blob: ff7692ccda893d31ebcebcd577762625761b7640 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Arjan van de Ven97455122008-01-25 21:08:34 +010025
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020026/*
Peter Zijlstra21805082007-08-25 18:41:53 +020027 * Targeted preemption latency for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020028 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020029 *
Peter Zijlstra21805082007-08-25 18:41:53 +020030 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020031 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020034 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020035 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037 */
Mike Galbraith172e0822009-09-09 15:41:37 +020038unsigned int sysctl_sched_latency = 5000000ULL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010039unsigned int normalized_sysctl_sched_latency = 5000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020040
41/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010042 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010054 * Minimal preemption granularity for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020055 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010056 */
Mike Galbraith172e0822009-09-09 15:41:37 +020057unsigned int sysctl_sched_min_granularity = 1000000ULL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010058unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010059
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
Zou Nan hai722aab02007-11-26 21:21:49 +010063static unsigned int sched_nr_latency = 5;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010064
65/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020066 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020067 * parent will (try to) run first.
68 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020069unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020070
71/*
Ingo Molnar1799e352007-09-19 23:34:46 +020072 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020080 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020081 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020082 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
Mike Galbraith172e0822009-09-09 15:41:37 +020087unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010088unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020089
Ingo Molnarda84d962007-10-15 17:00:18 +020090const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
Peter Zijlstraa4c2f002008-10-17 19:27:03 +020092static const struct sched_class fair_sched_class;
93
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020094/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return cfs_rq->rq;
104}
105
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
108
Peter Zijlstra8f488942009-07-24 12:25:30 +0200109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
Peter Zijlstrab7581492008-04-19 19:45:00 +0200117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
Peter Zijlstra464b7522008-10-24 11:06:15 +0200165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
Peter Zijlstra8f488942009-07-24 12:25:30 +0200208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
218}
219
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200220#define entity_is_task(se) 1
221
Peter Zijlstrab7581492008-04-19 19:45:00 +0200222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200224
Peter Zijlstrab7581492008-04-19 19:45:00 +0200225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200226{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200227 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200228}
229
Peter Zijlstrab7581492008-04-19 19:45:00 +0200230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
Peter Zijlstra464b7522008-10-24 11:06:15 +0200263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
Peter Zijlstrab7581492008-04-19 19:45:00 +0200268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200276{
Peter Zijlstra368059a2007-10-15 17:00:11 +0200277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
Fabio Checconi54fdc582009-07-16 12:32:27 +0200293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra90146232007-10-15 17:00:05 +0200300{
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200301 return se->vruntime - cfs_rq->min_vruntime;
Peter Zijlstra90146232007-10-15 17:00:05 +0200302}
303
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100316 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200325/*
326 * Enqueue an entity into the rb-tree:
327 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
Peter Zijlstra90146232007-10-15 17:00:05 +0200333 s64 key = entity_key(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
Peter Zijlstra90146232007-10-15 17:00:05 +0200346 if (key < entity_key(cfs_rq, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200358 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200359 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200363}
364
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200366{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100372 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200375}
376
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200385}
386
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200388{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200390
Balbir Singh70eee742008-02-22 13:25:53 +0530391 if (!last)
392 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100393
394 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200395}
396
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100401#ifdef CONFIG_SCHED_DEBUG
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100402int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700403 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100404 loff_t *ppos)
405{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100407 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100423 return 0;
424}
425#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200426
427/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200428 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200435
436 return delta;
437}
438
439/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100450 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200451
452 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100453 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200454 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200455 }
456
457 return period;
458}
459
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200464 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200465 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200467{
Mike Galbraith0a582442009-01-02 12:16:42 +0100468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200469
Mike Galbraith0a582442009-01-02 12:16:42 +0100470 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100471 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200472 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200476
Mike Galbraith0a582442009-01-02 12:16:42 +0100477 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200478 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200486}
487
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200488/*
Peter Zijlstraac884de2008-04-19 19:45:00 +0200489 * We calculate the vruntime slice of a to be inserted task
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200490 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200491 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200492 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200494{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200496}
497
498/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200506 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200507
Ingo Molnar8179ca232007-08-02 17:41:40 +0200508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200509
510 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200511 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100513
Ingo Molnare9acbff2007-10-15 17:00:04 +0200514 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200515 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200516}
517
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200518static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200519{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200520 struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200521 u64 now = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200522 unsigned long delta_exec;
523
524 if (unlikely(!curr))
525 return;
526
527 /*
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
531 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200532 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100533 if (!delta_exec)
534 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200535
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100538
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
541
Ingo Molnarf977bb42009-09-13 18:15:54 +0200542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100543 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700544 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100545 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200546}
547
548static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550{
Ingo Molnard2819182007-08-09 11:16:47 +0200551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200552}
553
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554/*
555 * Task is being enqueued - update stats:
556 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200557static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200558{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200559 /*
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
562 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200563 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200564 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200565}
566
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200567static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200569{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
Arjan van de Ven6d082592008-01-25 21:08:35 +0100572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200575#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
579 }
580#endif
Ingo Molnare1f84502009-09-10 20:52:09 +0200581 schedstat_set(se->wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200582}
583
584static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200585update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200586{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200587 /*
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
590 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200591 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200592 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200593}
594
595/*
596 * We are picking a new current task - update its stats:
597 */
598static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200599update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200600{
601 /*
602 * We are starting a new run period:
603 */
Ingo Molnard2819182007-08-09 11:16:47 +0200604 se->exec_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200605}
606
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200607/**************************************************
608 * Scheduling class queueing methods:
609 */
610
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200611#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612static void
613add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614{
615 cfs_rq->task_weight += weight;
616}
617#else
618static inline void
619add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
620{
621}
622#endif
623
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200624static void
625account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626{
627 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530630 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200631 add_cfs_task_weight(cfs_rq, se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530632 list_add(&se->group_node, &cfs_rq->tasks);
633 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200634 cfs_rq->nr_running++;
635 se->on_rq = 1;
636}
637
638static void
639account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640{
641 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530644 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200645 add_cfs_task_weight(cfs_rq, -se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530646 list_del_init(&se->group_node);
647 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200648 cfs_rq->nr_running--;
649 se->on_rq = 0;
650}
651
Ingo Molnar2396af62007-08-09 11:16:48 +0200652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200653{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200654#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +0200655 struct task_struct *tsk = NULL;
656
657 if (entity_is_task(se))
658 tsk = task_of(se);
659
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200660 if (se->sleep_start) {
Ingo Molnard2819182007-08-09 11:16:47 +0200661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200662
663 if ((s64)delta < 0)
664 delta = 0;
665
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
668
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +0100671
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200672 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +0200673 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200674 trace_sched_stat_sleep(tsk, delta);
675 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200676 }
677 if (se->block_start) {
Ingo Molnard2819182007-08-09 11:16:47 +0200678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200679
680 if ((s64)delta < 0)
681 delta = 0;
682
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
685
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +0200688
Peter Zijlstrae4143142009-07-23 20:13:26 +0200689 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200693 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700694 }
695
Peter Zijlstrae4143142009-07-23 20:13:26 +0200696 /*
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
700 */
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
705 }
706 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +0200707 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200708 }
709#endif
710}
711
Peter Zijlstraddc97292007-10-15 17:00:10 +0200712static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713{
714#ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
716
717 if (d < 0)
718 d = -d;
719
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722#endif
723}
724
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200726place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727{
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200728 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200729
Peter Zijlstra2cb86002007-11-09 22:39:37 +0100730 /*
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
735 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200736 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200737 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200738
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200742
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200743 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200752
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200753 /*
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
756 */
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +0200759
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200760 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200761 }
762
Mike Galbraithb5d9d732009-09-08 11:12:28 +0200763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
765
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200766 se->vruntime = vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200767}
768
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200772static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200774{
775 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
782 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200783 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200784 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200785 update_curr(cfs_rq);
Peter Zijlstraa9922412008-05-05 23:56:17 +0200786 account_entity_enqueue(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200787
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100788 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200789 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +0200790 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +0200791 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792
Ingo Molnard2417e52007-08-09 11:16:47 +0200793 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +0200794 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797}
798
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100799static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100800{
Peter Zijlstrade69a802009-09-17 09:01:20 +0200801 if (!se || cfs_rq->last == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100802 cfs_rq->last = NULL;
803
Peter Zijlstrade69a802009-09-17 09:01:20 +0200804 if (!se || cfs_rq->next == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100805 cfs_rq->next = NULL;
806}
807
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100808static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
809{
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
812}
813
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200814static void
Ingo Molnar525c2712007-08-09 11:16:48 +0200815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200816{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200817 /*
818 * Update run-time statistics of the 'current'.
819 */
820 update_curr(cfs_rq);
821
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200822 update_stats_dequeue(cfs_rq, se);
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200823 if (sleep) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200824#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
827
828 if (tsk->state & TASK_INTERRUPTIBLE)
Ingo Molnard2819182007-08-09 11:16:47 +0200829 se->sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200830 if (tsk->state & TASK_UNINTERRUPTIBLE)
Ingo Molnard2819182007-08-09 11:16:47 +0200831 se->block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200832 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200833#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200834 }
835
Peter Zijlstra2002c692008-11-11 11:52:33 +0100836 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100837
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200838 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200841 update_min_vruntime(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200850}
851
852/*
853 * Preempt the current task with a newly woken task if needed:
854 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +0200855static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200856check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200857{
Peter Zijlstra11697832007-09-05 14:32:49 +0200858 unsigned long ideal_runtime, delta_exec;
859
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200860 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +0200861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100862 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200863 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100864 /*
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
867 */
868 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200869 return;
870 }
871
872 /*
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
876 */
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
879
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
882
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
886
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100889 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200890}
891
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200892static void
Ingo Molnar8494f412007-08-09 11:16:48 +0200893set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200894{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
897 /*
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
901 */
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
904 }
905
Ingo Molnar79303e92007-08-09 11:16:47 +0200906 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +0200907 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +0200908#ifdef CONFIG_SCHEDSTATS
909 /*
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
913 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +0200914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Ingo Molnareba1ed42007-10-15 17:00:02 +0200915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 }
918#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +0200919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200920}
921
Peter Zijlstra3f3a4902008-10-24 11:06:16 +0200922static int
923wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
924
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100925static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100926{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100927 struct sched_entity *se = __pick_next_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200928 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100929
Mike Galbraithf685cea2009-10-23 23:09:22 +0200930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100932
Mike Galbraithf685cea2009-10-23 23:09:22 +0200933 /*
934 * Prefer last buddy, try to return the CPU to a preempted task.
935 */
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
938
939 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100940
941 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100942}
943
Ingo Molnarab6cde22007-08-09 11:16:48 +0200944static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200945{
946 /*
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
949 */
950 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200951 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200952
Peter Zijlstraddc97292007-10-15 17:00:10 +0200953 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200954 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +0200955 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
958 }
Ingo Molnar429d43b2007-10-15 17:00:03 +0200959 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200960}
961
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100962static void
963entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200964{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200965 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200966 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200967 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200968 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200969
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100970#ifdef CONFIG_SCHED_HRTICK
971 /*
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
974 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -0700975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
978 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100979 /*
980 * don't let the period tick interfere with the hrtick preemption
981 */
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985#endif
986
Peter Zijlstrace6c1312007-10-15 17:00:14 +0200987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200988 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200989}
990
991/**************************************************
992 * CFS operations on tasks:
993 */
994
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100995#ifdef CONFIG_SCHED_HRTICK
996static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
997{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1000
1001 WARN_ON(task_rq(p) != rq);
1002
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1007
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1012 }
1013
1014 /*
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1017 */
Peter Zijlstra31656512008-07-18 18:01:23 +02001018 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02001019 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001020
Peter Zijlstra31656512008-07-18 18:01:23 +02001021 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001022 }
1023}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001024
1025/*
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1029 */
1030static void hrtick_update(struct rq *rq)
1031{
1032 struct task_struct *curr = rq->curr;
1033
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1036
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1039}
Dhaval Giani55e12e52008-06-24 23:39:43 +05301040#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001041static inline void
1042hrtick_start_fair(struct rq *rq, struct task_struct *p)
1043{
1044}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001045
1046static inline void hrtick_update(struct rq *rq)
1047{
1048}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001049#endif
1050
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001051/*
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1055 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00001056static void
1057enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001058{
1059 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001060 struct sched_entity *se = &p->se;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001061 int flags = 0;
1062
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001067
1068 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001069 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001070 break;
1071 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001072 enqueue_entity(cfs_rq, se, flags);
1073 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001074 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001075
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001076 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001077}
1078
1079/*
1080 * The dequeue_task method is called before nr_running is
1081 * decreased. We remove the task from the rbtree and
1082 * update the fair scheduling stats:
1083 */
Ingo Molnarf02231e2007-08-09 11:16:48 +02001084static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001085{
1086 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001087 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001088
1089 for_each_sched_entity(se) {
1090 cfs_rq = cfs_rq_of(se);
Ingo Molnar525c2712007-08-09 11:16:48 +02001091 dequeue_entity(cfs_rq, se, sleep);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001092 /* Don't dequeue parent if it has other entities besides us */
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001093 if (cfs_rq->load.weight)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001094 break;
Srivatsa Vaddagirib9fa3df2007-10-15 17:00:12 +02001095 sleep = 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001096 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001097
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001098 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001099}
1100
1101/*
Ingo Molnar1799e352007-09-19 23:34:46 +02001102 * sched_yield() support is very simple - we dequeue and enqueue.
1103 *
1104 * If compat_yield is turned on then we requeue to the end of the tree.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001105 */
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +02001106static void yield_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001107{
Ingo Molnardb292ca2007-12-04 17:04:39 +01001108 struct task_struct *curr = rq->curr;
1109 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1110 struct sched_entity *rightmost, *se = &curr->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001111
1112 /*
Ingo Molnar1799e352007-09-19 23:34:46 +02001113 * Are we the only task in the tree?
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001114 */
Ingo Molnar1799e352007-09-19 23:34:46 +02001115 if (unlikely(cfs_rq->nr_running == 1))
1116 return;
1117
Peter Zijlstra2002c692008-11-11 11:52:33 +01001118 clear_buddies(cfs_rq, se);
1119
Ingo Molnardb292ca2007-12-04 17:04:39 +01001120 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
Peter Zijlstra3e51f332008-05-03 18:29:28 +02001121 update_rq_clock(rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001122 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001123 * Update run-time statistics of the 'current'.
Ingo Molnar1799e352007-09-19 23:34:46 +02001124 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001125 update_curr(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001126
1127 return;
1128 }
1129 /*
1130 * Find the rightmost entry in the rbtree:
1131 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001132 rightmost = __pick_last_entity(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001133 /*
1134 * Already in the rightmost position?
1135 */
Fabio Checconi54fdc582009-07-16 12:32:27 +02001136 if (unlikely(!rightmost || entity_before(rightmost, se)))
Ingo Molnar1799e352007-09-19 23:34:46 +02001137 return;
1138
1139 /*
1140 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001141 * Upon rescheduling, sched_class::put_prev_task() will place
1142 * 'current' within the tree based on its new key value.
Ingo Molnar1799e352007-09-19 23:34:46 +02001143 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001144 se->vruntime = rightmost->vruntime + 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001145}
1146
Gregory Haskinse7693a32008-01-25 21:08:09 +01001147#ifdef CONFIG_SMP
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001148
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001149static void task_waking_fair(struct rq *rq, struct task_struct *p)
1150{
1151 struct sched_entity *se = &p->se;
1152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1153
1154 se->vruntime -= cfs_rq->min_vruntime;
1155}
1156
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001157#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001158/*
1159 * effective_load() calculates the load change as seen from the root_task_group
1160 *
1161 * Adding load to a group doesn't make a group heavier, but can cause movement
1162 * of group shares between cpus. Assuming the shares were perfectly aligned one
1163 * can calculate the shift in shares.
1164 *
1165 * The problem is that perfectly aligning the shares is rather expensive, hence
1166 * we try to avoid doing that too often - see update_shares(), which ratelimits
1167 * this change.
1168 *
1169 * We compensate this by not only taking the current delta into account, but
1170 * also considering the delta between when the shares were last adjusted and
1171 * now.
1172 *
1173 * We still saw a performance dip, some tracing learned us that between
1174 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1175 * significantly. Therefore try to bias the error in direction of failing
1176 * the affine wakeup.
1177 *
1178 */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001179static long effective_load(struct task_group *tg, int cpu,
1180 long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001181{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001182 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001183
1184 if (!tg->parent)
1185 return wl;
1186
1187 /*
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001188 * By not taking the decrease of shares on the other cpu into
1189 * account our error leans towards reducing the affine wakeups.
1190 */
1191 if (!wl && sched_feat(ASYM_EFF_LOAD))
1192 return wl;
1193
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001194 for_each_sched_entity(se) {
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001195 long S, rw, s, a, b;
Peter Zijlstra940959e2008-09-23 15:33:42 +02001196 long more_w;
1197
1198 /*
1199 * Instead of using this increment, also add the difference
1200 * between when the shares were last updated and now.
1201 */
1202 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1203 wl += more_w;
1204 wg += more_w;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001205
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001206 S = se->my_q->tg->shares;
1207 s = se->my_q->shares;
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001208 rw = se->my_q->rq_weight;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001209
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001210 a = S*(rw + wl);
1211 b = S*rw + s*wg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001212
Peter Zijlstra940959e2008-09-23 15:33:42 +02001213 wl = s*(a-b);
1214
1215 if (likely(b))
1216 wl /= b;
1217
Peter Zijlstra83378262008-06-27 13:41:37 +02001218 /*
1219 * Assume the group is already running and will
1220 * thus already be accounted for in the weight.
1221 *
1222 * That is, moving shares between CPUs, does not
1223 * alter the group weight.
1224 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001225 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001226 }
1227
1228 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001229}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001230
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001231#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001232
Peter Zijlstra83378262008-06-27 13:41:37 +02001233static inline unsigned long effective_load(struct task_group *tg, int cpu,
1234 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001235{
Peter Zijlstra83378262008-06-27 13:41:37 +02001236 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001237}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001238
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001239#endif
1240
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001241static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001242{
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001243 struct task_struct *curr = current;
1244 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001246 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001247 unsigned int imbalance;
1248 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02001249 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001250 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001251
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001252 idx = sd->wake_idx;
1253 this_cpu = smp_processor_id();
1254 prev_cpu = task_cpu(p);
1255 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001257
Peter Zijlstrae69b0f12009-09-15 19:38:52 +02001258 if (sync) {
1259 if (sched_feat(SYNC_LESS) &&
1260 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1261 p->se.avg_overlap > sysctl_sched_migration_cost))
1262 sync = 0;
1263 } else {
1264 if (sched_feat(SYNC_MORE) &&
1265 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1266 p->se.avg_overlap < sysctl_sched_migration_cost))
1267 sync = 1;
1268 }
Peter Zijlstrafc631c82009-02-11 14:27:17 +01001269
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001270 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001271 * If sync wakeup then subtract the (maximum possible)
1272 * effect of the currently running task from the load
1273 * of the current CPU:
1274 */
Peter Zijlstra83378262008-06-27 13:41:37 +02001275 if (sync) {
1276 tg = task_group(current);
1277 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001278
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001279 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02001280 load += effective_load(tg, prev_cpu, 0, -weight);
1281 }
1282
1283 tg = task_group(p);
1284 weight = p->se.load.weight;
1285
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001286 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1287
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001288 /*
1289 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001290 * due to the sync cause above having dropped this_load to 0, we'll
1291 * always have an imbalance, but there's really nothing you can do
1292 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001293 *
1294 * Otherwise check if either cpus are near enough in load to allow this
1295 * task to be woken on this_cpu.
1296 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001297 balanced = !this_load ||
1298 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
Peter Zijlstra83378262008-06-27 13:41:37 +02001299 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001300
1301 /*
1302 * If the currently running task will sleep within
1303 * a reasonable amount of time then attract this newly
1304 * woken task:
1305 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02001306 if (sync && balanced)
1307 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001308
1309 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1310 tl_per_task = cpu_avg_load_per_task(this_cpu);
1311
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001312 if (balanced ||
1313 (this_load <= load &&
1314 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001315 /*
1316 * This domain has SD_WAKE_AFFINE and
1317 * p is cache cold in this domain, and
1318 * there is no bad imbalance.
1319 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001320 schedstat_inc(sd, ttwu_move_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001321 schedstat_inc(p, se.nr_wakeups_affine);
1322
1323 return 1;
1324 }
1325 return 0;
1326}
1327
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001328/*
1329 * find_idlest_group finds and returns the least busy CPU group within the
1330 * domain.
1331 */
1332static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02001333find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001334 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01001335{
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001336 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1337 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001338 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001339
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001340 do {
1341 unsigned long load, avg_load;
1342 int local_group;
1343 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001344
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001345 /* Skip over this group if it has no CPUs allowed */
1346 if (!cpumask_intersects(sched_group_cpus(group),
1347 &p->cpus_allowed))
1348 continue;
1349
1350 local_group = cpumask_test_cpu(this_cpu,
1351 sched_group_cpus(group));
1352
1353 /* Tally up the load of all CPUs in the group */
1354 avg_load = 0;
1355
1356 for_each_cpu(i, sched_group_cpus(group)) {
1357 /* Bias balancing toward cpus of our domain */
1358 if (local_group)
1359 load = source_load(i, load_idx);
1360 else
1361 load = target_load(i, load_idx);
1362
1363 avg_load += load;
1364 }
1365
1366 /* Adjust by relative CPU power of the group */
1367 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1368
1369 if (local_group) {
1370 this_load = avg_load;
1371 this = group;
1372 } else if (avg_load < min_load) {
1373 min_load = avg_load;
1374 idlest = group;
1375 }
1376 } while (group = group->next, group != sd->groups);
1377
1378 if (!idlest || 100*this_load < imbalance*min_load)
1379 return NULL;
1380 return idlest;
1381}
1382
1383/*
1384 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1385 */
1386static int
1387find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1388{
1389 unsigned long load, min_load = ULONG_MAX;
1390 int idlest = -1;
1391 int i;
1392
1393 /* Traverse only the allowed CPUs */
1394 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1395 load = weighted_cpuload(i);
1396
1397 if (load < min_load || (load == min_load && i == this_cpu)) {
1398 min_load = load;
1399 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001400 }
1401 }
1402
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001403 return idlest;
1404}
Gregory Haskinse7693a32008-01-25 21:08:09 +01001405
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001406/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001407 * Try and locate an idle CPU in the sched_domain.
1408 */
1409static int
1410select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1411{
1412 int cpu = smp_processor_id();
1413 int prev_cpu = task_cpu(p);
1414 int i;
1415
1416 /*
1417 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1418 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1419 * always a better target than the current cpu.
1420 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001421 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1422 return prev_cpu;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001423
1424 /*
1425 * Otherwise, iterate the domain and find an elegible idle cpu.
1426 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001427 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1428 if (!cpu_rq(i)->cfs.nr_running) {
1429 target = i;
1430 break;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001431 }
1432 }
1433
1434 return target;
1435}
1436
1437/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001438 * sched_balance_self: balance the current task (running on cpu) in domains
1439 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1440 * SD_BALANCE_EXEC.
1441 *
1442 * Balance, ie. select the least loaded group.
1443 *
1444 * Returns the target CPU number, or the same CPU if no balancing is needed.
1445 *
1446 * preempt must be disabled.
1447 */
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001448static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001449{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001450 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001451 int cpu = smp_processor_id();
1452 int prev_cpu = task_cpu(p);
1453 int new_cpu = cpu;
1454 int want_affine = 0;
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001455 int want_sd = 1;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001456 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001457
Peter Zijlstra0763a662009-09-14 19:37:39 +02001458 if (sd_flag & SD_BALANCE_WAKE) {
Mike Galbraith3f04e8c2009-09-19 16:52:35 +02001459 if (sched_feat(AFFINE_WAKEUPS) &&
1460 cpumask_test_cpu(cpu, &p->cpus_allowed))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001461 want_affine = 1;
1462 new_cpu = prev_cpu;
1463 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001464
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001465 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01001466 if (!(tmp->flags & SD_LOAD_BALANCE))
1467 continue;
1468
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001469 /*
Peter Zijlstraae154be2009-09-10 14:40:57 +02001470 * If power savings logic is enabled for a domain, see if we
1471 * are not overloaded, if so, don't balance wider.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001472 */
Peter Zijlstra59abf022009-09-16 08:28:30 +02001473 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
Peter Zijlstraae154be2009-09-10 14:40:57 +02001474 unsigned long power = 0;
1475 unsigned long nr_running = 0;
1476 unsigned long capacity;
1477 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001478
Peter Zijlstraae154be2009-09-10 14:40:57 +02001479 for_each_cpu(i, sched_domain_span(tmp)) {
1480 power += power_of(i);
1481 nr_running += cpu_rq(i)->cfs.nr_running;
1482 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001483
Peter Zijlstraae154be2009-09-10 14:40:57 +02001484 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001485
Peter Zijlstra59abf022009-09-16 08:28:30 +02001486 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1487 nr_running /= 2;
1488
1489 if (nr_running < capacity)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001490 want_sd = 0;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001491 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001492
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001493 /*
1494 * While iterating the domains looking for a spanning
1495 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1496 * in cache sharing domains along the way.
1497 */
1498 if (want_affine) {
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001499 int target = -1;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001500
1501 /*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001502 * If both cpu and prev_cpu are part of this domain,
1503 * cpu is a valid SD_WAKE_AFFINE target.
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001504 */
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001505 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1506 target = cpu;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001507
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001508 /*
1509 * If there's an idle sibling in this domain, make that
1510 * the wake_affine target instead of the current cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001511 */
Mike Galbraith50b926e2010-01-04 14:44:56 +01001512 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001513 target = select_idle_sibling(p, tmp, target);
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001514
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001515 if (target >= 0) {
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001516 if (tmp->flags & SD_WAKE_AFFINE) {
1517 affine_sd = tmp;
1518 want_affine = 0;
1519 }
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001520 cpu = target;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001521 }
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001522 }
1523
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001524 if (!want_sd && !want_affine)
1525 break;
1526
Peter Zijlstra0763a662009-09-14 19:37:39 +02001527 if (!(tmp->flags & sd_flag))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001528 continue;
1529
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001530 if (want_sd)
1531 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001532 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001533
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001534 if (sched_feat(LB_SHARES_UPDATE)) {
1535 /*
1536 * Pick the largest domain to update shares over
1537 */
1538 tmp = sd;
1539 if (affine_sd && (!tmp ||
1540 cpumask_weight(sched_domain_span(affine_sd)) >
1541 cpumask_weight(sched_domain_span(sd))))
1542 tmp = affine_sd;
1543
1544 if (tmp)
1545 update_shares(tmp);
1546 }
1547
Peter Zijlstrafb58bac2009-12-01 12:21:47 +01001548 if (affine_sd && wake_affine(affine_sd, p, sync))
1549 return cpu;
Peter Zijlstra3b640892009-09-16 13:44:33 +02001550
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001551 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001552 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001553 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001554 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001555
Peter Zijlstra0763a662009-09-14 19:37:39 +02001556 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001557 sd = sd->child;
1558 continue;
1559 }
1560
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001561 if (sd_flag & SD_BALANCE_WAKE)
1562 load_idx = sd->wake_idx;
1563
1564 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001565 if (!group) {
1566 sd = sd->child;
1567 continue;
1568 }
1569
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02001570 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001571 if (new_cpu == -1 || new_cpu == cpu) {
1572 /* Now try balancing at a lower domain level of cpu */
1573 sd = sd->child;
1574 continue;
1575 }
1576
1577 /* Now try balancing at a lower domain level of new_cpu */
1578 cpu = new_cpu;
1579 weight = cpumask_weight(sched_domain_span(sd));
1580 sd = NULL;
1581 for_each_domain(cpu, tmp) {
1582 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1583 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02001584 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001585 sd = tmp;
1586 }
1587 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01001588 }
1589
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001590 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001591}
1592#endif /* CONFIG_SMP */
1593
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001594/*
1595 * Adaptive granularity
1596 *
1597 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1598 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 *
1600 * So the smaller avg_wakeup is the faster we want this task to preempt,
1601 * but we don't want to treat the preemptee unfairly and therefore allow it
1602 * to run for at least the amount of time we'd like to run.
1603 *
1604 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 *
1606 * NOTE: we use *nr_running to scale with load, this nicely matches the
1607 * degrading latency on load.
1608 */
1609static unsigned long
1610adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1611{
1612 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1613 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1614 u64 gran = 0;
1615
1616 if (this_run < expected_wakeup)
1617 gran = expected_wakeup - this_run;
1618
1619 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1620}
1621
1622static unsigned long
1623wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001624{
1625 unsigned long gran = sysctl_sched_wakeup_granularity;
1626
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001627 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1628 gran = adaptive_gran(curr, se);
1629
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001630 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001631 * Since its curr running now, convert the gran from real-time
1632 * to virtual-time in his units.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001633 */
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001634 if (sched_feat(ASYM_GRAN)) {
1635 /*
1636 * By using 'se' instead of 'curr' we penalize light tasks, so
1637 * they get preempted easier. That is, if 'se' < 'curr' then
1638 * the resulting gran will be larger, therefore penalizing the
1639 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1640 * be smaller, again penalizing the lighter task.
1641 *
1642 * This is especially important for buddies when the leftmost
1643 * task is higher priority than the buddy.
1644 */
1645 if (unlikely(se->load.weight != NICE_0_LOAD))
1646 gran = calc_delta_fair(gran, se);
1647 } else {
1648 if (unlikely(curr->load.weight != NICE_0_LOAD))
1649 gran = calc_delta_fair(gran, curr);
1650 }
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001651
1652 return gran;
1653}
1654
1655/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02001656 * Should 'se' preempt 'curr'.
1657 *
1658 * |s1
1659 * |s2
1660 * |s3
1661 * g
1662 * |<--->|c
1663 *
1664 * w(c, s1) = -1
1665 * w(c, s2) = 0
1666 * w(c, s3) = 1
1667 *
1668 */
1669static int
1670wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1671{
1672 s64 gran, vdiff = curr->vruntime - se->vruntime;
1673
1674 if (vdiff <= 0)
1675 return -1;
1676
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001677 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02001678 if (vdiff > gran)
1679 return 1;
1680
1681 return 0;
1682}
1683
Peter Zijlstra02479092008-11-04 21:25:10 +01001684static void set_last_buddy(struct sched_entity *se)
1685{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001686 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1687 for_each_sched_entity(se)
1688 cfs_rq_of(se)->last = se;
1689 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001690}
1691
1692static void set_next_buddy(struct sched_entity *se)
1693{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001694 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1695 for_each_sched_entity(se)
1696 cfs_rq_of(se)->next = se;
1697 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001698}
1699
Peter Zijlstra464b7522008-10-24 11:06:15 +02001700/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001701 * Preempt the current task with a newly woken task if needed:
1702 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001703static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001704{
1705 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02001706 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001707 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001708 int sync = wake_flags & WF_SYNC;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001709 int scale = cfs_rq->nr_running >= sched_nr_latency;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001710
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001711 if (unlikely(rt_prio(p->prio)))
1712 goto preempt;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001713
Peter Zijlstrad95f98d2008-11-04 21:25:08 +01001714 if (unlikely(p->sched_class != &fair_sched_class))
1715 return;
1716
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001717 if (unlikely(se == pse))
1718 return;
1719
Mike Galbraithf685cea2009-10-23 23:09:22 +02001720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
Mike Galbraith3cb63d52009-09-11 12:01:17 +02001721 set_next_buddy(pse);
Peter Zijlstra57fdc262008-09-23 15:33:45 +02001722
Bharata B Raoaec0a512008-08-28 14:42:49 +05301723 /*
1724 * We can come here with TIF_NEED_RESCHED already set from new task
1725 * wake up path.
1726 */
1727 if (test_tsk_need_resched(curr))
1728 return;
1729
Ingo Molnar91c234b2007-10-15 17:00:18 +02001730 /*
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001731 * Batch and idle tasks do not preempt (their preemption is driven by
Ingo Molnar91c234b2007-10-15 17:00:18 +02001732 * the tick):
1733 */
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001734 if (unlikely(p->policy != SCHED_NORMAL))
Ingo Molnar91c234b2007-10-15 17:00:18 +02001735 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001736
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001737 /* Idle tasks are by definition preempted by everybody. */
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001738 if (unlikely(curr->policy == SCHED_IDLE))
1739 goto preempt;
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001740
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001741 if (sched_feat(WAKEUP_SYNC) && sync)
1742 goto preempt;
Peter Zijlstra15afe092008-09-20 23:38:02 +02001743
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001744 if (sched_feat(WAKEUP_OVERLAP) &&
1745 se->avg_overlap < sysctl_sched_migration_cost &&
1746 pse->avg_overlap < sysctl_sched_migration_cost)
1747 goto preempt;
1748
Peter Zijlstraad4b78b2009-09-16 12:31:31 +02001749 if (!sched_feat(WAKEUP_PREEMPT))
1750 return;
1751
Jupyung Leea65ac742009-11-17 18:51:40 +09001752 update_curr(cfs_rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001753 find_matching_se(&se, &pse);
1754 BUG_ON(!pse);
1755 if (wakeup_preempt_entity(se, pse) == 1)
1756 goto preempt;
Jupyung Leea65ac742009-11-17 18:51:40 +09001757
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001758 return;
1759
1760preempt:
1761 resched_task(curr);
1762 /*
1763 * Only set the backward buddy when the current task is still
1764 * on the rq. This can happen when a wakeup gets interleaved
1765 * with schedule on the ->pre_schedule() or idle_balance()
1766 * point, either of which can * drop the rq lock.
1767 *
1768 * Also, during early boot the idle thread is in the fair class,
1769 * for obvious reasons its a bad idea to schedule back to it.
1770 */
1771 if (unlikely(!se->on_rq || curr == rq->idle))
1772 return;
1773
1774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1775 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001776}
1777
Ingo Molnarfb8d4722007-08-09 11:16:48 +02001778static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001779{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001780 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001781 struct cfs_rq *cfs_rq = &rq->cfs;
1782 struct sched_entity *se;
1783
Tim Blechmann36ace272009-11-24 11:55:45 +01001784 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001785 return NULL;
1786
1787 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02001788 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001789 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001790 cfs_rq = group_cfs_rq(se);
1791 } while (cfs_rq);
1792
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001793 p = task_of(se);
1794 hrtick_start_fair(rq, p);
1795
1796 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001797}
1798
1799/*
1800 * Account for a descheduled task:
1801 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02001802static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001803{
1804 struct sched_entity *se = &prev->se;
1805 struct cfs_rq *cfs_rq;
1806
1807 for_each_sched_entity(se) {
1808 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02001809 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001810 }
1811}
1812
Peter Williams681f3e62007-10-24 18:23:51 +02001813#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001814/**************************************************
1815 * Fair scheduling class load-balancing methods:
1816 */
1817
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001818/*
1819 * pull_task - move a task from a remote runqueue to the local runqueue.
1820 * Both runqueues must be locked.
1821 */
1822static void pull_task(struct rq *src_rq, struct task_struct *p,
1823 struct rq *this_rq, int this_cpu)
1824{
1825 deactivate_task(src_rq, p, 0);
1826 set_task_cpu(p, this_cpu);
1827 activate_task(this_rq, p, 0);
1828 check_preempt_curr(this_rq, p, 0);
1829}
1830
1831/*
1832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1833 */
1834static
1835int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1836 struct sched_domain *sd, enum cpu_idle_type idle,
1837 int *all_pinned)
1838{
1839 int tsk_cache_hot = 0;
1840 /*
1841 * We do not migrate tasks that are:
1842 * 1) running (obviously), or
1843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1844 * 3) are cache-hot on their current CPU.
1845 */
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine);
1848 return 0;
1849 }
1850 *all_pinned = 0;
1851
1852 if (task_running(rq, p)) {
1853 schedstat_inc(p, se.nr_failed_migrations_running);
1854 return 0;
1855 }
1856
1857 /*
1858 * Aggressive migration if:
1859 * 1) task is cache cold, or
1860 * 2) too many balance attempts have failed.
1861 */
1862
1863 tsk_cache_hot = task_hot(p, rq->clock, sd);
1864 if (!tsk_cache_hot ||
1865 sd->nr_balance_failed > sd->cache_nice_tries) {
1866#ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations);
1870 }
1871#endif
1872 return 1;
1873 }
1874
1875 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot);
1877 return 0;
1878 }
1879 return 1;
1880}
1881
Peter Zijlstra897c3952009-12-17 17:45:42 +01001882/*
1883 * move_one_task tries to move exactly one task from busiest to this_rq, as
1884 * part of active balancing operations within "domain".
1885 * Returns 1 if successful and 0 otherwise.
1886 *
1887 * Called with both runqueues locked.
1888 */
1889static int
1890move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1891 struct sched_domain *sd, enum cpu_idle_type idle)
1892{
1893 struct task_struct *p, *n;
1894 struct cfs_rq *cfs_rq;
1895 int pinned = 0;
1896
1897 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1898 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1899
1900 if (!can_migrate_task(p, busiest, this_cpu,
1901 sd, idle, &pinned))
1902 continue;
1903
1904 pull_task(busiest, p, this_rq, this_cpu);
1905 /*
1906 * Right now, this is only the second place pull_task()
1907 * is called, so we can safely collect pull_task()
1908 * stats here rather than inside pull_task().
1909 */
1910 schedstat_inc(sd, lb_gained[idle]);
1911 return 1;
1912 }
1913 }
1914
1915 return 0;
1916}
1917
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001918static unsigned long
1919balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1920 unsigned long max_load_move, struct sched_domain *sd,
1921 enum cpu_idle_type idle, int *all_pinned,
Peter Zijlstraee00e662009-12-17 17:25:20 +01001922 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001923{
1924 int loops = 0, pulled = 0, pinned = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001925 long rem_load_move = max_load_move;
Peter Zijlstraee00e662009-12-17 17:25:20 +01001926 struct task_struct *p, *n;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001927
1928 if (max_load_move == 0)
1929 goto out;
1930
1931 pinned = 1;
1932
Peter Zijlstraee00e662009-12-17 17:25:20 +01001933 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1934 if (loops++ > sysctl_sched_nr_migrate)
1935 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001936
Peter Zijlstraee00e662009-12-17 17:25:20 +01001937 if ((p->se.load.weight >> 1) > rem_load_move ||
1938 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1939 continue;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001940
Peter Zijlstraee00e662009-12-17 17:25:20 +01001941 pull_task(busiest, p, this_rq, this_cpu);
1942 pulled++;
1943 rem_load_move -= p->se.load.weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001944
1945#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01001946 /*
1947 * NEWIDLE balancing is a source of latency, so preemptible
1948 * kernels will stop after the first task is pulled to minimize
1949 * the critical section.
1950 */
1951 if (idle == CPU_NEWLY_IDLE)
1952 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001953#endif
1954
Peter Zijlstraee00e662009-12-17 17:25:20 +01001955 /*
1956 * We only want to steal up to the prescribed amount of
1957 * weighted load.
1958 */
1959 if (rem_load_move <= 0)
1960 break;
1961
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001962 if (p->prio < *this_best_prio)
1963 *this_best_prio = p->prio;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001964 }
1965out:
1966 /*
1967 * Right now, this is one of only two places pull_task() is called,
1968 * so we can safely collect pull_task() stats here rather than
1969 * inside pull_task().
1970 */
1971 schedstat_add(sd, lb_gained[idle], pulled);
1972
1973 if (all_pinned)
1974 *all_pinned = pinned;
1975
1976 return max_load_move - rem_load_move;
1977}
1978
Peter Zijlstra230059de2009-12-17 17:47:12 +01001979#ifdef CONFIG_FAIR_GROUP_SCHED
1980static unsigned long
1981load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1982 unsigned long max_load_move,
1983 struct sched_domain *sd, enum cpu_idle_type idle,
1984 int *all_pinned, int *this_best_prio)
1985{
1986 long rem_load_move = max_load_move;
1987 int busiest_cpu = cpu_of(busiest);
1988 struct task_group *tg;
1989
1990 rcu_read_lock();
1991 update_h_load(busiest_cpu);
1992
1993 list_for_each_entry_rcu(tg, &task_groups, list) {
1994 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1995 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1996 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1997 u64 rem_load, moved_load;
1998
1999 /*
2000 * empty group
2001 */
2002 if (!busiest_cfs_rq->task_weight)
2003 continue;
2004
2005 rem_load = (u64)rem_load_move * busiest_weight;
2006 rem_load = div_u64(rem_load, busiest_h_load + 1);
2007
2008 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2009 rem_load, sd, idle, all_pinned, this_best_prio,
2010 busiest_cfs_rq);
2011
2012 if (!moved_load)
2013 continue;
2014
2015 moved_load *= busiest_h_load;
2016 moved_load = div_u64(moved_load, busiest_weight + 1);
2017
2018 rem_load_move -= moved_load;
2019 if (rem_load_move < 0)
2020 break;
2021 }
2022 rcu_read_unlock();
2023
2024 return max_load_move - rem_load_move;
2025}
2026#else
2027static unsigned long
2028load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2029 unsigned long max_load_move,
2030 struct sched_domain *sd, enum cpu_idle_type idle,
2031 int *all_pinned, int *this_best_prio)
2032{
2033 return balance_tasks(this_rq, this_cpu, busiest,
2034 max_load_move, sd, idle, all_pinned,
2035 this_best_prio, &busiest->cfs);
2036}
2037#endif
2038
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002039/*
2040 * move_tasks tries to move up to max_load_move weighted load from busiest to
2041 * this_rq, as part of a balancing operation within domain "sd".
2042 * Returns 1 if successful and 0 otherwise.
2043 *
2044 * Called with both runqueues locked.
2045 */
2046static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2047 unsigned long max_load_move,
2048 struct sched_domain *sd, enum cpu_idle_type idle,
2049 int *all_pinned)
2050{
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002051 unsigned long total_load_moved = 0, load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002052 int this_best_prio = this_rq->curr->prio;
2053
2054 do {
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002055 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002056 max_load_move - total_load_moved,
2057 sd, idle, all_pinned, &this_best_prio);
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002058
2059 total_load_moved += load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002060
2061#ifdef CONFIG_PREEMPT
2062 /*
2063 * NEWIDLE balancing is a source of latency, so preemptible
2064 * kernels will stop after the first task is pulled to minimize
2065 * the critical section.
2066 */
2067 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2068 break;
Peter Zijlstrabaa8c112009-12-17 18:10:09 +01002069
2070 if (raw_spin_is_contended(&this_rq->lock) ||
2071 raw_spin_is_contended(&busiest->lock))
2072 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002073#endif
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002074 } while (load_moved && max_load_move > total_load_moved);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002075
2076 return total_load_moved > 0;
2077}
2078
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002079/********** Helpers for find_busiest_group ************************/
2080/*
2081 * sd_lb_stats - Structure to store the statistics of a sched_domain
2082 * during load balancing.
2083 */
2084struct sd_lb_stats {
2085 struct sched_group *busiest; /* Busiest group in this sd */
2086 struct sched_group *this; /* Local group in this sd */
2087 unsigned long total_load; /* Total load of all groups in sd */
2088 unsigned long total_pwr; /* Total power of all groups in sd */
2089 unsigned long avg_load; /* Average load across all groups in sd */
2090
2091 /** Statistics of this group */
2092 unsigned long this_load;
2093 unsigned long this_load_per_task;
2094 unsigned long this_nr_running;
2095
2096 /* Statistics of the busiest group */
2097 unsigned long max_load;
2098 unsigned long busiest_load_per_task;
2099 unsigned long busiest_nr_running;
2100
2101 int group_imb; /* Is there imbalance in this sd */
2102#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2103 int power_savings_balance; /* Is powersave balance needed for this sd */
2104 struct sched_group *group_min; /* Least loaded group in sd */
2105 struct sched_group *group_leader; /* Group which relieves group_min */
2106 unsigned long min_load_per_task; /* load_per_task in group_min */
2107 unsigned long leader_nr_running; /* Nr running of group_leader */
2108 unsigned long min_nr_running; /* Nr running of group_min */
2109#endif
2110};
2111
2112/*
2113 * sg_lb_stats - stats of a sched_group required for load_balancing
2114 */
2115struct sg_lb_stats {
2116 unsigned long avg_load; /*Avg load across the CPUs of the group */
2117 unsigned long group_load; /* Total load over the CPUs of the group */
2118 unsigned long sum_nr_running; /* Nr tasks running in the group */
2119 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2120 unsigned long group_capacity;
2121 int group_imb; /* Is there an imbalance in the group ? */
2122};
2123
2124/**
2125 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2126 * @group: The group whose first cpu is to be returned.
2127 */
2128static inline unsigned int group_first_cpu(struct sched_group *group)
2129{
2130 return cpumask_first(sched_group_cpus(group));
2131}
2132
2133/**
2134 * get_sd_load_idx - Obtain the load index for a given sched domain.
2135 * @sd: The sched_domain whose load_idx is to be obtained.
2136 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2137 */
2138static inline int get_sd_load_idx(struct sched_domain *sd,
2139 enum cpu_idle_type idle)
2140{
2141 int load_idx;
2142
2143 switch (idle) {
2144 case CPU_NOT_IDLE:
2145 load_idx = sd->busy_idx;
2146 break;
2147
2148 case CPU_NEWLY_IDLE:
2149 load_idx = sd->newidle_idx;
2150 break;
2151 default:
2152 load_idx = sd->idle_idx;
2153 break;
2154 }
2155
2156 return load_idx;
2157}
2158
2159
2160#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2161/**
2162 * init_sd_power_savings_stats - Initialize power savings statistics for
2163 * the given sched_domain, during load balancing.
2164 *
2165 * @sd: Sched domain whose power-savings statistics are to be initialized.
2166 * @sds: Variable containing the statistics for sd.
2167 * @idle: Idle status of the CPU at which we're performing load-balancing.
2168 */
2169static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2170 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2171{
2172 /*
2173 * Busy processors will not participate in power savings
2174 * balance.
2175 */
2176 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2177 sds->power_savings_balance = 0;
2178 else {
2179 sds->power_savings_balance = 1;
2180 sds->min_nr_running = ULONG_MAX;
2181 sds->leader_nr_running = 0;
2182 }
2183}
2184
2185/**
2186 * update_sd_power_savings_stats - Update the power saving stats for a
2187 * sched_domain while performing load balancing.
2188 *
2189 * @group: sched_group belonging to the sched_domain under consideration.
2190 * @sds: Variable containing the statistics of the sched_domain
2191 * @local_group: Does group contain the CPU for which we're performing
2192 * load balancing ?
2193 * @sgs: Variable containing the statistics of the group.
2194 */
2195static inline void update_sd_power_savings_stats(struct sched_group *group,
2196 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2197{
2198
2199 if (!sds->power_savings_balance)
2200 return;
2201
2202 /*
2203 * If the local group is idle or completely loaded
2204 * no need to do power savings balance at this domain
2205 */
2206 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2207 !sds->this_nr_running))
2208 sds->power_savings_balance = 0;
2209
2210 /*
2211 * If a group is already running at full capacity or idle,
2212 * don't include that group in power savings calculations
2213 */
2214 if (!sds->power_savings_balance ||
2215 sgs->sum_nr_running >= sgs->group_capacity ||
2216 !sgs->sum_nr_running)
2217 return;
2218
2219 /*
2220 * Calculate the group which has the least non-idle load.
2221 * This is the group from where we need to pick up the load
2222 * for saving power
2223 */
2224 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2225 (sgs->sum_nr_running == sds->min_nr_running &&
2226 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2227 sds->group_min = group;
2228 sds->min_nr_running = sgs->sum_nr_running;
2229 sds->min_load_per_task = sgs->sum_weighted_load /
2230 sgs->sum_nr_running;
2231 }
2232
2233 /*
2234 * Calculate the group which is almost near its
2235 * capacity but still has some space to pick up some load
2236 * from other group and save more power
2237 */
2238 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2239 return;
2240
2241 if (sgs->sum_nr_running > sds->leader_nr_running ||
2242 (sgs->sum_nr_running == sds->leader_nr_running &&
2243 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2244 sds->group_leader = group;
2245 sds->leader_nr_running = sgs->sum_nr_running;
2246 }
2247}
2248
2249/**
2250 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2251 * @sds: Variable containing the statistics of the sched_domain
2252 * under consideration.
2253 * @this_cpu: Cpu at which we're currently performing load-balancing.
2254 * @imbalance: Variable to store the imbalance.
2255 *
2256 * Description:
2257 * Check if we have potential to perform some power-savings balance.
2258 * If yes, set the busiest group to be the least loaded group in the
2259 * sched_domain, so that it's CPUs can be put to idle.
2260 *
2261 * Returns 1 if there is potential to perform power-savings balance.
2262 * Else returns 0.
2263 */
2264static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2265 int this_cpu, unsigned long *imbalance)
2266{
2267 if (!sds->power_savings_balance)
2268 return 0;
2269
2270 if (sds->this != sds->group_leader ||
2271 sds->group_leader == sds->group_min)
2272 return 0;
2273
2274 *imbalance = sds->min_load_per_task;
2275 sds->busiest = sds->group_min;
2276
2277 return 1;
2278
2279}
2280#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2281static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2282 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2283{
2284 return;
2285}
2286
2287static inline void update_sd_power_savings_stats(struct sched_group *group,
2288 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2289{
2290 return;
2291}
2292
2293static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2294 int this_cpu, unsigned long *imbalance)
2295{
2296 return 0;
2297}
2298#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2299
2300
2301unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2302{
2303 return SCHED_LOAD_SCALE;
2304}
2305
2306unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2307{
2308 return default_scale_freq_power(sd, cpu);
2309}
2310
2311unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2312{
2313 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2314 unsigned long smt_gain = sd->smt_gain;
2315
2316 smt_gain /= weight;
2317
2318 return smt_gain;
2319}
2320
2321unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2322{
2323 return default_scale_smt_power(sd, cpu);
2324}
2325
2326unsigned long scale_rt_power(int cpu)
2327{
2328 struct rq *rq = cpu_rq(cpu);
2329 u64 total, available;
2330
2331 sched_avg_update(rq);
2332
2333 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2334 available = total - rq->rt_avg;
2335
2336 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2337 total = SCHED_LOAD_SCALE;
2338
2339 total >>= SCHED_LOAD_SHIFT;
2340
2341 return div_u64(available, total);
2342}
2343
2344static void update_cpu_power(struct sched_domain *sd, int cpu)
2345{
2346 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2347 unsigned long power = SCHED_LOAD_SCALE;
2348 struct sched_group *sdg = sd->groups;
2349
2350 if (sched_feat(ARCH_POWER))
2351 power *= arch_scale_freq_power(sd, cpu);
2352 else
2353 power *= default_scale_freq_power(sd, cpu);
2354
2355 power >>= SCHED_LOAD_SHIFT;
2356
2357 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2358 if (sched_feat(ARCH_POWER))
2359 power *= arch_scale_smt_power(sd, cpu);
2360 else
2361 power *= default_scale_smt_power(sd, cpu);
2362
2363 power >>= SCHED_LOAD_SHIFT;
2364 }
2365
2366 power *= scale_rt_power(cpu);
2367 power >>= SCHED_LOAD_SHIFT;
2368
2369 if (!power)
2370 power = 1;
2371
2372 sdg->cpu_power = power;
2373}
2374
2375static void update_group_power(struct sched_domain *sd, int cpu)
2376{
2377 struct sched_domain *child = sd->child;
2378 struct sched_group *group, *sdg = sd->groups;
2379 unsigned long power;
2380
2381 if (!child) {
2382 update_cpu_power(sd, cpu);
2383 return;
2384 }
2385
2386 power = 0;
2387
2388 group = child->groups;
2389 do {
2390 power += group->cpu_power;
2391 group = group->next;
2392 } while (group != child->groups);
2393
2394 sdg->cpu_power = power;
2395}
2396
2397/**
2398 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2399 * @sd: The sched_domain whose statistics are to be updated.
2400 * @group: sched_group whose statistics are to be updated.
2401 * @this_cpu: Cpu for which load balance is currently performed.
2402 * @idle: Idle status of this_cpu
2403 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2404 * @sd_idle: Idle status of the sched_domain containing group.
2405 * @local_group: Does group contain this_cpu.
2406 * @cpus: Set of cpus considered for load balancing.
2407 * @balance: Should we balance.
2408 * @sgs: variable to hold the statistics for this group.
2409 */
2410static inline void update_sg_lb_stats(struct sched_domain *sd,
2411 struct sched_group *group, int this_cpu,
2412 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2413 int local_group, const struct cpumask *cpus,
2414 int *balance, struct sg_lb_stats *sgs)
2415{
2416 unsigned long load, max_cpu_load, min_cpu_load;
2417 int i;
2418 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2419 unsigned long sum_avg_load_per_task;
2420 unsigned long avg_load_per_task;
2421
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002422 if (local_group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002423 balance_cpu = group_first_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002424
2425 /* Tally up the load of all CPUs in the group */
2426 sum_avg_load_per_task = avg_load_per_task = 0;
2427 max_cpu_load = 0;
2428 min_cpu_load = ~0UL;
2429
2430 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2431 struct rq *rq = cpu_rq(i);
2432
2433 if (*sd_idle && rq->nr_running)
2434 *sd_idle = 0;
2435
2436 /* Bias balancing toward cpus of our domain */
2437 if (local_group) {
2438 if (idle_cpu(i) && !first_idle_cpu) {
2439 first_idle_cpu = 1;
2440 balance_cpu = i;
2441 }
2442
2443 load = target_load(i, load_idx);
2444 } else {
2445 load = source_load(i, load_idx);
2446 if (load > max_cpu_load)
2447 max_cpu_load = load;
2448 if (min_cpu_load > load)
2449 min_cpu_load = load;
2450 }
2451
2452 sgs->group_load += load;
2453 sgs->sum_nr_running += rq->nr_running;
2454 sgs->sum_weighted_load += weighted_cpuload(i);
2455
2456 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2457 }
2458
2459 /*
2460 * First idle cpu or the first cpu(busiest) in this sched group
2461 * is eligible for doing load balancing at this and above
2462 * domains. In the newly idle case, we will allow all the cpu's
2463 * to do the newly idle load balance.
2464 */
2465 if (idle != CPU_NEWLY_IDLE && local_group &&
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002466 balance_cpu != this_cpu) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002467 *balance = 0;
2468 return;
2469 }
2470
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002471 update_group_power(sd, this_cpu);
2472
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002473 /* Adjust by relative CPU power of the group */
2474 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2475
2476
2477 /*
2478 * Consider the group unbalanced when the imbalance is larger
2479 * than the average weight of two tasks.
2480 *
2481 * APZ: with cgroup the avg task weight can vary wildly and
2482 * might not be a suitable number - should we keep a
2483 * normalized nr_running number somewhere that negates
2484 * the hierarchy?
2485 */
2486 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
2487 group->cpu_power;
2488
2489 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2490 sgs->group_imb = 1;
2491
2492 sgs->group_capacity =
2493 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2494}
2495
2496/**
2497 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2498 * @sd: sched_domain whose statistics are to be updated.
2499 * @this_cpu: Cpu for which load balance is currently performed.
2500 * @idle: Idle status of this_cpu
2501 * @sd_idle: Idle status of the sched_domain containing group.
2502 * @cpus: Set of cpus considered for load balancing.
2503 * @balance: Should we balance.
2504 * @sds: variable to hold the statistics for this sched_domain.
2505 */
2506static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2507 enum cpu_idle_type idle, int *sd_idle,
2508 const struct cpumask *cpus, int *balance,
2509 struct sd_lb_stats *sds)
2510{
2511 struct sched_domain *child = sd->child;
2512 struct sched_group *group = sd->groups;
2513 struct sg_lb_stats sgs;
2514 int load_idx, prefer_sibling = 0;
2515
2516 if (child && child->flags & SD_PREFER_SIBLING)
2517 prefer_sibling = 1;
2518
2519 init_sd_power_savings_stats(sd, sds, idle);
2520 load_idx = get_sd_load_idx(sd, idle);
2521
2522 do {
2523 int local_group;
2524
2525 local_group = cpumask_test_cpu(this_cpu,
2526 sched_group_cpus(group));
2527 memset(&sgs, 0, sizeof(sgs));
2528 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2529 local_group, cpus, balance, &sgs);
2530
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002531 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002532 return;
2533
2534 sds->total_load += sgs.group_load;
2535 sds->total_pwr += group->cpu_power;
2536
2537 /*
2538 * In case the child domain prefers tasks go to siblings
2539 * first, lower the group capacity to one so that we'll try
2540 * and move all the excess tasks away.
2541 */
2542 if (prefer_sibling)
2543 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2544
2545 if (local_group) {
2546 sds->this_load = sgs.avg_load;
2547 sds->this = group;
2548 sds->this_nr_running = sgs.sum_nr_running;
2549 sds->this_load_per_task = sgs.sum_weighted_load;
2550 } else if (sgs.avg_load > sds->max_load &&
2551 (sgs.sum_nr_running > sgs.group_capacity ||
2552 sgs.group_imb)) {
2553 sds->max_load = sgs.avg_load;
2554 sds->busiest = group;
2555 sds->busiest_nr_running = sgs.sum_nr_running;
2556 sds->busiest_load_per_task = sgs.sum_weighted_load;
2557 sds->group_imb = sgs.group_imb;
2558 }
2559
2560 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2561 group = group->next;
2562 } while (group != sd->groups);
2563}
2564
2565/**
2566 * fix_small_imbalance - Calculate the minor imbalance that exists
2567 * amongst the groups of a sched_domain, during
2568 * load balancing.
2569 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2570 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2571 * @imbalance: Variable to store the imbalance.
2572 */
2573static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2574 int this_cpu, unsigned long *imbalance)
2575{
2576 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2577 unsigned int imbn = 2;
2578
2579 if (sds->this_nr_running) {
2580 sds->this_load_per_task /= sds->this_nr_running;
2581 if (sds->busiest_load_per_task >
2582 sds->this_load_per_task)
2583 imbn = 1;
2584 } else
2585 sds->this_load_per_task =
2586 cpu_avg_load_per_task(this_cpu);
2587
2588 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
2589 sds->busiest_load_per_task * imbn) {
2590 *imbalance = sds->busiest_load_per_task;
2591 return;
2592 }
2593
2594 /*
2595 * OK, we don't have enough imbalance to justify moving tasks,
2596 * however we may be able to increase total CPU power used by
2597 * moving them.
2598 */
2599
2600 pwr_now += sds->busiest->cpu_power *
2601 min(sds->busiest_load_per_task, sds->max_load);
2602 pwr_now += sds->this->cpu_power *
2603 min(sds->this_load_per_task, sds->this_load);
2604 pwr_now /= SCHED_LOAD_SCALE;
2605
2606 /* Amount of load we'd subtract */
2607 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2608 sds->busiest->cpu_power;
2609 if (sds->max_load > tmp)
2610 pwr_move += sds->busiest->cpu_power *
2611 min(sds->busiest_load_per_task, sds->max_load - tmp);
2612
2613 /* Amount of load we'd add */
2614 if (sds->max_load * sds->busiest->cpu_power <
2615 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2616 tmp = (sds->max_load * sds->busiest->cpu_power) /
2617 sds->this->cpu_power;
2618 else
2619 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2620 sds->this->cpu_power;
2621 pwr_move += sds->this->cpu_power *
2622 min(sds->this_load_per_task, sds->this_load + tmp);
2623 pwr_move /= SCHED_LOAD_SCALE;
2624
2625 /* Move if we gain throughput */
2626 if (pwr_move > pwr_now)
2627 *imbalance = sds->busiest_load_per_task;
2628}
2629
2630/**
2631 * calculate_imbalance - Calculate the amount of imbalance present within the
2632 * groups of a given sched_domain during load balance.
2633 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2634 * @this_cpu: Cpu for which currently load balance is being performed.
2635 * @imbalance: The variable to store the imbalance.
2636 */
2637static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2638 unsigned long *imbalance)
2639{
2640 unsigned long max_pull;
2641 /*
2642 * In the presence of smp nice balancing, certain scenarios can have
2643 * max load less than avg load(as we skip the groups at or below
2644 * its cpu_power, while calculating max_load..)
2645 */
2646 if (sds->max_load < sds->avg_load) {
2647 *imbalance = 0;
2648 return fix_small_imbalance(sds, this_cpu, imbalance);
2649 }
2650
2651 /* Don't want to pull so many tasks that a group would go idle */
2652 max_pull = min(sds->max_load - sds->avg_load,
2653 sds->max_load - sds->busiest_load_per_task);
2654
2655 /* How much load to actually move to equalise the imbalance */
2656 *imbalance = min(max_pull * sds->busiest->cpu_power,
2657 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2658 / SCHED_LOAD_SCALE;
2659
2660 /*
2661 * if *imbalance is less than the average load per runnable task
2662 * there is no gaurantee that any tasks will be moved so we'll have
2663 * a think about bumping its value to force at least one task to be
2664 * moved
2665 */
2666 if (*imbalance < sds->busiest_load_per_task)
2667 return fix_small_imbalance(sds, this_cpu, imbalance);
2668
2669}
2670/******* find_busiest_group() helpers end here *********************/
2671
2672/**
2673 * find_busiest_group - Returns the busiest group within the sched_domain
2674 * if there is an imbalance. If there isn't an imbalance, and
2675 * the user has opted for power-savings, it returns a group whose
2676 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2677 * such a group exists.
2678 *
2679 * Also calculates the amount of weighted load which should be moved
2680 * to restore balance.
2681 *
2682 * @sd: The sched_domain whose busiest group is to be returned.
2683 * @this_cpu: The cpu for which load balancing is currently being performed.
2684 * @imbalance: Variable which stores amount of weighted load which should
2685 * be moved to restore balance/put a group to idle.
2686 * @idle: The idle status of this_cpu.
2687 * @sd_idle: The idleness of sd
2688 * @cpus: The set of CPUs under consideration for load-balancing.
2689 * @balance: Pointer to a variable indicating if this_cpu
2690 * is the appropriate cpu to perform load balancing at this_level.
2691 *
2692 * Returns: - the busiest group if imbalance exists.
2693 * - If no imbalance and user has opted for power-savings balance,
2694 * return the least loaded group whose CPUs can be
2695 * put to idle by rebalancing its tasks onto our group.
2696 */
2697static struct sched_group *
2698find_busiest_group(struct sched_domain *sd, int this_cpu,
2699 unsigned long *imbalance, enum cpu_idle_type idle,
2700 int *sd_idle, const struct cpumask *cpus, int *balance)
2701{
2702 struct sd_lb_stats sds;
2703
2704 memset(&sds, 0, sizeof(sds));
2705
2706 /*
2707 * Compute the various statistics relavent for load balancing at
2708 * this level.
2709 */
2710 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2711 balance, &sds);
2712
2713 /* Cases where imbalance does not exist from POV of this_cpu */
2714 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2715 * at this level.
2716 * 2) There is no busy sibling group to pull from.
2717 * 3) This group is the busiest group.
2718 * 4) This group is more busy than the avg busieness at this
2719 * sched_domain.
2720 * 5) The imbalance is within the specified limit.
2721 * 6) Any rebalance would lead to ping-pong
2722 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002723 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002724 goto ret;
2725
2726 if (!sds.busiest || sds.busiest_nr_running == 0)
2727 goto out_balanced;
2728
2729 if (sds.this_load >= sds.max_load)
2730 goto out_balanced;
2731
2732 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2733
2734 if (sds.this_load >= sds.avg_load)
2735 goto out_balanced;
2736
2737 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2738 goto out_balanced;
2739
2740 sds.busiest_load_per_task /= sds.busiest_nr_running;
2741 if (sds.group_imb)
2742 sds.busiest_load_per_task =
2743 min(sds.busiest_load_per_task, sds.avg_load);
2744
2745 /*
2746 * We're trying to get all the cpus to the average_load, so we don't
2747 * want to push ourselves above the average load, nor do we wish to
2748 * reduce the max loaded cpu below the average load, as either of these
2749 * actions would just result in more rebalancing later, and ping-pong
2750 * tasks around. Thus we look for the minimum possible imbalance.
2751 * Negative imbalances (*we* are more loaded than anyone else) will
2752 * be counted as no imbalance for these purposes -- we can't fix that
2753 * by pulling tasks to us. Be careful of negative numbers as they'll
2754 * appear as very large values with unsigned longs.
2755 */
2756 if (sds.max_load <= sds.busiest_load_per_task)
2757 goto out_balanced;
2758
2759 /* Looks like there is an imbalance. Compute it */
2760 calculate_imbalance(&sds, this_cpu, imbalance);
2761 return sds.busiest;
2762
2763out_balanced:
2764 /*
2765 * There is no obvious imbalance. But check if we can do some balancing
2766 * to save power.
2767 */
2768 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2769 return sds.busiest;
2770ret:
2771 *imbalance = 0;
2772 return NULL;
2773}
2774
2775/*
2776 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2777 */
2778static struct rq *
2779find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2780 unsigned long imbalance, const struct cpumask *cpus)
2781{
2782 struct rq *busiest = NULL, *rq;
2783 unsigned long max_load = 0;
2784 int i;
2785
2786 for_each_cpu(i, sched_group_cpus(group)) {
2787 unsigned long power = power_of(i);
2788 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2789 unsigned long wl;
2790
2791 if (!cpumask_test_cpu(i, cpus))
2792 continue;
2793
2794 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002795 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002796
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002797 /*
2798 * When comparing with imbalance, use weighted_cpuload()
2799 * which is not scaled with the cpu power.
2800 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002801 if (capacity && rq->nr_running == 1 && wl > imbalance)
2802 continue;
2803
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002804 /*
2805 * For the load comparisons with the other cpu's, consider
2806 * the weighted_cpuload() scaled with the cpu power, so that
2807 * the load can be moved away from the cpu that is potentially
2808 * running at a lower capacity.
2809 */
2810 wl = (wl * SCHED_LOAD_SCALE) / power;
2811
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002812 if (wl > max_load) {
2813 max_load = wl;
2814 busiest = rq;
2815 }
2816 }
2817
2818 return busiest;
2819}
2820
2821/*
2822 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2823 * so long as it is large enough.
2824 */
2825#define MAX_PINNED_INTERVAL 512
2826
2827/* Working cpumask for load_balance and load_balance_newidle. */
2828static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2829
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002830static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2831{
2832 if (idle == CPU_NEWLY_IDLE) {
2833 /*
2834 * The only task running in a non-idle cpu can be moved to this
2835 * cpu in an attempt to completely freeup the other CPU
2836 * package.
2837 *
2838 * The package power saving logic comes from
2839 * find_busiest_group(). If there are no imbalance, then
2840 * f_b_g() will return NULL. However when sched_mc={1,2} then
2841 * f_b_g() will select a group from which a running task may be
2842 * pulled to this cpu in order to make the other package idle.
2843 * If there is no opportunity to make a package idle and if
2844 * there are no imbalance, then f_b_g() will return NULL and no
2845 * action will be taken in load_balance_newidle().
2846 *
2847 * Under normal task pull operation due to imbalance, there
2848 * will be more than one task in the source run queue and
2849 * move_tasks() will succeed. ld_moved will be true and this
2850 * active balance code will not be triggered.
2851 */
2852 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2854 return 0;
2855
2856 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2857 return 0;
2858 }
2859
2860 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2861}
2862
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002863/*
2864 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2865 * tasks if there is an imbalance.
2866 */
2867static int load_balance(int this_cpu, struct rq *this_rq,
2868 struct sched_domain *sd, enum cpu_idle_type idle,
2869 int *balance)
2870{
2871 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2872 struct sched_group *group;
2873 unsigned long imbalance;
2874 struct rq *busiest;
2875 unsigned long flags;
2876 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2877
2878 cpumask_copy(cpus, cpu_active_mask);
2879
2880 /*
2881 * When power savings policy is enabled for the parent domain, idle
2882 * sibling can pick up load irrespective of busy siblings. In this case,
2883 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2884 * portraying it as CPU_NOT_IDLE.
2885 */
2886 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2887 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2888 sd_idle = 1;
2889
2890 schedstat_inc(sd, lb_count[idle]);
2891
2892redo:
2893 update_shares(sd);
2894 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2895 cpus, balance);
2896
2897 if (*balance == 0)
2898 goto out_balanced;
2899
2900 if (!group) {
2901 schedstat_inc(sd, lb_nobusyg[idle]);
2902 goto out_balanced;
2903 }
2904
2905 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2906 if (!busiest) {
2907 schedstat_inc(sd, lb_nobusyq[idle]);
2908 goto out_balanced;
2909 }
2910
2911 BUG_ON(busiest == this_rq);
2912
2913 schedstat_add(sd, lb_imbalance[idle], imbalance);
2914
2915 ld_moved = 0;
2916 if (busiest->nr_running > 1) {
2917 /*
2918 * Attempt to move tasks. If find_busiest_group has found
2919 * an imbalance but busiest->nr_running <= 1, the group is
2920 * still unbalanced. ld_moved simply stays zero, so it is
2921 * correctly treated as an imbalance.
2922 */
2923 local_irq_save(flags);
2924 double_rq_lock(this_rq, busiest);
2925 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2926 imbalance, sd, idle, &all_pinned);
2927 double_rq_unlock(this_rq, busiest);
2928 local_irq_restore(flags);
2929
2930 /*
2931 * some other cpu did the load balance for us.
2932 */
2933 if (ld_moved && this_cpu != smp_processor_id())
2934 resched_cpu(this_cpu);
2935
2936 /* All tasks on this runqueue were pinned by CPU affinity */
2937 if (unlikely(all_pinned)) {
2938 cpumask_clear_cpu(cpu_of(busiest), cpus);
2939 if (!cpumask_empty(cpus))
2940 goto redo;
2941 goto out_balanced;
2942 }
2943 }
2944
2945 if (!ld_moved) {
2946 schedstat_inc(sd, lb_failed[idle]);
2947 sd->nr_balance_failed++;
2948
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002949 if (need_active_balance(sd, sd_idle, idle)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002950 raw_spin_lock_irqsave(&busiest->lock, flags);
2951
2952 /* don't kick the migration_thread, if the curr
2953 * task on busiest cpu can't be moved to this_cpu
2954 */
2955 if (!cpumask_test_cpu(this_cpu,
2956 &busiest->curr->cpus_allowed)) {
2957 raw_spin_unlock_irqrestore(&busiest->lock,
2958 flags);
2959 all_pinned = 1;
2960 goto out_one_pinned;
2961 }
2962
2963 if (!busiest->active_balance) {
2964 busiest->active_balance = 1;
2965 busiest->push_cpu = this_cpu;
2966 active_balance = 1;
2967 }
2968 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2969 if (active_balance)
2970 wake_up_process(busiest->migration_thread);
2971
2972 /*
2973 * We've kicked active balancing, reset the failure
2974 * counter.
2975 */
2976 sd->nr_balance_failed = sd->cache_nice_tries+1;
2977 }
2978 } else
2979 sd->nr_balance_failed = 0;
2980
2981 if (likely(!active_balance)) {
2982 /* We were unbalanced, so reset the balancing interval */
2983 sd->balance_interval = sd->min_interval;
2984 } else {
2985 /*
2986 * If we've begun active balancing, start to back off. This
2987 * case may not be covered by the all_pinned logic if there
2988 * is only 1 task on the busy runqueue (because we don't call
2989 * move_tasks).
2990 */
2991 if (sd->balance_interval < sd->max_interval)
2992 sd->balance_interval *= 2;
2993 }
2994
2995 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2996 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2997 ld_moved = -1;
2998
2999 goto out;
3000
3001out_balanced:
3002 schedstat_inc(sd, lb_balanced[idle]);
3003
3004 sd->nr_balance_failed = 0;
3005
3006out_one_pinned:
3007 /* tune up the balancing interval */
3008 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3009 (sd->balance_interval < sd->max_interval))
3010 sd->balance_interval *= 2;
3011
3012 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3013 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3014 ld_moved = -1;
3015 else
3016 ld_moved = 0;
3017out:
3018 if (ld_moved)
3019 update_shares(sd);
3020 return ld_moved;
3021}
3022
3023/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003024 * idle_balance is called by schedule() if this_cpu is about to become
3025 * idle. Attempts to pull tasks from other CPUs.
3026 */
3027static void idle_balance(int this_cpu, struct rq *this_rq)
3028{
3029 struct sched_domain *sd;
3030 int pulled_task = 0;
3031 unsigned long next_balance = jiffies + HZ;
3032
3033 this_rq->idle_stamp = this_rq->clock;
3034
3035 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3036 return;
3037
Peter Zijlstraf492e122009-12-23 15:29:42 +01003038 /*
3039 * Drop the rq->lock, but keep IRQ/preempt disabled.
3040 */
3041 raw_spin_unlock(&this_rq->lock);
3042
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003043 for_each_domain(this_cpu, sd) {
3044 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01003045 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003046
3047 if (!(sd->flags & SD_LOAD_BALANCE))
3048 continue;
3049
Peter Zijlstraf492e122009-12-23 15:29:42 +01003050 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003051 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01003052 pulled_task = load_balance(this_cpu, this_rq,
3053 sd, CPU_NEWLY_IDLE, &balance);
3054 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003055
3056 interval = msecs_to_jiffies(sd->balance_interval);
3057 if (time_after(next_balance, sd->last_balance + interval))
3058 next_balance = sd->last_balance + interval;
3059 if (pulled_task) {
3060 this_rq->idle_stamp = 0;
3061 break;
3062 }
3063 }
Peter Zijlstraf492e122009-12-23 15:29:42 +01003064
3065 raw_spin_lock(&this_rq->lock);
3066
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003067 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3068 /*
3069 * We are going idle. next_balance may be set based on
3070 * a busy processor. So reset next_balance.
3071 */
3072 this_rq->next_balance = next_balance;
3073 }
3074}
3075
3076/*
3077 * active_load_balance is run by migration threads. It pushes running tasks
3078 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3079 * running on each physical CPU where possible, and avoids physical /
3080 * logical imbalances.
3081 *
3082 * Called with busiest_rq locked.
3083 */
3084static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3085{
3086 int target_cpu = busiest_rq->push_cpu;
3087 struct sched_domain *sd;
3088 struct rq *target_rq;
3089
3090 /* Is there any task to move? */
3091 if (busiest_rq->nr_running <= 1)
3092 return;
3093
3094 target_rq = cpu_rq(target_cpu);
3095
3096 /*
3097 * This condition is "impossible", if it occurs
3098 * we need to fix it. Originally reported by
3099 * Bjorn Helgaas on a 128-cpu setup.
3100 */
3101 BUG_ON(busiest_rq == target_rq);
3102
3103 /* move a task from busiest_rq to target_rq */
3104 double_lock_balance(busiest_rq, target_rq);
3105 update_rq_clock(busiest_rq);
3106 update_rq_clock(target_rq);
3107
3108 /* Search for an sd spanning us and the target CPU. */
3109 for_each_domain(target_cpu, sd) {
3110 if ((sd->flags & SD_LOAD_BALANCE) &&
3111 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3112 break;
3113 }
3114
3115 if (likely(sd)) {
3116 schedstat_inc(sd, alb_count);
3117
3118 if (move_one_task(target_rq, target_cpu, busiest_rq,
3119 sd, CPU_IDLE))
3120 schedstat_inc(sd, alb_pushed);
3121 else
3122 schedstat_inc(sd, alb_failed);
3123 }
3124 double_unlock_balance(busiest_rq, target_rq);
3125}
3126
3127#ifdef CONFIG_NO_HZ
3128static struct {
3129 atomic_t load_balancer;
3130 cpumask_var_t cpu_mask;
3131 cpumask_var_t ilb_grp_nohz_mask;
3132} nohz ____cacheline_aligned = {
3133 .load_balancer = ATOMIC_INIT(-1),
3134};
3135
3136int get_nohz_load_balancer(void)
3137{
3138 return atomic_read(&nohz.load_balancer);
3139}
3140
3141#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3142/**
3143 * lowest_flag_domain - Return lowest sched_domain containing flag.
3144 * @cpu: The cpu whose lowest level of sched domain is to
3145 * be returned.
3146 * @flag: The flag to check for the lowest sched_domain
3147 * for the given cpu.
3148 *
3149 * Returns the lowest sched_domain of a cpu which contains the given flag.
3150 */
3151static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3152{
3153 struct sched_domain *sd;
3154
3155 for_each_domain(cpu, sd)
3156 if (sd && (sd->flags & flag))
3157 break;
3158
3159 return sd;
3160}
3161
3162/**
3163 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3164 * @cpu: The cpu whose domains we're iterating over.
3165 * @sd: variable holding the value of the power_savings_sd
3166 * for cpu.
3167 * @flag: The flag to filter the sched_domains to be iterated.
3168 *
3169 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3170 * set, starting from the lowest sched_domain to the highest.
3171 */
3172#define for_each_flag_domain(cpu, sd, flag) \
3173 for (sd = lowest_flag_domain(cpu, flag); \
3174 (sd && (sd->flags & flag)); sd = sd->parent)
3175
3176/**
3177 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3178 * @ilb_group: group to be checked for semi-idleness
3179 *
3180 * Returns: 1 if the group is semi-idle. 0 otherwise.
3181 *
3182 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3183 * and atleast one non-idle CPU. This helper function checks if the given
3184 * sched_group is semi-idle or not.
3185 */
3186static inline int is_semi_idle_group(struct sched_group *ilb_group)
3187{
3188 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3189 sched_group_cpus(ilb_group));
3190
3191 /*
3192 * A sched_group is semi-idle when it has atleast one busy cpu
3193 * and atleast one idle cpu.
3194 */
3195 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3196 return 0;
3197
3198 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3199 return 0;
3200
3201 return 1;
3202}
3203/**
3204 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3205 * @cpu: The cpu which is nominating a new idle_load_balancer.
3206 *
3207 * Returns: Returns the id of the idle load balancer if it exists,
3208 * Else, returns >= nr_cpu_ids.
3209 *
3210 * This algorithm picks the idle load balancer such that it belongs to a
3211 * semi-idle powersavings sched_domain. The idea is to try and avoid
3212 * completely idle packages/cores just for the purpose of idle load balancing
3213 * when there are other idle cpu's which are better suited for that job.
3214 */
3215static int find_new_ilb(int cpu)
3216{
3217 struct sched_domain *sd;
3218 struct sched_group *ilb_group;
3219
3220 /*
3221 * Have idle load balancer selection from semi-idle packages only
3222 * when power-aware load balancing is enabled
3223 */
3224 if (!(sched_smt_power_savings || sched_mc_power_savings))
3225 goto out_done;
3226
3227 /*
3228 * Optimize for the case when we have no idle CPUs or only one
3229 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3230 */
3231 if (cpumask_weight(nohz.cpu_mask) < 2)
3232 goto out_done;
3233
3234 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3235 ilb_group = sd->groups;
3236
3237 do {
3238 if (is_semi_idle_group(ilb_group))
3239 return cpumask_first(nohz.ilb_grp_nohz_mask);
3240
3241 ilb_group = ilb_group->next;
3242
3243 } while (ilb_group != sd->groups);
3244 }
3245
3246out_done:
3247 return cpumask_first(nohz.cpu_mask);
3248}
3249#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3250static inline int find_new_ilb(int call_cpu)
3251{
3252 return cpumask_first(nohz.cpu_mask);
3253}
3254#endif
3255
3256/*
3257 * This routine will try to nominate the ilb (idle load balancing)
3258 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3259 * load balancing on behalf of all those cpus. If all the cpus in the system
3260 * go into this tickless mode, then there will be no ilb owner (as there is
3261 * no need for one) and all the cpus will sleep till the next wakeup event
3262 * arrives...
3263 *
3264 * For the ilb owner, tick is not stopped. And this tick will be used
3265 * for idle load balancing. ilb owner will still be part of
3266 * nohz.cpu_mask..
3267 *
3268 * While stopping the tick, this cpu will become the ilb owner if there
3269 * is no other owner. And will be the owner till that cpu becomes busy
3270 * or if all cpus in the system stop their ticks at which point
3271 * there is no need for ilb owner.
3272 *
3273 * When the ilb owner becomes busy, it nominates another owner, during the
3274 * next busy scheduler_tick()
3275 */
3276int select_nohz_load_balancer(int stop_tick)
3277{
3278 int cpu = smp_processor_id();
3279
3280 if (stop_tick) {
3281 cpu_rq(cpu)->in_nohz_recently = 1;
3282
3283 if (!cpu_active(cpu)) {
3284 if (atomic_read(&nohz.load_balancer) != cpu)
3285 return 0;
3286
3287 /*
3288 * If we are going offline and still the leader,
3289 * give up!
3290 */
3291 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3292 BUG();
3293
3294 return 0;
3295 }
3296
3297 cpumask_set_cpu(cpu, nohz.cpu_mask);
3298
3299 /* time for ilb owner also to sleep */
3300 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3301 if (atomic_read(&nohz.load_balancer) == cpu)
3302 atomic_set(&nohz.load_balancer, -1);
3303 return 0;
3304 }
3305
3306 if (atomic_read(&nohz.load_balancer) == -1) {
3307 /* make me the ilb owner */
3308 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3309 return 1;
3310 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3311 int new_ilb;
3312
3313 if (!(sched_smt_power_savings ||
3314 sched_mc_power_savings))
3315 return 1;
3316 /*
3317 * Check to see if there is a more power-efficient
3318 * ilb.
3319 */
3320 new_ilb = find_new_ilb(cpu);
3321 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3322 atomic_set(&nohz.load_balancer, -1);
3323 resched_cpu(new_ilb);
3324 return 0;
3325 }
3326 return 1;
3327 }
3328 } else {
3329 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3330 return 0;
3331
3332 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3333
3334 if (atomic_read(&nohz.load_balancer) == cpu)
3335 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3336 BUG();
3337 }
3338 return 0;
3339}
3340#endif
3341
3342static DEFINE_SPINLOCK(balancing);
3343
3344/*
3345 * It checks each scheduling domain to see if it is due to be balanced,
3346 * and initiates a balancing operation if so.
3347 *
3348 * Balancing parameters are set up in arch_init_sched_domains.
3349 */
3350static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3351{
3352 int balance = 1;
3353 struct rq *rq = cpu_rq(cpu);
3354 unsigned long interval;
3355 struct sched_domain *sd;
3356 /* Earliest time when we have to do rebalance again */
3357 unsigned long next_balance = jiffies + 60*HZ;
3358 int update_next_balance = 0;
3359 int need_serialize;
3360
3361 for_each_domain(cpu, sd) {
3362 if (!(sd->flags & SD_LOAD_BALANCE))
3363 continue;
3364
3365 interval = sd->balance_interval;
3366 if (idle != CPU_IDLE)
3367 interval *= sd->busy_factor;
3368
3369 /* scale ms to jiffies */
3370 interval = msecs_to_jiffies(interval);
3371 if (unlikely(!interval))
3372 interval = 1;
3373 if (interval > HZ*NR_CPUS/10)
3374 interval = HZ*NR_CPUS/10;
3375
3376 need_serialize = sd->flags & SD_SERIALIZE;
3377
3378 if (need_serialize) {
3379 if (!spin_trylock(&balancing))
3380 goto out;
3381 }
3382
3383 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3384 if (load_balance(cpu, rq, sd, idle, &balance)) {
3385 /*
3386 * We've pulled tasks over so either we're no
3387 * longer idle, or one of our SMT siblings is
3388 * not idle.
3389 */
3390 idle = CPU_NOT_IDLE;
3391 }
3392 sd->last_balance = jiffies;
3393 }
3394 if (need_serialize)
3395 spin_unlock(&balancing);
3396out:
3397 if (time_after(next_balance, sd->last_balance + interval)) {
3398 next_balance = sd->last_balance + interval;
3399 update_next_balance = 1;
3400 }
3401
3402 /*
3403 * Stop the load balance at this level. There is another
3404 * CPU in our sched group which is doing load balancing more
3405 * actively.
3406 */
3407 if (!balance)
3408 break;
3409 }
3410
3411 /*
3412 * next_balance will be updated only when there is a need.
3413 * When the cpu is attached to null domain for ex, it will not be
3414 * updated.
3415 */
3416 if (likely(update_next_balance))
3417 rq->next_balance = next_balance;
3418}
3419
3420/*
3421 * run_rebalance_domains is triggered when needed from the scheduler tick.
3422 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3423 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3424 */
3425static void run_rebalance_domains(struct softirq_action *h)
3426{
3427 int this_cpu = smp_processor_id();
3428 struct rq *this_rq = cpu_rq(this_cpu);
3429 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3430 CPU_IDLE : CPU_NOT_IDLE;
3431
3432 rebalance_domains(this_cpu, idle);
3433
3434#ifdef CONFIG_NO_HZ
3435 /*
3436 * If this cpu is the owner for idle load balancing, then do the
3437 * balancing on behalf of the other idle cpus whose ticks are
3438 * stopped.
3439 */
3440 if (this_rq->idle_at_tick &&
3441 atomic_read(&nohz.load_balancer) == this_cpu) {
3442 struct rq *rq;
3443 int balance_cpu;
3444
3445 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3446 if (balance_cpu == this_cpu)
3447 continue;
3448
3449 /*
3450 * If this cpu gets work to do, stop the load balancing
3451 * work being done for other cpus. Next load
3452 * balancing owner will pick it up.
3453 */
3454 if (need_resched())
3455 break;
3456
3457 rebalance_domains(balance_cpu, CPU_IDLE);
3458
3459 rq = cpu_rq(balance_cpu);
3460 if (time_after(this_rq->next_balance, rq->next_balance))
3461 this_rq->next_balance = rq->next_balance;
3462 }
3463 }
3464#endif
3465}
3466
3467static inline int on_null_domain(int cpu)
3468{
3469 return !rcu_dereference(cpu_rq(cpu)->sd);
3470}
3471
3472/*
3473 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3474 *
3475 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3476 * idle load balancing owner or decide to stop the periodic load balancing,
3477 * if the whole system is idle.
3478 */
3479static inline void trigger_load_balance(struct rq *rq, int cpu)
3480{
3481#ifdef CONFIG_NO_HZ
3482 /*
3483 * If we were in the nohz mode recently and busy at the current
3484 * scheduler tick, then check if we need to nominate new idle
3485 * load balancer.
3486 */
3487 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3488 rq->in_nohz_recently = 0;
3489
3490 if (atomic_read(&nohz.load_balancer) == cpu) {
3491 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3492 atomic_set(&nohz.load_balancer, -1);
3493 }
3494
3495 if (atomic_read(&nohz.load_balancer) == -1) {
3496 int ilb = find_new_ilb(cpu);
3497
3498 if (ilb < nr_cpu_ids)
3499 resched_cpu(ilb);
3500 }
3501 }
3502
3503 /*
3504 * If this cpu is idle and doing idle load balancing for all the
3505 * cpus with ticks stopped, is it time for that to stop?
3506 */
3507 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3508 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3509 resched_cpu(cpu);
3510 return;
3511 }
3512
3513 /*
3514 * If this cpu is idle and the idle load balancing is done by
3515 * someone else, then no need raise the SCHED_SOFTIRQ
3516 */
3517 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3518 cpumask_test_cpu(cpu, nohz.cpu_mask))
3519 return;
3520#endif
3521 /* Don't need to rebalance while attached to NULL domain */
3522 if (time_after_eq(jiffies, rq->next_balance) &&
3523 likely(!on_null_domain(cpu)))
3524 raise_softirq(SCHED_SOFTIRQ);
3525}
3526
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003527static void rq_online_fair(struct rq *rq)
3528{
3529 update_sysctl();
3530}
3531
3532static void rq_offline_fair(struct rq *rq)
3533{
3534 update_sysctl();
3535}
3536
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003537#else /* CONFIG_SMP */
3538
3539/*
3540 * on UP we do not need to balance between CPUs:
3541 */
3542static inline void idle_balance(int cpu, struct rq *rq)
3543{
3544}
3545
Dhaval Giani55e12e52008-06-24 23:39:43 +05303546#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02003547
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003548/*
3549 * scheduler tick hitting a task of our scheduling class:
3550 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003551static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003552{
3553 struct cfs_rq *cfs_rq;
3554 struct sched_entity *se = &curr->se;
3555
3556 for_each_sched_entity(se) {
3557 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003558 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003559 }
3560}
3561
3562/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003563 * called on fork with the child task as argument from the parent's context
3564 * - child not yet on the tasklist
3565 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003566 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003567static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003568{
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003569 struct cfs_rq *cfs_rq = task_cfs_rq(current);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003570 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02003571 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003572 struct rq *rq = this_rq();
3573 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003574
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003575 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003576
3577 if (unlikely(task_cpu(p) != this_cpu))
3578 __set_task_cpu(p, this_cpu);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003579
Ting Yang7109c442007-08-28 12:53:24 +02003580 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003581
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003582 if (curr)
3583 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003584 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003585
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003586 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02003587 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02003588 * Upon rescheduling, sched_class::put_prev_task() will place
3589 * 'current' within the tree based on its new key value.
3590 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003591 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05303592 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003593 }
3594
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003595 se->vruntime -= cfs_rq->min_vruntime;
3596
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003597 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003598}
3599
Steven Rostedtcb469842008-01-25 21:08:22 +01003600/*
3601 * Priority of the task has changed. Check to see if we preempt
3602 * the current task.
3603 */
3604static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3605 int oldprio, int running)
3606{
3607 /*
3608 * Reschedule if we are currently running on this runqueue and
3609 * our priority decreased, or if we are not currently running on
3610 * this runqueue and our priority is higher than the current's
3611 */
3612 if (running) {
3613 if (p->prio > oldprio)
3614 resched_task(rq->curr);
3615 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003616 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003617}
3618
3619/*
3620 * We switched to the sched_fair class.
3621 */
3622static void switched_to_fair(struct rq *rq, struct task_struct *p,
3623 int running)
3624{
3625 /*
3626 * We were most likely switched from sched_rt, so
3627 * kick off the schedule if running, otherwise just see
3628 * if we can still preempt the current task.
3629 */
3630 if (running)
3631 resched_task(rq->curr);
3632 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003633 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003634}
3635
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003636/* Account for a task changing its policy or group.
3637 *
3638 * This routine is mostly called to set cfs_rq->curr field when a task
3639 * migrates between groups/classes.
3640 */
3641static void set_curr_task_fair(struct rq *rq)
3642{
3643 struct sched_entity *se = &rq->curr->se;
3644
3645 for_each_sched_entity(se)
3646 set_next_entity(cfs_rq_of(se), se);
3647}
3648
Peter Zijlstra810b3812008-02-29 15:21:01 -05003649#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003650static void moved_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05003651{
3652 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3653
3654 update_curr(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003655 if (!on_rq)
3656 place_entity(cfs_rq, &p->se, 1);
Peter Zijlstra810b3812008-02-29 15:21:01 -05003657}
3658#endif
3659
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07003660static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00003661{
3662 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00003663 unsigned int rr_interval = 0;
3664
3665 /*
3666 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3667 * idle runqueue:
3668 */
Peter Williams0d721ce2009-09-21 01:31:53 +00003669 if (rq->cfs.load.weight)
3670 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
Peter Williams0d721ce2009-09-21 01:31:53 +00003671
3672 return rr_interval;
3673}
3674
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003675/*
3676 * All the scheduling class methods:
3677 */
Ingo Molnar5522d5d2007-10-15 17:00:12 +02003678static const struct sched_class fair_sched_class = {
3679 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003680 .enqueue_task = enqueue_task_fair,
3681 .dequeue_task = dequeue_task_fair,
3682 .yield_task = yield_task_fair,
3683
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003684 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003685
3686 .pick_next_task = pick_next_task_fair,
3687 .put_prev_task = put_prev_task_fair,
3688
Peter Williams681f3e62007-10-24 18:23:51 +02003689#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08003690 .select_task_rq = select_task_rq_fair,
3691
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003692 .rq_online = rq_online_fair,
3693 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003694
3695 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02003696#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003697
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003698 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003699 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003700 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01003701
3702 .prio_changed = prio_changed_fair,
3703 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05003704
Peter Williams0d721ce2009-09-21 01:31:53 +00003705 .get_rr_interval = get_rr_interval_fair,
3706
Peter Zijlstra810b3812008-02-29 15:21:01 -05003707#ifdef CONFIG_FAIR_GROUP_SCHED
3708 .moved_group = moved_group_fair,
3709#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003710};
3711
3712#ifdef CONFIG_SCHED_DEBUG
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003713static void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003714{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003715 struct cfs_rq *cfs_rq;
3716
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003717 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02003718 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003719 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003720 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003721}
3722#endif