
5123 */
5124struct sg_lb_stats {
5125 unsigned long avg_load; /*Avg load across the CPUs of the group */
5126 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005127 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005128 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005129 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005130 unsigned int sum_nr_running; /* Nr tasks running in the group */
5131 unsigned int group_capacity;
5132 unsigned int idle_cpus;
5133 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005134 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005135 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005136#ifdef CONFIG_NUMA_BALANCING
5137 unsigned int nr_numa_running;
5138 unsigned int nr_preferred_running;
5139#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005140};
5141
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005142/*
5143 * sd_lb_stats - Structure to store the statistics of a sched_domain
5144 * during load balancing.
5145 */
5146struct sd_lb_stats {
5147 struct sched_group *busiest; /* Busiest group in this sd */
5148 struct sched_group *local; /* Local group in this sd */
5149 unsigned long total_load; /* Total load of all groups in sd */
5150 unsigned long total_pwr; /* Total power of all groups in sd */
5151 unsigned long avg_load; /* Average load across all groups in sd */
5152
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005153 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005154 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005155};
5156
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005157static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5158{
5159 /*
5160 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5161 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5162 * We must however clear busiest_stat::avg_load because
5163 * update_sd_pick_busiest() reads this before assignment.
5164 */
5165 *sds = (struct sd_lb_stats){
5166 .busiest = NULL,
5167 .local = NULL,
5168 .total_load = 0UL,
5169 .total_pwr = 0UL,
5170 .busiest_stat = {
5171 .avg_load = 0UL,
5172 },
5173 };
5174}
5175
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005176/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005177 * get_sd_load_idx - Obtain the load index for a given sched domain.
5178 * @sd: The sched_domain whose load_idx is to be obtained.
5179 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005180 *
5181 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005182 */
5183static inline int get_sd_load_idx(struct sched_domain *sd,
5184 enum cpu_idle_type idle)
5185{
5186 int load_idx;
5187
5188 switch (idle) {
5189 case CPU_NOT_IDLE:
5190 load_idx = sd->busy_idx;
5191 break;
5192
5193 case CPU_NEWLY_IDLE:
5194 load_idx = sd->newidle_idx;
5195 break;
5196 default:
5197 load_idx = sd->idle_idx;
5198 break;
5199 }
5200
5201 return load_idx;
5202}
5203
Li Zefan15f803c2013-03-05 16:07:11 +08005204static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005206 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005207}
5208
5209unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5210{
5211 return default_scale_freq_power(sd, cpu);
5212}
5213
Li Zefan15f803c2013-03-05 16:07:11 +08005214static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005215{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005216 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005217 unsigned long smt_gain = sd->smt_gain;
5218
5219 smt_gain /= weight;
5220
5221 return smt_gain;
5222}
5223
5224unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5225{
5226 return default_scale_smt_power(sd, cpu);
5227}
5228
Li Zefan15f803c2013-03-05 16:07:11 +08005229static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005230{
5231 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005232 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005233
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005234 /*
5235 * Since we're reading these variables without serialization make sure
5236 * we read them once before doing sanity checks on them.
5237 */
5238 age_stamp = ACCESS_ONCE(rq->age_stamp);
5239 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005240
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005241 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005242
5243 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005244 /* Ensures that power won't end up being negative */
5245 available = 0;
5246 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005247 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005248 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005249
Nikhil Rao1399fa72011-05-18 10:09:39 -07005250 if (unlikely((s64)total < SCHED_POWER_SCALE))
5251 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005252
Nikhil Rao1399fa72011-05-18 10:09:39 -07005253 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005254
5255 return div_u64(available, total);
5256}
5257
5258static void update_cpu_power(struct sched_domain *sd, int cpu)
5259{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005260 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005261 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262 struct sched_group *sdg = sd->groups;
5263
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005264 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5265 if (sched_feat(ARCH_POWER))
5266 power *= arch_scale_smt_power(sd, cpu);
5267 else
5268 power *= default_scale_smt_power(sd, cpu);
5269
Nikhil Rao1399fa72011-05-18 10:09:39 -07005270 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005271 }
5272
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005273 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005274
5275 if (sched_feat(ARCH_POWER))
5276 power *= arch_scale_freq_power(sd, cpu);
5277 else
5278 power *= default_scale_freq_power(sd, cpu);
5279
Nikhil Rao1399fa72011-05-18 10:09:39 -07005280 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005281
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005282 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005283 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005284
5285 if (!power)
5286 power = 1;
5287
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005288 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005289 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005290}
5291
Peter Zijlstra029632f2011-10-25 10:00:11 +02005292void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293{
5294 struct sched_domain *child = sd->child;
5295 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005296 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005297 unsigned long interval;
5298
5299 interval = msecs_to_jiffies(sd->balance_interval);
5300 interval = clamp(interval, 1UL, max_load_balance_interval);
5301 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005302
5303 if (!child) {
5304 update_cpu_power(sd, cpu);
5305 return;
5306 }
5307
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005308 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005309
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005310 if (child->flags & SD_OVERLAP) {
5311 /*
5312 * SD_OVERLAP domains cannot assume that child groups
5313 * span the current group.
5314 */
5315
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005316 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5317 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5318
5319 power_orig += sg->sgp->power_orig;
5320 power += sg->sgp->power;
5321 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005322 } else {
5323 /*
5324 * !SD_OVERLAP domains can assume that child groups
5325 * span the current group.
5326 */
5327
5328 group = child->groups;
5329 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005330 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005331 power += group->sgp->power;
5332 group = group->next;
5333 } while (group != child->groups);
5334 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005335
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005336 sdg->sgp->power_orig = power_orig;
5337 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005338}
5339
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005340/*
5341 * Try and fix up capacity for tiny siblings, this is needed when
5342 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5343 * which on its own isn't powerful enough.
5344 *
5345 * See update_sd_pick_busiest() and check_asym_packing().
5346 */
5347static inline int
5348fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5349{
5350 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005351 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005352 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005353 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005354 return 0;
5355
5356 /*
5357 * If ~90% of the cpu_power is still there, we're good.
5358 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005359 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005360 return 1;
5361
5362 return 0;
5363}
5364
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005365/*
5366 * Group imbalance indicates (and tries to solve) the problem where balancing
5367 * groups is inadequate due to tsk_cpus_allowed() constraints.
5368 *
5369 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5370 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5371 * Something like:
5372 *
5373 * { 0 1 2 3 } { 4 5 6 7 }
5374 * * * * *
5375 *
5376 * If we were to balance group-wise we'd place two tasks in the first group and
5377 * two tasks in the second group. Clearly this is undesired as it will overload
5378 * cpu 3 and leave one of the cpus in the second group unused.
5379 *
5380 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005381 * by noticing the lower domain failed to reach balance and had difficulty
5382 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005383 *
5384 * When this is so detected; this group becomes a candidate for busiest; see
5385 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005386 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005387 * to create an effective group imbalance.
5388 *
5389 * This is a somewhat tricky proposition since the next run might not find the
5390 * group imbalance and decide the groups need to be balanced again. A most
5391 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005392 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005393
Peter Zijlstra62633222013-08-19 12:41:09 +02005394static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005395{
Peter Zijlstra62633222013-08-19 12:41:09 +02005396 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005397}
5398
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005399/*
5400 * Compute the group capacity.
5401 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005402 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5403 * first dividing out the smt factor and computing the actual number of cores
5404 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005405 */
5406static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5407{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005408 unsigned int capacity, smt, cpus;
5409 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005410
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005411 power = group->sgp->power;
5412 power_orig = group->sgp->power_orig;
5413 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005414
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005415 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5416 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5417 capacity = cpus / smt; /* cores */
5418
5419 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005420 if (!capacity)
5421 capacity = fix_small_capacity(env->sd, group);
5422
5423 return capacity;
5424}
5425
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005426/**
5427 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5428 * @env: The load balancing environment.
5429 * @group: sched_group whose statistics are to be updated.
5430 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5431 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005432 * @sgs: variable to hold the statistics for this group.
5433 */
5434static inline void update_sg_lb_stats(struct lb_env *env,
5435 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005436 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005437{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005438 unsigned long nr_running;
5439 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005440 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005441
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005442 memset(sgs, 0, sizeof(*sgs));
5443
Michael Wangb94031302012-07-12 16:10:13 +08005444 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005445 struct rq *rq = cpu_rq(i);
5446
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005447 nr_running = rq->nr_running;
5448
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005449 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005450 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005451 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005452 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005453 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454
5455 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005456 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005457#ifdef CONFIG_NUMA_BALANCING
5458 sgs->nr_numa_running += rq->nr_numa_running;
5459 sgs->nr_preferred_running += rq->nr_preferred_running;
5460#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005461 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005462 if (idle_cpu(i))
5463 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005464 }
5465
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005466 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005467 sgs->group_power = group->sgp->power;
5468 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005469
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005470 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005471 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005473 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005474
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005475 sgs->group_imb = sg_imbalanced(group);
5476 sgs->group_capacity = sg_capacity(env, group);
5477
Nikhil Raofab47622010-10-15 13:12:29 -07005478 if (sgs->group_capacity > sgs->sum_nr_running)
5479 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005480}
5481
5482/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005483 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005484 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005485 * @sds: sched_domain statistics
5486 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005487 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005488 *
5489 * Determine if @sg is a busier group than the previously selected
5490 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005491 *
5492 * Return: %true if @sg is a busier group than the previously selected
5493 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005494 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005495static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005496 struct sd_lb_stats *sds,
5497 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005498 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005499{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005500 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005501 return false;
5502
5503 if (sgs->sum_nr_running > sgs->group_capacity)
5504 return true;
5505
5506 if (sgs->group_imb)
5507 return true;
5508
5509 /*
5510 * ASYM_PACKING needs to move all the work to the lowest
5511 * numbered CPUs in the group, therefore mark all groups
5512 * higher than ourself as busy.
5513 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005514 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5515 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005516 if (!sds->busiest)
5517 return true;
5518
5519 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5520 return true;
5521 }
5522
5523 return false;
5524}
5525
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005526#ifdef CONFIG_NUMA_BALANCING
5527static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5528{
5529 if (sgs->sum_nr_running > sgs->nr_numa_running)
5530 return regular;
5531 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5532 return remote;
5533 return all;
5534}
5535
5536static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5537{
5538 if (rq->nr_running > rq->nr_numa_running)
5539 return regular;
5540 if (rq->nr_running > rq->nr_preferred_running)
5541 return remote;
5542 return all;
5543}
5544#else
5545static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5546{
5547 return all;
5548}
5549
5550static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5551{
5552 return regular;
5553}
5554#endif /* CONFIG_NUMA_BALANCING */
5555
Michael Neuling532cb4c2010-06-08 14:57:02 +10005556/**
Hui Kang461819a2011-10-11 23:00:59 -04005557 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005558 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005559 * @balance: Should we balance.
5560 * @sds: variable to hold the statistics for this sched_domain.
5561 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005562static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005563{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005564 struct sched_domain *child = env->sd->child;
5565 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005566 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005567 int load_idx, prefer_sibling = 0;
5568
5569 if (child && child->flags & SD_PREFER_SIBLING)
5570 prefer_sibling = 1;
5571
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005572 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005573
5574 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005575 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005576 int local_group;
5577
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005578 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005579 if (local_group) {
5580 sds->local = sg;
5581 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005582
5583 if (env->idle != CPU_NEWLY_IDLE ||
5584 time_after_eq(jiffies, sg->sgp->next_update))
5585 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005586 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005587
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005588 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005590 if (local_group)
5591 goto next_group;
5592
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005593 /*
5594 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005595 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005596 * and move all the excess tasks away. We lower the capacity
5597 * of a group only if the local group has the capacity to fit
5598 * these excess tasks, i.e. nr_running < group_capacity. The
5599 * extra check prevents the case where you always pull from the
5600 * heaviest group when it is already under-utilized (possible
5601 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005603 if (prefer_sibling && sds->local &&
5604 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005605 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005606
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005607 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005608 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005609 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005610 }
5611
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005612next_group:
5613 /* Now, start updating sd_lb_stats */
5614 sds->total_load += sgs->group_load;
5615 sds->total_pwr += sgs->group_power;
5616
Michael Neuling532cb4c2010-06-08 14:57:02 +10005617 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005618 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005619
5620 if (env->sd->flags & SD_NUMA)
5621 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005622}
5623
Michael Neuling532cb4c2010-06-08 14:57:02 +10005624/**
5625 * check_asym_packing - Check to see if the group is packed into the
5626 * sched doman.
5627 *
5628 * This is primarily intended to used at the sibling level. Some
5629 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5630 * case of POWER7, it can move to lower SMT modes only when higher
5631 * threads are idle. When in lower SMT modes, the threads will
5632 * perform better since they share less core resources. Hence when we
5633 * have idle threads, we want them to be the higher ones.
5634 *
5635 * This packing function is run on idle threads. It checks to see if
5636 * the busiest CPU in this domain (core in the P7 case) has a higher
5637 * CPU number than the packing function is being run on. Here we are
5638 * assuming lower CPU number will be equivalent to lower a SMT thread
5639 * number.
5640 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005641 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005642 * this CPU. The amount of the imbalance is returned in *imbalance.
5643 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005644 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005645 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005646 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005647static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005648{
5649 int busiest_cpu;
5650
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005651 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005652 return 0;
5653
5654 if (!sds->busiest)
5655 return 0;
5656
5657 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005658 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005659 return 0;
5660
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005661 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005662 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5663 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005664
Michael Neuling532cb4c2010-06-08 14:57:02 +10005665 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005666}
5667
5668/**
5669 * fix_small_imbalance - Calculate the minor imbalance that exists
5670 * amongst the groups of a sched_domain, during
5671 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005672 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005673 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005674 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005675static inline
5676void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005677{
5678 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5679 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005680 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005681 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005682
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005683 local = &sds->local_stat;
5684 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005685
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005686 if (!local->sum_nr_running)
5687 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5688 else if (busiest->load_per_task > local->load_per_task)
5689 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005690
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005691 scaled_busy_load_per_task =
5692 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005693 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005694
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005695 if (busiest->avg_load + scaled_busy_load_per_task >=
5696 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005697 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005698 return;
5699 }
5700
5701 /*
5702 * OK, we don't have enough imbalance to justify moving tasks,
5703 * however we may be able to increase total CPU power used by
5704 * moving them.
5705 */
5706
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005707 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005708 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005709 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005710 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005711 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005712
5713 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005714 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005715 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005716 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005717 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005718 min(busiest->load_per_task,
5719 busiest->avg_load - tmp);
5720 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005721
5722 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005723 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005724 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005725 tmp = (busiest->avg_load * busiest->group_power) /
5726 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005727 } else {
5728 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005729 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005730 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005731 pwr_move += local->group_power *
5732 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005733 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734
5735 /* Move if we gain throughput */
5736 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005737 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005738}
5739
5740/**
5741 * calculate_imbalance - Calculate the amount of imbalance present within the
5742 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005743 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005744 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005745 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005746static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005747{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005748 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005749 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005750
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005751 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005752 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005753
5754 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005755 /*
5756 * In the group_imb case we cannot rely on group-wide averages
5757 * to ensure cpu-load equilibrium, look at wider averages. XXX
5758 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005759 busiest->load_per_task =
5760 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005761 }
5762
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005763 /*
5764 * In the presence of smp nice balancing, certain scenarios can have
5765 * max load less than avg load(as we skip the groups at or below
5766 * its cpu_power, while calculating max_load..)
5767 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005768 if (busiest->avg_load <= sds->avg_load ||
5769 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005770 env->imbalance = 0;
5771 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005772 }
5773
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005774 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005775 /*
5776 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005777 * Except of course for the group_imb case, since then we might
5778 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005779 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005780 load_above_capacity =
5781 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005782
Nikhil Rao1399fa72011-05-18 10:09:39 -07005783 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005784 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005785 }
5786
5787 /*
5788 * We're trying to get all the cpus to the average_load, so we don't
5789 * want to push ourselves above the average load, nor do we wish to
5790 * reduce the max loaded cpu below the average load. At the same time,
5791 * we also don't want to reduce the group load below the group capacity
5792 * (so that we can implement power-savings policies etc). Thus we look
5793 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005794 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005795 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005796
5797 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005798 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005799 max_pull * busiest->group_power,
5800 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005801 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802
5803 /*
5804 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005805 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005806 * a think about bumping its value to force at least one task to be
5807 * moved
5808 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005809 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005810 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005811}
Nikhil Raofab47622010-10-15 13:12:29 -07005812
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005813/******* find_busiest_group() helpers end here *********************/
5814
5815/**
5816 * find_busiest_group - Returns the busiest group within the sched_domain
5817 * if there is an imbalance. If there isn't an imbalance, and
5818 * the user has opted for power-savings, it returns a group whose
5819 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5820 * such a group exists.
5821 *
5822 * Also calculates the amount of weighted load which should be moved
5823 * to restore balance.
5824 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005825 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005826 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005827 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005828 * - If no imbalance and user has opted for power-savings balance,
5829 * return the least loaded group whose CPUs can be
5830 * put to idle by rebalancing its tasks onto our group.
5831 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005832static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005833{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005834 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005835 struct sd_lb_stats sds;
5836
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005837 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005838
5839 /*
5840 * Compute the various statistics relavent for load balancing at
5841 * this level.
5842 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005843 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005844 local = &sds.local_stat;
5845 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005846
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005847 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5848 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005849 return sds.busiest;
5850
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005851 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005852 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005853 goto out_balanced;
5854
Nikhil Rao1399fa72011-05-18 10:09:39 -07005855 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005856
Peter Zijlstra866ab432011-02-21 18:56:47 +01005857 /*
5858 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005859 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005860 * isn't true due to cpus_allowed constraints and the like.
5861 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005862 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005863 goto force_balance;
5864
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005865 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005866 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5867 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005868 goto force_balance;
5869
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005870 /*
5871 * If the local group is more busy than the selected busiest group
5872 * don't try and pull any tasks.
5873 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005874 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005875 goto out_balanced;
5876
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005877 /*
5878 * Don't pull any tasks if this group is already above the domain
5879 * average load.
5880 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005881 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005882 goto out_balanced;
5883
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005884 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005885 /*
5886 * This cpu is idle. If the busiest group load doesn't
5887 * have more tasks than the number of available cpu's and
5888 * there is no imbalance between this and busiest group
5889 * wrt to idle cpu's, it is balanced.
5890 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005891 if ((local->idle_cpus < busiest->idle_cpus) &&
5892 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005893 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005894 } else {
5895 /*
5896 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5897 * imbalance_pct to be conservative.
5898 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005899 if (100 * busiest->avg_load <=
5900 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005901 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005902 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005903
Nikhil Raofab47622010-10-15 13:12:29 -07005904force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005905 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005906 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005907 return sds.busiest;
5908
5909out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005910 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005911 return NULL;
5912}
5913
5914/*
5915 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5916 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005917static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005918 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005919{
5920 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005921 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005922 int i;
5923
Peter Zijlstra6906a402013-08-19 15:20:21 +02005924 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005925 unsigned long power, capacity, wl;
5926 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005927
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005928 rq = cpu_rq(i);
5929 rt = fbq_classify_rq(rq);
5930
5931 /*
5932 * We classify groups/runqueues into three groups:
5933 * - regular: there are !numa tasks
5934 * - remote: there are numa tasks that run on the 'wrong' node
5935 * - all: there is no distinction
5936 *
5937 * In order to avoid migrating ideally placed numa tasks,
5938 * ignore those when there's better options.
5939 *
5940 * If we ignore the actual busiest queue to migrate another
5941 * task, the next balance pass can still reduce the busiest
5942 * queue by moving tasks around inside the node.
5943 *
5944 * If we cannot move enough load due to this classification
5945 * the next pass will adjust the group classification and
5946 * allow migration of more tasks.
5947 *
5948 * Both cases only affect the total convergence complexity.
5949 */
5950 if (rt > env->fbq_type)
5951 continue;
5952
5953 power = power_of(i);
5954 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005955 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005956 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005957
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005958 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005959
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005960 /*
5961 * When comparing with imbalance, use weighted_cpuload()
5962 * which is not scaled with the cpu power.
5963 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005964 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005965 continue;
5966
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005967 /*
5968 * For the load comparisons with the other cpu's, consider
5969 * the weighted_cpuload() scaled with the cpu power, so that
5970 * the load can be moved away from the cpu that is potentially
5971 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005972 *
5973 * Thus we're looking for max(wl_i / power_i), crosswise
5974 * multiplication to rid ourselves of the division works out
5975 * to: wl_i * power_j > wl_j * power_i; where j is our
5976 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005977 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005978 if (wl * busiest_power > busiest_load * power) {
5979 busiest_load = wl;
5980 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005981 busiest = rq;
5982 }
5983 }
5984
5985 return busiest;
5986}
5987
5988/*
5989 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5990 * so long as it is large enough.
5991 */
5992#define MAX_PINNED_INTERVAL 512
5993
5994/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005995DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005996
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005997static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005998{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005999 struct sched_domain *sd = env->sd;
6000
6001 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006002
6003 /*
6004 * ASYM_PACKING needs to force migrate tasks from busy but
6005 * higher numbered CPUs in order to pack all tasks in the
6006 * lowest numbered CPUs.
6007 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006008 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006009 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006010 }
6011
6012 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6013}
6014
Tejun Heo969c7922010-05-06 18:49:21 +02006015static int active_load_balance_cpu_stop(void *data);
6016
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006017static int should_we_balance(struct lb_env *env)
6018{
6019 struct sched_group *sg = env->sd->groups;
6020 struct cpumask *sg_cpus, *sg_mask;
6021 int cpu, balance_cpu = -1;
6022
6023 /*
6024 * In the newly idle case, we will allow all the cpu's
6025 * to do the newly idle load balance.
6026 */
6027 if (env->idle == CPU_NEWLY_IDLE)
6028 return 1;
6029
6030 sg_cpus = sched_group_cpus(sg);
6031 sg_mask = sched_group_mask(sg);
6032 /* Try to find first idle cpu */
6033 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6034 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6035 continue;
6036
6037 balance_cpu = cpu;
6038 break;
6039 }
6040
6041 if (balance_cpu == -1)
6042 balance_cpu = group_balance_cpu(sg);
6043
6044 /*
6045 * First idle cpu or the first cpu(busiest) in this sched group
6046 * is eligible for doing load balancing at this and above domains.
6047 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006048 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006049}
6050
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006051/*
6052 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6053 * tasks if there is an imbalance.
6054 */
6055static int load_balance(int this_cpu, struct rq *this_rq,
6056 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006057 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006058{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306059 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006060 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006061 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006062 struct rq *busiest;
6063 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006064 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006065
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006066 struct lb_env env = {
6067 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006068 .dst_cpu = this_cpu,
6069 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306070 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006071 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006072 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006073 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006074 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006075 };
6076
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006077 /*
6078 * For NEWLY_IDLE load_balancing, we don't need to consider
6079 * other cpus in our group
6080 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006081 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006082 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006083
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006084 cpumask_copy(cpus, cpu_active_mask);
6085
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006086 schedstat_inc(sd, lb_count[idle]);
6087
6088redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006089 if (!should_we_balance(&env)) {
6090 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006092 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006093
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006094 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006095 if (!group) {
6096 schedstat_inc(sd, lb_nobusyg[idle]);
6097 goto out_balanced;
6098 }
6099
Michael Wangb94031302012-07-12 16:10:13 +08006100 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006101 if (!busiest) {
6102 schedstat_inc(sd, lb_nobusyq[idle]);
6103 goto out_balanced;
6104 }
6105
Michael Wang78feefc2012-08-06 16:41:59 +08006106 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006107
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006108 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006109
6110 ld_moved = 0;
6111 if (busiest->nr_running > 1) {
6112 /*
6113 * Attempt to move tasks. If find_busiest_group has found
6114 * an imbalance but busiest->nr_running <= 1, the group is
6115 * still unbalanced. ld_moved simply stays zero, so it is
6116 * correctly treated as an imbalance.
6117 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006118 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006119 env.src_cpu = busiest->cpu;
6120 env.src_rq = busiest;
6121 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006122
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006123more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006125 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306126
6127 /*
6128 * cur_ld_moved - load moved in current iteration
6129 * ld_moved - cumulative load moved across iterations
6130 */
6131 cur_ld_moved = move_tasks(&env);
6132 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006133 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006134 local_irq_restore(flags);
6135
6136 /*
6137 * some other cpu did the load balance for us.
6138 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306139 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6140 resched_cpu(env.dst_cpu);
6141
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006142 if (env.flags & LBF_NEED_BREAK) {
6143 env.flags &= ~LBF_NEED_BREAK;
6144 goto more_balance;
6145 }
6146
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306147 /*
6148 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6149 * us and move them to an alternate dst_cpu in our sched_group
6150 * where they can run. The upper limit on how many times we
6151 * iterate on same src_cpu is dependent on number of cpus in our
6152 * sched_group.
6153 *
6154 * This changes load balance semantics a bit on who can move
6155 * load to a given_cpu. In addition to the given_cpu itself
6156 * (or a ilb_cpu acting on its behalf where given_cpu is
6157 * nohz-idle), we now have balance_cpu in a position to move
6158 * load to given_cpu. In rare situations, this may cause
6159 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6160 * _independently_ and at _same_ time to move some load to
6161 * given_cpu) causing exceess load to be moved to given_cpu.
6162 * This however should not happen so much in practice and
6163 * moreover subsequent load balance cycles should correct the
6164 * excess load moved.
6165 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006166 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306167
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006168 /* Prevent to re-select dst_cpu via env's cpus */
6169 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6170
Michael Wang78feefc2012-08-06 16:41:59 +08006171 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306172 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006173 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306174 env.loop = 0;
6175 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006176
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306177 /*
6178 * Go back to "more_balance" rather than "redo" since we
6179 * need to continue with same src_cpu.
6180 */
6181 goto more_balance;
6182 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006183
Peter Zijlstra62633222013-08-19 12:41:09 +02006184 /*
6185 * We failed to reach balance because of affinity.
6186 */
6187 if (sd_parent) {
6188 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6189
6190 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6191 *group_imbalance = 1;
6192 } else if (*group_imbalance)
6193 *group_imbalance = 0;
6194 }
6195
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006196 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006197 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006198 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306199 if (!cpumask_empty(cpus)) {
6200 env.loop = 0;
6201 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006202 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306203 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006204 goto out_balanced;
6205 }
6206 }
6207
6208 if (!ld_moved) {
6209 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006210 /*
6211 * Increment the failure counter only on periodic balance.
6212 * We do not want newidle balance, which can be very
6213 * frequent, pollute the failure counter causing
6214 * excessive cache_hot migrations and active balances.
6215 */
6216 if (idle != CPU_NEWLY_IDLE)
6217 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006218
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006219 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006220 raw_spin_lock_irqsave(&busiest->lock, flags);
6221
Tejun Heo969c7922010-05-06 18:49:21 +02006222 /* don't kick the active_load_balance_cpu_stop,
6223 * if the curr task on busiest cpu can't be
6224 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006225 */
6226 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006227 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228 raw_spin_unlock_irqrestore(&busiest->lock,
6229 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006230 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006231 goto out_one_pinned;
6232 }
6233
Tejun Heo969c7922010-05-06 18:49:21 +02006234 /*
6235 * ->active_balance synchronizes accesses to
6236 * ->active_balance_work. Once set, it's cleared
6237 * only after active load balance is finished.
6238 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006239 if (!busiest->active_balance) {
6240 busiest->active_balance = 1;
6241 busiest->push_cpu = this_cpu;
6242 active_balance = 1;
6243 }
6244 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006245
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006246 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006247 stop_one_cpu_nowait(cpu_of(busiest),
6248 active_load_balance_cpu_stop, busiest,
6249 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006250 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006251
6252 /*
6253 * We've kicked active balancing, reset the failure
6254 * counter.
6255 */
6256 sd->nr_balance_failed = sd->cache_nice_tries+1;
6257 }
6258 } else
6259 sd->nr_balance_failed = 0;
6260
6261 if (likely(!active_balance)) {
6262 /* We were unbalanced, so reset the balancing interval */
6263 sd->balance_interval = sd->min_interval;
6264 } else {
6265 /*
6266 * If we've begun active balancing, start to back off. This
6267 * case may not be covered by the all_pinned logic if there
6268 * is only 1 task on the busy runqueue (because we don't call
6269 * move_tasks).
6270 */
6271 if (sd->balance_interval < sd->max_interval)
6272 sd->balance_interval *= 2;
6273 }
6274
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006275 goto out;
6276
6277out_balanced:
6278 schedstat_inc(sd, lb_balanced[idle]);
6279
6280 sd->nr_balance_failed = 0;
6281
6282out_one_pinned:
6283 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006284 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006285 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006286 (sd->balance_interval < sd->max_interval))
6287 sd->balance_interval *= 2;
6288
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006289 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006290out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006291 return ld_moved;
6292}
6293
6294/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006295 * idle_balance is called by schedule() if this_cpu is about to become
6296 * idle. Attempts to pull tasks from other CPUs.
6297 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006298void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006299{
6300 struct sched_domain *sd;
6301 int pulled_task = 0;
6302 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006303 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006304
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006305 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006306
6307 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6308 return;
6309
Peter Zijlstraf492e122009-12-23 15:29:42 +01006310 /*
6311 * Drop the rq->lock, but keep IRQ/preempt disabled.
6312 */
6313 raw_spin_unlock(&this_rq->lock);
6314
Paul Turner48a16752012-10-04 13:18:31 +02006315 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006316 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006317 for_each_domain(this_cpu, sd) {
6318 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006319 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006320 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321
6322 if (!(sd->flags & SD_LOAD_BALANCE))
6323 continue;
6324
Jason Low9bd721c2013-09-13 11:26:52 -07006325 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6326 break;
6327
Peter Zijlstraf492e122009-12-23 15:29:42 +01006328 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006329 t0 = sched_clock_cpu(this_cpu);
6330
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006331 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006332 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006333 sd, CPU_NEWLY_IDLE,
6334 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006335
6336 domain_cost = sched_clock_cpu(this_cpu) - t0;
6337 if (domain_cost > sd->max_newidle_lb_cost)
6338 sd->max_newidle_lb_cost = domain_cost;
6339
6340 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006341 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006342
6343 interval = msecs_to_jiffies(sd->balance_interval);
6344 if (time_after(next_balance, sd->last_balance + interval))
6345 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006346 if (pulled_task) {
6347 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006348 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006349 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006350 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006351 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006352
6353 raw_spin_lock(&this_rq->lock);
6354
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006355 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6356 /*
6357 * We are going idle. next_balance may be set based on
6358 * a busy processor. So reset next_balance.
6359 */
6360 this_rq->next_balance = next_balance;
6361 }
Jason Low9bd721c2013-09-13 11:26:52 -07006362
6363 if (curr_cost > this_rq->max_idle_balance_cost)
6364 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006365}
6366
6367/*
Tejun Heo969c7922010-05-06 18:49:21 +02006368 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6369 * running tasks off the busiest CPU onto idle CPUs. It requires at
6370 * least 1 task to be running on each physical CPU where possible, and
6371 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006372 */
Tejun Heo969c7922010-05-06 18:49:21 +02006373static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006374{
Tejun Heo969c7922010-05-06 18:49:21 +02006375 struct rq *busiest_rq = data;
6376 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006377 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006378 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006379 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006380
6381 raw_spin_lock_irq(&busiest_rq->lock);
6382
6383 /* make sure the requested cpu hasn't gone down in the meantime */
6384 if (unlikely(busiest_cpu != smp_processor_id() ||
6385 !busiest_rq->active_balance))
6386 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006387
6388 /* Is there any task to move? */
6389 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006390 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006391
6392 /*
6393 * This condition is "impossible", if it occurs
6394 * we need to fix it. Originally reported by
6395 * Bjorn Helgaas on a 128-cpu setup.
6396 */
6397 BUG_ON(busiest_rq == target_rq);
6398
6399 /* move a task from busiest_rq to target_rq */
6400 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401
6402 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006403 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006404 for_each_domain(target_cpu, sd) {
6405 if ((sd->flags & SD_LOAD_BALANCE) &&
6406 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6407 break;
6408 }
6409
6410 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006411 struct lb_env env = {
6412 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006413 .dst_cpu = target_cpu,
6414 .dst_rq = target_rq,
6415 .src_cpu = busiest_rq->cpu,
6416 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006417 .idle = CPU_IDLE,
6418 };
6419
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006420 schedstat_inc(sd, alb_count);
6421
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006422 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423 schedstat_inc(sd, alb_pushed);
6424 else
6425 schedstat_inc(sd, alb_failed);
6426 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006427 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006428 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006429out_unlock:
6430 busiest_rq->active_balance = 0;
6431 raw_spin_unlock_irq(&busiest_rq->lock);
6432 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006433}
6434
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006435#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006436/*
6437 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006438 * - When one of the busy CPUs notice that there may be an idle rebalancing
6439 * needed, they will kick the idle load balancer, which then does idle
6440 * load balancing for all the idle CPUs.
6441 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006442static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006443 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006444 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006445 unsigned long next_balance; /* in jiffy units */
6446} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006447
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006448static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006449{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006450 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006451
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006452 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6453 return ilb;
6454
6455 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006456}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006457
6458/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006459 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6460 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6461 * CPU (if there is one).
6462 */
6463static void nohz_balancer_kick(int cpu)
6464{
6465 int ilb_cpu;
6466
6467 nohz.next_balance++;
6468
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006469 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006470
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006471 if (ilb_cpu >= nr_cpu_ids)
6472 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006473
Suresh Siddhacd490c52011-12-06 11:26:34 -08006474 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006475 return;
6476 /*
6477 * Use smp_send_reschedule() instead of resched_cpu().
6478 * This way we generate a sched IPI on the target cpu which
6479 * is idle. And the softirq performing nohz idle load balance
6480 * will be run before returning from the IPI.
6481 */
6482 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006483 return;
6484}
6485
Alex Shic1cc0172012-09-10 15:10:58 +08006486static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006487{
6488 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6489 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6490 atomic_dec(&nohz.nr_cpus);
6491 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6492 }
6493}
6494
Suresh Siddha69e1e812011-12-01 17:07:33 -08006495static inline void set_cpu_sd_state_busy(void)
6496{
6497 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006498
Suresh Siddha69e1e812011-12-01 17:07:33 -08006499 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006500 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006501
6502 if (!sd || !sd->nohz_idle)
6503 goto unlock;
6504 sd->nohz_idle = 0;
6505
6506 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006507 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006508unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006509 rcu_read_unlock();
6510}
6511
6512void set_cpu_sd_state_idle(void)
6513{
6514 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006515
Suresh Siddha69e1e812011-12-01 17:07:33 -08006516 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006517 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006518
6519 if (!sd || sd->nohz_idle)
6520 goto unlock;
6521 sd->nohz_idle = 1;
6522
6523 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006524 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006525unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006526 rcu_read_unlock();
6527}
6528
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006529/*
Alex Shic1cc0172012-09-10 15:10:58 +08006530 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006531 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006532 */
Alex Shic1cc0172012-09-10 15:10:58 +08006533void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006534{
Suresh Siddha71325962012-01-19 18:28:57 -08006535 /*
6536 * If this cpu is going down, then nothing needs to be done.
6537 */
6538 if (!cpu_active(cpu))
6539 return;
6540
Alex Shic1cc0172012-09-10 15:10:58 +08006541 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6542 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006543
Alex Shic1cc0172012-09-10 15:10:58 +08006544 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6545 atomic_inc(&nohz.nr_cpus);
6546 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006547}
Suresh Siddha71325962012-01-19 18:28:57 -08006548
Paul Gortmaker0db06282013-06-19 14:53:51 -04006549static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006550 unsigned long action, void *hcpu)
6551{
6552 switch (action & ~CPU_TASKS_FROZEN) {
6553 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006554 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006555 return NOTIFY_OK;
6556 default:
6557 return NOTIFY_DONE;
6558 }
6559}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006560#endif
6561
6562static DEFINE_SPINLOCK(balancing);
6563
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006564/*
6565 * Scale the max load_balance interval with the number of CPUs in the system.
6566 * This trades load-balance latency on larger machines for less cross talk.
6567 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006568void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006569{
6570 max_load_balance_interval = HZ*num_online_cpus()/10;
6571}
6572
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006573/*
6574 * It checks each scheduling domain to see if it is due to be balanced,
6575 * and initiates a balancing operation if so.
6576 *
Libinb9b08532013-04-01 19:14:01 +08006577 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006578 */
6579static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6580{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006581 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006582 struct rq *rq = cpu_rq(cpu);
6583 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006584 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006585 /* Earliest time when we have to do rebalance again */
6586 unsigned long next_balance = jiffies + 60*HZ;
6587 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006588 int need_serialize, need_decay = 0;
6589 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006590
Paul Turner48a16752012-10-04 13:18:31 +02006591 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006592
Peter Zijlstradce840a2011-04-07 14:09:50 +02006593 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006594 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006595 /*
6596 * Decay the newidle max times here because this is a regular
6597 * visit to all the domains. Decay ~1% per second.
6598 */
6599 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6600 sd->max_newidle_lb_cost =
6601 (sd->max_newidle_lb_cost * 253) / 256;
6602 sd->next_decay_max_lb_cost = jiffies + HZ;
6603 need_decay = 1;
6604 }
6605 max_cost += sd->max_newidle_lb_cost;
6606
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006607 if (!(sd->flags & SD_LOAD_BALANCE))
6608 continue;
6609
Jason Lowf48627e2013-09-13 11:26:53 -07006610 /*
6611 * Stop the load balance at this level. There is another
6612 * CPU in our sched group which is doing load balancing more
6613 * actively.
6614 */
6615 if (!continue_balancing) {
6616 if (need_decay)
6617 continue;
6618 break;
6619 }
6620
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006621 interval = sd->balance_interval;
6622 if (idle != CPU_IDLE)
6623 interval *= sd->busy_factor;
6624
6625 /* scale ms to jiffies */
6626 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006627 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006628
6629 need_serialize = sd->flags & SD_SERIALIZE;
6630
6631 if (need_serialize) {
6632 if (!spin_trylock(&balancing))
6633 goto out;
6634 }
6635
6636 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006637 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006638 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006639 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006640 * env->dst_cpu, so we can't know our idle
6641 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006642 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006643 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006644 }
6645 sd->last_balance = jiffies;
6646 }
6647 if (need_serialize)
6648 spin_unlock(&balancing);
6649out:
6650 if (time_after(next_balance, sd->last_balance + interval)) {
6651 next_balance = sd->last_balance + interval;
6652 update_next_balance = 1;
6653 }
Jason Lowf48627e2013-09-13 11:26:53 -07006654 }
6655 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006656 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006657 * Ensure the rq-wide value also decays but keep it at a
6658 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006659 */
Jason Lowf48627e2013-09-13 11:26:53 -07006660 rq->max_idle_balance_cost =
6661 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006662 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006663 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006664
6665 /*
6666 * next_balance will be updated only when there is a need.
6667 * When the cpu is attached to null domain for ex, it will not be
6668 * updated.
6669 */
6670 if (likely(update_next_balance))
6671 rq->next_balance = next_balance;
6672}
6673
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006674#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006675/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006676 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006677 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6678 */
6679static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6680{
6681 struct rq *this_rq = cpu_rq(this_cpu);
6682 struct rq *rq;
6683 int balance_cpu;
6684
Suresh Siddha1c792db2011-12-01 17:07:32 -08006685 if (idle != CPU_IDLE ||
6686 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6687 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006688
6689 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006690 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006691 continue;
6692
6693 /*
6694 * If this cpu gets work to do, stop the load balancing
6695 * work being done for other cpus. Next load
6696 * balancing owner will pick it up.
6697 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006698 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006699 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006700
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006701 rq = cpu_rq(balance_cpu);
6702
6703 raw_spin_lock_irq(&rq->lock);
6704 update_rq_clock(rq);
6705 update_idle_cpu_load(rq);
6706 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006707
6708 rebalance_domains(balance_cpu, CPU_IDLE);
6709
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006710 if (time_after(this_rq->next_balance, rq->next_balance))
6711 this_rq->next_balance = rq->next_balance;
6712 }
6713 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006714end:
6715 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006716}
6717
6718/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006719 * Current heuristic for kicking the idle load balancer in the presence
6720 * of an idle cpu is the system.
6721 * - This rq has more than one task.
6722 * - At any scheduler domain level, this cpu's scheduler group has multiple
6723 * busy cpu's exceeding the group's power.
6724 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6725 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006726 */
6727static inline int nohz_kick_needed(struct rq *rq, int cpu)
6728{
6729 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006730 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006731
Suresh Siddha1c792db2011-12-01 17:07:32 -08006732 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006733 return 0;
6734
Suresh Siddha1c792db2011-12-01 17:07:32 -08006735 /*
6736 * We may be recently in ticked or tickless idle mode. At the first
6737 * busy tick after returning from idle, we will update the busy stats.
6738 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006739 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006740 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006741
6742 /*
6743 * None are in tickless mode and hence no need for NOHZ idle load
6744 * balancing.
6745 */
6746 if (likely(!atomic_read(&nohz.nr_cpus)))
6747 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006748
6749 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006750 return 0;
6751
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006752 if (rq->nr_running >= 2)
6753 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006754
Peter Zijlstra067491b2011-12-07 14:32:08 +01006755 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006756 for_each_domain(cpu, sd) {
6757 struct sched_group *sg = sd->groups;
6758 struct sched_group_power *sgp = sg->sgp;
6759 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006760
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006761 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006762 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006763
6764 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6765 && (cpumask_first_and(nohz.idle_cpus_mask,
6766 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006767 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006768
6769 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6770 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006771 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006772 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006773 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006774
6775need_kick_unlock:
6776 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006777need_kick:
6778 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006779}
6780#else
6781static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6782#endif
6783
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006784/*
6785 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006786 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006787 */
6788static void run_rebalance_domains(struct softirq_action *h)
6789{
6790 int this_cpu = smp_processor_id();
6791 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006792 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006793 CPU_IDLE : CPU_NOT_IDLE;
6794
6795 rebalance_domains(this_cpu, idle);
6796
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006797 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006798 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006799 * balancing on behalf of the other idle cpus whose ticks are
6800 * stopped.
6801 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006802 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006803}
6804
6805static inline int on_null_domain(int cpu)
6806{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006807 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006808}
6809
6810/*
6811 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006812 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006813void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006814{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006815 /* Don't need to rebalance while attached to NULL domain */
6816 if (time_after_eq(jiffies, rq->next_balance) &&
6817 likely(!on_null_domain(cpu)))
6818 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006819#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006820 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006821 nohz_balancer_kick(cpu);
6822#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006823}
6824
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006825static void rq_online_fair(struct rq *rq)
6826{
6827 update_sysctl();
6828}
6829
6830static void rq_offline_fair(struct rq *rq)
6831{
6832 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006833
6834 /* Ensure any throttled groups are reachable by pick_next_task */
6835 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006836}
6837
Dhaval Giani55e12e52008-06-24 23:39:43 +05306838#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006839
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006840/*
6841 * scheduler tick hitting a task of our scheduling class:
6842 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006843static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006844{
6845 struct cfs_rq *cfs_rq;
6846 struct sched_entity *se = &curr->se;
6847
6848 for_each_sched_entity(se) {
6849 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006850 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006851 }
Ben Segall18bf2802012-10-04 12:51:20 +02006852
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006853 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006854 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006855
Ben Segall18bf2802012-10-04 12:51:20 +02006856 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006857}
6858
6859/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006860 * called on fork with the child task as argument from the parent's context
6861 * - child not yet on the tasklist
6862 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006863 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006864static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006865{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006866 struct cfs_rq *cfs_rq;
6867 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006868 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006869 struct rq *rq = this_rq();
6870 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006871
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006872 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006873
Peter Zijlstra861d0342010-08-19 13:31:43 +02006874 update_rq_clock(rq);
6875
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006876 cfs_rq = task_cfs_rq(current);
6877 curr = cfs_rq->curr;
6878
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006879 /*
6880 * Not only the cpu but also the task_group of the parent might have
6881 * been changed after parent->se.parent,cfs_rq were copied to
6882 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6883 * of child point to valid ones.
6884 */
6885 rcu_read_lock();
6886 __set_task_cpu(p, this_cpu);
6887 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006888
Ting Yang7109c442007-08-28 12:53:24 +02006889 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006890
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006891 if (curr)
6892 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006893 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006894
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006895 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006896 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006897 * Upon rescheduling, sched_class::put_prev_task() will place
6898 * 'current' within the tree based on its new key value.
6899 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006900 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306901 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006902 }
6903
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006904 se->vruntime -= cfs_rq->min_vruntime;
6905
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006906 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006907}
6908
Steven Rostedtcb469842008-01-25 21:08:22 +01006909/*
6910 * Priority of the task has changed. Check to see if we preempt
6911 * the current task.
6912 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006913static void
6914prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006915{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006916 if (!p->se.on_rq)
6917 return;
6918
Steven Rostedtcb469842008-01-25 21:08:22 +01006919 /*
6920 * Reschedule if we are currently running on this runqueue and
6921 * our priority decreased, or if we are not currently running on
6922 * this runqueue and our priority is higher than the current's
6923 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006924 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006925 if (p->prio > oldprio)
6926 resched_task(rq->curr);
6927 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006928 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006929}
6930
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006931static void switched_from_fair(struct rq *rq, struct task_struct *p)
6932{
6933 struct sched_entity *se = &p->se;
6934 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6935
6936 /*
6937 * Ensure the task's vruntime is normalized, so that when its
6938 * switched back to the fair class the enqueue_entity(.flags=0) will
6939 * do the right thing.
6940 *
6941 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6942 * have normalized the vruntime, if it was !on_rq, then only when
6943 * the task is sleeping will it still have non-normalized vruntime.
6944 */
6945 if (!se->on_rq && p->state != TASK_RUNNING) {
6946 /*
6947 * Fix up our vruntime so that the current sleep doesn't
6948 * cause 'unlimited' sleep bonus.
6949 */
6950 place_entity(cfs_rq, se, 0);
6951 se->vruntime -= cfs_rq->min_vruntime;
6952 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006953
Alex Shi141965c2013-06-26 13:05:39 +08006954#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006955 /*
6956 * Remove our load from contribution when we leave sched_fair
6957 * and ensure we don't carry in an old decay_count if we
6958 * switch back.
6959 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006960 if (se->avg.decay_count) {
6961 __synchronize_entity_decay(se);
6962 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006963 }
6964#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006965}
6966
Steven Rostedtcb469842008-01-25 21:08:22 +01006967/*
6968 * We switched to the sched_fair class.
6969 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006970static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006971{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006972 if (!p->se.on_rq)
6973 return;
6974
Steven Rostedtcb469842008-01-25 21:08:22 +01006975 /*
6976 * We were most likely switched from sched_rt, so
6977 * kick off the schedule if running, otherwise just see
6978 * if we can still preempt the current task.
6979 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006980 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006981 resched_task(rq->curr);
6982 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006983 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006984}
6985
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006986/* Account for a task changing its policy or group.
6987 *
6988 * This routine is mostly called to set cfs_rq->curr field when a task
6989 * migrates between groups/classes.
6990 */
6991static void set_curr_task_fair(struct rq *rq)
6992{
6993 struct sched_entity *se = &rq->curr->se;
6994
Paul Turnerec12cb72011-07-21 09:43:30 -07006995 for_each_sched_entity(se) {
6996 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6997
6998 set_next_entity(cfs_rq, se);
6999 /* ensure bandwidth has been allocated on our new cfs_rq */
7000 account_cfs_rq_runtime(cfs_rq, 0);
7001 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007002}
7003
Peter Zijlstra029632f2011-10-25 10:00:11 +02007004void init_cfs_rq(struct cfs_rq *cfs_rq)
7005{
7006 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007007 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7008#ifndef CONFIG_64BIT
7009 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7010#endif
Alex Shi141965c2013-06-26 13:05:39 +08007011#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007012 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007013 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007014#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007015}
7016
Peter Zijlstra810b3812008-02-29 15:21:01 -05007017#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007018static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007019{
Paul Turneraff3e492012-10-04 13:18:30 +02007020 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007021 /*
7022 * If the task was not on the rq at the time of this cgroup movement
7023 * it must have been asleep, sleeping tasks keep their ->vruntime
7024 * absolute on their old rq until wakeup (needed for the fair sleeper
7025 * bonus in place_entity()).
7026 *
7027 * If it was on the rq, we've just 'preempted' it, which does convert
7028 * ->vruntime to a relative base.
7029 *
7030 * Make sure both cases convert their relative position when migrating
7031 * to another cgroup's rq. This does somewhat interfere with the
7032 * fair sleeper stuff for the first placement, but who cares.
7033 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007034 /*
7035 * When !on_rq, vruntime of the task has usually NOT been normalized.
7036 * But there are some cases where it has already been normalized:
7037 *
7038 * - Moving a forked child which is waiting for being woken up by
7039 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007040 * - Moving a task which has been woken up by try_to_wake_up() and
7041 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007042 *
7043 * To prevent boost or penalty in the new cfs_rq caused by delta
7044 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7045 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007046 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007047 on_rq = 1;
7048
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007049 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007050 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7051 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007052 if (!on_rq) {
7053 cfs_rq = cfs_rq_of(&p->se);
7054 p->se.vruntime += cfs_rq->min_vruntime;
7055#ifdef CONFIG_SMP
7056 /*
7057 * migrate_task_rq_fair() will have removed our previous
7058 * contribution, but we must synchronize for ongoing future
7059 * decay.
7060 */
7061 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7062 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7063#endif
7064 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007065}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007066
7067void free_fair_sched_group(struct task_group *tg)
7068{
7069 int i;
7070
7071 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7072
7073 for_each_possible_cpu(i) {
7074 if (tg->cfs_rq)
7075 kfree(tg->cfs_rq[i]);
7076 if (tg->se)
7077 kfree(tg->se[i]);
7078 }
7079
7080 kfree(tg->cfs_rq);
7081 kfree(tg->se);
7082}
7083
7084int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7085{
7086 struct cfs_rq *cfs_rq;
7087 struct sched_entity *se;
7088 int i;
7089
7090 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7091 if (!tg->cfs_rq)
7092 goto err;
7093 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7094 if (!tg->se)
7095 goto err;
7096
7097 tg->shares = NICE_0_LOAD;
7098
7099 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7100
7101 for_each_possible_cpu(i) {
7102 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7103 GFP_KERNEL, cpu_to_node(i));
7104 if (!cfs_rq)
7105 goto err;
7106
7107 se = kzalloc_node(sizeof(struct sched_entity),
7108 GFP_KERNEL, cpu_to_node(i));
7109 if (!se)
7110 goto err_free_rq;
7111
7112 init_cfs_rq(cfs_rq);
7113 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7114 }
7115
7116 return 1;
7117
7118err_free_rq:
7119 kfree(cfs_rq);
7120err:
7121 return 0;
7122}
7123
7124void unregister_fair_sched_group(struct task_group *tg, int cpu)
7125{
7126 struct rq *rq = cpu_rq(cpu);
7127 unsigned long flags;
7128
7129 /*
7130 * Only empty task groups can be destroyed; so we can speculatively
7131 * check on_list without danger of it being re-added.
7132 */
7133 if (!tg->cfs_rq[cpu]->on_list)
7134 return;
7135
7136 raw_spin_lock_irqsave(&rq->lock, flags);
7137 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7138 raw_spin_unlock_irqrestore(&rq->lock, flags);
7139}
7140
7141void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7142 struct sched_entity *se, int cpu,
7143 struct sched_entity *parent)
7144{
7145 struct rq *rq = cpu_rq(cpu);
7146
7147 cfs_rq->tg = tg;
7148 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007149 init_cfs_rq_runtime(cfs_rq);
7150
7151 tg->cfs_rq[cpu] = cfs_rq;
7152 tg->se[cpu] = se;
7153
7154 /* se could be NULL for root_task_group */
7155 if (!se)
7156 return;
7157
7158 if (!parent)
7159 se->cfs_rq = &rq->cfs;
7160 else
7161 se->cfs_rq = parent->my_q;
7162
7163 se->my_q = cfs_rq;
7164 update_load_set(&se->load, 0);
7165 se->parent = parent;
7166}
7167
7168static DEFINE_MUTEX(shares_mutex);
7169
7170int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7171{
7172 int i;
7173 unsigned long flags;
7174
7175 /*
7176 * We can't change the weight of the root cgroup.
7177 */
7178 if (!tg->se[0])
7179 return -EINVAL;
7180
7181 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7182
7183 mutex_lock(&shares_mutex);
7184 if (tg->shares == shares)
7185 goto done;
7186
7187 tg->shares = shares;
7188 for_each_possible_cpu(i) {
7189 struct rq *rq = cpu_rq(i);
7190 struct sched_entity *se;
7191
7192 se = tg->se[i];
7193 /* Propagate contribution to hierarchy */
7194 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007195
7196 /* Possible calls to update_curr() need rq clock */
7197 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007198 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007199 update_cfs_shares(group_cfs_rq(se));
7200 raw_spin_unlock_irqrestore(&rq->lock, flags);
7201 }
7202
7203done:
7204 mutex_unlock(&shares_mutex);
7205 return 0;
7206}
7207#else /* CONFIG_FAIR_GROUP_SCHED */
7208
7209void free_fair_sched_group(struct task_group *tg) { }
7210
7211int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7212{
7213 return 1;
7214}
7215
7216void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7217
7218#endif /* CONFIG_FAIR_GROUP_SCHED */
7219
Peter Zijlstra810b3812008-02-29 15:21:01 -05007220
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007221static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007222{
7223 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007224 unsigned int rr_interval = 0;
7225
7226 /*
7227 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7228 * idle runqueue:
7229 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007230 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007231 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007232
7233 return rr_interval;
7234}
7235
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007236/*
7237 * All the scheduling class methods:
7238 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007239const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007240 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007241 .enqueue_task = enqueue_task_fair,
7242 .dequeue_task = dequeue_task_fair,
7243 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007244 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007245
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007246 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007247
7248 .pick_next_task = pick_next_task_fair,
7249 .put_prev_task = put_prev_task_fair,
7250
Peter Williams681f3e62007-10-24 18:23:51 +02007251#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007252 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007253 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007254
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007255 .rq_online = rq_online_fair,
7256 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007257
7258 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007259#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007260
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007261 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007262 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007263 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007264
7265 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007266 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007267 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007268
Peter Williams0d721ce2009-09-21 01:31:53 +00007269 .get_rr_interval = get_rr_interval_fair,
7270
Peter Zijlstra810b3812008-02-29 15:21:01 -05007271#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007272 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007273#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007274};
7275
7276#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007277void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007278{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007279 struct cfs_rq *cfs_rq;
7280
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007281 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007282 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007283 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007284 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007285}
7286#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007287
7288__init void init_sched_fair_class(void)
7289{
7290#ifdef CONFIG_SMP
7291 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7292
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007293#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007294 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007295 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007296 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007297#endif
7298#endif /* SMP */
7299
7300}