blob: 0008cc4a1199cb2dac51bca23e7248339f1b412d [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Arjan van de Ven97455122008-01-25 21:08:34 +010025
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020026/*
Peter Zijlstra21805082007-08-25 18:41:53 +020027 * Targeted preemption latency for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020028 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020029 *
Peter Zijlstra21805082007-08-25 18:41:53 +020030 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020031 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020034 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020035 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037 */
Mike Galbraith21406922010-03-11 17:17:15 +010038unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020040
41/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010042 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010054 * Minimal preemption granularity for CPU-bound tasks:
Mike Galbraith21406922010-03-11 17:17:15 +010055 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010056 */
Mike Galbraith21406922010-03-11 17:17:15 +010057unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010059
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
Mike Galbraith21406922010-03-11 17:17:15 +010063static unsigned int sched_nr_latency = 3;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010064
65/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020066 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020067 * parent will (try to) run first.
68 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020069unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020070
71/*
Ingo Molnar1799e352007-09-19 23:34:46 +020072 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020080 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020081 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020082 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
Mike Galbraith172e0822009-09-09 15:41:37 +020087unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010088unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020089
Ingo Molnarda84d962007-10-15 17:00:18 +020090const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
Peter Zijlstraa4c2f002008-10-17 19:27:03 +020092static const struct sched_class fair_sched_class;
93
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020094/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return cfs_rq->rq;
104}
105
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
108
Peter Zijlstra8f488942009-07-24 12:25:30 +0200109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
Peter Zijlstrab7581492008-04-19 19:45:00 +0200117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
Peter Zijlstra464b7522008-10-24 11:06:15 +0200165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
Peter Zijlstra8f488942009-07-24 12:25:30 +0200208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
218}
219
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200220#define entity_is_task(se) 1
221
Peter Zijlstrab7581492008-04-19 19:45:00 +0200222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200224
Peter Zijlstrab7581492008-04-19 19:45:00 +0200225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200226{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200227 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200228}
229
Peter Zijlstrab7581492008-04-19 19:45:00 +0200230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
Peter Zijlstra464b7522008-10-24 11:06:15 +0200263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
Peter Zijlstrab7581492008-04-19 19:45:00 +0200268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200276{
Peter Zijlstra368059a2007-10-15 17:00:11 +0200277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
Fabio Checconi54fdc582009-07-16 12:32:27 +0200293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra90146232007-10-15 17:00:05 +0200300{
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200301 return se->vruntime - cfs_rq->min_vruntime;
Peter Zijlstra90146232007-10-15 17:00:05 +0200302}
303
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100316 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200325/*
326 * Enqueue an entity into the rb-tree:
327 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
Peter Zijlstra90146232007-10-15 17:00:05 +0200333 s64 key = entity_key(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
Peter Zijlstra90146232007-10-15 17:00:05 +0200346 if (key < entity_key(cfs_rq, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200358 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200359 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200363}
364
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200366{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100372 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200375}
376
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200385}
386
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200388{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200390
Balbir Singh70eee742008-02-22 13:25:53 +0530391 if (!last)
392 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100393
394 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200395}
396
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100401#ifdef CONFIG_SCHED_DEBUG
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100402int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700403 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100404 loff_t *ppos)
405{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100407 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100423 return 0;
424}
425#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200426
427/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200428 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200435
436 return delta;
437}
438
439/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100450 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200451
452 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100453 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200454 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200455 }
456
457 return period;
458}
459
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200464 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200465 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200467{
Mike Galbraith0a582442009-01-02 12:16:42 +0100468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200469
Mike Galbraith0a582442009-01-02 12:16:42 +0100470 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100471 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200472 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200476
Mike Galbraith0a582442009-01-02 12:16:42 +0100477 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200478 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200486}
487
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200488/*
Peter Zijlstraac884de2008-04-19 19:45:00 +0200489 * We calculate the vruntime slice of a to be inserted task
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200490 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200491 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200492 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200494{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200496}
497
498/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200506 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200507
Lucas De Marchi41acab82010-03-10 23:37:45 -0300508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510
511 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200512 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100514
Ingo Molnare9acbff2007-10-15 17:00:04 +0200515 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200516 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200517}
518
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200519static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200520{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200521 struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200522 u64 now = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200533 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100534 if (!delta_exec)
535 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
Ingo Molnarf977bb42009-09-13 18:15:54 +0200543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100544 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700545 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100546 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200547}
548
549static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200553}
554
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200555/*
556 * Task is being enqueued - update stats:
557 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200559{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200564 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200565 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200566}
567
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200568static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200570{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200580 }
581#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300582 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200583}
584
585static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200587{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200592 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200593 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200601{
602 /*
603 * We are starting a new run period:
604 */
Ingo Molnard2819182007-08-09 11:16:47 +0200605 se->exec_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200606}
607
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530631 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200632 add_cfs_task_weight(cfs_rq, se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530645 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200646 add_cfs_task_weight(cfs_rq, -se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530647 list_del_init(&se->group_node);
648 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
Ingo Molnar2396af62007-08-09 11:16:48 +0200653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200654{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +0200656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
Lucas De Marchi41acab82010-03-10 23:37:45 -0300661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200663
664 if ((s64)delta < 0)
665 delta = 0;
666
Lucas De Marchi41acab82010-03-10 23:37:45 -0300667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200669
Lucas De Marchi41acab82010-03-10 23:37:45 -0300670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +0100672
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200673 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +0200674 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200675 trace_sched_stat_sleep(tsk, delta);
676 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200677 }
Lucas De Marchi41acab82010-03-10 23:37:45 -0300678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200680
681 if ((s64)delta < 0)
682 delta = 0;
683
Lucas De Marchi41acab82010-03-10 23:37:45 -0300684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200686
Lucas De Marchi41acab82010-03-10 23:37:45 -0300687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +0200689
Peter Zijlstrae4143142009-07-23 20:13:26 +0200690 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700691 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200694 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700695 }
696
Peter Zijlstrae4143142009-07-23 20:13:26 +0200697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +0200708 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200709 }
710#endif
711}
712
Peter Zijlstraddc97292007-10-15 17:00:10 +0200713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200726static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200729 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200730
Peter Zijlstra2cb86002007-11-09 22:39:37 +0100731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200737 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200738 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200739
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200740 /* sleeps up to a single latency don't count. */
741 if (!initial && sched_feat(FAIR_SLEEPERS)) {
742 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200743
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200744 /*
745 * Convert the sleeper threshold into virtual time.
746 * SCHED_IDLE is a special sub-class. We care about
747 * fairness only relative to other SCHED_IDLE tasks,
748 * all of which have the same weight.
749 */
750 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
751 task_of(se)->policy != SCHED_IDLE))
752 thresh = calc_delta_fair(thresh, se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200753
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200754 /*
755 * Halve their sleep time's effect, to allow
756 * for a gentler effect of sleepers:
757 */
758 if (sched_feat(GENTLE_FAIR_SLEEPERS))
759 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +0200760
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200761 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200762 }
763
Mike Galbraithb5d9d732009-09-08 11:12:28 +0200764 /* ensure we never gain time by being placed backwards. */
765 vruntime = max_vruntime(se->vruntime, vruntime);
766
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200767 se->vruntime = vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200768}
769
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100770#define ENQUEUE_WAKEUP 1
771#define ENQUEUE_MIGRATE 2
772
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200773static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100774enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775{
776 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100777 * Update the normalized vruntime before updating min_vruntime
778 * through callig update_curr().
779 */
780 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
781 se->vruntime += cfs_rq->min_vruntime;
782
783 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200784 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200785 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200786 update_curr(cfs_rq);
Peter Zijlstraa9922412008-05-05 23:56:17 +0200787 account_entity_enqueue(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200788
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100789 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200790 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +0200791 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +0200792 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200793
Ingo Molnard2417e52007-08-09 11:16:47 +0200794 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +0200795 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200796 if (se != cfs_rq->curr)
797 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200798}
799
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100800static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100801{
Peter Zijlstrade69a802009-09-17 09:01:20 +0200802 if (!se || cfs_rq->last == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100803 cfs_rq->last = NULL;
804
Peter Zijlstrade69a802009-09-17 09:01:20 +0200805 if (!se || cfs_rq->next == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100806 cfs_rq->next = NULL;
807}
808
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100809static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810{
811 for_each_sched_entity(se)
812 __clear_buddies(cfs_rq_of(se), se);
813}
814
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815static void
Ingo Molnar525c2712007-08-09 11:16:48 +0200816dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200818 /*
819 * Update run-time statistics of the 'current'.
820 */
821 update_curr(cfs_rq);
822
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200823 update_stats_dequeue(cfs_rq, se);
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200824 if (sleep) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200825#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200826 if (entity_is_task(se)) {
827 struct task_struct *tsk = task_of(se);
828
829 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300830 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200831 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300832 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200833 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200834#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200835 }
836
Peter Zijlstra2002c692008-11-11 11:52:33 +0100837 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100838
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200839 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200840 __dequeue_entity(cfs_rq, se);
841 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200842 update_min_vruntime(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100843
844 /*
845 * Normalize the entity after updating the min_vruntime because the
846 * update can refer to the ->curr item and we need to reflect this
847 * movement in our normalized position.
848 */
849 if (!sleep)
850 se->vruntime -= cfs_rq->min_vruntime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200851}
852
853/*
854 * Preempt the current task with a newly woken task if needed:
855 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +0200856static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200857check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200858{
Peter Zijlstra11697832007-09-05 14:32:49 +0200859 unsigned long ideal_runtime, delta_exec;
860
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200861 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +0200862 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100863 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200864 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100865 /*
866 * The current task ran long enough, ensure it doesn't get
867 * re-elected due to buddy favours.
868 */
869 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200870 return;
871 }
872
873 /*
874 * Ensure that a task that missed wakeup preemption by a
875 * narrow margin doesn't have to wait for a full slice.
876 * This also mitigates buddy induced latencies under load.
877 */
878 if (!sched_feat(WAKEUP_PREEMPT))
879 return;
880
881 if (delta_exec < sysctl_sched_min_granularity)
882 return;
883
884 if (cfs_rq->nr_running > 1) {
885 struct sched_entity *se = __pick_next_entity(cfs_rq);
886 s64 delta = curr->vruntime - se->vruntime;
887
888 if (delta > ideal_runtime)
889 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100890 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200891}
892
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200893static void
Ingo Molnar8494f412007-08-09 11:16:48 +0200894set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200895{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200896 /* 'current' is not kept within the tree. */
897 if (se->on_rq) {
898 /*
899 * Any task has to be enqueued before it get to execute on
900 * a CPU. So account for the time it spent waiting on the
901 * runqueue.
902 */
903 update_stats_wait_end(cfs_rq, se);
904 __dequeue_entity(cfs_rq, se);
905 }
906
Ingo Molnar79303e92007-08-09 11:16:47 +0200907 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +0200908 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +0200909#ifdef CONFIG_SCHEDSTATS
910 /*
911 * Track our maximum slice length, if the CPU's load is at
912 * least twice that of our own weight (i.e. dont track it
913 * when there are only lesser-weight tasks around):
914 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +0200915 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300916 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +0200917 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 }
919#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +0200920 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200921}
922
Peter Zijlstra3f3a4902008-10-24 11:06:16 +0200923static int
924wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100926static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100927{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100928 struct sched_entity *se = __pick_next_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200929 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100930
Mike Galbraithf685cea2009-10-23 23:09:22 +0200931 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
932 se = cfs_rq->next;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100933
Mike Galbraithf685cea2009-10-23 23:09:22 +0200934 /*
935 * Prefer last buddy, try to return the CPU to a preempted task.
936 */
937 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
938 se = cfs_rq->last;
939
940 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100941
942 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100943}
944
Ingo Molnarab6cde22007-08-09 11:16:48 +0200945static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200946{
947 /*
948 * If still on the runqueue then deactivate_task()
949 * was not called and update_curr() has to be done:
950 */
951 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200952 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200953
Peter Zijlstraddc97292007-10-15 17:00:10 +0200954 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200955 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +0200956 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200957 /* Put 'current' back into the tree. */
958 __enqueue_entity(cfs_rq, prev);
959 }
Ingo Molnar429d43b2007-10-15 17:00:03 +0200960 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200961}
962
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100963static void
964entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200965{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200966 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200967 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200968 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200969 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200970
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100971#ifdef CONFIG_SCHED_HRTICK
972 /*
973 * queued ticks are scheduled to match the slice, so don't bother
974 * validating it and just reschedule.
975 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -0700976 if (queued) {
977 resched_task(rq_of(cfs_rq)->curr);
978 return;
979 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100980 /*
981 * don't let the period tick interfere with the hrtick preemption
982 */
983 if (!sched_feat(DOUBLE_TICK) &&
984 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
985 return;
986#endif
987
Peter Zijlstrace6c1312007-10-15 17:00:14 +0200988 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200989 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200990}
991
992/**************************************************
993 * CFS operations on tasks:
994 */
995
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100996#ifdef CONFIG_SCHED_HRTICK
997static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100999 struct sched_entity *se = &p->se;
1000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001
1002 WARN_ON(task_rq(p) != rq);
1003
1004 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1005 u64 slice = sched_slice(cfs_rq, se);
1006 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1007 s64 delta = slice - ran;
1008
1009 if (delta < 0) {
1010 if (rq->curr == p)
1011 resched_task(p);
1012 return;
1013 }
1014
1015 /*
1016 * Don't schedule slices shorter than 10000ns, that just
1017 * doesn't make sense. Rely on vruntime for fairness.
1018 */
Peter Zijlstra31656512008-07-18 18:01:23 +02001019 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02001020 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001021
Peter Zijlstra31656512008-07-18 18:01:23 +02001022 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001023 }
1024}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001025
1026/*
1027 * called from enqueue/dequeue and updates the hrtick when the
1028 * current task is from our class and nr_running is low enough
1029 * to matter.
1030 */
1031static void hrtick_update(struct rq *rq)
1032{
1033 struct task_struct *curr = rq->curr;
1034
1035 if (curr->sched_class != &fair_sched_class)
1036 return;
1037
1038 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1039 hrtick_start_fair(rq, curr);
1040}
Dhaval Giani55e12e52008-06-24 23:39:43 +05301041#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001042static inline void
1043hrtick_start_fair(struct rq *rq, struct task_struct *p)
1044{
1045}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001046
1047static inline void hrtick_update(struct rq *rq)
1048{
1049}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001050#endif
1051
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001052/*
1053 * The enqueue_task method is called before nr_running is
1054 * increased. Here we update the fair scheduling stats and
1055 * then put the task into the rbtree:
1056 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00001057static void
1058enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001059{
1060 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001061 struct sched_entity *se = &p->se;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001062 int flags = 0;
1063
1064 if (wakeup)
1065 flags |= ENQUEUE_WAKEUP;
1066 if (p->state == TASK_WAKING)
1067 flags |= ENQUEUE_MIGRATE;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001068
1069 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001070 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001071 break;
1072 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001073 enqueue_entity(cfs_rq, se, flags);
1074 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001075 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001076
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001077 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001078}
1079
1080/*
1081 * The dequeue_task method is called before nr_running is
1082 * decreased. We remove the task from the rbtree and
1083 * update the fair scheduling stats:
1084 */
Ingo Molnarf02231e2007-08-09 11:16:48 +02001085static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001086{
1087 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001088 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001089
1090 for_each_sched_entity(se) {
1091 cfs_rq = cfs_rq_of(se);
Ingo Molnar525c2712007-08-09 11:16:48 +02001092 dequeue_entity(cfs_rq, se, sleep);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001093 /* Don't dequeue parent if it has other entities besides us */
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001094 if (cfs_rq->load.weight)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001095 break;
Srivatsa Vaddagirib9fa3df2007-10-15 17:00:12 +02001096 sleep = 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001097 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001098
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001099 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001100}
1101
1102/*
Ingo Molnar1799e352007-09-19 23:34:46 +02001103 * sched_yield() support is very simple - we dequeue and enqueue.
1104 *
1105 * If compat_yield is turned on then we requeue to the end of the tree.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001106 */
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +02001107static void yield_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001108{
Ingo Molnardb292ca2007-12-04 17:04:39 +01001109 struct task_struct *curr = rq->curr;
1110 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1111 struct sched_entity *rightmost, *se = &curr->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001112
1113 /*
Ingo Molnar1799e352007-09-19 23:34:46 +02001114 * Are we the only task in the tree?
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001115 */
Ingo Molnar1799e352007-09-19 23:34:46 +02001116 if (unlikely(cfs_rq->nr_running == 1))
1117 return;
1118
Peter Zijlstra2002c692008-11-11 11:52:33 +01001119 clear_buddies(cfs_rq, se);
1120
Ingo Molnardb292ca2007-12-04 17:04:39 +01001121 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
Peter Zijlstra3e51f332008-05-03 18:29:28 +02001122 update_rq_clock(rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001123 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001124 * Update run-time statistics of the 'current'.
Ingo Molnar1799e352007-09-19 23:34:46 +02001125 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001126 update_curr(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001127
1128 return;
1129 }
1130 /*
1131 * Find the rightmost entry in the rbtree:
1132 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001133 rightmost = __pick_last_entity(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001134 /*
1135 * Already in the rightmost position?
1136 */
Fabio Checconi54fdc582009-07-16 12:32:27 +02001137 if (unlikely(!rightmost || entity_before(rightmost, se)))
Ingo Molnar1799e352007-09-19 23:34:46 +02001138 return;
1139
1140 /*
1141 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001142 * Upon rescheduling, sched_class::put_prev_task() will place
1143 * 'current' within the tree based on its new key value.
Ingo Molnar1799e352007-09-19 23:34:46 +02001144 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001145 se->vruntime = rightmost->vruntime + 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001146}
1147
Gregory Haskinse7693a32008-01-25 21:08:09 +01001148#ifdef CONFIG_SMP
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001149
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001150static void task_waking_fair(struct rq *rq, struct task_struct *p)
1151{
1152 struct sched_entity *se = &p->se;
1153 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1154
1155 se->vruntime -= cfs_rq->min_vruntime;
1156}
1157
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001158#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001159/*
1160 * effective_load() calculates the load change as seen from the root_task_group
1161 *
1162 * Adding load to a group doesn't make a group heavier, but can cause movement
1163 * of group shares between cpus. Assuming the shares were perfectly aligned one
1164 * can calculate the shift in shares.
1165 *
1166 * The problem is that perfectly aligning the shares is rather expensive, hence
1167 * we try to avoid doing that too often - see update_shares(), which ratelimits
1168 * this change.
1169 *
1170 * We compensate this by not only taking the current delta into account, but
1171 * also considering the delta between when the shares were last adjusted and
1172 * now.
1173 *
1174 * We still saw a performance dip, some tracing learned us that between
1175 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1176 * significantly. Therefore try to bias the error in direction of failing
1177 * the affine wakeup.
1178 *
1179 */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001180static long effective_load(struct task_group *tg, int cpu,
1181 long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001182{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001183 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001184
1185 if (!tg->parent)
1186 return wl;
1187
1188 /*
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001189 * By not taking the decrease of shares on the other cpu into
1190 * account our error leans towards reducing the affine wakeups.
1191 */
1192 if (!wl && sched_feat(ASYM_EFF_LOAD))
1193 return wl;
1194
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001195 for_each_sched_entity(se) {
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001196 long S, rw, s, a, b;
Peter Zijlstra940959e2008-09-23 15:33:42 +02001197 long more_w;
1198
1199 /*
1200 * Instead of using this increment, also add the difference
1201 * between when the shares were last updated and now.
1202 */
1203 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1204 wl += more_w;
1205 wg += more_w;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001206
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001207 S = se->my_q->tg->shares;
1208 s = se->my_q->shares;
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001209 rw = se->my_q->rq_weight;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001210
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001211 a = S*(rw + wl);
1212 b = S*rw + s*wg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001213
Peter Zijlstra940959e2008-09-23 15:33:42 +02001214 wl = s*(a-b);
1215
1216 if (likely(b))
1217 wl /= b;
1218
Peter Zijlstra83378262008-06-27 13:41:37 +02001219 /*
1220 * Assume the group is already running and will
1221 * thus already be accounted for in the weight.
1222 *
1223 * That is, moving shares between CPUs, does not
1224 * alter the group weight.
1225 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001226 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001227 }
1228
1229 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001230}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001231
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001232#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001233
Peter Zijlstra83378262008-06-27 13:41:37 +02001234static inline unsigned long effective_load(struct task_group *tg, int cpu,
1235 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001236{
Peter Zijlstra83378262008-06-27 13:41:37 +02001237 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001238}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001239
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001240#endif
1241
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001242static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001243{
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001244 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001246 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001247 unsigned int imbalance;
1248 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02001249 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001250 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001251
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001252 idx = sd->wake_idx;
1253 this_cpu = smp_processor_id();
1254 prev_cpu = task_cpu(p);
1255 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001257
1258 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001259 * If sync wakeup then subtract the (maximum possible)
1260 * effect of the currently running task from the load
1261 * of the current CPU:
1262 */
Peter Zijlstra83378262008-06-27 13:41:37 +02001263 if (sync) {
1264 tg = task_group(current);
1265 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001266
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001267 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02001268 load += effective_load(tg, prev_cpu, 0, -weight);
1269 }
1270
1271 tg = task_group(p);
1272 weight = p->se.load.weight;
1273
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001274 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1275
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001276 /*
1277 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001278 * due to the sync cause above having dropped this_load to 0, we'll
1279 * always have an imbalance, but there's really nothing you can do
1280 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001281 *
1282 * Otherwise check if either cpus are near enough in load to allow this
1283 * task to be woken on this_cpu.
1284 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001285 balanced = !this_load ||
1286 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
Peter Zijlstra83378262008-06-27 13:41:37 +02001287 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001288
1289 /*
1290 * If the currently running task will sleep within
1291 * a reasonable amount of time then attract this newly
1292 * woken task:
1293 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02001294 if (sync && balanced)
1295 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001296
Lucas De Marchi41acab82010-03-10 23:37:45 -03001297 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001298 tl_per_task = cpu_avg_load_per_task(this_cpu);
1299
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001300 if (balanced ||
1301 (this_load <= load &&
1302 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001303 /*
1304 * This domain has SD_WAKE_AFFINE and
1305 * p is cache cold in this domain, and
1306 * there is no bad imbalance.
1307 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001308 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001309 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001310
1311 return 1;
1312 }
1313 return 0;
1314}
1315
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001316/*
1317 * find_idlest_group finds and returns the least busy CPU group within the
1318 * domain.
1319 */
1320static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02001321find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001322 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01001323{
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001324 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1325 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001326 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001327
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001328 do {
1329 unsigned long load, avg_load;
1330 int local_group;
1331 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001332
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001333 /* Skip over this group if it has no CPUs allowed */
1334 if (!cpumask_intersects(sched_group_cpus(group),
1335 &p->cpus_allowed))
1336 continue;
1337
1338 local_group = cpumask_test_cpu(this_cpu,
1339 sched_group_cpus(group));
1340
1341 /* Tally up the load of all CPUs in the group */
1342 avg_load = 0;
1343
1344 for_each_cpu(i, sched_group_cpus(group)) {
1345 /* Bias balancing toward cpus of our domain */
1346 if (local_group)
1347 load = source_load(i, load_idx);
1348 else
1349 load = target_load(i, load_idx);
1350
1351 avg_load += load;
1352 }
1353
1354 /* Adjust by relative CPU power of the group */
1355 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1356
1357 if (local_group) {
1358 this_load = avg_load;
1359 this = group;
1360 } else if (avg_load < min_load) {
1361 min_load = avg_load;
1362 idlest = group;
1363 }
1364 } while (group = group->next, group != sd->groups);
1365
1366 if (!idlest || 100*this_load < imbalance*min_load)
1367 return NULL;
1368 return idlest;
1369}
1370
1371/*
1372 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1373 */
1374static int
1375find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1376{
1377 unsigned long load, min_load = ULONG_MAX;
1378 int idlest = -1;
1379 int i;
1380
1381 /* Traverse only the allowed CPUs */
1382 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1383 load = weighted_cpuload(i);
1384
1385 if (load < min_load || (load == min_load && i == this_cpu)) {
1386 min_load = load;
1387 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001388 }
1389 }
1390
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001391 return idlest;
1392}
Gregory Haskinse7693a32008-01-25 21:08:09 +01001393
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001394/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001395 * Try and locate an idle CPU in the sched_domain.
1396 */
1397static int
1398select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1399{
1400 int cpu = smp_processor_id();
1401 int prev_cpu = task_cpu(p);
1402 int i;
1403
1404 /*
1405 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1406 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1407 * always a better target than the current cpu.
1408 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001409 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1410 return prev_cpu;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001411
1412 /*
1413 * Otherwise, iterate the domain and find an elegible idle cpu.
1414 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001415 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1416 if (!cpu_rq(i)->cfs.nr_running) {
1417 target = i;
1418 break;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001419 }
1420 }
1421
1422 return target;
1423}
1424
1425/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001426 * sched_balance_self: balance the current task (running on cpu) in domains
1427 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1428 * SD_BALANCE_EXEC.
1429 *
1430 * Balance, ie. select the least loaded group.
1431 *
1432 * Returns the target CPU number, or the same CPU if no balancing is needed.
1433 *
1434 * preempt must be disabled.
1435 */
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001436static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001437{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001438 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001439 int cpu = smp_processor_id();
1440 int prev_cpu = task_cpu(p);
1441 int new_cpu = cpu;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001442 int want_affine = 0, cpu_idle = !current->pid;
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001443 int want_sd = 1;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001444 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001445
Peter Zijlstra0763a662009-09-14 19:37:39 +02001446 if (sd_flag & SD_BALANCE_WAKE) {
Mike Galbraith3f04e8c2009-09-19 16:52:35 +02001447 if (sched_feat(AFFINE_WAKEUPS) &&
1448 cpumask_test_cpu(cpu, &p->cpus_allowed))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001449 want_affine = 1;
1450 new_cpu = prev_cpu;
1451 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001452
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001453 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01001454 if (!(tmp->flags & SD_LOAD_BALANCE))
1455 continue;
1456
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001457 /*
Peter Zijlstraae154be2009-09-10 14:40:57 +02001458 * If power savings logic is enabled for a domain, see if we
1459 * are not overloaded, if so, don't balance wider.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001460 */
Peter Zijlstra59abf022009-09-16 08:28:30 +02001461 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
Peter Zijlstraae154be2009-09-10 14:40:57 +02001462 unsigned long power = 0;
1463 unsigned long nr_running = 0;
1464 unsigned long capacity;
1465 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001466
Peter Zijlstraae154be2009-09-10 14:40:57 +02001467 for_each_cpu(i, sched_domain_span(tmp)) {
1468 power += power_of(i);
1469 nr_running += cpu_rq(i)->cfs.nr_running;
1470 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001471
Peter Zijlstraae154be2009-09-10 14:40:57 +02001472 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001473
Peter Zijlstra59abf022009-09-16 08:28:30 +02001474 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1475 nr_running /= 2;
1476
1477 if (nr_running < capacity)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001478 want_sd = 0;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001479 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001480
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001481 /*
1482 * While iterating the domains looking for a spanning
1483 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1484 * in cache sharing domains along the way.
1485 */
1486 if (want_affine) {
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001487 int target = -1;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001488
1489 /*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001490 * If both cpu and prev_cpu are part of this domain,
1491 * cpu is a valid SD_WAKE_AFFINE target.
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001492 */
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001493 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1494 target = cpu;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001495
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001496 /*
1497 * If there's an idle sibling in this domain, make that
1498 * the wake_affine target instead of the current cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001499 */
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001500 if (!cpu_idle && tmp->flags & SD_SHARE_PKG_RESOURCES)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001501 target = select_idle_sibling(p, tmp, target);
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001502
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001503 if (target >= 0) {
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001504 if (tmp->flags & SD_WAKE_AFFINE) {
1505 affine_sd = tmp;
1506 want_affine = 0;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001507 if (target != cpu)
1508 cpu_idle = 1;
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001509 }
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001510 cpu = target;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001511 }
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001512 }
1513
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001514 if (!want_sd && !want_affine)
1515 break;
1516
Peter Zijlstra0763a662009-09-14 19:37:39 +02001517 if (!(tmp->flags & sd_flag))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001518 continue;
1519
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001520 if (want_sd)
1521 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001522 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001523
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001524#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001525 if (sched_feat(LB_SHARES_UPDATE)) {
1526 /*
1527 * Pick the largest domain to update shares over
1528 */
1529 tmp = sd;
1530 if (affine_sd && (!tmp ||
1531 cpumask_weight(sched_domain_span(affine_sd)) >
1532 cpumask_weight(sched_domain_span(sd))))
1533 tmp = affine_sd;
1534
1535 if (tmp)
1536 update_shares(tmp);
1537 }
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001538#endif
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001539
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001540 if (affine_sd) {
1541 if (cpu_idle || cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1542 return cpu;
1543 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02001544
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001545 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001546 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001547 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001548 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001549
Peter Zijlstra0763a662009-09-14 19:37:39 +02001550 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001551 sd = sd->child;
1552 continue;
1553 }
1554
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001555 if (sd_flag & SD_BALANCE_WAKE)
1556 load_idx = sd->wake_idx;
1557
1558 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001559 if (!group) {
1560 sd = sd->child;
1561 continue;
1562 }
1563
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02001564 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001565 if (new_cpu == -1 || new_cpu == cpu) {
1566 /* Now try balancing at a lower domain level of cpu */
1567 sd = sd->child;
1568 continue;
1569 }
1570
1571 /* Now try balancing at a lower domain level of new_cpu */
1572 cpu = new_cpu;
1573 weight = cpumask_weight(sched_domain_span(sd));
1574 sd = NULL;
1575 for_each_domain(cpu, tmp) {
1576 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1577 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02001578 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001579 sd = tmp;
1580 }
1581 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01001582 }
1583
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001584 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001585}
1586#endif /* CONFIG_SMP */
1587
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001588static unsigned long
1589wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001590{
1591 unsigned long gran = sysctl_sched_wakeup_granularity;
1592
1593 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001594 * Since its curr running now, convert the gran from real-time
1595 * to virtual-time in his units.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001596 */
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001597 if (sched_feat(ASYM_GRAN)) {
1598 /*
1599 * By using 'se' instead of 'curr' we penalize light tasks, so
1600 * they get preempted easier. That is, if 'se' < 'curr' then
1601 * the resulting gran will be larger, therefore penalizing the
1602 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1603 * be smaller, again penalizing the lighter task.
1604 *
1605 * This is especially important for buddies when the leftmost
1606 * task is higher priority than the buddy.
1607 */
1608 if (unlikely(se->load.weight != NICE_0_LOAD))
1609 gran = calc_delta_fair(gran, se);
1610 } else {
1611 if (unlikely(curr->load.weight != NICE_0_LOAD))
1612 gran = calc_delta_fair(gran, curr);
1613 }
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001614
1615 return gran;
1616}
1617
1618/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02001619 * Should 'se' preempt 'curr'.
1620 *
1621 * |s1
1622 * |s2
1623 * |s3
1624 * g
1625 * |<--->|c
1626 *
1627 * w(c, s1) = -1
1628 * w(c, s2) = 0
1629 * w(c, s3) = 1
1630 *
1631 */
1632static int
1633wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1634{
1635 s64 gran, vdiff = curr->vruntime - se->vruntime;
1636
1637 if (vdiff <= 0)
1638 return -1;
1639
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001640 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02001641 if (vdiff > gran)
1642 return 1;
1643
1644 return 0;
1645}
1646
Peter Zijlstra02479092008-11-04 21:25:10 +01001647static void set_last_buddy(struct sched_entity *se)
1648{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001649 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1650 for_each_sched_entity(se)
1651 cfs_rq_of(se)->last = se;
1652 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001653}
1654
1655static void set_next_buddy(struct sched_entity *se)
1656{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001657 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1658 for_each_sched_entity(se)
1659 cfs_rq_of(se)->next = se;
1660 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001661}
1662
Peter Zijlstra464b7522008-10-24 11:06:15 +02001663/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001664 * Preempt the current task with a newly woken task if needed:
1665 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001666static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001667{
1668 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02001669 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001670 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001671 int sync = wake_flags & WF_SYNC;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001672 int scale = cfs_rq->nr_running >= sched_nr_latency;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001673
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001674 if (unlikely(rt_prio(p->prio)))
1675 goto preempt;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001676
Peter Zijlstrad95f98d2008-11-04 21:25:08 +01001677 if (unlikely(p->sched_class != &fair_sched_class))
1678 return;
1679
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001680 if (unlikely(se == pse))
1681 return;
1682
Mike Galbraithf685cea2009-10-23 23:09:22 +02001683 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
Mike Galbraith3cb63d52009-09-11 12:01:17 +02001684 set_next_buddy(pse);
Peter Zijlstra57fdc262008-09-23 15:33:45 +02001685
Bharata B Raoaec0a512008-08-28 14:42:49 +05301686 /*
1687 * We can come here with TIF_NEED_RESCHED already set from new task
1688 * wake up path.
1689 */
1690 if (test_tsk_need_resched(curr))
1691 return;
1692
Ingo Molnar91c234b2007-10-15 17:00:18 +02001693 /*
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001694 * Batch and idle tasks do not preempt (their preemption is driven by
Ingo Molnar91c234b2007-10-15 17:00:18 +02001695 * the tick):
1696 */
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001697 if (unlikely(p->policy != SCHED_NORMAL))
Ingo Molnar91c234b2007-10-15 17:00:18 +02001698 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001699
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001700 /* Idle tasks are by definition preempted by everybody. */
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001701 if (unlikely(curr->policy == SCHED_IDLE))
1702 goto preempt;
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001703
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001704 if (sched_feat(WAKEUP_SYNC) && sync)
1705 goto preempt;
Peter Zijlstra15afe092008-09-20 23:38:02 +02001706
Peter Zijlstraad4b78b2009-09-16 12:31:31 +02001707 if (!sched_feat(WAKEUP_PREEMPT))
1708 return;
1709
Jupyung Leea65ac742009-11-17 18:51:40 +09001710 update_curr(cfs_rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001711 find_matching_se(&se, &pse);
1712 BUG_ON(!pse);
1713 if (wakeup_preempt_entity(se, pse) == 1)
1714 goto preempt;
Jupyung Leea65ac742009-11-17 18:51:40 +09001715
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001716 return;
1717
1718preempt:
1719 resched_task(curr);
1720 /*
1721 * Only set the backward buddy when the current task is still
1722 * on the rq. This can happen when a wakeup gets interleaved
1723 * with schedule on the ->pre_schedule() or idle_balance()
1724 * point, either of which can * drop the rq lock.
1725 *
1726 * Also, during early boot the idle thread is in the fair class,
1727 * for obvious reasons its a bad idea to schedule back to it.
1728 */
1729 if (unlikely(!se->on_rq || curr == rq->idle))
1730 return;
1731
1732 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1733 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001734}
1735
Ingo Molnarfb8d4722007-08-09 11:16:48 +02001736static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001737{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001738 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001739 struct cfs_rq *cfs_rq = &rq->cfs;
1740 struct sched_entity *se;
1741
Tim Blechmann36ace272009-11-24 11:55:45 +01001742 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001743 return NULL;
1744
1745 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02001746 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001747 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001748 cfs_rq = group_cfs_rq(se);
1749 } while (cfs_rq);
1750
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001751 p = task_of(se);
1752 hrtick_start_fair(rq, p);
1753
1754 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001755}
1756
1757/*
1758 * Account for a descheduled task:
1759 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02001760static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001761{
1762 struct sched_entity *se = &prev->se;
1763 struct cfs_rq *cfs_rq;
1764
1765 for_each_sched_entity(se) {
1766 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02001767 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001768 }
1769}
1770
Peter Williams681f3e62007-10-24 18:23:51 +02001771#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001772/**************************************************
1773 * Fair scheduling class load-balancing methods:
1774 */
1775
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001776/*
1777 * pull_task - move a task from a remote runqueue to the local runqueue.
1778 * Both runqueues must be locked.
1779 */
1780static void pull_task(struct rq *src_rq, struct task_struct *p,
1781 struct rq *this_rq, int this_cpu)
1782{
1783 deactivate_task(src_rq, p, 0);
1784 set_task_cpu(p, this_cpu);
1785 activate_task(this_rq, p, 0);
1786 check_preempt_curr(this_rq, p, 0);
1787}
1788
1789/*
1790 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1791 */
1792static
1793int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1794 struct sched_domain *sd, enum cpu_idle_type idle,
1795 int *all_pinned)
1796{
1797 int tsk_cache_hot = 0;
1798 /*
1799 * We do not migrate tasks that are:
1800 * 1) running (obviously), or
1801 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1802 * 3) are cache-hot on their current CPU.
1803 */
1804 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001805 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001806 return 0;
1807 }
1808 *all_pinned = 0;
1809
1810 if (task_running(rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001811 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001812 return 0;
1813 }
1814
1815 /*
1816 * Aggressive migration if:
1817 * 1) task is cache cold, or
1818 * 2) too many balance attempts have failed.
1819 */
1820
1821 tsk_cache_hot = task_hot(p, rq->clock, sd);
1822 if (!tsk_cache_hot ||
1823 sd->nr_balance_failed > sd->cache_nice_tries) {
1824#ifdef CONFIG_SCHEDSTATS
1825 if (tsk_cache_hot) {
1826 schedstat_inc(sd, lb_hot_gained[idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001827 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001828 }
1829#endif
1830 return 1;
1831 }
1832
1833 if (tsk_cache_hot) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001834 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001835 return 0;
1836 }
1837 return 1;
1838}
1839
Peter Zijlstra897c3952009-12-17 17:45:42 +01001840/*
1841 * move_one_task tries to move exactly one task from busiest to this_rq, as
1842 * part of active balancing operations within "domain".
1843 * Returns 1 if successful and 0 otherwise.
1844 *
1845 * Called with both runqueues locked.
1846 */
1847static int
1848move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1849 struct sched_domain *sd, enum cpu_idle_type idle)
1850{
1851 struct task_struct *p, *n;
1852 struct cfs_rq *cfs_rq;
1853 int pinned = 0;
1854
1855 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1856 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1857
1858 if (!can_migrate_task(p, busiest, this_cpu,
1859 sd, idle, &pinned))
1860 continue;
1861
1862 pull_task(busiest, p, this_rq, this_cpu);
1863 /*
1864 * Right now, this is only the second place pull_task()
1865 * is called, so we can safely collect pull_task()
1866 * stats here rather than inside pull_task().
1867 */
1868 schedstat_inc(sd, lb_gained[idle]);
1869 return 1;
1870 }
1871 }
1872
1873 return 0;
1874}
1875
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001876static unsigned long
1877balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1878 unsigned long max_load_move, struct sched_domain *sd,
1879 enum cpu_idle_type idle, int *all_pinned,
Peter Zijlstraee00e662009-12-17 17:25:20 +01001880 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001881{
1882 int loops = 0, pulled = 0, pinned = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001883 long rem_load_move = max_load_move;
Peter Zijlstraee00e662009-12-17 17:25:20 +01001884 struct task_struct *p, *n;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001885
1886 if (max_load_move == 0)
1887 goto out;
1888
1889 pinned = 1;
1890
Peter Zijlstraee00e662009-12-17 17:25:20 +01001891 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1892 if (loops++ > sysctl_sched_nr_migrate)
1893 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001894
Peter Zijlstraee00e662009-12-17 17:25:20 +01001895 if ((p->se.load.weight >> 1) > rem_load_move ||
1896 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1897 continue;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001898
Peter Zijlstraee00e662009-12-17 17:25:20 +01001899 pull_task(busiest, p, this_rq, this_cpu);
1900 pulled++;
1901 rem_load_move -= p->se.load.weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001902
1903#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01001904 /*
1905 * NEWIDLE balancing is a source of latency, so preemptible
1906 * kernels will stop after the first task is pulled to minimize
1907 * the critical section.
1908 */
1909 if (idle == CPU_NEWLY_IDLE)
1910 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001911#endif
1912
Peter Zijlstraee00e662009-12-17 17:25:20 +01001913 /*
1914 * We only want to steal up to the prescribed amount of
1915 * weighted load.
1916 */
1917 if (rem_load_move <= 0)
1918 break;
1919
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001920 if (p->prio < *this_best_prio)
1921 *this_best_prio = p->prio;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001922 }
1923out:
1924 /*
1925 * Right now, this is one of only two places pull_task() is called,
1926 * so we can safely collect pull_task() stats here rather than
1927 * inside pull_task().
1928 */
1929 schedstat_add(sd, lb_gained[idle], pulled);
1930
1931 if (all_pinned)
1932 *all_pinned = pinned;
1933
1934 return max_load_move - rem_load_move;
1935}
1936
Peter Zijlstra230059de2009-12-17 17:47:12 +01001937#ifdef CONFIG_FAIR_GROUP_SCHED
1938static unsigned long
1939load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1940 unsigned long max_load_move,
1941 struct sched_domain *sd, enum cpu_idle_type idle,
1942 int *all_pinned, int *this_best_prio)
1943{
1944 long rem_load_move = max_load_move;
1945 int busiest_cpu = cpu_of(busiest);
1946 struct task_group *tg;
1947
1948 rcu_read_lock();
1949 update_h_load(busiest_cpu);
1950
1951 list_for_each_entry_rcu(tg, &task_groups, list) {
1952 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1953 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1954 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1955 u64 rem_load, moved_load;
1956
1957 /*
1958 * empty group
1959 */
1960 if (!busiest_cfs_rq->task_weight)
1961 continue;
1962
1963 rem_load = (u64)rem_load_move * busiest_weight;
1964 rem_load = div_u64(rem_load, busiest_h_load + 1);
1965
1966 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1967 rem_load, sd, idle, all_pinned, this_best_prio,
1968 busiest_cfs_rq);
1969
1970 if (!moved_load)
1971 continue;
1972
1973 moved_load *= busiest_h_load;
1974 moved_load = div_u64(moved_load, busiest_weight + 1);
1975
1976 rem_load_move -= moved_load;
1977 if (rem_load_move < 0)
1978 break;
1979 }
1980 rcu_read_unlock();
1981
1982 return max_load_move - rem_load_move;
1983}
1984#else
1985static unsigned long
1986load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1987 unsigned long max_load_move,
1988 struct sched_domain *sd, enum cpu_idle_type idle,
1989 int *all_pinned, int *this_best_prio)
1990{
1991 return balance_tasks(this_rq, this_cpu, busiest,
1992 max_load_move, sd, idle, all_pinned,
1993 this_best_prio, &busiest->cfs);
1994}
1995#endif
1996
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001997/*
1998 * move_tasks tries to move up to max_load_move weighted load from busiest to
1999 * this_rq, as part of a balancing operation within domain "sd".
2000 * Returns 1 if successful and 0 otherwise.
2001 *
2002 * Called with both runqueues locked.
2003 */
2004static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2005 unsigned long max_load_move,
2006 struct sched_domain *sd, enum cpu_idle_type idle,
2007 int *all_pinned)
2008{
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002009 unsigned long total_load_moved = 0, load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002010 int this_best_prio = this_rq->curr->prio;
2011
2012 do {
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002013 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002014 max_load_move - total_load_moved,
2015 sd, idle, all_pinned, &this_best_prio);
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002016
2017 total_load_moved += load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002018
2019#ifdef CONFIG_PREEMPT
2020 /*
2021 * NEWIDLE balancing is a source of latency, so preemptible
2022 * kernels will stop after the first task is pulled to minimize
2023 * the critical section.
2024 */
2025 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2026 break;
Peter Zijlstrabaa8c112009-12-17 18:10:09 +01002027
2028 if (raw_spin_is_contended(&this_rq->lock) ||
2029 raw_spin_is_contended(&busiest->lock))
2030 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002031#endif
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002032 } while (load_moved && max_load_move > total_load_moved);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002033
2034 return total_load_moved > 0;
2035}
2036
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002037/********** Helpers for find_busiest_group ************************/
2038/*
2039 * sd_lb_stats - Structure to store the statistics of a sched_domain
2040 * during load balancing.
2041 */
2042struct sd_lb_stats {
2043 struct sched_group *busiest; /* Busiest group in this sd */
2044 struct sched_group *this; /* Local group in this sd */
2045 unsigned long total_load; /* Total load of all groups in sd */
2046 unsigned long total_pwr; /* Total power of all groups in sd */
2047 unsigned long avg_load; /* Average load across all groups in sd */
2048
2049 /** Statistics of this group */
2050 unsigned long this_load;
2051 unsigned long this_load_per_task;
2052 unsigned long this_nr_running;
2053
2054 /* Statistics of the busiest group */
2055 unsigned long max_load;
2056 unsigned long busiest_load_per_task;
2057 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002058 unsigned long busiest_group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002059
2060 int group_imb; /* Is there imbalance in this sd */
2061#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2062 int power_savings_balance; /* Is powersave balance needed for this sd */
2063 struct sched_group *group_min; /* Least loaded group in sd */
2064 struct sched_group *group_leader; /* Group which relieves group_min */
2065 unsigned long min_load_per_task; /* load_per_task in group_min */
2066 unsigned long leader_nr_running; /* Nr running of group_leader */
2067 unsigned long min_nr_running; /* Nr running of group_min */
2068#endif
2069};
2070
2071/*
2072 * sg_lb_stats - stats of a sched_group required for load_balancing
2073 */
2074struct sg_lb_stats {
2075 unsigned long avg_load; /*Avg load across the CPUs of the group */
2076 unsigned long group_load; /* Total load over the CPUs of the group */
2077 unsigned long sum_nr_running; /* Nr tasks running in the group */
2078 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2079 unsigned long group_capacity;
2080 int group_imb; /* Is there an imbalance in the group ? */
2081};
2082
2083/**
2084 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2085 * @group: The group whose first cpu is to be returned.
2086 */
2087static inline unsigned int group_first_cpu(struct sched_group *group)
2088{
2089 return cpumask_first(sched_group_cpus(group));
2090}
2091
2092/**
2093 * get_sd_load_idx - Obtain the load index for a given sched domain.
2094 * @sd: The sched_domain whose load_idx is to be obtained.
2095 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2096 */
2097static inline int get_sd_load_idx(struct sched_domain *sd,
2098 enum cpu_idle_type idle)
2099{
2100 int load_idx;
2101
2102 switch (idle) {
2103 case CPU_NOT_IDLE:
2104 load_idx = sd->busy_idx;
2105 break;
2106
2107 case CPU_NEWLY_IDLE:
2108 load_idx = sd->newidle_idx;
2109 break;
2110 default:
2111 load_idx = sd->idle_idx;
2112 break;
2113 }
2114
2115 return load_idx;
2116}
2117
2118
2119#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2120/**
2121 * init_sd_power_savings_stats - Initialize power savings statistics for
2122 * the given sched_domain, during load balancing.
2123 *
2124 * @sd: Sched domain whose power-savings statistics are to be initialized.
2125 * @sds: Variable containing the statistics for sd.
2126 * @idle: Idle status of the CPU at which we're performing load-balancing.
2127 */
2128static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2129 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2130{
2131 /*
2132 * Busy processors will not participate in power savings
2133 * balance.
2134 */
2135 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2136 sds->power_savings_balance = 0;
2137 else {
2138 sds->power_savings_balance = 1;
2139 sds->min_nr_running = ULONG_MAX;
2140 sds->leader_nr_running = 0;
2141 }
2142}
2143
2144/**
2145 * update_sd_power_savings_stats - Update the power saving stats for a
2146 * sched_domain while performing load balancing.
2147 *
2148 * @group: sched_group belonging to the sched_domain under consideration.
2149 * @sds: Variable containing the statistics of the sched_domain
2150 * @local_group: Does group contain the CPU for which we're performing
2151 * load balancing ?
2152 * @sgs: Variable containing the statistics of the group.
2153 */
2154static inline void update_sd_power_savings_stats(struct sched_group *group,
2155 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2156{
2157
2158 if (!sds->power_savings_balance)
2159 return;
2160
2161 /*
2162 * If the local group is idle or completely loaded
2163 * no need to do power savings balance at this domain
2164 */
2165 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2166 !sds->this_nr_running))
2167 sds->power_savings_balance = 0;
2168
2169 /*
2170 * If a group is already running at full capacity or idle,
2171 * don't include that group in power savings calculations
2172 */
2173 if (!sds->power_savings_balance ||
2174 sgs->sum_nr_running >= sgs->group_capacity ||
2175 !sgs->sum_nr_running)
2176 return;
2177
2178 /*
2179 * Calculate the group which has the least non-idle load.
2180 * This is the group from where we need to pick up the load
2181 * for saving power
2182 */
2183 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2184 (sgs->sum_nr_running == sds->min_nr_running &&
2185 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2186 sds->group_min = group;
2187 sds->min_nr_running = sgs->sum_nr_running;
2188 sds->min_load_per_task = sgs->sum_weighted_load /
2189 sgs->sum_nr_running;
2190 }
2191
2192 /*
2193 * Calculate the group which is almost near its
2194 * capacity but still has some space to pick up some load
2195 * from other group and save more power
2196 */
2197 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2198 return;
2199
2200 if (sgs->sum_nr_running > sds->leader_nr_running ||
2201 (sgs->sum_nr_running == sds->leader_nr_running &&
2202 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2203 sds->group_leader = group;
2204 sds->leader_nr_running = sgs->sum_nr_running;
2205 }
2206}
2207
2208/**
2209 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2210 * @sds: Variable containing the statistics of the sched_domain
2211 * under consideration.
2212 * @this_cpu: Cpu at which we're currently performing load-balancing.
2213 * @imbalance: Variable to store the imbalance.
2214 *
2215 * Description:
2216 * Check if we have potential to perform some power-savings balance.
2217 * If yes, set the busiest group to be the least loaded group in the
2218 * sched_domain, so that it's CPUs can be put to idle.
2219 *
2220 * Returns 1 if there is potential to perform power-savings balance.
2221 * Else returns 0.
2222 */
2223static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2224 int this_cpu, unsigned long *imbalance)
2225{
2226 if (!sds->power_savings_balance)
2227 return 0;
2228
2229 if (sds->this != sds->group_leader ||
2230 sds->group_leader == sds->group_min)
2231 return 0;
2232
2233 *imbalance = sds->min_load_per_task;
2234 sds->busiest = sds->group_min;
2235
2236 return 1;
2237
2238}
2239#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2240static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2241 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2242{
2243 return;
2244}
2245
2246static inline void update_sd_power_savings_stats(struct sched_group *group,
2247 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2248{
2249 return;
2250}
2251
2252static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2253 int this_cpu, unsigned long *imbalance)
2254{
2255 return 0;
2256}
2257#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2258
2259
2260unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2261{
2262 return SCHED_LOAD_SCALE;
2263}
2264
2265unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2266{
2267 return default_scale_freq_power(sd, cpu);
2268}
2269
2270unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2271{
2272 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2273 unsigned long smt_gain = sd->smt_gain;
2274
2275 smt_gain /= weight;
2276
2277 return smt_gain;
2278}
2279
2280unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2281{
2282 return default_scale_smt_power(sd, cpu);
2283}
2284
2285unsigned long scale_rt_power(int cpu)
2286{
2287 struct rq *rq = cpu_rq(cpu);
2288 u64 total, available;
2289
2290 sched_avg_update(rq);
2291
2292 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2293 available = total - rq->rt_avg;
2294
2295 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2296 total = SCHED_LOAD_SCALE;
2297
2298 total >>= SCHED_LOAD_SHIFT;
2299
2300 return div_u64(available, total);
2301}
2302
2303static void update_cpu_power(struct sched_domain *sd, int cpu)
2304{
2305 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2306 unsigned long power = SCHED_LOAD_SCALE;
2307 struct sched_group *sdg = sd->groups;
2308
2309 if (sched_feat(ARCH_POWER))
2310 power *= arch_scale_freq_power(sd, cpu);
2311 else
2312 power *= default_scale_freq_power(sd, cpu);
2313
2314 power >>= SCHED_LOAD_SHIFT;
2315
2316 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2317 if (sched_feat(ARCH_POWER))
2318 power *= arch_scale_smt_power(sd, cpu);
2319 else
2320 power *= default_scale_smt_power(sd, cpu);
2321
2322 power >>= SCHED_LOAD_SHIFT;
2323 }
2324
2325 power *= scale_rt_power(cpu);
2326 power >>= SCHED_LOAD_SHIFT;
2327
2328 if (!power)
2329 power = 1;
2330
2331 sdg->cpu_power = power;
2332}
2333
2334static void update_group_power(struct sched_domain *sd, int cpu)
2335{
2336 struct sched_domain *child = sd->child;
2337 struct sched_group *group, *sdg = sd->groups;
2338 unsigned long power;
2339
2340 if (!child) {
2341 update_cpu_power(sd, cpu);
2342 return;
2343 }
2344
2345 power = 0;
2346
2347 group = child->groups;
2348 do {
2349 power += group->cpu_power;
2350 group = group->next;
2351 } while (group != child->groups);
2352
2353 sdg->cpu_power = power;
2354}
2355
2356/**
2357 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2358 * @sd: The sched_domain whose statistics are to be updated.
2359 * @group: sched_group whose statistics are to be updated.
2360 * @this_cpu: Cpu for which load balance is currently performed.
2361 * @idle: Idle status of this_cpu
2362 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2363 * @sd_idle: Idle status of the sched_domain containing group.
2364 * @local_group: Does group contain this_cpu.
2365 * @cpus: Set of cpus considered for load balancing.
2366 * @balance: Should we balance.
2367 * @sgs: variable to hold the statistics for this group.
2368 */
2369static inline void update_sg_lb_stats(struct sched_domain *sd,
2370 struct sched_group *group, int this_cpu,
2371 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2372 int local_group, const struct cpumask *cpus,
2373 int *balance, struct sg_lb_stats *sgs)
2374{
2375 unsigned long load, max_cpu_load, min_cpu_load;
2376 int i;
2377 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002378 unsigned long avg_load_per_task = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002379
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002380 if (local_group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002381 balance_cpu = group_first_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002382
2383 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002384 max_cpu_load = 0;
2385 min_cpu_load = ~0UL;
2386
2387 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2388 struct rq *rq = cpu_rq(i);
2389
2390 if (*sd_idle && rq->nr_running)
2391 *sd_idle = 0;
2392
2393 /* Bias balancing toward cpus of our domain */
2394 if (local_group) {
2395 if (idle_cpu(i) && !first_idle_cpu) {
2396 first_idle_cpu = 1;
2397 balance_cpu = i;
2398 }
2399
2400 load = target_load(i, load_idx);
2401 } else {
2402 load = source_load(i, load_idx);
2403 if (load > max_cpu_load)
2404 max_cpu_load = load;
2405 if (min_cpu_load > load)
2406 min_cpu_load = load;
2407 }
2408
2409 sgs->group_load += load;
2410 sgs->sum_nr_running += rq->nr_running;
2411 sgs->sum_weighted_load += weighted_cpuload(i);
2412
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002413 }
2414
2415 /*
2416 * First idle cpu or the first cpu(busiest) in this sched group
2417 * is eligible for doing load balancing at this and above
2418 * domains. In the newly idle case, we will allow all the cpu's
2419 * to do the newly idle load balance.
2420 */
2421 if (idle != CPU_NEWLY_IDLE && local_group &&
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002422 balance_cpu != this_cpu) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002423 *balance = 0;
2424 return;
2425 }
2426
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002427 update_group_power(sd, this_cpu);
2428
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002429 /* Adjust by relative CPU power of the group */
2430 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2431
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002432 /*
2433 * Consider the group unbalanced when the imbalance is larger
2434 * than the average weight of two tasks.
2435 *
2436 * APZ: with cgroup the avg task weight can vary wildly and
2437 * might not be a suitable number - should we keep a
2438 * normalized nr_running number somewhere that negates
2439 * the hierarchy?
2440 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002441 if (sgs->sum_nr_running)
2442 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002443
2444 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2445 sgs->group_imb = 1;
2446
2447 sgs->group_capacity =
2448 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2449}
2450
2451/**
2452 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2453 * @sd: sched_domain whose statistics are to be updated.
2454 * @this_cpu: Cpu for which load balance is currently performed.
2455 * @idle: Idle status of this_cpu
2456 * @sd_idle: Idle status of the sched_domain containing group.
2457 * @cpus: Set of cpus considered for load balancing.
2458 * @balance: Should we balance.
2459 * @sds: variable to hold the statistics for this sched_domain.
2460 */
2461static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2462 enum cpu_idle_type idle, int *sd_idle,
2463 const struct cpumask *cpus, int *balance,
2464 struct sd_lb_stats *sds)
2465{
2466 struct sched_domain *child = sd->child;
2467 struct sched_group *group = sd->groups;
2468 struct sg_lb_stats sgs;
2469 int load_idx, prefer_sibling = 0;
2470
2471 if (child && child->flags & SD_PREFER_SIBLING)
2472 prefer_sibling = 1;
2473
2474 init_sd_power_savings_stats(sd, sds, idle);
2475 load_idx = get_sd_load_idx(sd, idle);
2476
2477 do {
2478 int local_group;
2479
2480 local_group = cpumask_test_cpu(this_cpu,
2481 sched_group_cpus(group));
2482 memset(&sgs, 0, sizeof(sgs));
2483 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2484 local_group, cpus, balance, &sgs);
2485
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002486 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002487 return;
2488
2489 sds->total_load += sgs.group_load;
2490 sds->total_pwr += group->cpu_power;
2491
2492 /*
2493 * In case the child domain prefers tasks go to siblings
2494 * first, lower the group capacity to one so that we'll try
2495 * and move all the excess tasks away.
2496 */
2497 if (prefer_sibling)
2498 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2499
2500 if (local_group) {
2501 sds->this_load = sgs.avg_load;
2502 sds->this = group;
2503 sds->this_nr_running = sgs.sum_nr_running;
2504 sds->this_load_per_task = sgs.sum_weighted_load;
2505 } else if (sgs.avg_load > sds->max_load &&
2506 (sgs.sum_nr_running > sgs.group_capacity ||
2507 sgs.group_imb)) {
2508 sds->max_load = sgs.avg_load;
2509 sds->busiest = group;
2510 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002511 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002512 sds->busiest_load_per_task = sgs.sum_weighted_load;
2513 sds->group_imb = sgs.group_imb;
2514 }
2515
2516 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2517 group = group->next;
2518 } while (group != sd->groups);
2519}
2520
2521/**
2522 * fix_small_imbalance - Calculate the minor imbalance that exists
2523 * amongst the groups of a sched_domain, during
2524 * load balancing.
2525 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2526 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2527 * @imbalance: Variable to store the imbalance.
2528 */
2529static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2530 int this_cpu, unsigned long *imbalance)
2531{
2532 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2533 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002534 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002535
2536 if (sds->this_nr_running) {
2537 sds->this_load_per_task /= sds->this_nr_running;
2538 if (sds->busiest_load_per_task >
2539 sds->this_load_per_task)
2540 imbn = 1;
2541 } else
2542 sds->this_load_per_task =
2543 cpu_avg_load_per_task(this_cpu);
2544
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002545 scaled_busy_load_per_task = sds->busiest_load_per_task
2546 * SCHED_LOAD_SCALE;
2547 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2548
2549 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2550 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002551 *imbalance = sds->busiest_load_per_task;
2552 return;
2553 }
2554
2555 /*
2556 * OK, we don't have enough imbalance to justify moving tasks,
2557 * however we may be able to increase total CPU power used by
2558 * moving them.
2559 */
2560
2561 pwr_now += sds->busiest->cpu_power *
2562 min(sds->busiest_load_per_task, sds->max_load);
2563 pwr_now += sds->this->cpu_power *
2564 min(sds->this_load_per_task, sds->this_load);
2565 pwr_now /= SCHED_LOAD_SCALE;
2566
2567 /* Amount of load we'd subtract */
2568 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2569 sds->busiest->cpu_power;
2570 if (sds->max_load > tmp)
2571 pwr_move += sds->busiest->cpu_power *
2572 min(sds->busiest_load_per_task, sds->max_load - tmp);
2573
2574 /* Amount of load we'd add */
2575 if (sds->max_load * sds->busiest->cpu_power <
2576 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2577 tmp = (sds->max_load * sds->busiest->cpu_power) /
2578 sds->this->cpu_power;
2579 else
2580 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2581 sds->this->cpu_power;
2582 pwr_move += sds->this->cpu_power *
2583 min(sds->this_load_per_task, sds->this_load + tmp);
2584 pwr_move /= SCHED_LOAD_SCALE;
2585
2586 /* Move if we gain throughput */
2587 if (pwr_move > pwr_now)
2588 *imbalance = sds->busiest_load_per_task;
2589}
2590
2591/**
2592 * calculate_imbalance - Calculate the amount of imbalance present within the
2593 * groups of a given sched_domain during load balance.
2594 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2595 * @this_cpu: Cpu for which currently load balance is being performed.
2596 * @imbalance: The variable to store the imbalance.
2597 */
2598static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2599 unsigned long *imbalance)
2600{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002601 unsigned long max_pull, load_above_capacity = ~0UL;
2602
2603 sds->busiest_load_per_task /= sds->busiest_nr_running;
2604 if (sds->group_imb) {
2605 sds->busiest_load_per_task =
2606 min(sds->busiest_load_per_task, sds->avg_load);
2607 }
2608
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002609 /*
2610 * In the presence of smp nice balancing, certain scenarios can have
2611 * max load less than avg load(as we skip the groups at or below
2612 * its cpu_power, while calculating max_load..)
2613 */
2614 if (sds->max_load < sds->avg_load) {
2615 *imbalance = 0;
2616 return fix_small_imbalance(sds, this_cpu, imbalance);
2617 }
2618
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002619 if (!sds->group_imb) {
2620 /*
2621 * Don't want to pull so many tasks that a group would go idle.
2622 */
2623 load_above_capacity = (sds->busiest_nr_running -
2624 sds->busiest_group_capacity);
2625
2626 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2627
2628 load_above_capacity /= sds->busiest->cpu_power;
2629 }
2630
2631 /*
2632 * We're trying to get all the cpus to the average_load, so we don't
2633 * want to push ourselves above the average load, nor do we wish to
2634 * reduce the max loaded cpu below the average load. At the same time,
2635 * we also don't want to reduce the group load below the group capacity
2636 * (so that we can implement power-savings policies etc). Thus we look
2637 * for the minimum possible imbalance.
2638 * Be careful of negative numbers as they'll appear as very large values
2639 * with unsigned longs.
2640 */
2641 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002642
2643 /* How much load to actually move to equalise the imbalance */
2644 *imbalance = min(max_pull * sds->busiest->cpu_power,
2645 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2646 / SCHED_LOAD_SCALE;
2647
2648 /*
2649 * if *imbalance is less than the average load per runnable task
2650 * there is no gaurantee that any tasks will be moved so we'll have
2651 * a think about bumping its value to force at least one task to be
2652 * moved
2653 */
2654 if (*imbalance < sds->busiest_load_per_task)
2655 return fix_small_imbalance(sds, this_cpu, imbalance);
2656
2657}
2658/******* find_busiest_group() helpers end here *********************/
2659
2660/**
2661 * find_busiest_group - Returns the busiest group within the sched_domain
2662 * if there is an imbalance. If there isn't an imbalance, and
2663 * the user has opted for power-savings, it returns a group whose
2664 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2665 * such a group exists.
2666 *
2667 * Also calculates the amount of weighted load which should be moved
2668 * to restore balance.
2669 *
2670 * @sd: The sched_domain whose busiest group is to be returned.
2671 * @this_cpu: The cpu for which load balancing is currently being performed.
2672 * @imbalance: Variable which stores amount of weighted load which should
2673 * be moved to restore balance/put a group to idle.
2674 * @idle: The idle status of this_cpu.
2675 * @sd_idle: The idleness of sd
2676 * @cpus: The set of CPUs under consideration for load-balancing.
2677 * @balance: Pointer to a variable indicating if this_cpu
2678 * is the appropriate cpu to perform load balancing at this_level.
2679 *
2680 * Returns: - the busiest group if imbalance exists.
2681 * - If no imbalance and user has opted for power-savings balance,
2682 * return the least loaded group whose CPUs can be
2683 * put to idle by rebalancing its tasks onto our group.
2684 */
2685static struct sched_group *
2686find_busiest_group(struct sched_domain *sd, int this_cpu,
2687 unsigned long *imbalance, enum cpu_idle_type idle,
2688 int *sd_idle, const struct cpumask *cpus, int *balance)
2689{
2690 struct sd_lb_stats sds;
2691
2692 memset(&sds, 0, sizeof(sds));
2693
2694 /*
2695 * Compute the various statistics relavent for load balancing at
2696 * this level.
2697 */
2698 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2699 balance, &sds);
2700
2701 /* Cases where imbalance does not exist from POV of this_cpu */
2702 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2703 * at this level.
2704 * 2) There is no busy sibling group to pull from.
2705 * 3) This group is the busiest group.
2706 * 4) This group is more busy than the avg busieness at this
2707 * sched_domain.
2708 * 5) The imbalance is within the specified limit.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002709 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002710 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002711 goto ret;
2712
2713 if (!sds.busiest || sds.busiest_nr_running == 0)
2714 goto out_balanced;
2715
2716 if (sds.this_load >= sds.max_load)
2717 goto out_balanced;
2718
2719 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2720
2721 if (sds.this_load >= sds.avg_load)
2722 goto out_balanced;
2723
2724 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2725 goto out_balanced;
2726
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002727 /* Looks like there is an imbalance. Compute it */
2728 calculate_imbalance(&sds, this_cpu, imbalance);
2729 return sds.busiest;
2730
2731out_balanced:
2732 /*
2733 * There is no obvious imbalance. But check if we can do some balancing
2734 * to save power.
2735 */
2736 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2737 return sds.busiest;
2738ret:
2739 *imbalance = 0;
2740 return NULL;
2741}
2742
2743/*
2744 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2745 */
2746static struct rq *
2747find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2748 unsigned long imbalance, const struct cpumask *cpus)
2749{
2750 struct rq *busiest = NULL, *rq;
2751 unsigned long max_load = 0;
2752 int i;
2753
2754 for_each_cpu(i, sched_group_cpus(group)) {
2755 unsigned long power = power_of(i);
2756 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2757 unsigned long wl;
2758
2759 if (!cpumask_test_cpu(i, cpus))
2760 continue;
2761
2762 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002763 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002764
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002765 /*
2766 * When comparing with imbalance, use weighted_cpuload()
2767 * which is not scaled with the cpu power.
2768 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002769 if (capacity && rq->nr_running == 1 && wl > imbalance)
2770 continue;
2771
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002772 /*
2773 * For the load comparisons with the other cpu's, consider
2774 * the weighted_cpuload() scaled with the cpu power, so that
2775 * the load can be moved away from the cpu that is potentially
2776 * running at a lower capacity.
2777 */
2778 wl = (wl * SCHED_LOAD_SCALE) / power;
2779
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002780 if (wl > max_load) {
2781 max_load = wl;
2782 busiest = rq;
2783 }
2784 }
2785
2786 return busiest;
2787}
2788
2789/*
2790 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2791 * so long as it is large enough.
2792 */
2793#define MAX_PINNED_INTERVAL 512
2794
2795/* Working cpumask for load_balance and load_balance_newidle. */
2796static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2797
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002798static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2799{
2800 if (idle == CPU_NEWLY_IDLE) {
2801 /*
2802 * The only task running in a non-idle cpu can be moved to this
2803 * cpu in an attempt to completely freeup the other CPU
2804 * package.
2805 *
2806 * The package power saving logic comes from
2807 * find_busiest_group(). If there are no imbalance, then
2808 * f_b_g() will return NULL. However when sched_mc={1,2} then
2809 * f_b_g() will select a group from which a running task may be
2810 * pulled to this cpu in order to make the other package idle.
2811 * If there is no opportunity to make a package idle and if
2812 * there are no imbalance, then f_b_g() will return NULL and no
2813 * action will be taken in load_balance_newidle().
2814 *
2815 * Under normal task pull operation due to imbalance, there
2816 * will be more than one task in the source run queue and
2817 * move_tasks() will succeed. ld_moved will be true and this
2818 * active balance code will not be triggered.
2819 */
2820 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2821 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2822 return 0;
2823
2824 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2825 return 0;
2826 }
2827
2828 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2829}
2830
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002831/*
2832 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2833 * tasks if there is an imbalance.
2834 */
2835static int load_balance(int this_cpu, struct rq *this_rq,
2836 struct sched_domain *sd, enum cpu_idle_type idle,
2837 int *balance)
2838{
2839 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2840 struct sched_group *group;
2841 unsigned long imbalance;
2842 struct rq *busiest;
2843 unsigned long flags;
2844 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2845
2846 cpumask_copy(cpus, cpu_active_mask);
2847
2848 /*
2849 * When power savings policy is enabled for the parent domain, idle
2850 * sibling can pick up load irrespective of busy siblings. In this case,
2851 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2852 * portraying it as CPU_NOT_IDLE.
2853 */
2854 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2855 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2856 sd_idle = 1;
2857
2858 schedstat_inc(sd, lb_count[idle]);
2859
2860redo:
2861 update_shares(sd);
2862 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2863 cpus, balance);
2864
2865 if (*balance == 0)
2866 goto out_balanced;
2867
2868 if (!group) {
2869 schedstat_inc(sd, lb_nobusyg[idle]);
2870 goto out_balanced;
2871 }
2872
2873 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2874 if (!busiest) {
2875 schedstat_inc(sd, lb_nobusyq[idle]);
2876 goto out_balanced;
2877 }
2878
2879 BUG_ON(busiest == this_rq);
2880
2881 schedstat_add(sd, lb_imbalance[idle], imbalance);
2882
2883 ld_moved = 0;
2884 if (busiest->nr_running > 1) {
2885 /*
2886 * Attempt to move tasks. If find_busiest_group has found
2887 * an imbalance but busiest->nr_running <= 1, the group is
2888 * still unbalanced. ld_moved simply stays zero, so it is
2889 * correctly treated as an imbalance.
2890 */
2891 local_irq_save(flags);
2892 double_rq_lock(this_rq, busiest);
2893 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2894 imbalance, sd, idle, &all_pinned);
2895 double_rq_unlock(this_rq, busiest);
2896 local_irq_restore(flags);
2897
2898 /*
2899 * some other cpu did the load balance for us.
2900 */
2901 if (ld_moved && this_cpu != smp_processor_id())
2902 resched_cpu(this_cpu);
2903
2904 /* All tasks on this runqueue were pinned by CPU affinity */
2905 if (unlikely(all_pinned)) {
2906 cpumask_clear_cpu(cpu_of(busiest), cpus);
2907 if (!cpumask_empty(cpus))
2908 goto redo;
2909 goto out_balanced;
2910 }
2911 }
2912
2913 if (!ld_moved) {
2914 schedstat_inc(sd, lb_failed[idle]);
2915 sd->nr_balance_failed++;
2916
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002917 if (need_active_balance(sd, sd_idle, idle)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002918 raw_spin_lock_irqsave(&busiest->lock, flags);
2919
2920 /* don't kick the migration_thread, if the curr
2921 * task on busiest cpu can't be moved to this_cpu
2922 */
2923 if (!cpumask_test_cpu(this_cpu,
2924 &busiest->curr->cpus_allowed)) {
2925 raw_spin_unlock_irqrestore(&busiest->lock,
2926 flags);
2927 all_pinned = 1;
2928 goto out_one_pinned;
2929 }
2930
2931 if (!busiest->active_balance) {
2932 busiest->active_balance = 1;
2933 busiest->push_cpu = this_cpu;
2934 active_balance = 1;
2935 }
2936 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2937 if (active_balance)
2938 wake_up_process(busiest->migration_thread);
2939
2940 /*
2941 * We've kicked active balancing, reset the failure
2942 * counter.
2943 */
2944 sd->nr_balance_failed = sd->cache_nice_tries+1;
2945 }
2946 } else
2947 sd->nr_balance_failed = 0;
2948
2949 if (likely(!active_balance)) {
2950 /* We were unbalanced, so reset the balancing interval */
2951 sd->balance_interval = sd->min_interval;
2952 } else {
2953 /*
2954 * If we've begun active balancing, start to back off. This
2955 * case may not be covered by the all_pinned logic if there
2956 * is only 1 task on the busy runqueue (because we don't call
2957 * move_tasks).
2958 */
2959 if (sd->balance_interval < sd->max_interval)
2960 sd->balance_interval *= 2;
2961 }
2962
2963 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2964 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2965 ld_moved = -1;
2966
2967 goto out;
2968
2969out_balanced:
2970 schedstat_inc(sd, lb_balanced[idle]);
2971
2972 sd->nr_balance_failed = 0;
2973
2974out_one_pinned:
2975 /* tune up the balancing interval */
2976 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2977 (sd->balance_interval < sd->max_interval))
2978 sd->balance_interval *= 2;
2979
2980 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2981 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2982 ld_moved = -1;
2983 else
2984 ld_moved = 0;
2985out:
2986 if (ld_moved)
2987 update_shares(sd);
2988 return ld_moved;
2989}
2990
2991/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002992 * idle_balance is called by schedule() if this_cpu is about to become
2993 * idle. Attempts to pull tasks from other CPUs.
2994 */
2995static void idle_balance(int this_cpu, struct rq *this_rq)
2996{
2997 struct sched_domain *sd;
2998 int pulled_task = 0;
2999 unsigned long next_balance = jiffies + HZ;
3000
3001 this_rq->idle_stamp = this_rq->clock;
3002
3003 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3004 return;
3005
Peter Zijlstraf492e122009-12-23 15:29:42 +01003006 /*
3007 * Drop the rq->lock, but keep IRQ/preempt disabled.
3008 */
3009 raw_spin_unlock(&this_rq->lock);
3010
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003011 for_each_domain(this_cpu, sd) {
3012 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01003013 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003014
3015 if (!(sd->flags & SD_LOAD_BALANCE))
3016 continue;
3017
Peter Zijlstraf492e122009-12-23 15:29:42 +01003018 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003019 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01003020 pulled_task = load_balance(this_cpu, this_rq,
3021 sd, CPU_NEWLY_IDLE, &balance);
3022 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003023
3024 interval = msecs_to_jiffies(sd->balance_interval);
3025 if (time_after(next_balance, sd->last_balance + interval))
3026 next_balance = sd->last_balance + interval;
3027 if (pulled_task) {
3028 this_rq->idle_stamp = 0;
3029 break;
3030 }
3031 }
Peter Zijlstraf492e122009-12-23 15:29:42 +01003032
3033 raw_spin_lock(&this_rq->lock);
3034
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003035 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3036 /*
3037 * We are going idle. next_balance may be set based on
3038 * a busy processor. So reset next_balance.
3039 */
3040 this_rq->next_balance = next_balance;
3041 }
3042}
3043
3044/*
3045 * active_load_balance is run by migration threads. It pushes running tasks
3046 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3047 * running on each physical CPU where possible, and avoids physical /
3048 * logical imbalances.
3049 *
3050 * Called with busiest_rq locked.
3051 */
3052static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3053{
3054 int target_cpu = busiest_rq->push_cpu;
3055 struct sched_domain *sd;
3056 struct rq *target_rq;
3057
3058 /* Is there any task to move? */
3059 if (busiest_rq->nr_running <= 1)
3060 return;
3061
3062 target_rq = cpu_rq(target_cpu);
3063
3064 /*
3065 * This condition is "impossible", if it occurs
3066 * we need to fix it. Originally reported by
3067 * Bjorn Helgaas on a 128-cpu setup.
3068 */
3069 BUG_ON(busiest_rq == target_rq);
3070
3071 /* move a task from busiest_rq to target_rq */
3072 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003073
3074 /* Search for an sd spanning us and the target CPU. */
3075 for_each_domain(target_cpu, sd) {
3076 if ((sd->flags & SD_LOAD_BALANCE) &&
3077 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3078 break;
3079 }
3080
3081 if (likely(sd)) {
3082 schedstat_inc(sd, alb_count);
3083
3084 if (move_one_task(target_rq, target_cpu, busiest_rq,
3085 sd, CPU_IDLE))
3086 schedstat_inc(sd, alb_pushed);
3087 else
3088 schedstat_inc(sd, alb_failed);
3089 }
3090 double_unlock_balance(busiest_rq, target_rq);
3091}
3092
3093#ifdef CONFIG_NO_HZ
3094static struct {
3095 atomic_t load_balancer;
3096 cpumask_var_t cpu_mask;
3097 cpumask_var_t ilb_grp_nohz_mask;
3098} nohz ____cacheline_aligned = {
3099 .load_balancer = ATOMIC_INIT(-1),
3100};
3101
3102int get_nohz_load_balancer(void)
3103{
3104 return atomic_read(&nohz.load_balancer);
3105}
3106
3107#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3108/**
3109 * lowest_flag_domain - Return lowest sched_domain containing flag.
3110 * @cpu: The cpu whose lowest level of sched domain is to
3111 * be returned.
3112 * @flag: The flag to check for the lowest sched_domain
3113 * for the given cpu.
3114 *
3115 * Returns the lowest sched_domain of a cpu which contains the given flag.
3116 */
3117static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3118{
3119 struct sched_domain *sd;
3120
3121 for_each_domain(cpu, sd)
3122 if (sd && (sd->flags & flag))
3123 break;
3124
3125 return sd;
3126}
3127
3128/**
3129 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3130 * @cpu: The cpu whose domains we're iterating over.
3131 * @sd: variable holding the value of the power_savings_sd
3132 * for cpu.
3133 * @flag: The flag to filter the sched_domains to be iterated.
3134 *
3135 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3136 * set, starting from the lowest sched_domain to the highest.
3137 */
3138#define for_each_flag_domain(cpu, sd, flag) \
3139 for (sd = lowest_flag_domain(cpu, flag); \
3140 (sd && (sd->flags & flag)); sd = sd->parent)
3141
3142/**
3143 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3144 * @ilb_group: group to be checked for semi-idleness
3145 *
3146 * Returns: 1 if the group is semi-idle. 0 otherwise.
3147 *
3148 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3149 * and atleast one non-idle CPU. This helper function checks if the given
3150 * sched_group is semi-idle or not.
3151 */
3152static inline int is_semi_idle_group(struct sched_group *ilb_group)
3153{
3154 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3155 sched_group_cpus(ilb_group));
3156
3157 /*
3158 * A sched_group is semi-idle when it has atleast one busy cpu
3159 * and atleast one idle cpu.
3160 */
3161 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3162 return 0;
3163
3164 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3165 return 0;
3166
3167 return 1;
3168}
3169/**
3170 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3171 * @cpu: The cpu which is nominating a new idle_load_balancer.
3172 *
3173 * Returns: Returns the id of the idle load balancer if it exists,
3174 * Else, returns >= nr_cpu_ids.
3175 *
3176 * This algorithm picks the idle load balancer such that it belongs to a
3177 * semi-idle powersavings sched_domain. The idea is to try and avoid
3178 * completely idle packages/cores just for the purpose of idle load balancing
3179 * when there are other idle cpu's which are better suited for that job.
3180 */
3181static int find_new_ilb(int cpu)
3182{
3183 struct sched_domain *sd;
3184 struct sched_group *ilb_group;
3185
3186 /*
3187 * Have idle load balancer selection from semi-idle packages only
3188 * when power-aware load balancing is enabled
3189 */
3190 if (!(sched_smt_power_savings || sched_mc_power_savings))
3191 goto out_done;
3192
3193 /*
3194 * Optimize for the case when we have no idle CPUs or only one
3195 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3196 */
3197 if (cpumask_weight(nohz.cpu_mask) < 2)
3198 goto out_done;
3199
3200 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3201 ilb_group = sd->groups;
3202
3203 do {
3204 if (is_semi_idle_group(ilb_group))
3205 return cpumask_first(nohz.ilb_grp_nohz_mask);
3206
3207 ilb_group = ilb_group->next;
3208
3209 } while (ilb_group != sd->groups);
3210 }
3211
3212out_done:
3213 return cpumask_first(nohz.cpu_mask);
3214}
3215#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3216static inline int find_new_ilb(int call_cpu)
3217{
3218 return cpumask_first(nohz.cpu_mask);
3219}
3220#endif
3221
3222/*
3223 * This routine will try to nominate the ilb (idle load balancing)
3224 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3225 * load balancing on behalf of all those cpus. If all the cpus in the system
3226 * go into this tickless mode, then there will be no ilb owner (as there is
3227 * no need for one) and all the cpus will sleep till the next wakeup event
3228 * arrives...
3229 *
3230 * For the ilb owner, tick is not stopped. And this tick will be used
3231 * for idle load balancing. ilb owner will still be part of
3232 * nohz.cpu_mask..
3233 *
3234 * While stopping the tick, this cpu will become the ilb owner if there
3235 * is no other owner. And will be the owner till that cpu becomes busy
3236 * or if all cpus in the system stop their ticks at which point
3237 * there is no need for ilb owner.
3238 *
3239 * When the ilb owner becomes busy, it nominates another owner, during the
3240 * next busy scheduler_tick()
3241 */
3242int select_nohz_load_balancer(int stop_tick)
3243{
3244 int cpu = smp_processor_id();
3245
3246 if (stop_tick) {
3247 cpu_rq(cpu)->in_nohz_recently = 1;
3248
3249 if (!cpu_active(cpu)) {
3250 if (atomic_read(&nohz.load_balancer) != cpu)
3251 return 0;
3252
3253 /*
3254 * If we are going offline and still the leader,
3255 * give up!
3256 */
3257 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3258 BUG();
3259
3260 return 0;
3261 }
3262
3263 cpumask_set_cpu(cpu, nohz.cpu_mask);
3264
3265 /* time for ilb owner also to sleep */
3266 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3267 if (atomic_read(&nohz.load_balancer) == cpu)
3268 atomic_set(&nohz.load_balancer, -1);
3269 return 0;
3270 }
3271
3272 if (atomic_read(&nohz.load_balancer) == -1) {
3273 /* make me the ilb owner */
3274 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3275 return 1;
3276 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3277 int new_ilb;
3278
3279 if (!(sched_smt_power_savings ||
3280 sched_mc_power_savings))
3281 return 1;
3282 /*
3283 * Check to see if there is a more power-efficient
3284 * ilb.
3285 */
3286 new_ilb = find_new_ilb(cpu);
3287 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3288 atomic_set(&nohz.load_balancer, -1);
3289 resched_cpu(new_ilb);
3290 return 0;
3291 }
3292 return 1;
3293 }
3294 } else {
3295 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3296 return 0;
3297
3298 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3299
3300 if (atomic_read(&nohz.load_balancer) == cpu)
3301 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3302 BUG();
3303 }
3304 return 0;
3305}
3306#endif
3307
3308static DEFINE_SPINLOCK(balancing);
3309
3310/*
3311 * It checks each scheduling domain to see if it is due to be balanced,
3312 * and initiates a balancing operation if so.
3313 *
3314 * Balancing parameters are set up in arch_init_sched_domains.
3315 */
3316static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3317{
3318 int balance = 1;
3319 struct rq *rq = cpu_rq(cpu);
3320 unsigned long interval;
3321 struct sched_domain *sd;
3322 /* Earliest time when we have to do rebalance again */
3323 unsigned long next_balance = jiffies + 60*HZ;
3324 int update_next_balance = 0;
3325 int need_serialize;
3326
3327 for_each_domain(cpu, sd) {
3328 if (!(sd->flags & SD_LOAD_BALANCE))
3329 continue;
3330
3331 interval = sd->balance_interval;
3332 if (idle != CPU_IDLE)
3333 interval *= sd->busy_factor;
3334
3335 /* scale ms to jiffies */
3336 interval = msecs_to_jiffies(interval);
3337 if (unlikely(!interval))
3338 interval = 1;
3339 if (interval > HZ*NR_CPUS/10)
3340 interval = HZ*NR_CPUS/10;
3341
3342 need_serialize = sd->flags & SD_SERIALIZE;
3343
3344 if (need_serialize) {
3345 if (!spin_trylock(&balancing))
3346 goto out;
3347 }
3348
3349 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3350 if (load_balance(cpu, rq, sd, idle, &balance)) {
3351 /*
3352 * We've pulled tasks over so either we're no
3353 * longer idle, or one of our SMT siblings is
3354 * not idle.
3355 */
3356 idle = CPU_NOT_IDLE;
3357 }
3358 sd->last_balance = jiffies;
3359 }
3360 if (need_serialize)
3361 spin_unlock(&balancing);
3362out:
3363 if (time_after(next_balance, sd->last_balance + interval)) {
3364 next_balance = sd->last_balance + interval;
3365 update_next_balance = 1;
3366 }
3367
3368 /*
3369 * Stop the load balance at this level. There is another
3370 * CPU in our sched group which is doing load balancing more
3371 * actively.
3372 */
3373 if (!balance)
3374 break;
3375 }
3376
3377 /*
3378 * next_balance will be updated only when there is a need.
3379 * When the cpu is attached to null domain for ex, it will not be
3380 * updated.
3381 */
3382 if (likely(update_next_balance))
3383 rq->next_balance = next_balance;
3384}
3385
3386/*
3387 * run_rebalance_domains is triggered when needed from the scheduler tick.
3388 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3389 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3390 */
3391static void run_rebalance_domains(struct softirq_action *h)
3392{
3393 int this_cpu = smp_processor_id();
3394 struct rq *this_rq = cpu_rq(this_cpu);
3395 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3396 CPU_IDLE : CPU_NOT_IDLE;
3397
3398 rebalance_domains(this_cpu, idle);
3399
3400#ifdef CONFIG_NO_HZ
3401 /*
3402 * If this cpu is the owner for idle load balancing, then do the
3403 * balancing on behalf of the other idle cpus whose ticks are
3404 * stopped.
3405 */
3406 if (this_rq->idle_at_tick &&
3407 atomic_read(&nohz.load_balancer) == this_cpu) {
3408 struct rq *rq;
3409 int balance_cpu;
3410
3411 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3412 if (balance_cpu == this_cpu)
3413 continue;
3414
3415 /*
3416 * If this cpu gets work to do, stop the load balancing
3417 * work being done for other cpus. Next load
3418 * balancing owner will pick it up.
3419 */
3420 if (need_resched())
3421 break;
3422
3423 rebalance_domains(balance_cpu, CPU_IDLE);
3424
3425 rq = cpu_rq(balance_cpu);
3426 if (time_after(this_rq->next_balance, rq->next_balance))
3427 this_rq->next_balance = rq->next_balance;
3428 }
3429 }
3430#endif
3431}
3432
3433static inline int on_null_domain(int cpu)
3434{
3435 return !rcu_dereference(cpu_rq(cpu)->sd);
3436}
3437
3438/*
3439 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3440 *
3441 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3442 * idle load balancing owner or decide to stop the periodic load balancing,
3443 * if the whole system is idle.
3444 */
3445static inline void trigger_load_balance(struct rq *rq, int cpu)
3446{
3447#ifdef CONFIG_NO_HZ
3448 /*
3449 * If we were in the nohz mode recently and busy at the current
3450 * scheduler tick, then check if we need to nominate new idle
3451 * load balancer.
3452 */
3453 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3454 rq->in_nohz_recently = 0;
3455
3456 if (atomic_read(&nohz.load_balancer) == cpu) {
3457 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3458 atomic_set(&nohz.load_balancer, -1);
3459 }
3460
3461 if (atomic_read(&nohz.load_balancer) == -1) {
3462 int ilb = find_new_ilb(cpu);
3463
3464 if (ilb < nr_cpu_ids)
3465 resched_cpu(ilb);
3466 }
3467 }
3468
3469 /*
3470 * If this cpu is idle and doing idle load balancing for all the
3471 * cpus with ticks stopped, is it time for that to stop?
3472 */
3473 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3474 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3475 resched_cpu(cpu);
3476 return;
3477 }
3478
3479 /*
3480 * If this cpu is idle and the idle load balancing is done by
3481 * someone else, then no need raise the SCHED_SOFTIRQ
3482 */
3483 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3484 cpumask_test_cpu(cpu, nohz.cpu_mask))
3485 return;
3486#endif
3487 /* Don't need to rebalance while attached to NULL domain */
3488 if (time_after_eq(jiffies, rq->next_balance) &&
3489 likely(!on_null_domain(cpu)))
3490 raise_softirq(SCHED_SOFTIRQ);
3491}
3492
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003493static void rq_online_fair(struct rq *rq)
3494{
3495 update_sysctl();
3496}
3497
3498static void rq_offline_fair(struct rq *rq)
3499{
3500 update_sysctl();
3501}
3502
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003503#else /* CONFIG_SMP */
3504
3505/*
3506 * on UP we do not need to balance between CPUs:
3507 */
3508static inline void idle_balance(int cpu, struct rq *rq)
3509{
3510}
3511
Dhaval Giani55e12e52008-06-24 23:39:43 +05303512#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02003513
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003514/*
3515 * scheduler tick hitting a task of our scheduling class:
3516 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003517static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003518{
3519 struct cfs_rq *cfs_rq;
3520 struct sched_entity *se = &curr->se;
3521
3522 for_each_sched_entity(se) {
3523 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003524 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003525 }
3526}
3527
3528/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003529 * called on fork with the child task as argument from the parent's context
3530 * - child not yet on the tasklist
3531 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003532 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003533static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003534{
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003535 struct cfs_rq *cfs_rq = task_cfs_rq(current);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003536 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02003537 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003538 struct rq *rq = this_rq();
3539 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003540
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003541 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003542
3543 if (unlikely(task_cpu(p) != this_cpu))
3544 __set_task_cpu(p, this_cpu);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003545
Ting Yang7109c442007-08-28 12:53:24 +02003546 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003547
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003548 if (curr)
3549 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003550 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003551
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003552 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02003553 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02003554 * Upon rescheduling, sched_class::put_prev_task() will place
3555 * 'current' within the tree based on its new key value.
3556 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003557 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05303558 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003559 }
3560
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003561 se->vruntime -= cfs_rq->min_vruntime;
3562
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003563 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003564}
3565
Steven Rostedtcb469842008-01-25 21:08:22 +01003566/*
3567 * Priority of the task has changed. Check to see if we preempt
3568 * the current task.
3569 */
3570static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3571 int oldprio, int running)
3572{
3573 /*
3574 * Reschedule if we are currently running on this runqueue and
3575 * our priority decreased, or if we are not currently running on
3576 * this runqueue and our priority is higher than the current's
3577 */
3578 if (running) {
3579 if (p->prio > oldprio)
3580 resched_task(rq->curr);
3581 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003582 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003583}
3584
3585/*
3586 * We switched to the sched_fair class.
3587 */
3588static void switched_to_fair(struct rq *rq, struct task_struct *p,
3589 int running)
3590{
3591 /*
3592 * We were most likely switched from sched_rt, so
3593 * kick off the schedule if running, otherwise just see
3594 * if we can still preempt the current task.
3595 */
3596 if (running)
3597 resched_task(rq->curr);
3598 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003599 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003600}
3601
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003602/* Account for a task changing its policy or group.
3603 *
3604 * This routine is mostly called to set cfs_rq->curr field when a task
3605 * migrates between groups/classes.
3606 */
3607static void set_curr_task_fair(struct rq *rq)
3608{
3609 struct sched_entity *se = &rq->curr->se;
3610
3611 for_each_sched_entity(se)
3612 set_next_entity(cfs_rq_of(se), se);
3613}
3614
Peter Zijlstra810b3812008-02-29 15:21:01 -05003615#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003616static void moved_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05003617{
3618 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3619
3620 update_curr(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003621 if (!on_rq)
3622 place_entity(cfs_rq, &p->se, 1);
Peter Zijlstra810b3812008-02-29 15:21:01 -05003623}
3624#endif
3625
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07003626static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00003627{
3628 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00003629 unsigned int rr_interval = 0;
3630
3631 /*
3632 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3633 * idle runqueue:
3634 */
Peter Williams0d721ce2009-09-21 01:31:53 +00003635 if (rq->cfs.load.weight)
3636 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
Peter Williams0d721ce2009-09-21 01:31:53 +00003637
3638 return rr_interval;
3639}
3640
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641/*
3642 * All the scheduling class methods:
3643 */
Ingo Molnar5522d5d2007-10-15 17:00:12 +02003644static const struct sched_class fair_sched_class = {
3645 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003646 .enqueue_task = enqueue_task_fair,
3647 .dequeue_task = dequeue_task_fair,
3648 .yield_task = yield_task_fair,
3649
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003650 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003651
3652 .pick_next_task = pick_next_task_fair,
3653 .put_prev_task = put_prev_task_fair,
3654
Peter Williams681f3e62007-10-24 18:23:51 +02003655#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08003656 .select_task_rq = select_task_rq_fair,
3657
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003658 .rq_online = rq_online_fair,
3659 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003660
3661 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02003662#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003663
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003664 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003665 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003666 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01003667
3668 .prio_changed = prio_changed_fair,
3669 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05003670
Peter Williams0d721ce2009-09-21 01:31:53 +00003671 .get_rr_interval = get_rr_interval_fair,
3672
Peter Zijlstra810b3812008-02-29 15:21:01 -05003673#ifdef CONFIG_FAIR_GROUP_SCHED
3674 .moved_group = moved_group_fair,
3675#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003676};
3677
3678#ifdef CONFIG_SCHED_DEBUG
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003679static void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003680{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003681 struct cfs_rq *cfs_rq;
3682
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003683 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02003684 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003685 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003686 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003687}
3688#endif