blob: c11e36ff5ea02703b985afc7b8a7be526ab174a2 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
Mel Gorman598f0ec2013-10-07 11:28:55 +0100844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100897
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100915 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100916 struct list_head task_list;
917
918 struct rcu_head rcu;
Mel Gorman989348b2013-10-07 11:29:40 +0100919 unsigned long total_faults;
920 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100921};
922
Mel Gormane29cf082013-10-07 11:29:22 +0100923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
Mel Gormanac8e8952013-10-07 11:29:03 +0100928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
Mel Gorman989348b2013-10-07 11:29:40 +0100947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
Mel Gorman989348b2013-10-07 11:29:40 +0100973 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100974 return 0;
975
Mel Gorman989348b2013-10-07 11:29:40 +0100976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100977}
978
Mel Gormane6628d52013-10-07 11:29:02 +0100979static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100984
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100985/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100986struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100988 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996};
Mel Gormane6628d52013-10-07 11:29:02 +0100997
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
Mel Gorman58d081b2013-10-07 11:29:10 +01001019struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001031 int best_cpu;
1032};
1033
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
Rik van Riel887c2902013-10-07 11:29:31 +01001053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001061 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
Rik van Riel887c2902013-10-07 11:29:31 +01001080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001082 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001083 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001084 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001093 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001110 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001171 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001172 }
1173}
1174
Mel Gorman58d081b2013-10-07 11:29:10 +01001175static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001176{
Mel Gorman58d081b2013-10-07 11:29:10 +01001177 struct task_numa_env env = {
1178 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
Mel Gorman58d081b2013-10-07 11:29:10 +01001180 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001181 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 };
1189 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001190 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001191 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001192 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001193
Mel Gorman58d081b2013-10-07 11:29:10 +01001194 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001201 */
Mel Gormane6628d52013-10-07 11:29:02 +01001202 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001204 if (sd)
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001206 rcu_read_unlock();
1207
Rik van Riel46a73e82013-11-11 19:29:25 -05001208 /*
1209 * Cpusets can break the scheduler domain tree into smaller
1210 * balance domains, some of which do not cross NUMA boundaries.
1211 * Tasks that are "trapped" in such domains cannot be migrated
1212 * elsewhere, so there is no point in (re)trying.
1213 */
1214 if (unlikely(!sd)) {
1215 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1216 return -EINVAL;
1217 }
1218
Rik van Riel887c2902013-10-07 11:29:31 +01001219 taskweight = task_weight(p, env.src_nid);
1220 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001221 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001222 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001223 taskimp = task_weight(p, env.dst_nid) - taskweight;
1224 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001225 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001226
Rik van Riele1dda8a2013-10-07 11:29:19 +01001227 /* If the preferred nid has capacity, try to use it. */
1228 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001229 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001230
1231 /* No space available on the preferred nid. Look elsewhere. */
1232 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001233 for_each_online_node(nid) {
1234 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001235 continue;
1236
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001237 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001238 taskimp = task_weight(p, nid) - taskweight;
1239 groupimp = group_weight(p, nid) - groupweight;
1240 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001241 continue;
1242
1243 env.dst_nid = nid;
1244 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001245 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001246 }
1247 }
1248
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001249 /* No better CPU than the current one was found. */
1250 if (env.best_cpu == -1)
1251 return -EAGAIN;
1252
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001253 sched_setnuma(p, env.dst_nid);
1254
Rik van Riel04bb2f92013-10-07 11:29:36 +01001255 /*
1256 * Reset the scan period if the task is being rescheduled on an
1257 * alternative node to recheck if the tasks is now properly placed.
1258 */
1259 p->numa_scan_period = task_scan_min(p);
1260
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001261 if (env.best_task == NULL) {
1262 int ret = migrate_task_to(p, env.best_cpu);
1263 return ret;
1264 }
1265
1266 ret = migrate_swap(p, env.best_task);
1267 put_task_struct(env.best_task);
1268 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001269}
1270
Mel Gorman6b9a7462013-10-07 11:29:11 +01001271/* Attempt to migrate a task to a CPU on the preferred node. */
1272static void numa_migrate_preferred(struct task_struct *p)
1273{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001274 /* This task has no NUMA fault statistics yet */
1275 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1276 return;
1277
1278 /* Periodically retry migrating the task to the preferred node */
1279 p->numa_migrate_retry = jiffies + HZ;
1280
Mel Gorman6b9a7462013-10-07 11:29:11 +01001281 /* Success if task is already running on preferred CPU */
Rik van Riel1e3646f2013-10-07 11:29:38 +01001282 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001283 return;
1284
Mel Gorman6b9a7462013-10-07 11:29:11 +01001285 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001286 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001287}
1288
Rik van Riel04bb2f92013-10-07 11:29:36 +01001289/*
1290 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1291 * increments. The more local the fault statistics are, the higher the scan
1292 * period will be for the next scan window. If local/remote ratio is below
1293 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1294 * scan period will decrease
1295 */
1296#define NUMA_PERIOD_SLOTS 10
1297#define NUMA_PERIOD_THRESHOLD 3
1298
1299/*
1300 * Increase the scan period (slow down scanning) if the majority of
1301 * our memory is already on our local node, or if the majority of
1302 * the page accesses are shared with other processes.
1303 * Otherwise, decrease the scan period.
1304 */
1305static void update_task_scan_period(struct task_struct *p,
1306 unsigned long shared, unsigned long private)
1307{
1308 unsigned int period_slot;
1309 int ratio;
1310 int diff;
1311
1312 unsigned long remote = p->numa_faults_locality[0];
1313 unsigned long local = p->numa_faults_locality[1];
1314
1315 /*
1316 * If there were no record hinting faults then either the task is
1317 * completely idle or all activity is areas that are not of interest
1318 * to automatic numa balancing. Scan slower
1319 */
1320 if (local + shared == 0) {
1321 p->numa_scan_period = min(p->numa_scan_period_max,
1322 p->numa_scan_period << 1);
1323
1324 p->mm->numa_next_scan = jiffies +
1325 msecs_to_jiffies(p->numa_scan_period);
1326
1327 return;
1328 }
1329
1330 /*
1331 * Prepare to scale scan period relative to the current period.
1332 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1333 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1334 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1335 */
1336 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1337 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1338 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1339 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1340 if (!slot)
1341 slot = 1;
1342 diff = slot * period_slot;
1343 } else {
1344 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1345
1346 /*
1347 * Scale scan rate increases based on sharing. There is an
1348 * inverse relationship between the degree of sharing and
1349 * the adjustment made to the scanning period. Broadly
1350 * speaking the intent is that there is little point
1351 * scanning faster if shared accesses dominate as it may
1352 * simply bounce migrations uselessly
1353 */
1354 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1355 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1356 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1357 }
1358
1359 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1360 task_scan_min(p), task_scan_max(p));
1361 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1362}
1363
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001364static void task_numa_placement(struct task_struct *p)
1365{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001366 int seq, nid, max_nid = -1, max_group_nid = -1;
1367 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001368 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001369 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001370
Hugh Dickins2832bc12012-12-19 17:42:16 -08001371 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001372 if (p->numa_scan_seq == seq)
1373 return;
1374 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001375 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001376
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001377 /* If the task is part of a group prevent parallel updates to group stats */
1378 if (p->numa_group) {
1379 group_lock = &p->numa_group->lock;
1380 spin_lock(group_lock);
1381 }
1382
Mel Gorman688b7582013-10-07 11:28:58 +01001383 /* Find the node with the highest number of faults */
1384 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001385 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001386 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001387
Mel Gormanac8e8952013-10-07 11:29:03 +01001388 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001389 long diff;
1390
Mel Gormanac8e8952013-10-07 11:29:03 +01001391 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001392 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001393
Mel Gormanac8e8952013-10-07 11:29:03 +01001394 /* Decay existing window, copy faults since last scan */
1395 p->numa_faults[i] >>= 1;
1396 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001397 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001398 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001399
1400 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001401 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001402 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001403 if (p->numa_group) {
1404 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001405 p->numa_group->faults[i] += diff;
1406 p->numa_group->total_faults += diff;
1407 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001408 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001409 }
1410
Mel Gorman688b7582013-10-07 11:28:58 +01001411 if (faults > max_faults) {
1412 max_faults = faults;
1413 max_nid = nid;
1414 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001415
1416 if (group_faults > max_group_faults) {
1417 max_group_faults = group_faults;
1418 max_group_nid = nid;
1419 }
1420 }
1421
Rik van Riel04bb2f92013-10-07 11:29:36 +01001422 update_task_scan_period(p, fault_types[0], fault_types[1]);
1423
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001424 if (p->numa_group) {
1425 /*
1426 * If the preferred task and group nids are different,
1427 * iterate over the nodes again to find the best place.
1428 */
1429 if (max_nid != max_group_nid) {
1430 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001431
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001432 for_each_online_node(nid) {
1433 weight = task_weight(p, nid) + group_weight(p, nid);
1434 if (weight > max_weight) {
1435 max_weight = weight;
1436 max_nid = nid;
1437 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001438 }
1439 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001440
1441 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001442 }
1443
Mel Gorman6b9a7462013-10-07 11:29:11 +01001444 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001445 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001446 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001447 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001448 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001449 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001450}
1451
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001452static inline int get_numa_group(struct numa_group *grp)
1453{
1454 return atomic_inc_not_zero(&grp->refcount);
1455}
1456
1457static inline void put_numa_group(struct numa_group *grp)
1458{
1459 if (atomic_dec_and_test(&grp->refcount))
1460 kfree_rcu(grp, rcu);
1461}
1462
Mel Gorman3e6a9412013-10-07 11:29:35 +01001463static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1464 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001465{
1466 struct numa_group *grp, *my_grp;
1467 struct task_struct *tsk;
1468 bool join = false;
1469 int cpu = cpupid_to_cpu(cpupid);
1470 int i;
1471
1472 if (unlikely(!p->numa_group)) {
1473 unsigned int size = sizeof(struct numa_group) +
Mel Gorman989348b2013-10-07 11:29:40 +01001474 2*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001475
1476 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1477 if (!grp)
1478 return;
1479
1480 atomic_set(&grp->refcount, 1);
1481 spin_lock_init(&grp->lock);
1482 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001483 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001484
1485 for (i = 0; i < 2*nr_node_ids; i++)
Mel Gorman989348b2013-10-07 11:29:40 +01001486 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001487
Mel Gorman989348b2013-10-07 11:29:40 +01001488 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001489
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001490 list_add(&p->numa_entry, &grp->task_list);
1491 grp->nr_tasks++;
1492 rcu_assign_pointer(p->numa_group, grp);
1493 }
1494
1495 rcu_read_lock();
1496 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1497
1498 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001499 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001500
1501 grp = rcu_dereference(tsk->numa_group);
1502 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001503 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001504
1505 my_grp = p->numa_group;
1506 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001507 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001508
1509 /*
1510 * Only join the other group if its bigger; if we're the bigger group,
1511 * the other task will join us.
1512 */
1513 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001514 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001515
1516 /*
1517 * Tie-break on the grp address.
1518 */
1519 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001520 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001521
Rik van Rieldabe1d92013-10-07 11:29:34 +01001522 /* Always join threads in the same process. */
1523 if (tsk->mm == current->mm)
1524 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001525
Rik van Rieldabe1d92013-10-07 11:29:34 +01001526 /* Simple filter to avoid false positives due to PID collisions */
1527 if (flags & TNF_SHARED)
1528 join = true;
1529
Mel Gorman3e6a9412013-10-07 11:29:35 +01001530 /* Update priv based on whether false sharing was detected */
1531 *priv = !join;
1532
Rik van Rieldabe1d92013-10-07 11:29:34 +01001533 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001534 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001535
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001536 rcu_read_unlock();
1537
1538 if (!join)
1539 return;
1540
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001541 double_lock(&my_grp->lock, &grp->lock);
1542
Mel Gorman989348b2013-10-07 11:29:40 +01001543 for (i = 0; i < 2*nr_node_ids; i++) {
1544 my_grp->faults[i] -= p->numa_faults[i];
1545 grp->faults[i] += p->numa_faults[i];
1546 }
1547 my_grp->total_faults -= p->total_numa_faults;
1548 grp->total_faults += p->total_numa_faults;
1549
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001550 list_move(&p->numa_entry, &grp->task_list);
1551 my_grp->nr_tasks--;
1552 grp->nr_tasks++;
1553
1554 spin_unlock(&my_grp->lock);
1555 spin_unlock(&grp->lock);
1556
1557 rcu_assign_pointer(p->numa_group, grp);
1558
1559 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001560 return;
1561
1562no_join:
1563 rcu_read_unlock();
1564 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001565}
1566
1567void task_numa_free(struct task_struct *p)
1568{
1569 struct numa_group *grp = p->numa_group;
1570 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001571 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001572
1573 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001574 spin_lock(&grp->lock);
Mel Gorman989348b2013-10-07 11:29:40 +01001575 for (i = 0; i < 2*nr_node_ids; i++)
1576 grp->faults[i] -= p->numa_faults[i];
1577 grp->total_faults -= p->total_numa_faults;
1578
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001579 list_del(&p->numa_entry);
1580 grp->nr_tasks--;
1581 spin_unlock(&grp->lock);
1582 rcu_assign_pointer(p->numa_group, NULL);
1583 put_numa_group(grp);
1584 }
1585
Rik van Riel82727012013-10-07 11:29:28 +01001586 p->numa_faults = NULL;
1587 p->numa_faults_buffer = NULL;
1588 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001589}
1590
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001591/*
1592 * Got a PROT_NONE fault for a page on @node.
1593 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001594void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001595{
1596 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001597 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001598 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001599
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001600 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001601 return;
1602
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001603 /* for example, ksmd faulting in a user's mm */
1604 if (!p->mm)
1605 return;
1606
Rik van Riel82727012013-10-07 11:29:28 +01001607 /* Do not worry about placement if exiting */
1608 if (p->state == TASK_DEAD)
1609 return;
1610
Mel Gormanf809ca92013-10-07 11:28:57 +01001611 /* Allocate buffer to track faults on a per-node basis */
1612 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001613 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001614
Mel Gorman745d6142013-10-07 11:28:59 +01001615 /* numa_faults and numa_faults_buffer share the allocation */
1616 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001617 if (!p->numa_faults)
1618 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001619
1620 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001621 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001622 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001623 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001624 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001625
Mel Gormanfb003b82012-11-15 09:01:14 +00001626 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001627 * First accesses are treated as private, otherwise consider accesses
1628 * to be private if the accessing pid has not changed
1629 */
1630 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1631 priv = 1;
1632 } else {
1633 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001634 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001635 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001636 }
1637
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001638 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001639
Rik van Riel2739d3e2013-10-07 11:29:41 +01001640 /*
1641 * Retry task to preferred node migration periodically, in case it
1642 * case it previously failed, or the scheduler moved us.
1643 */
1644 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001645 numa_migrate_preferred(p);
1646
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001647 if (migrated)
1648 p->numa_pages_migrated += pages;
1649
Mel Gormanac8e8952013-10-07 11:29:03 +01001650 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001651 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001652}
1653
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001654static void reset_ptenuma_scan(struct task_struct *p)
1655{
1656 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1657 p->mm->numa_scan_offset = 0;
1658}
1659
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001660/*
1661 * The expensive part of numa migration is done from task_work context.
1662 * Triggered from task_tick_numa().
1663 */
1664void task_numa_work(struct callback_head *work)
1665{
1666 unsigned long migrate, next_scan, now = jiffies;
1667 struct task_struct *p = current;
1668 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001669 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001670 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001671 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001672 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001673
1674 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675
1676 work->next = work; /* protect against double add */
1677 /*
1678 * Who cares about NUMA placement when they're dying.
1679 *
1680 * NOTE: make sure not to dereference p->mm before this check,
1681 * exit_task_work() happens _after_ exit_mm() so we could be called
1682 * without p->mm even though we still had it when we enqueued this
1683 * work.
1684 */
1685 if (p->flags & PF_EXITING)
1686 return;
1687
Mel Gorman930aa172013-10-07 11:29:37 +01001688 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001689 mm->numa_next_scan = now +
1690 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001691 }
1692
1693 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001694 * Enforce maximal scan/migration frequency..
1695 */
1696 migrate = mm->numa_next_scan;
1697 if (time_before(now, migrate))
1698 return;
1699
Mel Gorman598f0ec2013-10-07 11:28:55 +01001700 if (p->numa_scan_period == 0) {
1701 p->numa_scan_period_max = task_scan_max(p);
1702 p->numa_scan_period = task_scan_min(p);
1703 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001704
Mel Gormanfb003b82012-11-15 09:01:14 +00001705 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001706 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1707 return;
1708
Mel Gormane14808b2012-11-19 10:59:15 +00001709 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001710 * Delay this task enough that another task of this mm will likely win
1711 * the next time around.
1712 */
1713 p->node_stamp += 2 * TICK_NSEC;
1714
Mel Gorman9f406042012-11-14 18:34:32 +00001715 start = mm->numa_scan_offset;
1716 pages = sysctl_numa_balancing_scan_size;
1717 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1718 if (!pages)
1719 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001720
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001721 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001722 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001723 if (!vma) {
1724 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001725 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001726 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001727 }
Mel Gorman9f406042012-11-14 18:34:32 +00001728 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001729 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001730 continue;
1731
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001732 /*
1733 * Shared library pages mapped by multiple processes are not
1734 * migrated as it is expected they are cache replicated. Avoid
1735 * hinting faults in read-only file-backed mappings or the vdso
1736 * as migrating the pages will be of marginal benefit.
1737 */
1738 if (!vma->vm_mm ||
1739 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1740 continue;
1741
Mel Gorman9f406042012-11-14 18:34:32 +00001742 do {
1743 start = max(start, vma->vm_start);
1744 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1745 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001746 nr_pte_updates += change_prot_numa(vma, start, end);
1747
1748 /*
1749 * Scan sysctl_numa_balancing_scan_size but ensure that
1750 * at least one PTE is updated so that unused virtual
1751 * address space is quickly skipped.
1752 */
1753 if (nr_pte_updates)
1754 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001755
Mel Gorman9f406042012-11-14 18:34:32 +00001756 start = end;
1757 if (pages <= 0)
1758 goto out;
1759 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001760 }
1761
Mel Gorman9f406042012-11-14 18:34:32 +00001762out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001763 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001764 * It is possible to reach the end of the VMA list but the last few
1765 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1766 * would find the !migratable VMA on the next scan but not reset the
1767 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001768 */
1769 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001770 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001771 else
1772 reset_ptenuma_scan(p);
1773 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001774}
1775
1776/*
1777 * Drive the periodic memory faults..
1778 */
1779void task_tick_numa(struct rq *rq, struct task_struct *curr)
1780{
1781 struct callback_head *work = &curr->numa_work;
1782 u64 period, now;
1783
1784 /*
1785 * We don't care about NUMA placement if we don't have memory.
1786 */
1787 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1788 return;
1789
1790 /*
1791 * Using runtime rather than walltime has the dual advantage that
1792 * we (mostly) drive the selection from busy threads and that the
1793 * task needs to have done some actual work before we bother with
1794 * NUMA placement.
1795 */
1796 now = curr->se.sum_exec_runtime;
1797 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1798
1799 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001800 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001801 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001802 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001803
1804 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1805 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1806 task_work_add(curr, work, true);
1807 }
1808 }
1809}
1810#else
1811static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1812{
1813}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001814
1815static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1816{
1817}
1818
1819static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1820{
1821}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001822#endif /* CONFIG_NUMA_BALANCING */
1823
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001824static void
1825account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826{
1827 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001828 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001829 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001830#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001831 if (entity_is_task(se)) {
1832 struct rq *rq = rq_of(cfs_rq);
1833
1834 account_numa_enqueue(rq, task_of(se));
1835 list_add(&se->group_node, &rq->cfs_tasks);
1836 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001837#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001838 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001839}
1840
1841static void
1842account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1843{
1844 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001845 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001846 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001847 if (entity_is_task(se)) {
1848 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301849 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001850 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001851 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001852}
1853
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001854#ifdef CONFIG_FAIR_GROUP_SCHED
1855# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001856static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1857{
1858 long tg_weight;
1859
1860 /*
1861 * Use this CPU's actual weight instead of the last load_contribution
1862 * to gain a more accurate current total weight. See
1863 * update_cfs_rq_load_contribution().
1864 */
Alex Shibf5b9862013-06-20 10:18:54 +08001865 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001866 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001867 tg_weight += cfs_rq->load.weight;
1868
1869 return tg_weight;
1870}
1871
Paul Turner6d5ab292011-01-21 20:45:01 -08001872static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001873{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001874 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001875
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001876 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001877 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001878
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001879 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001880 if (tg_weight)
1881 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001882
1883 if (shares < MIN_SHARES)
1884 shares = MIN_SHARES;
1885 if (shares > tg->shares)
1886 shares = tg->shares;
1887
1888 return shares;
1889}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001890# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001891static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001892{
1893 return tg->shares;
1894}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001895# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001896static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1897 unsigned long weight)
1898{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001899 if (se->on_rq) {
1900 /* commit outstanding execution time */
1901 if (cfs_rq->curr == se)
1902 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001903 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001904 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001905
1906 update_load_set(&se->load, weight);
1907
1908 if (se->on_rq)
1909 account_entity_enqueue(cfs_rq, se);
1910}
1911
Paul Turner82958362012-10-04 13:18:31 +02001912static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1913
Paul Turner6d5ab292011-01-21 20:45:01 -08001914static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001915{
1916 struct task_group *tg;
1917 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001918 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001919
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001920 tg = cfs_rq->tg;
1921 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001922 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001923 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001924#ifndef CONFIG_SMP
1925 if (likely(se->load.weight == tg->shares))
1926 return;
1927#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001928 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001929
1930 reweight_entity(cfs_rq_of(se), se, shares);
1931}
1932#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001933static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001934{
1935}
1936#endif /* CONFIG_FAIR_GROUP_SCHED */
1937
Alex Shi141965c2013-06-26 13:05:39 +08001938#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001939/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001940 * We choose a half-life close to 1 scheduling period.
1941 * Note: The tables below are dependent on this value.
1942 */
1943#define LOAD_AVG_PERIOD 32
1944#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1945#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1946
1947/* Precomputed fixed inverse multiplies for multiplication by y^n */
1948static const u32 runnable_avg_yN_inv[] = {
1949 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1950 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1951 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1952 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1953 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1954 0x85aac367, 0x82cd8698,
1955};
1956
1957/*
1958 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1959 * over-estimates when re-combining.
1960 */
1961static const u32 runnable_avg_yN_sum[] = {
1962 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1963 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1964 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1965};
1966
1967/*
Paul Turner9d85f212012-10-04 13:18:29 +02001968 * Approximate:
1969 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1970 */
1971static __always_inline u64 decay_load(u64 val, u64 n)
1972{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001973 unsigned int local_n;
1974
1975 if (!n)
1976 return val;
1977 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1978 return 0;
1979
1980 /* after bounds checking we can collapse to 32-bit */
1981 local_n = n;
1982
1983 /*
1984 * As y^PERIOD = 1/2, we can combine
1985 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1986 * With a look-up table which covers k^n (n<PERIOD)
1987 *
1988 * To achieve constant time decay_load.
1989 */
1990 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1991 val >>= local_n / LOAD_AVG_PERIOD;
1992 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001993 }
1994
Paul Turner5b51f2f2012-10-04 13:18:32 +02001995 val *= runnable_avg_yN_inv[local_n];
1996 /* We don't use SRR here since we always want to round down. */
1997 return val >> 32;
1998}
1999
2000/*
2001 * For updates fully spanning n periods, the contribution to runnable
2002 * average will be: \Sum 1024*y^n
2003 *
2004 * We can compute this reasonably efficiently by combining:
2005 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2006 */
2007static u32 __compute_runnable_contrib(u64 n)
2008{
2009 u32 contrib = 0;
2010
2011 if (likely(n <= LOAD_AVG_PERIOD))
2012 return runnable_avg_yN_sum[n];
2013 else if (unlikely(n >= LOAD_AVG_MAX_N))
2014 return LOAD_AVG_MAX;
2015
2016 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2017 do {
2018 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2019 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2020
2021 n -= LOAD_AVG_PERIOD;
2022 } while (n > LOAD_AVG_PERIOD);
2023
2024 contrib = decay_load(contrib, n);
2025 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002026}
2027
2028/*
2029 * We can represent the historical contribution to runnable average as the
2030 * coefficients of a geometric series. To do this we sub-divide our runnable
2031 * history into segments of approximately 1ms (1024us); label the segment that
2032 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2033 *
2034 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2035 * p0 p1 p2
2036 * (now) (~1ms ago) (~2ms ago)
2037 *
2038 * Let u_i denote the fraction of p_i that the entity was runnable.
2039 *
2040 * We then designate the fractions u_i as our co-efficients, yielding the
2041 * following representation of historical load:
2042 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2043 *
2044 * We choose y based on the with of a reasonably scheduling period, fixing:
2045 * y^32 = 0.5
2046 *
2047 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2048 * approximately half as much as the contribution to load within the last ms
2049 * (u_0).
2050 *
2051 * When a period "rolls over" and we have new u_0`, multiplying the previous
2052 * sum again by y is sufficient to update:
2053 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2054 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2055 */
2056static __always_inline int __update_entity_runnable_avg(u64 now,
2057 struct sched_avg *sa,
2058 int runnable)
2059{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002060 u64 delta, periods;
2061 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002062 int delta_w, decayed = 0;
2063
2064 delta = now - sa->last_runnable_update;
2065 /*
2066 * This should only happen when time goes backwards, which it
2067 * unfortunately does during sched clock init when we swap over to TSC.
2068 */
2069 if ((s64)delta < 0) {
2070 sa->last_runnable_update = now;
2071 return 0;
2072 }
2073
2074 /*
2075 * Use 1024ns as the unit of measurement since it's a reasonable
2076 * approximation of 1us and fast to compute.
2077 */
2078 delta >>= 10;
2079 if (!delta)
2080 return 0;
2081 sa->last_runnable_update = now;
2082
2083 /* delta_w is the amount already accumulated against our next period */
2084 delta_w = sa->runnable_avg_period % 1024;
2085 if (delta + delta_w >= 1024) {
2086 /* period roll-over */
2087 decayed = 1;
2088
2089 /*
2090 * Now that we know we're crossing a period boundary, figure
2091 * out how much from delta we need to complete the current
2092 * period and accrue it.
2093 */
2094 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002095 if (runnable)
2096 sa->runnable_avg_sum += delta_w;
2097 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002098
Paul Turner5b51f2f2012-10-04 13:18:32 +02002099 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002100
Paul Turner5b51f2f2012-10-04 13:18:32 +02002101 /* Figure out how many additional periods this update spans */
2102 periods = delta / 1024;
2103 delta %= 1024;
2104
2105 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2106 periods + 1);
2107 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2108 periods + 1);
2109
2110 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2111 runnable_contrib = __compute_runnable_contrib(periods);
2112 if (runnable)
2113 sa->runnable_avg_sum += runnable_contrib;
2114 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002115 }
2116
2117 /* Remainder of delta accrued against u_0` */
2118 if (runnable)
2119 sa->runnable_avg_sum += delta;
2120 sa->runnable_avg_period += delta;
2121
2122 return decayed;
2123}
2124
Paul Turner9ee474f2012-10-04 13:18:30 +02002125/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002126static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002127{
2128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2129 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2130
2131 decays -= se->avg.decay_count;
2132 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002133 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002134
2135 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2136 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002137
2138 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002139}
2140
Paul Turnerc566e8e2012-10-04 13:18:30 +02002141#ifdef CONFIG_FAIR_GROUP_SCHED
2142static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2143 int force_update)
2144{
2145 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002146 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002147
2148 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2149 tg_contrib -= cfs_rq->tg_load_contrib;
2150
Alex Shibf5b9862013-06-20 10:18:54 +08002151 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2152 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002153 cfs_rq->tg_load_contrib += tg_contrib;
2154 }
2155}
Paul Turner8165e142012-10-04 13:18:31 +02002156
Paul Turnerbb17f652012-10-04 13:18:31 +02002157/*
2158 * Aggregate cfs_rq runnable averages into an equivalent task_group
2159 * representation for computing load contributions.
2160 */
2161static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2162 struct cfs_rq *cfs_rq)
2163{
2164 struct task_group *tg = cfs_rq->tg;
2165 long contrib;
2166
2167 /* The fraction of a cpu used by this cfs_rq */
2168 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2169 sa->runnable_avg_period + 1);
2170 contrib -= cfs_rq->tg_runnable_contrib;
2171
2172 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2173 atomic_add(contrib, &tg->runnable_avg);
2174 cfs_rq->tg_runnable_contrib += contrib;
2175 }
2176}
2177
Paul Turner8165e142012-10-04 13:18:31 +02002178static inline void __update_group_entity_contrib(struct sched_entity *se)
2179{
2180 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2181 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002182 int runnable_avg;
2183
Paul Turner8165e142012-10-04 13:18:31 +02002184 u64 contrib;
2185
2186 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002187 se->avg.load_avg_contrib = div_u64(contrib,
2188 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002189
2190 /*
2191 * For group entities we need to compute a correction term in the case
2192 * that they are consuming <1 cpu so that we would contribute the same
2193 * load as a task of equal weight.
2194 *
2195 * Explicitly co-ordinating this measurement would be expensive, but
2196 * fortunately the sum of each cpus contribution forms a usable
2197 * lower-bound on the true value.
2198 *
2199 * Consider the aggregate of 2 contributions. Either they are disjoint
2200 * (and the sum represents true value) or they are disjoint and we are
2201 * understating by the aggregate of their overlap.
2202 *
2203 * Extending this to N cpus, for a given overlap, the maximum amount we
2204 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2205 * cpus that overlap for this interval and w_i is the interval width.
2206 *
2207 * On a small machine; the first term is well-bounded which bounds the
2208 * total error since w_i is a subset of the period. Whereas on a
2209 * larger machine, while this first term can be larger, if w_i is the
2210 * of consequential size guaranteed to see n_i*w_i quickly converge to
2211 * our upper bound of 1-cpu.
2212 */
2213 runnable_avg = atomic_read(&tg->runnable_avg);
2214 if (runnable_avg < NICE_0_LOAD) {
2215 se->avg.load_avg_contrib *= runnable_avg;
2216 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2217 }
Paul Turner8165e142012-10-04 13:18:31 +02002218}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002219#else
2220static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2221 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002222static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2223 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002224static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002225#endif
2226
Paul Turner8165e142012-10-04 13:18:31 +02002227static inline void __update_task_entity_contrib(struct sched_entity *se)
2228{
2229 u32 contrib;
2230
2231 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2232 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2233 contrib /= (se->avg.runnable_avg_period + 1);
2234 se->avg.load_avg_contrib = scale_load(contrib);
2235}
2236
Paul Turner2dac7542012-10-04 13:18:30 +02002237/* Compute the current contribution to load_avg by se, return any delta */
2238static long __update_entity_load_avg_contrib(struct sched_entity *se)
2239{
2240 long old_contrib = se->avg.load_avg_contrib;
2241
Paul Turner8165e142012-10-04 13:18:31 +02002242 if (entity_is_task(se)) {
2243 __update_task_entity_contrib(se);
2244 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002245 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002246 __update_group_entity_contrib(se);
2247 }
Paul Turner2dac7542012-10-04 13:18:30 +02002248
2249 return se->avg.load_avg_contrib - old_contrib;
2250}
2251
Paul Turner9ee474f2012-10-04 13:18:30 +02002252static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2253 long load_contrib)
2254{
2255 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2256 cfs_rq->blocked_load_avg -= load_contrib;
2257 else
2258 cfs_rq->blocked_load_avg = 0;
2259}
2260
Paul Turnerf1b17282012-10-04 13:18:31 +02002261static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2262
Paul Turner9d85f212012-10-04 13:18:29 +02002263/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002264static inline void update_entity_load_avg(struct sched_entity *se,
2265 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002266{
Paul Turner2dac7542012-10-04 13:18:30 +02002267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2268 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002269 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002270
Paul Turnerf1b17282012-10-04 13:18:31 +02002271 /*
2272 * For a group entity we need to use their owned cfs_rq_clock_task() in
2273 * case they are the parent of a throttled hierarchy.
2274 */
2275 if (entity_is_task(se))
2276 now = cfs_rq_clock_task(cfs_rq);
2277 else
2278 now = cfs_rq_clock_task(group_cfs_rq(se));
2279
2280 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002281 return;
2282
2283 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002284
2285 if (!update_cfs_rq)
2286 return;
2287
Paul Turner2dac7542012-10-04 13:18:30 +02002288 if (se->on_rq)
2289 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002290 else
2291 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2292}
2293
2294/*
2295 * Decay the load contributed by all blocked children and account this so that
2296 * their contribution may appropriately discounted when they wake up.
2297 */
Paul Turneraff3e492012-10-04 13:18:30 +02002298static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002299{
Paul Turnerf1b17282012-10-04 13:18:31 +02002300 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002301 u64 decays;
2302
2303 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002304 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002305 return;
2306
Alex Shi25099402013-06-20 10:18:55 +08002307 if (atomic_long_read(&cfs_rq->removed_load)) {
2308 unsigned long removed_load;
2309 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002310 subtract_blocked_load_contrib(cfs_rq, removed_load);
2311 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002312
Paul Turneraff3e492012-10-04 13:18:30 +02002313 if (decays) {
2314 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2315 decays);
2316 atomic64_add(decays, &cfs_rq->decay_counter);
2317 cfs_rq->last_decay = now;
2318 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002319
2320 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002321}
Ben Segall18bf2802012-10-04 12:51:20 +02002322
2323static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2324{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002325 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002326 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002327}
Paul Turner2dac7542012-10-04 13:18:30 +02002328
2329/* Add the load generated by se into cfs_rq's child load-average */
2330static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002331 struct sched_entity *se,
2332 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002333{
Paul Turneraff3e492012-10-04 13:18:30 +02002334 /*
2335 * We track migrations using entity decay_count <= 0, on a wake-up
2336 * migration we use a negative decay count to track the remote decays
2337 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002338 *
2339 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2340 * are seen by enqueue_entity_load_avg() as a migration with an already
2341 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002342 */
2343 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002344 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002345 if (se->avg.decay_count) {
2346 /*
2347 * In a wake-up migration we have to approximate the
2348 * time sleeping. This is because we can't synchronize
2349 * clock_task between the two cpus, and it is not
2350 * guaranteed to be read-safe. Instead, we can
2351 * approximate this using our carried decays, which are
2352 * explicitly atomically readable.
2353 */
2354 se->avg.last_runnable_update -= (-se->avg.decay_count)
2355 << 20;
2356 update_entity_load_avg(se, 0);
2357 /* Indicate that we're now synchronized and on-rq */
2358 se->avg.decay_count = 0;
2359 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002360 wakeup = 0;
2361 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002362 /*
2363 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2364 * would have made count negative); we must be careful to avoid
2365 * double-accounting blocked time after synchronizing decays.
2366 */
2367 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2368 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002369 }
2370
Paul Turneraff3e492012-10-04 13:18:30 +02002371 /* migrated tasks did not contribute to our blocked load */
2372 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002373 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002374 update_entity_load_avg(se, 0);
2375 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002376
Paul Turner2dac7542012-10-04 13:18:30 +02002377 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002378 /* we force update consideration on load-balancer moves */
2379 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002380}
2381
Paul Turner9ee474f2012-10-04 13:18:30 +02002382/*
2383 * Remove se's load from this cfs_rq child load-average, if the entity is
2384 * transitioning to a blocked state we track its projected decay using
2385 * blocked_load_avg.
2386 */
Paul Turner2dac7542012-10-04 13:18:30 +02002387static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002388 struct sched_entity *se,
2389 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002390{
Paul Turner9ee474f2012-10-04 13:18:30 +02002391 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002392 /* we force update consideration on load-balancer moves */
2393 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002394
Paul Turner2dac7542012-10-04 13:18:30 +02002395 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002396 if (sleep) {
2397 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2398 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2399 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002400}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002401
2402/*
2403 * Update the rq's load with the elapsed running time before entering
2404 * idle. if the last scheduled task is not a CFS task, idle_enter will
2405 * be the only way to update the runnable statistic.
2406 */
2407void idle_enter_fair(struct rq *this_rq)
2408{
2409 update_rq_runnable_avg(this_rq, 1);
2410}
2411
2412/*
2413 * Update the rq's load with the elapsed idle time before a task is
2414 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2415 * be the only way to update the runnable statistic.
2416 */
2417void idle_exit_fair(struct rq *this_rq)
2418{
2419 update_rq_runnable_avg(this_rq, 0);
2420}
2421
Paul Turner9d85f212012-10-04 13:18:29 +02002422#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002423static inline void update_entity_load_avg(struct sched_entity *se,
2424 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002425static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002426static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002427 struct sched_entity *se,
2428 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002429static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002430 struct sched_entity *se,
2431 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002432static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2433 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002434#endif
2435
Ingo Molnar2396af62007-08-09 11:16:48 +02002436static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002437{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002438#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002439 struct task_struct *tsk = NULL;
2440
2441 if (entity_is_task(se))
2442 tsk = task_of(se);
2443
Lucas De Marchi41acab82010-03-10 23:37:45 -03002444 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002445 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002446
2447 if ((s64)delta < 0)
2448 delta = 0;
2449
Lucas De Marchi41acab82010-03-10 23:37:45 -03002450 if (unlikely(delta > se->statistics.sleep_max))
2451 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002452
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002453 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002454 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002455
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002456 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002457 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002458 trace_sched_stat_sleep(tsk, delta);
2459 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002460 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002461 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002462 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002463
2464 if ((s64)delta < 0)
2465 delta = 0;
2466
Lucas De Marchi41acab82010-03-10 23:37:45 -03002467 if (unlikely(delta > se->statistics.block_max))
2468 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002469
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002470 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002471 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002472
Peter Zijlstrae4143142009-07-23 20:13:26 +02002473 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002474 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002475 se->statistics.iowait_sum += delta;
2476 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002477 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002478 }
2479
Andrew Vaginb781a602011-11-28 12:03:35 +03002480 trace_sched_stat_blocked(tsk, delta);
2481
Peter Zijlstrae4143142009-07-23 20:13:26 +02002482 /*
2483 * Blocking time is in units of nanosecs, so shift by
2484 * 20 to get a milliseconds-range estimation of the
2485 * amount of time that the task spent sleeping:
2486 */
2487 if (unlikely(prof_on == SLEEP_PROFILING)) {
2488 profile_hits(SLEEP_PROFILING,
2489 (void *)get_wchan(tsk),
2490 delta >> 20);
2491 }
2492 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002493 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002494 }
2495#endif
2496}
2497
Peter Zijlstraddc97292007-10-15 17:00:10 +02002498static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2499{
2500#ifdef CONFIG_SCHED_DEBUG
2501 s64 d = se->vruntime - cfs_rq->min_vruntime;
2502
2503 if (d < 0)
2504 d = -d;
2505
2506 if (d > 3*sysctl_sched_latency)
2507 schedstat_inc(cfs_rq, nr_spread_over);
2508#endif
2509}
2510
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002511static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002512place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2513{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002514 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002515
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002516 /*
2517 * The 'current' period is already promised to the current tasks,
2518 * however the extra weight of the new task will slow them down a
2519 * little, place the new task so that it fits in the slot that
2520 * stays open at the end.
2521 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002522 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002523 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002524
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002525 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002526 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002527 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002528
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002529 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002530 * Halve their sleep time's effect, to allow
2531 * for a gentler effect of sleepers:
2532 */
2533 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2534 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002535
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002536 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002537 }
2538
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002539 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302540 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002541}
2542
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002543static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2544
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002545static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002546enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002547{
2548 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002549 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302550 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002551 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002552 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002553 se->vruntime += cfs_rq->min_vruntime;
2554
2555 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002556 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002557 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002558 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002559 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002560 account_entity_enqueue(cfs_rq, se);
2561 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002562
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002563 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002564 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002565 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002566 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002567
Ingo Molnard2417e52007-08-09 11:16:47 +02002568 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002569 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002570 if (se != cfs_rq->curr)
2571 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002572 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002573
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002574 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002575 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002576 check_enqueue_throttle(cfs_rq);
2577 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002578}
2579
Rik van Riel2c13c9192011-02-01 09:48:37 -05002580static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002581{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002582 for_each_sched_entity(se) {
2583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2584 if (cfs_rq->last == se)
2585 cfs_rq->last = NULL;
2586 else
2587 break;
2588 }
2589}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002590
Rik van Riel2c13c9192011-02-01 09:48:37 -05002591static void __clear_buddies_next(struct sched_entity *se)
2592{
2593 for_each_sched_entity(se) {
2594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2595 if (cfs_rq->next == se)
2596 cfs_rq->next = NULL;
2597 else
2598 break;
2599 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002600}
2601
Rik van Rielac53db52011-02-01 09:51:03 -05002602static void __clear_buddies_skip(struct sched_entity *se)
2603{
2604 for_each_sched_entity(se) {
2605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2606 if (cfs_rq->skip == se)
2607 cfs_rq->skip = NULL;
2608 else
2609 break;
2610 }
2611}
2612
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002613static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2614{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002615 if (cfs_rq->last == se)
2616 __clear_buddies_last(se);
2617
2618 if (cfs_rq->next == se)
2619 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002620
2621 if (cfs_rq->skip == se)
2622 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002623}
2624
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002625static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002626
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002627static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002628dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002629{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002630 /*
2631 * Update run-time statistics of the 'current'.
2632 */
2633 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002634 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002635
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002636 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002637 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002638#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002639 if (entity_is_task(se)) {
2640 struct task_struct *tsk = task_of(se);
2641
2642 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002643 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002644 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002645 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002646 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002647#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002648 }
2649
Peter Zijlstra2002c692008-11-11 11:52:33 +01002650 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002651
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002652 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002653 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002654 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002655 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002656
2657 /*
2658 * Normalize the entity after updating the min_vruntime because the
2659 * update can refer to the ->curr item and we need to reflect this
2660 * movement in our normalized position.
2661 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002662 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002663 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002664
Paul Turnerd8b49862011-07-21 09:43:41 -07002665 /* return excess runtime on last dequeue */
2666 return_cfs_rq_runtime(cfs_rq);
2667
Peter Zijlstra1e876232011-05-17 16:21:10 -07002668 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002669 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002670}
2671
2672/*
2673 * Preempt the current task with a newly woken task if needed:
2674 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002675static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002676check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002677{
Peter Zijlstra11697832007-09-05 14:32:49 +02002678 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002679 struct sched_entity *se;
2680 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002681
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002682 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002683 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002684 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002685 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002686 /*
2687 * The current task ran long enough, ensure it doesn't get
2688 * re-elected due to buddy favours.
2689 */
2690 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002691 return;
2692 }
2693
2694 /*
2695 * Ensure that a task that missed wakeup preemption by a
2696 * narrow margin doesn't have to wait for a full slice.
2697 * This also mitigates buddy induced latencies under load.
2698 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002699 if (delta_exec < sysctl_sched_min_granularity)
2700 return;
2701
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002702 se = __pick_first_entity(cfs_rq);
2703 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002704
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002705 if (delta < 0)
2706 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002707
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002708 if (delta > ideal_runtime)
2709 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002710}
2711
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002712static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002713set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002714{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002715 /* 'current' is not kept within the tree. */
2716 if (se->on_rq) {
2717 /*
2718 * Any task has to be enqueued before it get to execute on
2719 * a CPU. So account for the time it spent waiting on the
2720 * runqueue.
2721 */
2722 update_stats_wait_end(cfs_rq, se);
2723 __dequeue_entity(cfs_rq, se);
2724 }
2725
Ingo Molnar79303e92007-08-09 11:16:47 +02002726 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002727 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002728#ifdef CONFIG_SCHEDSTATS
2729 /*
2730 * Track our maximum slice length, if the CPU's load is at
2731 * least twice that of our own weight (i.e. dont track it
2732 * when there are only lesser-weight tasks around):
2733 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002734 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002735 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002736 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2737 }
2738#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002739 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002740}
2741
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002742static int
2743wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2744
Rik van Rielac53db52011-02-01 09:51:03 -05002745/*
2746 * Pick the next process, keeping these things in mind, in this order:
2747 * 1) keep things fair between processes/task groups
2748 * 2) pick the "next" process, since someone really wants that to run
2749 * 3) pick the "last" process, for cache locality
2750 * 4) do not run the "skip" process, if something else is available
2751 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002752static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002753{
Rik van Rielac53db52011-02-01 09:51:03 -05002754 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002755 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002756
Rik van Rielac53db52011-02-01 09:51:03 -05002757 /*
2758 * Avoid running the skip buddy, if running something else can
2759 * be done without getting too unfair.
2760 */
2761 if (cfs_rq->skip == se) {
2762 struct sched_entity *second = __pick_next_entity(se);
2763 if (second && wakeup_preempt_entity(second, left) < 1)
2764 se = second;
2765 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002766
Mike Galbraithf685cea2009-10-23 23:09:22 +02002767 /*
2768 * Prefer last buddy, try to return the CPU to a preempted task.
2769 */
2770 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2771 se = cfs_rq->last;
2772
Rik van Rielac53db52011-02-01 09:51:03 -05002773 /*
2774 * Someone really wants this to run. If it's not unfair, run it.
2775 */
2776 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2777 se = cfs_rq->next;
2778
Mike Galbraithf685cea2009-10-23 23:09:22 +02002779 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002780
2781 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002782}
2783
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002784static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2785
Ingo Molnarab6cde22007-08-09 11:16:48 +02002786static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002787{
2788 /*
2789 * If still on the runqueue then deactivate_task()
2790 * was not called and update_curr() has to be done:
2791 */
2792 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002793 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002794
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002795 /* throttle cfs_rqs exceeding runtime */
2796 check_cfs_rq_runtime(cfs_rq);
2797
Peter Zijlstraddc97292007-10-15 17:00:10 +02002798 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002799 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002800 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002801 /* Put 'current' back into the tree. */
2802 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002803 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002804 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002805 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002806 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002807}
2808
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002809static void
2810entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002811{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002812 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002813 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002814 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002815 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002816
Paul Turner43365bd2010-12-15 19:10:17 -08002817 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002818 * Ensure that runnable average is periodically updated.
2819 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002820 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002821 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002822 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002823
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002824#ifdef CONFIG_SCHED_HRTICK
2825 /*
2826 * queued ticks are scheduled to match the slice, so don't bother
2827 * validating it and just reschedule.
2828 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002829 if (queued) {
2830 resched_task(rq_of(cfs_rq)->curr);
2831 return;
2832 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002833 /*
2834 * don't let the period tick interfere with the hrtick preemption
2835 */
2836 if (!sched_feat(DOUBLE_TICK) &&
2837 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2838 return;
2839#endif
2840
Yong Zhang2c2efae2011-07-29 16:20:33 +08002841 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002842 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002843}
2844
Paul Turnerab84d312011-07-21 09:43:28 -07002845
2846/**************************************************
2847 * CFS bandwidth control machinery
2848 */
2849
2850#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002851
2852#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002853static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002854
2855static inline bool cfs_bandwidth_used(void)
2856{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002857 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002858}
2859
Ben Segall1ee14e62013-10-16 11:16:12 -07002860void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02002861{
Ben Segall1ee14e62013-10-16 11:16:12 -07002862 static_key_slow_inc(&__cfs_bandwidth_used);
2863}
2864
2865void cfs_bandwidth_usage_dec(void)
2866{
2867 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002868}
2869#else /* HAVE_JUMP_LABEL */
2870static bool cfs_bandwidth_used(void)
2871{
2872 return true;
2873}
2874
Ben Segall1ee14e62013-10-16 11:16:12 -07002875void cfs_bandwidth_usage_inc(void) {}
2876void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002877#endif /* HAVE_JUMP_LABEL */
2878
Paul Turnerab84d312011-07-21 09:43:28 -07002879/*
2880 * default period for cfs group bandwidth.
2881 * default: 0.1s, units: nanoseconds
2882 */
2883static inline u64 default_cfs_period(void)
2884{
2885 return 100000000ULL;
2886}
Paul Turnerec12cb72011-07-21 09:43:30 -07002887
2888static inline u64 sched_cfs_bandwidth_slice(void)
2889{
2890 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2891}
2892
Paul Turnera9cf55b2011-07-21 09:43:32 -07002893/*
2894 * Replenish runtime according to assigned quota and update expiration time.
2895 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2896 * additional synchronization around rq->lock.
2897 *
2898 * requires cfs_b->lock
2899 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002900void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002901{
2902 u64 now;
2903
2904 if (cfs_b->quota == RUNTIME_INF)
2905 return;
2906
2907 now = sched_clock_cpu(smp_processor_id());
2908 cfs_b->runtime = cfs_b->quota;
2909 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2910}
2911
Peter Zijlstra029632f2011-10-25 10:00:11 +02002912static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2913{
2914 return &tg->cfs_bandwidth;
2915}
2916
Paul Turnerf1b17282012-10-04 13:18:31 +02002917/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2918static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2919{
2920 if (unlikely(cfs_rq->throttle_count))
2921 return cfs_rq->throttled_clock_task;
2922
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002923 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002924}
2925
Paul Turner85dac902011-07-21 09:43:33 -07002926/* returns 0 on failure to allocate runtime */
2927static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002928{
2929 struct task_group *tg = cfs_rq->tg;
2930 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002931 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002932
2933 /* note: this is a positive sum as runtime_remaining <= 0 */
2934 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2935
2936 raw_spin_lock(&cfs_b->lock);
2937 if (cfs_b->quota == RUNTIME_INF)
2938 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002939 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002940 /*
2941 * If the bandwidth pool has become inactive, then at least one
2942 * period must have elapsed since the last consumption.
2943 * Refresh the global state and ensure bandwidth timer becomes
2944 * active.
2945 */
2946 if (!cfs_b->timer_active) {
2947 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002948 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002949 }
Paul Turner58088ad2011-07-21 09:43:31 -07002950
2951 if (cfs_b->runtime > 0) {
2952 amount = min(cfs_b->runtime, min_amount);
2953 cfs_b->runtime -= amount;
2954 cfs_b->idle = 0;
2955 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002956 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002957 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002958 raw_spin_unlock(&cfs_b->lock);
2959
2960 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002961 /*
2962 * we may have advanced our local expiration to account for allowed
2963 * spread between our sched_clock and the one on which runtime was
2964 * issued.
2965 */
2966 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2967 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002968
2969 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002970}
2971
2972/*
2973 * Note: This depends on the synchronization provided by sched_clock and the
2974 * fact that rq->clock snapshots this value.
2975 */
2976static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2977{
2978 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002979
2980 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002981 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002982 return;
2983
2984 if (cfs_rq->runtime_remaining < 0)
2985 return;
2986
2987 /*
2988 * If the local deadline has passed we have to consider the
2989 * possibility that our sched_clock is 'fast' and the global deadline
2990 * has not truly expired.
2991 *
2992 * Fortunately we can check determine whether this the case by checking
2993 * whether the global deadline has advanced.
2994 */
2995
2996 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2997 /* extend local deadline, drift is bounded above by 2 ticks */
2998 cfs_rq->runtime_expires += TICK_NSEC;
2999 } else {
3000 /* global deadline is ahead, expiration has passed */
3001 cfs_rq->runtime_remaining = 0;
3002 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003003}
3004
3005static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3006 unsigned long delta_exec)
3007{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003008 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003009 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003010 expire_cfs_rq_runtime(cfs_rq);
3011
3012 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003013 return;
3014
Paul Turner85dac902011-07-21 09:43:33 -07003015 /*
3016 * if we're unable to extend our runtime we resched so that the active
3017 * hierarchy can be throttled
3018 */
3019 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3020 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003021}
3022
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003023static __always_inline
3024void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003025{
Paul Turner56f570e2011-11-07 20:26:33 -08003026 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003027 return;
3028
3029 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3030}
3031
Paul Turner85dac902011-07-21 09:43:33 -07003032static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3033{
Paul Turner56f570e2011-11-07 20:26:33 -08003034 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003035}
3036
Paul Turner64660c82011-07-21 09:43:36 -07003037/* check whether cfs_rq, or any parent, is throttled */
3038static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3039{
Paul Turner56f570e2011-11-07 20:26:33 -08003040 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003041}
3042
3043/*
3044 * Ensure that neither of the group entities corresponding to src_cpu or
3045 * dest_cpu are members of a throttled hierarchy when performing group
3046 * load-balance operations.
3047 */
3048static inline int throttled_lb_pair(struct task_group *tg,
3049 int src_cpu, int dest_cpu)
3050{
3051 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3052
3053 src_cfs_rq = tg->cfs_rq[src_cpu];
3054 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3055
3056 return throttled_hierarchy(src_cfs_rq) ||
3057 throttled_hierarchy(dest_cfs_rq);
3058}
3059
3060/* updated child weight may affect parent so we have to do this bottom up */
3061static int tg_unthrottle_up(struct task_group *tg, void *data)
3062{
3063 struct rq *rq = data;
3064 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3065
3066 cfs_rq->throttle_count--;
3067#ifdef CONFIG_SMP
3068 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003069 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003070 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003071 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003072 }
3073#endif
3074
3075 return 0;
3076}
3077
3078static int tg_throttle_down(struct task_group *tg, void *data)
3079{
3080 struct rq *rq = data;
3081 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3082
Paul Turner82958362012-10-04 13:18:31 +02003083 /* group is entering throttled state, stop time */
3084 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003085 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003086 cfs_rq->throttle_count++;
3087
3088 return 0;
3089}
3090
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003091static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003092{
3093 struct rq *rq = rq_of(cfs_rq);
3094 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3095 struct sched_entity *se;
3096 long task_delta, dequeue = 1;
3097
3098 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3099
Paul Turnerf1b17282012-10-04 13:18:31 +02003100 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003101 rcu_read_lock();
3102 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3103 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003104
3105 task_delta = cfs_rq->h_nr_running;
3106 for_each_sched_entity(se) {
3107 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3108 /* throttled entity or throttle-on-deactivate */
3109 if (!se->on_rq)
3110 break;
3111
3112 if (dequeue)
3113 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3114 qcfs_rq->h_nr_running -= task_delta;
3115
3116 if (qcfs_rq->load.weight)
3117 dequeue = 0;
3118 }
3119
3120 if (!se)
3121 rq->nr_running -= task_delta;
3122
3123 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003124 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003125 raw_spin_lock(&cfs_b->lock);
3126 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003127 if (!cfs_b->timer_active)
3128 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003129 raw_spin_unlock(&cfs_b->lock);
3130}
3131
Peter Zijlstra029632f2011-10-25 10:00:11 +02003132void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003133{
3134 struct rq *rq = rq_of(cfs_rq);
3135 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3136 struct sched_entity *se;
3137 int enqueue = 1;
3138 long task_delta;
3139
Michael Wang22b958d2013-06-04 14:23:39 +08003140 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003141
3142 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003143
3144 update_rq_clock(rq);
3145
Paul Turner671fd9d2011-07-21 09:43:34 -07003146 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003147 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003148 list_del_rcu(&cfs_rq->throttled_list);
3149 raw_spin_unlock(&cfs_b->lock);
3150
Paul Turner64660c82011-07-21 09:43:36 -07003151 /* update hierarchical throttle state */
3152 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3153
Paul Turner671fd9d2011-07-21 09:43:34 -07003154 if (!cfs_rq->load.weight)
3155 return;
3156
3157 task_delta = cfs_rq->h_nr_running;
3158 for_each_sched_entity(se) {
3159 if (se->on_rq)
3160 enqueue = 0;
3161
3162 cfs_rq = cfs_rq_of(se);
3163 if (enqueue)
3164 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3165 cfs_rq->h_nr_running += task_delta;
3166
3167 if (cfs_rq_throttled(cfs_rq))
3168 break;
3169 }
3170
3171 if (!se)
3172 rq->nr_running += task_delta;
3173
3174 /* determine whether we need to wake up potentially idle cpu */
3175 if (rq->curr == rq->idle && rq->cfs.nr_running)
3176 resched_task(rq->curr);
3177}
3178
3179static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3180 u64 remaining, u64 expires)
3181{
3182 struct cfs_rq *cfs_rq;
3183 u64 runtime = remaining;
3184
3185 rcu_read_lock();
3186 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3187 throttled_list) {
3188 struct rq *rq = rq_of(cfs_rq);
3189
3190 raw_spin_lock(&rq->lock);
3191 if (!cfs_rq_throttled(cfs_rq))
3192 goto next;
3193
3194 runtime = -cfs_rq->runtime_remaining + 1;
3195 if (runtime > remaining)
3196 runtime = remaining;
3197 remaining -= runtime;
3198
3199 cfs_rq->runtime_remaining += runtime;
3200 cfs_rq->runtime_expires = expires;
3201
3202 /* we check whether we're throttled above */
3203 if (cfs_rq->runtime_remaining > 0)
3204 unthrottle_cfs_rq(cfs_rq);
3205
3206next:
3207 raw_spin_unlock(&rq->lock);
3208
3209 if (!remaining)
3210 break;
3211 }
3212 rcu_read_unlock();
3213
3214 return remaining;
3215}
3216
Paul Turner58088ad2011-07-21 09:43:31 -07003217/*
3218 * Responsible for refilling a task_group's bandwidth and unthrottling its
3219 * cfs_rqs as appropriate. If there has been no activity within the last
3220 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3221 * used to track this state.
3222 */
3223static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3224{
Paul Turner671fd9d2011-07-21 09:43:34 -07003225 u64 runtime, runtime_expires;
3226 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003227
3228 raw_spin_lock(&cfs_b->lock);
3229 /* no need to continue the timer with no bandwidth constraint */
3230 if (cfs_b->quota == RUNTIME_INF)
3231 goto out_unlock;
3232
Paul Turner671fd9d2011-07-21 09:43:34 -07003233 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3234 /* idle depends on !throttled (for the case of a large deficit) */
3235 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003236 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003237
Paul Turnera9cf55b2011-07-21 09:43:32 -07003238 /* if we're going inactive then everything else can be deferred */
3239 if (idle)
3240 goto out_unlock;
3241
Ben Segall927b54f2013-10-16 11:16:22 -07003242 /*
3243 * if we have relooped after returning idle once, we need to update our
3244 * status as actually running, so that other cpus doing
3245 * __start_cfs_bandwidth will stop trying to cancel us.
3246 */
3247 cfs_b->timer_active = 1;
3248
Paul Turnera9cf55b2011-07-21 09:43:32 -07003249 __refill_cfs_bandwidth_runtime(cfs_b);
3250
Paul Turner671fd9d2011-07-21 09:43:34 -07003251 if (!throttled) {
3252 /* mark as potentially idle for the upcoming period */
3253 cfs_b->idle = 1;
3254 goto out_unlock;
3255 }
Paul Turner58088ad2011-07-21 09:43:31 -07003256
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003257 /* account preceding periods in which throttling occurred */
3258 cfs_b->nr_throttled += overrun;
3259
Paul Turner671fd9d2011-07-21 09:43:34 -07003260 /*
3261 * There are throttled entities so we must first use the new bandwidth
3262 * to unthrottle them before making it generally available. This
3263 * ensures that all existing debts will be paid before a new cfs_rq is
3264 * allowed to run.
3265 */
3266 runtime = cfs_b->runtime;
3267 runtime_expires = cfs_b->runtime_expires;
3268 cfs_b->runtime = 0;
3269
3270 /*
3271 * This check is repeated as we are holding onto the new bandwidth
3272 * while we unthrottle. This can potentially race with an unthrottled
3273 * group trying to acquire new bandwidth from the global pool.
3274 */
3275 while (throttled && runtime > 0) {
3276 raw_spin_unlock(&cfs_b->lock);
3277 /* we can't nest cfs_b->lock while distributing bandwidth */
3278 runtime = distribute_cfs_runtime(cfs_b, runtime,
3279 runtime_expires);
3280 raw_spin_lock(&cfs_b->lock);
3281
3282 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3283 }
3284
3285 /* return (any) remaining runtime */
3286 cfs_b->runtime = runtime;
3287 /*
3288 * While we are ensured activity in the period following an
3289 * unthrottle, this also covers the case in which the new bandwidth is
3290 * insufficient to cover the existing bandwidth deficit. (Forcing the
3291 * timer to remain active while there are any throttled entities.)
3292 */
3293 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003294out_unlock:
3295 if (idle)
3296 cfs_b->timer_active = 0;
3297 raw_spin_unlock(&cfs_b->lock);
3298
3299 return idle;
3300}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003301
Paul Turnerd8b49862011-07-21 09:43:41 -07003302/* a cfs_rq won't donate quota below this amount */
3303static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3304/* minimum remaining period time to redistribute slack quota */
3305static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3306/* how long we wait to gather additional slack before distributing */
3307static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3308
Ben Segalldb06e782013-10-16 11:16:17 -07003309/*
3310 * Are we near the end of the current quota period?
3311 *
3312 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3313 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3314 * migrate_hrtimers, base is never cleared, so we are fine.
3315 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003316static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3317{
3318 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3319 u64 remaining;
3320
3321 /* if the call-back is running a quota refresh is already occurring */
3322 if (hrtimer_callback_running(refresh_timer))
3323 return 1;
3324
3325 /* is a quota refresh about to occur? */
3326 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3327 if (remaining < min_expire)
3328 return 1;
3329
3330 return 0;
3331}
3332
3333static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3334{
3335 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3336
3337 /* if there's a quota refresh soon don't bother with slack */
3338 if (runtime_refresh_within(cfs_b, min_left))
3339 return;
3340
3341 start_bandwidth_timer(&cfs_b->slack_timer,
3342 ns_to_ktime(cfs_bandwidth_slack_period));
3343}
3344
3345/* we know any runtime found here is valid as update_curr() precedes return */
3346static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3347{
3348 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3349 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3350
3351 if (slack_runtime <= 0)
3352 return;
3353
3354 raw_spin_lock(&cfs_b->lock);
3355 if (cfs_b->quota != RUNTIME_INF &&
3356 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3357 cfs_b->runtime += slack_runtime;
3358
3359 /* we are under rq->lock, defer unthrottling using a timer */
3360 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3361 !list_empty(&cfs_b->throttled_cfs_rq))
3362 start_cfs_slack_bandwidth(cfs_b);
3363 }
3364 raw_spin_unlock(&cfs_b->lock);
3365
3366 /* even if it's not valid for return we don't want to try again */
3367 cfs_rq->runtime_remaining -= slack_runtime;
3368}
3369
3370static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3371{
Paul Turner56f570e2011-11-07 20:26:33 -08003372 if (!cfs_bandwidth_used())
3373 return;
3374
Paul Turnerfccfdc62011-11-07 20:26:34 -08003375 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003376 return;
3377
3378 __return_cfs_rq_runtime(cfs_rq);
3379}
3380
3381/*
3382 * This is done with a timer (instead of inline with bandwidth return) since
3383 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3384 */
3385static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3386{
3387 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3388 u64 expires;
3389
3390 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003391 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003392 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3393 raw_spin_unlock(&cfs_b->lock);
3394 return;
3395 }
3396
Paul Turnerd8b49862011-07-21 09:43:41 -07003397 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3398 runtime = cfs_b->runtime;
3399 cfs_b->runtime = 0;
3400 }
3401 expires = cfs_b->runtime_expires;
3402 raw_spin_unlock(&cfs_b->lock);
3403
3404 if (!runtime)
3405 return;
3406
3407 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3408
3409 raw_spin_lock(&cfs_b->lock);
3410 if (expires == cfs_b->runtime_expires)
3411 cfs_b->runtime = runtime;
3412 raw_spin_unlock(&cfs_b->lock);
3413}
3414
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003415/*
3416 * When a group wakes up we want to make sure that its quota is not already
3417 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3418 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3419 */
3420static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3421{
Paul Turner56f570e2011-11-07 20:26:33 -08003422 if (!cfs_bandwidth_used())
3423 return;
3424
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003425 /* an active group must be handled by the update_curr()->put() path */
3426 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3427 return;
3428
3429 /* ensure the group is not already throttled */
3430 if (cfs_rq_throttled(cfs_rq))
3431 return;
3432
3433 /* update runtime allocation */
3434 account_cfs_rq_runtime(cfs_rq, 0);
3435 if (cfs_rq->runtime_remaining <= 0)
3436 throttle_cfs_rq(cfs_rq);
3437}
3438
3439/* conditionally throttle active cfs_rq's from put_prev_entity() */
3440static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3441{
Paul Turner56f570e2011-11-07 20:26:33 -08003442 if (!cfs_bandwidth_used())
3443 return;
3444
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003445 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3446 return;
3447
3448 /*
3449 * it's possible for a throttled entity to be forced into a running
3450 * state (e.g. set_curr_task), in this case we're finished.
3451 */
3452 if (cfs_rq_throttled(cfs_rq))
3453 return;
3454
3455 throttle_cfs_rq(cfs_rq);
3456}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003457
Peter Zijlstra029632f2011-10-25 10:00:11 +02003458static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3459{
3460 struct cfs_bandwidth *cfs_b =
3461 container_of(timer, struct cfs_bandwidth, slack_timer);
3462 do_sched_cfs_slack_timer(cfs_b);
3463
3464 return HRTIMER_NORESTART;
3465}
3466
3467static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3468{
3469 struct cfs_bandwidth *cfs_b =
3470 container_of(timer, struct cfs_bandwidth, period_timer);
3471 ktime_t now;
3472 int overrun;
3473 int idle = 0;
3474
3475 for (;;) {
3476 now = hrtimer_cb_get_time(timer);
3477 overrun = hrtimer_forward(timer, now, cfs_b->period);
3478
3479 if (!overrun)
3480 break;
3481
3482 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3483 }
3484
3485 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3486}
3487
3488void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3489{
3490 raw_spin_lock_init(&cfs_b->lock);
3491 cfs_b->runtime = 0;
3492 cfs_b->quota = RUNTIME_INF;
3493 cfs_b->period = ns_to_ktime(default_cfs_period());
3494
3495 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3496 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3497 cfs_b->period_timer.function = sched_cfs_period_timer;
3498 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3499 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3500}
3501
3502static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3503{
3504 cfs_rq->runtime_enabled = 0;
3505 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3506}
3507
3508/* requires cfs_b->lock, may release to reprogram timer */
3509void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3510{
3511 /*
3512 * The timer may be active because we're trying to set a new bandwidth
3513 * period or because we're racing with the tear-down path
3514 * (timer_active==0 becomes visible before the hrtimer call-back
3515 * terminates). In either case we ensure that it's re-programmed
3516 */
Ben Segall927b54f2013-10-16 11:16:22 -07003517 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3518 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3519 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003520 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003521 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003522 raw_spin_lock(&cfs_b->lock);
3523 /* if someone else restarted the timer then we're done */
3524 if (cfs_b->timer_active)
3525 return;
3526 }
3527
3528 cfs_b->timer_active = 1;
3529 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3530}
3531
3532static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3533{
3534 hrtimer_cancel(&cfs_b->period_timer);
3535 hrtimer_cancel(&cfs_b->slack_timer);
3536}
3537
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003538static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003539{
3540 struct cfs_rq *cfs_rq;
3541
3542 for_each_leaf_cfs_rq(rq, cfs_rq) {
3543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3544
3545 if (!cfs_rq->runtime_enabled)
3546 continue;
3547
3548 /*
3549 * clock_task is not advancing so we just need to make sure
3550 * there's some valid quota amount
3551 */
3552 cfs_rq->runtime_remaining = cfs_b->quota;
3553 if (cfs_rq_throttled(cfs_rq))
3554 unthrottle_cfs_rq(cfs_rq);
3555 }
3556}
3557
3558#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003559static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3560{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003561 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003562}
3563
3564static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3565 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003566static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3567static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003568static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003569
3570static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3571{
3572 return 0;
3573}
Paul Turner64660c82011-07-21 09:43:36 -07003574
3575static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3576{
3577 return 0;
3578}
3579
3580static inline int throttled_lb_pair(struct task_group *tg,
3581 int src_cpu, int dest_cpu)
3582{
3583 return 0;
3584}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003585
3586void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3587
3588#ifdef CONFIG_FAIR_GROUP_SCHED
3589static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003590#endif
3591
Peter Zijlstra029632f2011-10-25 10:00:11 +02003592static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3593{
3594 return NULL;
3595}
3596static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003597static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003598
3599#endif /* CONFIG_CFS_BANDWIDTH */
3600
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003601/**************************************************
3602 * CFS operations on tasks:
3603 */
3604
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003605#ifdef CONFIG_SCHED_HRTICK
3606static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3607{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003608 struct sched_entity *se = &p->se;
3609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610
3611 WARN_ON(task_rq(p) != rq);
3612
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003613 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003614 u64 slice = sched_slice(cfs_rq, se);
3615 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3616 s64 delta = slice - ran;
3617
3618 if (delta < 0) {
3619 if (rq->curr == p)
3620 resched_task(p);
3621 return;
3622 }
3623
3624 /*
3625 * Don't schedule slices shorter than 10000ns, that just
3626 * doesn't make sense. Rely on vruntime for fairness.
3627 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003628 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003629 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003630
Peter Zijlstra31656512008-07-18 18:01:23 +02003631 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003632 }
3633}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003634
3635/*
3636 * called from enqueue/dequeue and updates the hrtick when the
3637 * current task is from our class and nr_running is low enough
3638 * to matter.
3639 */
3640static void hrtick_update(struct rq *rq)
3641{
3642 struct task_struct *curr = rq->curr;
3643
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003644 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003645 return;
3646
3647 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3648 hrtick_start_fair(rq, curr);
3649}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303650#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003651static inline void
3652hrtick_start_fair(struct rq *rq, struct task_struct *p)
3653{
3654}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003655
3656static inline void hrtick_update(struct rq *rq)
3657{
3658}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003659#endif
3660
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003661/*
3662 * The enqueue_task method is called before nr_running is
3663 * increased. Here we update the fair scheduling stats and
3664 * then put the task into the rbtree:
3665 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003666static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003667enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003668{
3669 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003670 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003671
3672 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003673 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003674 break;
3675 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003676 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003677
3678 /*
3679 * end evaluation on encountering a throttled cfs_rq
3680 *
3681 * note: in the case of encountering a throttled cfs_rq we will
3682 * post the final h_nr_running increment below.
3683 */
3684 if (cfs_rq_throttled(cfs_rq))
3685 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003686 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003687
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003688 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003689 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003690
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003691 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003692 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003693 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003694
Paul Turner85dac902011-07-21 09:43:33 -07003695 if (cfs_rq_throttled(cfs_rq))
3696 break;
3697
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003698 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003699 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003700 }
3701
Ben Segall18bf2802012-10-04 12:51:20 +02003702 if (!se) {
3703 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003704 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003705 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003706 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003707}
3708
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003709static void set_next_buddy(struct sched_entity *se);
3710
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003711/*
3712 * The dequeue_task method is called before nr_running is
3713 * decreased. We remove the task from the rbtree and
3714 * update the fair scheduling stats:
3715 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003716static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003717{
3718 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003719 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003720 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003721
3722 for_each_sched_entity(se) {
3723 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003724 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003725
3726 /*
3727 * end evaluation on encountering a throttled cfs_rq
3728 *
3729 * note: in the case of encountering a throttled cfs_rq we will
3730 * post the final h_nr_running decrement below.
3731 */
3732 if (cfs_rq_throttled(cfs_rq))
3733 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003734 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003735
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003736 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003737 if (cfs_rq->load.weight) {
3738 /*
3739 * Bias pick_next to pick a task from this cfs_rq, as
3740 * p is sleeping when it is within its sched_slice.
3741 */
3742 if (task_sleep && parent_entity(se))
3743 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003744
3745 /* avoid re-evaluating load for this entity */
3746 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003747 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003748 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003749 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003750 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003751
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003752 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003753 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003754 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003755
Paul Turner85dac902011-07-21 09:43:33 -07003756 if (cfs_rq_throttled(cfs_rq))
3757 break;
3758
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003759 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003760 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003761 }
3762
Ben Segall18bf2802012-10-04 12:51:20 +02003763 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003764 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003765 update_rq_runnable_avg(rq, 1);
3766 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003767 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003768}
3769
Gregory Haskinse7693a32008-01-25 21:08:09 +01003770#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003771/* Used instead of source_load when we know the type == 0 */
3772static unsigned long weighted_cpuload(const int cpu)
3773{
Alex Shib92486c2013-06-20 10:18:50 +08003774 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003775}
3776
3777/*
3778 * Return a low guess at the load of a migration-source cpu weighted
3779 * according to the scheduling class and "nice" value.
3780 *
3781 * We want to under-estimate the load of migration sources, to
3782 * balance conservatively.
3783 */
3784static unsigned long source_load(int cpu, int type)
3785{
3786 struct rq *rq = cpu_rq(cpu);
3787 unsigned long total = weighted_cpuload(cpu);
3788
3789 if (type == 0 || !sched_feat(LB_BIAS))
3790 return total;
3791
3792 return min(rq->cpu_load[type-1], total);
3793}
3794
3795/*
3796 * Return a high guess at the load of a migration-target cpu weighted
3797 * according to the scheduling class and "nice" value.
3798 */
3799static unsigned long target_load(int cpu, int type)
3800{
3801 struct rq *rq = cpu_rq(cpu);
3802 unsigned long total = weighted_cpuload(cpu);
3803
3804 if (type == 0 || !sched_feat(LB_BIAS))
3805 return total;
3806
3807 return max(rq->cpu_load[type-1], total);
3808}
3809
3810static unsigned long power_of(int cpu)
3811{
3812 return cpu_rq(cpu)->cpu_power;
3813}
3814
3815static unsigned long cpu_avg_load_per_task(int cpu)
3816{
3817 struct rq *rq = cpu_rq(cpu);
3818 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003819 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003820
3821 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003822 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003823
3824 return 0;
3825}
3826
Michael Wang62470412013-07-04 12:55:51 +08003827static void record_wakee(struct task_struct *p)
3828{
3829 /*
3830 * Rough decay (wiping) for cost saving, don't worry
3831 * about the boundary, really active task won't care
3832 * about the loss.
3833 */
3834 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3835 current->wakee_flips = 0;
3836 current->wakee_flip_decay_ts = jiffies;
3837 }
3838
3839 if (current->last_wakee != p) {
3840 current->last_wakee = p;
3841 current->wakee_flips++;
3842 }
3843}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003844
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003845static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003846{
3847 struct sched_entity *se = &p->se;
3848 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003849 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003850
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003851#ifndef CONFIG_64BIT
3852 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003853
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003854 do {
3855 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3856 smp_rmb();
3857 min_vruntime = cfs_rq->min_vruntime;
3858 } while (min_vruntime != min_vruntime_copy);
3859#else
3860 min_vruntime = cfs_rq->min_vruntime;
3861#endif
3862
3863 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003864 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003865}
3866
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003867#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003868/*
3869 * effective_load() calculates the load change as seen from the root_task_group
3870 *
3871 * Adding load to a group doesn't make a group heavier, but can cause movement
3872 * of group shares between cpus. Assuming the shares were perfectly aligned one
3873 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003874 *
3875 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3876 * on this @cpu and results in a total addition (subtraction) of @wg to the
3877 * total group weight.
3878 *
3879 * Given a runqueue weight distribution (rw_i) we can compute a shares
3880 * distribution (s_i) using:
3881 *
3882 * s_i = rw_i / \Sum rw_j (1)
3883 *
3884 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3885 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3886 * shares distribution (s_i):
3887 *
3888 * rw_i = { 2, 4, 1, 0 }
3889 * s_i = { 2/7, 4/7, 1/7, 0 }
3890 *
3891 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3892 * task used to run on and the CPU the waker is running on), we need to
3893 * compute the effect of waking a task on either CPU and, in case of a sync
3894 * wakeup, compute the effect of the current task going to sleep.
3895 *
3896 * So for a change of @wl to the local @cpu with an overall group weight change
3897 * of @wl we can compute the new shares distribution (s'_i) using:
3898 *
3899 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3900 *
3901 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3902 * differences in waking a task to CPU 0. The additional task changes the
3903 * weight and shares distributions like:
3904 *
3905 * rw'_i = { 3, 4, 1, 0 }
3906 * s'_i = { 3/8, 4/8, 1/8, 0 }
3907 *
3908 * We can then compute the difference in effective weight by using:
3909 *
3910 * dw_i = S * (s'_i - s_i) (3)
3911 *
3912 * Where 'S' is the group weight as seen by its parent.
3913 *
3914 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3915 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3916 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003917 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003918static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003919{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003920 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003921
Mel Gorman58d081b2013-10-07 11:29:10 +01003922 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003923 return wl;
3924
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003925 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003926 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003927
Paul Turner977dda72011-01-14 17:57:50 -08003928 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003929
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003930 /*
3931 * W = @wg + \Sum rw_j
3932 */
3933 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003934
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003935 /*
3936 * w = rw_i + @wl
3937 */
3938 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003939
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003940 /*
3941 * wl = S * s'_i; see (2)
3942 */
3943 if (W > 0 && w < W)
3944 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003945 else
3946 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003947
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003948 /*
3949 * Per the above, wl is the new se->load.weight value; since
3950 * those are clipped to [MIN_SHARES, ...) do so now. See
3951 * calc_cfs_shares().
3952 */
Paul Turner977dda72011-01-14 17:57:50 -08003953 if (wl < MIN_SHARES)
3954 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003955
3956 /*
3957 * wl = dw_i = S * (s'_i - s_i); see (3)
3958 */
Paul Turner977dda72011-01-14 17:57:50 -08003959 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003960
3961 /*
3962 * Recursively apply this logic to all parent groups to compute
3963 * the final effective load change on the root group. Since
3964 * only the @tg group gets extra weight, all parent groups can
3965 * only redistribute existing shares. @wl is the shift in shares
3966 * resulting from this level per the above.
3967 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003968 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003969 }
3970
3971 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003972}
3973#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003974
Mel Gorman58d081b2013-10-07 11:29:10 +01003975static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003976{
Peter Zijlstra83378262008-06-27 13:41:37 +02003977 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003978}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003979
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003980#endif
3981
Michael Wang62470412013-07-04 12:55:51 +08003982static int wake_wide(struct task_struct *p)
3983{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003984 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003985
3986 /*
3987 * Yeah, it's the switching-frequency, could means many wakee or
3988 * rapidly switch, use factor here will just help to automatically
3989 * adjust the loose-degree, so bigger node will lead to more pull.
3990 */
3991 if (p->wakee_flips > factor) {
3992 /*
3993 * wakee is somewhat hot, it needs certain amount of cpu
3994 * resource, so if waker is far more hot, prefer to leave
3995 * it alone.
3996 */
3997 if (current->wakee_flips > (factor * p->wakee_flips))
3998 return 1;
3999 }
4000
4001 return 0;
4002}
4003
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004004static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004005{
Paul Turnere37b6a72011-01-21 20:44:59 -08004006 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004007 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004008 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004009 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004010 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004011 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004012
Michael Wang62470412013-07-04 12:55:51 +08004013 /*
4014 * If we wake multiple tasks be careful to not bounce
4015 * ourselves around too much.
4016 */
4017 if (wake_wide(p))
4018 return 0;
4019
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004020 idx = sd->wake_idx;
4021 this_cpu = smp_processor_id();
4022 prev_cpu = task_cpu(p);
4023 load = source_load(prev_cpu, idx);
4024 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004025
4026 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004027 * If sync wakeup then subtract the (maximum possible)
4028 * effect of the currently running task from the load
4029 * of the current CPU:
4030 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004031 if (sync) {
4032 tg = task_group(current);
4033 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004034
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004035 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004036 load += effective_load(tg, prev_cpu, 0, -weight);
4037 }
4038
4039 tg = task_group(p);
4040 weight = p->se.load.weight;
4041
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004042 /*
4043 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004044 * due to the sync cause above having dropped this_load to 0, we'll
4045 * always have an imbalance, but there's really nothing you can do
4046 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004047 *
4048 * Otherwise check if either cpus are near enough in load to allow this
4049 * task to be woken on this_cpu.
4050 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004051 if (this_load > 0) {
4052 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004053
4054 this_eff_load = 100;
4055 this_eff_load *= power_of(prev_cpu);
4056 this_eff_load *= this_load +
4057 effective_load(tg, this_cpu, weight, weight);
4058
4059 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4060 prev_eff_load *= power_of(this_cpu);
4061 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4062
4063 balanced = this_eff_load <= prev_eff_load;
4064 } else
4065 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004066
4067 /*
4068 * If the currently running task will sleep within
4069 * a reasonable amount of time then attract this newly
4070 * woken task:
4071 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004072 if (sync && balanced)
4073 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004074
Lucas De Marchi41acab82010-03-10 23:37:45 -03004075 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004076 tl_per_task = cpu_avg_load_per_task(this_cpu);
4077
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004078 if (balanced ||
4079 (this_load <= load &&
4080 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004081 /*
4082 * This domain has SD_WAKE_AFFINE and
4083 * p is cache cold in this domain, and
4084 * there is no bad imbalance.
4085 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004086 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004087 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004088
4089 return 1;
4090 }
4091 return 0;
4092}
4093
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004094/*
4095 * find_idlest_group finds and returns the least busy CPU group within the
4096 * domain.
4097 */
4098static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004099find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004100 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004101{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004102 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004103 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004105
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004106 do {
4107 unsigned long load, avg_load;
4108 int local_group;
4109 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004110
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004111 /* Skip over this group if it has no CPUs allowed */
4112 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004113 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004114 continue;
4115
4116 local_group = cpumask_test_cpu(this_cpu,
4117 sched_group_cpus(group));
4118
4119 /* Tally up the load of all CPUs in the group */
4120 avg_load = 0;
4121
4122 for_each_cpu(i, sched_group_cpus(group)) {
4123 /* Bias balancing toward cpus of our domain */
4124 if (local_group)
4125 load = source_load(i, load_idx);
4126 else
4127 load = target_load(i, load_idx);
4128
4129 avg_load += load;
4130 }
4131
4132 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004133 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004134
4135 if (local_group) {
4136 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004137 } else if (avg_load < min_load) {
4138 min_load = avg_load;
4139 idlest = group;
4140 }
4141 } while (group = group->next, group != sd->groups);
4142
4143 if (!idlest || 100*this_load < imbalance*min_load)
4144 return NULL;
4145 return idlest;
4146}
4147
4148/*
4149 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4150 */
4151static int
4152find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4153{
4154 unsigned long load, min_load = ULONG_MAX;
4155 int idlest = -1;
4156 int i;
4157
4158 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004159 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004160 load = weighted_cpuload(i);
4161
4162 if (load < min_load || (load == min_load && i == this_cpu)) {
4163 min_load = load;
4164 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004165 }
4166 }
4167
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004168 return idlest;
4169}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004170
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004171/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004172 * Try and locate an idle CPU in the sched_domain.
4173 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004174static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004175{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004176 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004177 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004178 int i = task_cpu(p);
4179
4180 if (idle_cpu(target))
4181 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004182
4183 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004184 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004185 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004186 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4187 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004188
4189 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004190 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004191 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004192 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004193 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004194 sg = sd->groups;
4195 do {
4196 if (!cpumask_intersects(sched_group_cpus(sg),
4197 tsk_cpus_allowed(p)))
4198 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004199
Linus Torvalds37407ea2012-09-16 12:29:43 -07004200 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004201 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004202 goto next;
4203 }
4204
4205 target = cpumask_first_and(sched_group_cpus(sg),
4206 tsk_cpus_allowed(p));
4207 goto done;
4208next:
4209 sg = sg->next;
4210 } while (sg != sd->groups);
4211 }
4212done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004213 return target;
4214}
4215
4216/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004217 * sched_balance_self: balance the current task (running on cpu) in domains
4218 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4219 * SD_BALANCE_EXEC.
4220 *
4221 * Balance, ie. select the least loaded group.
4222 *
4223 * Returns the target CPU number, or the same CPU if no balancing is needed.
4224 *
4225 * preempt must be disabled.
4226 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004227static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004228select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004229{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004230 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004231 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004232 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004233 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004234 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004235
Peter Zijlstra29baa742012-04-23 12:11:21 +02004236 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004237 return prev_cpu;
4238
Peter Zijlstra0763a662009-09-14 19:37:39 +02004239 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004240 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004241 want_affine = 1;
4242 new_cpu = prev_cpu;
4243 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004244
Peter Zijlstradce840a2011-04-07 14:09:50 +02004245 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004246 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004247 if (!(tmp->flags & SD_LOAD_BALANCE))
4248 continue;
4249
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004250 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004251 * If both cpu and prev_cpu are part of this domain,
4252 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004253 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004254 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4255 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4256 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004257 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004258 }
4259
Alex Shif03542a2012-07-26 08:55:34 +08004260 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004261 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004262 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004263
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004264 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004265 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004266 prev_cpu = cpu;
4267
4268 new_cpu = select_idle_sibling(p, prev_cpu);
4269 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004270 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004271
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004272 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004273 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004274 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004275 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004276
Peter Zijlstra0763a662009-09-14 19:37:39 +02004277 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004278 sd = sd->child;
4279 continue;
4280 }
4281
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004282 if (sd_flag & SD_BALANCE_WAKE)
4283 load_idx = sd->wake_idx;
4284
4285 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004286 if (!group) {
4287 sd = sd->child;
4288 continue;
4289 }
4290
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004291 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004292 if (new_cpu == -1 || new_cpu == cpu) {
4293 /* Now try balancing at a lower domain level of cpu */
4294 sd = sd->child;
4295 continue;
4296 }
4297
4298 /* Now try balancing at a lower domain level of new_cpu */
4299 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004300 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004301 sd = NULL;
4302 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004303 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004304 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004305 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004306 sd = tmp;
4307 }
4308 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004309 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004310unlock:
4311 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004312
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004313 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004314}
Paul Turner0a74bef2012-10-04 13:18:30 +02004315
4316/*
4317 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4318 * cfs_rq_of(p) references at time of call are still valid and identify the
4319 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4320 * other assumptions, including the state of rq->lock, should be made.
4321 */
4322static void
4323migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4324{
Paul Turneraff3e492012-10-04 13:18:30 +02004325 struct sched_entity *se = &p->se;
4326 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4327
4328 /*
4329 * Load tracking: accumulate removed load so that it can be processed
4330 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4331 * to blocked load iff they have a positive decay-count. It can never
4332 * be negative here since on-rq tasks have decay-count == 0.
4333 */
4334 if (se->avg.decay_count) {
4335 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004336 atomic_long_add(se->avg.load_avg_contrib,
4337 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004338 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004339}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004340#endif /* CONFIG_SMP */
4341
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004342static unsigned long
4343wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004344{
4345 unsigned long gran = sysctl_sched_wakeup_granularity;
4346
4347 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004348 * Since its curr running now, convert the gran from real-time
4349 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004350 *
4351 * By using 'se' instead of 'curr' we penalize light tasks, so
4352 * they get preempted easier. That is, if 'se' < 'curr' then
4353 * the resulting gran will be larger, therefore penalizing the
4354 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4355 * be smaller, again penalizing the lighter task.
4356 *
4357 * This is especially important for buddies when the leftmost
4358 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004359 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004360 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004361}
4362
4363/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004364 * Should 'se' preempt 'curr'.
4365 *
4366 * |s1
4367 * |s2
4368 * |s3
4369 * g
4370 * |<--->|c
4371 *
4372 * w(c, s1) = -1
4373 * w(c, s2) = 0
4374 * w(c, s3) = 1
4375 *
4376 */
4377static int
4378wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4379{
4380 s64 gran, vdiff = curr->vruntime - se->vruntime;
4381
4382 if (vdiff <= 0)
4383 return -1;
4384
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004385 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004386 if (vdiff > gran)
4387 return 1;
4388
4389 return 0;
4390}
4391
Peter Zijlstra02479092008-11-04 21:25:10 +01004392static void set_last_buddy(struct sched_entity *se)
4393{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004394 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4395 return;
4396
4397 for_each_sched_entity(se)
4398 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004399}
4400
4401static void set_next_buddy(struct sched_entity *se)
4402{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004403 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4404 return;
4405
4406 for_each_sched_entity(se)
4407 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004408}
4409
Rik van Rielac53db52011-02-01 09:51:03 -05004410static void set_skip_buddy(struct sched_entity *se)
4411{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004412 for_each_sched_entity(se)
4413 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004414}
4415
Peter Zijlstra464b7522008-10-24 11:06:15 +02004416/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004417 * Preempt the current task with a newly woken task if needed:
4418 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004419static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004420{
4421 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004422 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004423 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004424 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004425 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004426
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004427 if (unlikely(se == pse))
4428 return;
4429
Paul Turner5238cdd2011-07-21 09:43:37 -07004430 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004431 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004432 * unconditionally check_prempt_curr() after an enqueue (which may have
4433 * lead to a throttle). This both saves work and prevents false
4434 * next-buddy nomination below.
4435 */
4436 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4437 return;
4438
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004439 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004440 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004441 next_buddy_marked = 1;
4442 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004443
Bharata B Raoaec0a512008-08-28 14:42:49 +05304444 /*
4445 * We can come here with TIF_NEED_RESCHED already set from new task
4446 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004447 *
4448 * Note: this also catches the edge-case of curr being in a throttled
4449 * group (e.g. via set_curr_task), since update_curr() (in the
4450 * enqueue of curr) will have resulted in resched being set. This
4451 * prevents us from potentially nominating it as a false LAST_BUDDY
4452 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304453 */
4454 if (test_tsk_need_resched(curr))
4455 return;
4456
Darren Harta2f5c9a2011-02-22 13:04:33 -08004457 /* Idle tasks are by definition preempted by non-idle tasks. */
4458 if (unlikely(curr->policy == SCHED_IDLE) &&
4459 likely(p->policy != SCHED_IDLE))
4460 goto preempt;
4461
Ingo Molnar91c234b2007-10-15 17:00:18 +02004462 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004463 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4464 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004465 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004466 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004467 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004468
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004469 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004470 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004471 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004472 if (wakeup_preempt_entity(se, pse) == 1) {
4473 /*
4474 * Bias pick_next to pick the sched entity that is
4475 * triggering this preemption.
4476 */
4477 if (!next_buddy_marked)
4478 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004479 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004480 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004481
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004482 return;
4483
4484preempt:
4485 resched_task(curr);
4486 /*
4487 * Only set the backward buddy when the current task is still
4488 * on the rq. This can happen when a wakeup gets interleaved
4489 * with schedule on the ->pre_schedule() or idle_balance()
4490 * point, either of which can * drop the rq lock.
4491 *
4492 * Also, during early boot the idle thread is in the fair class,
4493 * for obvious reasons its a bad idea to schedule back to it.
4494 */
4495 if (unlikely(!se->on_rq || curr == rq->idle))
4496 return;
4497
4498 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4499 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004500}
4501
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004502static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004503{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004504 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004505 struct cfs_rq *cfs_rq = &rq->cfs;
4506 struct sched_entity *se;
4507
Tim Blechmann36ace272009-11-24 11:55:45 +01004508 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004509 return NULL;
4510
4511 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004512 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004513 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004514 cfs_rq = group_cfs_rq(se);
4515 } while (cfs_rq);
4516
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004517 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004518 if (hrtick_enabled(rq))
4519 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004520
4521 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004522}
4523
4524/*
4525 * Account for a descheduled task:
4526 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004527static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004528{
4529 struct sched_entity *se = &prev->se;
4530 struct cfs_rq *cfs_rq;
4531
4532 for_each_sched_entity(se) {
4533 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004534 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004535 }
4536}
4537
Rik van Rielac53db52011-02-01 09:51:03 -05004538/*
4539 * sched_yield() is very simple
4540 *
4541 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4542 */
4543static void yield_task_fair(struct rq *rq)
4544{
4545 struct task_struct *curr = rq->curr;
4546 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4547 struct sched_entity *se = &curr->se;
4548
4549 /*
4550 * Are we the only task in the tree?
4551 */
4552 if (unlikely(rq->nr_running == 1))
4553 return;
4554
4555 clear_buddies(cfs_rq, se);
4556
4557 if (curr->policy != SCHED_BATCH) {
4558 update_rq_clock(rq);
4559 /*
4560 * Update run-time statistics of the 'current'.
4561 */
4562 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004563 /*
4564 * Tell update_rq_clock() that we've just updated,
4565 * so we don't do microscopic update in schedule()
4566 * and double the fastpath cost.
4567 */
4568 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004569 }
4570
4571 set_skip_buddy(se);
4572}
4573
Mike Galbraithd95f4122011-02-01 09:50:51 -05004574static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4575{
4576 struct sched_entity *se = &p->se;
4577
Paul Turner5238cdd2011-07-21 09:43:37 -07004578 /* throttled hierarchies are not runnable */
4579 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004580 return false;
4581
4582 /* Tell the scheduler that we'd really like pse to run next. */
4583 set_next_buddy(se);
4584
Mike Galbraithd95f4122011-02-01 09:50:51 -05004585 yield_task_fair(rq);
4586
4587 return true;
4588}
4589
Peter Williams681f3e62007-10-24 18:23:51 +02004590#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004591/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004592 * Fair scheduling class load-balancing methods.
4593 *
4594 * BASICS
4595 *
4596 * The purpose of load-balancing is to achieve the same basic fairness the
4597 * per-cpu scheduler provides, namely provide a proportional amount of compute
4598 * time to each task. This is expressed in the following equation:
4599 *
4600 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4601 *
4602 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4603 * W_i,0 is defined as:
4604 *
4605 * W_i,0 = \Sum_j w_i,j (2)
4606 *
4607 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4608 * is derived from the nice value as per prio_to_weight[].
4609 *
4610 * The weight average is an exponential decay average of the instantaneous
4611 * weight:
4612 *
4613 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4614 *
4615 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4616 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4617 * can also include other factors [XXX].
4618 *
4619 * To achieve this balance we define a measure of imbalance which follows
4620 * directly from (1):
4621 *
4622 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4623 *
4624 * We them move tasks around to minimize the imbalance. In the continuous
4625 * function space it is obvious this converges, in the discrete case we get
4626 * a few fun cases generally called infeasible weight scenarios.
4627 *
4628 * [XXX expand on:
4629 * - infeasible weights;
4630 * - local vs global optima in the discrete case. ]
4631 *
4632 *
4633 * SCHED DOMAINS
4634 *
4635 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4636 * for all i,j solution, we create a tree of cpus that follows the hardware
4637 * topology where each level pairs two lower groups (or better). This results
4638 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4639 * tree to only the first of the previous level and we decrease the frequency
4640 * of load-balance at each level inv. proportional to the number of cpus in
4641 * the groups.
4642 *
4643 * This yields:
4644 *
4645 * log_2 n 1 n
4646 * \Sum { --- * --- * 2^i } = O(n) (5)
4647 * i = 0 2^i 2^i
4648 * `- size of each group
4649 * | | `- number of cpus doing load-balance
4650 * | `- freq
4651 * `- sum over all levels
4652 *
4653 * Coupled with a limit on how many tasks we can migrate every balance pass,
4654 * this makes (5) the runtime complexity of the balancer.
4655 *
4656 * An important property here is that each CPU is still (indirectly) connected
4657 * to every other cpu in at most O(log n) steps:
4658 *
4659 * The adjacency matrix of the resulting graph is given by:
4660 *
4661 * log_2 n
4662 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4663 * k = 0
4664 *
4665 * And you'll find that:
4666 *
4667 * A^(log_2 n)_i,j != 0 for all i,j (7)
4668 *
4669 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4670 * The task movement gives a factor of O(m), giving a convergence complexity
4671 * of:
4672 *
4673 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4674 *
4675 *
4676 * WORK CONSERVING
4677 *
4678 * In order to avoid CPUs going idle while there's still work to do, new idle
4679 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4680 * tree itself instead of relying on other CPUs to bring it work.
4681 *
4682 * This adds some complexity to both (5) and (8) but it reduces the total idle
4683 * time.
4684 *
4685 * [XXX more?]
4686 *
4687 *
4688 * CGROUPS
4689 *
4690 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4691 *
4692 * s_k,i
4693 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4694 * S_k
4695 *
4696 * Where
4697 *
4698 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4699 *
4700 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4701 *
4702 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4703 * property.
4704 *
4705 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4706 * rewrite all of this once again.]
4707 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004708
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004709static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4710
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004711enum fbq_type { regular, remote, all };
4712
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004713#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004714#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004715#define LBF_DST_PINNED 0x04
4716#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004717
4718struct lb_env {
4719 struct sched_domain *sd;
4720
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004721 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304722 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004723
4724 int dst_cpu;
4725 struct rq *dst_rq;
4726
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304727 struct cpumask *dst_grpmask;
4728 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004729 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004730 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004731 /* The set of CPUs under consideration for load-balancing */
4732 struct cpumask *cpus;
4733
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004734 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004735
4736 unsigned int loop;
4737 unsigned int loop_break;
4738 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004739
4740 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004741};
4742
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004743/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004744 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004745 * Both runqueues must be locked.
4746 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004747static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004748{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004749 deactivate_task(env->src_rq, p, 0);
4750 set_task_cpu(p, env->dst_cpu);
4751 activate_task(env->dst_rq, p, 0);
4752 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004753}
4754
4755/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004756 * Is this task likely cache-hot:
4757 */
4758static int
4759task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4760{
4761 s64 delta;
4762
4763 if (p->sched_class != &fair_sched_class)
4764 return 0;
4765
4766 if (unlikely(p->policy == SCHED_IDLE))
4767 return 0;
4768
4769 /*
4770 * Buddy candidates are cache hot:
4771 */
4772 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4773 (&p->se == cfs_rq_of(&p->se)->next ||
4774 &p->se == cfs_rq_of(&p->se)->last))
4775 return 1;
4776
4777 if (sysctl_sched_migration_cost == -1)
4778 return 1;
4779 if (sysctl_sched_migration_cost == 0)
4780 return 0;
4781
4782 delta = now - p->se.exec_start;
4783
4784 return delta < (s64)sysctl_sched_migration_cost;
4785}
4786
Mel Gorman3a7053b2013-10-07 11:29:00 +01004787#ifdef CONFIG_NUMA_BALANCING
4788/* Returns true if the destination node has incurred more faults */
4789static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4790{
4791 int src_nid, dst_nid;
4792
4793 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4794 !(env->sd->flags & SD_NUMA)) {
4795 return false;
4796 }
4797
4798 src_nid = cpu_to_node(env->src_cpu);
4799 dst_nid = cpu_to_node(env->dst_cpu);
4800
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004801 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004802 return false;
4803
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004804 /* Always encourage migration to the preferred node. */
4805 if (dst_nid == p->numa_preferred_nid)
4806 return true;
4807
Rik van Riel887c2902013-10-07 11:29:31 +01004808 /* If both task and group weight improve, this move is a winner. */
4809 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4810 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004811 return true;
4812
4813 return false;
4814}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004815
4816
4817static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4818{
4819 int src_nid, dst_nid;
4820
4821 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4822 return false;
4823
4824 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4825 return false;
4826
4827 src_nid = cpu_to_node(env->src_cpu);
4828 dst_nid = cpu_to_node(env->dst_cpu);
4829
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004830 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004831 return false;
4832
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004833 /* Migrating away from the preferred node is always bad. */
4834 if (src_nid == p->numa_preferred_nid)
4835 return true;
4836
Rik van Riel887c2902013-10-07 11:29:31 +01004837 /* If either task or group weight get worse, don't do it. */
4838 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4839 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004840 return true;
4841
4842 return false;
4843}
4844
Mel Gorman3a7053b2013-10-07 11:29:00 +01004845#else
4846static inline bool migrate_improves_locality(struct task_struct *p,
4847 struct lb_env *env)
4848{
4849 return false;
4850}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004851
4852static inline bool migrate_degrades_locality(struct task_struct *p,
4853 struct lb_env *env)
4854{
4855 return false;
4856}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004857#endif
4858
Peter Zijlstra029632f2011-10-25 10:00:11 +02004859/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004860 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4861 */
4862static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004863int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004864{
4865 int tsk_cache_hot = 0;
4866 /*
4867 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004868 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004869 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004870 * 3) running (obviously), or
4871 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004872 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004873 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4874 return 0;
4875
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004876 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004877 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304878
Lucas De Marchi41acab82010-03-10 23:37:45 -03004879 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304880
Peter Zijlstra62633222013-08-19 12:41:09 +02004881 env->flags |= LBF_SOME_PINNED;
4882
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304883 /*
4884 * Remember if this task can be migrated to any other cpu in
4885 * our sched_group. We may want to revisit it if we couldn't
4886 * meet load balance goals by pulling other tasks on src_cpu.
4887 *
4888 * Also avoid computing new_dst_cpu if we have already computed
4889 * one in current iteration.
4890 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004891 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304892 return 0;
4893
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004894 /* Prevent to re-select dst_cpu via env's cpus */
4895 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4896 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004897 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004898 env->new_dst_cpu = cpu;
4899 break;
4900 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304901 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004902
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004903 return 0;
4904 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304905
4906 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004907 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004908
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004909 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004911 return 0;
4912 }
4913
4914 /*
4915 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004916 * 1) destination numa is preferred
4917 * 2) task is cache cold, or
4918 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004919 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004920 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004921 if (!tsk_cache_hot)
4922 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004923
4924 if (migrate_improves_locality(p, env)) {
4925#ifdef CONFIG_SCHEDSTATS
4926 if (tsk_cache_hot) {
4927 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4928 schedstat_inc(p, se.statistics.nr_forced_migrations);
4929 }
4930#endif
4931 return 1;
4932 }
4933
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004934 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004935 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004936
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004937 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004938 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004939 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004940 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004941
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004942 return 1;
4943 }
4944
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004945 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4946 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004947}
4948
Peter Zijlstra897c3952009-12-17 17:45:42 +01004949/*
4950 * move_one_task tries to move exactly one task from busiest to this_rq, as
4951 * part of active balancing operations within "domain".
4952 * Returns 1 if successful and 0 otherwise.
4953 *
4954 * Called with both runqueues locked.
4955 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004956static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004957{
4958 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004959
Peter Zijlstra367456c2012-02-20 21:49:09 +01004960 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004961 if (!can_migrate_task(p, env))
4962 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004963
Peter Zijlstra367456c2012-02-20 21:49:09 +01004964 move_task(p, env);
4965 /*
4966 * Right now, this is only the second place move_task()
4967 * is called, so we can safely collect move_task()
4968 * stats here rather than inside move_task().
4969 */
4970 schedstat_inc(env->sd, lb_gained[env->idle]);
4971 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004972 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004973 return 0;
4974}
4975
Peter Zijlstraeb953082012-04-17 13:38:40 +02004976static const unsigned int sched_nr_migrate_break = 32;
4977
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004978/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004979 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004980 * this_rq, as part of a balancing operation within domain "sd".
4981 * Returns 1 if successful and 0 otherwise.
4982 *
4983 * Called with both runqueues locked.
4984 */
4985static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004986{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004987 struct list_head *tasks = &env->src_rq->cfs_tasks;
4988 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004989 unsigned long load;
4990 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004991
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004992 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004993 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004994
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004995 while (!list_empty(tasks)) {
4996 p = list_first_entry(tasks, struct task_struct, se.group_node);
4997
Peter Zijlstra367456c2012-02-20 21:49:09 +01004998 env->loop++;
4999 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005000 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005001 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005002
5003 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005004 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005005 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005006 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005007 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005008 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005009
Joonsoo Kimd3198082013-04-23 17:27:40 +09005010 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005011 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005012
Peter Zijlstra367456c2012-02-20 21:49:09 +01005013 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005014
Peter Zijlstraeb953082012-04-17 13:38:40 +02005015 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005016 goto next;
5017
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005018 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005019 goto next;
5020
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005021 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005022 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005023 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005024
5025#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005026 /*
5027 * NEWIDLE balancing is a source of latency, so preemptible
5028 * kernels will stop after the first task is pulled to minimize
5029 * the critical section.
5030 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005031 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005032 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005033#endif
5034
Peter Zijlstraee00e662009-12-17 17:25:20 +01005035 /*
5036 * We only want to steal up to the prescribed amount of
5037 * weighted load.
5038 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005039 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005040 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005041
Peter Zijlstra367456c2012-02-20 21:49:09 +01005042 continue;
5043next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005044 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005045 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005046
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005047 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005048 * Right now, this is one of only two places move_task() is called,
5049 * so we can safely collect move_task() stats here rather than
5050 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005051 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005052 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005053
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005054 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005055}
5056
Peter Zijlstra230059de2009-12-17 17:47:12 +01005057#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005058/*
5059 * update tg->load_weight by folding this cpu's load_avg
5060 */
Paul Turner48a16752012-10-04 13:18:31 +02005061static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005062{
Paul Turner48a16752012-10-04 13:18:31 +02005063 struct sched_entity *se = tg->se[cpu];
5064 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005065
Paul Turner48a16752012-10-04 13:18:31 +02005066 /* throttled entities do not contribute to load */
5067 if (throttled_hierarchy(cfs_rq))
5068 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005069
Paul Turneraff3e492012-10-04 13:18:30 +02005070 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005071
Paul Turner82958362012-10-04 13:18:31 +02005072 if (se) {
5073 update_entity_load_avg(se, 1);
5074 /*
5075 * We pivot on our runnable average having decayed to zero for
5076 * list removal. This generally implies that all our children
5077 * have also been removed (modulo rounding error or bandwidth
5078 * control); however, such cases are rare and we can fix these
5079 * at enqueue.
5080 *
5081 * TODO: fix up out-of-order children on enqueue.
5082 */
5083 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5084 list_del_leaf_cfs_rq(cfs_rq);
5085 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005086 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005087 update_rq_runnable_avg(rq, rq->nr_running);
5088 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005089}
5090
Paul Turner48a16752012-10-04 13:18:31 +02005091static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005092{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005093 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005094 struct cfs_rq *cfs_rq;
5095 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005096
Paul Turner48a16752012-10-04 13:18:31 +02005097 raw_spin_lock_irqsave(&rq->lock, flags);
5098 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005099 /*
5100 * Iterates the task_group tree in a bottom up fashion, see
5101 * list_add_leaf_cfs_rq() for details.
5102 */
Paul Turner64660c82011-07-21 09:43:36 -07005103 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005104 /*
5105 * Note: We may want to consider periodically releasing
5106 * rq->lock about these updates so that creating many task
5107 * groups does not result in continually extending hold time.
5108 */
5109 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005110 }
Paul Turner48a16752012-10-04 13:18:31 +02005111
5112 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005113}
5114
Peter Zijlstra9763b672011-07-13 13:09:25 +02005115/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005116 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005117 * This needs to be done in a top-down fashion because the load of a child
5118 * group is a fraction of its parents load.
5119 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005120static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005121{
Vladimir Davydov68520792013-07-15 17:49:19 +04005122 struct rq *rq = rq_of(cfs_rq);
5123 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005124 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005125 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005126
Vladimir Davydov68520792013-07-15 17:49:19 +04005127 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005128 return;
5129
Vladimir Davydov68520792013-07-15 17:49:19 +04005130 cfs_rq->h_load_next = NULL;
5131 for_each_sched_entity(se) {
5132 cfs_rq = cfs_rq_of(se);
5133 cfs_rq->h_load_next = se;
5134 if (cfs_rq->last_h_load_update == now)
5135 break;
5136 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005137
Vladimir Davydov68520792013-07-15 17:49:19 +04005138 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005139 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005140 cfs_rq->last_h_load_update = now;
5141 }
5142
5143 while ((se = cfs_rq->h_load_next) != NULL) {
5144 load = cfs_rq->h_load;
5145 load = div64_ul(load * se->avg.load_avg_contrib,
5146 cfs_rq->runnable_load_avg + 1);
5147 cfs_rq = group_cfs_rq(se);
5148 cfs_rq->h_load = load;
5149 cfs_rq->last_h_load_update = now;
5150 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005151}
5152
Peter Zijlstra367456c2012-02-20 21:49:09 +01005153static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005154{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005155 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005156
Vladimir Davydov68520792013-07-15 17:49:19 +04005157 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005158 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5159 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005160}
5161#else
Paul Turner48a16752012-10-04 13:18:31 +02005162static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005163{
5164}
5165
Peter Zijlstra367456c2012-02-20 21:49:09 +01005166static unsigned long task_h_load(struct task_struct *p)
5167{
Alex Shia003a252013-06-20 10:18:51 +08005168 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005169}
5170#endif
5171
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005172/********** Helpers for find_busiest_group ************************/
5173/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005174 * sg_lb_stats - stats of a sched_group required for load_balancing
5175 */
5176struct sg_lb_stats {
5177 unsigned long avg_load; /*Avg load across the CPUs of the group */
5178 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005179 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005180 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005181 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005182 unsigned int sum_nr_running; /* Nr tasks running in the group */
5183 unsigned int group_capacity;
5184 unsigned int idle_cpus;
5185 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005186 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005187 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005188#ifdef CONFIG_NUMA_BALANCING
5189 unsigned int nr_numa_running;
5190 unsigned int nr_preferred_running;
5191#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005192};
5193
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005194/*
5195 * sd_lb_stats - Structure to store the statistics of a sched_domain
5196 * during load balancing.
5197 */
5198struct sd_lb_stats {
5199 struct sched_group *busiest; /* Busiest group in this sd */
5200 struct sched_group *local; /* Local group in this sd */
5201 unsigned long total_load; /* Total load of all groups in sd */
5202 unsigned long total_pwr; /* Total power of all groups in sd */
5203 unsigned long avg_load; /* Average load across all groups in sd */
5204
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005205 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005206 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005207};
5208
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005209static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5210{
5211 /*
5212 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5213 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5214 * We must however clear busiest_stat::avg_load because
5215 * update_sd_pick_busiest() reads this before assignment.
5216 */
5217 *sds = (struct sd_lb_stats){
5218 .busiest = NULL,
5219 .local = NULL,
5220 .total_load = 0UL,
5221 .total_pwr = 0UL,
5222 .busiest_stat = {
5223 .avg_load = 0UL,
5224 },
5225 };
5226}
5227
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005228/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005229 * get_sd_load_idx - Obtain the load index for a given sched domain.
5230 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305231 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005232 *
5233 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005234 */
5235static inline int get_sd_load_idx(struct sched_domain *sd,
5236 enum cpu_idle_type idle)
5237{
5238 int load_idx;
5239
5240 switch (idle) {
5241 case CPU_NOT_IDLE:
5242 load_idx = sd->busy_idx;
5243 break;
5244
5245 case CPU_NEWLY_IDLE:
5246 load_idx = sd->newidle_idx;
5247 break;
5248 default:
5249 load_idx = sd->idle_idx;
5250 break;
5251 }
5252
5253 return load_idx;
5254}
5255
Li Zefan15f803c2013-03-05 16:07:11 +08005256static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005257{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005258 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259}
5260
5261unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5262{
5263 return default_scale_freq_power(sd, cpu);
5264}
5265
Li Zefan15f803c2013-03-05 16:07:11 +08005266static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005267{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005268 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005269 unsigned long smt_gain = sd->smt_gain;
5270
5271 smt_gain /= weight;
5272
5273 return smt_gain;
5274}
5275
5276unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5277{
5278 return default_scale_smt_power(sd, cpu);
5279}
5280
Li Zefan15f803c2013-03-05 16:07:11 +08005281static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005282{
5283 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005284 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005285
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005286 /*
5287 * Since we're reading these variables without serialization make sure
5288 * we read them once before doing sanity checks on them.
5289 */
5290 age_stamp = ACCESS_ONCE(rq->age_stamp);
5291 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005292
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005293 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005294
5295 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005296 /* Ensures that power won't end up being negative */
5297 available = 0;
5298 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005299 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005300 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005301
Nikhil Rao1399fa72011-05-18 10:09:39 -07005302 if (unlikely((s64)total < SCHED_POWER_SCALE))
5303 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005304
Nikhil Rao1399fa72011-05-18 10:09:39 -07005305 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005306
5307 return div_u64(available, total);
5308}
5309
5310static void update_cpu_power(struct sched_domain *sd, int cpu)
5311{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005312 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005313 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005314 struct sched_group *sdg = sd->groups;
5315
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005316 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5317 if (sched_feat(ARCH_POWER))
5318 power *= arch_scale_smt_power(sd, cpu);
5319 else
5320 power *= default_scale_smt_power(sd, cpu);
5321
Nikhil Rao1399fa72011-05-18 10:09:39 -07005322 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005323 }
5324
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005325 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005326
5327 if (sched_feat(ARCH_POWER))
5328 power *= arch_scale_freq_power(sd, cpu);
5329 else
5330 power *= default_scale_freq_power(sd, cpu);
5331
Nikhil Rao1399fa72011-05-18 10:09:39 -07005332 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005333
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005334 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005335 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005336
5337 if (!power)
5338 power = 1;
5339
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005340 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005341 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005342}
5343
Peter Zijlstra029632f2011-10-25 10:00:11 +02005344void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005345{
5346 struct sched_domain *child = sd->child;
5347 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005348 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005349 unsigned long interval;
5350
5351 interval = msecs_to_jiffies(sd->balance_interval);
5352 interval = clamp(interval, 1UL, max_load_balance_interval);
5353 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005354
5355 if (!child) {
5356 update_cpu_power(sd, cpu);
5357 return;
5358 }
5359
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005360 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005361
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005362 if (child->flags & SD_OVERLAP) {
5363 /*
5364 * SD_OVERLAP domains cannot assume that child groups
5365 * span the current group.
5366 */
5367
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005368 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5369 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5370
5371 power_orig += sg->sgp->power_orig;
5372 power += sg->sgp->power;
5373 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005374 } else {
5375 /*
5376 * !SD_OVERLAP domains can assume that child groups
5377 * span the current group.
5378 */
5379
5380 group = child->groups;
5381 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005382 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005383 power += group->sgp->power;
5384 group = group->next;
5385 } while (group != child->groups);
5386 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005387
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005388 sdg->sgp->power_orig = power_orig;
5389 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005390}
5391
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005392/*
5393 * Try and fix up capacity for tiny siblings, this is needed when
5394 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5395 * which on its own isn't powerful enough.
5396 *
5397 * See update_sd_pick_busiest() and check_asym_packing().
5398 */
5399static inline int
5400fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5401{
5402 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005403 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005404 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005405 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005406 return 0;
5407
5408 /*
5409 * If ~90% of the cpu_power is still there, we're good.
5410 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005411 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005412 return 1;
5413
5414 return 0;
5415}
5416
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005417/*
5418 * Group imbalance indicates (and tries to solve) the problem where balancing
5419 * groups is inadequate due to tsk_cpus_allowed() constraints.
5420 *
5421 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5422 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5423 * Something like:
5424 *
5425 * { 0 1 2 3 } { 4 5 6 7 }
5426 * * * * *
5427 *
5428 * If we were to balance group-wise we'd place two tasks in the first group and
5429 * two tasks in the second group. Clearly this is undesired as it will overload
5430 * cpu 3 and leave one of the cpus in the second group unused.
5431 *
5432 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005433 * by noticing the lower domain failed to reach balance and had difficulty
5434 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005435 *
5436 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305437 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005438 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005439 * to create an effective group imbalance.
5440 *
5441 * This is a somewhat tricky proposition since the next run might not find the
5442 * group imbalance and decide the groups need to be balanced again. A most
5443 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005444 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005445
Peter Zijlstra62633222013-08-19 12:41:09 +02005446static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005447{
Peter Zijlstra62633222013-08-19 12:41:09 +02005448 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005449}
5450
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005451/*
5452 * Compute the group capacity.
5453 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005454 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5455 * first dividing out the smt factor and computing the actual number of cores
5456 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005457 */
5458static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5459{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005460 unsigned int capacity, smt, cpus;
5461 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005462
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005463 power = group->sgp->power;
5464 power_orig = group->sgp->power_orig;
5465 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005466
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005467 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5468 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5469 capacity = cpus / smt; /* cores */
5470
5471 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005472 if (!capacity)
5473 capacity = fix_small_capacity(env->sd, group);
5474
5475 return capacity;
5476}
5477
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005478/**
5479 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5480 * @env: The load balancing environment.
5481 * @group: sched_group whose statistics are to be updated.
5482 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5483 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005484 * @sgs: variable to hold the statistics for this group.
5485 */
5486static inline void update_sg_lb_stats(struct lb_env *env,
5487 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005488 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005489{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005490 unsigned long nr_running;
5491 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005492 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005493
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005494 memset(sgs, 0, sizeof(*sgs));
5495
Michael Wangb94031302012-07-12 16:10:13 +08005496 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005497 struct rq *rq = cpu_rq(i);
5498
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005499 nr_running = rq->nr_running;
5500
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005501 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005502 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005503 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005504 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005505 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005506
5507 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005508 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005509#ifdef CONFIG_NUMA_BALANCING
5510 sgs->nr_numa_running += rq->nr_numa_running;
5511 sgs->nr_preferred_running += rq->nr_preferred_running;
5512#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005513 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005514 if (idle_cpu(i))
5515 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005516 }
5517
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005518 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005519 sgs->group_power = group->sgp->power;
5520 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005521
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005522 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005523 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005524
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005525 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005526
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005527 sgs->group_imb = sg_imbalanced(group);
5528 sgs->group_capacity = sg_capacity(env, group);
5529
Nikhil Raofab47622010-10-15 13:12:29 -07005530 if (sgs->group_capacity > sgs->sum_nr_running)
5531 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005532}
5533
5534/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005535 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005536 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005537 * @sds: sched_domain statistics
5538 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005539 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005540 *
5541 * Determine if @sg is a busier group than the previously selected
5542 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005543 *
5544 * Return: %true if @sg is a busier group than the previously selected
5545 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005546 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005547static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005548 struct sd_lb_stats *sds,
5549 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005550 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005551{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005552 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005553 return false;
5554
5555 if (sgs->sum_nr_running > sgs->group_capacity)
5556 return true;
5557
5558 if (sgs->group_imb)
5559 return true;
5560
5561 /*
5562 * ASYM_PACKING needs to move all the work to the lowest
5563 * numbered CPUs in the group, therefore mark all groups
5564 * higher than ourself as busy.
5565 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005566 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5567 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005568 if (!sds->busiest)
5569 return true;
5570
5571 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5572 return true;
5573 }
5574
5575 return false;
5576}
5577
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005578#ifdef CONFIG_NUMA_BALANCING
5579static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5580{
5581 if (sgs->sum_nr_running > sgs->nr_numa_running)
5582 return regular;
5583 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5584 return remote;
5585 return all;
5586}
5587
5588static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5589{
5590 if (rq->nr_running > rq->nr_numa_running)
5591 return regular;
5592 if (rq->nr_running > rq->nr_preferred_running)
5593 return remote;
5594 return all;
5595}
5596#else
5597static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5598{
5599 return all;
5600}
5601
5602static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5603{
5604 return regular;
5605}
5606#endif /* CONFIG_NUMA_BALANCING */
5607
Michael Neuling532cb4c2010-06-08 14:57:02 +10005608/**
Hui Kang461819a2011-10-11 23:00:59 -04005609 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005610 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005611 * @sds: variable to hold the statistics for this sched_domain.
5612 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005613static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005614{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005615 struct sched_domain *child = env->sd->child;
5616 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005617 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005618 int load_idx, prefer_sibling = 0;
5619
5620 if (child && child->flags & SD_PREFER_SIBLING)
5621 prefer_sibling = 1;
5622
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005623 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005624
5625 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005626 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005627 int local_group;
5628
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005629 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005630 if (local_group) {
5631 sds->local = sg;
5632 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005633
5634 if (env->idle != CPU_NEWLY_IDLE ||
5635 time_after_eq(jiffies, sg->sgp->next_update))
5636 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005637 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005638
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005639 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005640
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005641 if (local_group)
5642 goto next_group;
5643
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005644 /*
5645 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005646 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005647 * and move all the excess tasks away. We lower the capacity
5648 * of a group only if the local group has the capacity to fit
5649 * these excess tasks, i.e. nr_running < group_capacity. The
5650 * extra check prevents the case where you always pull from the
5651 * heaviest group when it is already under-utilized (possible
5652 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005653 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005654 if (prefer_sibling && sds->local &&
5655 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005656 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005657
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005658 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005659 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005660 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005661 }
5662
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005663next_group:
5664 /* Now, start updating sd_lb_stats */
5665 sds->total_load += sgs->group_load;
5666 sds->total_pwr += sgs->group_power;
5667
Michael Neuling532cb4c2010-06-08 14:57:02 +10005668 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005669 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005670
5671 if (env->sd->flags & SD_NUMA)
5672 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005673}
5674
Michael Neuling532cb4c2010-06-08 14:57:02 +10005675/**
5676 * check_asym_packing - Check to see if the group is packed into the
5677 * sched doman.
5678 *
5679 * This is primarily intended to used at the sibling level. Some
5680 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5681 * case of POWER7, it can move to lower SMT modes only when higher
5682 * threads are idle. When in lower SMT modes, the threads will
5683 * perform better since they share less core resources. Hence when we
5684 * have idle threads, we want them to be the higher ones.
5685 *
5686 * This packing function is run on idle threads. It checks to see if
5687 * the busiest CPU in this domain (core in the P7 case) has a higher
5688 * CPU number than the packing function is being run on. Here we are
5689 * assuming lower CPU number will be equivalent to lower a SMT thread
5690 * number.
5691 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005692 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005693 * this CPU. The amount of the imbalance is returned in *imbalance.
5694 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005695 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005696 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005697 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005698static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005699{
5700 int busiest_cpu;
5701
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005702 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005703 return 0;
5704
5705 if (!sds->busiest)
5706 return 0;
5707
5708 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005709 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005710 return 0;
5711
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005712 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005713 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5714 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005715
Michael Neuling532cb4c2010-06-08 14:57:02 +10005716 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005717}
5718
5719/**
5720 * fix_small_imbalance - Calculate the minor imbalance that exists
5721 * amongst the groups of a sched_domain, during
5722 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005723 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005724 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005725 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005726static inline
5727void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005728{
5729 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5730 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005731 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005732 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005733
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005734 local = &sds->local_stat;
5735 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005736
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005737 if (!local->sum_nr_running)
5738 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5739 else if (busiest->load_per_task > local->load_per_task)
5740 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005741
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005742 scaled_busy_load_per_task =
5743 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005744 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005745
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005746 if (busiest->avg_load + scaled_busy_load_per_task >=
5747 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005748 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749 return;
5750 }
5751
5752 /*
5753 * OK, we don't have enough imbalance to justify moving tasks,
5754 * however we may be able to increase total CPU power used by
5755 * moving them.
5756 */
5757
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005758 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005759 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005760 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005761 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005762 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005763
5764 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005765 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005766 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005767 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005768 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005769 min(busiest->load_per_task,
5770 busiest->avg_load - tmp);
5771 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005772
5773 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005774 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005775 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005776 tmp = (busiest->avg_load * busiest->group_power) /
5777 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005778 } else {
5779 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005780 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005781 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005782 pwr_move += local->group_power *
5783 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005784 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005785
5786 /* Move if we gain throughput */
5787 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005788 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005789}
5790
5791/**
5792 * calculate_imbalance - Calculate the amount of imbalance present within the
5793 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005794 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005795 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005796 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005797static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005798{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005799 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005800 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005801
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005802 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005803 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005804
5805 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005806 /*
5807 * In the group_imb case we cannot rely on group-wide averages
5808 * to ensure cpu-load equilibrium, look at wider averages. XXX
5809 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005810 busiest->load_per_task =
5811 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005812 }
5813
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005814 /*
5815 * In the presence of smp nice balancing, certain scenarios can have
5816 * max load less than avg load(as we skip the groups at or below
5817 * its cpu_power, while calculating max_load..)
5818 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005819 if (busiest->avg_load <= sds->avg_load ||
5820 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005821 env->imbalance = 0;
5822 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005823 }
5824
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005825 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005826 /*
5827 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005828 * Except of course for the group_imb case, since then we might
5829 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005830 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005831 load_above_capacity =
5832 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005833
Nikhil Rao1399fa72011-05-18 10:09:39 -07005834 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005835 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005836 }
5837
5838 /*
5839 * We're trying to get all the cpus to the average_load, so we don't
5840 * want to push ourselves above the average load, nor do we wish to
5841 * reduce the max loaded cpu below the average load. At the same time,
5842 * we also don't want to reduce the group load below the group capacity
5843 * (so that we can implement power-savings policies etc). Thus we look
5844 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005845 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005846 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005847
5848 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005849 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005850 max_pull * busiest->group_power,
5851 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005852 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005853
5854 /*
5855 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005856 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857 * a think about bumping its value to force at least one task to be
5858 * moved
5859 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005860 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005861 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005862}
Nikhil Raofab47622010-10-15 13:12:29 -07005863
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005864/******* find_busiest_group() helpers end here *********************/
5865
5866/**
5867 * find_busiest_group - Returns the busiest group within the sched_domain
5868 * if there is an imbalance. If there isn't an imbalance, and
5869 * the user has opted for power-savings, it returns a group whose
5870 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5871 * such a group exists.
5872 *
5873 * Also calculates the amount of weighted load which should be moved
5874 * to restore balance.
5875 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005876 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005877 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005878 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005879 * - If no imbalance and user has opted for power-savings balance,
5880 * return the least loaded group whose CPUs can be
5881 * put to idle by rebalancing its tasks onto our group.
5882 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005883static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005884{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005885 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005886 struct sd_lb_stats sds;
5887
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005888 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005889
5890 /*
5891 * Compute the various statistics relavent for load balancing at
5892 * this level.
5893 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005894 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005895 local = &sds.local_stat;
5896 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005897
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005898 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5899 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005900 return sds.busiest;
5901
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005902 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005903 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 goto out_balanced;
5905
Nikhil Rao1399fa72011-05-18 10:09:39 -07005906 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005907
Peter Zijlstra866ab432011-02-21 18:56:47 +01005908 /*
5909 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005910 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005911 * isn't true due to cpus_allowed constraints and the like.
5912 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005913 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005914 goto force_balance;
5915
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005916 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005917 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5918 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005919 goto force_balance;
5920
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005921 /*
5922 * If the local group is more busy than the selected busiest group
5923 * don't try and pull any tasks.
5924 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005925 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005926 goto out_balanced;
5927
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005928 /*
5929 * Don't pull any tasks if this group is already above the domain
5930 * average load.
5931 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005932 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933 goto out_balanced;
5934
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005935 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005936 /*
5937 * This cpu is idle. If the busiest group load doesn't
5938 * have more tasks than the number of available cpu's and
5939 * there is no imbalance between this and busiest group
5940 * wrt to idle cpu's, it is balanced.
5941 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005942 if ((local->idle_cpus < busiest->idle_cpus) &&
5943 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005944 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005945 } else {
5946 /*
5947 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5948 * imbalance_pct to be conservative.
5949 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005950 if (100 * busiest->avg_load <=
5951 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005952 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005953 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005954
Nikhil Raofab47622010-10-15 13:12:29 -07005955force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005957 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005958 return sds.busiest;
5959
5960out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005961 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005962 return NULL;
5963}
5964
5965/*
5966 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5967 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005968static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005969 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005970{
5971 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005972 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005973 int i;
5974
Peter Zijlstra6906a402013-08-19 15:20:21 +02005975 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005976 unsigned long power, capacity, wl;
5977 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005978
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005979 rq = cpu_rq(i);
5980 rt = fbq_classify_rq(rq);
5981
5982 /*
5983 * We classify groups/runqueues into three groups:
5984 * - regular: there are !numa tasks
5985 * - remote: there are numa tasks that run on the 'wrong' node
5986 * - all: there is no distinction
5987 *
5988 * In order to avoid migrating ideally placed numa tasks,
5989 * ignore those when there's better options.
5990 *
5991 * If we ignore the actual busiest queue to migrate another
5992 * task, the next balance pass can still reduce the busiest
5993 * queue by moving tasks around inside the node.
5994 *
5995 * If we cannot move enough load due to this classification
5996 * the next pass will adjust the group classification and
5997 * allow migration of more tasks.
5998 *
5999 * Both cases only affect the total convergence complexity.
6000 */
6001 if (rt > env->fbq_type)
6002 continue;
6003
6004 power = power_of(i);
6005 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006006 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006007 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006008
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006009 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006010
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006011 /*
6012 * When comparing with imbalance, use weighted_cpuload()
6013 * which is not scaled with the cpu power.
6014 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006015 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006016 continue;
6017
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006018 /*
6019 * For the load comparisons with the other cpu's, consider
6020 * the weighted_cpuload() scaled with the cpu power, so that
6021 * the load can be moved away from the cpu that is potentially
6022 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006023 *
6024 * Thus we're looking for max(wl_i / power_i), crosswise
6025 * multiplication to rid ourselves of the division works out
6026 * to: wl_i * power_j > wl_j * power_i; where j is our
6027 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006028 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006029 if (wl * busiest_power > busiest_load * power) {
6030 busiest_load = wl;
6031 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006032 busiest = rq;
6033 }
6034 }
6035
6036 return busiest;
6037}
6038
6039/*
6040 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6041 * so long as it is large enough.
6042 */
6043#define MAX_PINNED_INTERVAL 512
6044
6045/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006046DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006047
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006048static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006049{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006050 struct sched_domain *sd = env->sd;
6051
6052 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006053
6054 /*
6055 * ASYM_PACKING needs to force migrate tasks from busy but
6056 * higher numbered CPUs in order to pack all tasks in the
6057 * lowest numbered CPUs.
6058 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006059 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006060 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006061 }
6062
6063 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6064}
6065
Tejun Heo969c7922010-05-06 18:49:21 +02006066static int active_load_balance_cpu_stop(void *data);
6067
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006068static int should_we_balance(struct lb_env *env)
6069{
6070 struct sched_group *sg = env->sd->groups;
6071 struct cpumask *sg_cpus, *sg_mask;
6072 int cpu, balance_cpu = -1;
6073
6074 /*
6075 * In the newly idle case, we will allow all the cpu's
6076 * to do the newly idle load balance.
6077 */
6078 if (env->idle == CPU_NEWLY_IDLE)
6079 return 1;
6080
6081 sg_cpus = sched_group_cpus(sg);
6082 sg_mask = sched_group_mask(sg);
6083 /* Try to find first idle cpu */
6084 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6085 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6086 continue;
6087
6088 balance_cpu = cpu;
6089 break;
6090 }
6091
6092 if (balance_cpu == -1)
6093 balance_cpu = group_balance_cpu(sg);
6094
6095 /*
6096 * First idle cpu or the first cpu(busiest) in this sched group
6097 * is eligible for doing load balancing at this and above domains.
6098 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006099 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006100}
6101
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006102/*
6103 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6104 * tasks if there is an imbalance.
6105 */
6106static int load_balance(int this_cpu, struct rq *this_rq,
6107 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006108 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006109{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306110 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006111 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006112 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006113 struct rq *busiest;
6114 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006115 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006116
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006117 struct lb_env env = {
6118 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006119 .dst_cpu = this_cpu,
6120 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306121 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006122 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006123 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006124 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006125 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006126 };
6127
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006128 /*
6129 * For NEWLY_IDLE load_balancing, we don't need to consider
6130 * other cpus in our group
6131 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006132 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006133 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006134
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006135 cpumask_copy(cpus, cpu_active_mask);
6136
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006137 schedstat_inc(sd, lb_count[idle]);
6138
6139redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006140 if (!should_we_balance(&env)) {
6141 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006142 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006143 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006144
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006145 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006146 if (!group) {
6147 schedstat_inc(sd, lb_nobusyg[idle]);
6148 goto out_balanced;
6149 }
6150
Michael Wangb94031302012-07-12 16:10:13 +08006151 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006152 if (!busiest) {
6153 schedstat_inc(sd, lb_nobusyq[idle]);
6154 goto out_balanced;
6155 }
6156
Michael Wang78feefc2012-08-06 16:41:59 +08006157 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006158
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006159 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006160
6161 ld_moved = 0;
6162 if (busiest->nr_running > 1) {
6163 /*
6164 * Attempt to move tasks. If find_busiest_group has found
6165 * an imbalance but busiest->nr_running <= 1, the group is
6166 * still unbalanced. ld_moved simply stays zero, so it is
6167 * correctly treated as an imbalance.
6168 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006169 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006170 env.src_cpu = busiest->cpu;
6171 env.src_rq = busiest;
6172 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006173
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006174more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006175 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006176 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306177
6178 /*
6179 * cur_ld_moved - load moved in current iteration
6180 * ld_moved - cumulative load moved across iterations
6181 */
6182 cur_ld_moved = move_tasks(&env);
6183 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006184 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006185 local_irq_restore(flags);
6186
6187 /*
6188 * some other cpu did the load balance for us.
6189 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306190 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6191 resched_cpu(env.dst_cpu);
6192
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006193 if (env.flags & LBF_NEED_BREAK) {
6194 env.flags &= ~LBF_NEED_BREAK;
6195 goto more_balance;
6196 }
6197
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306198 /*
6199 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6200 * us and move them to an alternate dst_cpu in our sched_group
6201 * where they can run. The upper limit on how many times we
6202 * iterate on same src_cpu is dependent on number of cpus in our
6203 * sched_group.
6204 *
6205 * This changes load balance semantics a bit on who can move
6206 * load to a given_cpu. In addition to the given_cpu itself
6207 * (or a ilb_cpu acting on its behalf where given_cpu is
6208 * nohz-idle), we now have balance_cpu in a position to move
6209 * load to given_cpu. In rare situations, this may cause
6210 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6211 * _independently_ and at _same_ time to move some load to
6212 * given_cpu) causing exceess load to be moved to given_cpu.
6213 * This however should not happen so much in practice and
6214 * moreover subsequent load balance cycles should correct the
6215 * excess load moved.
6216 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006217 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306218
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006219 /* Prevent to re-select dst_cpu via env's cpus */
6220 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6221
Michael Wang78feefc2012-08-06 16:41:59 +08006222 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306223 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006224 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306225 env.loop = 0;
6226 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006227
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306228 /*
6229 * Go back to "more_balance" rather than "redo" since we
6230 * need to continue with same src_cpu.
6231 */
6232 goto more_balance;
6233 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006234
Peter Zijlstra62633222013-08-19 12:41:09 +02006235 /*
6236 * We failed to reach balance because of affinity.
6237 */
6238 if (sd_parent) {
6239 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6240
6241 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6242 *group_imbalance = 1;
6243 } else if (*group_imbalance)
6244 *group_imbalance = 0;
6245 }
6246
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006247 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006248 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006249 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306250 if (!cpumask_empty(cpus)) {
6251 env.loop = 0;
6252 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006253 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306254 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006255 goto out_balanced;
6256 }
6257 }
6258
6259 if (!ld_moved) {
6260 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006261 /*
6262 * Increment the failure counter only on periodic balance.
6263 * We do not want newidle balance, which can be very
6264 * frequent, pollute the failure counter causing
6265 * excessive cache_hot migrations and active balances.
6266 */
6267 if (idle != CPU_NEWLY_IDLE)
6268 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006269
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006270 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006271 raw_spin_lock_irqsave(&busiest->lock, flags);
6272
Tejun Heo969c7922010-05-06 18:49:21 +02006273 /* don't kick the active_load_balance_cpu_stop,
6274 * if the curr task on busiest cpu can't be
6275 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006276 */
6277 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006278 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006279 raw_spin_unlock_irqrestore(&busiest->lock,
6280 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006281 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006282 goto out_one_pinned;
6283 }
6284
Tejun Heo969c7922010-05-06 18:49:21 +02006285 /*
6286 * ->active_balance synchronizes accesses to
6287 * ->active_balance_work. Once set, it's cleared
6288 * only after active load balance is finished.
6289 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006290 if (!busiest->active_balance) {
6291 busiest->active_balance = 1;
6292 busiest->push_cpu = this_cpu;
6293 active_balance = 1;
6294 }
6295 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006296
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006297 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006298 stop_one_cpu_nowait(cpu_of(busiest),
6299 active_load_balance_cpu_stop, busiest,
6300 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006301 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006302
6303 /*
6304 * We've kicked active balancing, reset the failure
6305 * counter.
6306 */
6307 sd->nr_balance_failed = sd->cache_nice_tries+1;
6308 }
6309 } else
6310 sd->nr_balance_failed = 0;
6311
6312 if (likely(!active_balance)) {
6313 /* We were unbalanced, so reset the balancing interval */
6314 sd->balance_interval = sd->min_interval;
6315 } else {
6316 /*
6317 * If we've begun active balancing, start to back off. This
6318 * case may not be covered by the all_pinned logic if there
6319 * is only 1 task on the busy runqueue (because we don't call
6320 * move_tasks).
6321 */
6322 if (sd->balance_interval < sd->max_interval)
6323 sd->balance_interval *= 2;
6324 }
6325
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006326 goto out;
6327
6328out_balanced:
6329 schedstat_inc(sd, lb_balanced[idle]);
6330
6331 sd->nr_balance_failed = 0;
6332
6333out_one_pinned:
6334 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006335 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006336 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006337 (sd->balance_interval < sd->max_interval))
6338 sd->balance_interval *= 2;
6339
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006340 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006341out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006342 return ld_moved;
6343}
6344
6345/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006346 * idle_balance is called by schedule() if this_cpu is about to become
6347 * idle. Attempts to pull tasks from other CPUs.
6348 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006349void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006350{
6351 struct sched_domain *sd;
6352 int pulled_task = 0;
6353 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006354 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006355
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006356 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006357
6358 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6359 return;
6360
Peter Zijlstraf492e122009-12-23 15:29:42 +01006361 /*
6362 * Drop the rq->lock, but keep IRQ/preempt disabled.
6363 */
6364 raw_spin_unlock(&this_rq->lock);
6365
Paul Turner48a16752012-10-04 13:18:31 +02006366 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006367 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006368 for_each_domain(this_cpu, sd) {
6369 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006370 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006371 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006372
6373 if (!(sd->flags & SD_LOAD_BALANCE))
6374 continue;
6375
Jason Low9bd721c2013-09-13 11:26:52 -07006376 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6377 break;
6378
Peter Zijlstraf492e122009-12-23 15:29:42 +01006379 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006380 t0 = sched_clock_cpu(this_cpu);
6381
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006382 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006383 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006384 sd, CPU_NEWLY_IDLE,
6385 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006386
6387 domain_cost = sched_clock_cpu(this_cpu) - t0;
6388 if (domain_cost > sd->max_newidle_lb_cost)
6389 sd->max_newidle_lb_cost = domain_cost;
6390
6391 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006392 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006393
6394 interval = msecs_to_jiffies(sd->balance_interval);
6395 if (time_after(next_balance, sd->last_balance + interval))
6396 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006397 if (pulled_task) {
6398 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006399 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006400 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006402 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006403
6404 raw_spin_lock(&this_rq->lock);
6405
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006406 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6407 /*
6408 * We are going idle. next_balance may be set based on
6409 * a busy processor. So reset next_balance.
6410 */
6411 this_rq->next_balance = next_balance;
6412 }
Jason Low9bd721c2013-09-13 11:26:52 -07006413
6414 if (curr_cost > this_rq->max_idle_balance_cost)
6415 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006416}
6417
6418/*
Tejun Heo969c7922010-05-06 18:49:21 +02006419 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6420 * running tasks off the busiest CPU onto idle CPUs. It requires at
6421 * least 1 task to be running on each physical CPU where possible, and
6422 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423 */
Tejun Heo969c7922010-05-06 18:49:21 +02006424static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006425{
Tejun Heo969c7922010-05-06 18:49:21 +02006426 struct rq *busiest_rq = data;
6427 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006428 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006429 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006430 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006431
6432 raw_spin_lock_irq(&busiest_rq->lock);
6433
6434 /* make sure the requested cpu hasn't gone down in the meantime */
6435 if (unlikely(busiest_cpu != smp_processor_id() ||
6436 !busiest_rq->active_balance))
6437 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006438
6439 /* Is there any task to move? */
6440 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006441 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006442
6443 /*
6444 * This condition is "impossible", if it occurs
6445 * we need to fix it. Originally reported by
6446 * Bjorn Helgaas on a 128-cpu setup.
6447 */
6448 BUG_ON(busiest_rq == target_rq);
6449
6450 /* move a task from busiest_rq to target_rq */
6451 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006452
6453 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006454 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006455 for_each_domain(target_cpu, sd) {
6456 if ((sd->flags & SD_LOAD_BALANCE) &&
6457 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6458 break;
6459 }
6460
6461 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006462 struct lb_env env = {
6463 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006464 .dst_cpu = target_cpu,
6465 .dst_rq = target_rq,
6466 .src_cpu = busiest_rq->cpu,
6467 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006468 .idle = CPU_IDLE,
6469 };
6470
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006471 schedstat_inc(sd, alb_count);
6472
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006473 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006474 schedstat_inc(sd, alb_pushed);
6475 else
6476 schedstat_inc(sd, alb_failed);
6477 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006478 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006479 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006480out_unlock:
6481 busiest_rq->active_balance = 0;
6482 raw_spin_unlock_irq(&busiest_rq->lock);
6483 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484}
6485
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006486#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006487/*
6488 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006489 * - When one of the busy CPUs notice that there may be an idle rebalancing
6490 * needed, they will kick the idle load balancer, which then does idle
6491 * load balancing for all the idle CPUs.
6492 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006493static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006494 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006495 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006496 unsigned long next_balance; /* in jiffy units */
6497} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006498
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006499static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006500{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006501 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006502
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006503 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6504 return ilb;
6505
6506 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006507}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006508
6509/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006510 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6511 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6512 * CPU (if there is one).
6513 */
6514static void nohz_balancer_kick(int cpu)
6515{
6516 int ilb_cpu;
6517
6518 nohz.next_balance++;
6519
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006520 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006521
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006522 if (ilb_cpu >= nr_cpu_ids)
6523 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006524
Suresh Siddhacd490c52011-12-06 11:26:34 -08006525 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006526 return;
6527 /*
6528 * Use smp_send_reschedule() instead of resched_cpu().
6529 * This way we generate a sched IPI on the target cpu which
6530 * is idle. And the softirq performing nohz idle load balance
6531 * will be run before returning from the IPI.
6532 */
6533 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006534 return;
6535}
6536
Alex Shic1cc0172012-09-10 15:10:58 +08006537static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006538{
6539 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6540 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6541 atomic_dec(&nohz.nr_cpus);
6542 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6543 }
6544}
6545
Suresh Siddha69e1e812011-12-01 17:07:33 -08006546static inline void set_cpu_sd_state_busy(void)
6547{
6548 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306549 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006550
Suresh Siddha69e1e812011-12-01 17:07:33 -08006551 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306552 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006553
6554 if (!sd || !sd->nohz_idle)
6555 goto unlock;
6556 sd->nohz_idle = 0;
6557
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306558 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006559unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006560 rcu_read_unlock();
6561}
6562
6563void set_cpu_sd_state_idle(void)
6564{
6565 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306566 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006567
Suresh Siddha69e1e812011-12-01 17:07:33 -08006568 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306569 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006570
6571 if (!sd || sd->nohz_idle)
6572 goto unlock;
6573 sd->nohz_idle = 1;
6574
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306575 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006576unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006577 rcu_read_unlock();
6578}
6579
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006580/*
Alex Shic1cc0172012-09-10 15:10:58 +08006581 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006582 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006583 */
Alex Shic1cc0172012-09-10 15:10:58 +08006584void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006585{
Suresh Siddha71325962012-01-19 18:28:57 -08006586 /*
6587 * If this cpu is going down, then nothing needs to be done.
6588 */
6589 if (!cpu_active(cpu))
6590 return;
6591
Alex Shic1cc0172012-09-10 15:10:58 +08006592 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6593 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006594
Alex Shic1cc0172012-09-10 15:10:58 +08006595 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6596 atomic_inc(&nohz.nr_cpus);
6597 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006598}
Suresh Siddha71325962012-01-19 18:28:57 -08006599
Paul Gortmaker0db06282013-06-19 14:53:51 -04006600static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006601 unsigned long action, void *hcpu)
6602{
6603 switch (action & ~CPU_TASKS_FROZEN) {
6604 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006605 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006606 return NOTIFY_OK;
6607 default:
6608 return NOTIFY_DONE;
6609 }
6610}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006611#endif
6612
6613static DEFINE_SPINLOCK(balancing);
6614
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006615/*
6616 * Scale the max load_balance interval with the number of CPUs in the system.
6617 * This trades load-balance latency on larger machines for less cross talk.
6618 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006619void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006620{
6621 max_load_balance_interval = HZ*num_online_cpus()/10;
6622}
6623
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006624/*
6625 * It checks each scheduling domain to see if it is due to be balanced,
6626 * and initiates a balancing operation if so.
6627 *
Libinb9b08532013-04-01 19:14:01 +08006628 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006629 */
6630static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6631{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006632 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006633 struct rq *rq = cpu_rq(cpu);
6634 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006635 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636 /* Earliest time when we have to do rebalance again */
6637 unsigned long next_balance = jiffies + 60*HZ;
6638 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006639 int need_serialize, need_decay = 0;
6640 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006641
Paul Turner48a16752012-10-04 13:18:31 +02006642 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006643
Peter Zijlstradce840a2011-04-07 14:09:50 +02006644 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006645 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006646 /*
6647 * Decay the newidle max times here because this is a regular
6648 * visit to all the domains. Decay ~1% per second.
6649 */
6650 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6651 sd->max_newidle_lb_cost =
6652 (sd->max_newidle_lb_cost * 253) / 256;
6653 sd->next_decay_max_lb_cost = jiffies + HZ;
6654 need_decay = 1;
6655 }
6656 max_cost += sd->max_newidle_lb_cost;
6657
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006658 if (!(sd->flags & SD_LOAD_BALANCE))
6659 continue;
6660
Jason Lowf48627e2013-09-13 11:26:53 -07006661 /*
6662 * Stop the load balance at this level. There is another
6663 * CPU in our sched group which is doing load balancing more
6664 * actively.
6665 */
6666 if (!continue_balancing) {
6667 if (need_decay)
6668 continue;
6669 break;
6670 }
6671
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006672 interval = sd->balance_interval;
6673 if (idle != CPU_IDLE)
6674 interval *= sd->busy_factor;
6675
6676 /* scale ms to jiffies */
6677 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006678 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006679
6680 need_serialize = sd->flags & SD_SERIALIZE;
6681
6682 if (need_serialize) {
6683 if (!spin_trylock(&balancing))
6684 goto out;
6685 }
6686
6687 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006688 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006689 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006690 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006691 * env->dst_cpu, so we can't know our idle
6692 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006693 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006694 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006695 }
6696 sd->last_balance = jiffies;
6697 }
6698 if (need_serialize)
6699 spin_unlock(&balancing);
6700out:
6701 if (time_after(next_balance, sd->last_balance + interval)) {
6702 next_balance = sd->last_balance + interval;
6703 update_next_balance = 1;
6704 }
Jason Lowf48627e2013-09-13 11:26:53 -07006705 }
6706 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006707 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006708 * Ensure the rq-wide value also decays but keep it at a
6709 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006710 */
Jason Lowf48627e2013-09-13 11:26:53 -07006711 rq->max_idle_balance_cost =
6712 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006713 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006714 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006715
6716 /*
6717 * next_balance will be updated only when there is a need.
6718 * When the cpu is attached to null domain for ex, it will not be
6719 * updated.
6720 */
6721 if (likely(update_next_balance))
6722 rq->next_balance = next_balance;
6723}
6724
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006725#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006726/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006727 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6729 */
6730static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6731{
6732 struct rq *this_rq = cpu_rq(this_cpu);
6733 struct rq *rq;
6734 int balance_cpu;
6735
Suresh Siddha1c792db2011-12-01 17:07:32 -08006736 if (idle != CPU_IDLE ||
6737 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6738 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006739
6740 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006741 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006742 continue;
6743
6744 /*
6745 * If this cpu gets work to do, stop the load balancing
6746 * work being done for other cpus. Next load
6747 * balancing owner will pick it up.
6748 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006749 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006750 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006751
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006752 rq = cpu_rq(balance_cpu);
6753
6754 raw_spin_lock_irq(&rq->lock);
6755 update_rq_clock(rq);
6756 update_idle_cpu_load(rq);
6757 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006758
6759 rebalance_domains(balance_cpu, CPU_IDLE);
6760
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006761 if (time_after(this_rq->next_balance, rq->next_balance))
6762 this_rq->next_balance = rq->next_balance;
6763 }
6764 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006765end:
6766 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006767}
6768
6769/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006770 * Current heuristic for kicking the idle load balancer in the presence
6771 * of an idle cpu is the system.
6772 * - This rq has more than one task.
6773 * - At any scheduler domain level, this cpu's scheduler group has multiple
6774 * busy cpu's exceeding the group's power.
6775 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6776 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006777 */
6778static inline int nohz_kick_needed(struct rq *rq, int cpu)
6779{
6780 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006781 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306782 struct sched_group_power *sgp;
6783 int nr_busy;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006784
Suresh Siddha1c792db2011-12-01 17:07:32 -08006785 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006786 return 0;
6787
Suresh Siddha1c792db2011-12-01 17:07:32 -08006788 /*
6789 * We may be recently in ticked or tickless idle mode. At the first
6790 * busy tick after returning from idle, we will update the busy stats.
6791 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006792 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006793 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006794
6795 /*
6796 * None are in tickless mode and hence no need for NOHZ idle load
6797 * balancing.
6798 */
6799 if (likely(!atomic_read(&nohz.nr_cpus)))
6800 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006801
6802 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006803 return 0;
6804
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006805 if (rq->nr_running >= 2)
6806 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006807
Peter Zijlstra067491b2011-12-07 14:32:08 +01006808 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306809 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006810
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306811 if (sd) {
6812 sgp = sd->groups->sgp;
6813 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6814
6815 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006816 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006817 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306818
6819 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6820
6821 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6822 sched_domain_span(sd)) < cpu))
6823 goto need_kick_unlock;
6824
Peter Zijlstra067491b2011-12-07 14:32:08 +01006825 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006826 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006827
6828need_kick_unlock:
6829 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006830need_kick:
6831 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006832}
6833#else
6834static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6835#endif
6836
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006837/*
6838 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006839 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006840 */
6841static void run_rebalance_domains(struct softirq_action *h)
6842{
6843 int this_cpu = smp_processor_id();
6844 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006845 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006846 CPU_IDLE : CPU_NOT_IDLE;
6847
6848 rebalance_domains(this_cpu, idle);
6849
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006850 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006851 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006852 * balancing on behalf of the other idle cpus whose ticks are
6853 * stopped.
6854 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006855 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006856}
6857
6858static inline int on_null_domain(int cpu)
6859{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006860 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006861}
6862
6863/*
6864 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006865 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006866void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006867{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006868 /* Don't need to rebalance while attached to NULL domain */
6869 if (time_after_eq(jiffies, rq->next_balance) &&
6870 likely(!on_null_domain(cpu)))
6871 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006872#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006873 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006874 nohz_balancer_kick(cpu);
6875#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006876}
6877
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006878static void rq_online_fair(struct rq *rq)
6879{
6880 update_sysctl();
6881}
6882
6883static void rq_offline_fair(struct rq *rq)
6884{
6885 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006886
6887 /* Ensure any throttled groups are reachable by pick_next_task */
6888 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006889}
6890
Dhaval Giani55e12e52008-06-24 23:39:43 +05306891#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006892
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006893/*
6894 * scheduler tick hitting a task of our scheduling class:
6895 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006896static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006897{
6898 struct cfs_rq *cfs_rq;
6899 struct sched_entity *se = &curr->se;
6900
6901 for_each_sched_entity(se) {
6902 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006903 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006904 }
Ben Segall18bf2802012-10-04 12:51:20 +02006905
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006906 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006907 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006908
Ben Segall18bf2802012-10-04 12:51:20 +02006909 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006910}
6911
6912/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006913 * called on fork with the child task as argument from the parent's context
6914 * - child not yet on the tasklist
6915 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006916 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006917static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006918{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006919 struct cfs_rq *cfs_rq;
6920 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006921 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006922 struct rq *rq = this_rq();
6923 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006924
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006925 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006926
Peter Zijlstra861d0342010-08-19 13:31:43 +02006927 update_rq_clock(rq);
6928
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006929 cfs_rq = task_cfs_rq(current);
6930 curr = cfs_rq->curr;
6931
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006932 /*
6933 * Not only the cpu but also the task_group of the parent might have
6934 * been changed after parent->se.parent,cfs_rq were copied to
6935 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6936 * of child point to valid ones.
6937 */
6938 rcu_read_lock();
6939 __set_task_cpu(p, this_cpu);
6940 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006941
Ting Yang7109c442007-08-28 12:53:24 +02006942 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006943
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006944 if (curr)
6945 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006946 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006947
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006948 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006949 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006950 * Upon rescheduling, sched_class::put_prev_task() will place
6951 * 'current' within the tree based on its new key value.
6952 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006953 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306954 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006955 }
6956
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006957 se->vruntime -= cfs_rq->min_vruntime;
6958
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006959 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006960}
6961
Steven Rostedtcb469842008-01-25 21:08:22 +01006962/*
6963 * Priority of the task has changed. Check to see if we preempt
6964 * the current task.
6965 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006966static void
6967prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006968{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006969 if (!p->se.on_rq)
6970 return;
6971
Steven Rostedtcb469842008-01-25 21:08:22 +01006972 /*
6973 * Reschedule if we are currently running on this runqueue and
6974 * our priority decreased, or if we are not currently running on
6975 * this runqueue and our priority is higher than the current's
6976 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006977 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006978 if (p->prio > oldprio)
6979 resched_task(rq->curr);
6980 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006981 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006982}
6983
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006984static void switched_from_fair(struct rq *rq, struct task_struct *p)
6985{
6986 struct sched_entity *se = &p->se;
6987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6988
6989 /*
6990 * Ensure the task's vruntime is normalized, so that when its
6991 * switched back to the fair class the enqueue_entity(.flags=0) will
6992 * do the right thing.
6993 *
6994 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6995 * have normalized the vruntime, if it was !on_rq, then only when
6996 * the task is sleeping will it still have non-normalized vruntime.
6997 */
6998 if (!se->on_rq && p->state != TASK_RUNNING) {
6999 /*
7000 * Fix up our vruntime so that the current sleep doesn't
7001 * cause 'unlimited' sleep bonus.
7002 */
7003 place_entity(cfs_rq, se, 0);
7004 se->vruntime -= cfs_rq->min_vruntime;
7005 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007006
Alex Shi141965c2013-06-26 13:05:39 +08007007#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007008 /*
7009 * Remove our load from contribution when we leave sched_fair
7010 * and ensure we don't carry in an old decay_count if we
7011 * switch back.
7012 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007013 if (se->avg.decay_count) {
7014 __synchronize_entity_decay(se);
7015 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007016 }
7017#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007018}
7019
Steven Rostedtcb469842008-01-25 21:08:22 +01007020/*
7021 * We switched to the sched_fair class.
7022 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007023static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007024{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007025 if (!p->se.on_rq)
7026 return;
7027
Steven Rostedtcb469842008-01-25 21:08:22 +01007028 /*
7029 * We were most likely switched from sched_rt, so
7030 * kick off the schedule if running, otherwise just see
7031 * if we can still preempt the current task.
7032 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007033 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007034 resched_task(rq->curr);
7035 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007036 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007037}
7038
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007039/* Account for a task changing its policy or group.
7040 *
7041 * This routine is mostly called to set cfs_rq->curr field when a task
7042 * migrates between groups/classes.
7043 */
7044static void set_curr_task_fair(struct rq *rq)
7045{
7046 struct sched_entity *se = &rq->curr->se;
7047
Paul Turnerec12cb72011-07-21 09:43:30 -07007048 for_each_sched_entity(se) {
7049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7050
7051 set_next_entity(cfs_rq, se);
7052 /* ensure bandwidth has been allocated on our new cfs_rq */
7053 account_cfs_rq_runtime(cfs_rq, 0);
7054 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007055}
7056
Peter Zijlstra029632f2011-10-25 10:00:11 +02007057void init_cfs_rq(struct cfs_rq *cfs_rq)
7058{
7059 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007060 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7061#ifndef CONFIG_64BIT
7062 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7063#endif
Alex Shi141965c2013-06-26 13:05:39 +08007064#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007065 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007066 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007067#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007068}
7069
Peter Zijlstra810b3812008-02-29 15:21:01 -05007070#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007071static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007072{
Paul Turneraff3e492012-10-04 13:18:30 +02007073 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007074 /*
7075 * If the task was not on the rq at the time of this cgroup movement
7076 * it must have been asleep, sleeping tasks keep their ->vruntime
7077 * absolute on their old rq until wakeup (needed for the fair sleeper
7078 * bonus in place_entity()).
7079 *
7080 * If it was on the rq, we've just 'preempted' it, which does convert
7081 * ->vruntime to a relative base.
7082 *
7083 * Make sure both cases convert their relative position when migrating
7084 * to another cgroup's rq. This does somewhat interfere with the
7085 * fair sleeper stuff for the first placement, but who cares.
7086 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007087 /*
7088 * When !on_rq, vruntime of the task has usually NOT been normalized.
7089 * But there are some cases where it has already been normalized:
7090 *
7091 * - Moving a forked child which is waiting for being woken up by
7092 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007093 * - Moving a task which has been woken up by try_to_wake_up() and
7094 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007095 *
7096 * To prevent boost or penalty in the new cfs_rq caused by delta
7097 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7098 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007099 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007100 on_rq = 1;
7101
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007102 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007103 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7104 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007105 if (!on_rq) {
7106 cfs_rq = cfs_rq_of(&p->se);
7107 p->se.vruntime += cfs_rq->min_vruntime;
7108#ifdef CONFIG_SMP
7109 /*
7110 * migrate_task_rq_fair() will have removed our previous
7111 * contribution, but we must synchronize for ongoing future
7112 * decay.
7113 */
7114 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7115 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7116#endif
7117 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007118}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007119
7120void free_fair_sched_group(struct task_group *tg)
7121{
7122 int i;
7123
7124 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7125
7126 for_each_possible_cpu(i) {
7127 if (tg->cfs_rq)
7128 kfree(tg->cfs_rq[i]);
7129 if (tg->se)
7130 kfree(tg->se[i]);
7131 }
7132
7133 kfree(tg->cfs_rq);
7134 kfree(tg->se);
7135}
7136
7137int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7138{
7139 struct cfs_rq *cfs_rq;
7140 struct sched_entity *se;
7141 int i;
7142
7143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7144 if (!tg->cfs_rq)
7145 goto err;
7146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7147 if (!tg->se)
7148 goto err;
7149
7150 tg->shares = NICE_0_LOAD;
7151
7152 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7153
7154 for_each_possible_cpu(i) {
7155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7156 GFP_KERNEL, cpu_to_node(i));
7157 if (!cfs_rq)
7158 goto err;
7159
7160 se = kzalloc_node(sizeof(struct sched_entity),
7161 GFP_KERNEL, cpu_to_node(i));
7162 if (!se)
7163 goto err_free_rq;
7164
7165 init_cfs_rq(cfs_rq);
7166 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7167 }
7168
7169 return 1;
7170
7171err_free_rq:
7172 kfree(cfs_rq);
7173err:
7174 return 0;
7175}
7176
7177void unregister_fair_sched_group(struct task_group *tg, int cpu)
7178{
7179 struct rq *rq = cpu_rq(cpu);
7180 unsigned long flags;
7181
7182 /*
7183 * Only empty task groups can be destroyed; so we can speculatively
7184 * check on_list without danger of it being re-added.
7185 */
7186 if (!tg->cfs_rq[cpu]->on_list)
7187 return;
7188
7189 raw_spin_lock_irqsave(&rq->lock, flags);
7190 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7191 raw_spin_unlock_irqrestore(&rq->lock, flags);
7192}
7193
7194void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7195 struct sched_entity *se, int cpu,
7196 struct sched_entity *parent)
7197{
7198 struct rq *rq = cpu_rq(cpu);
7199
7200 cfs_rq->tg = tg;
7201 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007202 init_cfs_rq_runtime(cfs_rq);
7203
7204 tg->cfs_rq[cpu] = cfs_rq;
7205 tg->se[cpu] = se;
7206
7207 /* se could be NULL for root_task_group */
7208 if (!se)
7209 return;
7210
7211 if (!parent)
7212 se->cfs_rq = &rq->cfs;
7213 else
7214 se->cfs_rq = parent->my_q;
7215
7216 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007217 /* guarantee group entities always have weight */
7218 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007219 se->parent = parent;
7220}
7221
7222static DEFINE_MUTEX(shares_mutex);
7223
7224int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7225{
7226 int i;
7227 unsigned long flags;
7228
7229 /*
7230 * We can't change the weight of the root cgroup.
7231 */
7232 if (!tg->se[0])
7233 return -EINVAL;
7234
7235 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7236
7237 mutex_lock(&shares_mutex);
7238 if (tg->shares == shares)
7239 goto done;
7240
7241 tg->shares = shares;
7242 for_each_possible_cpu(i) {
7243 struct rq *rq = cpu_rq(i);
7244 struct sched_entity *se;
7245
7246 se = tg->se[i];
7247 /* Propagate contribution to hierarchy */
7248 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007249
7250 /* Possible calls to update_curr() need rq clock */
7251 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007252 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007253 update_cfs_shares(group_cfs_rq(se));
7254 raw_spin_unlock_irqrestore(&rq->lock, flags);
7255 }
7256
7257done:
7258 mutex_unlock(&shares_mutex);
7259 return 0;
7260}
7261#else /* CONFIG_FAIR_GROUP_SCHED */
7262
7263void free_fair_sched_group(struct task_group *tg) { }
7264
7265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7266{
7267 return 1;
7268}
7269
7270void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7271
7272#endif /* CONFIG_FAIR_GROUP_SCHED */
7273
Peter Zijlstra810b3812008-02-29 15:21:01 -05007274
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007275static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007276{
7277 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007278 unsigned int rr_interval = 0;
7279
7280 /*
7281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7282 * idle runqueue:
7283 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007284 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007285 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007286
7287 return rr_interval;
7288}
7289
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007290/*
7291 * All the scheduling class methods:
7292 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007293const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007294 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007295 .enqueue_task = enqueue_task_fair,
7296 .dequeue_task = dequeue_task_fair,
7297 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007298 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007299
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007300 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007301
7302 .pick_next_task = pick_next_task_fair,
7303 .put_prev_task = put_prev_task_fair,
7304
Peter Williams681f3e62007-10-24 18:23:51 +02007305#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007306 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007307 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007308
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007309 .rq_online = rq_online_fair,
7310 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007311
7312 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007313#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007314
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007315 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007316 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007317 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007318
7319 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007320 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007321 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007322
Peter Williams0d721ce2009-09-21 01:31:53 +00007323 .get_rr_interval = get_rr_interval_fair,
7324
Peter Zijlstra810b3812008-02-29 15:21:01 -05007325#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007326 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007327#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007328};
7329
7330#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007331void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007332{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007333 struct cfs_rq *cfs_rq;
7334
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007335 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007336 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007337 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007338 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007339}
7340#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007341
7342__init void init_sched_fair_class(void)
7343{
7344#ifdef CONFIG_SMP
7345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7346
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007347#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007348 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007349 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007350 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007351#endif
7352#endif /* SMP */
7353
7354}