blob: 5bd309c035c7f89fb5f8127188dc77c855cb3baf [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100896 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100897 struct list_head task_list;
898
899 struct rcu_head rcu;
900 atomic_long_t faults[0];
901};
902
Mel Gormane29cf082013-10-07 11:29:22 +0100903pid_t task_numa_group_id(struct task_struct *p)
904{
905 return p->numa_group ? p->numa_group->gid : 0;
906}
907
Mel Gormanac8e8952013-10-07 11:29:03 +0100908static inline int task_faults_idx(int nid, int priv)
909{
910 return 2 * nid + priv;
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(nid, 0)] +
919 p->numa_faults[task_faults_idx(nid, 1)];
920}
921
Mel Gormane6628d52013-10-07 11:29:02 +0100922static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100923static unsigned long source_load(int cpu, int type);
924static unsigned long target_load(int cpu, int type);
925static unsigned long power_of(int cpu);
926static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100927
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100928/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100929struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100930 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100931 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100932
933 /* Total compute capacity of CPUs on a node */
934 unsigned long power;
935
936 /* Approximate capacity in terms of runnable tasks on a node */
937 unsigned long capacity;
938 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100939};
Mel Gormane6628d52013-10-07 11:29:02 +0100940
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100941/*
942 * XXX borrowed from update_sg_lb_stats
943 */
944static void update_numa_stats(struct numa_stats *ns, int nid)
945{
946 int cpu;
947
948 memset(ns, 0, sizeof(*ns));
949 for_each_cpu(cpu, cpumask_of_node(nid)) {
950 struct rq *rq = cpu_rq(cpu);
951
952 ns->nr_running += rq->nr_running;
953 ns->load += weighted_cpuload(cpu);
954 ns->power += power_of(cpu);
955 }
956
957 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
958 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
959 ns->has_capacity = (ns->nr_running < ns->capacity);
960}
961
Mel Gorman58d081b2013-10-07 11:29:10 +0100962struct task_numa_env {
963 struct task_struct *p;
964
965 int src_cpu, src_nid;
966 int dst_cpu, dst_nid;
967
968 struct numa_stats src_stats, dst_stats;
969
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100970 int imbalance_pct, idx;
971
972 struct task_struct *best_task;
973 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +0100974 int best_cpu;
975};
976
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100977static void task_numa_assign(struct task_numa_env *env,
978 struct task_struct *p, long imp)
979{
980 if (env->best_task)
981 put_task_struct(env->best_task);
982 if (p)
983 get_task_struct(p);
984
985 env->best_task = p;
986 env->best_imp = imp;
987 env->best_cpu = env->dst_cpu;
988}
989
990/*
991 * This checks if the overall compute and NUMA accesses of the system would
992 * be improved if the source tasks was migrated to the target dst_cpu taking
993 * into account that it might be best if task running on the dst_cpu should
994 * be exchanged with the source task
995 */
996static void task_numa_compare(struct task_numa_env *env, long imp)
997{
998 struct rq *src_rq = cpu_rq(env->src_cpu);
999 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1000 struct task_struct *cur;
1001 long dst_load, src_load;
1002 long load;
1003
1004 rcu_read_lock();
1005 cur = ACCESS_ONCE(dst_rq->curr);
1006 if (cur->pid == 0) /* idle */
1007 cur = NULL;
1008
1009 /*
1010 * "imp" is the fault differential for the source task between the
1011 * source and destination node. Calculate the total differential for
1012 * the source task and potential destination task. The more negative
1013 * the value is, the more rmeote accesses that would be expected to
1014 * be incurred if the tasks were swapped.
1015 */
1016 if (cur) {
1017 /* Skip this swap candidate if cannot move to the source cpu */
1018 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1019 goto unlock;
1020
1021 imp += task_faults(cur, env->src_nid) -
1022 task_faults(cur, env->dst_nid);
1023 }
1024
1025 if (imp < env->best_imp)
1026 goto unlock;
1027
1028 if (!cur) {
1029 /* Is there capacity at our destination? */
1030 if (env->src_stats.has_capacity &&
1031 !env->dst_stats.has_capacity)
1032 goto unlock;
1033
1034 goto balance;
1035 }
1036
1037 /* Balance doesn't matter much if we're running a task per cpu */
1038 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1039 goto assign;
1040
1041 /*
1042 * In the overloaded case, try and keep the load balanced.
1043 */
1044balance:
1045 dst_load = env->dst_stats.load;
1046 src_load = env->src_stats.load;
1047
1048 /* XXX missing power terms */
1049 load = task_h_load(env->p);
1050 dst_load += load;
1051 src_load -= load;
1052
1053 if (cur) {
1054 load = task_h_load(cur);
1055 dst_load -= load;
1056 src_load += load;
1057 }
1058
1059 /* make src_load the smaller */
1060 if (dst_load < src_load)
1061 swap(dst_load, src_load);
1062
1063 if (src_load * env->imbalance_pct < dst_load * 100)
1064 goto unlock;
1065
1066assign:
1067 task_numa_assign(env, cur, imp);
1068unlock:
1069 rcu_read_unlock();
1070}
1071
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001072static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1073{
1074 int cpu;
1075
1076 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1077 /* Skip this CPU if the source task cannot migrate */
1078 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1079 continue;
1080
1081 env->dst_cpu = cpu;
1082 task_numa_compare(env, imp);
1083 }
1084}
1085
Mel Gorman58d081b2013-10-07 11:29:10 +01001086static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001087{
Mel Gorman58d081b2013-10-07 11:29:10 +01001088 struct task_numa_env env = {
1089 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001090
Mel Gorman58d081b2013-10-07 11:29:10 +01001091 .src_cpu = task_cpu(p),
1092 .src_nid = cpu_to_node(task_cpu(p)),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001093
1094 .imbalance_pct = 112,
1095
1096 .best_task = NULL,
1097 .best_imp = 0,
1098 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001099 };
1100 struct sched_domain *sd;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001101 unsigned long faults;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001102 int nid, ret;
1103 long imp;
Mel Gormane6628d52013-10-07 11:29:02 +01001104
Mel Gorman58d081b2013-10-07 11:29:10 +01001105 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001106 * Pick the lowest SD_NUMA domain, as that would have the smallest
1107 * imbalance and would be the first to start moving tasks about.
1108 *
1109 * And we want to avoid any moving of tasks about, as that would create
1110 * random movement of tasks -- counter the numa conditions we're trying
1111 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001112 */
Mel Gormane6628d52013-10-07 11:29:02 +01001113 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001114 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1115 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001116 rcu_read_unlock();
1117
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001118 faults = task_faults(p, env.src_nid);
1119 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001120 env.dst_nid = p->numa_preferred_nid;
1121 imp = task_faults(env.p, env.dst_nid) - faults;
1122 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001123
Rik van Riele1dda8a2013-10-07 11:29:19 +01001124 /* If the preferred nid has capacity, try to use it. */
1125 if (env.dst_stats.has_capacity)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001126 task_numa_find_cpu(&env, imp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001127
1128 /* No space available on the preferred nid. Look elsewhere. */
1129 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001130 for_each_online_node(nid) {
1131 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001132 continue;
1133
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001134 /* Only consider nodes that recorded more faults */
1135 imp = task_faults(env.p, nid) - faults;
1136 if (imp < 0)
1137 continue;
1138
1139 env.dst_nid = nid;
1140 update_numa_stats(&env.dst_stats, env.dst_nid);
1141 task_numa_find_cpu(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001142 }
1143 }
1144
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001145 /* No better CPU than the current one was found. */
1146 if (env.best_cpu == -1)
1147 return -EAGAIN;
1148
1149 if (env.best_task == NULL) {
1150 int ret = migrate_task_to(p, env.best_cpu);
1151 return ret;
1152 }
1153
1154 ret = migrate_swap(p, env.best_task);
1155 put_task_struct(env.best_task);
1156 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001157}
1158
Mel Gorman6b9a7462013-10-07 11:29:11 +01001159/* Attempt to migrate a task to a CPU on the preferred node. */
1160static void numa_migrate_preferred(struct task_struct *p)
1161{
1162 /* Success if task is already running on preferred CPU */
1163 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001164 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1165 /*
1166 * If migration is temporarily disabled due to a task migration
1167 * then re-enable it now as the task is running on its
1168 * preferred node and memory should migrate locally
1169 */
1170 if (!p->numa_migrate_seq)
1171 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001172 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001173 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001174
1175 /* This task has no NUMA fault statistics yet */
1176 if (unlikely(p->numa_preferred_nid == -1))
1177 return;
1178
1179 /* Otherwise, try migrate to a CPU on the preferred node */
1180 if (task_numa_migrate(p) != 0)
1181 p->numa_migrate_retry = jiffies + HZ*5;
1182}
1183
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001184static void task_numa_placement(struct task_struct *p)
1185{
Mel Gorman688b7582013-10-07 11:28:58 +01001186 int seq, nid, max_nid = -1;
1187 unsigned long max_faults = 0;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001188
Hugh Dickins2832bc12012-12-19 17:42:16 -08001189 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001190 if (p->numa_scan_seq == seq)
1191 return;
1192 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001193 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001194 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001195
Mel Gorman688b7582013-10-07 11:28:58 +01001196 /* Find the node with the highest number of faults */
1197 for_each_online_node(nid) {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001198 unsigned long faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001199 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001200
Mel Gormanac8e8952013-10-07 11:29:03 +01001201 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001202 long diff;
1203
Mel Gormanac8e8952013-10-07 11:29:03 +01001204 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001205 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001206
Mel Gormanac8e8952013-10-07 11:29:03 +01001207 /* Decay existing window, copy faults since last scan */
1208 p->numa_faults[i] >>= 1;
1209 p->numa_faults[i] += p->numa_faults_buffer[i];
1210 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001211
1212 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001213 diff += p->numa_faults[i];
1214 if (p->numa_group) {
1215 /* safe because we can only change our own group */
1216 atomic_long_add(diff, &p->numa_group->faults[i]);
1217 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001218 }
1219
Mel Gorman688b7582013-10-07 11:28:58 +01001220 if (faults > max_faults) {
1221 max_faults = faults;
1222 max_nid = nid;
1223 }
1224 }
1225
Mel Gorman6b9a7462013-10-07 11:29:11 +01001226 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001227 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001228 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001229 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001230 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001231 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001232 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001233}
1234
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001235static inline int get_numa_group(struct numa_group *grp)
1236{
1237 return atomic_inc_not_zero(&grp->refcount);
1238}
1239
1240static inline void put_numa_group(struct numa_group *grp)
1241{
1242 if (atomic_dec_and_test(&grp->refcount))
1243 kfree_rcu(grp, rcu);
1244}
1245
1246static void double_lock(spinlock_t *l1, spinlock_t *l2)
1247{
1248 if (l1 > l2)
1249 swap(l1, l2);
1250
1251 spin_lock(l1);
1252 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1253}
1254
1255static void task_numa_group(struct task_struct *p, int cpupid)
1256{
1257 struct numa_group *grp, *my_grp;
1258 struct task_struct *tsk;
1259 bool join = false;
1260 int cpu = cpupid_to_cpu(cpupid);
1261 int i;
1262
1263 if (unlikely(!p->numa_group)) {
1264 unsigned int size = sizeof(struct numa_group) +
1265 2*nr_node_ids*sizeof(atomic_long_t);
1266
1267 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1268 if (!grp)
1269 return;
1270
1271 atomic_set(&grp->refcount, 1);
1272 spin_lock_init(&grp->lock);
1273 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001274 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001275
1276 for (i = 0; i < 2*nr_node_ids; i++)
1277 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1278
1279 list_add(&p->numa_entry, &grp->task_list);
1280 grp->nr_tasks++;
1281 rcu_assign_pointer(p->numa_group, grp);
1282 }
1283
1284 rcu_read_lock();
1285 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1286
1287 if (!cpupid_match_pid(tsk, cpupid))
1288 goto unlock;
1289
1290 grp = rcu_dereference(tsk->numa_group);
1291 if (!grp)
1292 goto unlock;
1293
1294 my_grp = p->numa_group;
1295 if (grp == my_grp)
1296 goto unlock;
1297
1298 /*
1299 * Only join the other group if its bigger; if we're the bigger group,
1300 * the other task will join us.
1301 */
1302 if (my_grp->nr_tasks > grp->nr_tasks)
1303 goto unlock;
1304
1305 /*
1306 * Tie-break on the grp address.
1307 */
1308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1309 goto unlock;
1310
1311 if (!get_numa_group(grp))
1312 goto unlock;
1313
1314 join = true;
1315
1316unlock:
1317 rcu_read_unlock();
1318
1319 if (!join)
1320 return;
1321
1322 for (i = 0; i < 2*nr_node_ids; i++) {
1323 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1324 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1325 }
1326
1327 double_lock(&my_grp->lock, &grp->lock);
1328
1329 list_move(&p->numa_entry, &grp->task_list);
1330 my_grp->nr_tasks--;
1331 grp->nr_tasks++;
1332
1333 spin_unlock(&my_grp->lock);
1334 spin_unlock(&grp->lock);
1335
1336 rcu_assign_pointer(p->numa_group, grp);
1337
1338 put_numa_group(my_grp);
1339}
1340
1341void task_numa_free(struct task_struct *p)
1342{
1343 struct numa_group *grp = p->numa_group;
1344 int i;
1345
1346 if (grp) {
1347 for (i = 0; i < 2*nr_node_ids; i++)
1348 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1349
1350 spin_lock(&grp->lock);
1351 list_del(&p->numa_entry);
1352 grp->nr_tasks--;
1353 spin_unlock(&grp->lock);
1354 rcu_assign_pointer(p->numa_group, NULL);
1355 put_numa_group(grp);
1356 }
1357
1358 kfree(p->numa_faults);
1359}
1360
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001361/*
1362 * Got a PROT_NONE fault for a page on @node.
1363 */
Peter Zijlstra90572892013-10-07 11:29:20 +01001364void task_numa_fault(int last_cpupid, int node, int pages, bool migrated)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001365{
1366 struct task_struct *p = current;
Mel Gormanac8e8952013-10-07 11:29:03 +01001367 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001368
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001369 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001370 return;
1371
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001372 /* for example, ksmd faulting in a user's mm */
1373 if (!p->mm)
1374 return;
1375
Mel Gormanf809ca92013-10-07 11:28:57 +01001376 /* Allocate buffer to track faults on a per-node basis */
1377 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001378 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001379
Mel Gorman745d6142013-10-07 11:28:59 +01001380 /* numa_faults and numa_faults_buffer share the allocation */
1381 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001382 if (!p->numa_faults)
1383 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001384
1385 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001386 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gormanf809ca92013-10-07 11:28:57 +01001387 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001388
Mel Gormanfb003b82012-11-15 09:01:14 +00001389 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001390 * First accesses are treated as private, otherwise consider accesses
1391 * to be private if the accessing pid has not changed
1392 */
1393 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1394 priv = 1;
1395 } else {
1396 priv = cpupid_match_pid(p, last_cpupid);
1397 if (!priv)
1398 task_numa_group(p, last_cpupid);
1399 }
1400
1401 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001402 * If pages are properly placed (did not migrate) then scan slower.
1403 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001404 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001405 if (!migrated) {
1406 /* Initialise if necessary */
1407 if (!p->numa_scan_period_max)
1408 p->numa_scan_period_max = task_scan_max(p);
1409
1410 p->numa_scan_period = min(p->numa_scan_period_max,
1411 p->numa_scan_period + 10);
1412 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001413
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001414 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001415
Mel Gorman6b9a7462013-10-07 11:29:11 +01001416 /* Retry task to preferred node migration if it previously failed */
1417 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1418 numa_migrate_preferred(p);
1419
Mel Gormanac8e8952013-10-07 11:29:03 +01001420 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001421}
1422
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001423static void reset_ptenuma_scan(struct task_struct *p)
1424{
1425 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1426 p->mm->numa_scan_offset = 0;
1427}
1428
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001429/*
1430 * The expensive part of numa migration is done from task_work context.
1431 * Triggered from task_tick_numa().
1432 */
1433void task_numa_work(struct callback_head *work)
1434{
1435 unsigned long migrate, next_scan, now = jiffies;
1436 struct task_struct *p = current;
1437 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001438 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001439 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001440 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001441 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001442
1443 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1444
1445 work->next = work; /* protect against double add */
1446 /*
1447 * Who cares about NUMA placement when they're dying.
1448 *
1449 * NOTE: make sure not to dereference p->mm before this check,
1450 * exit_task_work() happens _after_ exit_mm() so we could be called
1451 * without p->mm even though we still had it when we enqueued this
1452 * work.
1453 */
1454 if (p->flags & PF_EXITING)
1455 return;
1456
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001457 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1458 mm->numa_next_scan = now +
1459 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1460 mm->numa_next_reset = now +
1461 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1462 }
1463
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001464 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001465 * Reset the scan period if enough time has gone by. Objective is that
1466 * scanning will be reduced if pages are properly placed. As tasks
1467 * can enter different phases this needs to be re-examined. Lacking
1468 * proper tracking of reference behaviour, this blunt hammer is used.
1469 */
1470 migrate = mm->numa_next_reset;
1471 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001472 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001473 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1474 xchg(&mm->numa_next_reset, next_scan);
1475 }
1476
1477 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001478 * Enforce maximal scan/migration frequency..
1479 */
1480 migrate = mm->numa_next_scan;
1481 if (time_before(now, migrate))
1482 return;
1483
Mel Gorman598f0ec2013-10-07 11:28:55 +01001484 if (p->numa_scan_period == 0) {
1485 p->numa_scan_period_max = task_scan_max(p);
1486 p->numa_scan_period = task_scan_min(p);
1487 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001488
Mel Gormanfb003b82012-11-15 09:01:14 +00001489 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001490 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1491 return;
1492
Mel Gormane14808b2012-11-19 10:59:15 +00001493 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001494 * Delay this task enough that another task of this mm will likely win
1495 * the next time around.
1496 */
1497 p->node_stamp += 2 * TICK_NSEC;
1498
Mel Gorman9f406042012-11-14 18:34:32 +00001499 start = mm->numa_scan_offset;
1500 pages = sysctl_numa_balancing_scan_size;
1501 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1502 if (!pages)
1503 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001504
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001505 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001506 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001507 if (!vma) {
1508 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001509 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001510 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001511 }
Mel Gorman9f406042012-11-14 18:34:32 +00001512 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001513 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001514 continue;
1515
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001516 /*
1517 * Shared library pages mapped by multiple processes are not
1518 * migrated as it is expected they are cache replicated. Avoid
1519 * hinting faults in read-only file-backed mappings or the vdso
1520 * as migrating the pages will be of marginal benefit.
1521 */
1522 if (!vma->vm_mm ||
1523 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1524 continue;
1525
Mel Gorman9f406042012-11-14 18:34:32 +00001526 do {
1527 start = max(start, vma->vm_start);
1528 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1529 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001530 nr_pte_updates += change_prot_numa(vma, start, end);
1531
1532 /*
1533 * Scan sysctl_numa_balancing_scan_size but ensure that
1534 * at least one PTE is updated so that unused virtual
1535 * address space is quickly skipped.
1536 */
1537 if (nr_pte_updates)
1538 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001539
Mel Gorman9f406042012-11-14 18:34:32 +00001540 start = end;
1541 if (pages <= 0)
1542 goto out;
1543 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001544 }
1545
Mel Gorman9f406042012-11-14 18:34:32 +00001546out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001547 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001548 * If the whole process was scanned without updates then no NUMA
1549 * hinting faults are being recorded and scan rate should be lower.
1550 */
1551 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1552 p->numa_scan_period = min(p->numa_scan_period_max,
1553 p->numa_scan_period << 1);
1554
1555 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1556 mm->numa_next_scan = next_scan;
1557 }
1558
1559 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001560 * It is possible to reach the end of the VMA list but the last few
1561 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1562 * would find the !migratable VMA on the next scan but not reset the
1563 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001564 */
1565 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001566 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001567 else
1568 reset_ptenuma_scan(p);
1569 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001570}
1571
1572/*
1573 * Drive the periodic memory faults..
1574 */
1575void task_tick_numa(struct rq *rq, struct task_struct *curr)
1576{
1577 struct callback_head *work = &curr->numa_work;
1578 u64 period, now;
1579
1580 /*
1581 * We don't care about NUMA placement if we don't have memory.
1582 */
1583 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1584 return;
1585
1586 /*
1587 * Using runtime rather than walltime has the dual advantage that
1588 * we (mostly) drive the selection from busy threads and that the
1589 * task needs to have done some actual work before we bother with
1590 * NUMA placement.
1591 */
1592 now = curr->se.sum_exec_runtime;
1593 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1594
1595 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001596 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001597 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001598 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001599
1600 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1601 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1602 task_work_add(curr, work, true);
1603 }
1604 }
1605}
1606#else
1607static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1608{
1609}
1610#endif /* CONFIG_NUMA_BALANCING */
1611
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001612static void
1613account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1614{
1615 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001616 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001617 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001618#ifdef CONFIG_SMP
1619 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001620 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001621#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001622 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001623}
1624
1625static void
1626account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1627{
1628 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001629 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001630 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001631 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301632 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001633 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001634}
1635
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001636#ifdef CONFIG_FAIR_GROUP_SCHED
1637# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001638static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1639{
1640 long tg_weight;
1641
1642 /*
1643 * Use this CPU's actual weight instead of the last load_contribution
1644 * to gain a more accurate current total weight. See
1645 * update_cfs_rq_load_contribution().
1646 */
Alex Shibf5b9862013-06-20 10:18:54 +08001647 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001648 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001649 tg_weight += cfs_rq->load.weight;
1650
1651 return tg_weight;
1652}
1653
Paul Turner6d5ab292011-01-21 20:45:01 -08001654static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001655{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001656 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001657
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001658 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001659 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001660
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001661 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001662 if (tg_weight)
1663 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001664
1665 if (shares < MIN_SHARES)
1666 shares = MIN_SHARES;
1667 if (shares > tg->shares)
1668 shares = tg->shares;
1669
1670 return shares;
1671}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001672# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001673static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001674{
1675 return tg->shares;
1676}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001677# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001678static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1679 unsigned long weight)
1680{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001681 if (se->on_rq) {
1682 /* commit outstanding execution time */
1683 if (cfs_rq->curr == se)
1684 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001685 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001686 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001687
1688 update_load_set(&se->load, weight);
1689
1690 if (se->on_rq)
1691 account_entity_enqueue(cfs_rq, se);
1692}
1693
Paul Turner82958362012-10-04 13:18:31 +02001694static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1695
Paul Turner6d5ab292011-01-21 20:45:01 -08001696static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001697{
1698 struct task_group *tg;
1699 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001700 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001701
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001702 tg = cfs_rq->tg;
1703 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001704 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001705 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001706#ifndef CONFIG_SMP
1707 if (likely(se->load.weight == tg->shares))
1708 return;
1709#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001710 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001711
1712 reweight_entity(cfs_rq_of(se), se, shares);
1713}
1714#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001715static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001716{
1717}
1718#endif /* CONFIG_FAIR_GROUP_SCHED */
1719
Alex Shi141965c2013-06-26 13:05:39 +08001720#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001721/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001722 * We choose a half-life close to 1 scheduling period.
1723 * Note: The tables below are dependent on this value.
1724 */
1725#define LOAD_AVG_PERIOD 32
1726#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1727#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1728
1729/* Precomputed fixed inverse multiplies for multiplication by y^n */
1730static const u32 runnable_avg_yN_inv[] = {
1731 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1732 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1733 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1734 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1735 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1736 0x85aac367, 0x82cd8698,
1737};
1738
1739/*
1740 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1741 * over-estimates when re-combining.
1742 */
1743static const u32 runnable_avg_yN_sum[] = {
1744 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1745 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1746 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1747};
1748
1749/*
Paul Turner9d85f212012-10-04 13:18:29 +02001750 * Approximate:
1751 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1752 */
1753static __always_inline u64 decay_load(u64 val, u64 n)
1754{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001755 unsigned int local_n;
1756
1757 if (!n)
1758 return val;
1759 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1760 return 0;
1761
1762 /* after bounds checking we can collapse to 32-bit */
1763 local_n = n;
1764
1765 /*
1766 * As y^PERIOD = 1/2, we can combine
1767 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1768 * With a look-up table which covers k^n (n<PERIOD)
1769 *
1770 * To achieve constant time decay_load.
1771 */
1772 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1773 val >>= local_n / LOAD_AVG_PERIOD;
1774 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001775 }
1776
Paul Turner5b51f2f2012-10-04 13:18:32 +02001777 val *= runnable_avg_yN_inv[local_n];
1778 /* We don't use SRR here since we always want to round down. */
1779 return val >> 32;
1780}
1781
1782/*
1783 * For updates fully spanning n periods, the contribution to runnable
1784 * average will be: \Sum 1024*y^n
1785 *
1786 * We can compute this reasonably efficiently by combining:
1787 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1788 */
1789static u32 __compute_runnable_contrib(u64 n)
1790{
1791 u32 contrib = 0;
1792
1793 if (likely(n <= LOAD_AVG_PERIOD))
1794 return runnable_avg_yN_sum[n];
1795 else if (unlikely(n >= LOAD_AVG_MAX_N))
1796 return LOAD_AVG_MAX;
1797
1798 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1799 do {
1800 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1801 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1802
1803 n -= LOAD_AVG_PERIOD;
1804 } while (n > LOAD_AVG_PERIOD);
1805
1806 contrib = decay_load(contrib, n);
1807 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001808}
1809
1810/*
1811 * We can represent the historical contribution to runnable average as the
1812 * coefficients of a geometric series. To do this we sub-divide our runnable
1813 * history into segments of approximately 1ms (1024us); label the segment that
1814 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1815 *
1816 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1817 * p0 p1 p2
1818 * (now) (~1ms ago) (~2ms ago)
1819 *
1820 * Let u_i denote the fraction of p_i that the entity was runnable.
1821 *
1822 * We then designate the fractions u_i as our co-efficients, yielding the
1823 * following representation of historical load:
1824 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1825 *
1826 * We choose y based on the with of a reasonably scheduling period, fixing:
1827 * y^32 = 0.5
1828 *
1829 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1830 * approximately half as much as the contribution to load within the last ms
1831 * (u_0).
1832 *
1833 * When a period "rolls over" and we have new u_0`, multiplying the previous
1834 * sum again by y is sufficient to update:
1835 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1836 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1837 */
1838static __always_inline int __update_entity_runnable_avg(u64 now,
1839 struct sched_avg *sa,
1840 int runnable)
1841{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001842 u64 delta, periods;
1843 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001844 int delta_w, decayed = 0;
1845
1846 delta = now - sa->last_runnable_update;
1847 /*
1848 * This should only happen when time goes backwards, which it
1849 * unfortunately does during sched clock init when we swap over to TSC.
1850 */
1851 if ((s64)delta < 0) {
1852 sa->last_runnable_update = now;
1853 return 0;
1854 }
1855
1856 /*
1857 * Use 1024ns as the unit of measurement since it's a reasonable
1858 * approximation of 1us and fast to compute.
1859 */
1860 delta >>= 10;
1861 if (!delta)
1862 return 0;
1863 sa->last_runnable_update = now;
1864
1865 /* delta_w is the amount already accumulated against our next period */
1866 delta_w = sa->runnable_avg_period % 1024;
1867 if (delta + delta_w >= 1024) {
1868 /* period roll-over */
1869 decayed = 1;
1870
1871 /*
1872 * Now that we know we're crossing a period boundary, figure
1873 * out how much from delta we need to complete the current
1874 * period and accrue it.
1875 */
1876 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001877 if (runnable)
1878 sa->runnable_avg_sum += delta_w;
1879 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001880
Paul Turner5b51f2f2012-10-04 13:18:32 +02001881 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001882
Paul Turner5b51f2f2012-10-04 13:18:32 +02001883 /* Figure out how many additional periods this update spans */
1884 periods = delta / 1024;
1885 delta %= 1024;
1886
1887 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1888 periods + 1);
1889 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1890 periods + 1);
1891
1892 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1893 runnable_contrib = __compute_runnable_contrib(periods);
1894 if (runnable)
1895 sa->runnable_avg_sum += runnable_contrib;
1896 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001897 }
1898
1899 /* Remainder of delta accrued against u_0` */
1900 if (runnable)
1901 sa->runnable_avg_sum += delta;
1902 sa->runnable_avg_period += delta;
1903
1904 return decayed;
1905}
1906
Paul Turner9ee474f2012-10-04 13:18:30 +02001907/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001908static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001909{
1910 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1911 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1912
1913 decays -= se->avg.decay_count;
1914 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001915 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001916
1917 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1918 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001919
1920 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001921}
1922
Paul Turnerc566e8e2012-10-04 13:18:30 +02001923#ifdef CONFIG_FAIR_GROUP_SCHED
1924static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1925 int force_update)
1926{
1927 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08001928 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02001929
1930 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1931 tg_contrib -= cfs_rq->tg_load_contrib;
1932
Alex Shibf5b9862013-06-20 10:18:54 +08001933 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1934 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02001935 cfs_rq->tg_load_contrib += tg_contrib;
1936 }
1937}
Paul Turner8165e142012-10-04 13:18:31 +02001938
Paul Turnerbb17f652012-10-04 13:18:31 +02001939/*
1940 * Aggregate cfs_rq runnable averages into an equivalent task_group
1941 * representation for computing load contributions.
1942 */
1943static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1944 struct cfs_rq *cfs_rq)
1945{
1946 struct task_group *tg = cfs_rq->tg;
1947 long contrib;
1948
1949 /* The fraction of a cpu used by this cfs_rq */
1950 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1951 sa->runnable_avg_period + 1);
1952 contrib -= cfs_rq->tg_runnable_contrib;
1953
1954 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1955 atomic_add(contrib, &tg->runnable_avg);
1956 cfs_rq->tg_runnable_contrib += contrib;
1957 }
1958}
1959
Paul Turner8165e142012-10-04 13:18:31 +02001960static inline void __update_group_entity_contrib(struct sched_entity *se)
1961{
1962 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1963 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001964 int runnable_avg;
1965
Paul Turner8165e142012-10-04 13:18:31 +02001966 u64 contrib;
1967
1968 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08001969 se->avg.load_avg_contrib = div_u64(contrib,
1970 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001971
1972 /*
1973 * For group entities we need to compute a correction term in the case
1974 * that they are consuming <1 cpu so that we would contribute the same
1975 * load as a task of equal weight.
1976 *
1977 * Explicitly co-ordinating this measurement would be expensive, but
1978 * fortunately the sum of each cpus contribution forms a usable
1979 * lower-bound on the true value.
1980 *
1981 * Consider the aggregate of 2 contributions. Either they are disjoint
1982 * (and the sum represents true value) or they are disjoint and we are
1983 * understating by the aggregate of their overlap.
1984 *
1985 * Extending this to N cpus, for a given overlap, the maximum amount we
1986 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1987 * cpus that overlap for this interval and w_i is the interval width.
1988 *
1989 * On a small machine; the first term is well-bounded which bounds the
1990 * total error since w_i is a subset of the period. Whereas on a
1991 * larger machine, while this first term can be larger, if w_i is the
1992 * of consequential size guaranteed to see n_i*w_i quickly converge to
1993 * our upper bound of 1-cpu.
1994 */
1995 runnable_avg = atomic_read(&tg->runnable_avg);
1996 if (runnable_avg < NICE_0_LOAD) {
1997 se->avg.load_avg_contrib *= runnable_avg;
1998 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1999 }
Paul Turner8165e142012-10-04 13:18:31 +02002000}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002001#else
2002static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2003 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002004static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2005 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002006static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002007#endif
2008
Paul Turner8165e142012-10-04 13:18:31 +02002009static inline void __update_task_entity_contrib(struct sched_entity *se)
2010{
2011 u32 contrib;
2012
2013 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2014 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2015 contrib /= (se->avg.runnable_avg_period + 1);
2016 se->avg.load_avg_contrib = scale_load(contrib);
2017}
2018
Paul Turner2dac7542012-10-04 13:18:30 +02002019/* Compute the current contribution to load_avg by se, return any delta */
2020static long __update_entity_load_avg_contrib(struct sched_entity *se)
2021{
2022 long old_contrib = se->avg.load_avg_contrib;
2023
Paul Turner8165e142012-10-04 13:18:31 +02002024 if (entity_is_task(se)) {
2025 __update_task_entity_contrib(se);
2026 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002027 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002028 __update_group_entity_contrib(se);
2029 }
Paul Turner2dac7542012-10-04 13:18:30 +02002030
2031 return se->avg.load_avg_contrib - old_contrib;
2032}
2033
Paul Turner9ee474f2012-10-04 13:18:30 +02002034static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2035 long load_contrib)
2036{
2037 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2038 cfs_rq->blocked_load_avg -= load_contrib;
2039 else
2040 cfs_rq->blocked_load_avg = 0;
2041}
2042
Paul Turnerf1b17282012-10-04 13:18:31 +02002043static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2044
Paul Turner9d85f212012-10-04 13:18:29 +02002045/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002046static inline void update_entity_load_avg(struct sched_entity *se,
2047 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002048{
Paul Turner2dac7542012-10-04 13:18:30 +02002049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2050 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002051 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002052
Paul Turnerf1b17282012-10-04 13:18:31 +02002053 /*
2054 * For a group entity we need to use their owned cfs_rq_clock_task() in
2055 * case they are the parent of a throttled hierarchy.
2056 */
2057 if (entity_is_task(se))
2058 now = cfs_rq_clock_task(cfs_rq);
2059 else
2060 now = cfs_rq_clock_task(group_cfs_rq(se));
2061
2062 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002063 return;
2064
2065 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002066
2067 if (!update_cfs_rq)
2068 return;
2069
Paul Turner2dac7542012-10-04 13:18:30 +02002070 if (se->on_rq)
2071 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002072 else
2073 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2074}
2075
2076/*
2077 * Decay the load contributed by all blocked children and account this so that
2078 * their contribution may appropriately discounted when they wake up.
2079 */
Paul Turneraff3e492012-10-04 13:18:30 +02002080static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002081{
Paul Turnerf1b17282012-10-04 13:18:31 +02002082 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002083 u64 decays;
2084
2085 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002086 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002087 return;
2088
Alex Shi25099402013-06-20 10:18:55 +08002089 if (atomic_long_read(&cfs_rq->removed_load)) {
2090 unsigned long removed_load;
2091 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002092 subtract_blocked_load_contrib(cfs_rq, removed_load);
2093 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002094
Paul Turneraff3e492012-10-04 13:18:30 +02002095 if (decays) {
2096 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2097 decays);
2098 atomic64_add(decays, &cfs_rq->decay_counter);
2099 cfs_rq->last_decay = now;
2100 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002101
2102 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002103}
Ben Segall18bf2802012-10-04 12:51:20 +02002104
2105static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2106{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002107 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002108 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002109}
Paul Turner2dac7542012-10-04 13:18:30 +02002110
2111/* Add the load generated by se into cfs_rq's child load-average */
2112static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002113 struct sched_entity *se,
2114 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002115{
Paul Turneraff3e492012-10-04 13:18:30 +02002116 /*
2117 * We track migrations using entity decay_count <= 0, on a wake-up
2118 * migration we use a negative decay count to track the remote decays
2119 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002120 *
2121 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2122 * are seen by enqueue_entity_load_avg() as a migration with an already
2123 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002124 */
2125 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002126 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002127 if (se->avg.decay_count) {
2128 /*
2129 * In a wake-up migration we have to approximate the
2130 * time sleeping. This is because we can't synchronize
2131 * clock_task between the two cpus, and it is not
2132 * guaranteed to be read-safe. Instead, we can
2133 * approximate this using our carried decays, which are
2134 * explicitly atomically readable.
2135 */
2136 se->avg.last_runnable_update -= (-se->avg.decay_count)
2137 << 20;
2138 update_entity_load_avg(se, 0);
2139 /* Indicate that we're now synchronized and on-rq */
2140 se->avg.decay_count = 0;
2141 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002142 wakeup = 0;
2143 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002144 /*
2145 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2146 * would have made count negative); we must be careful to avoid
2147 * double-accounting blocked time after synchronizing decays.
2148 */
2149 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2150 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002151 }
2152
Paul Turneraff3e492012-10-04 13:18:30 +02002153 /* migrated tasks did not contribute to our blocked load */
2154 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002155 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002156 update_entity_load_avg(se, 0);
2157 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002158
Paul Turner2dac7542012-10-04 13:18:30 +02002159 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002160 /* we force update consideration on load-balancer moves */
2161 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002162}
2163
Paul Turner9ee474f2012-10-04 13:18:30 +02002164/*
2165 * Remove se's load from this cfs_rq child load-average, if the entity is
2166 * transitioning to a blocked state we track its projected decay using
2167 * blocked_load_avg.
2168 */
Paul Turner2dac7542012-10-04 13:18:30 +02002169static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002170 struct sched_entity *se,
2171 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002172{
Paul Turner9ee474f2012-10-04 13:18:30 +02002173 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002174 /* we force update consideration on load-balancer moves */
2175 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002176
Paul Turner2dac7542012-10-04 13:18:30 +02002177 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002178 if (sleep) {
2179 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2180 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2181 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002182}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002183
2184/*
2185 * Update the rq's load with the elapsed running time before entering
2186 * idle. if the last scheduled task is not a CFS task, idle_enter will
2187 * be the only way to update the runnable statistic.
2188 */
2189void idle_enter_fair(struct rq *this_rq)
2190{
2191 update_rq_runnable_avg(this_rq, 1);
2192}
2193
2194/*
2195 * Update the rq's load with the elapsed idle time before a task is
2196 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2197 * be the only way to update the runnable statistic.
2198 */
2199void idle_exit_fair(struct rq *this_rq)
2200{
2201 update_rq_runnable_avg(this_rq, 0);
2202}
2203
Paul Turner9d85f212012-10-04 13:18:29 +02002204#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002205static inline void update_entity_load_avg(struct sched_entity *se,
2206 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002207static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002208static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002209 struct sched_entity *se,
2210 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002211static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002212 struct sched_entity *se,
2213 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002214static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2215 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002216#endif
2217
Ingo Molnar2396af62007-08-09 11:16:48 +02002218static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002219{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002220#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002221 struct task_struct *tsk = NULL;
2222
2223 if (entity_is_task(se))
2224 tsk = task_of(se);
2225
Lucas De Marchi41acab82010-03-10 23:37:45 -03002226 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002227 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002228
2229 if ((s64)delta < 0)
2230 delta = 0;
2231
Lucas De Marchi41acab82010-03-10 23:37:45 -03002232 if (unlikely(delta > se->statistics.sleep_max))
2233 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002234
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002235 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002236 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002237
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002238 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002239 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002240 trace_sched_stat_sleep(tsk, delta);
2241 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002242 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002243 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002244 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002245
2246 if ((s64)delta < 0)
2247 delta = 0;
2248
Lucas De Marchi41acab82010-03-10 23:37:45 -03002249 if (unlikely(delta > se->statistics.block_max))
2250 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002251
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002252 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002253 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002254
Peter Zijlstrae4143142009-07-23 20:13:26 +02002255 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002256 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002257 se->statistics.iowait_sum += delta;
2258 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002259 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002260 }
2261
Andrew Vaginb781a602011-11-28 12:03:35 +03002262 trace_sched_stat_blocked(tsk, delta);
2263
Peter Zijlstrae4143142009-07-23 20:13:26 +02002264 /*
2265 * Blocking time is in units of nanosecs, so shift by
2266 * 20 to get a milliseconds-range estimation of the
2267 * amount of time that the task spent sleeping:
2268 */
2269 if (unlikely(prof_on == SLEEP_PROFILING)) {
2270 profile_hits(SLEEP_PROFILING,
2271 (void *)get_wchan(tsk),
2272 delta >> 20);
2273 }
2274 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002275 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002276 }
2277#endif
2278}
2279
Peter Zijlstraddc97292007-10-15 17:00:10 +02002280static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2281{
2282#ifdef CONFIG_SCHED_DEBUG
2283 s64 d = se->vruntime - cfs_rq->min_vruntime;
2284
2285 if (d < 0)
2286 d = -d;
2287
2288 if (d > 3*sysctl_sched_latency)
2289 schedstat_inc(cfs_rq, nr_spread_over);
2290#endif
2291}
2292
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002293static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002294place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2295{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002296 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002297
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002298 /*
2299 * The 'current' period is already promised to the current tasks,
2300 * however the extra weight of the new task will slow them down a
2301 * little, place the new task so that it fits in the slot that
2302 * stays open at the end.
2303 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002304 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002305 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002306
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002307 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002308 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002309 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002310
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002311 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002312 * Halve their sleep time's effect, to allow
2313 * for a gentler effect of sleepers:
2314 */
2315 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2316 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002317
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002318 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002319 }
2320
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002321 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302322 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002323}
2324
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002325static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2326
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002327static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002328enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002329{
2330 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002331 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302332 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002333 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002334 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002335 se->vruntime += cfs_rq->min_vruntime;
2336
2337 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002338 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002339 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002340 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002341 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002342 account_entity_enqueue(cfs_rq, se);
2343 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002344
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002345 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002346 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002347 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002348 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002349
Ingo Molnard2417e52007-08-09 11:16:47 +02002350 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002351 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002352 if (se != cfs_rq->curr)
2353 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002354 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002355
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002356 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002357 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002358 check_enqueue_throttle(cfs_rq);
2359 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002360}
2361
Rik van Riel2c13c9192011-02-01 09:48:37 -05002362static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002363{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002364 for_each_sched_entity(se) {
2365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2366 if (cfs_rq->last == se)
2367 cfs_rq->last = NULL;
2368 else
2369 break;
2370 }
2371}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002372
Rik van Riel2c13c9192011-02-01 09:48:37 -05002373static void __clear_buddies_next(struct sched_entity *se)
2374{
2375 for_each_sched_entity(se) {
2376 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2377 if (cfs_rq->next == se)
2378 cfs_rq->next = NULL;
2379 else
2380 break;
2381 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002382}
2383
Rik van Rielac53db52011-02-01 09:51:03 -05002384static void __clear_buddies_skip(struct sched_entity *se)
2385{
2386 for_each_sched_entity(se) {
2387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2388 if (cfs_rq->skip == se)
2389 cfs_rq->skip = NULL;
2390 else
2391 break;
2392 }
2393}
2394
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002395static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2396{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002397 if (cfs_rq->last == se)
2398 __clear_buddies_last(se);
2399
2400 if (cfs_rq->next == se)
2401 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002402
2403 if (cfs_rq->skip == se)
2404 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002405}
2406
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002407static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002408
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002409static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002410dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002411{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002412 /*
2413 * Update run-time statistics of the 'current'.
2414 */
2415 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002416 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002417
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002418 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002419 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002420#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002421 if (entity_is_task(se)) {
2422 struct task_struct *tsk = task_of(se);
2423
2424 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002425 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002426 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002427 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002428 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002429#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002430 }
2431
Peter Zijlstra2002c692008-11-11 11:52:33 +01002432 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002433
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002434 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002435 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002436 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002437 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002438
2439 /*
2440 * Normalize the entity after updating the min_vruntime because the
2441 * update can refer to the ->curr item and we need to reflect this
2442 * movement in our normalized position.
2443 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002444 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002445 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002446
Paul Turnerd8b49862011-07-21 09:43:41 -07002447 /* return excess runtime on last dequeue */
2448 return_cfs_rq_runtime(cfs_rq);
2449
Peter Zijlstra1e876232011-05-17 16:21:10 -07002450 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002451 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002452}
2453
2454/*
2455 * Preempt the current task with a newly woken task if needed:
2456 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002457static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002458check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002459{
Peter Zijlstra11697832007-09-05 14:32:49 +02002460 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002461 struct sched_entity *se;
2462 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002463
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002464 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002465 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002466 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002467 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002468 /*
2469 * The current task ran long enough, ensure it doesn't get
2470 * re-elected due to buddy favours.
2471 */
2472 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002473 return;
2474 }
2475
2476 /*
2477 * Ensure that a task that missed wakeup preemption by a
2478 * narrow margin doesn't have to wait for a full slice.
2479 * This also mitigates buddy induced latencies under load.
2480 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002481 if (delta_exec < sysctl_sched_min_granularity)
2482 return;
2483
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002484 se = __pick_first_entity(cfs_rq);
2485 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002486
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002487 if (delta < 0)
2488 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002489
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002490 if (delta > ideal_runtime)
2491 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002492}
2493
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002494static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002495set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002496{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002497 /* 'current' is not kept within the tree. */
2498 if (se->on_rq) {
2499 /*
2500 * Any task has to be enqueued before it get to execute on
2501 * a CPU. So account for the time it spent waiting on the
2502 * runqueue.
2503 */
2504 update_stats_wait_end(cfs_rq, se);
2505 __dequeue_entity(cfs_rq, se);
2506 }
2507
Ingo Molnar79303e92007-08-09 11:16:47 +02002508 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002509 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002510#ifdef CONFIG_SCHEDSTATS
2511 /*
2512 * Track our maximum slice length, if the CPU's load is at
2513 * least twice that of our own weight (i.e. dont track it
2514 * when there are only lesser-weight tasks around):
2515 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002516 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002517 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002518 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2519 }
2520#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002521 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002522}
2523
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002524static int
2525wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2526
Rik van Rielac53db52011-02-01 09:51:03 -05002527/*
2528 * Pick the next process, keeping these things in mind, in this order:
2529 * 1) keep things fair between processes/task groups
2530 * 2) pick the "next" process, since someone really wants that to run
2531 * 3) pick the "last" process, for cache locality
2532 * 4) do not run the "skip" process, if something else is available
2533 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002534static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002535{
Rik van Rielac53db52011-02-01 09:51:03 -05002536 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002537 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002538
Rik van Rielac53db52011-02-01 09:51:03 -05002539 /*
2540 * Avoid running the skip buddy, if running something else can
2541 * be done without getting too unfair.
2542 */
2543 if (cfs_rq->skip == se) {
2544 struct sched_entity *second = __pick_next_entity(se);
2545 if (second && wakeup_preempt_entity(second, left) < 1)
2546 se = second;
2547 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002548
Mike Galbraithf685cea2009-10-23 23:09:22 +02002549 /*
2550 * Prefer last buddy, try to return the CPU to a preempted task.
2551 */
2552 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2553 se = cfs_rq->last;
2554
Rik van Rielac53db52011-02-01 09:51:03 -05002555 /*
2556 * Someone really wants this to run. If it's not unfair, run it.
2557 */
2558 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2559 se = cfs_rq->next;
2560
Mike Galbraithf685cea2009-10-23 23:09:22 +02002561 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002562
2563 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002564}
2565
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002566static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2567
Ingo Molnarab6cde22007-08-09 11:16:48 +02002568static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002569{
2570 /*
2571 * If still on the runqueue then deactivate_task()
2572 * was not called and update_curr() has to be done:
2573 */
2574 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002575 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002576
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002577 /* throttle cfs_rqs exceeding runtime */
2578 check_cfs_rq_runtime(cfs_rq);
2579
Peter Zijlstraddc97292007-10-15 17:00:10 +02002580 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002581 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002582 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002583 /* Put 'current' back into the tree. */
2584 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002585 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002586 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002587 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002588 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002589}
2590
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002591static void
2592entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002593{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002594 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002595 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002596 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002597 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002598
Paul Turner43365bd2010-12-15 19:10:17 -08002599 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002600 * Ensure that runnable average is periodically updated.
2601 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002602 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002603 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002604 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002605
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002606#ifdef CONFIG_SCHED_HRTICK
2607 /*
2608 * queued ticks are scheduled to match the slice, so don't bother
2609 * validating it and just reschedule.
2610 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002611 if (queued) {
2612 resched_task(rq_of(cfs_rq)->curr);
2613 return;
2614 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002615 /*
2616 * don't let the period tick interfere with the hrtick preemption
2617 */
2618 if (!sched_feat(DOUBLE_TICK) &&
2619 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2620 return;
2621#endif
2622
Yong Zhang2c2efae2011-07-29 16:20:33 +08002623 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002624 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002625}
2626
Paul Turnerab84d312011-07-21 09:43:28 -07002627
2628/**************************************************
2629 * CFS bandwidth control machinery
2630 */
2631
2632#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002633
2634#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002635static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002636
2637static inline bool cfs_bandwidth_used(void)
2638{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002639 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002640}
2641
2642void account_cfs_bandwidth_used(int enabled, int was_enabled)
2643{
2644 /* only need to count groups transitioning between enabled/!enabled */
2645 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002646 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002647 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002648 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002649}
2650#else /* HAVE_JUMP_LABEL */
2651static bool cfs_bandwidth_used(void)
2652{
2653 return true;
2654}
2655
2656void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2657#endif /* HAVE_JUMP_LABEL */
2658
Paul Turnerab84d312011-07-21 09:43:28 -07002659/*
2660 * default period for cfs group bandwidth.
2661 * default: 0.1s, units: nanoseconds
2662 */
2663static inline u64 default_cfs_period(void)
2664{
2665 return 100000000ULL;
2666}
Paul Turnerec12cb72011-07-21 09:43:30 -07002667
2668static inline u64 sched_cfs_bandwidth_slice(void)
2669{
2670 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2671}
2672
Paul Turnera9cf55b2011-07-21 09:43:32 -07002673/*
2674 * Replenish runtime according to assigned quota and update expiration time.
2675 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2676 * additional synchronization around rq->lock.
2677 *
2678 * requires cfs_b->lock
2679 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002680void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002681{
2682 u64 now;
2683
2684 if (cfs_b->quota == RUNTIME_INF)
2685 return;
2686
2687 now = sched_clock_cpu(smp_processor_id());
2688 cfs_b->runtime = cfs_b->quota;
2689 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2690}
2691
Peter Zijlstra029632f2011-10-25 10:00:11 +02002692static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2693{
2694 return &tg->cfs_bandwidth;
2695}
2696
Paul Turnerf1b17282012-10-04 13:18:31 +02002697/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2698static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2699{
2700 if (unlikely(cfs_rq->throttle_count))
2701 return cfs_rq->throttled_clock_task;
2702
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002703 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002704}
2705
Paul Turner85dac902011-07-21 09:43:33 -07002706/* returns 0 on failure to allocate runtime */
2707static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002708{
2709 struct task_group *tg = cfs_rq->tg;
2710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002711 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002712
2713 /* note: this is a positive sum as runtime_remaining <= 0 */
2714 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2715
2716 raw_spin_lock(&cfs_b->lock);
2717 if (cfs_b->quota == RUNTIME_INF)
2718 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002719 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002720 /*
2721 * If the bandwidth pool has become inactive, then at least one
2722 * period must have elapsed since the last consumption.
2723 * Refresh the global state and ensure bandwidth timer becomes
2724 * active.
2725 */
2726 if (!cfs_b->timer_active) {
2727 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002728 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002729 }
Paul Turner58088ad2011-07-21 09:43:31 -07002730
2731 if (cfs_b->runtime > 0) {
2732 amount = min(cfs_b->runtime, min_amount);
2733 cfs_b->runtime -= amount;
2734 cfs_b->idle = 0;
2735 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002736 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002737 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002738 raw_spin_unlock(&cfs_b->lock);
2739
2740 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002741 /*
2742 * we may have advanced our local expiration to account for allowed
2743 * spread between our sched_clock and the one on which runtime was
2744 * issued.
2745 */
2746 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2747 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002748
2749 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002750}
2751
2752/*
2753 * Note: This depends on the synchronization provided by sched_clock and the
2754 * fact that rq->clock snapshots this value.
2755 */
2756static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2757{
2758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002759
2760 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002761 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002762 return;
2763
2764 if (cfs_rq->runtime_remaining < 0)
2765 return;
2766
2767 /*
2768 * If the local deadline has passed we have to consider the
2769 * possibility that our sched_clock is 'fast' and the global deadline
2770 * has not truly expired.
2771 *
2772 * Fortunately we can check determine whether this the case by checking
2773 * whether the global deadline has advanced.
2774 */
2775
2776 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2777 /* extend local deadline, drift is bounded above by 2 ticks */
2778 cfs_rq->runtime_expires += TICK_NSEC;
2779 } else {
2780 /* global deadline is ahead, expiration has passed */
2781 cfs_rq->runtime_remaining = 0;
2782 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002783}
2784
2785static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2786 unsigned long delta_exec)
2787{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002788 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002789 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002790 expire_cfs_rq_runtime(cfs_rq);
2791
2792 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002793 return;
2794
Paul Turner85dac902011-07-21 09:43:33 -07002795 /*
2796 * if we're unable to extend our runtime we resched so that the active
2797 * hierarchy can be throttled
2798 */
2799 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2800 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002801}
2802
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002803static __always_inline
2804void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002805{
Paul Turner56f570e2011-11-07 20:26:33 -08002806 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002807 return;
2808
2809 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2810}
2811
Paul Turner85dac902011-07-21 09:43:33 -07002812static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2813{
Paul Turner56f570e2011-11-07 20:26:33 -08002814 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002815}
2816
Paul Turner64660c82011-07-21 09:43:36 -07002817/* check whether cfs_rq, or any parent, is throttled */
2818static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2819{
Paul Turner56f570e2011-11-07 20:26:33 -08002820 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002821}
2822
2823/*
2824 * Ensure that neither of the group entities corresponding to src_cpu or
2825 * dest_cpu are members of a throttled hierarchy when performing group
2826 * load-balance operations.
2827 */
2828static inline int throttled_lb_pair(struct task_group *tg,
2829 int src_cpu, int dest_cpu)
2830{
2831 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2832
2833 src_cfs_rq = tg->cfs_rq[src_cpu];
2834 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2835
2836 return throttled_hierarchy(src_cfs_rq) ||
2837 throttled_hierarchy(dest_cfs_rq);
2838}
2839
2840/* updated child weight may affect parent so we have to do this bottom up */
2841static int tg_unthrottle_up(struct task_group *tg, void *data)
2842{
2843 struct rq *rq = data;
2844 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2845
2846 cfs_rq->throttle_count--;
2847#ifdef CONFIG_SMP
2848 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002849 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002850 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002851 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002852 }
2853#endif
2854
2855 return 0;
2856}
2857
2858static int tg_throttle_down(struct task_group *tg, void *data)
2859{
2860 struct rq *rq = data;
2861 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2862
Paul Turner82958362012-10-04 13:18:31 +02002863 /* group is entering throttled state, stop time */
2864 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002865 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002866 cfs_rq->throttle_count++;
2867
2868 return 0;
2869}
2870
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002871static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002872{
2873 struct rq *rq = rq_of(cfs_rq);
2874 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2875 struct sched_entity *se;
2876 long task_delta, dequeue = 1;
2877
2878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2879
Paul Turnerf1b17282012-10-04 13:18:31 +02002880 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002881 rcu_read_lock();
2882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2883 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002884
2885 task_delta = cfs_rq->h_nr_running;
2886 for_each_sched_entity(se) {
2887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2888 /* throttled entity or throttle-on-deactivate */
2889 if (!se->on_rq)
2890 break;
2891
2892 if (dequeue)
2893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2894 qcfs_rq->h_nr_running -= task_delta;
2895
2896 if (qcfs_rq->load.weight)
2897 dequeue = 0;
2898 }
2899
2900 if (!se)
2901 rq->nr_running -= task_delta;
2902
2903 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002904 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002905 raw_spin_lock(&cfs_b->lock);
2906 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2907 raw_spin_unlock(&cfs_b->lock);
2908}
2909
Peter Zijlstra029632f2011-10-25 10:00:11 +02002910void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002911{
2912 struct rq *rq = rq_of(cfs_rq);
2913 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2914 struct sched_entity *se;
2915 int enqueue = 1;
2916 long task_delta;
2917
Michael Wang22b958d2013-06-04 14:23:39 +08002918 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07002919
2920 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02002921
2922 update_rq_clock(rq);
2923
Paul Turner671fd9d2011-07-21 09:43:34 -07002924 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002925 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002926 list_del_rcu(&cfs_rq->throttled_list);
2927 raw_spin_unlock(&cfs_b->lock);
2928
Paul Turner64660c82011-07-21 09:43:36 -07002929 /* update hierarchical throttle state */
2930 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2931
Paul Turner671fd9d2011-07-21 09:43:34 -07002932 if (!cfs_rq->load.weight)
2933 return;
2934
2935 task_delta = cfs_rq->h_nr_running;
2936 for_each_sched_entity(se) {
2937 if (se->on_rq)
2938 enqueue = 0;
2939
2940 cfs_rq = cfs_rq_of(se);
2941 if (enqueue)
2942 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2943 cfs_rq->h_nr_running += task_delta;
2944
2945 if (cfs_rq_throttled(cfs_rq))
2946 break;
2947 }
2948
2949 if (!se)
2950 rq->nr_running += task_delta;
2951
2952 /* determine whether we need to wake up potentially idle cpu */
2953 if (rq->curr == rq->idle && rq->cfs.nr_running)
2954 resched_task(rq->curr);
2955}
2956
2957static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2958 u64 remaining, u64 expires)
2959{
2960 struct cfs_rq *cfs_rq;
2961 u64 runtime = remaining;
2962
2963 rcu_read_lock();
2964 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2965 throttled_list) {
2966 struct rq *rq = rq_of(cfs_rq);
2967
2968 raw_spin_lock(&rq->lock);
2969 if (!cfs_rq_throttled(cfs_rq))
2970 goto next;
2971
2972 runtime = -cfs_rq->runtime_remaining + 1;
2973 if (runtime > remaining)
2974 runtime = remaining;
2975 remaining -= runtime;
2976
2977 cfs_rq->runtime_remaining += runtime;
2978 cfs_rq->runtime_expires = expires;
2979
2980 /* we check whether we're throttled above */
2981 if (cfs_rq->runtime_remaining > 0)
2982 unthrottle_cfs_rq(cfs_rq);
2983
2984next:
2985 raw_spin_unlock(&rq->lock);
2986
2987 if (!remaining)
2988 break;
2989 }
2990 rcu_read_unlock();
2991
2992 return remaining;
2993}
2994
Paul Turner58088ad2011-07-21 09:43:31 -07002995/*
2996 * Responsible for refilling a task_group's bandwidth and unthrottling its
2997 * cfs_rqs as appropriate. If there has been no activity within the last
2998 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2999 * used to track this state.
3000 */
3001static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3002{
Paul Turner671fd9d2011-07-21 09:43:34 -07003003 u64 runtime, runtime_expires;
3004 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003005
3006 raw_spin_lock(&cfs_b->lock);
3007 /* no need to continue the timer with no bandwidth constraint */
3008 if (cfs_b->quota == RUNTIME_INF)
3009 goto out_unlock;
3010
Paul Turner671fd9d2011-07-21 09:43:34 -07003011 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3012 /* idle depends on !throttled (for the case of a large deficit) */
3013 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003014 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003015
Paul Turnera9cf55b2011-07-21 09:43:32 -07003016 /* if we're going inactive then everything else can be deferred */
3017 if (idle)
3018 goto out_unlock;
3019
3020 __refill_cfs_bandwidth_runtime(cfs_b);
3021
Paul Turner671fd9d2011-07-21 09:43:34 -07003022 if (!throttled) {
3023 /* mark as potentially idle for the upcoming period */
3024 cfs_b->idle = 1;
3025 goto out_unlock;
3026 }
Paul Turner58088ad2011-07-21 09:43:31 -07003027
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003028 /* account preceding periods in which throttling occurred */
3029 cfs_b->nr_throttled += overrun;
3030
Paul Turner671fd9d2011-07-21 09:43:34 -07003031 /*
3032 * There are throttled entities so we must first use the new bandwidth
3033 * to unthrottle them before making it generally available. This
3034 * ensures that all existing debts will be paid before a new cfs_rq is
3035 * allowed to run.
3036 */
3037 runtime = cfs_b->runtime;
3038 runtime_expires = cfs_b->runtime_expires;
3039 cfs_b->runtime = 0;
3040
3041 /*
3042 * This check is repeated as we are holding onto the new bandwidth
3043 * while we unthrottle. This can potentially race with an unthrottled
3044 * group trying to acquire new bandwidth from the global pool.
3045 */
3046 while (throttled && runtime > 0) {
3047 raw_spin_unlock(&cfs_b->lock);
3048 /* we can't nest cfs_b->lock while distributing bandwidth */
3049 runtime = distribute_cfs_runtime(cfs_b, runtime,
3050 runtime_expires);
3051 raw_spin_lock(&cfs_b->lock);
3052
3053 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3054 }
3055
3056 /* return (any) remaining runtime */
3057 cfs_b->runtime = runtime;
3058 /*
3059 * While we are ensured activity in the period following an
3060 * unthrottle, this also covers the case in which the new bandwidth is
3061 * insufficient to cover the existing bandwidth deficit. (Forcing the
3062 * timer to remain active while there are any throttled entities.)
3063 */
3064 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003065out_unlock:
3066 if (idle)
3067 cfs_b->timer_active = 0;
3068 raw_spin_unlock(&cfs_b->lock);
3069
3070 return idle;
3071}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003072
Paul Turnerd8b49862011-07-21 09:43:41 -07003073/* a cfs_rq won't donate quota below this amount */
3074static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3075/* minimum remaining period time to redistribute slack quota */
3076static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3077/* how long we wait to gather additional slack before distributing */
3078static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3079
3080/* are we near the end of the current quota period? */
3081static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3082{
3083 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3084 u64 remaining;
3085
3086 /* if the call-back is running a quota refresh is already occurring */
3087 if (hrtimer_callback_running(refresh_timer))
3088 return 1;
3089
3090 /* is a quota refresh about to occur? */
3091 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3092 if (remaining < min_expire)
3093 return 1;
3094
3095 return 0;
3096}
3097
3098static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3099{
3100 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3101
3102 /* if there's a quota refresh soon don't bother with slack */
3103 if (runtime_refresh_within(cfs_b, min_left))
3104 return;
3105
3106 start_bandwidth_timer(&cfs_b->slack_timer,
3107 ns_to_ktime(cfs_bandwidth_slack_period));
3108}
3109
3110/* we know any runtime found here is valid as update_curr() precedes return */
3111static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112{
3113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3114 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3115
3116 if (slack_runtime <= 0)
3117 return;
3118
3119 raw_spin_lock(&cfs_b->lock);
3120 if (cfs_b->quota != RUNTIME_INF &&
3121 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3122 cfs_b->runtime += slack_runtime;
3123
3124 /* we are under rq->lock, defer unthrottling using a timer */
3125 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3126 !list_empty(&cfs_b->throttled_cfs_rq))
3127 start_cfs_slack_bandwidth(cfs_b);
3128 }
3129 raw_spin_unlock(&cfs_b->lock);
3130
3131 /* even if it's not valid for return we don't want to try again */
3132 cfs_rq->runtime_remaining -= slack_runtime;
3133}
3134
3135static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3136{
Paul Turner56f570e2011-11-07 20:26:33 -08003137 if (!cfs_bandwidth_used())
3138 return;
3139
Paul Turnerfccfdc62011-11-07 20:26:34 -08003140 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003141 return;
3142
3143 __return_cfs_rq_runtime(cfs_rq);
3144}
3145
3146/*
3147 * This is done with a timer (instead of inline with bandwidth return) since
3148 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3149 */
3150static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3151{
3152 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3153 u64 expires;
3154
3155 /* confirm we're still not at a refresh boundary */
3156 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3157 return;
3158
3159 raw_spin_lock(&cfs_b->lock);
3160 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3161 runtime = cfs_b->runtime;
3162 cfs_b->runtime = 0;
3163 }
3164 expires = cfs_b->runtime_expires;
3165 raw_spin_unlock(&cfs_b->lock);
3166
3167 if (!runtime)
3168 return;
3169
3170 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3171
3172 raw_spin_lock(&cfs_b->lock);
3173 if (expires == cfs_b->runtime_expires)
3174 cfs_b->runtime = runtime;
3175 raw_spin_unlock(&cfs_b->lock);
3176}
3177
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003178/*
3179 * When a group wakes up we want to make sure that its quota is not already
3180 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3181 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3182 */
3183static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3184{
Paul Turner56f570e2011-11-07 20:26:33 -08003185 if (!cfs_bandwidth_used())
3186 return;
3187
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003188 /* an active group must be handled by the update_curr()->put() path */
3189 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3190 return;
3191
3192 /* ensure the group is not already throttled */
3193 if (cfs_rq_throttled(cfs_rq))
3194 return;
3195
3196 /* update runtime allocation */
3197 account_cfs_rq_runtime(cfs_rq, 0);
3198 if (cfs_rq->runtime_remaining <= 0)
3199 throttle_cfs_rq(cfs_rq);
3200}
3201
3202/* conditionally throttle active cfs_rq's from put_prev_entity() */
3203static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3204{
Paul Turner56f570e2011-11-07 20:26:33 -08003205 if (!cfs_bandwidth_used())
3206 return;
3207
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003208 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3209 return;
3210
3211 /*
3212 * it's possible for a throttled entity to be forced into a running
3213 * state (e.g. set_curr_task), in this case we're finished.
3214 */
3215 if (cfs_rq_throttled(cfs_rq))
3216 return;
3217
3218 throttle_cfs_rq(cfs_rq);
3219}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003220
Peter Zijlstra029632f2011-10-25 10:00:11 +02003221static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3222{
3223 struct cfs_bandwidth *cfs_b =
3224 container_of(timer, struct cfs_bandwidth, slack_timer);
3225 do_sched_cfs_slack_timer(cfs_b);
3226
3227 return HRTIMER_NORESTART;
3228}
3229
3230static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3231{
3232 struct cfs_bandwidth *cfs_b =
3233 container_of(timer, struct cfs_bandwidth, period_timer);
3234 ktime_t now;
3235 int overrun;
3236 int idle = 0;
3237
3238 for (;;) {
3239 now = hrtimer_cb_get_time(timer);
3240 overrun = hrtimer_forward(timer, now, cfs_b->period);
3241
3242 if (!overrun)
3243 break;
3244
3245 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3246 }
3247
3248 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3249}
3250
3251void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3252{
3253 raw_spin_lock_init(&cfs_b->lock);
3254 cfs_b->runtime = 0;
3255 cfs_b->quota = RUNTIME_INF;
3256 cfs_b->period = ns_to_ktime(default_cfs_period());
3257
3258 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3259 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3260 cfs_b->period_timer.function = sched_cfs_period_timer;
3261 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3262 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3263}
3264
3265static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3266{
3267 cfs_rq->runtime_enabled = 0;
3268 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3269}
3270
3271/* requires cfs_b->lock, may release to reprogram timer */
3272void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3273{
3274 /*
3275 * The timer may be active because we're trying to set a new bandwidth
3276 * period or because we're racing with the tear-down path
3277 * (timer_active==0 becomes visible before the hrtimer call-back
3278 * terminates). In either case we ensure that it's re-programmed
3279 */
3280 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3281 raw_spin_unlock(&cfs_b->lock);
3282 /* ensure cfs_b->lock is available while we wait */
3283 hrtimer_cancel(&cfs_b->period_timer);
3284
3285 raw_spin_lock(&cfs_b->lock);
3286 /* if someone else restarted the timer then we're done */
3287 if (cfs_b->timer_active)
3288 return;
3289 }
3290
3291 cfs_b->timer_active = 1;
3292 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3293}
3294
3295static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3296{
3297 hrtimer_cancel(&cfs_b->period_timer);
3298 hrtimer_cancel(&cfs_b->slack_timer);
3299}
3300
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003301static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003302{
3303 struct cfs_rq *cfs_rq;
3304
3305 for_each_leaf_cfs_rq(rq, cfs_rq) {
3306 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3307
3308 if (!cfs_rq->runtime_enabled)
3309 continue;
3310
3311 /*
3312 * clock_task is not advancing so we just need to make sure
3313 * there's some valid quota amount
3314 */
3315 cfs_rq->runtime_remaining = cfs_b->quota;
3316 if (cfs_rq_throttled(cfs_rq))
3317 unthrottle_cfs_rq(cfs_rq);
3318 }
3319}
3320
3321#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003322static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3323{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003324 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003325}
3326
3327static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3328 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003329static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3330static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003331static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003332
3333static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3334{
3335 return 0;
3336}
Paul Turner64660c82011-07-21 09:43:36 -07003337
3338static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3339{
3340 return 0;
3341}
3342
3343static inline int throttled_lb_pair(struct task_group *tg,
3344 int src_cpu, int dest_cpu)
3345{
3346 return 0;
3347}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003348
3349void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3350
3351#ifdef CONFIG_FAIR_GROUP_SCHED
3352static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003353#endif
3354
Peter Zijlstra029632f2011-10-25 10:00:11 +02003355static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3356{
3357 return NULL;
3358}
3359static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003360static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003361
3362#endif /* CONFIG_CFS_BANDWIDTH */
3363
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003364/**************************************************
3365 * CFS operations on tasks:
3366 */
3367
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003368#ifdef CONFIG_SCHED_HRTICK
3369static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3370{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003371 struct sched_entity *se = &p->se;
3372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3373
3374 WARN_ON(task_rq(p) != rq);
3375
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003376 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003377 u64 slice = sched_slice(cfs_rq, se);
3378 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3379 s64 delta = slice - ran;
3380
3381 if (delta < 0) {
3382 if (rq->curr == p)
3383 resched_task(p);
3384 return;
3385 }
3386
3387 /*
3388 * Don't schedule slices shorter than 10000ns, that just
3389 * doesn't make sense. Rely on vruntime for fairness.
3390 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003391 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003392 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003393
Peter Zijlstra31656512008-07-18 18:01:23 +02003394 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003395 }
3396}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003397
3398/*
3399 * called from enqueue/dequeue and updates the hrtick when the
3400 * current task is from our class and nr_running is low enough
3401 * to matter.
3402 */
3403static void hrtick_update(struct rq *rq)
3404{
3405 struct task_struct *curr = rq->curr;
3406
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003407 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003408 return;
3409
3410 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3411 hrtick_start_fair(rq, curr);
3412}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303413#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003414static inline void
3415hrtick_start_fair(struct rq *rq, struct task_struct *p)
3416{
3417}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003418
3419static inline void hrtick_update(struct rq *rq)
3420{
3421}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003422#endif
3423
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003424/*
3425 * The enqueue_task method is called before nr_running is
3426 * increased. Here we update the fair scheduling stats and
3427 * then put the task into the rbtree:
3428 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003429static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003430enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003431{
3432 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003433 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003434
3435 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003436 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003437 break;
3438 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003439 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003440
3441 /*
3442 * end evaluation on encountering a throttled cfs_rq
3443 *
3444 * note: in the case of encountering a throttled cfs_rq we will
3445 * post the final h_nr_running increment below.
3446 */
3447 if (cfs_rq_throttled(cfs_rq))
3448 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003449 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003450
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003451 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003452 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003453
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003454 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003455 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003456 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003457
Paul Turner85dac902011-07-21 09:43:33 -07003458 if (cfs_rq_throttled(cfs_rq))
3459 break;
3460
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003461 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003462 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003463 }
3464
Ben Segall18bf2802012-10-04 12:51:20 +02003465 if (!se) {
3466 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003467 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003468 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003469 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003470}
3471
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003472static void set_next_buddy(struct sched_entity *se);
3473
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003474/*
3475 * The dequeue_task method is called before nr_running is
3476 * decreased. We remove the task from the rbtree and
3477 * update the fair scheduling stats:
3478 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003479static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003480{
3481 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003482 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003483 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003484
3485 for_each_sched_entity(se) {
3486 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003487 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003488
3489 /*
3490 * end evaluation on encountering a throttled cfs_rq
3491 *
3492 * note: in the case of encountering a throttled cfs_rq we will
3493 * post the final h_nr_running decrement below.
3494 */
3495 if (cfs_rq_throttled(cfs_rq))
3496 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003497 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003498
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003499 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003500 if (cfs_rq->load.weight) {
3501 /*
3502 * Bias pick_next to pick a task from this cfs_rq, as
3503 * p is sleeping when it is within its sched_slice.
3504 */
3505 if (task_sleep && parent_entity(se))
3506 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003507
3508 /* avoid re-evaluating load for this entity */
3509 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003510 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003511 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003512 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003513 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003514
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003515 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003516 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003517 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003518
Paul Turner85dac902011-07-21 09:43:33 -07003519 if (cfs_rq_throttled(cfs_rq))
3520 break;
3521
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003522 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003523 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003524 }
3525
Ben Segall18bf2802012-10-04 12:51:20 +02003526 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003527 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003528 update_rq_runnable_avg(rq, 1);
3529 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003530 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003531}
3532
Gregory Haskinse7693a32008-01-25 21:08:09 +01003533#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003534/* Used instead of source_load when we know the type == 0 */
3535static unsigned long weighted_cpuload(const int cpu)
3536{
Alex Shib92486c2013-06-20 10:18:50 +08003537 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003538}
3539
3540/*
3541 * Return a low guess at the load of a migration-source cpu weighted
3542 * according to the scheduling class and "nice" value.
3543 *
3544 * We want to under-estimate the load of migration sources, to
3545 * balance conservatively.
3546 */
3547static unsigned long source_load(int cpu, int type)
3548{
3549 struct rq *rq = cpu_rq(cpu);
3550 unsigned long total = weighted_cpuload(cpu);
3551
3552 if (type == 0 || !sched_feat(LB_BIAS))
3553 return total;
3554
3555 return min(rq->cpu_load[type-1], total);
3556}
3557
3558/*
3559 * Return a high guess at the load of a migration-target cpu weighted
3560 * according to the scheduling class and "nice" value.
3561 */
3562static unsigned long target_load(int cpu, int type)
3563{
3564 struct rq *rq = cpu_rq(cpu);
3565 unsigned long total = weighted_cpuload(cpu);
3566
3567 if (type == 0 || !sched_feat(LB_BIAS))
3568 return total;
3569
3570 return max(rq->cpu_load[type-1], total);
3571}
3572
3573static unsigned long power_of(int cpu)
3574{
3575 return cpu_rq(cpu)->cpu_power;
3576}
3577
3578static unsigned long cpu_avg_load_per_task(int cpu)
3579{
3580 struct rq *rq = cpu_rq(cpu);
3581 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003582 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003583
3584 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003585 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003586
3587 return 0;
3588}
3589
Michael Wang62470412013-07-04 12:55:51 +08003590static void record_wakee(struct task_struct *p)
3591{
3592 /*
3593 * Rough decay (wiping) for cost saving, don't worry
3594 * about the boundary, really active task won't care
3595 * about the loss.
3596 */
3597 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3598 current->wakee_flips = 0;
3599 current->wakee_flip_decay_ts = jiffies;
3600 }
3601
3602 if (current->last_wakee != p) {
3603 current->last_wakee = p;
3604 current->wakee_flips++;
3605 }
3606}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003607
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003608static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003609{
3610 struct sched_entity *se = &p->se;
3611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003612 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003613
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003614#ifndef CONFIG_64BIT
3615 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003616
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003617 do {
3618 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3619 smp_rmb();
3620 min_vruntime = cfs_rq->min_vruntime;
3621 } while (min_vruntime != min_vruntime_copy);
3622#else
3623 min_vruntime = cfs_rq->min_vruntime;
3624#endif
3625
3626 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003627 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003628}
3629
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003630#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003631/*
3632 * effective_load() calculates the load change as seen from the root_task_group
3633 *
3634 * Adding load to a group doesn't make a group heavier, but can cause movement
3635 * of group shares between cpus. Assuming the shares were perfectly aligned one
3636 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003637 *
3638 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3639 * on this @cpu and results in a total addition (subtraction) of @wg to the
3640 * total group weight.
3641 *
3642 * Given a runqueue weight distribution (rw_i) we can compute a shares
3643 * distribution (s_i) using:
3644 *
3645 * s_i = rw_i / \Sum rw_j (1)
3646 *
3647 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3648 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3649 * shares distribution (s_i):
3650 *
3651 * rw_i = { 2, 4, 1, 0 }
3652 * s_i = { 2/7, 4/7, 1/7, 0 }
3653 *
3654 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3655 * task used to run on and the CPU the waker is running on), we need to
3656 * compute the effect of waking a task on either CPU and, in case of a sync
3657 * wakeup, compute the effect of the current task going to sleep.
3658 *
3659 * So for a change of @wl to the local @cpu with an overall group weight change
3660 * of @wl we can compute the new shares distribution (s'_i) using:
3661 *
3662 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3663 *
3664 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3665 * differences in waking a task to CPU 0. The additional task changes the
3666 * weight and shares distributions like:
3667 *
3668 * rw'_i = { 3, 4, 1, 0 }
3669 * s'_i = { 3/8, 4/8, 1/8, 0 }
3670 *
3671 * We can then compute the difference in effective weight by using:
3672 *
3673 * dw_i = S * (s'_i - s_i) (3)
3674 *
3675 * Where 'S' is the group weight as seen by its parent.
3676 *
3677 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3678 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3679 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003680 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003681static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003682{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003683 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003684
Mel Gorman58d081b2013-10-07 11:29:10 +01003685 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003686 return wl;
3687
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003688 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003689 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003690
Paul Turner977dda72011-01-14 17:57:50 -08003691 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003692
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003693 /*
3694 * W = @wg + \Sum rw_j
3695 */
3696 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003697
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003698 /*
3699 * w = rw_i + @wl
3700 */
3701 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003702
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003703 /*
3704 * wl = S * s'_i; see (2)
3705 */
3706 if (W > 0 && w < W)
3707 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003708 else
3709 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003710
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003711 /*
3712 * Per the above, wl is the new se->load.weight value; since
3713 * those are clipped to [MIN_SHARES, ...) do so now. See
3714 * calc_cfs_shares().
3715 */
Paul Turner977dda72011-01-14 17:57:50 -08003716 if (wl < MIN_SHARES)
3717 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003718
3719 /*
3720 * wl = dw_i = S * (s'_i - s_i); see (3)
3721 */
Paul Turner977dda72011-01-14 17:57:50 -08003722 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003723
3724 /*
3725 * Recursively apply this logic to all parent groups to compute
3726 * the final effective load change on the root group. Since
3727 * only the @tg group gets extra weight, all parent groups can
3728 * only redistribute existing shares. @wl is the shift in shares
3729 * resulting from this level per the above.
3730 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003731 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003732 }
3733
3734 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003735}
3736#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003737
Mel Gorman58d081b2013-10-07 11:29:10 +01003738static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003739{
Peter Zijlstra83378262008-06-27 13:41:37 +02003740 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003741}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003742
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003743#endif
3744
Michael Wang62470412013-07-04 12:55:51 +08003745static int wake_wide(struct task_struct *p)
3746{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003747 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003748
3749 /*
3750 * Yeah, it's the switching-frequency, could means many wakee or
3751 * rapidly switch, use factor here will just help to automatically
3752 * adjust the loose-degree, so bigger node will lead to more pull.
3753 */
3754 if (p->wakee_flips > factor) {
3755 /*
3756 * wakee is somewhat hot, it needs certain amount of cpu
3757 * resource, so if waker is far more hot, prefer to leave
3758 * it alone.
3759 */
3760 if (current->wakee_flips > (factor * p->wakee_flips))
3761 return 1;
3762 }
3763
3764 return 0;
3765}
3766
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003767static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003768{
Paul Turnere37b6a72011-01-21 20:44:59 -08003769 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003770 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003771 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003772 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003773 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003774 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003775
Michael Wang62470412013-07-04 12:55:51 +08003776 /*
3777 * If we wake multiple tasks be careful to not bounce
3778 * ourselves around too much.
3779 */
3780 if (wake_wide(p))
3781 return 0;
3782
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003783 idx = sd->wake_idx;
3784 this_cpu = smp_processor_id();
3785 prev_cpu = task_cpu(p);
3786 load = source_load(prev_cpu, idx);
3787 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003788
3789 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003790 * If sync wakeup then subtract the (maximum possible)
3791 * effect of the currently running task from the load
3792 * of the current CPU:
3793 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003794 if (sync) {
3795 tg = task_group(current);
3796 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003797
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003798 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003799 load += effective_load(tg, prev_cpu, 0, -weight);
3800 }
3801
3802 tg = task_group(p);
3803 weight = p->se.load.weight;
3804
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003805 /*
3806 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003807 * due to the sync cause above having dropped this_load to 0, we'll
3808 * always have an imbalance, but there's really nothing you can do
3809 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003810 *
3811 * Otherwise check if either cpus are near enough in load to allow this
3812 * task to be woken on this_cpu.
3813 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003814 if (this_load > 0) {
3815 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003816
3817 this_eff_load = 100;
3818 this_eff_load *= power_of(prev_cpu);
3819 this_eff_load *= this_load +
3820 effective_load(tg, this_cpu, weight, weight);
3821
3822 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3823 prev_eff_load *= power_of(this_cpu);
3824 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3825
3826 balanced = this_eff_load <= prev_eff_load;
3827 } else
3828 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003829
3830 /*
3831 * If the currently running task will sleep within
3832 * a reasonable amount of time then attract this newly
3833 * woken task:
3834 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003835 if (sync && balanced)
3836 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003837
Lucas De Marchi41acab82010-03-10 23:37:45 -03003838 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003839 tl_per_task = cpu_avg_load_per_task(this_cpu);
3840
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003841 if (balanced ||
3842 (this_load <= load &&
3843 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003844 /*
3845 * This domain has SD_WAKE_AFFINE and
3846 * p is cache cold in this domain, and
3847 * there is no bad imbalance.
3848 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003849 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003850 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003851
3852 return 1;
3853 }
3854 return 0;
3855}
3856
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003857/*
3858 * find_idlest_group finds and returns the least busy CPU group within the
3859 * domain.
3860 */
3861static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003862find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003863 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003864{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003865 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003866 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003867 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003868
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003869 do {
3870 unsigned long load, avg_load;
3871 int local_group;
3872 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003873
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003874 /* Skip over this group if it has no CPUs allowed */
3875 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003876 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003877 continue;
3878
3879 local_group = cpumask_test_cpu(this_cpu,
3880 sched_group_cpus(group));
3881
3882 /* Tally up the load of all CPUs in the group */
3883 avg_load = 0;
3884
3885 for_each_cpu(i, sched_group_cpus(group)) {
3886 /* Bias balancing toward cpus of our domain */
3887 if (local_group)
3888 load = source_load(i, load_idx);
3889 else
3890 load = target_load(i, load_idx);
3891
3892 avg_load += load;
3893 }
3894
3895 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003896 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003897
3898 if (local_group) {
3899 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003900 } else if (avg_load < min_load) {
3901 min_load = avg_load;
3902 idlest = group;
3903 }
3904 } while (group = group->next, group != sd->groups);
3905
3906 if (!idlest || 100*this_load < imbalance*min_load)
3907 return NULL;
3908 return idlest;
3909}
3910
3911/*
3912 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3913 */
3914static int
3915find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3916{
3917 unsigned long load, min_load = ULONG_MAX;
3918 int idlest = -1;
3919 int i;
3920
3921 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003922 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003923 load = weighted_cpuload(i);
3924
3925 if (load < min_load || (load == min_load && i == this_cpu)) {
3926 min_load = load;
3927 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003928 }
3929 }
3930
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003931 return idlest;
3932}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003933
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003934/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003935 * Try and locate an idle CPU in the sched_domain.
3936 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003937static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003938{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003939 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003940 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003941 int i = task_cpu(p);
3942
3943 if (idle_cpu(target))
3944 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003945
3946 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003947 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003948 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003949 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3950 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003951
3952 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003953 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003954 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003955 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003956 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003957 sg = sd->groups;
3958 do {
3959 if (!cpumask_intersects(sched_group_cpus(sg),
3960 tsk_cpus_allowed(p)))
3961 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003962
Linus Torvalds37407ea2012-09-16 12:29:43 -07003963 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003964 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003965 goto next;
3966 }
3967
3968 target = cpumask_first_and(sched_group_cpus(sg),
3969 tsk_cpus_allowed(p));
3970 goto done;
3971next:
3972 sg = sg->next;
3973 } while (sg != sd->groups);
3974 }
3975done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003976 return target;
3977}
3978
3979/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003980 * sched_balance_self: balance the current task (running on cpu) in domains
3981 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3982 * SD_BALANCE_EXEC.
3983 *
3984 * Balance, ie. select the least loaded group.
3985 *
3986 * Returns the target CPU number, or the same CPU if no balancing is needed.
3987 *
3988 * preempt must be disabled.
3989 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003990static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01003991select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003992{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003993 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003994 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003995 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003996 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003997 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003998
Peter Zijlstra29baa742012-04-23 12:11:21 +02003999 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004000 return prev_cpu;
4001
Peter Zijlstra0763a662009-09-14 19:37:39 +02004002 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004003 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004004 want_affine = 1;
4005 new_cpu = prev_cpu;
4006 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004007
Peter Zijlstradce840a2011-04-07 14:09:50 +02004008 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004009 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004010 if (!(tmp->flags & SD_LOAD_BALANCE))
4011 continue;
4012
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004013 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004014 * If both cpu and prev_cpu are part of this domain,
4015 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004016 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004017 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4018 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4019 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004020 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004021 }
4022
Alex Shif03542a2012-07-26 08:55:34 +08004023 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004024 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004025 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004026
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004027 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004028 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004029 prev_cpu = cpu;
4030
4031 new_cpu = select_idle_sibling(p, prev_cpu);
4032 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004033 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004034
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004035 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004036 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004037 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004038 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004039
Peter Zijlstra0763a662009-09-14 19:37:39 +02004040 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004041 sd = sd->child;
4042 continue;
4043 }
4044
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004045 if (sd_flag & SD_BALANCE_WAKE)
4046 load_idx = sd->wake_idx;
4047
4048 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004049 if (!group) {
4050 sd = sd->child;
4051 continue;
4052 }
4053
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004054 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004055 if (new_cpu == -1 || new_cpu == cpu) {
4056 /* Now try balancing at a lower domain level of cpu */
4057 sd = sd->child;
4058 continue;
4059 }
4060
4061 /* Now try balancing at a lower domain level of new_cpu */
4062 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004063 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004064 sd = NULL;
4065 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004066 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004067 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004068 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004069 sd = tmp;
4070 }
4071 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004072 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004073unlock:
4074 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004075
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004076 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004077}
Paul Turner0a74bef2012-10-04 13:18:30 +02004078
4079/*
4080 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4081 * cfs_rq_of(p) references at time of call are still valid and identify the
4082 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4083 * other assumptions, including the state of rq->lock, should be made.
4084 */
4085static void
4086migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4087{
Paul Turneraff3e492012-10-04 13:18:30 +02004088 struct sched_entity *se = &p->se;
4089 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4090
4091 /*
4092 * Load tracking: accumulate removed load so that it can be processed
4093 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4094 * to blocked load iff they have a positive decay-count. It can never
4095 * be negative here since on-rq tasks have decay-count == 0.
4096 */
4097 if (se->avg.decay_count) {
4098 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004099 atomic_long_add(se->avg.load_avg_contrib,
4100 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004101 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004102}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004103#endif /* CONFIG_SMP */
4104
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004105static unsigned long
4106wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004107{
4108 unsigned long gran = sysctl_sched_wakeup_granularity;
4109
4110 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004111 * Since its curr running now, convert the gran from real-time
4112 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004113 *
4114 * By using 'se' instead of 'curr' we penalize light tasks, so
4115 * they get preempted easier. That is, if 'se' < 'curr' then
4116 * the resulting gran will be larger, therefore penalizing the
4117 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4118 * be smaller, again penalizing the lighter task.
4119 *
4120 * This is especially important for buddies when the leftmost
4121 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004122 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004123 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004124}
4125
4126/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004127 * Should 'se' preempt 'curr'.
4128 *
4129 * |s1
4130 * |s2
4131 * |s3
4132 * g
4133 * |<--->|c
4134 *
4135 * w(c, s1) = -1
4136 * w(c, s2) = 0
4137 * w(c, s3) = 1
4138 *
4139 */
4140static int
4141wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4142{
4143 s64 gran, vdiff = curr->vruntime - se->vruntime;
4144
4145 if (vdiff <= 0)
4146 return -1;
4147
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004148 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004149 if (vdiff > gran)
4150 return 1;
4151
4152 return 0;
4153}
4154
Peter Zijlstra02479092008-11-04 21:25:10 +01004155static void set_last_buddy(struct sched_entity *se)
4156{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004157 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4158 return;
4159
4160 for_each_sched_entity(se)
4161 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004162}
4163
4164static void set_next_buddy(struct sched_entity *se)
4165{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004166 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4167 return;
4168
4169 for_each_sched_entity(se)
4170 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004171}
4172
Rik van Rielac53db52011-02-01 09:51:03 -05004173static void set_skip_buddy(struct sched_entity *se)
4174{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004175 for_each_sched_entity(se)
4176 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004177}
4178
Peter Zijlstra464b7522008-10-24 11:06:15 +02004179/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004180 * Preempt the current task with a newly woken task if needed:
4181 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004182static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004183{
4184 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004185 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004186 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004187 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004188 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004189
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004190 if (unlikely(se == pse))
4191 return;
4192
Paul Turner5238cdd2011-07-21 09:43:37 -07004193 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004194 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004195 * unconditionally check_prempt_curr() after an enqueue (which may have
4196 * lead to a throttle). This both saves work and prevents false
4197 * next-buddy nomination below.
4198 */
4199 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4200 return;
4201
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004202 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004203 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004204 next_buddy_marked = 1;
4205 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004206
Bharata B Raoaec0a512008-08-28 14:42:49 +05304207 /*
4208 * We can come here with TIF_NEED_RESCHED already set from new task
4209 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004210 *
4211 * Note: this also catches the edge-case of curr being in a throttled
4212 * group (e.g. via set_curr_task), since update_curr() (in the
4213 * enqueue of curr) will have resulted in resched being set. This
4214 * prevents us from potentially nominating it as a false LAST_BUDDY
4215 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304216 */
4217 if (test_tsk_need_resched(curr))
4218 return;
4219
Darren Harta2f5c9a2011-02-22 13:04:33 -08004220 /* Idle tasks are by definition preempted by non-idle tasks. */
4221 if (unlikely(curr->policy == SCHED_IDLE) &&
4222 likely(p->policy != SCHED_IDLE))
4223 goto preempt;
4224
Ingo Molnar91c234b2007-10-15 17:00:18 +02004225 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004226 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4227 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004228 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004229 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004230 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004231
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004232 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004233 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004234 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004235 if (wakeup_preempt_entity(se, pse) == 1) {
4236 /*
4237 * Bias pick_next to pick the sched entity that is
4238 * triggering this preemption.
4239 */
4240 if (!next_buddy_marked)
4241 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004242 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004243 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004244
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004245 return;
4246
4247preempt:
4248 resched_task(curr);
4249 /*
4250 * Only set the backward buddy when the current task is still
4251 * on the rq. This can happen when a wakeup gets interleaved
4252 * with schedule on the ->pre_schedule() or idle_balance()
4253 * point, either of which can * drop the rq lock.
4254 *
4255 * Also, during early boot the idle thread is in the fair class,
4256 * for obvious reasons its a bad idea to schedule back to it.
4257 */
4258 if (unlikely(!se->on_rq || curr == rq->idle))
4259 return;
4260
4261 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4262 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004263}
4264
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004265static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004266{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004267 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004268 struct cfs_rq *cfs_rq = &rq->cfs;
4269 struct sched_entity *se;
4270
Tim Blechmann36ace272009-11-24 11:55:45 +01004271 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004272 return NULL;
4273
4274 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004275 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004276 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004277 cfs_rq = group_cfs_rq(se);
4278 } while (cfs_rq);
4279
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004280 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004281 if (hrtick_enabled(rq))
4282 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004283
4284 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004285}
4286
4287/*
4288 * Account for a descheduled task:
4289 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004290static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004291{
4292 struct sched_entity *se = &prev->se;
4293 struct cfs_rq *cfs_rq;
4294
4295 for_each_sched_entity(se) {
4296 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004297 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004298 }
4299}
4300
Rik van Rielac53db52011-02-01 09:51:03 -05004301/*
4302 * sched_yield() is very simple
4303 *
4304 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4305 */
4306static void yield_task_fair(struct rq *rq)
4307{
4308 struct task_struct *curr = rq->curr;
4309 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4310 struct sched_entity *se = &curr->se;
4311
4312 /*
4313 * Are we the only task in the tree?
4314 */
4315 if (unlikely(rq->nr_running == 1))
4316 return;
4317
4318 clear_buddies(cfs_rq, se);
4319
4320 if (curr->policy != SCHED_BATCH) {
4321 update_rq_clock(rq);
4322 /*
4323 * Update run-time statistics of the 'current'.
4324 */
4325 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004326 /*
4327 * Tell update_rq_clock() that we've just updated,
4328 * so we don't do microscopic update in schedule()
4329 * and double the fastpath cost.
4330 */
4331 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004332 }
4333
4334 set_skip_buddy(se);
4335}
4336
Mike Galbraithd95f4122011-02-01 09:50:51 -05004337static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4338{
4339 struct sched_entity *se = &p->se;
4340
Paul Turner5238cdd2011-07-21 09:43:37 -07004341 /* throttled hierarchies are not runnable */
4342 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004343 return false;
4344
4345 /* Tell the scheduler that we'd really like pse to run next. */
4346 set_next_buddy(se);
4347
Mike Galbraithd95f4122011-02-01 09:50:51 -05004348 yield_task_fair(rq);
4349
4350 return true;
4351}
4352
Peter Williams681f3e62007-10-24 18:23:51 +02004353#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004354/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004355 * Fair scheduling class load-balancing methods.
4356 *
4357 * BASICS
4358 *
4359 * The purpose of load-balancing is to achieve the same basic fairness the
4360 * per-cpu scheduler provides, namely provide a proportional amount of compute
4361 * time to each task. This is expressed in the following equation:
4362 *
4363 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4364 *
4365 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4366 * W_i,0 is defined as:
4367 *
4368 * W_i,0 = \Sum_j w_i,j (2)
4369 *
4370 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4371 * is derived from the nice value as per prio_to_weight[].
4372 *
4373 * The weight average is an exponential decay average of the instantaneous
4374 * weight:
4375 *
4376 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4377 *
4378 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4379 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4380 * can also include other factors [XXX].
4381 *
4382 * To achieve this balance we define a measure of imbalance which follows
4383 * directly from (1):
4384 *
4385 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4386 *
4387 * We them move tasks around to minimize the imbalance. In the continuous
4388 * function space it is obvious this converges, in the discrete case we get
4389 * a few fun cases generally called infeasible weight scenarios.
4390 *
4391 * [XXX expand on:
4392 * - infeasible weights;
4393 * - local vs global optima in the discrete case. ]
4394 *
4395 *
4396 * SCHED DOMAINS
4397 *
4398 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4399 * for all i,j solution, we create a tree of cpus that follows the hardware
4400 * topology where each level pairs two lower groups (or better). This results
4401 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4402 * tree to only the first of the previous level and we decrease the frequency
4403 * of load-balance at each level inv. proportional to the number of cpus in
4404 * the groups.
4405 *
4406 * This yields:
4407 *
4408 * log_2 n 1 n
4409 * \Sum { --- * --- * 2^i } = O(n) (5)
4410 * i = 0 2^i 2^i
4411 * `- size of each group
4412 * | | `- number of cpus doing load-balance
4413 * | `- freq
4414 * `- sum over all levels
4415 *
4416 * Coupled with a limit on how many tasks we can migrate every balance pass,
4417 * this makes (5) the runtime complexity of the balancer.
4418 *
4419 * An important property here is that each CPU is still (indirectly) connected
4420 * to every other cpu in at most O(log n) steps:
4421 *
4422 * The adjacency matrix of the resulting graph is given by:
4423 *
4424 * log_2 n
4425 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4426 * k = 0
4427 *
4428 * And you'll find that:
4429 *
4430 * A^(log_2 n)_i,j != 0 for all i,j (7)
4431 *
4432 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4433 * The task movement gives a factor of O(m), giving a convergence complexity
4434 * of:
4435 *
4436 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4437 *
4438 *
4439 * WORK CONSERVING
4440 *
4441 * In order to avoid CPUs going idle while there's still work to do, new idle
4442 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4443 * tree itself instead of relying on other CPUs to bring it work.
4444 *
4445 * This adds some complexity to both (5) and (8) but it reduces the total idle
4446 * time.
4447 *
4448 * [XXX more?]
4449 *
4450 *
4451 * CGROUPS
4452 *
4453 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4454 *
4455 * s_k,i
4456 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4457 * S_k
4458 *
4459 * Where
4460 *
4461 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4462 *
4463 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4464 *
4465 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4466 * property.
4467 *
4468 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4469 * rewrite all of this once again.]
4470 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004471
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004472static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4473
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004474#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004475#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004476#define LBF_DST_PINNED 0x04
4477#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004478
4479struct lb_env {
4480 struct sched_domain *sd;
4481
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004482 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304483 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004484
4485 int dst_cpu;
4486 struct rq *dst_rq;
4487
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304488 struct cpumask *dst_grpmask;
4489 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004490 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004491 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004492 /* The set of CPUs under consideration for load-balancing */
4493 struct cpumask *cpus;
4494
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004495 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004496
4497 unsigned int loop;
4498 unsigned int loop_break;
4499 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004500};
4501
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004502/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004503 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004504 * Both runqueues must be locked.
4505 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004506static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004507{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004508 deactivate_task(env->src_rq, p, 0);
4509 set_task_cpu(p, env->dst_cpu);
4510 activate_task(env->dst_rq, p, 0);
4511 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004512#ifdef CONFIG_NUMA_BALANCING
4513 if (p->numa_preferred_nid != -1) {
4514 int src_nid = cpu_to_node(env->src_cpu);
4515 int dst_nid = cpu_to_node(env->dst_cpu);
4516
4517 /*
4518 * If the load balancer has moved the task then limit
4519 * migrations from taking place in the short term in
4520 * case this is a short-lived migration.
4521 */
4522 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4523 p->numa_migrate_seq = 0;
4524 }
4525#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004526}
4527
4528/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004529 * Is this task likely cache-hot:
4530 */
4531static int
4532task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4533{
4534 s64 delta;
4535
4536 if (p->sched_class != &fair_sched_class)
4537 return 0;
4538
4539 if (unlikely(p->policy == SCHED_IDLE))
4540 return 0;
4541
4542 /*
4543 * Buddy candidates are cache hot:
4544 */
4545 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4546 (&p->se == cfs_rq_of(&p->se)->next ||
4547 &p->se == cfs_rq_of(&p->se)->last))
4548 return 1;
4549
4550 if (sysctl_sched_migration_cost == -1)
4551 return 1;
4552 if (sysctl_sched_migration_cost == 0)
4553 return 0;
4554
4555 delta = now - p->se.exec_start;
4556
4557 return delta < (s64)sysctl_sched_migration_cost;
4558}
4559
Mel Gorman3a7053b2013-10-07 11:29:00 +01004560#ifdef CONFIG_NUMA_BALANCING
4561/* Returns true if the destination node has incurred more faults */
4562static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4563{
4564 int src_nid, dst_nid;
4565
4566 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4567 !(env->sd->flags & SD_NUMA)) {
4568 return false;
4569 }
4570
4571 src_nid = cpu_to_node(env->src_cpu);
4572 dst_nid = cpu_to_node(env->dst_cpu);
4573
4574 if (src_nid == dst_nid ||
4575 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4576 return false;
4577
4578 if (dst_nid == p->numa_preferred_nid ||
Mel Gormanac8e8952013-10-07 11:29:03 +01004579 task_faults(p, dst_nid) > task_faults(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004580 return true;
4581
4582 return false;
4583}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004584
4585
4586static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4587{
4588 int src_nid, dst_nid;
4589
4590 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4591 return false;
4592
4593 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4594 return false;
4595
4596 src_nid = cpu_to_node(env->src_cpu);
4597 dst_nid = cpu_to_node(env->dst_cpu);
4598
4599 if (src_nid == dst_nid ||
4600 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4601 return false;
4602
Mel Gormanac8e8952013-10-07 11:29:03 +01004603 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004604 return true;
4605
4606 return false;
4607}
4608
Mel Gorman3a7053b2013-10-07 11:29:00 +01004609#else
4610static inline bool migrate_improves_locality(struct task_struct *p,
4611 struct lb_env *env)
4612{
4613 return false;
4614}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004615
4616static inline bool migrate_degrades_locality(struct task_struct *p,
4617 struct lb_env *env)
4618{
4619 return false;
4620}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004621#endif
4622
Peter Zijlstra029632f2011-10-25 10:00:11 +02004623/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004624 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4625 */
4626static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004627int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004628{
4629 int tsk_cache_hot = 0;
4630 /*
4631 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004632 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004633 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004634 * 3) running (obviously), or
4635 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004636 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004637 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4638 return 0;
4639
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004640 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004641 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304642
Lucas De Marchi41acab82010-03-10 23:37:45 -03004643 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304644
Peter Zijlstra62633222013-08-19 12:41:09 +02004645 env->flags |= LBF_SOME_PINNED;
4646
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304647 /*
4648 * Remember if this task can be migrated to any other cpu in
4649 * our sched_group. We may want to revisit it if we couldn't
4650 * meet load balance goals by pulling other tasks on src_cpu.
4651 *
4652 * Also avoid computing new_dst_cpu if we have already computed
4653 * one in current iteration.
4654 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004655 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304656 return 0;
4657
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004658 /* Prevent to re-select dst_cpu via env's cpus */
4659 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4660 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004661 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004662 env->new_dst_cpu = cpu;
4663 break;
4664 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304665 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004666
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004667 return 0;
4668 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304669
4670 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004671 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004672
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004673 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004674 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004675 return 0;
4676 }
4677
4678 /*
4679 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004680 * 1) destination numa is preferred
4681 * 2) task is cache cold, or
4682 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004683 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004684 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004685 if (!tsk_cache_hot)
4686 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004687
4688 if (migrate_improves_locality(p, env)) {
4689#ifdef CONFIG_SCHEDSTATS
4690 if (tsk_cache_hot) {
4691 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4692 schedstat_inc(p, se.statistics.nr_forced_migrations);
4693 }
4694#endif
4695 return 1;
4696 }
4697
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004698 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004699 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004700
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004701 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004702 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004703 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004704 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004705
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004706 return 1;
4707 }
4708
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004709 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4710 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004711}
4712
Peter Zijlstra897c3952009-12-17 17:45:42 +01004713/*
4714 * move_one_task tries to move exactly one task from busiest to this_rq, as
4715 * part of active balancing operations within "domain".
4716 * Returns 1 if successful and 0 otherwise.
4717 *
4718 * Called with both runqueues locked.
4719 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004720static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004721{
4722 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004723
Peter Zijlstra367456c2012-02-20 21:49:09 +01004724 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004725 if (!can_migrate_task(p, env))
4726 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004727
Peter Zijlstra367456c2012-02-20 21:49:09 +01004728 move_task(p, env);
4729 /*
4730 * Right now, this is only the second place move_task()
4731 * is called, so we can safely collect move_task()
4732 * stats here rather than inside move_task().
4733 */
4734 schedstat_inc(env->sd, lb_gained[env->idle]);
4735 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004736 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004737 return 0;
4738}
4739
Peter Zijlstraeb953082012-04-17 13:38:40 +02004740static const unsigned int sched_nr_migrate_break = 32;
4741
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004742/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004743 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004744 * this_rq, as part of a balancing operation within domain "sd".
4745 * Returns 1 if successful and 0 otherwise.
4746 *
4747 * Called with both runqueues locked.
4748 */
4749static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004750{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004751 struct list_head *tasks = &env->src_rq->cfs_tasks;
4752 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004753 unsigned long load;
4754 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004755
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004756 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004757 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004758
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004759 while (!list_empty(tasks)) {
4760 p = list_first_entry(tasks, struct task_struct, se.group_node);
4761
Peter Zijlstra367456c2012-02-20 21:49:09 +01004762 env->loop++;
4763 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004764 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004765 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004766
4767 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004768 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004769 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004770 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004771 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004772 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004773
Joonsoo Kimd3198082013-04-23 17:27:40 +09004774 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004775 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004776
Peter Zijlstra367456c2012-02-20 21:49:09 +01004777 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004778
Peter Zijlstraeb953082012-04-17 13:38:40 +02004779 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004780 goto next;
4781
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004782 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004783 goto next;
4784
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004785 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004786 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004787 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004788
4789#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004790 /*
4791 * NEWIDLE balancing is a source of latency, so preemptible
4792 * kernels will stop after the first task is pulled to minimize
4793 * the critical section.
4794 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004795 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004796 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004797#endif
4798
Peter Zijlstraee00e662009-12-17 17:25:20 +01004799 /*
4800 * We only want to steal up to the prescribed amount of
4801 * weighted load.
4802 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004803 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004804 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004805
Peter Zijlstra367456c2012-02-20 21:49:09 +01004806 continue;
4807next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004808 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004809 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004810
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004811 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004812 * Right now, this is one of only two places move_task() is called,
4813 * so we can safely collect move_task() stats here rather than
4814 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004815 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004816 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004817
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004818 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004819}
4820
Peter Zijlstra230059de2009-12-17 17:47:12 +01004821#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004822/*
4823 * update tg->load_weight by folding this cpu's load_avg
4824 */
Paul Turner48a16752012-10-04 13:18:31 +02004825static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004826{
Paul Turner48a16752012-10-04 13:18:31 +02004827 struct sched_entity *se = tg->se[cpu];
4828 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004829
Paul Turner48a16752012-10-04 13:18:31 +02004830 /* throttled entities do not contribute to load */
4831 if (throttled_hierarchy(cfs_rq))
4832 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004833
Paul Turneraff3e492012-10-04 13:18:30 +02004834 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004835
Paul Turner82958362012-10-04 13:18:31 +02004836 if (se) {
4837 update_entity_load_avg(se, 1);
4838 /*
4839 * We pivot on our runnable average having decayed to zero for
4840 * list removal. This generally implies that all our children
4841 * have also been removed (modulo rounding error or bandwidth
4842 * control); however, such cases are rare and we can fix these
4843 * at enqueue.
4844 *
4845 * TODO: fix up out-of-order children on enqueue.
4846 */
4847 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4848 list_del_leaf_cfs_rq(cfs_rq);
4849 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004850 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004851 update_rq_runnable_avg(rq, rq->nr_running);
4852 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004853}
4854
Paul Turner48a16752012-10-04 13:18:31 +02004855static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004856{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004857 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004858 struct cfs_rq *cfs_rq;
4859 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004860
Paul Turner48a16752012-10-04 13:18:31 +02004861 raw_spin_lock_irqsave(&rq->lock, flags);
4862 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004863 /*
4864 * Iterates the task_group tree in a bottom up fashion, see
4865 * list_add_leaf_cfs_rq() for details.
4866 */
Paul Turner64660c82011-07-21 09:43:36 -07004867 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004868 /*
4869 * Note: We may want to consider periodically releasing
4870 * rq->lock about these updates so that creating many task
4871 * groups does not result in continually extending hold time.
4872 */
4873 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004874 }
Paul Turner48a16752012-10-04 13:18:31 +02004875
4876 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004877}
4878
Peter Zijlstra9763b672011-07-13 13:09:25 +02004879/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004880 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004881 * This needs to be done in a top-down fashion because the load of a child
4882 * group is a fraction of its parents load.
4883 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004884static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004885{
Vladimir Davydov68520792013-07-15 17:49:19 +04004886 struct rq *rq = rq_of(cfs_rq);
4887 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004888 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04004889 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004890
Vladimir Davydov68520792013-07-15 17:49:19 +04004891 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004892 return;
4893
Vladimir Davydov68520792013-07-15 17:49:19 +04004894 cfs_rq->h_load_next = NULL;
4895 for_each_sched_entity(se) {
4896 cfs_rq = cfs_rq_of(se);
4897 cfs_rq->h_load_next = se;
4898 if (cfs_rq->last_h_load_update == now)
4899 break;
4900 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004901
Vladimir Davydov68520792013-07-15 17:49:19 +04004902 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04004903 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04004904 cfs_rq->last_h_load_update = now;
4905 }
4906
4907 while ((se = cfs_rq->h_load_next) != NULL) {
4908 load = cfs_rq->h_load;
4909 load = div64_ul(load * se->avg.load_avg_contrib,
4910 cfs_rq->runnable_load_avg + 1);
4911 cfs_rq = group_cfs_rq(se);
4912 cfs_rq->h_load = load;
4913 cfs_rq->last_h_load_update = now;
4914 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02004915}
4916
Peter Zijlstra367456c2012-02-20 21:49:09 +01004917static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004918{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004919 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004920
Vladimir Davydov68520792013-07-15 17:49:19 +04004921 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08004922 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4923 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004924}
4925#else
Paul Turner48a16752012-10-04 13:18:31 +02004926static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004927{
4928}
4929
Peter Zijlstra367456c2012-02-20 21:49:09 +01004930static unsigned long task_h_load(struct task_struct *p)
4931{
Alex Shia003a252013-06-20 10:18:51 +08004932 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004933}
4934#endif
4935
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004936/********** Helpers for find_busiest_group ************************/
4937/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004938 * sg_lb_stats - stats of a sched_group required for load_balancing
4939 */
4940struct sg_lb_stats {
4941 unsigned long avg_load; /*Avg load across the CPUs of the group */
4942 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004943 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004944 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02004945 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004946 unsigned int sum_nr_running; /* Nr tasks running in the group */
4947 unsigned int group_capacity;
4948 unsigned int idle_cpus;
4949 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004950 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004951 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004952};
4953
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004954/*
4955 * sd_lb_stats - Structure to store the statistics of a sched_domain
4956 * during load balancing.
4957 */
4958struct sd_lb_stats {
4959 struct sched_group *busiest; /* Busiest group in this sd */
4960 struct sched_group *local; /* Local group in this sd */
4961 unsigned long total_load; /* Total load of all groups in sd */
4962 unsigned long total_pwr; /* Total power of all groups in sd */
4963 unsigned long avg_load; /* Average load across all groups in sd */
4964
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004965 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004966 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004967};
4968
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004969static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4970{
4971 /*
4972 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4973 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4974 * We must however clear busiest_stat::avg_load because
4975 * update_sd_pick_busiest() reads this before assignment.
4976 */
4977 *sds = (struct sd_lb_stats){
4978 .busiest = NULL,
4979 .local = NULL,
4980 .total_load = 0UL,
4981 .total_pwr = 0UL,
4982 .busiest_stat = {
4983 .avg_load = 0UL,
4984 },
4985 };
4986}
4987
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004988/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004989 * get_sd_load_idx - Obtain the load index for a given sched domain.
4990 * @sd: The sched_domain whose load_idx is to be obtained.
4991 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02004992 *
4993 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004994 */
4995static inline int get_sd_load_idx(struct sched_domain *sd,
4996 enum cpu_idle_type idle)
4997{
4998 int load_idx;
4999
5000 switch (idle) {
5001 case CPU_NOT_IDLE:
5002 load_idx = sd->busy_idx;
5003 break;
5004
5005 case CPU_NEWLY_IDLE:
5006 load_idx = sd->newidle_idx;
5007 break;
5008 default:
5009 load_idx = sd->idle_idx;
5010 break;
5011 }
5012
5013 return load_idx;
5014}
5015
Li Zefan15f803c2013-03-05 16:07:11 +08005016static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005017{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005018 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005019}
5020
5021unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5022{
5023 return default_scale_freq_power(sd, cpu);
5024}
5025
Li Zefan15f803c2013-03-05 16:07:11 +08005026static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005027{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005028 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005029 unsigned long smt_gain = sd->smt_gain;
5030
5031 smt_gain /= weight;
5032
5033 return smt_gain;
5034}
5035
5036unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5037{
5038 return default_scale_smt_power(sd, cpu);
5039}
5040
Li Zefan15f803c2013-03-05 16:07:11 +08005041static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005042{
5043 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005044 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005045
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005046 /*
5047 * Since we're reading these variables without serialization make sure
5048 * we read them once before doing sanity checks on them.
5049 */
5050 age_stamp = ACCESS_ONCE(rq->age_stamp);
5051 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005052
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005053 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005054
5055 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005056 /* Ensures that power won't end up being negative */
5057 available = 0;
5058 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005059 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005060 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005061
Nikhil Rao1399fa72011-05-18 10:09:39 -07005062 if (unlikely((s64)total < SCHED_POWER_SCALE))
5063 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005064
Nikhil Rao1399fa72011-05-18 10:09:39 -07005065 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005066
5067 return div_u64(available, total);
5068}
5069
5070static void update_cpu_power(struct sched_domain *sd, int cpu)
5071{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005072 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005073 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005074 struct sched_group *sdg = sd->groups;
5075
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005076 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5077 if (sched_feat(ARCH_POWER))
5078 power *= arch_scale_smt_power(sd, cpu);
5079 else
5080 power *= default_scale_smt_power(sd, cpu);
5081
Nikhil Rao1399fa72011-05-18 10:09:39 -07005082 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005083 }
5084
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005085 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005086
5087 if (sched_feat(ARCH_POWER))
5088 power *= arch_scale_freq_power(sd, cpu);
5089 else
5090 power *= default_scale_freq_power(sd, cpu);
5091
Nikhil Rao1399fa72011-05-18 10:09:39 -07005092 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005093
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005094 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005095 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005096
5097 if (!power)
5098 power = 1;
5099
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005100 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005101 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005102}
5103
Peter Zijlstra029632f2011-10-25 10:00:11 +02005104void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005105{
5106 struct sched_domain *child = sd->child;
5107 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005108 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005109 unsigned long interval;
5110
5111 interval = msecs_to_jiffies(sd->balance_interval);
5112 interval = clamp(interval, 1UL, max_load_balance_interval);
5113 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005114
5115 if (!child) {
5116 update_cpu_power(sd, cpu);
5117 return;
5118 }
5119
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005120 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005121
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005122 if (child->flags & SD_OVERLAP) {
5123 /*
5124 * SD_OVERLAP domains cannot assume that child groups
5125 * span the current group.
5126 */
5127
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005128 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5129 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5130
5131 power_orig += sg->sgp->power_orig;
5132 power += sg->sgp->power;
5133 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005134 } else {
5135 /*
5136 * !SD_OVERLAP domains can assume that child groups
5137 * span the current group.
5138 */
5139
5140 group = child->groups;
5141 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005142 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005143 power += group->sgp->power;
5144 group = group->next;
5145 } while (group != child->groups);
5146 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005147
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005148 sdg->sgp->power_orig = power_orig;
5149 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005150}
5151
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005152/*
5153 * Try and fix up capacity for tiny siblings, this is needed when
5154 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5155 * which on its own isn't powerful enough.
5156 *
5157 * See update_sd_pick_busiest() and check_asym_packing().
5158 */
5159static inline int
5160fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5161{
5162 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005163 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005164 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005165 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005166 return 0;
5167
5168 /*
5169 * If ~90% of the cpu_power is still there, we're good.
5170 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005171 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005172 return 1;
5173
5174 return 0;
5175}
5176
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005177/*
5178 * Group imbalance indicates (and tries to solve) the problem where balancing
5179 * groups is inadequate due to tsk_cpus_allowed() constraints.
5180 *
5181 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5182 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5183 * Something like:
5184 *
5185 * { 0 1 2 3 } { 4 5 6 7 }
5186 * * * * *
5187 *
5188 * If we were to balance group-wise we'd place two tasks in the first group and
5189 * two tasks in the second group. Clearly this is undesired as it will overload
5190 * cpu 3 and leave one of the cpus in the second group unused.
5191 *
5192 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005193 * by noticing the lower domain failed to reach balance and had difficulty
5194 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005195 *
5196 * When this is so detected; this group becomes a candidate for busiest; see
5197 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005198 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005199 * to create an effective group imbalance.
5200 *
5201 * This is a somewhat tricky proposition since the next run might not find the
5202 * group imbalance and decide the groups need to be balanced again. A most
5203 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005204 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005205
Peter Zijlstra62633222013-08-19 12:41:09 +02005206static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005207{
Peter Zijlstra62633222013-08-19 12:41:09 +02005208 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005209}
5210
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005211/*
5212 * Compute the group capacity.
5213 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005214 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5215 * first dividing out the smt factor and computing the actual number of cores
5216 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005217 */
5218static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5219{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005220 unsigned int capacity, smt, cpus;
5221 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005222
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005223 power = group->sgp->power;
5224 power_orig = group->sgp->power_orig;
5225 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005226
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005227 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5228 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5229 capacity = cpus / smt; /* cores */
5230
5231 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005232 if (!capacity)
5233 capacity = fix_small_capacity(env->sd, group);
5234
5235 return capacity;
5236}
5237
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005238/**
5239 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5240 * @env: The load balancing environment.
5241 * @group: sched_group whose statistics are to be updated.
5242 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5243 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005244 * @sgs: variable to hold the statistics for this group.
5245 */
5246static inline void update_sg_lb_stats(struct lb_env *env,
5247 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005248 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005249{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005250 unsigned long nr_running;
5251 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005252 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005253
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005254 memset(sgs, 0, sizeof(*sgs));
5255
Michael Wangb94031302012-07-12 16:10:13 +08005256 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005257 struct rq *rq = cpu_rq(i);
5258
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005259 nr_running = rq->nr_running;
5260
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005261 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005262 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005263 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005264 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005265 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005266
5267 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005268 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005269 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005270 if (idle_cpu(i))
5271 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005272 }
5273
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005274 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005275 sgs->group_power = group->sgp->power;
5276 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005277
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005278 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005279 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005281 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005282
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005283 sgs->group_imb = sg_imbalanced(group);
5284 sgs->group_capacity = sg_capacity(env, group);
5285
Nikhil Raofab47622010-10-15 13:12:29 -07005286 if (sgs->group_capacity > sgs->sum_nr_running)
5287 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005288}
5289
5290/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005291 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005292 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005293 * @sds: sched_domain statistics
5294 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005295 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005296 *
5297 * Determine if @sg is a busier group than the previously selected
5298 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005299 *
5300 * Return: %true if @sg is a busier group than the previously selected
5301 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005302 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005303static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005304 struct sd_lb_stats *sds,
5305 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005306 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005307{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005308 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005309 return false;
5310
5311 if (sgs->sum_nr_running > sgs->group_capacity)
5312 return true;
5313
5314 if (sgs->group_imb)
5315 return true;
5316
5317 /*
5318 * ASYM_PACKING needs to move all the work to the lowest
5319 * numbered CPUs in the group, therefore mark all groups
5320 * higher than ourself as busy.
5321 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005322 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5323 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005324 if (!sds->busiest)
5325 return true;
5326
5327 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5328 return true;
5329 }
5330
5331 return false;
5332}
5333
5334/**
Hui Kang461819a2011-10-11 23:00:59 -04005335 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005336 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005337 * @balance: Should we balance.
5338 * @sds: variable to hold the statistics for this sched_domain.
5339 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005340static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005341 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005342{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005343 struct sched_domain *child = env->sd->child;
5344 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005345 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005346 int load_idx, prefer_sibling = 0;
5347
5348 if (child && child->flags & SD_PREFER_SIBLING)
5349 prefer_sibling = 1;
5350
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005351 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005352
5353 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005354 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005355 int local_group;
5356
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005357 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005358 if (local_group) {
5359 sds->local = sg;
5360 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005361
5362 if (env->idle != CPU_NEWLY_IDLE ||
5363 time_after_eq(jiffies, sg->sgp->next_update))
5364 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005365 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005366
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005367 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005368
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005369 if (local_group)
5370 goto next_group;
5371
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005372 /*
5373 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005374 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005375 * and move all the excess tasks away. We lower the capacity
5376 * of a group only if the local group has the capacity to fit
5377 * these excess tasks, i.e. nr_running < group_capacity. The
5378 * extra check prevents the case where you always pull from the
5379 * heaviest group when it is already under-utilized (possible
5380 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005381 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005382 if (prefer_sibling && sds->local &&
5383 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005384 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005385
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005386 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005387 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005388 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005389 }
5390
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005391next_group:
5392 /* Now, start updating sd_lb_stats */
5393 sds->total_load += sgs->group_load;
5394 sds->total_pwr += sgs->group_power;
5395
Michael Neuling532cb4c2010-06-08 14:57:02 +10005396 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005397 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005398}
5399
Michael Neuling532cb4c2010-06-08 14:57:02 +10005400/**
5401 * check_asym_packing - Check to see if the group is packed into the
5402 * sched doman.
5403 *
5404 * This is primarily intended to used at the sibling level. Some
5405 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5406 * case of POWER7, it can move to lower SMT modes only when higher
5407 * threads are idle. When in lower SMT modes, the threads will
5408 * perform better since they share less core resources. Hence when we
5409 * have idle threads, we want them to be the higher ones.
5410 *
5411 * This packing function is run on idle threads. It checks to see if
5412 * the busiest CPU in this domain (core in the P7 case) has a higher
5413 * CPU number than the packing function is being run on. Here we are
5414 * assuming lower CPU number will be equivalent to lower a SMT thread
5415 * number.
5416 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005417 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005418 * this CPU. The amount of the imbalance is returned in *imbalance.
5419 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005420 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005421 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005422 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005423static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005424{
5425 int busiest_cpu;
5426
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005427 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005428 return 0;
5429
5430 if (!sds->busiest)
5431 return 0;
5432
5433 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005434 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005435 return 0;
5436
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005437 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005438 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5439 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005440
Michael Neuling532cb4c2010-06-08 14:57:02 +10005441 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005442}
5443
5444/**
5445 * fix_small_imbalance - Calculate the minor imbalance that exists
5446 * amongst the groups of a sched_domain, during
5447 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005448 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005450 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005451static inline
5452void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005453{
5454 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5455 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005456 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005457 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005458
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005459 local = &sds->local_stat;
5460 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005461
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005462 if (!local->sum_nr_running)
5463 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5464 else if (busiest->load_per_task > local->load_per_task)
5465 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005466
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005467 scaled_busy_load_per_task =
5468 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005469 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005470
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005471 if (busiest->avg_load + scaled_busy_load_per_task >=
5472 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005473 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005474 return;
5475 }
5476
5477 /*
5478 * OK, we don't have enough imbalance to justify moving tasks,
5479 * however we may be able to increase total CPU power used by
5480 * moving them.
5481 */
5482
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005483 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005484 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005485 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005486 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005487 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005488
5489 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005490 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005491 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005492 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005493 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005494 min(busiest->load_per_task,
5495 busiest->avg_load - tmp);
5496 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005497
5498 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005499 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005500 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005501 tmp = (busiest->avg_load * busiest->group_power) /
5502 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005503 } else {
5504 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005505 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005506 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005507 pwr_move += local->group_power *
5508 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005509 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510
5511 /* Move if we gain throughput */
5512 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005513 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005514}
5515
5516/**
5517 * calculate_imbalance - Calculate the amount of imbalance present within the
5518 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005519 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005520 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005521 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005522static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005523{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005524 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005525 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005526
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005527 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005528 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005529
5530 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005531 /*
5532 * In the group_imb case we cannot rely on group-wide averages
5533 * to ensure cpu-load equilibrium, look at wider averages. XXX
5534 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005535 busiest->load_per_task =
5536 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005537 }
5538
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005539 /*
5540 * In the presence of smp nice balancing, certain scenarios can have
5541 * max load less than avg load(as we skip the groups at or below
5542 * its cpu_power, while calculating max_load..)
5543 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005544 if (busiest->avg_load <= sds->avg_load ||
5545 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005546 env->imbalance = 0;
5547 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005548 }
5549
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005550 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005551 /*
5552 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005553 * Except of course for the group_imb case, since then we might
5554 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005555 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005556 load_above_capacity =
5557 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005558
Nikhil Rao1399fa72011-05-18 10:09:39 -07005559 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005560 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005561 }
5562
5563 /*
5564 * We're trying to get all the cpus to the average_load, so we don't
5565 * want to push ourselves above the average load, nor do we wish to
5566 * reduce the max loaded cpu below the average load. At the same time,
5567 * we also don't want to reduce the group load below the group capacity
5568 * (so that we can implement power-savings policies etc). Thus we look
5569 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005570 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005571 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005572
5573 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005574 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005575 max_pull * busiest->group_power,
5576 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005577 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005578
5579 /*
5580 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005581 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005582 * a think about bumping its value to force at least one task to be
5583 * moved
5584 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005585 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005586 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005587}
Nikhil Raofab47622010-10-15 13:12:29 -07005588
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589/******* find_busiest_group() helpers end here *********************/
5590
5591/**
5592 * find_busiest_group - Returns the busiest group within the sched_domain
5593 * if there is an imbalance. If there isn't an imbalance, and
5594 * the user has opted for power-savings, it returns a group whose
5595 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5596 * such a group exists.
5597 *
5598 * Also calculates the amount of weighted load which should be moved
5599 * to restore balance.
5600 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005601 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005603 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005604 * - If no imbalance and user has opted for power-savings balance,
5605 * return the least loaded group whose CPUs can be
5606 * put to idle by rebalancing its tasks onto our group.
5607 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005608static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005609{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005610 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005611 struct sd_lb_stats sds;
5612
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005613 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005614
5615 /*
5616 * Compute the various statistics relavent for load balancing at
5617 * this level.
5618 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005619 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005620 local = &sds.local_stat;
5621 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005622
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005623 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5624 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005625 return sds.busiest;
5626
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005627 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005628 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005629 goto out_balanced;
5630
Nikhil Rao1399fa72011-05-18 10:09:39 -07005631 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005632
Peter Zijlstra866ab432011-02-21 18:56:47 +01005633 /*
5634 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005635 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005636 * isn't true due to cpus_allowed constraints and the like.
5637 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005638 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005639 goto force_balance;
5640
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005641 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005642 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5643 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005644 goto force_balance;
5645
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005646 /*
5647 * If the local group is more busy than the selected busiest group
5648 * don't try and pull any tasks.
5649 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005650 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005651 goto out_balanced;
5652
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005653 /*
5654 * Don't pull any tasks if this group is already above the domain
5655 * average load.
5656 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005657 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005658 goto out_balanced;
5659
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005660 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005661 /*
5662 * This cpu is idle. If the busiest group load doesn't
5663 * have more tasks than the number of available cpu's and
5664 * there is no imbalance between this and busiest group
5665 * wrt to idle cpu's, it is balanced.
5666 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005667 if ((local->idle_cpus < busiest->idle_cpus) &&
5668 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005669 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005670 } else {
5671 /*
5672 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5673 * imbalance_pct to be conservative.
5674 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005675 if (100 * busiest->avg_load <=
5676 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005677 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005678 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005679
Nikhil Raofab47622010-10-15 13:12:29 -07005680force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005681 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005682 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005683 return sds.busiest;
5684
5685out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005686 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005687 return NULL;
5688}
5689
5690/*
5691 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5692 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005693static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005694 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005695{
5696 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005697 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005698 int i;
5699
Peter Zijlstra6906a402013-08-19 15:20:21 +02005700 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005701 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005702 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5703 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704 unsigned long wl;
5705
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005706 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005707 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005708
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005709 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005710 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005711
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005712 /*
5713 * When comparing with imbalance, use weighted_cpuload()
5714 * which is not scaled with the cpu power.
5715 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005716 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005717 continue;
5718
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005719 /*
5720 * For the load comparisons with the other cpu's, consider
5721 * the weighted_cpuload() scaled with the cpu power, so that
5722 * the load can be moved away from the cpu that is potentially
5723 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005724 *
5725 * Thus we're looking for max(wl_i / power_i), crosswise
5726 * multiplication to rid ourselves of the division works out
5727 * to: wl_i * power_j > wl_j * power_i; where j is our
5728 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005729 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005730 if (wl * busiest_power > busiest_load * power) {
5731 busiest_load = wl;
5732 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005733 busiest = rq;
5734 }
5735 }
5736
5737 return busiest;
5738}
5739
5740/*
5741 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5742 * so long as it is large enough.
5743 */
5744#define MAX_PINNED_INTERVAL 512
5745
5746/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005747DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005748
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005749static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005750{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005751 struct sched_domain *sd = env->sd;
5752
5753 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005754
5755 /*
5756 * ASYM_PACKING needs to force migrate tasks from busy but
5757 * higher numbered CPUs in order to pack all tasks in the
5758 * lowest numbered CPUs.
5759 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005760 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005761 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005762 }
5763
5764 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5765}
5766
Tejun Heo969c7922010-05-06 18:49:21 +02005767static int active_load_balance_cpu_stop(void *data);
5768
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005769static int should_we_balance(struct lb_env *env)
5770{
5771 struct sched_group *sg = env->sd->groups;
5772 struct cpumask *sg_cpus, *sg_mask;
5773 int cpu, balance_cpu = -1;
5774
5775 /*
5776 * In the newly idle case, we will allow all the cpu's
5777 * to do the newly idle load balance.
5778 */
5779 if (env->idle == CPU_NEWLY_IDLE)
5780 return 1;
5781
5782 sg_cpus = sched_group_cpus(sg);
5783 sg_mask = sched_group_mask(sg);
5784 /* Try to find first idle cpu */
5785 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5786 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5787 continue;
5788
5789 balance_cpu = cpu;
5790 break;
5791 }
5792
5793 if (balance_cpu == -1)
5794 balance_cpu = group_balance_cpu(sg);
5795
5796 /*
5797 * First idle cpu or the first cpu(busiest) in this sched group
5798 * is eligible for doing load balancing at this and above domains.
5799 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005800 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005801}
5802
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005803/*
5804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5805 * tasks if there is an imbalance.
5806 */
5807static int load_balance(int this_cpu, struct rq *this_rq,
5808 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005809 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005810{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305811 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005812 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005813 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005814 struct rq *busiest;
5815 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005816 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005817
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005818 struct lb_env env = {
5819 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005820 .dst_cpu = this_cpu,
5821 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305822 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005823 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005824 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08005825 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005826 };
5827
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005828 /*
5829 * For NEWLY_IDLE load_balancing, we don't need to consider
5830 * other cpus in our group
5831 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005832 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005833 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005834
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005835 cpumask_copy(cpus, cpu_active_mask);
5836
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005837 schedstat_inc(sd, lb_count[idle]);
5838
5839redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005840 if (!should_we_balance(&env)) {
5841 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005842 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005843 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005844
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005845 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005846 if (!group) {
5847 schedstat_inc(sd, lb_nobusyg[idle]);
5848 goto out_balanced;
5849 }
5850
Michael Wangb94031302012-07-12 16:10:13 +08005851 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005852 if (!busiest) {
5853 schedstat_inc(sd, lb_nobusyq[idle]);
5854 goto out_balanced;
5855 }
5856
Michael Wang78feefc2012-08-06 16:41:59 +08005857 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005858
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005859 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005860
5861 ld_moved = 0;
5862 if (busiest->nr_running > 1) {
5863 /*
5864 * Attempt to move tasks. If find_busiest_group has found
5865 * an imbalance but busiest->nr_running <= 1, the group is
5866 * still unbalanced. ld_moved simply stays zero, so it is
5867 * correctly treated as an imbalance.
5868 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005869 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005870 env.src_cpu = busiest->cpu;
5871 env.src_rq = busiest;
5872 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005873
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005874more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005875 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005876 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305877
5878 /*
5879 * cur_ld_moved - load moved in current iteration
5880 * ld_moved - cumulative load moved across iterations
5881 */
5882 cur_ld_moved = move_tasks(&env);
5883 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005884 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005885 local_irq_restore(flags);
5886
5887 /*
5888 * some other cpu did the load balance for us.
5889 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305890 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5891 resched_cpu(env.dst_cpu);
5892
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005893 if (env.flags & LBF_NEED_BREAK) {
5894 env.flags &= ~LBF_NEED_BREAK;
5895 goto more_balance;
5896 }
5897
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305898 /*
5899 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5900 * us and move them to an alternate dst_cpu in our sched_group
5901 * where they can run. The upper limit on how many times we
5902 * iterate on same src_cpu is dependent on number of cpus in our
5903 * sched_group.
5904 *
5905 * This changes load balance semantics a bit on who can move
5906 * load to a given_cpu. In addition to the given_cpu itself
5907 * (or a ilb_cpu acting on its behalf where given_cpu is
5908 * nohz-idle), we now have balance_cpu in a position to move
5909 * load to given_cpu. In rare situations, this may cause
5910 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5911 * _independently_ and at _same_ time to move some load to
5912 * given_cpu) causing exceess load to be moved to given_cpu.
5913 * This however should not happen so much in practice and
5914 * moreover subsequent load balance cycles should correct the
5915 * excess load moved.
5916 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005917 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305918
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04005919 /* Prevent to re-select dst_cpu via env's cpus */
5920 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5921
Michael Wang78feefc2012-08-06 16:41:59 +08005922 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305923 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02005924 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305925 env.loop = 0;
5926 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005927
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305928 /*
5929 * Go back to "more_balance" rather than "redo" since we
5930 * need to continue with same src_cpu.
5931 */
5932 goto more_balance;
5933 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005934
Peter Zijlstra62633222013-08-19 12:41:09 +02005935 /*
5936 * We failed to reach balance because of affinity.
5937 */
5938 if (sd_parent) {
5939 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5940
5941 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5942 *group_imbalance = 1;
5943 } else if (*group_imbalance)
5944 *group_imbalance = 0;
5945 }
5946
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005947 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005948 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305950 if (!cpumask_empty(cpus)) {
5951 env.loop = 0;
5952 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005953 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305954 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005955 goto out_balanced;
5956 }
5957 }
5958
5959 if (!ld_moved) {
5960 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005961 /*
5962 * Increment the failure counter only on periodic balance.
5963 * We do not want newidle balance, which can be very
5964 * frequent, pollute the failure counter causing
5965 * excessive cache_hot migrations and active balances.
5966 */
5967 if (idle != CPU_NEWLY_IDLE)
5968 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005969
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005970 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005971 raw_spin_lock_irqsave(&busiest->lock, flags);
5972
Tejun Heo969c7922010-05-06 18:49:21 +02005973 /* don't kick the active_load_balance_cpu_stop,
5974 * if the curr task on busiest cpu can't be
5975 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005976 */
5977 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005978 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005979 raw_spin_unlock_irqrestore(&busiest->lock,
5980 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005981 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005982 goto out_one_pinned;
5983 }
5984
Tejun Heo969c7922010-05-06 18:49:21 +02005985 /*
5986 * ->active_balance synchronizes accesses to
5987 * ->active_balance_work. Once set, it's cleared
5988 * only after active load balance is finished.
5989 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005990 if (!busiest->active_balance) {
5991 busiest->active_balance = 1;
5992 busiest->push_cpu = this_cpu;
5993 active_balance = 1;
5994 }
5995 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005996
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005997 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005998 stop_one_cpu_nowait(cpu_of(busiest),
5999 active_load_balance_cpu_stop, busiest,
6000 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006001 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006002
6003 /*
6004 * We've kicked active balancing, reset the failure
6005 * counter.
6006 */
6007 sd->nr_balance_failed = sd->cache_nice_tries+1;
6008 }
6009 } else
6010 sd->nr_balance_failed = 0;
6011
6012 if (likely(!active_balance)) {
6013 /* We were unbalanced, so reset the balancing interval */
6014 sd->balance_interval = sd->min_interval;
6015 } else {
6016 /*
6017 * If we've begun active balancing, start to back off. This
6018 * case may not be covered by the all_pinned logic if there
6019 * is only 1 task on the busy runqueue (because we don't call
6020 * move_tasks).
6021 */
6022 if (sd->balance_interval < sd->max_interval)
6023 sd->balance_interval *= 2;
6024 }
6025
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006026 goto out;
6027
6028out_balanced:
6029 schedstat_inc(sd, lb_balanced[idle]);
6030
6031 sd->nr_balance_failed = 0;
6032
6033out_one_pinned:
6034 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006035 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006036 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006037 (sd->balance_interval < sd->max_interval))
6038 sd->balance_interval *= 2;
6039
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006040 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006041out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006042 return ld_moved;
6043}
6044
6045/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006046 * idle_balance is called by schedule() if this_cpu is about to become
6047 * idle. Attempts to pull tasks from other CPUs.
6048 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006049void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006050{
6051 struct sched_domain *sd;
6052 int pulled_task = 0;
6053 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006054 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006055
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006056 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006057
6058 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6059 return;
6060
Peter Zijlstraf492e122009-12-23 15:29:42 +01006061 /*
6062 * Drop the rq->lock, but keep IRQ/preempt disabled.
6063 */
6064 raw_spin_unlock(&this_rq->lock);
6065
Paul Turner48a16752012-10-04 13:18:31 +02006066 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006067 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006068 for_each_domain(this_cpu, sd) {
6069 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006070 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006071 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006072
6073 if (!(sd->flags & SD_LOAD_BALANCE))
6074 continue;
6075
Jason Low9bd721c2013-09-13 11:26:52 -07006076 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6077 break;
6078
Peter Zijlstraf492e122009-12-23 15:29:42 +01006079 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006080 t0 = sched_clock_cpu(this_cpu);
6081
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006082 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006083 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006084 sd, CPU_NEWLY_IDLE,
6085 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006086
6087 domain_cost = sched_clock_cpu(this_cpu) - t0;
6088 if (domain_cost > sd->max_newidle_lb_cost)
6089 sd->max_newidle_lb_cost = domain_cost;
6090
6091 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006092 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006093
6094 interval = msecs_to_jiffies(sd->balance_interval);
6095 if (time_after(next_balance, sd->last_balance + interval))
6096 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006097 if (pulled_task) {
6098 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006099 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006100 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006101 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006102 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006103
6104 raw_spin_lock(&this_rq->lock);
6105
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006106 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6107 /*
6108 * We are going idle. next_balance may be set based on
6109 * a busy processor. So reset next_balance.
6110 */
6111 this_rq->next_balance = next_balance;
6112 }
Jason Low9bd721c2013-09-13 11:26:52 -07006113
6114 if (curr_cost > this_rq->max_idle_balance_cost)
6115 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006116}
6117
6118/*
Tejun Heo969c7922010-05-06 18:49:21 +02006119 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6120 * running tasks off the busiest CPU onto idle CPUs. It requires at
6121 * least 1 task to be running on each physical CPU where possible, and
6122 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006123 */
Tejun Heo969c7922010-05-06 18:49:21 +02006124static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006125{
Tejun Heo969c7922010-05-06 18:49:21 +02006126 struct rq *busiest_rq = data;
6127 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006128 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006129 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006130 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006131
6132 raw_spin_lock_irq(&busiest_rq->lock);
6133
6134 /* make sure the requested cpu hasn't gone down in the meantime */
6135 if (unlikely(busiest_cpu != smp_processor_id() ||
6136 !busiest_rq->active_balance))
6137 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006138
6139 /* Is there any task to move? */
6140 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006141 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006142
6143 /*
6144 * This condition is "impossible", if it occurs
6145 * we need to fix it. Originally reported by
6146 * Bjorn Helgaas on a 128-cpu setup.
6147 */
6148 BUG_ON(busiest_rq == target_rq);
6149
6150 /* move a task from busiest_rq to target_rq */
6151 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006152
6153 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006154 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006155 for_each_domain(target_cpu, sd) {
6156 if ((sd->flags & SD_LOAD_BALANCE) &&
6157 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6158 break;
6159 }
6160
6161 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006162 struct lb_env env = {
6163 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006164 .dst_cpu = target_cpu,
6165 .dst_rq = target_rq,
6166 .src_cpu = busiest_rq->cpu,
6167 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006168 .idle = CPU_IDLE,
6169 };
6170
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006171 schedstat_inc(sd, alb_count);
6172
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006173 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006174 schedstat_inc(sd, alb_pushed);
6175 else
6176 schedstat_inc(sd, alb_failed);
6177 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006178 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006179 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006180out_unlock:
6181 busiest_rq->active_balance = 0;
6182 raw_spin_unlock_irq(&busiest_rq->lock);
6183 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006184}
6185
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006186#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006187/*
6188 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006189 * - When one of the busy CPUs notice that there may be an idle rebalancing
6190 * needed, they will kick the idle load balancer, which then does idle
6191 * load balancing for all the idle CPUs.
6192 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006193static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006194 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006195 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006196 unsigned long next_balance; /* in jiffy units */
6197} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006198
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006199static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006200{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006201 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006202
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006203 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6204 return ilb;
6205
6206 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006207}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006208
6209/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006210 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6211 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6212 * CPU (if there is one).
6213 */
6214static void nohz_balancer_kick(int cpu)
6215{
6216 int ilb_cpu;
6217
6218 nohz.next_balance++;
6219
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006220 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006221
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006222 if (ilb_cpu >= nr_cpu_ids)
6223 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006224
Suresh Siddhacd490c52011-12-06 11:26:34 -08006225 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006226 return;
6227 /*
6228 * Use smp_send_reschedule() instead of resched_cpu().
6229 * This way we generate a sched IPI on the target cpu which
6230 * is idle. And the softirq performing nohz idle load balance
6231 * will be run before returning from the IPI.
6232 */
6233 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006234 return;
6235}
6236
Alex Shic1cc0172012-09-10 15:10:58 +08006237static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006238{
6239 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6240 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6241 atomic_dec(&nohz.nr_cpus);
6242 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6243 }
6244}
6245
Suresh Siddha69e1e812011-12-01 17:07:33 -08006246static inline void set_cpu_sd_state_busy(void)
6247{
6248 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006249
Suresh Siddha69e1e812011-12-01 17:07:33 -08006250 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006251 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006252
6253 if (!sd || !sd->nohz_idle)
6254 goto unlock;
6255 sd->nohz_idle = 0;
6256
6257 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006258 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006259unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006260 rcu_read_unlock();
6261}
6262
6263void set_cpu_sd_state_idle(void)
6264{
6265 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006266
Suresh Siddha69e1e812011-12-01 17:07:33 -08006267 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006268 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006269
6270 if (!sd || sd->nohz_idle)
6271 goto unlock;
6272 sd->nohz_idle = 1;
6273
6274 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006275 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006276unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006277 rcu_read_unlock();
6278}
6279
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006280/*
Alex Shic1cc0172012-09-10 15:10:58 +08006281 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006282 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006283 */
Alex Shic1cc0172012-09-10 15:10:58 +08006284void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006285{
Suresh Siddha71325962012-01-19 18:28:57 -08006286 /*
6287 * If this cpu is going down, then nothing needs to be done.
6288 */
6289 if (!cpu_active(cpu))
6290 return;
6291
Alex Shic1cc0172012-09-10 15:10:58 +08006292 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6293 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006294
Alex Shic1cc0172012-09-10 15:10:58 +08006295 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6296 atomic_inc(&nohz.nr_cpus);
6297 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006298}
Suresh Siddha71325962012-01-19 18:28:57 -08006299
Paul Gortmaker0db06282013-06-19 14:53:51 -04006300static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006301 unsigned long action, void *hcpu)
6302{
6303 switch (action & ~CPU_TASKS_FROZEN) {
6304 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006305 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006306 return NOTIFY_OK;
6307 default:
6308 return NOTIFY_DONE;
6309 }
6310}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006311#endif
6312
6313static DEFINE_SPINLOCK(balancing);
6314
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006315/*
6316 * Scale the max load_balance interval with the number of CPUs in the system.
6317 * This trades load-balance latency on larger machines for less cross talk.
6318 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006319void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006320{
6321 max_load_balance_interval = HZ*num_online_cpus()/10;
6322}
6323
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006324/*
6325 * It checks each scheduling domain to see if it is due to be balanced,
6326 * and initiates a balancing operation if so.
6327 *
Libinb9b08532013-04-01 19:14:01 +08006328 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006329 */
6330static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6331{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006332 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006333 struct rq *rq = cpu_rq(cpu);
6334 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006335 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006336 /* Earliest time when we have to do rebalance again */
6337 unsigned long next_balance = jiffies + 60*HZ;
6338 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006339 int need_serialize, need_decay = 0;
6340 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006341
Paul Turner48a16752012-10-04 13:18:31 +02006342 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006343
Peter Zijlstradce840a2011-04-07 14:09:50 +02006344 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006345 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006346 /*
6347 * Decay the newidle max times here because this is a regular
6348 * visit to all the domains. Decay ~1% per second.
6349 */
6350 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6351 sd->max_newidle_lb_cost =
6352 (sd->max_newidle_lb_cost * 253) / 256;
6353 sd->next_decay_max_lb_cost = jiffies + HZ;
6354 need_decay = 1;
6355 }
6356 max_cost += sd->max_newidle_lb_cost;
6357
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006358 if (!(sd->flags & SD_LOAD_BALANCE))
6359 continue;
6360
Jason Lowf48627e2013-09-13 11:26:53 -07006361 /*
6362 * Stop the load balance at this level. There is another
6363 * CPU in our sched group which is doing load balancing more
6364 * actively.
6365 */
6366 if (!continue_balancing) {
6367 if (need_decay)
6368 continue;
6369 break;
6370 }
6371
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006372 interval = sd->balance_interval;
6373 if (idle != CPU_IDLE)
6374 interval *= sd->busy_factor;
6375
6376 /* scale ms to jiffies */
6377 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006378 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006379
6380 need_serialize = sd->flags & SD_SERIALIZE;
6381
6382 if (need_serialize) {
6383 if (!spin_trylock(&balancing))
6384 goto out;
6385 }
6386
6387 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006388 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006389 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006390 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006391 * env->dst_cpu, so we can't know our idle
6392 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006393 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006394 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006395 }
6396 sd->last_balance = jiffies;
6397 }
6398 if (need_serialize)
6399 spin_unlock(&balancing);
6400out:
6401 if (time_after(next_balance, sd->last_balance + interval)) {
6402 next_balance = sd->last_balance + interval;
6403 update_next_balance = 1;
6404 }
Jason Lowf48627e2013-09-13 11:26:53 -07006405 }
6406 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006407 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006408 * Ensure the rq-wide value also decays but keep it at a
6409 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006410 */
Jason Lowf48627e2013-09-13 11:26:53 -07006411 rq->max_idle_balance_cost =
6412 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006413 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006414 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006415
6416 /*
6417 * next_balance will be updated only when there is a need.
6418 * When the cpu is attached to null domain for ex, it will not be
6419 * updated.
6420 */
6421 if (likely(update_next_balance))
6422 rq->next_balance = next_balance;
6423}
6424
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006425#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006426/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006427 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006428 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6429 */
6430static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6431{
6432 struct rq *this_rq = cpu_rq(this_cpu);
6433 struct rq *rq;
6434 int balance_cpu;
6435
Suresh Siddha1c792db2011-12-01 17:07:32 -08006436 if (idle != CPU_IDLE ||
6437 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6438 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006439
6440 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006441 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006442 continue;
6443
6444 /*
6445 * If this cpu gets work to do, stop the load balancing
6446 * work being done for other cpus. Next load
6447 * balancing owner will pick it up.
6448 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006449 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006450 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006451
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006452 rq = cpu_rq(balance_cpu);
6453
6454 raw_spin_lock_irq(&rq->lock);
6455 update_rq_clock(rq);
6456 update_idle_cpu_load(rq);
6457 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006458
6459 rebalance_domains(balance_cpu, CPU_IDLE);
6460
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006461 if (time_after(this_rq->next_balance, rq->next_balance))
6462 this_rq->next_balance = rq->next_balance;
6463 }
6464 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006465end:
6466 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006467}
6468
6469/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006470 * Current heuristic for kicking the idle load balancer in the presence
6471 * of an idle cpu is the system.
6472 * - This rq has more than one task.
6473 * - At any scheduler domain level, this cpu's scheduler group has multiple
6474 * busy cpu's exceeding the group's power.
6475 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6476 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006477 */
6478static inline int nohz_kick_needed(struct rq *rq, int cpu)
6479{
6480 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006481 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006482
Suresh Siddha1c792db2011-12-01 17:07:32 -08006483 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006484 return 0;
6485
Suresh Siddha1c792db2011-12-01 17:07:32 -08006486 /*
6487 * We may be recently in ticked or tickless idle mode. At the first
6488 * busy tick after returning from idle, we will update the busy stats.
6489 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006490 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006491 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006492
6493 /*
6494 * None are in tickless mode and hence no need for NOHZ idle load
6495 * balancing.
6496 */
6497 if (likely(!atomic_read(&nohz.nr_cpus)))
6498 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006499
6500 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006501 return 0;
6502
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006503 if (rq->nr_running >= 2)
6504 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006505
Peter Zijlstra067491b2011-12-07 14:32:08 +01006506 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006507 for_each_domain(cpu, sd) {
6508 struct sched_group *sg = sd->groups;
6509 struct sched_group_power *sgp = sg->sgp;
6510 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006511
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006512 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006513 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006514
6515 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6516 && (cpumask_first_and(nohz.idle_cpus_mask,
6517 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006518 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006519
6520 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6521 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006522 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006523 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006524 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006525
6526need_kick_unlock:
6527 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006528need_kick:
6529 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006530}
6531#else
6532static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6533#endif
6534
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006535/*
6536 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006537 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006538 */
6539static void run_rebalance_domains(struct softirq_action *h)
6540{
6541 int this_cpu = smp_processor_id();
6542 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006543 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006544 CPU_IDLE : CPU_NOT_IDLE;
6545
6546 rebalance_domains(this_cpu, idle);
6547
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006548 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006549 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006550 * balancing on behalf of the other idle cpus whose ticks are
6551 * stopped.
6552 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006553 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006554}
6555
6556static inline int on_null_domain(int cpu)
6557{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006558 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006559}
6560
6561/*
6562 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006563 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006564void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006565{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006566 /* Don't need to rebalance while attached to NULL domain */
6567 if (time_after_eq(jiffies, rq->next_balance) &&
6568 likely(!on_null_domain(cpu)))
6569 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006570#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006571 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006572 nohz_balancer_kick(cpu);
6573#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006574}
6575
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006576static void rq_online_fair(struct rq *rq)
6577{
6578 update_sysctl();
6579}
6580
6581static void rq_offline_fair(struct rq *rq)
6582{
6583 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006584
6585 /* Ensure any throttled groups are reachable by pick_next_task */
6586 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006587}
6588
Dhaval Giani55e12e52008-06-24 23:39:43 +05306589#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006590
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006591/*
6592 * scheduler tick hitting a task of our scheduling class:
6593 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006594static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006595{
6596 struct cfs_rq *cfs_rq;
6597 struct sched_entity *se = &curr->se;
6598
6599 for_each_sched_entity(se) {
6600 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006601 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006602 }
Ben Segall18bf2802012-10-04 12:51:20 +02006603
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006604 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006605 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006606
Ben Segall18bf2802012-10-04 12:51:20 +02006607 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006608}
6609
6610/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006611 * called on fork with the child task as argument from the parent's context
6612 * - child not yet on the tasklist
6613 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006614 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006615static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006616{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006617 struct cfs_rq *cfs_rq;
6618 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006619 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006620 struct rq *rq = this_rq();
6621 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006622
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006623 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006624
Peter Zijlstra861d0342010-08-19 13:31:43 +02006625 update_rq_clock(rq);
6626
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006627 cfs_rq = task_cfs_rq(current);
6628 curr = cfs_rq->curr;
6629
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006630 /*
6631 * Not only the cpu but also the task_group of the parent might have
6632 * been changed after parent->se.parent,cfs_rq were copied to
6633 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6634 * of child point to valid ones.
6635 */
6636 rcu_read_lock();
6637 __set_task_cpu(p, this_cpu);
6638 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006639
Ting Yang7109c442007-08-28 12:53:24 +02006640 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006641
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006642 if (curr)
6643 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006644 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006645
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006646 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006647 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006648 * Upon rescheduling, sched_class::put_prev_task() will place
6649 * 'current' within the tree based on its new key value.
6650 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006651 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306652 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006653 }
6654
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006655 se->vruntime -= cfs_rq->min_vruntime;
6656
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006657 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006658}
6659
Steven Rostedtcb469842008-01-25 21:08:22 +01006660/*
6661 * Priority of the task has changed. Check to see if we preempt
6662 * the current task.
6663 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006664static void
6665prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006666{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006667 if (!p->se.on_rq)
6668 return;
6669
Steven Rostedtcb469842008-01-25 21:08:22 +01006670 /*
6671 * Reschedule if we are currently running on this runqueue and
6672 * our priority decreased, or if we are not currently running on
6673 * this runqueue and our priority is higher than the current's
6674 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006675 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006676 if (p->prio > oldprio)
6677 resched_task(rq->curr);
6678 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006679 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006680}
6681
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006682static void switched_from_fair(struct rq *rq, struct task_struct *p)
6683{
6684 struct sched_entity *se = &p->se;
6685 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6686
6687 /*
6688 * Ensure the task's vruntime is normalized, so that when its
6689 * switched back to the fair class the enqueue_entity(.flags=0) will
6690 * do the right thing.
6691 *
6692 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6693 * have normalized the vruntime, if it was !on_rq, then only when
6694 * the task is sleeping will it still have non-normalized vruntime.
6695 */
6696 if (!se->on_rq && p->state != TASK_RUNNING) {
6697 /*
6698 * Fix up our vruntime so that the current sleep doesn't
6699 * cause 'unlimited' sleep bonus.
6700 */
6701 place_entity(cfs_rq, se, 0);
6702 se->vruntime -= cfs_rq->min_vruntime;
6703 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006704
Alex Shi141965c2013-06-26 13:05:39 +08006705#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006706 /*
6707 * Remove our load from contribution when we leave sched_fair
6708 * and ensure we don't carry in an old decay_count if we
6709 * switch back.
6710 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006711 if (se->avg.decay_count) {
6712 __synchronize_entity_decay(se);
6713 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006714 }
6715#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006716}
6717
Steven Rostedtcb469842008-01-25 21:08:22 +01006718/*
6719 * We switched to the sched_fair class.
6720 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006721static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006722{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006723 if (!p->se.on_rq)
6724 return;
6725
Steven Rostedtcb469842008-01-25 21:08:22 +01006726 /*
6727 * We were most likely switched from sched_rt, so
6728 * kick off the schedule if running, otherwise just see
6729 * if we can still preempt the current task.
6730 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006731 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006732 resched_task(rq->curr);
6733 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006734 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006735}
6736
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006737/* Account for a task changing its policy or group.
6738 *
6739 * This routine is mostly called to set cfs_rq->curr field when a task
6740 * migrates between groups/classes.
6741 */
6742static void set_curr_task_fair(struct rq *rq)
6743{
6744 struct sched_entity *se = &rq->curr->se;
6745
Paul Turnerec12cb72011-07-21 09:43:30 -07006746 for_each_sched_entity(se) {
6747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6748
6749 set_next_entity(cfs_rq, se);
6750 /* ensure bandwidth has been allocated on our new cfs_rq */
6751 account_cfs_rq_runtime(cfs_rq, 0);
6752 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006753}
6754
Peter Zijlstra029632f2011-10-25 10:00:11 +02006755void init_cfs_rq(struct cfs_rq *cfs_rq)
6756{
6757 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006758 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6759#ifndef CONFIG_64BIT
6760 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6761#endif
Alex Shi141965c2013-06-26 13:05:39 +08006762#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006763 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006764 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006765#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006766}
6767
Peter Zijlstra810b3812008-02-29 15:21:01 -05006768#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006769static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006770{
Paul Turneraff3e492012-10-04 13:18:30 +02006771 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006772 /*
6773 * If the task was not on the rq at the time of this cgroup movement
6774 * it must have been asleep, sleeping tasks keep their ->vruntime
6775 * absolute on their old rq until wakeup (needed for the fair sleeper
6776 * bonus in place_entity()).
6777 *
6778 * If it was on the rq, we've just 'preempted' it, which does convert
6779 * ->vruntime to a relative base.
6780 *
6781 * Make sure both cases convert their relative position when migrating
6782 * to another cgroup's rq. This does somewhat interfere with the
6783 * fair sleeper stuff for the first placement, but who cares.
6784 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006785 /*
6786 * When !on_rq, vruntime of the task has usually NOT been normalized.
6787 * But there are some cases where it has already been normalized:
6788 *
6789 * - Moving a forked child which is waiting for being woken up by
6790 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006791 * - Moving a task which has been woken up by try_to_wake_up() and
6792 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006793 *
6794 * To prevent boost or penalty in the new cfs_rq caused by delta
6795 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6796 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006797 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006798 on_rq = 1;
6799
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006800 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006801 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6802 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006803 if (!on_rq) {
6804 cfs_rq = cfs_rq_of(&p->se);
6805 p->se.vruntime += cfs_rq->min_vruntime;
6806#ifdef CONFIG_SMP
6807 /*
6808 * migrate_task_rq_fair() will have removed our previous
6809 * contribution, but we must synchronize for ongoing future
6810 * decay.
6811 */
6812 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6813 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6814#endif
6815 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006816}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006817
6818void free_fair_sched_group(struct task_group *tg)
6819{
6820 int i;
6821
6822 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6823
6824 for_each_possible_cpu(i) {
6825 if (tg->cfs_rq)
6826 kfree(tg->cfs_rq[i]);
6827 if (tg->se)
6828 kfree(tg->se[i]);
6829 }
6830
6831 kfree(tg->cfs_rq);
6832 kfree(tg->se);
6833}
6834
6835int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6836{
6837 struct cfs_rq *cfs_rq;
6838 struct sched_entity *se;
6839 int i;
6840
6841 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6842 if (!tg->cfs_rq)
6843 goto err;
6844 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6845 if (!tg->se)
6846 goto err;
6847
6848 tg->shares = NICE_0_LOAD;
6849
6850 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6851
6852 for_each_possible_cpu(i) {
6853 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6854 GFP_KERNEL, cpu_to_node(i));
6855 if (!cfs_rq)
6856 goto err;
6857
6858 se = kzalloc_node(sizeof(struct sched_entity),
6859 GFP_KERNEL, cpu_to_node(i));
6860 if (!se)
6861 goto err_free_rq;
6862
6863 init_cfs_rq(cfs_rq);
6864 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6865 }
6866
6867 return 1;
6868
6869err_free_rq:
6870 kfree(cfs_rq);
6871err:
6872 return 0;
6873}
6874
6875void unregister_fair_sched_group(struct task_group *tg, int cpu)
6876{
6877 struct rq *rq = cpu_rq(cpu);
6878 unsigned long flags;
6879
6880 /*
6881 * Only empty task groups can be destroyed; so we can speculatively
6882 * check on_list without danger of it being re-added.
6883 */
6884 if (!tg->cfs_rq[cpu]->on_list)
6885 return;
6886
6887 raw_spin_lock_irqsave(&rq->lock, flags);
6888 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6889 raw_spin_unlock_irqrestore(&rq->lock, flags);
6890}
6891
6892void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6893 struct sched_entity *se, int cpu,
6894 struct sched_entity *parent)
6895{
6896 struct rq *rq = cpu_rq(cpu);
6897
6898 cfs_rq->tg = tg;
6899 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006900 init_cfs_rq_runtime(cfs_rq);
6901
6902 tg->cfs_rq[cpu] = cfs_rq;
6903 tg->se[cpu] = se;
6904
6905 /* se could be NULL for root_task_group */
6906 if (!se)
6907 return;
6908
6909 if (!parent)
6910 se->cfs_rq = &rq->cfs;
6911 else
6912 se->cfs_rq = parent->my_q;
6913
6914 se->my_q = cfs_rq;
6915 update_load_set(&se->load, 0);
6916 se->parent = parent;
6917}
6918
6919static DEFINE_MUTEX(shares_mutex);
6920
6921int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6922{
6923 int i;
6924 unsigned long flags;
6925
6926 /*
6927 * We can't change the weight of the root cgroup.
6928 */
6929 if (!tg->se[0])
6930 return -EINVAL;
6931
6932 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6933
6934 mutex_lock(&shares_mutex);
6935 if (tg->shares == shares)
6936 goto done;
6937
6938 tg->shares = shares;
6939 for_each_possible_cpu(i) {
6940 struct rq *rq = cpu_rq(i);
6941 struct sched_entity *se;
6942
6943 se = tg->se[i];
6944 /* Propagate contribution to hierarchy */
6945 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02006946
6947 /* Possible calls to update_curr() need rq clock */
6948 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006949 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006950 update_cfs_shares(group_cfs_rq(se));
6951 raw_spin_unlock_irqrestore(&rq->lock, flags);
6952 }
6953
6954done:
6955 mutex_unlock(&shares_mutex);
6956 return 0;
6957}
6958#else /* CONFIG_FAIR_GROUP_SCHED */
6959
6960void free_fair_sched_group(struct task_group *tg) { }
6961
6962int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6963{
6964 return 1;
6965}
6966
6967void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6968
6969#endif /* CONFIG_FAIR_GROUP_SCHED */
6970
Peter Zijlstra810b3812008-02-29 15:21:01 -05006971
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006972static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006973{
6974 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006975 unsigned int rr_interval = 0;
6976
6977 /*
6978 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6979 * idle runqueue:
6980 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006981 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006982 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006983
6984 return rr_interval;
6985}
6986
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006987/*
6988 * All the scheduling class methods:
6989 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006990const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006991 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006992 .enqueue_task = enqueue_task_fair,
6993 .dequeue_task = dequeue_task_fair,
6994 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006995 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006996
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006997 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006998
6999 .pick_next_task = pick_next_task_fair,
7000 .put_prev_task = put_prev_task_fair,
7001
Peter Williams681f3e62007-10-24 18:23:51 +02007002#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007003 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007004 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007005
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007006 .rq_online = rq_online_fair,
7007 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007008
7009 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007010#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007011
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007012 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007013 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007014 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007015
7016 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007017 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007018 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007019
Peter Williams0d721ce2009-09-21 01:31:53 +00007020 .get_rr_interval = get_rr_interval_fair,
7021
Peter Zijlstra810b3812008-02-29 15:21:01 -05007022#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007023 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007024#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007025};
7026
7027#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007028void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007029{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007030 struct cfs_rq *cfs_rq;
7031
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007032 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007033 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007034 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007035 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007036}
7037#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007038
7039__init void init_sched_fair_class(void)
7040{
7041#ifdef CONFIG_SMP
7042 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7043
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007044#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007045 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007046 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007047 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007048#endif
7049#endif /* SMP */
7050
7051}