blob: 8ad164bbdac12c05985bc902e88a674b4ddc3d0e [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Arjan van de Ven97455122008-01-25 21:08:34 +010025
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020026/*
Peter Zijlstra21805082007-08-25 18:41:53 +020027 * Targeted preemption latency for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020028 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020029 *
Peter Zijlstra21805082007-08-25 18:41:53 +020030 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020031 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020034 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020035 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037 */
Mike Galbraith172e0822009-09-09 15:41:37 +020038unsigned int sysctl_sched_latency = 5000000ULL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010039unsigned int normalized_sysctl_sched_latency = 5000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020040
41/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010042 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010054 * Minimal preemption granularity for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020055 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010056 */
Mike Galbraith172e0822009-09-09 15:41:37 +020057unsigned int sysctl_sched_min_granularity = 1000000ULL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010058unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010059
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
Zou Nan hai722aab02007-11-26 21:21:49 +010063static unsigned int sched_nr_latency = 5;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010064
65/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020066 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020067 * parent will (try to) run first.
68 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020069unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020070
71/*
Ingo Molnar1799e352007-09-19 23:34:46 +020072 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020080 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020081 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020082 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
Mike Galbraith172e0822009-09-09 15:41:37 +020087unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010088unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020089
Ingo Molnarda84d962007-10-15 17:00:18 +020090const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
Peter Zijlstraa4c2f002008-10-17 19:27:03 +020092static const struct sched_class fair_sched_class;
93
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020094/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return cfs_rq->rq;
104}
105
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
108
Peter Zijlstra8f488942009-07-24 12:25:30 +0200109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
Peter Zijlstrab7581492008-04-19 19:45:00 +0200117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
Peter Zijlstra464b7522008-10-24 11:06:15 +0200165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
Peter Zijlstra8f488942009-07-24 12:25:30 +0200208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
218}
219
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200220#define entity_is_task(se) 1
221
Peter Zijlstrab7581492008-04-19 19:45:00 +0200222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200224
Peter Zijlstrab7581492008-04-19 19:45:00 +0200225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200226{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200227 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200228}
229
Peter Zijlstrab7581492008-04-19 19:45:00 +0200230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
Peter Zijlstra464b7522008-10-24 11:06:15 +0200263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
Peter Zijlstrab7581492008-04-19 19:45:00 +0200268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200276{
Peter Zijlstra368059a2007-10-15 17:00:11 +0200277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
Fabio Checconi54fdc582009-07-16 12:32:27 +0200293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra90146232007-10-15 17:00:05 +0200300{
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200301 return se->vruntime - cfs_rq->min_vruntime;
Peter Zijlstra90146232007-10-15 17:00:05 +0200302}
303
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100316 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200325/*
326 * Enqueue an entity into the rb-tree:
327 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
Peter Zijlstra90146232007-10-15 17:00:05 +0200333 s64 key = entity_key(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
Peter Zijlstra90146232007-10-15 17:00:05 +0200346 if (key < entity_key(cfs_rq, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200358 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200359 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200363}
364
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200366{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100372 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200375}
376
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200385}
386
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200388{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200390
Balbir Singh70eee742008-02-22 13:25:53 +0530391 if (!last)
392 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100393
394 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200395}
396
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100401#ifdef CONFIG_SCHED_DEBUG
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100402int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700403 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100404 loff_t *ppos)
405{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100407 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100423 return 0;
424}
425#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200426
427/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200428 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200435
436 return delta;
437}
438
439/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100450 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200451
452 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100453 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200454 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200455 }
456
457 return period;
458}
459
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200464 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200465 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200467{
Mike Galbraith0a582442009-01-02 12:16:42 +0100468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200469
Mike Galbraith0a582442009-01-02 12:16:42 +0100470 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100471 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200472 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200476
Mike Galbraith0a582442009-01-02 12:16:42 +0100477 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200478 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200486}
487
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200488/*
Peter Zijlstraac884de2008-04-19 19:45:00 +0200489 * We calculate the vruntime slice of a to be inserted task
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200490 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200491 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200492 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200494{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200496}
497
498/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200506 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200507
Lucas De Marchi41acab82010-03-10 23:37:45 -0300508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510
511 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200512 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100514
Ingo Molnare9acbff2007-10-15 17:00:04 +0200515 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200516 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200517}
518
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200519static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200520{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200521 struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200522 u64 now = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200533 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100534 if (!delta_exec)
535 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
Ingo Molnarf977bb42009-09-13 18:15:54 +0200543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100544 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700545 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100546 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200547}
548
549static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200553}
554
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200555/*
556 * Task is being enqueued - update stats:
557 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200559{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200564 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200565 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200566}
567
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200568static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200570{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200580 }
581#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300582 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200583}
584
585static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200587{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200592 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200593 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200601{
602 /*
603 * We are starting a new run period:
604 */
Ingo Molnard2819182007-08-09 11:16:47 +0200605 se->exec_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200606}
607
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530631 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200632 add_cfs_task_weight(cfs_rq, se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530645 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200646 add_cfs_task_weight(cfs_rq, -se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530647 list_del_init(&se->group_node);
648 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
Ingo Molnar2396af62007-08-09 11:16:48 +0200653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200654{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +0200656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
Lucas De Marchi41acab82010-03-10 23:37:45 -0300661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200663
664 if ((s64)delta < 0)
665 delta = 0;
666
Lucas De Marchi41acab82010-03-10 23:37:45 -0300667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200669
Lucas De Marchi41acab82010-03-10 23:37:45 -0300670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +0100672
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200673 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +0200674 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200675 trace_sched_stat_sleep(tsk, delta);
676 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200677 }
Lucas De Marchi41acab82010-03-10 23:37:45 -0300678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200680
681 if ((s64)delta < 0)
682 delta = 0;
683
Lucas De Marchi41acab82010-03-10 23:37:45 -0300684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200686
Lucas De Marchi41acab82010-03-10 23:37:45 -0300687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +0200689
Peter Zijlstrae4143142009-07-23 20:13:26 +0200690 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700691 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200694 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700695 }
696
Peter Zijlstrae4143142009-07-23 20:13:26 +0200697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +0200708 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200709 }
710#endif
711}
712
Peter Zijlstraddc97292007-10-15 17:00:10 +0200713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200726static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200729 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200730
Peter Zijlstra2cb86002007-11-09 22:39:37 +0100731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200737 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200738 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200739
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200740 /* sleeps up to a single latency don't count. */
741 if (!initial && sched_feat(FAIR_SLEEPERS)) {
742 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200743
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200744 /*
745 * Convert the sleeper threshold into virtual time.
746 * SCHED_IDLE is a special sub-class. We care about
747 * fairness only relative to other SCHED_IDLE tasks,
748 * all of which have the same weight.
749 */
750 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
751 task_of(se)->policy != SCHED_IDLE))
752 thresh = calc_delta_fair(thresh, se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200753
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200754 /*
755 * Halve their sleep time's effect, to allow
756 * for a gentler effect of sleepers:
757 */
758 if (sched_feat(GENTLE_FAIR_SLEEPERS))
759 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +0200760
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200761 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200762 }
763
Mike Galbraithb5d9d732009-09-08 11:12:28 +0200764 /* ensure we never gain time by being placed backwards. */
765 vruntime = max_vruntime(se->vruntime, vruntime);
766
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200767 se->vruntime = vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200768}
769
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100770#define ENQUEUE_WAKEUP 1
771#define ENQUEUE_MIGRATE 2
772
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200773static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100774enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775{
776 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100777 * Update the normalized vruntime before updating min_vruntime
778 * through callig update_curr().
779 */
780 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
781 se->vruntime += cfs_rq->min_vruntime;
782
783 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200784 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200785 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200786 update_curr(cfs_rq);
Peter Zijlstraa9922412008-05-05 23:56:17 +0200787 account_entity_enqueue(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200788
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100789 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200790 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +0200791 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +0200792 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200793
Ingo Molnard2417e52007-08-09 11:16:47 +0200794 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +0200795 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200796 if (se != cfs_rq->curr)
797 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200798}
799
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100800static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100801{
Peter Zijlstrade69a802009-09-17 09:01:20 +0200802 if (!se || cfs_rq->last == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100803 cfs_rq->last = NULL;
804
Peter Zijlstrade69a802009-09-17 09:01:20 +0200805 if (!se || cfs_rq->next == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100806 cfs_rq->next = NULL;
807}
808
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100809static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810{
811 for_each_sched_entity(se)
812 __clear_buddies(cfs_rq_of(se), se);
813}
814
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815static void
Ingo Molnar525c2712007-08-09 11:16:48 +0200816dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200818 /*
819 * Update run-time statistics of the 'current'.
820 */
821 update_curr(cfs_rq);
822
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200823 update_stats_dequeue(cfs_rq, se);
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200824 if (sleep) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200825#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200826 if (entity_is_task(se)) {
827 struct task_struct *tsk = task_of(se);
828
829 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300830 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200831 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300832 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200833 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200834#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200835 }
836
Peter Zijlstra2002c692008-11-11 11:52:33 +0100837 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100838
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200839 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200840 __dequeue_entity(cfs_rq, se);
841 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200842 update_min_vruntime(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100843
844 /*
845 * Normalize the entity after updating the min_vruntime because the
846 * update can refer to the ->curr item and we need to reflect this
847 * movement in our normalized position.
848 */
849 if (!sleep)
850 se->vruntime -= cfs_rq->min_vruntime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200851}
852
853/*
854 * Preempt the current task with a newly woken task if needed:
855 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +0200856static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200857check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200858{
Peter Zijlstra11697832007-09-05 14:32:49 +0200859 unsigned long ideal_runtime, delta_exec;
860
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200861 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +0200862 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100863 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200864 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100865 /*
866 * The current task ran long enough, ensure it doesn't get
867 * re-elected due to buddy favours.
868 */
869 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200870 return;
871 }
872
873 /*
874 * Ensure that a task that missed wakeup preemption by a
875 * narrow margin doesn't have to wait for a full slice.
876 * This also mitigates buddy induced latencies under load.
877 */
878 if (!sched_feat(WAKEUP_PREEMPT))
879 return;
880
881 if (delta_exec < sysctl_sched_min_granularity)
882 return;
883
884 if (cfs_rq->nr_running > 1) {
885 struct sched_entity *se = __pick_next_entity(cfs_rq);
886 s64 delta = curr->vruntime - se->vruntime;
887
888 if (delta > ideal_runtime)
889 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100890 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200891}
892
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200893static void
Ingo Molnar8494f412007-08-09 11:16:48 +0200894set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200895{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200896 /* 'current' is not kept within the tree. */
897 if (se->on_rq) {
898 /*
899 * Any task has to be enqueued before it get to execute on
900 * a CPU. So account for the time it spent waiting on the
901 * runqueue.
902 */
903 update_stats_wait_end(cfs_rq, se);
904 __dequeue_entity(cfs_rq, se);
905 }
906
Ingo Molnar79303e92007-08-09 11:16:47 +0200907 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +0200908 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +0200909#ifdef CONFIG_SCHEDSTATS
910 /*
911 * Track our maximum slice length, if the CPU's load is at
912 * least twice that of our own weight (i.e. dont track it
913 * when there are only lesser-weight tasks around):
914 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +0200915 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300916 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +0200917 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 }
919#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +0200920 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200921}
922
Peter Zijlstra3f3a4902008-10-24 11:06:16 +0200923static int
924wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100926static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100927{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100928 struct sched_entity *se = __pick_next_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200929 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100930
Mike Galbraithf685cea2009-10-23 23:09:22 +0200931 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
932 se = cfs_rq->next;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100933
Mike Galbraithf685cea2009-10-23 23:09:22 +0200934 /*
935 * Prefer last buddy, try to return the CPU to a preempted task.
936 */
937 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
938 se = cfs_rq->last;
939
940 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100941
942 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100943}
944
Ingo Molnarab6cde22007-08-09 11:16:48 +0200945static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200946{
947 /*
948 * If still on the runqueue then deactivate_task()
949 * was not called and update_curr() has to be done:
950 */
951 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200952 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200953
Peter Zijlstraddc97292007-10-15 17:00:10 +0200954 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200955 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +0200956 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200957 /* Put 'current' back into the tree. */
958 __enqueue_entity(cfs_rq, prev);
959 }
Ingo Molnar429d43b2007-10-15 17:00:03 +0200960 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200961}
962
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100963static void
964entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200965{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200966 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200967 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200968 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200969 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200970
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100971#ifdef CONFIG_SCHED_HRTICK
972 /*
973 * queued ticks are scheduled to match the slice, so don't bother
974 * validating it and just reschedule.
975 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -0700976 if (queued) {
977 resched_task(rq_of(cfs_rq)->curr);
978 return;
979 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100980 /*
981 * don't let the period tick interfere with the hrtick preemption
982 */
983 if (!sched_feat(DOUBLE_TICK) &&
984 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
985 return;
986#endif
987
Peter Zijlstrace6c1312007-10-15 17:00:14 +0200988 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200989 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200990}
991
992/**************************************************
993 * CFS operations on tasks:
994 */
995
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100996#ifdef CONFIG_SCHED_HRTICK
997static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100999 struct sched_entity *se = &p->se;
1000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001
1002 WARN_ON(task_rq(p) != rq);
1003
1004 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1005 u64 slice = sched_slice(cfs_rq, se);
1006 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1007 s64 delta = slice - ran;
1008
1009 if (delta < 0) {
1010 if (rq->curr == p)
1011 resched_task(p);
1012 return;
1013 }
1014
1015 /*
1016 * Don't schedule slices shorter than 10000ns, that just
1017 * doesn't make sense. Rely on vruntime for fairness.
1018 */
Peter Zijlstra31656512008-07-18 18:01:23 +02001019 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02001020 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001021
Peter Zijlstra31656512008-07-18 18:01:23 +02001022 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001023 }
1024}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001025
1026/*
1027 * called from enqueue/dequeue and updates the hrtick when the
1028 * current task is from our class and nr_running is low enough
1029 * to matter.
1030 */
1031static void hrtick_update(struct rq *rq)
1032{
1033 struct task_struct *curr = rq->curr;
1034
1035 if (curr->sched_class != &fair_sched_class)
1036 return;
1037
1038 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1039 hrtick_start_fair(rq, curr);
1040}
Dhaval Giani55e12e52008-06-24 23:39:43 +05301041#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001042static inline void
1043hrtick_start_fair(struct rq *rq, struct task_struct *p)
1044{
1045}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001046
1047static inline void hrtick_update(struct rq *rq)
1048{
1049}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001050#endif
1051
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001052/*
1053 * The enqueue_task method is called before nr_running is
1054 * increased. Here we update the fair scheduling stats and
1055 * then put the task into the rbtree:
1056 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00001057static void
1058enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001059{
1060 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001061 struct sched_entity *se = &p->se;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001062 int flags = 0;
1063
1064 if (wakeup)
1065 flags |= ENQUEUE_WAKEUP;
1066 if (p->state == TASK_WAKING)
1067 flags |= ENQUEUE_MIGRATE;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001068
1069 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001070 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001071 break;
1072 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001073 enqueue_entity(cfs_rq, se, flags);
1074 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001075 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001076
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001077 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001078}
1079
1080/*
1081 * The dequeue_task method is called before nr_running is
1082 * decreased. We remove the task from the rbtree and
1083 * update the fair scheduling stats:
1084 */
Ingo Molnarf02231e2007-08-09 11:16:48 +02001085static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001086{
1087 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001088 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001089
1090 for_each_sched_entity(se) {
1091 cfs_rq = cfs_rq_of(se);
Ingo Molnar525c2712007-08-09 11:16:48 +02001092 dequeue_entity(cfs_rq, se, sleep);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001093 /* Don't dequeue parent if it has other entities besides us */
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001094 if (cfs_rq->load.weight)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001095 break;
Srivatsa Vaddagirib9fa3df2007-10-15 17:00:12 +02001096 sleep = 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001097 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001098
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001099 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001100}
1101
1102/*
Ingo Molnar1799e352007-09-19 23:34:46 +02001103 * sched_yield() support is very simple - we dequeue and enqueue.
1104 *
1105 * If compat_yield is turned on then we requeue to the end of the tree.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001106 */
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +02001107static void yield_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001108{
Ingo Molnardb292ca2007-12-04 17:04:39 +01001109 struct task_struct *curr = rq->curr;
1110 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1111 struct sched_entity *rightmost, *se = &curr->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001112
1113 /*
Ingo Molnar1799e352007-09-19 23:34:46 +02001114 * Are we the only task in the tree?
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001115 */
Ingo Molnar1799e352007-09-19 23:34:46 +02001116 if (unlikely(cfs_rq->nr_running == 1))
1117 return;
1118
Peter Zijlstra2002c692008-11-11 11:52:33 +01001119 clear_buddies(cfs_rq, se);
1120
Ingo Molnardb292ca2007-12-04 17:04:39 +01001121 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
Peter Zijlstra3e51f332008-05-03 18:29:28 +02001122 update_rq_clock(rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001123 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001124 * Update run-time statistics of the 'current'.
Ingo Molnar1799e352007-09-19 23:34:46 +02001125 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001126 update_curr(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001127
1128 return;
1129 }
1130 /*
1131 * Find the rightmost entry in the rbtree:
1132 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001133 rightmost = __pick_last_entity(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001134 /*
1135 * Already in the rightmost position?
1136 */
Fabio Checconi54fdc582009-07-16 12:32:27 +02001137 if (unlikely(!rightmost || entity_before(rightmost, se)))
Ingo Molnar1799e352007-09-19 23:34:46 +02001138 return;
1139
1140 /*
1141 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001142 * Upon rescheduling, sched_class::put_prev_task() will place
1143 * 'current' within the tree based on its new key value.
Ingo Molnar1799e352007-09-19 23:34:46 +02001144 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001145 se->vruntime = rightmost->vruntime + 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001146}
1147
Gregory Haskinse7693a32008-01-25 21:08:09 +01001148#ifdef CONFIG_SMP
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001149
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001150static void task_waking_fair(struct rq *rq, struct task_struct *p)
1151{
1152 struct sched_entity *se = &p->se;
1153 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1154
1155 se->vruntime -= cfs_rq->min_vruntime;
1156}
1157
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001158#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001159/*
1160 * effective_load() calculates the load change as seen from the root_task_group
1161 *
1162 * Adding load to a group doesn't make a group heavier, but can cause movement
1163 * of group shares between cpus. Assuming the shares were perfectly aligned one
1164 * can calculate the shift in shares.
1165 *
1166 * The problem is that perfectly aligning the shares is rather expensive, hence
1167 * we try to avoid doing that too often - see update_shares(), which ratelimits
1168 * this change.
1169 *
1170 * We compensate this by not only taking the current delta into account, but
1171 * also considering the delta between when the shares were last adjusted and
1172 * now.
1173 *
1174 * We still saw a performance dip, some tracing learned us that between
1175 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1176 * significantly. Therefore try to bias the error in direction of failing
1177 * the affine wakeup.
1178 *
1179 */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001180static long effective_load(struct task_group *tg, int cpu,
1181 long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001182{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001183 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001184
1185 if (!tg->parent)
1186 return wl;
1187
1188 /*
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001189 * By not taking the decrease of shares on the other cpu into
1190 * account our error leans towards reducing the affine wakeups.
1191 */
1192 if (!wl && sched_feat(ASYM_EFF_LOAD))
1193 return wl;
1194
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001195 for_each_sched_entity(se) {
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001196 long S, rw, s, a, b;
Peter Zijlstra940959e2008-09-23 15:33:42 +02001197 long more_w;
1198
1199 /*
1200 * Instead of using this increment, also add the difference
1201 * between when the shares were last updated and now.
1202 */
1203 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1204 wl += more_w;
1205 wg += more_w;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001206
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001207 S = se->my_q->tg->shares;
1208 s = se->my_q->shares;
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001209 rw = se->my_q->rq_weight;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001210
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001211 a = S*(rw + wl);
1212 b = S*rw + s*wg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001213
Peter Zijlstra940959e2008-09-23 15:33:42 +02001214 wl = s*(a-b);
1215
1216 if (likely(b))
1217 wl /= b;
1218
Peter Zijlstra83378262008-06-27 13:41:37 +02001219 /*
1220 * Assume the group is already running and will
1221 * thus already be accounted for in the weight.
1222 *
1223 * That is, moving shares between CPUs, does not
1224 * alter the group weight.
1225 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001226 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001227 }
1228
1229 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001230}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001231
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001232#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001233
Peter Zijlstra83378262008-06-27 13:41:37 +02001234static inline unsigned long effective_load(struct task_group *tg, int cpu,
1235 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001236{
Peter Zijlstra83378262008-06-27 13:41:37 +02001237 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001238}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001239
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001240#endif
1241
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001242static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001243{
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001244 struct task_struct *curr = current;
1245 unsigned long this_load, load;
1246 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001247 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001248 unsigned int imbalance;
1249 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02001250 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001251 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001252
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001253 idx = sd->wake_idx;
1254 this_cpu = smp_processor_id();
1255 prev_cpu = task_cpu(p);
1256 load = source_load(prev_cpu, idx);
1257 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001258
Peter Zijlstrae69b0f12009-09-15 19:38:52 +02001259 if (sync) {
1260 if (sched_feat(SYNC_LESS) &&
1261 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1262 p->se.avg_overlap > sysctl_sched_migration_cost))
1263 sync = 0;
1264 } else {
1265 if (sched_feat(SYNC_MORE) &&
1266 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1267 p->se.avg_overlap < sysctl_sched_migration_cost))
1268 sync = 1;
1269 }
Peter Zijlstrafc631c82009-02-11 14:27:17 +01001270
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001271 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001272 * If sync wakeup then subtract the (maximum possible)
1273 * effect of the currently running task from the load
1274 * of the current CPU:
1275 */
Peter Zijlstra83378262008-06-27 13:41:37 +02001276 if (sync) {
1277 tg = task_group(current);
1278 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001279
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001280 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02001281 load += effective_load(tg, prev_cpu, 0, -weight);
1282 }
1283
1284 tg = task_group(p);
1285 weight = p->se.load.weight;
1286
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001287 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1288
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001289 /*
1290 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001291 * due to the sync cause above having dropped this_load to 0, we'll
1292 * always have an imbalance, but there's really nothing you can do
1293 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001294 *
1295 * Otherwise check if either cpus are near enough in load to allow this
1296 * task to be woken on this_cpu.
1297 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001298 balanced = !this_load ||
1299 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
Peter Zijlstra83378262008-06-27 13:41:37 +02001300 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001301
1302 /*
1303 * If the currently running task will sleep within
1304 * a reasonable amount of time then attract this newly
1305 * woken task:
1306 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02001307 if (sync && balanced)
1308 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001309
Lucas De Marchi41acab82010-03-10 23:37:45 -03001310 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001311 tl_per_task = cpu_avg_load_per_task(this_cpu);
1312
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001313 if (balanced ||
1314 (this_load <= load &&
1315 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001316 /*
1317 * This domain has SD_WAKE_AFFINE and
1318 * p is cache cold in this domain, and
1319 * there is no bad imbalance.
1320 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001321 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001322 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001323
1324 return 1;
1325 }
1326 return 0;
1327}
1328
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001329/*
1330 * find_idlest_group finds and returns the least busy CPU group within the
1331 * domain.
1332 */
1333static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02001334find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001335 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01001336{
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001337 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1338 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001339 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001340
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001341 do {
1342 unsigned long load, avg_load;
1343 int local_group;
1344 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001345
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001346 /* Skip over this group if it has no CPUs allowed */
1347 if (!cpumask_intersects(sched_group_cpus(group),
1348 &p->cpus_allowed))
1349 continue;
1350
1351 local_group = cpumask_test_cpu(this_cpu,
1352 sched_group_cpus(group));
1353
1354 /* Tally up the load of all CPUs in the group */
1355 avg_load = 0;
1356
1357 for_each_cpu(i, sched_group_cpus(group)) {
1358 /* Bias balancing toward cpus of our domain */
1359 if (local_group)
1360 load = source_load(i, load_idx);
1361 else
1362 load = target_load(i, load_idx);
1363
1364 avg_load += load;
1365 }
1366
1367 /* Adjust by relative CPU power of the group */
1368 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1369
1370 if (local_group) {
1371 this_load = avg_load;
1372 this = group;
1373 } else if (avg_load < min_load) {
1374 min_load = avg_load;
1375 idlest = group;
1376 }
1377 } while (group = group->next, group != sd->groups);
1378
1379 if (!idlest || 100*this_load < imbalance*min_load)
1380 return NULL;
1381 return idlest;
1382}
1383
1384/*
1385 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1386 */
1387static int
1388find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1389{
1390 unsigned long load, min_load = ULONG_MAX;
1391 int idlest = -1;
1392 int i;
1393
1394 /* Traverse only the allowed CPUs */
1395 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1396 load = weighted_cpuload(i);
1397
1398 if (load < min_load || (load == min_load && i == this_cpu)) {
1399 min_load = load;
1400 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001401 }
1402 }
1403
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001404 return idlest;
1405}
Gregory Haskinse7693a32008-01-25 21:08:09 +01001406
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001407/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001408 * Try and locate an idle CPU in the sched_domain.
1409 */
1410static int
1411select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1412{
1413 int cpu = smp_processor_id();
1414 int prev_cpu = task_cpu(p);
1415 int i;
1416
1417 /*
1418 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1419 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1420 * always a better target than the current cpu.
1421 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001422 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1423 return prev_cpu;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001424
1425 /*
1426 * Otherwise, iterate the domain and find an elegible idle cpu.
1427 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001428 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1429 if (!cpu_rq(i)->cfs.nr_running) {
1430 target = i;
1431 break;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001432 }
1433 }
1434
1435 return target;
1436}
1437
1438/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001439 * sched_balance_self: balance the current task (running on cpu) in domains
1440 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1441 * SD_BALANCE_EXEC.
1442 *
1443 * Balance, ie. select the least loaded group.
1444 *
1445 * Returns the target CPU number, or the same CPU if no balancing is needed.
1446 *
1447 * preempt must be disabled.
1448 */
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001449static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001450{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001451 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001452 int cpu = smp_processor_id();
1453 int prev_cpu = task_cpu(p);
1454 int new_cpu = cpu;
1455 int want_affine = 0;
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001456 int want_sd = 1;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001457 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001458
Peter Zijlstra0763a662009-09-14 19:37:39 +02001459 if (sd_flag & SD_BALANCE_WAKE) {
Mike Galbraith3f04e8c2009-09-19 16:52:35 +02001460 if (sched_feat(AFFINE_WAKEUPS) &&
1461 cpumask_test_cpu(cpu, &p->cpus_allowed))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001462 want_affine = 1;
1463 new_cpu = prev_cpu;
1464 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001465
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001466 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01001467 if (!(tmp->flags & SD_LOAD_BALANCE))
1468 continue;
1469
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001470 /*
Peter Zijlstraae154be2009-09-10 14:40:57 +02001471 * If power savings logic is enabled for a domain, see if we
1472 * are not overloaded, if so, don't balance wider.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001473 */
Peter Zijlstra59abf022009-09-16 08:28:30 +02001474 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
Peter Zijlstraae154be2009-09-10 14:40:57 +02001475 unsigned long power = 0;
1476 unsigned long nr_running = 0;
1477 unsigned long capacity;
1478 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001479
Peter Zijlstraae154be2009-09-10 14:40:57 +02001480 for_each_cpu(i, sched_domain_span(tmp)) {
1481 power += power_of(i);
1482 nr_running += cpu_rq(i)->cfs.nr_running;
1483 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001484
Peter Zijlstraae154be2009-09-10 14:40:57 +02001485 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001486
Peter Zijlstra59abf022009-09-16 08:28:30 +02001487 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1488 nr_running /= 2;
1489
1490 if (nr_running < capacity)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001491 want_sd = 0;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001492 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001493
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001494 /*
1495 * While iterating the domains looking for a spanning
1496 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1497 * in cache sharing domains along the way.
1498 */
1499 if (want_affine) {
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001500 int target = -1;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001501
1502 /*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001503 * If both cpu and prev_cpu are part of this domain,
1504 * cpu is a valid SD_WAKE_AFFINE target.
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001505 */
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001506 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1507 target = cpu;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001508
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001509 /*
1510 * If there's an idle sibling in this domain, make that
1511 * the wake_affine target instead of the current cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001512 */
Mike Galbraith50b926e2010-01-04 14:44:56 +01001513 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001514 target = select_idle_sibling(p, tmp, target);
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001515
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001516 if (target >= 0) {
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001517 if (tmp->flags & SD_WAKE_AFFINE) {
1518 affine_sd = tmp;
1519 want_affine = 0;
1520 }
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001521 cpu = target;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001522 }
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001523 }
1524
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001525 if (!want_sd && !want_affine)
1526 break;
1527
Peter Zijlstra0763a662009-09-14 19:37:39 +02001528 if (!(tmp->flags & sd_flag))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001529 continue;
1530
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001531 if (want_sd)
1532 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001533 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001534
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001535 if (sched_feat(LB_SHARES_UPDATE)) {
1536 /*
1537 * Pick the largest domain to update shares over
1538 */
1539 tmp = sd;
1540 if (affine_sd && (!tmp ||
1541 cpumask_weight(sched_domain_span(affine_sd)) >
1542 cpumask_weight(sched_domain_span(sd))))
1543 tmp = affine_sd;
1544
1545 if (tmp)
1546 update_shares(tmp);
1547 }
1548
Peter Zijlstrafb58bac2009-12-01 12:21:47 +01001549 if (affine_sd && wake_affine(affine_sd, p, sync))
1550 return cpu;
Peter Zijlstra3b640892009-09-16 13:44:33 +02001551
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001552 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001553 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001554 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001555 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001556
Peter Zijlstra0763a662009-09-14 19:37:39 +02001557 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001558 sd = sd->child;
1559 continue;
1560 }
1561
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001562 if (sd_flag & SD_BALANCE_WAKE)
1563 load_idx = sd->wake_idx;
1564
1565 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001566 if (!group) {
1567 sd = sd->child;
1568 continue;
1569 }
1570
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02001571 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001572 if (new_cpu == -1 || new_cpu == cpu) {
1573 /* Now try balancing at a lower domain level of cpu */
1574 sd = sd->child;
1575 continue;
1576 }
1577
1578 /* Now try balancing at a lower domain level of new_cpu */
1579 cpu = new_cpu;
1580 weight = cpumask_weight(sched_domain_span(sd));
1581 sd = NULL;
1582 for_each_domain(cpu, tmp) {
1583 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1584 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02001585 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001586 sd = tmp;
1587 }
1588 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01001589 }
1590
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001591 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001592}
1593#endif /* CONFIG_SMP */
1594
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001595/*
1596 * Adaptive granularity
1597 *
1598 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1599 * with the limit of wakeup_gran -- when it never does a wakeup.
1600 *
1601 * So the smaller avg_wakeup is the faster we want this task to preempt,
1602 * but we don't want to treat the preemptee unfairly and therefore allow it
1603 * to run for at least the amount of time we'd like to run.
1604 *
1605 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1606 *
1607 * NOTE: we use *nr_running to scale with load, this nicely matches the
1608 * degrading latency on load.
1609 */
1610static unsigned long
1611adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1612{
1613 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1614 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1615 u64 gran = 0;
1616
1617 if (this_run < expected_wakeup)
1618 gran = expected_wakeup - this_run;
1619
1620 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1621}
1622
1623static unsigned long
1624wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001625{
1626 unsigned long gran = sysctl_sched_wakeup_granularity;
1627
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001628 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1629 gran = adaptive_gran(curr, se);
1630
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001631 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001632 * Since its curr running now, convert the gran from real-time
1633 * to virtual-time in his units.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001634 */
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001635 if (sched_feat(ASYM_GRAN)) {
1636 /*
1637 * By using 'se' instead of 'curr' we penalize light tasks, so
1638 * they get preempted easier. That is, if 'se' < 'curr' then
1639 * the resulting gran will be larger, therefore penalizing the
1640 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1641 * be smaller, again penalizing the lighter task.
1642 *
1643 * This is especially important for buddies when the leftmost
1644 * task is higher priority than the buddy.
1645 */
1646 if (unlikely(se->load.weight != NICE_0_LOAD))
1647 gran = calc_delta_fair(gran, se);
1648 } else {
1649 if (unlikely(curr->load.weight != NICE_0_LOAD))
1650 gran = calc_delta_fair(gran, curr);
1651 }
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001652
1653 return gran;
1654}
1655
1656/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02001657 * Should 'se' preempt 'curr'.
1658 *
1659 * |s1
1660 * |s2
1661 * |s3
1662 * g
1663 * |<--->|c
1664 *
1665 * w(c, s1) = -1
1666 * w(c, s2) = 0
1667 * w(c, s3) = 1
1668 *
1669 */
1670static int
1671wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1672{
1673 s64 gran, vdiff = curr->vruntime - se->vruntime;
1674
1675 if (vdiff <= 0)
1676 return -1;
1677
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001678 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02001679 if (vdiff > gran)
1680 return 1;
1681
1682 return 0;
1683}
1684
Peter Zijlstra02479092008-11-04 21:25:10 +01001685static void set_last_buddy(struct sched_entity *se)
1686{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001687 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1688 for_each_sched_entity(se)
1689 cfs_rq_of(se)->last = se;
1690 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001691}
1692
1693static void set_next_buddy(struct sched_entity *se)
1694{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001695 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1696 for_each_sched_entity(se)
1697 cfs_rq_of(se)->next = se;
1698 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001699}
1700
Peter Zijlstra464b7522008-10-24 11:06:15 +02001701/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001702 * Preempt the current task with a newly woken task if needed:
1703 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001704static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001705{
1706 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02001707 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001708 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001709 int sync = wake_flags & WF_SYNC;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001710 int scale = cfs_rq->nr_running >= sched_nr_latency;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001711
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001712 if (unlikely(rt_prio(p->prio)))
1713 goto preempt;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001714
Peter Zijlstrad95f98d2008-11-04 21:25:08 +01001715 if (unlikely(p->sched_class != &fair_sched_class))
1716 return;
1717
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001718 if (unlikely(se == pse))
1719 return;
1720
Mike Galbraithf685cea2009-10-23 23:09:22 +02001721 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
Mike Galbraith3cb63d52009-09-11 12:01:17 +02001722 set_next_buddy(pse);
Peter Zijlstra57fdc262008-09-23 15:33:45 +02001723
Bharata B Raoaec0a512008-08-28 14:42:49 +05301724 /*
1725 * We can come here with TIF_NEED_RESCHED already set from new task
1726 * wake up path.
1727 */
1728 if (test_tsk_need_resched(curr))
1729 return;
1730
Ingo Molnar91c234b2007-10-15 17:00:18 +02001731 /*
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001732 * Batch and idle tasks do not preempt (their preemption is driven by
Ingo Molnar91c234b2007-10-15 17:00:18 +02001733 * the tick):
1734 */
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001735 if (unlikely(p->policy != SCHED_NORMAL))
Ingo Molnar91c234b2007-10-15 17:00:18 +02001736 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001737
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001738 /* Idle tasks are by definition preempted by everybody. */
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001739 if (unlikely(curr->policy == SCHED_IDLE))
1740 goto preempt;
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001741
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001742 if (sched_feat(WAKEUP_SYNC) && sync)
1743 goto preempt;
Peter Zijlstra15afe092008-09-20 23:38:02 +02001744
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001745 if (sched_feat(WAKEUP_OVERLAP) &&
1746 se->avg_overlap < sysctl_sched_migration_cost &&
1747 pse->avg_overlap < sysctl_sched_migration_cost)
1748 goto preempt;
1749
Peter Zijlstraad4b78b2009-09-16 12:31:31 +02001750 if (!sched_feat(WAKEUP_PREEMPT))
1751 return;
1752
Jupyung Leea65ac742009-11-17 18:51:40 +09001753 update_curr(cfs_rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001754 find_matching_se(&se, &pse);
1755 BUG_ON(!pse);
1756 if (wakeup_preempt_entity(se, pse) == 1)
1757 goto preempt;
Jupyung Leea65ac742009-11-17 18:51:40 +09001758
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001759 return;
1760
1761preempt:
1762 resched_task(curr);
1763 /*
1764 * Only set the backward buddy when the current task is still
1765 * on the rq. This can happen when a wakeup gets interleaved
1766 * with schedule on the ->pre_schedule() or idle_balance()
1767 * point, either of which can * drop the rq lock.
1768 *
1769 * Also, during early boot the idle thread is in the fair class,
1770 * for obvious reasons its a bad idea to schedule back to it.
1771 */
1772 if (unlikely(!se->on_rq || curr == rq->idle))
1773 return;
1774
1775 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1776 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001777}
1778
Ingo Molnarfb8d4722007-08-09 11:16:48 +02001779static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001780{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001781 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001782 struct cfs_rq *cfs_rq = &rq->cfs;
1783 struct sched_entity *se;
1784
Tim Blechmann36ace272009-11-24 11:55:45 +01001785 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001786 return NULL;
1787
1788 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02001789 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001790 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001791 cfs_rq = group_cfs_rq(se);
1792 } while (cfs_rq);
1793
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001794 p = task_of(se);
1795 hrtick_start_fair(rq, p);
1796
1797 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001798}
1799
1800/*
1801 * Account for a descheduled task:
1802 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02001803static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001804{
1805 struct sched_entity *se = &prev->se;
1806 struct cfs_rq *cfs_rq;
1807
1808 for_each_sched_entity(se) {
1809 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02001810 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001811 }
1812}
1813
Peter Williams681f3e62007-10-24 18:23:51 +02001814#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001815/**************************************************
1816 * Fair scheduling class load-balancing methods:
1817 */
1818
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001819/*
1820 * pull_task - move a task from a remote runqueue to the local runqueue.
1821 * Both runqueues must be locked.
1822 */
1823static void pull_task(struct rq *src_rq, struct task_struct *p,
1824 struct rq *this_rq, int this_cpu)
1825{
1826 deactivate_task(src_rq, p, 0);
1827 set_task_cpu(p, this_cpu);
1828 activate_task(this_rq, p, 0);
1829 check_preempt_curr(this_rq, p, 0);
1830}
1831
1832/*
1833 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1834 */
1835static
1836int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1837 struct sched_domain *sd, enum cpu_idle_type idle,
1838 int *all_pinned)
1839{
1840 int tsk_cache_hot = 0;
1841 /*
1842 * We do not migrate tasks that are:
1843 * 1) running (obviously), or
1844 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1845 * 3) are cache-hot on their current CPU.
1846 */
1847 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001848 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001849 return 0;
1850 }
1851 *all_pinned = 0;
1852
1853 if (task_running(rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001854 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001855 return 0;
1856 }
1857
1858 /*
1859 * Aggressive migration if:
1860 * 1) task is cache cold, or
1861 * 2) too many balance attempts have failed.
1862 */
1863
1864 tsk_cache_hot = task_hot(p, rq->clock, sd);
1865 if (!tsk_cache_hot ||
1866 sd->nr_balance_failed > sd->cache_nice_tries) {
1867#ifdef CONFIG_SCHEDSTATS
1868 if (tsk_cache_hot) {
1869 schedstat_inc(sd, lb_hot_gained[idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001870 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001871 }
1872#endif
1873 return 1;
1874 }
1875
1876 if (tsk_cache_hot) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001877 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001878 return 0;
1879 }
1880 return 1;
1881}
1882
Peter Zijlstra897c3952009-12-17 17:45:42 +01001883/*
1884 * move_one_task tries to move exactly one task from busiest to this_rq, as
1885 * part of active balancing operations within "domain".
1886 * Returns 1 if successful and 0 otherwise.
1887 *
1888 * Called with both runqueues locked.
1889 */
1890static int
1891move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1892 struct sched_domain *sd, enum cpu_idle_type idle)
1893{
1894 struct task_struct *p, *n;
1895 struct cfs_rq *cfs_rq;
1896 int pinned = 0;
1897
1898 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1899 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1900
1901 if (!can_migrate_task(p, busiest, this_cpu,
1902 sd, idle, &pinned))
1903 continue;
1904
1905 pull_task(busiest, p, this_rq, this_cpu);
1906 /*
1907 * Right now, this is only the second place pull_task()
1908 * is called, so we can safely collect pull_task()
1909 * stats here rather than inside pull_task().
1910 */
1911 schedstat_inc(sd, lb_gained[idle]);
1912 return 1;
1913 }
1914 }
1915
1916 return 0;
1917}
1918
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001919static unsigned long
1920balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1921 unsigned long max_load_move, struct sched_domain *sd,
1922 enum cpu_idle_type idle, int *all_pinned,
Peter Zijlstraee00e662009-12-17 17:25:20 +01001923 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001924{
1925 int loops = 0, pulled = 0, pinned = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001926 long rem_load_move = max_load_move;
Peter Zijlstraee00e662009-12-17 17:25:20 +01001927 struct task_struct *p, *n;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001928
1929 if (max_load_move == 0)
1930 goto out;
1931
1932 pinned = 1;
1933
Peter Zijlstraee00e662009-12-17 17:25:20 +01001934 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1935 if (loops++ > sysctl_sched_nr_migrate)
1936 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001937
Peter Zijlstraee00e662009-12-17 17:25:20 +01001938 if ((p->se.load.weight >> 1) > rem_load_move ||
1939 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1940 continue;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001941
Peter Zijlstraee00e662009-12-17 17:25:20 +01001942 pull_task(busiest, p, this_rq, this_cpu);
1943 pulled++;
1944 rem_load_move -= p->se.load.weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001945
1946#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01001947 /*
1948 * NEWIDLE balancing is a source of latency, so preemptible
1949 * kernels will stop after the first task is pulled to minimize
1950 * the critical section.
1951 */
1952 if (idle == CPU_NEWLY_IDLE)
1953 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001954#endif
1955
Peter Zijlstraee00e662009-12-17 17:25:20 +01001956 /*
1957 * We only want to steal up to the prescribed amount of
1958 * weighted load.
1959 */
1960 if (rem_load_move <= 0)
1961 break;
1962
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001963 if (p->prio < *this_best_prio)
1964 *this_best_prio = p->prio;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001965 }
1966out:
1967 /*
1968 * Right now, this is one of only two places pull_task() is called,
1969 * so we can safely collect pull_task() stats here rather than
1970 * inside pull_task().
1971 */
1972 schedstat_add(sd, lb_gained[idle], pulled);
1973
1974 if (all_pinned)
1975 *all_pinned = pinned;
1976
1977 return max_load_move - rem_load_move;
1978}
1979
Peter Zijlstra230059de2009-12-17 17:47:12 +01001980#ifdef CONFIG_FAIR_GROUP_SCHED
1981static unsigned long
1982load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1983 unsigned long max_load_move,
1984 struct sched_domain *sd, enum cpu_idle_type idle,
1985 int *all_pinned, int *this_best_prio)
1986{
1987 long rem_load_move = max_load_move;
1988 int busiest_cpu = cpu_of(busiest);
1989 struct task_group *tg;
1990
1991 rcu_read_lock();
1992 update_h_load(busiest_cpu);
1993
1994 list_for_each_entry_rcu(tg, &task_groups, list) {
1995 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1996 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1997 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1998 u64 rem_load, moved_load;
1999
2000 /*
2001 * empty group
2002 */
2003 if (!busiest_cfs_rq->task_weight)
2004 continue;
2005
2006 rem_load = (u64)rem_load_move * busiest_weight;
2007 rem_load = div_u64(rem_load, busiest_h_load + 1);
2008
2009 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2010 rem_load, sd, idle, all_pinned, this_best_prio,
2011 busiest_cfs_rq);
2012
2013 if (!moved_load)
2014 continue;
2015
2016 moved_load *= busiest_h_load;
2017 moved_load = div_u64(moved_load, busiest_weight + 1);
2018
2019 rem_load_move -= moved_load;
2020 if (rem_load_move < 0)
2021 break;
2022 }
2023 rcu_read_unlock();
2024
2025 return max_load_move - rem_load_move;
2026}
2027#else
2028static unsigned long
2029load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2030 unsigned long max_load_move,
2031 struct sched_domain *sd, enum cpu_idle_type idle,
2032 int *all_pinned, int *this_best_prio)
2033{
2034 return balance_tasks(this_rq, this_cpu, busiest,
2035 max_load_move, sd, idle, all_pinned,
2036 this_best_prio, &busiest->cfs);
2037}
2038#endif
2039
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002040/*
2041 * move_tasks tries to move up to max_load_move weighted load from busiest to
2042 * this_rq, as part of a balancing operation within domain "sd".
2043 * Returns 1 if successful and 0 otherwise.
2044 *
2045 * Called with both runqueues locked.
2046 */
2047static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2048 unsigned long max_load_move,
2049 struct sched_domain *sd, enum cpu_idle_type idle,
2050 int *all_pinned)
2051{
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002052 unsigned long total_load_moved = 0, load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002053 int this_best_prio = this_rq->curr->prio;
2054
2055 do {
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002056 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002057 max_load_move - total_load_moved,
2058 sd, idle, all_pinned, &this_best_prio);
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002059
2060 total_load_moved += load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002061
2062#ifdef CONFIG_PREEMPT
2063 /*
2064 * NEWIDLE balancing is a source of latency, so preemptible
2065 * kernels will stop after the first task is pulled to minimize
2066 * the critical section.
2067 */
2068 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2069 break;
Peter Zijlstrabaa8c112009-12-17 18:10:09 +01002070
2071 if (raw_spin_is_contended(&this_rq->lock) ||
2072 raw_spin_is_contended(&busiest->lock))
2073 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002074#endif
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002075 } while (load_moved && max_load_move > total_load_moved);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002076
2077 return total_load_moved > 0;
2078}
2079
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002080/********** Helpers for find_busiest_group ************************/
2081/*
2082 * sd_lb_stats - Structure to store the statistics of a sched_domain
2083 * during load balancing.
2084 */
2085struct sd_lb_stats {
2086 struct sched_group *busiest; /* Busiest group in this sd */
2087 struct sched_group *this; /* Local group in this sd */
2088 unsigned long total_load; /* Total load of all groups in sd */
2089 unsigned long total_pwr; /* Total power of all groups in sd */
2090 unsigned long avg_load; /* Average load across all groups in sd */
2091
2092 /** Statistics of this group */
2093 unsigned long this_load;
2094 unsigned long this_load_per_task;
2095 unsigned long this_nr_running;
2096
2097 /* Statistics of the busiest group */
2098 unsigned long max_load;
2099 unsigned long busiest_load_per_task;
2100 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002101 unsigned long busiest_group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002102
2103 int group_imb; /* Is there imbalance in this sd */
2104#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2105 int power_savings_balance; /* Is powersave balance needed for this sd */
2106 struct sched_group *group_min; /* Least loaded group in sd */
2107 struct sched_group *group_leader; /* Group which relieves group_min */
2108 unsigned long min_load_per_task; /* load_per_task in group_min */
2109 unsigned long leader_nr_running; /* Nr running of group_leader */
2110 unsigned long min_nr_running; /* Nr running of group_min */
2111#endif
2112};
2113
2114/*
2115 * sg_lb_stats - stats of a sched_group required for load_balancing
2116 */
2117struct sg_lb_stats {
2118 unsigned long avg_load; /*Avg load across the CPUs of the group */
2119 unsigned long group_load; /* Total load over the CPUs of the group */
2120 unsigned long sum_nr_running; /* Nr tasks running in the group */
2121 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2122 unsigned long group_capacity;
2123 int group_imb; /* Is there an imbalance in the group ? */
2124};
2125
2126/**
2127 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2128 * @group: The group whose first cpu is to be returned.
2129 */
2130static inline unsigned int group_first_cpu(struct sched_group *group)
2131{
2132 return cpumask_first(sched_group_cpus(group));
2133}
2134
2135/**
2136 * get_sd_load_idx - Obtain the load index for a given sched domain.
2137 * @sd: The sched_domain whose load_idx is to be obtained.
2138 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2139 */
2140static inline int get_sd_load_idx(struct sched_domain *sd,
2141 enum cpu_idle_type idle)
2142{
2143 int load_idx;
2144
2145 switch (idle) {
2146 case CPU_NOT_IDLE:
2147 load_idx = sd->busy_idx;
2148 break;
2149
2150 case CPU_NEWLY_IDLE:
2151 load_idx = sd->newidle_idx;
2152 break;
2153 default:
2154 load_idx = sd->idle_idx;
2155 break;
2156 }
2157
2158 return load_idx;
2159}
2160
2161
2162#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2163/**
2164 * init_sd_power_savings_stats - Initialize power savings statistics for
2165 * the given sched_domain, during load balancing.
2166 *
2167 * @sd: Sched domain whose power-savings statistics are to be initialized.
2168 * @sds: Variable containing the statistics for sd.
2169 * @idle: Idle status of the CPU at which we're performing load-balancing.
2170 */
2171static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2172 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2173{
2174 /*
2175 * Busy processors will not participate in power savings
2176 * balance.
2177 */
2178 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2179 sds->power_savings_balance = 0;
2180 else {
2181 sds->power_savings_balance = 1;
2182 sds->min_nr_running = ULONG_MAX;
2183 sds->leader_nr_running = 0;
2184 }
2185}
2186
2187/**
2188 * update_sd_power_savings_stats - Update the power saving stats for a
2189 * sched_domain while performing load balancing.
2190 *
2191 * @group: sched_group belonging to the sched_domain under consideration.
2192 * @sds: Variable containing the statistics of the sched_domain
2193 * @local_group: Does group contain the CPU for which we're performing
2194 * load balancing ?
2195 * @sgs: Variable containing the statistics of the group.
2196 */
2197static inline void update_sd_power_savings_stats(struct sched_group *group,
2198 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2199{
2200
2201 if (!sds->power_savings_balance)
2202 return;
2203
2204 /*
2205 * If the local group is idle or completely loaded
2206 * no need to do power savings balance at this domain
2207 */
2208 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2209 !sds->this_nr_running))
2210 sds->power_savings_balance = 0;
2211
2212 /*
2213 * If a group is already running at full capacity or idle,
2214 * don't include that group in power savings calculations
2215 */
2216 if (!sds->power_savings_balance ||
2217 sgs->sum_nr_running >= sgs->group_capacity ||
2218 !sgs->sum_nr_running)
2219 return;
2220
2221 /*
2222 * Calculate the group which has the least non-idle load.
2223 * This is the group from where we need to pick up the load
2224 * for saving power
2225 */
2226 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2227 (sgs->sum_nr_running == sds->min_nr_running &&
2228 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2229 sds->group_min = group;
2230 sds->min_nr_running = sgs->sum_nr_running;
2231 sds->min_load_per_task = sgs->sum_weighted_load /
2232 sgs->sum_nr_running;
2233 }
2234
2235 /*
2236 * Calculate the group which is almost near its
2237 * capacity but still has some space to pick up some load
2238 * from other group and save more power
2239 */
2240 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2241 return;
2242
2243 if (sgs->sum_nr_running > sds->leader_nr_running ||
2244 (sgs->sum_nr_running == sds->leader_nr_running &&
2245 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2246 sds->group_leader = group;
2247 sds->leader_nr_running = sgs->sum_nr_running;
2248 }
2249}
2250
2251/**
2252 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2253 * @sds: Variable containing the statistics of the sched_domain
2254 * under consideration.
2255 * @this_cpu: Cpu at which we're currently performing load-balancing.
2256 * @imbalance: Variable to store the imbalance.
2257 *
2258 * Description:
2259 * Check if we have potential to perform some power-savings balance.
2260 * If yes, set the busiest group to be the least loaded group in the
2261 * sched_domain, so that it's CPUs can be put to idle.
2262 *
2263 * Returns 1 if there is potential to perform power-savings balance.
2264 * Else returns 0.
2265 */
2266static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2267 int this_cpu, unsigned long *imbalance)
2268{
2269 if (!sds->power_savings_balance)
2270 return 0;
2271
2272 if (sds->this != sds->group_leader ||
2273 sds->group_leader == sds->group_min)
2274 return 0;
2275
2276 *imbalance = sds->min_load_per_task;
2277 sds->busiest = sds->group_min;
2278
2279 return 1;
2280
2281}
2282#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2283static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2284 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2285{
2286 return;
2287}
2288
2289static inline void update_sd_power_savings_stats(struct sched_group *group,
2290 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2291{
2292 return;
2293}
2294
2295static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2296 int this_cpu, unsigned long *imbalance)
2297{
2298 return 0;
2299}
2300#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2301
2302
2303unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2304{
2305 return SCHED_LOAD_SCALE;
2306}
2307
2308unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2309{
2310 return default_scale_freq_power(sd, cpu);
2311}
2312
2313unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2314{
2315 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2316 unsigned long smt_gain = sd->smt_gain;
2317
2318 smt_gain /= weight;
2319
2320 return smt_gain;
2321}
2322
2323unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2324{
2325 return default_scale_smt_power(sd, cpu);
2326}
2327
2328unsigned long scale_rt_power(int cpu)
2329{
2330 struct rq *rq = cpu_rq(cpu);
2331 u64 total, available;
2332
2333 sched_avg_update(rq);
2334
2335 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2336 available = total - rq->rt_avg;
2337
2338 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2339 total = SCHED_LOAD_SCALE;
2340
2341 total >>= SCHED_LOAD_SHIFT;
2342
2343 return div_u64(available, total);
2344}
2345
2346static void update_cpu_power(struct sched_domain *sd, int cpu)
2347{
2348 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2349 unsigned long power = SCHED_LOAD_SCALE;
2350 struct sched_group *sdg = sd->groups;
2351
2352 if (sched_feat(ARCH_POWER))
2353 power *= arch_scale_freq_power(sd, cpu);
2354 else
2355 power *= default_scale_freq_power(sd, cpu);
2356
2357 power >>= SCHED_LOAD_SHIFT;
2358
2359 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2360 if (sched_feat(ARCH_POWER))
2361 power *= arch_scale_smt_power(sd, cpu);
2362 else
2363 power *= default_scale_smt_power(sd, cpu);
2364
2365 power >>= SCHED_LOAD_SHIFT;
2366 }
2367
2368 power *= scale_rt_power(cpu);
2369 power >>= SCHED_LOAD_SHIFT;
2370
2371 if (!power)
2372 power = 1;
2373
2374 sdg->cpu_power = power;
2375}
2376
2377static void update_group_power(struct sched_domain *sd, int cpu)
2378{
2379 struct sched_domain *child = sd->child;
2380 struct sched_group *group, *sdg = sd->groups;
2381 unsigned long power;
2382
2383 if (!child) {
2384 update_cpu_power(sd, cpu);
2385 return;
2386 }
2387
2388 power = 0;
2389
2390 group = child->groups;
2391 do {
2392 power += group->cpu_power;
2393 group = group->next;
2394 } while (group != child->groups);
2395
2396 sdg->cpu_power = power;
2397}
2398
2399/**
2400 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2401 * @sd: The sched_domain whose statistics are to be updated.
2402 * @group: sched_group whose statistics are to be updated.
2403 * @this_cpu: Cpu for which load balance is currently performed.
2404 * @idle: Idle status of this_cpu
2405 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2406 * @sd_idle: Idle status of the sched_domain containing group.
2407 * @local_group: Does group contain this_cpu.
2408 * @cpus: Set of cpus considered for load balancing.
2409 * @balance: Should we balance.
2410 * @sgs: variable to hold the statistics for this group.
2411 */
2412static inline void update_sg_lb_stats(struct sched_domain *sd,
2413 struct sched_group *group, int this_cpu,
2414 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2415 int local_group, const struct cpumask *cpus,
2416 int *balance, struct sg_lb_stats *sgs)
2417{
2418 unsigned long load, max_cpu_load, min_cpu_load;
2419 int i;
2420 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002421 unsigned long avg_load_per_task = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002422
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002423 if (local_group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002424 balance_cpu = group_first_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002425
2426 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002427 max_cpu_load = 0;
2428 min_cpu_load = ~0UL;
2429
2430 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2431 struct rq *rq = cpu_rq(i);
2432
2433 if (*sd_idle && rq->nr_running)
2434 *sd_idle = 0;
2435
2436 /* Bias balancing toward cpus of our domain */
2437 if (local_group) {
2438 if (idle_cpu(i) && !first_idle_cpu) {
2439 first_idle_cpu = 1;
2440 balance_cpu = i;
2441 }
2442
2443 load = target_load(i, load_idx);
2444 } else {
2445 load = source_load(i, load_idx);
2446 if (load > max_cpu_load)
2447 max_cpu_load = load;
2448 if (min_cpu_load > load)
2449 min_cpu_load = load;
2450 }
2451
2452 sgs->group_load += load;
2453 sgs->sum_nr_running += rq->nr_running;
2454 sgs->sum_weighted_load += weighted_cpuload(i);
2455
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002456 }
2457
2458 /*
2459 * First idle cpu or the first cpu(busiest) in this sched group
2460 * is eligible for doing load balancing at this and above
2461 * domains. In the newly idle case, we will allow all the cpu's
2462 * to do the newly idle load balance.
2463 */
2464 if (idle != CPU_NEWLY_IDLE && local_group &&
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002465 balance_cpu != this_cpu) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002466 *balance = 0;
2467 return;
2468 }
2469
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002470 update_group_power(sd, this_cpu);
2471
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002472 /* Adjust by relative CPU power of the group */
2473 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2474
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002475 /*
2476 * Consider the group unbalanced when the imbalance is larger
2477 * than the average weight of two tasks.
2478 *
2479 * APZ: with cgroup the avg task weight can vary wildly and
2480 * might not be a suitable number - should we keep a
2481 * normalized nr_running number somewhere that negates
2482 * the hierarchy?
2483 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002484 if (sgs->sum_nr_running)
2485 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002486
2487 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2488 sgs->group_imb = 1;
2489
2490 sgs->group_capacity =
2491 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2492}
2493
2494/**
2495 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2496 * @sd: sched_domain whose statistics are to be updated.
2497 * @this_cpu: Cpu for which load balance is currently performed.
2498 * @idle: Idle status of this_cpu
2499 * @sd_idle: Idle status of the sched_domain containing group.
2500 * @cpus: Set of cpus considered for load balancing.
2501 * @balance: Should we balance.
2502 * @sds: variable to hold the statistics for this sched_domain.
2503 */
2504static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2505 enum cpu_idle_type idle, int *sd_idle,
2506 const struct cpumask *cpus, int *balance,
2507 struct sd_lb_stats *sds)
2508{
2509 struct sched_domain *child = sd->child;
2510 struct sched_group *group = sd->groups;
2511 struct sg_lb_stats sgs;
2512 int load_idx, prefer_sibling = 0;
2513
2514 if (child && child->flags & SD_PREFER_SIBLING)
2515 prefer_sibling = 1;
2516
2517 init_sd_power_savings_stats(sd, sds, idle);
2518 load_idx = get_sd_load_idx(sd, idle);
2519
2520 do {
2521 int local_group;
2522
2523 local_group = cpumask_test_cpu(this_cpu,
2524 sched_group_cpus(group));
2525 memset(&sgs, 0, sizeof(sgs));
2526 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2527 local_group, cpus, balance, &sgs);
2528
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002529 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002530 return;
2531
2532 sds->total_load += sgs.group_load;
2533 sds->total_pwr += group->cpu_power;
2534
2535 /*
2536 * In case the child domain prefers tasks go to siblings
2537 * first, lower the group capacity to one so that we'll try
2538 * and move all the excess tasks away.
2539 */
2540 if (prefer_sibling)
2541 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2542
2543 if (local_group) {
2544 sds->this_load = sgs.avg_load;
2545 sds->this = group;
2546 sds->this_nr_running = sgs.sum_nr_running;
2547 sds->this_load_per_task = sgs.sum_weighted_load;
2548 } else if (sgs.avg_load > sds->max_load &&
2549 (sgs.sum_nr_running > sgs.group_capacity ||
2550 sgs.group_imb)) {
2551 sds->max_load = sgs.avg_load;
2552 sds->busiest = group;
2553 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002554 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002555 sds->busiest_load_per_task = sgs.sum_weighted_load;
2556 sds->group_imb = sgs.group_imb;
2557 }
2558
2559 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2560 group = group->next;
2561 } while (group != sd->groups);
2562}
2563
2564/**
2565 * fix_small_imbalance - Calculate the minor imbalance that exists
2566 * amongst the groups of a sched_domain, during
2567 * load balancing.
2568 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2569 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2570 * @imbalance: Variable to store the imbalance.
2571 */
2572static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2573 int this_cpu, unsigned long *imbalance)
2574{
2575 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2576 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002577 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002578
2579 if (sds->this_nr_running) {
2580 sds->this_load_per_task /= sds->this_nr_running;
2581 if (sds->busiest_load_per_task >
2582 sds->this_load_per_task)
2583 imbn = 1;
2584 } else
2585 sds->this_load_per_task =
2586 cpu_avg_load_per_task(this_cpu);
2587
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002588 scaled_busy_load_per_task = sds->busiest_load_per_task
2589 * SCHED_LOAD_SCALE;
2590 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2591
2592 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2593 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002594 *imbalance = sds->busiest_load_per_task;
2595 return;
2596 }
2597
2598 /*
2599 * OK, we don't have enough imbalance to justify moving tasks,
2600 * however we may be able to increase total CPU power used by
2601 * moving them.
2602 */
2603
2604 pwr_now += sds->busiest->cpu_power *
2605 min(sds->busiest_load_per_task, sds->max_load);
2606 pwr_now += sds->this->cpu_power *
2607 min(sds->this_load_per_task, sds->this_load);
2608 pwr_now /= SCHED_LOAD_SCALE;
2609
2610 /* Amount of load we'd subtract */
2611 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2612 sds->busiest->cpu_power;
2613 if (sds->max_load > tmp)
2614 pwr_move += sds->busiest->cpu_power *
2615 min(sds->busiest_load_per_task, sds->max_load - tmp);
2616
2617 /* Amount of load we'd add */
2618 if (sds->max_load * sds->busiest->cpu_power <
2619 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2620 tmp = (sds->max_load * sds->busiest->cpu_power) /
2621 sds->this->cpu_power;
2622 else
2623 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2624 sds->this->cpu_power;
2625 pwr_move += sds->this->cpu_power *
2626 min(sds->this_load_per_task, sds->this_load + tmp);
2627 pwr_move /= SCHED_LOAD_SCALE;
2628
2629 /* Move if we gain throughput */
2630 if (pwr_move > pwr_now)
2631 *imbalance = sds->busiest_load_per_task;
2632}
2633
2634/**
2635 * calculate_imbalance - Calculate the amount of imbalance present within the
2636 * groups of a given sched_domain during load balance.
2637 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2638 * @this_cpu: Cpu for which currently load balance is being performed.
2639 * @imbalance: The variable to store the imbalance.
2640 */
2641static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2642 unsigned long *imbalance)
2643{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002644 unsigned long max_pull, load_above_capacity = ~0UL;
2645
2646 sds->busiest_load_per_task /= sds->busiest_nr_running;
2647 if (sds->group_imb) {
2648 sds->busiest_load_per_task =
2649 min(sds->busiest_load_per_task, sds->avg_load);
2650 }
2651
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002652 /*
2653 * In the presence of smp nice balancing, certain scenarios can have
2654 * max load less than avg load(as we skip the groups at or below
2655 * its cpu_power, while calculating max_load..)
2656 */
2657 if (sds->max_load < sds->avg_load) {
2658 *imbalance = 0;
2659 return fix_small_imbalance(sds, this_cpu, imbalance);
2660 }
2661
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002662 if (!sds->group_imb) {
2663 /*
2664 * Don't want to pull so many tasks that a group would go idle.
2665 */
2666 load_above_capacity = (sds->busiest_nr_running -
2667 sds->busiest_group_capacity);
2668
2669 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2670
2671 load_above_capacity /= sds->busiest->cpu_power;
2672 }
2673
2674 /*
2675 * We're trying to get all the cpus to the average_load, so we don't
2676 * want to push ourselves above the average load, nor do we wish to
2677 * reduce the max loaded cpu below the average load. At the same time,
2678 * we also don't want to reduce the group load below the group capacity
2679 * (so that we can implement power-savings policies etc). Thus we look
2680 * for the minimum possible imbalance.
2681 * Be careful of negative numbers as they'll appear as very large values
2682 * with unsigned longs.
2683 */
2684 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002685
2686 /* How much load to actually move to equalise the imbalance */
2687 *imbalance = min(max_pull * sds->busiest->cpu_power,
2688 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2689 / SCHED_LOAD_SCALE;
2690
2691 /*
2692 * if *imbalance is less than the average load per runnable task
2693 * there is no gaurantee that any tasks will be moved so we'll have
2694 * a think about bumping its value to force at least one task to be
2695 * moved
2696 */
2697 if (*imbalance < sds->busiest_load_per_task)
2698 return fix_small_imbalance(sds, this_cpu, imbalance);
2699
2700}
2701/******* find_busiest_group() helpers end here *********************/
2702
2703/**
2704 * find_busiest_group - Returns the busiest group within the sched_domain
2705 * if there is an imbalance. If there isn't an imbalance, and
2706 * the user has opted for power-savings, it returns a group whose
2707 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2708 * such a group exists.
2709 *
2710 * Also calculates the amount of weighted load which should be moved
2711 * to restore balance.
2712 *
2713 * @sd: The sched_domain whose busiest group is to be returned.
2714 * @this_cpu: The cpu for which load balancing is currently being performed.
2715 * @imbalance: Variable which stores amount of weighted load which should
2716 * be moved to restore balance/put a group to idle.
2717 * @idle: The idle status of this_cpu.
2718 * @sd_idle: The idleness of sd
2719 * @cpus: The set of CPUs under consideration for load-balancing.
2720 * @balance: Pointer to a variable indicating if this_cpu
2721 * is the appropriate cpu to perform load balancing at this_level.
2722 *
2723 * Returns: - the busiest group if imbalance exists.
2724 * - If no imbalance and user has opted for power-savings balance,
2725 * return the least loaded group whose CPUs can be
2726 * put to idle by rebalancing its tasks onto our group.
2727 */
2728static struct sched_group *
2729find_busiest_group(struct sched_domain *sd, int this_cpu,
2730 unsigned long *imbalance, enum cpu_idle_type idle,
2731 int *sd_idle, const struct cpumask *cpus, int *balance)
2732{
2733 struct sd_lb_stats sds;
2734
2735 memset(&sds, 0, sizeof(sds));
2736
2737 /*
2738 * Compute the various statistics relavent for load balancing at
2739 * this level.
2740 */
2741 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2742 balance, &sds);
2743
2744 /* Cases where imbalance does not exist from POV of this_cpu */
2745 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2746 * at this level.
2747 * 2) There is no busy sibling group to pull from.
2748 * 3) This group is the busiest group.
2749 * 4) This group is more busy than the avg busieness at this
2750 * sched_domain.
2751 * 5) The imbalance is within the specified limit.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002752 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002753 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002754 goto ret;
2755
2756 if (!sds.busiest || sds.busiest_nr_running == 0)
2757 goto out_balanced;
2758
2759 if (sds.this_load >= sds.max_load)
2760 goto out_balanced;
2761
2762 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2763
2764 if (sds.this_load >= sds.avg_load)
2765 goto out_balanced;
2766
2767 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2768 goto out_balanced;
2769
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002770 /* Looks like there is an imbalance. Compute it */
2771 calculate_imbalance(&sds, this_cpu, imbalance);
2772 return sds.busiest;
2773
2774out_balanced:
2775 /*
2776 * There is no obvious imbalance. But check if we can do some balancing
2777 * to save power.
2778 */
2779 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2780 return sds.busiest;
2781ret:
2782 *imbalance = 0;
2783 return NULL;
2784}
2785
2786/*
2787 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2788 */
2789static struct rq *
2790find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2791 unsigned long imbalance, const struct cpumask *cpus)
2792{
2793 struct rq *busiest = NULL, *rq;
2794 unsigned long max_load = 0;
2795 int i;
2796
2797 for_each_cpu(i, sched_group_cpus(group)) {
2798 unsigned long power = power_of(i);
2799 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2800 unsigned long wl;
2801
2802 if (!cpumask_test_cpu(i, cpus))
2803 continue;
2804
2805 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002806 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002807
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002808 /*
2809 * When comparing with imbalance, use weighted_cpuload()
2810 * which is not scaled with the cpu power.
2811 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002812 if (capacity && rq->nr_running == 1 && wl > imbalance)
2813 continue;
2814
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002815 /*
2816 * For the load comparisons with the other cpu's, consider
2817 * the weighted_cpuload() scaled with the cpu power, so that
2818 * the load can be moved away from the cpu that is potentially
2819 * running at a lower capacity.
2820 */
2821 wl = (wl * SCHED_LOAD_SCALE) / power;
2822
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002823 if (wl > max_load) {
2824 max_load = wl;
2825 busiest = rq;
2826 }
2827 }
2828
2829 return busiest;
2830}
2831
2832/*
2833 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2834 * so long as it is large enough.
2835 */
2836#define MAX_PINNED_INTERVAL 512
2837
2838/* Working cpumask for load_balance and load_balance_newidle. */
2839static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2840
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002841static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2842{
2843 if (idle == CPU_NEWLY_IDLE) {
2844 /*
2845 * The only task running in a non-idle cpu can be moved to this
2846 * cpu in an attempt to completely freeup the other CPU
2847 * package.
2848 *
2849 * The package power saving logic comes from
2850 * find_busiest_group(). If there are no imbalance, then
2851 * f_b_g() will return NULL. However when sched_mc={1,2} then
2852 * f_b_g() will select a group from which a running task may be
2853 * pulled to this cpu in order to make the other package idle.
2854 * If there is no opportunity to make a package idle and if
2855 * there are no imbalance, then f_b_g() will return NULL and no
2856 * action will be taken in load_balance_newidle().
2857 *
2858 * Under normal task pull operation due to imbalance, there
2859 * will be more than one task in the source run queue and
2860 * move_tasks() will succeed. ld_moved will be true and this
2861 * active balance code will not be triggered.
2862 */
2863 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2864 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2865 return 0;
2866
2867 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2868 return 0;
2869 }
2870
2871 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2872}
2873
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002874/*
2875 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2876 * tasks if there is an imbalance.
2877 */
2878static int load_balance(int this_cpu, struct rq *this_rq,
2879 struct sched_domain *sd, enum cpu_idle_type idle,
2880 int *balance)
2881{
2882 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2883 struct sched_group *group;
2884 unsigned long imbalance;
2885 struct rq *busiest;
2886 unsigned long flags;
2887 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2888
2889 cpumask_copy(cpus, cpu_active_mask);
2890
2891 /*
2892 * When power savings policy is enabled for the parent domain, idle
2893 * sibling can pick up load irrespective of busy siblings. In this case,
2894 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2895 * portraying it as CPU_NOT_IDLE.
2896 */
2897 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2898 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2899 sd_idle = 1;
2900
2901 schedstat_inc(sd, lb_count[idle]);
2902
2903redo:
2904 update_shares(sd);
2905 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2906 cpus, balance);
2907
2908 if (*balance == 0)
2909 goto out_balanced;
2910
2911 if (!group) {
2912 schedstat_inc(sd, lb_nobusyg[idle]);
2913 goto out_balanced;
2914 }
2915
2916 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2917 if (!busiest) {
2918 schedstat_inc(sd, lb_nobusyq[idle]);
2919 goto out_balanced;
2920 }
2921
2922 BUG_ON(busiest == this_rq);
2923
2924 schedstat_add(sd, lb_imbalance[idle], imbalance);
2925
2926 ld_moved = 0;
2927 if (busiest->nr_running > 1) {
2928 /*
2929 * Attempt to move tasks. If find_busiest_group has found
2930 * an imbalance but busiest->nr_running <= 1, the group is
2931 * still unbalanced. ld_moved simply stays zero, so it is
2932 * correctly treated as an imbalance.
2933 */
2934 local_irq_save(flags);
2935 double_rq_lock(this_rq, busiest);
2936 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2937 imbalance, sd, idle, &all_pinned);
2938 double_rq_unlock(this_rq, busiest);
2939 local_irq_restore(flags);
2940
2941 /*
2942 * some other cpu did the load balance for us.
2943 */
2944 if (ld_moved && this_cpu != smp_processor_id())
2945 resched_cpu(this_cpu);
2946
2947 /* All tasks on this runqueue were pinned by CPU affinity */
2948 if (unlikely(all_pinned)) {
2949 cpumask_clear_cpu(cpu_of(busiest), cpus);
2950 if (!cpumask_empty(cpus))
2951 goto redo;
2952 goto out_balanced;
2953 }
2954 }
2955
2956 if (!ld_moved) {
2957 schedstat_inc(sd, lb_failed[idle]);
2958 sd->nr_balance_failed++;
2959
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002960 if (need_active_balance(sd, sd_idle, idle)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002961 raw_spin_lock_irqsave(&busiest->lock, flags);
2962
2963 /* don't kick the migration_thread, if the curr
2964 * task on busiest cpu can't be moved to this_cpu
2965 */
2966 if (!cpumask_test_cpu(this_cpu,
2967 &busiest->curr->cpus_allowed)) {
2968 raw_spin_unlock_irqrestore(&busiest->lock,
2969 flags);
2970 all_pinned = 1;
2971 goto out_one_pinned;
2972 }
2973
2974 if (!busiest->active_balance) {
2975 busiest->active_balance = 1;
2976 busiest->push_cpu = this_cpu;
2977 active_balance = 1;
2978 }
2979 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2980 if (active_balance)
2981 wake_up_process(busiest->migration_thread);
2982
2983 /*
2984 * We've kicked active balancing, reset the failure
2985 * counter.
2986 */
2987 sd->nr_balance_failed = sd->cache_nice_tries+1;
2988 }
2989 } else
2990 sd->nr_balance_failed = 0;
2991
2992 if (likely(!active_balance)) {
2993 /* We were unbalanced, so reset the balancing interval */
2994 sd->balance_interval = sd->min_interval;
2995 } else {
2996 /*
2997 * If we've begun active balancing, start to back off. This
2998 * case may not be covered by the all_pinned logic if there
2999 * is only 1 task on the busy runqueue (because we don't call
3000 * move_tasks).
3001 */
3002 if (sd->balance_interval < sd->max_interval)
3003 sd->balance_interval *= 2;
3004 }
3005
3006 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3007 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3008 ld_moved = -1;
3009
3010 goto out;
3011
3012out_balanced:
3013 schedstat_inc(sd, lb_balanced[idle]);
3014
3015 sd->nr_balance_failed = 0;
3016
3017out_one_pinned:
3018 /* tune up the balancing interval */
3019 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3020 (sd->balance_interval < sd->max_interval))
3021 sd->balance_interval *= 2;
3022
3023 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3024 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3025 ld_moved = -1;
3026 else
3027 ld_moved = 0;
3028out:
3029 if (ld_moved)
3030 update_shares(sd);
3031 return ld_moved;
3032}
3033
3034/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003035 * idle_balance is called by schedule() if this_cpu is about to become
3036 * idle. Attempts to pull tasks from other CPUs.
3037 */
3038static void idle_balance(int this_cpu, struct rq *this_rq)
3039{
3040 struct sched_domain *sd;
3041 int pulled_task = 0;
3042 unsigned long next_balance = jiffies + HZ;
3043
3044 this_rq->idle_stamp = this_rq->clock;
3045
3046 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3047 return;
3048
Peter Zijlstraf492e122009-12-23 15:29:42 +01003049 /*
3050 * Drop the rq->lock, but keep IRQ/preempt disabled.
3051 */
3052 raw_spin_unlock(&this_rq->lock);
3053
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003054 for_each_domain(this_cpu, sd) {
3055 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01003056 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003057
3058 if (!(sd->flags & SD_LOAD_BALANCE))
3059 continue;
3060
Peter Zijlstraf492e122009-12-23 15:29:42 +01003061 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003062 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01003063 pulled_task = load_balance(this_cpu, this_rq,
3064 sd, CPU_NEWLY_IDLE, &balance);
3065 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003066
3067 interval = msecs_to_jiffies(sd->balance_interval);
3068 if (time_after(next_balance, sd->last_balance + interval))
3069 next_balance = sd->last_balance + interval;
3070 if (pulled_task) {
3071 this_rq->idle_stamp = 0;
3072 break;
3073 }
3074 }
Peter Zijlstraf492e122009-12-23 15:29:42 +01003075
3076 raw_spin_lock(&this_rq->lock);
3077
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003078 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3079 /*
3080 * We are going idle. next_balance may be set based on
3081 * a busy processor. So reset next_balance.
3082 */
3083 this_rq->next_balance = next_balance;
3084 }
3085}
3086
3087/*
3088 * active_load_balance is run by migration threads. It pushes running tasks
3089 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3090 * running on each physical CPU where possible, and avoids physical /
3091 * logical imbalances.
3092 *
3093 * Called with busiest_rq locked.
3094 */
3095static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3096{
3097 int target_cpu = busiest_rq->push_cpu;
3098 struct sched_domain *sd;
3099 struct rq *target_rq;
3100
3101 /* Is there any task to move? */
3102 if (busiest_rq->nr_running <= 1)
3103 return;
3104
3105 target_rq = cpu_rq(target_cpu);
3106
3107 /*
3108 * This condition is "impossible", if it occurs
3109 * we need to fix it. Originally reported by
3110 * Bjorn Helgaas on a 128-cpu setup.
3111 */
3112 BUG_ON(busiest_rq == target_rq);
3113
3114 /* move a task from busiest_rq to target_rq */
3115 double_lock_balance(busiest_rq, target_rq);
3116 update_rq_clock(busiest_rq);
3117 update_rq_clock(target_rq);
3118
3119 /* Search for an sd spanning us and the target CPU. */
3120 for_each_domain(target_cpu, sd) {
3121 if ((sd->flags & SD_LOAD_BALANCE) &&
3122 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3123 break;
3124 }
3125
3126 if (likely(sd)) {
3127 schedstat_inc(sd, alb_count);
3128
3129 if (move_one_task(target_rq, target_cpu, busiest_rq,
3130 sd, CPU_IDLE))
3131 schedstat_inc(sd, alb_pushed);
3132 else
3133 schedstat_inc(sd, alb_failed);
3134 }
3135 double_unlock_balance(busiest_rq, target_rq);
3136}
3137
3138#ifdef CONFIG_NO_HZ
3139static struct {
3140 atomic_t load_balancer;
3141 cpumask_var_t cpu_mask;
3142 cpumask_var_t ilb_grp_nohz_mask;
3143} nohz ____cacheline_aligned = {
3144 .load_balancer = ATOMIC_INIT(-1),
3145};
3146
3147int get_nohz_load_balancer(void)
3148{
3149 return atomic_read(&nohz.load_balancer);
3150}
3151
3152#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3153/**
3154 * lowest_flag_domain - Return lowest sched_domain containing flag.
3155 * @cpu: The cpu whose lowest level of sched domain is to
3156 * be returned.
3157 * @flag: The flag to check for the lowest sched_domain
3158 * for the given cpu.
3159 *
3160 * Returns the lowest sched_domain of a cpu which contains the given flag.
3161 */
3162static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3163{
3164 struct sched_domain *sd;
3165
3166 for_each_domain(cpu, sd)
3167 if (sd && (sd->flags & flag))
3168 break;
3169
3170 return sd;
3171}
3172
3173/**
3174 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3175 * @cpu: The cpu whose domains we're iterating over.
3176 * @sd: variable holding the value of the power_savings_sd
3177 * for cpu.
3178 * @flag: The flag to filter the sched_domains to be iterated.
3179 *
3180 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3181 * set, starting from the lowest sched_domain to the highest.
3182 */
3183#define for_each_flag_domain(cpu, sd, flag) \
3184 for (sd = lowest_flag_domain(cpu, flag); \
3185 (sd && (sd->flags & flag)); sd = sd->parent)
3186
3187/**
3188 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3189 * @ilb_group: group to be checked for semi-idleness
3190 *
3191 * Returns: 1 if the group is semi-idle. 0 otherwise.
3192 *
3193 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3194 * and atleast one non-idle CPU. This helper function checks if the given
3195 * sched_group is semi-idle or not.
3196 */
3197static inline int is_semi_idle_group(struct sched_group *ilb_group)
3198{
3199 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3200 sched_group_cpus(ilb_group));
3201
3202 /*
3203 * A sched_group is semi-idle when it has atleast one busy cpu
3204 * and atleast one idle cpu.
3205 */
3206 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3207 return 0;
3208
3209 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3210 return 0;
3211
3212 return 1;
3213}
3214/**
3215 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3216 * @cpu: The cpu which is nominating a new idle_load_balancer.
3217 *
3218 * Returns: Returns the id of the idle load balancer if it exists,
3219 * Else, returns >= nr_cpu_ids.
3220 *
3221 * This algorithm picks the idle load balancer such that it belongs to a
3222 * semi-idle powersavings sched_domain. The idea is to try and avoid
3223 * completely idle packages/cores just for the purpose of idle load balancing
3224 * when there are other idle cpu's which are better suited for that job.
3225 */
3226static int find_new_ilb(int cpu)
3227{
3228 struct sched_domain *sd;
3229 struct sched_group *ilb_group;
3230
3231 /*
3232 * Have idle load balancer selection from semi-idle packages only
3233 * when power-aware load balancing is enabled
3234 */
3235 if (!(sched_smt_power_savings || sched_mc_power_savings))
3236 goto out_done;
3237
3238 /*
3239 * Optimize for the case when we have no idle CPUs or only one
3240 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3241 */
3242 if (cpumask_weight(nohz.cpu_mask) < 2)
3243 goto out_done;
3244
3245 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3246 ilb_group = sd->groups;
3247
3248 do {
3249 if (is_semi_idle_group(ilb_group))
3250 return cpumask_first(nohz.ilb_grp_nohz_mask);
3251
3252 ilb_group = ilb_group->next;
3253
3254 } while (ilb_group != sd->groups);
3255 }
3256
3257out_done:
3258 return cpumask_first(nohz.cpu_mask);
3259}
3260#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3261static inline int find_new_ilb(int call_cpu)
3262{
3263 return cpumask_first(nohz.cpu_mask);
3264}
3265#endif
3266
3267/*
3268 * This routine will try to nominate the ilb (idle load balancing)
3269 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3270 * load balancing on behalf of all those cpus. If all the cpus in the system
3271 * go into this tickless mode, then there will be no ilb owner (as there is
3272 * no need for one) and all the cpus will sleep till the next wakeup event
3273 * arrives...
3274 *
3275 * For the ilb owner, tick is not stopped. And this tick will be used
3276 * for idle load balancing. ilb owner will still be part of
3277 * nohz.cpu_mask..
3278 *
3279 * While stopping the tick, this cpu will become the ilb owner if there
3280 * is no other owner. And will be the owner till that cpu becomes busy
3281 * or if all cpus in the system stop their ticks at which point
3282 * there is no need for ilb owner.
3283 *
3284 * When the ilb owner becomes busy, it nominates another owner, during the
3285 * next busy scheduler_tick()
3286 */
3287int select_nohz_load_balancer(int stop_tick)
3288{
3289 int cpu = smp_processor_id();
3290
3291 if (stop_tick) {
3292 cpu_rq(cpu)->in_nohz_recently = 1;
3293
3294 if (!cpu_active(cpu)) {
3295 if (atomic_read(&nohz.load_balancer) != cpu)
3296 return 0;
3297
3298 /*
3299 * If we are going offline and still the leader,
3300 * give up!
3301 */
3302 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3303 BUG();
3304
3305 return 0;
3306 }
3307
3308 cpumask_set_cpu(cpu, nohz.cpu_mask);
3309
3310 /* time for ilb owner also to sleep */
3311 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3312 if (atomic_read(&nohz.load_balancer) == cpu)
3313 atomic_set(&nohz.load_balancer, -1);
3314 return 0;
3315 }
3316
3317 if (atomic_read(&nohz.load_balancer) == -1) {
3318 /* make me the ilb owner */
3319 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3320 return 1;
3321 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3322 int new_ilb;
3323
3324 if (!(sched_smt_power_savings ||
3325 sched_mc_power_savings))
3326 return 1;
3327 /*
3328 * Check to see if there is a more power-efficient
3329 * ilb.
3330 */
3331 new_ilb = find_new_ilb(cpu);
3332 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3333 atomic_set(&nohz.load_balancer, -1);
3334 resched_cpu(new_ilb);
3335 return 0;
3336 }
3337 return 1;
3338 }
3339 } else {
3340 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3341 return 0;
3342
3343 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3344
3345 if (atomic_read(&nohz.load_balancer) == cpu)
3346 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3347 BUG();
3348 }
3349 return 0;
3350}
3351#endif
3352
3353static DEFINE_SPINLOCK(balancing);
3354
3355/*
3356 * It checks each scheduling domain to see if it is due to be balanced,
3357 * and initiates a balancing operation if so.
3358 *
3359 * Balancing parameters are set up in arch_init_sched_domains.
3360 */
3361static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3362{
3363 int balance = 1;
3364 struct rq *rq = cpu_rq(cpu);
3365 unsigned long interval;
3366 struct sched_domain *sd;
3367 /* Earliest time when we have to do rebalance again */
3368 unsigned long next_balance = jiffies + 60*HZ;
3369 int update_next_balance = 0;
3370 int need_serialize;
3371
3372 for_each_domain(cpu, sd) {
3373 if (!(sd->flags & SD_LOAD_BALANCE))
3374 continue;
3375
3376 interval = sd->balance_interval;
3377 if (idle != CPU_IDLE)
3378 interval *= sd->busy_factor;
3379
3380 /* scale ms to jiffies */
3381 interval = msecs_to_jiffies(interval);
3382 if (unlikely(!interval))
3383 interval = 1;
3384 if (interval > HZ*NR_CPUS/10)
3385 interval = HZ*NR_CPUS/10;
3386
3387 need_serialize = sd->flags & SD_SERIALIZE;
3388
3389 if (need_serialize) {
3390 if (!spin_trylock(&balancing))
3391 goto out;
3392 }
3393
3394 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3395 if (load_balance(cpu, rq, sd, idle, &balance)) {
3396 /*
3397 * We've pulled tasks over so either we're no
3398 * longer idle, or one of our SMT siblings is
3399 * not idle.
3400 */
3401 idle = CPU_NOT_IDLE;
3402 }
3403 sd->last_balance = jiffies;
3404 }
3405 if (need_serialize)
3406 spin_unlock(&balancing);
3407out:
3408 if (time_after(next_balance, sd->last_balance + interval)) {
3409 next_balance = sd->last_balance + interval;
3410 update_next_balance = 1;
3411 }
3412
3413 /*
3414 * Stop the load balance at this level. There is another
3415 * CPU in our sched group which is doing load balancing more
3416 * actively.
3417 */
3418 if (!balance)
3419 break;
3420 }
3421
3422 /*
3423 * next_balance will be updated only when there is a need.
3424 * When the cpu is attached to null domain for ex, it will not be
3425 * updated.
3426 */
3427 if (likely(update_next_balance))
3428 rq->next_balance = next_balance;
3429}
3430
3431/*
3432 * run_rebalance_domains is triggered when needed from the scheduler tick.
3433 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3434 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3435 */
3436static void run_rebalance_domains(struct softirq_action *h)
3437{
3438 int this_cpu = smp_processor_id();
3439 struct rq *this_rq = cpu_rq(this_cpu);
3440 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3441 CPU_IDLE : CPU_NOT_IDLE;
3442
3443 rebalance_domains(this_cpu, idle);
3444
3445#ifdef CONFIG_NO_HZ
3446 /*
3447 * If this cpu is the owner for idle load balancing, then do the
3448 * balancing on behalf of the other idle cpus whose ticks are
3449 * stopped.
3450 */
3451 if (this_rq->idle_at_tick &&
3452 atomic_read(&nohz.load_balancer) == this_cpu) {
3453 struct rq *rq;
3454 int balance_cpu;
3455
3456 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3457 if (balance_cpu == this_cpu)
3458 continue;
3459
3460 /*
3461 * If this cpu gets work to do, stop the load balancing
3462 * work being done for other cpus. Next load
3463 * balancing owner will pick it up.
3464 */
3465 if (need_resched())
3466 break;
3467
3468 rebalance_domains(balance_cpu, CPU_IDLE);
3469
3470 rq = cpu_rq(balance_cpu);
3471 if (time_after(this_rq->next_balance, rq->next_balance))
3472 this_rq->next_balance = rq->next_balance;
3473 }
3474 }
3475#endif
3476}
3477
3478static inline int on_null_domain(int cpu)
3479{
3480 return !rcu_dereference(cpu_rq(cpu)->sd);
3481}
3482
3483/*
3484 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3485 *
3486 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3487 * idle load balancing owner or decide to stop the periodic load balancing,
3488 * if the whole system is idle.
3489 */
3490static inline void trigger_load_balance(struct rq *rq, int cpu)
3491{
3492#ifdef CONFIG_NO_HZ
3493 /*
3494 * If we were in the nohz mode recently and busy at the current
3495 * scheduler tick, then check if we need to nominate new idle
3496 * load balancer.
3497 */
3498 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3499 rq->in_nohz_recently = 0;
3500
3501 if (atomic_read(&nohz.load_balancer) == cpu) {
3502 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3503 atomic_set(&nohz.load_balancer, -1);
3504 }
3505
3506 if (atomic_read(&nohz.load_balancer) == -1) {
3507 int ilb = find_new_ilb(cpu);
3508
3509 if (ilb < nr_cpu_ids)
3510 resched_cpu(ilb);
3511 }
3512 }
3513
3514 /*
3515 * If this cpu is idle and doing idle load balancing for all the
3516 * cpus with ticks stopped, is it time for that to stop?
3517 */
3518 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3519 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3520 resched_cpu(cpu);
3521 return;
3522 }
3523
3524 /*
3525 * If this cpu is idle and the idle load balancing is done by
3526 * someone else, then no need raise the SCHED_SOFTIRQ
3527 */
3528 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3529 cpumask_test_cpu(cpu, nohz.cpu_mask))
3530 return;
3531#endif
3532 /* Don't need to rebalance while attached to NULL domain */
3533 if (time_after_eq(jiffies, rq->next_balance) &&
3534 likely(!on_null_domain(cpu)))
3535 raise_softirq(SCHED_SOFTIRQ);
3536}
3537
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003538static void rq_online_fair(struct rq *rq)
3539{
3540 update_sysctl();
3541}
3542
3543static void rq_offline_fair(struct rq *rq)
3544{
3545 update_sysctl();
3546}
3547
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003548#else /* CONFIG_SMP */
3549
3550/*
3551 * on UP we do not need to balance between CPUs:
3552 */
3553static inline void idle_balance(int cpu, struct rq *rq)
3554{
3555}
3556
Dhaval Giani55e12e52008-06-24 23:39:43 +05303557#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02003558
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003559/*
3560 * scheduler tick hitting a task of our scheduling class:
3561 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003562static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003563{
3564 struct cfs_rq *cfs_rq;
3565 struct sched_entity *se = &curr->se;
3566
3567 for_each_sched_entity(se) {
3568 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003569 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003570 }
3571}
3572
3573/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003574 * called on fork with the child task as argument from the parent's context
3575 * - child not yet on the tasklist
3576 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003577 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003578static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003579{
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003580 struct cfs_rq *cfs_rq = task_cfs_rq(current);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003581 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02003582 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003583 struct rq *rq = this_rq();
3584 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003585
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003586 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003587
3588 if (unlikely(task_cpu(p) != this_cpu))
3589 __set_task_cpu(p, this_cpu);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003590
Ting Yang7109c442007-08-28 12:53:24 +02003591 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003592
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003593 if (curr)
3594 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003595 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003596
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003597 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02003598 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02003599 * Upon rescheduling, sched_class::put_prev_task() will place
3600 * 'current' within the tree based on its new key value.
3601 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003602 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05303603 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003604 }
3605
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003606 se->vruntime -= cfs_rq->min_vruntime;
3607
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003608 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003609}
3610
Steven Rostedtcb469842008-01-25 21:08:22 +01003611/*
3612 * Priority of the task has changed. Check to see if we preempt
3613 * the current task.
3614 */
3615static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3616 int oldprio, int running)
3617{
3618 /*
3619 * Reschedule if we are currently running on this runqueue and
3620 * our priority decreased, or if we are not currently running on
3621 * this runqueue and our priority is higher than the current's
3622 */
3623 if (running) {
3624 if (p->prio > oldprio)
3625 resched_task(rq->curr);
3626 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003627 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003628}
3629
3630/*
3631 * We switched to the sched_fair class.
3632 */
3633static void switched_to_fair(struct rq *rq, struct task_struct *p,
3634 int running)
3635{
3636 /*
3637 * We were most likely switched from sched_rt, so
3638 * kick off the schedule if running, otherwise just see
3639 * if we can still preempt the current task.
3640 */
3641 if (running)
3642 resched_task(rq->curr);
3643 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003644 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003645}
3646
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003647/* Account for a task changing its policy or group.
3648 *
3649 * This routine is mostly called to set cfs_rq->curr field when a task
3650 * migrates between groups/classes.
3651 */
3652static void set_curr_task_fair(struct rq *rq)
3653{
3654 struct sched_entity *se = &rq->curr->se;
3655
3656 for_each_sched_entity(se)
3657 set_next_entity(cfs_rq_of(se), se);
3658}
3659
Peter Zijlstra810b3812008-02-29 15:21:01 -05003660#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003661static void moved_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05003662{
3663 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3664
3665 update_curr(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003666 if (!on_rq)
3667 place_entity(cfs_rq, &p->se, 1);
Peter Zijlstra810b3812008-02-29 15:21:01 -05003668}
3669#endif
3670
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07003671static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00003672{
3673 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00003674 unsigned int rr_interval = 0;
3675
3676 /*
3677 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3678 * idle runqueue:
3679 */
Peter Williams0d721ce2009-09-21 01:31:53 +00003680 if (rq->cfs.load.weight)
3681 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
Peter Williams0d721ce2009-09-21 01:31:53 +00003682
3683 return rr_interval;
3684}
3685
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003686/*
3687 * All the scheduling class methods:
3688 */
Ingo Molnar5522d5d2007-10-15 17:00:12 +02003689static const struct sched_class fair_sched_class = {
3690 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003691 .enqueue_task = enqueue_task_fair,
3692 .dequeue_task = dequeue_task_fair,
3693 .yield_task = yield_task_fair,
3694
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003695 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003696
3697 .pick_next_task = pick_next_task_fair,
3698 .put_prev_task = put_prev_task_fair,
3699
Peter Williams681f3e62007-10-24 18:23:51 +02003700#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08003701 .select_task_rq = select_task_rq_fair,
3702
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003703 .rq_online = rq_online_fair,
3704 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003705
3706 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02003707#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003708
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003709 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003710 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003711 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01003712
3713 .prio_changed = prio_changed_fair,
3714 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05003715
Peter Williams0d721ce2009-09-21 01:31:53 +00003716 .get_rr_interval = get_rr_interval_fair,
3717
Peter Zijlstra810b3812008-02-29 15:21:01 -05003718#ifdef CONFIG_FAIR_GROUP_SCHED
3719 .moved_group = moved_group_fair,
3720#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003721};
3722
3723#ifdef CONFIG_SCHED_DEBUG
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003724static void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003725{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003726 struct cfs_rq *cfs_rq;
3727
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003728 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02003729 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003730 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003731 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003732}
3733#endif