blob: 5b2208e504a4d37317bfbeac2cb5c4f71dc7ebb0 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
Mel Gorman598f0ec2013-10-07 11:28:55 +0100844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100897
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100915 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100916 struct list_head task_list;
917
918 struct rcu_head rcu;
Mel Gorman989348b2013-10-07 11:29:40 +0100919 unsigned long total_faults;
920 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100921};
922
Mel Gormane29cf082013-10-07 11:29:22 +0100923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
Mel Gormanac8e8952013-10-07 11:29:03 +0100928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
Mel Gorman989348b2013-10-07 11:29:40 +0100947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
Mel Gorman989348b2013-10-07 11:29:40 +0100973 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100974 return 0;
975
Mel Gorman989348b2013-10-07 11:29:40 +0100976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100977}
978
Mel Gormane6628d52013-10-07 11:29:02 +0100979static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100984
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100985/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100986struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100988 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996};
Mel Gormane6628d52013-10-07 11:29:02 +0100997
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
Mel Gorman58d081b2013-10-07 11:29:10 +01001019struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001031 int best_cpu;
1032};
1033
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
Rik van Riel887c2902013-10-07 11:29:31 +01001053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001061 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
Rik van Riel887c2902013-10-07 11:29:31 +01001080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001082 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001083 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001084 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001093 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001110 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001171 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001172 }
1173}
1174
Mel Gorman58d081b2013-10-07 11:29:10 +01001175static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001176{
Mel Gorman58d081b2013-10-07 11:29:10 +01001177 struct task_numa_env env = {
1178 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
Mel Gorman58d081b2013-10-07 11:29:10 +01001180 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001181 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 };
1189 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001190 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001191 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001192 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001193
Mel Gorman58d081b2013-10-07 11:29:10 +01001194 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001201 */
Mel Gormane6628d52013-10-07 11:29:02 +01001202 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001205 rcu_read_unlock();
1206
Rik van Riel887c2902013-10-07 11:29:31 +01001207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001209 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001210 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001214
Rik van Riele1dda8a2013-10-07 11:29:19 +01001215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001217 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001223 continue;
1224
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001225 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001229 continue;
1230
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001233 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001234 }
1235 }
1236
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001241 sched_setnuma(p, env.dst_nid);
1242
Rik van Riel04bb2f92013-10-07 11:29:36 +01001243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001257}
1258
Mel Gorman6b9a7462013-10-07 11:29:11 +01001259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
1262 /* Success if task is already running on preferred CPU */
1263 p->numa_migrate_retry = 0;
Rik van Riel1e3646f2013-10-07 11:29:38 +01001264 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001265 return;
1266
1267 /* This task has no NUMA fault statistics yet */
1268 if (unlikely(p->numa_preferred_nid == -1))
1269 return;
1270
1271 /* Otherwise, try migrate to a CPU on the preferred node */
1272 if (task_numa_migrate(p) != 0)
1273 p->numa_migrate_retry = jiffies + HZ*5;
1274}
1275
Rik van Riel04bb2f92013-10-07 11:29:36 +01001276/*
1277 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1278 * increments. The more local the fault statistics are, the higher the scan
1279 * period will be for the next scan window. If local/remote ratio is below
1280 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1281 * scan period will decrease
1282 */
1283#define NUMA_PERIOD_SLOTS 10
1284#define NUMA_PERIOD_THRESHOLD 3
1285
1286/*
1287 * Increase the scan period (slow down scanning) if the majority of
1288 * our memory is already on our local node, or if the majority of
1289 * the page accesses are shared with other processes.
1290 * Otherwise, decrease the scan period.
1291 */
1292static void update_task_scan_period(struct task_struct *p,
1293 unsigned long shared, unsigned long private)
1294{
1295 unsigned int period_slot;
1296 int ratio;
1297 int diff;
1298
1299 unsigned long remote = p->numa_faults_locality[0];
1300 unsigned long local = p->numa_faults_locality[1];
1301
1302 /*
1303 * If there were no record hinting faults then either the task is
1304 * completely idle or all activity is areas that are not of interest
1305 * to automatic numa balancing. Scan slower
1306 */
1307 if (local + shared == 0) {
1308 p->numa_scan_period = min(p->numa_scan_period_max,
1309 p->numa_scan_period << 1);
1310
1311 p->mm->numa_next_scan = jiffies +
1312 msecs_to_jiffies(p->numa_scan_period);
1313
1314 return;
1315 }
1316
1317 /*
1318 * Prepare to scale scan period relative to the current period.
1319 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1320 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1321 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1322 */
1323 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1324 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1325 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1326 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1327 if (!slot)
1328 slot = 1;
1329 diff = slot * period_slot;
1330 } else {
1331 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1332
1333 /*
1334 * Scale scan rate increases based on sharing. There is an
1335 * inverse relationship between the degree of sharing and
1336 * the adjustment made to the scanning period. Broadly
1337 * speaking the intent is that there is little point
1338 * scanning faster if shared accesses dominate as it may
1339 * simply bounce migrations uselessly
1340 */
1341 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1342 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1343 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1344 }
1345
1346 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1347 task_scan_min(p), task_scan_max(p));
1348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1349}
1350
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001351static void task_numa_placement(struct task_struct *p)
1352{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001353 int seq, nid, max_nid = -1, max_group_nid = -1;
1354 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001355 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001356 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001357
Hugh Dickins2832bc12012-12-19 17:42:16 -08001358 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001359 if (p->numa_scan_seq == seq)
1360 return;
1361 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001362 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001363
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001364 /* If the task is part of a group prevent parallel updates to group stats */
1365 if (p->numa_group) {
1366 group_lock = &p->numa_group->lock;
1367 spin_lock(group_lock);
1368 }
1369
Mel Gorman688b7582013-10-07 11:28:58 +01001370 /* Find the node with the highest number of faults */
1371 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001372 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001373 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001374
Mel Gormanac8e8952013-10-07 11:29:03 +01001375 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001376 long diff;
1377
Mel Gormanac8e8952013-10-07 11:29:03 +01001378 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001379 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001380
Mel Gormanac8e8952013-10-07 11:29:03 +01001381 /* Decay existing window, copy faults since last scan */
1382 p->numa_faults[i] >>= 1;
1383 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001384 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001385 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001386
1387 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001388 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001389 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001390 if (p->numa_group) {
1391 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001392 p->numa_group->faults[i] += diff;
1393 p->numa_group->total_faults += diff;
1394 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001395 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001396 }
1397
Mel Gorman688b7582013-10-07 11:28:58 +01001398 if (faults > max_faults) {
1399 max_faults = faults;
1400 max_nid = nid;
1401 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001402
1403 if (group_faults > max_group_faults) {
1404 max_group_faults = group_faults;
1405 max_group_nid = nid;
1406 }
1407 }
1408
Rik van Riel04bb2f92013-10-07 11:29:36 +01001409 update_task_scan_period(p, fault_types[0], fault_types[1]);
1410
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001411 if (p->numa_group) {
1412 /*
1413 * If the preferred task and group nids are different,
1414 * iterate over the nodes again to find the best place.
1415 */
1416 if (max_nid != max_group_nid) {
1417 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001418
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001419 for_each_online_node(nid) {
1420 weight = task_weight(p, nid) + group_weight(p, nid);
1421 if (weight > max_weight) {
1422 max_weight = weight;
1423 max_nid = nid;
1424 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001425 }
1426 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001427
1428 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001429 }
1430
Mel Gorman6b9a7462013-10-07 11:29:11 +01001431 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001432 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001433 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001434 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001435 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001436 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001437}
1438
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001439static inline int get_numa_group(struct numa_group *grp)
1440{
1441 return atomic_inc_not_zero(&grp->refcount);
1442}
1443
1444static inline void put_numa_group(struct numa_group *grp)
1445{
1446 if (atomic_dec_and_test(&grp->refcount))
1447 kfree_rcu(grp, rcu);
1448}
1449
1450static void double_lock(spinlock_t *l1, spinlock_t *l2)
1451{
1452 if (l1 > l2)
1453 swap(l1, l2);
1454
1455 spin_lock(l1);
1456 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1457}
1458
Mel Gorman3e6a9412013-10-07 11:29:35 +01001459static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1460 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001461{
1462 struct numa_group *grp, *my_grp;
1463 struct task_struct *tsk;
1464 bool join = false;
1465 int cpu = cpupid_to_cpu(cpupid);
1466 int i;
1467
1468 if (unlikely(!p->numa_group)) {
1469 unsigned int size = sizeof(struct numa_group) +
Mel Gorman989348b2013-10-07 11:29:40 +01001470 2*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001471
1472 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1473 if (!grp)
1474 return;
1475
1476 atomic_set(&grp->refcount, 1);
1477 spin_lock_init(&grp->lock);
1478 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001479 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001480
1481 for (i = 0; i < 2*nr_node_ids; i++)
Mel Gorman989348b2013-10-07 11:29:40 +01001482 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001483
Mel Gorman989348b2013-10-07 11:29:40 +01001484 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001485
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001486 list_add(&p->numa_entry, &grp->task_list);
1487 grp->nr_tasks++;
1488 rcu_assign_pointer(p->numa_group, grp);
1489 }
1490
1491 rcu_read_lock();
1492 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1493
1494 if (!cpupid_match_pid(tsk, cpupid))
1495 goto unlock;
1496
1497 grp = rcu_dereference(tsk->numa_group);
1498 if (!grp)
1499 goto unlock;
1500
1501 my_grp = p->numa_group;
1502 if (grp == my_grp)
1503 goto unlock;
1504
1505 /*
1506 * Only join the other group if its bigger; if we're the bigger group,
1507 * the other task will join us.
1508 */
1509 if (my_grp->nr_tasks > grp->nr_tasks)
1510 goto unlock;
1511
1512 /*
1513 * Tie-break on the grp address.
1514 */
1515 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1516 goto unlock;
1517
Rik van Rieldabe1d92013-10-07 11:29:34 +01001518 /* Always join threads in the same process. */
1519 if (tsk->mm == current->mm)
1520 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001521
Rik van Rieldabe1d92013-10-07 11:29:34 +01001522 /* Simple filter to avoid false positives due to PID collisions */
1523 if (flags & TNF_SHARED)
1524 join = true;
1525
Mel Gorman3e6a9412013-10-07 11:29:35 +01001526 /* Update priv based on whether false sharing was detected */
1527 *priv = !join;
1528
Rik van Rieldabe1d92013-10-07 11:29:34 +01001529 if (join && !get_numa_group(grp))
1530 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001531
1532unlock:
1533 rcu_read_unlock();
1534
1535 if (!join)
1536 return;
1537
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001538 double_lock(&my_grp->lock, &grp->lock);
1539
Mel Gorman989348b2013-10-07 11:29:40 +01001540 for (i = 0; i < 2*nr_node_ids; i++) {
1541 my_grp->faults[i] -= p->numa_faults[i];
1542 grp->faults[i] += p->numa_faults[i];
1543 }
1544 my_grp->total_faults -= p->total_numa_faults;
1545 grp->total_faults += p->total_numa_faults;
1546
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001547 list_move(&p->numa_entry, &grp->task_list);
1548 my_grp->nr_tasks--;
1549 grp->nr_tasks++;
1550
1551 spin_unlock(&my_grp->lock);
1552 spin_unlock(&grp->lock);
1553
1554 rcu_assign_pointer(p->numa_group, grp);
1555
1556 put_numa_group(my_grp);
1557}
1558
1559void task_numa_free(struct task_struct *p)
1560{
1561 struct numa_group *grp = p->numa_group;
1562 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001563 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001564
1565 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001566 spin_lock(&grp->lock);
Mel Gorman989348b2013-10-07 11:29:40 +01001567 for (i = 0; i < 2*nr_node_ids; i++)
1568 grp->faults[i] -= p->numa_faults[i];
1569 grp->total_faults -= p->total_numa_faults;
1570
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001571 list_del(&p->numa_entry);
1572 grp->nr_tasks--;
1573 spin_unlock(&grp->lock);
1574 rcu_assign_pointer(p->numa_group, NULL);
1575 put_numa_group(grp);
1576 }
1577
Rik van Riel82727012013-10-07 11:29:28 +01001578 p->numa_faults = NULL;
1579 p->numa_faults_buffer = NULL;
1580 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001581}
1582
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001583/*
1584 * Got a PROT_NONE fault for a page on @node.
1585 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001586void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001587{
1588 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001589 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001590 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001591
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001592 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001593 return;
1594
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001595 /* for example, ksmd faulting in a user's mm */
1596 if (!p->mm)
1597 return;
1598
Rik van Riel82727012013-10-07 11:29:28 +01001599 /* Do not worry about placement if exiting */
1600 if (p->state == TASK_DEAD)
1601 return;
1602
Mel Gormanf809ca92013-10-07 11:28:57 +01001603 /* Allocate buffer to track faults on a per-node basis */
1604 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001605 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001606
Mel Gorman745d6142013-10-07 11:28:59 +01001607 /* numa_faults and numa_faults_buffer share the allocation */
1608 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001609 if (!p->numa_faults)
1610 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001611
1612 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001613 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001614 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001615 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001616 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001617
Mel Gormanfb003b82012-11-15 09:01:14 +00001618 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001619 * First accesses are treated as private, otherwise consider accesses
1620 * to be private if the accessing pid has not changed
1621 */
1622 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1623 priv = 1;
1624 } else {
1625 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001626 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001627 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001628 }
1629
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001630 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001631
Mel Gorman6b9a7462013-10-07 11:29:11 +01001632 /* Retry task to preferred node migration if it previously failed */
1633 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1634 numa_migrate_preferred(p);
1635
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001636 if (migrated)
1637 p->numa_pages_migrated += pages;
1638
Mel Gormanac8e8952013-10-07 11:29:03 +01001639 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001640 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001641}
1642
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001643static void reset_ptenuma_scan(struct task_struct *p)
1644{
1645 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1646 p->mm->numa_scan_offset = 0;
1647}
1648
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001649/*
1650 * The expensive part of numa migration is done from task_work context.
1651 * Triggered from task_tick_numa().
1652 */
1653void task_numa_work(struct callback_head *work)
1654{
1655 unsigned long migrate, next_scan, now = jiffies;
1656 struct task_struct *p = current;
1657 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001658 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001659 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001660 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001661 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001662
1663 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1664
1665 work->next = work; /* protect against double add */
1666 /*
1667 * Who cares about NUMA placement when they're dying.
1668 *
1669 * NOTE: make sure not to dereference p->mm before this check,
1670 * exit_task_work() happens _after_ exit_mm() so we could be called
1671 * without p->mm even though we still had it when we enqueued this
1672 * work.
1673 */
1674 if (p->flags & PF_EXITING)
1675 return;
1676
Mel Gorman930aa172013-10-07 11:29:37 +01001677 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001678 mm->numa_next_scan = now +
1679 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001680 }
1681
1682 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001683 * Enforce maximal scan/migration frequency..
1684 */
1685 migrate = mm->numa_next_scan;
1686 if (time_before(now, migrate))
1687 return;
1688
Mel Gorman598f0ec2013-10-07 11:28:55 +01001689 if (p->numa_scan_period == 0) {
1690 p->numa_scan_period_max = task_scan_max(p);
1691 p->numa_scan_period = task_scan_min(p);
1692 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001693
Mel Gormanfb003b82012-11-15 09:01:14 +00001694 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001695 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1696 return;
1697
Mel Gormane14808b2012-11-19 10:59:15 +00001698 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001699 * Delay this task enough that another task of this mm will likely win
1700 * the next time around.
1701 */
1702 p->node_stamp += 2 * TICK_NSEC;
1703
Mel Gorman9f406042012-11-14 18:34:32 +00001704 start = mm->numa_scan_offset;
1705 pages = sysctl_numa_balancing_scan_size;
1706 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1707 if (!pages)
1708 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001709
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001710 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001711 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001712 if (!vma) {
1713 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001714 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001715 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001716 }
Mel Gorman9f406042012-11-14 18:34:32 +00001717 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001718 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001719 continue;
1720
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001721 /*
1722 * Shared library pages mapped by multiple processes are not
1723 * migrated as it is expected they are cache replicated. Avoid
1724 * hinting faults in read-only file-backed mappings or the vdso
1725 * as migrating the pages will be of marginal benefit.
1726 */
1727 if (!vma->vm_mm ||
1728 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1729 continue;
1730
Mel Gorman9f406042012-11-14 18:34:32 +00001731 do {
1732 start = max(start, vma->vm_start);
1733 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1734 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001735 nr_pte_updates += change_prot_numa(vma, start, end);
1736
1737 /*
1738 * Scan sysctl_numa_balancing_scan_size but ensure that
1739 * at least one PTE is updated so that unused virtual
1740 * address space is quickly skipped.
1741 */
1742 if (nr_pte_updates)
1743 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001744
Mel Gorman9f406042012-11-14 18:34:32 +00001745 start = end;
1746 if (pages <= 0)
1747 goto out;
1748 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001749 }
1750
Mel Gorman9f406042012-11-14 18:34:32 +00001751out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001752 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001753 * It is possible to reach the end of the VMA list but the last few
1754 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1755 * would find the !migratable VMA on the next scan but not reset the
1756 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001757 */
1758 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001759 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001760 else
1761 reset_ptenuma_scan(p);
1762 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001763}
1764
1765/*
1766 * Drive the periodic memory faults..
1767 */
1768void task_tick_numa(struct rq *rq, struct task_struct *curr)
1769{
1770 struct callback_head *work = &curr->numa_work;
1771 u64 period, now;
1772
1773 /*
1774 * We don't care about NUMA placement if we don't have memory.
1775 */
1776 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1777 return;
1778
1779 /*
1780 * Using runtime rather than walltime has the dual advantage that
1781 * we (mostly) drive the selection from busy threads and that the
1782 * task needs to have done some actual work before we bother with
1783 * NUMA placement.
1784 */
1785 now = curr->se.sum_exec_runtime;
1786 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1787
1788 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001789 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001790 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001791 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001792
1793 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1794 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1795 task_work_add(curr, work, true);
1796 }
1797 }
1798}
1799#else
1800static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1801{
1802}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001803
1804static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1805{
1806}
1807
1808static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1809{
1810}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001811#endif /* CONFIG_NUMA_BALANCING */
1812
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001813static void
1814account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1815{
1816 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001817 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001818 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001819#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001820 if (entity_is_task(se)) {
1821 struct rq *rq = rq_of(cfs_rq);
1822
1823 account_numa_enqueue(rq, task_of(se));
1824 list_add(&se->group_node, &rq->cfs_tasks);
1825 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001826#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001827 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001828}
1829
1830static void
1831account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001834 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001835 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001836 if (entity_is_task(se)) {
1837 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301838 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001839 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001840 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001841}
1842
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001843#ifdef CONFIG_FAIR_GROUP_SCHED
1844# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001845static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1846{
1847 long tg_weight;
1848
1849 /*
1850 * Use this CPU's actual weight instead of the last load_contribution
1851 * to gain a more accurate current total weight. See
1852 * update_cfs_rq_load_contribution().
1853 */
Alex Shibf5b9862013-06-20 10:18:54 +08001854 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001855 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001856 tg_weight += cfs_rq->load.weight;
1857
1858 return tg_weight;
1859}
1860
Paul Turner6d5ab292011-01-21 20:45:01 -08001861static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001862{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001863 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001864
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001865 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001866 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001867
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001868 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001869 if (tg_weight)
1870 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001871
1872 if (shares < MIN_SHARES)
1873 shares = MIN_SHARES;
1874 if (shares > tg->shares)
1875 shares = tg->shares;
1876
1877 return shares;
1878}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001879# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001880static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001881{
1882 return tg->shares;
1883}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001884# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001885static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1886 unsigned long weight)
1887{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001888 if (se->on_rq) {
1889 /* commit outstanding execution time */
1890 if (cfs_rq->curr == se)
1891 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001892 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001893 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001894
1895 update_load_set(&se->load, weight);
1896
1897 if (se->on_rq)
1898 account_entity_enqueue(cfs_rq, se);
1899}
1900
Paul Turner82958362012-10-04 13:18:31 +02001901static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1902
Paul Turner6d5ab292011-01-21 20:45:01 -08001903static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001904{
1905 struct task_group *tg;
1906 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001907 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001908
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001909 tg = cfs_rq->tg;
1910 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001911 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001912 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001913#ifndef CONFIG_SMP
1914 if (likely(se->load.weight == tg->shares))
1915 return;
1916#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001917 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001918
1919 reweight_entity(cfs_rq_of(se), se, shares);
1920}
1921#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001922static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001923{
1924}
1925#endif /* CONFIG_FAIR_GROUP_SCHED */
1926
Alex Shi141965c2013-06-26 13:05:39 +08001927#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001928/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001929 * We choose a half-life close to 1 scheduling period.
1930 * Note: The tables below are dependent on this value.
1931 */
1932#define LOAD_AVG_PERIOD 32
1933#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1934#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1935
1936/* Precomputed fixed inverse multiplies for multiplication by y^n */
1937static const u32 runnable_avg_yN_inv[] = {
1938 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1939 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1940 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1941 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1942 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1943 0x85aac367, 0x82cd8698,
1944};
1945
1946/*
1947 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1948 * over-estimates when re-combining.
1949 */
1950static const u32 runnable_avg_yN_sum[] = {
1951 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1952 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1953 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1954};
1955
1956/*
Paul Turner9d85f212012-10-04 13:18:29 +02001957 * Approximate:
1958 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1959 */
1960static __always_inline u64 decay_load(u64 val, u64 n)
1961{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001962 unsigned int local_n;
1963
1964 if (!n)
1965 return val;
1966 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1967 return 0;
1968
1969 /* after bounds checking we can collapse to 32-bit */
1970 local_n = n;
1971
1972 /*
1973 * As y^PERIOD = 1/2, we can combine
1974 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1975 * With a look-up table which covers k^n (n<PERIOD)
1976 *
1977 * To achieve constant time decay_load.
1978 */
1979 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1980 val >>= local_n / LOAD_AVG_PERIOD;
1981 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001982 }
1983
Paul Turner5b51f2f2012-10-04 13:18:32 +02001984 val *= runnable_avg_yN_inv[local_n];
1985 /* We don't use SRR here since we always want to round down. */
1986 return val >> 32;
1987}
1988
1989/*
1990 * For updates fully spanning n periods, the contribution to runnable
1991 * average will be: \Sum 1024*y^n
1992 *
1993 * We can compute this reasonably efficiently by combining:
1994 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1995 */
1996static u32 __compute_runnable_contrib(u64 n)
1997{
1998 u32 contrib = 0;
1999
2000 if (likely(n <= LOAD_AVG_PERIOD))
2001 return runnable_avg_yN_sum[n];
2002 else if (unlikely(n >= LOAD_AVG_MAX_N))
2003 return LOAD_AVG_MAX;
2004
2005 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2006 do {
2007 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2008 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2009
2010 n -= LOAD_AVG_PERIOD;
2011 } while (n > LOAD_AVG_PERIOD);
2012
2013 contrib = decay_load(contrib, n);
2014 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002015}
2016
2017/*
2018 * We can represent the historical contribution to runnable average as the
2019 * coefficients of a geometric series. To do this we sub-divide our runnable
2020 * history into segments of approximately 1ms (1024us); label the segment that
2021 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2022 *
2023 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2024 * p0 p1 p2
2025 * (now) (~1ms ago) (~2ms ago)
2026 *
2027 * Let u_i denote the fraction of p_i that the entity was runnable.
2028 *
2029 * We then designate the fractions u_i as our co-efficients, yielding the
2030 * following representation of historical load:
2031 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2032 *
2033 * We choose y based on the with of a reasonably scheduling period, fixing:
2034 * y^32 = 0.5
2035 *
2036 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2037 * approximately half as much as the contribution to load within the last ms
2038 * (u_0).
2039 *
2040 * When a period "rolls over" and we have new u_0`, multiplying the previous
2041 * sum again by y is sufficient to update:
2042 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2043 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2044 */
2045static __always_inline int __update_entity_runnable_avg(u64 now,
2046 struct sched_avg *sa,
2047 int runnable)
2048{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002049 u64 delta, periods;
2050 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002051 int delta_w, decayed = 0;
2052
2053 delta = now - sa->last_runnable_update;
2054 /*
2055 * This should only happen when time goes backwards, which it
2056 * unfortunately does during sched clock init when we swap over to TSC.
2057 */
2058 if ((s64)delta < 0) {
2059 sa->last_runnable_update = now;
2060 return 0;
2061 }
2062
2063 /*
2064 * Use 1024ns as the unit of measurement since it's a reasonable
2065 * approximation of 1us and fast to compute.
2066 */
2067 delta >>= 10;
2068 if (!delta)
2069 return 0;
2070 sa->last_runnable_update = now;
2071
2072 /* delta_w is the amount already accumulated against our next period */
2073 delta_w = sa->runnable_avg_period % 1024;
2074 if (delta + delta_w >= 1024) {
2075 /* period roll-over */
2076 decayed = 1;
2077
2078 /*
2079 * Now that we know we're crossing a period boundary, figure
2080 * out how much from delta we need to complete the current
2081 * period and accrue it.
2082 */
2083 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002084 if (runnable)
2085 sa->runnable_avg_sum += delta_w;
2086 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002087
Paul Turner5b51f2f2012-10-04 13:18:32 +02002088 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002089
Paul Turner5b51f2f2012-10-04 13:18:32 +02002090 /* Figure out how many additional periods this update spans */
2091 periods = delta / 1024;
2092 delta %= 1024;
2093
2094 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2095 periods + 1);
2096 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2097 periods + 1);
2098
2099 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2100 runnable_contrib = __compute_runnable_contrib(periods);
2101 if (runnable)
2102 sa->runnable_avg_sum += runnable_contrib;
2103 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002104 }
2105
2106 /* Remainder of delta accrued against u_0` */
2107 if (runnable)
2108 sa->runnable_avg_sum += delta;
2109 sa->runnable_avg_period += delta;
2110
2111 return decayed;
2112}
2113
Paul Turner9ee474f2012-10-04 13:18:30 +02002114/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002115static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002116{
2117 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2118 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2119
2120 decays -= se->avg.decay_count;
2121 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002122 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002123
2124 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2125 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002126
2127 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002128}
2129
Paul Turnerc566e8e2012-10-04 13:18:30 +02002130#ifdef CONFIG_FAIR_GROUP_SCHED
2131static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2132 int force_update)
2133{
2134 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002135 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002136
2137 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2138 tg_contrib -= cfs_rq->tg_load_contrib;
2139
Alex Shibf5b9862013-06-20 10:18:54 +08002140 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2141 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002142 cfs_rq->tg_load_contrib += tg_contrib;
2143 }
2144}
Paul Turner8165e142012-10-04 13:18:31 +02002145
Paul Turnerbb17f652012-10-04 13:18:31 +02002146/*
2147 * Aggregate cfs_rq runnable averages into an equivalent task_group
2148 * representation for computing load contributions.
2149 */
2150static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2151 struct cfs_rq *cfs_rq)
2152{
2153 struct task_group *tg = cfs_rq->tg;
2154 long contrib;
2155
2156 /* The fraction of a cpu used by this cfs_rq */
2157 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2158 sa->runnable_avg_period + 1);
2159 contrib -= cfs_rq->tg_runnable_contrib;
2160
2161 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2162 atomic_add(contrib, &tg->runnable_avg);
2163 cfs_rq->tg_runnable_contrib += contrib;
2164 }
2165}
2166
Paul Turner8165e142012-10-04 13:18:31 +02002167static inline void __update_group_entity_contrib(struct sched_entity *se)
2168{
2169 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2170 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002171 int runnable_avg;
2172
Paul Turner8165e142012-10-04 13:18:31 +02002173 u64 contrib;
2174
2175 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002176 se->avg.load_avg_contrib = div_u64(contrib,
2177 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002178
2179 /*
2180 * For group entities we need to compute a correction term in the case
2181 * that they are consuming <1 cpu so that we would contribute the same
2182 * load as a task of equal weight.
2183 *
2184 * Explicitly co-ordinating this measurement would be expensive, but
2185 * fortunately the sum of each cpus contribution forms a usable
2186 * lower-bound on the true value.
2187 *
2188 * Consider the aggregate of 2 contributions. Either they are disjoint
2189 * (and the sum represents true value) or they are disjoint and we are
2190 * understating by the aggregate of their overlap.
2191 *
2192 * Extending this to N cpus, for a given overlap, the maximum amount we
2193 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2194 * cpus that overlap for this interval and w_i is the interval width.
2195 *
2196 * On a small machine; the first term is well-bounded which bounds the
2197 * total error since w_i is a subset of the period. Whereas on a
2198 * larger machine, while this first term can be larger, if w_i is the
2199 * of consequential size guaranteed to see n_i*w_i quickly converge to
2200 * our upper bound of 1-cpu.
2201 */
2202 runnable_avg = atomic_read(&tg->runnable_avg);
2203 if (runnable_avg < NICE_0_LOAD) {
2204 se->avg.load_avg_contrib *= runnable_avg;
2205 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2206 }
Paul Turner8165e142012-10-04 13:18:31 +02002207}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002208#else
2209static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2210 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002211static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2212 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002213static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002214#endif
2215
Paul Turner8165e142012-10-04 13:18:31 +02002216static inline void __update_task_entity_contrib(struct sched_entity *se)
2217{
2218 u32 contrib;
2219
2220 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2221 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2222 contrib /= (se->avg.runnable_avg_period + 1);
2223 se->avg.load_avg_contrib = scale_load(contrib);
2224}
2225
Paul Turner2dac7542012-10-04 13:18:30 +02002226/* Compute the current contribution to load_avg by se, return any delta */
2227static long __update_entity_load_avg_contrib(struct sched_entity *se)
2228{
2229 long old_contrib = se->avg.load_avg_contrib;
2230
Paul Turner8165e142012-10-04 13:18:31 +02002231 if (entity_is_task(se)) {
2232 __update_task_entity_contrib(se);
2233 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002234 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002235 __update_group_entity_contrib(se);
2236 }
Paul Turner2dac7542012-10-04 13:18:30 +02002237
2238 return se->avg.load_avg_contrib - old_contrib;
2239}
2240
Paul Turner9ee474f2012-10-04 13:18:30 +02002241static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2242 long load_contrib)
2243{
2244 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2245 cfs_rq->blocked_load_avg -= load_contrib;
2246 else
2247 cfs_rq->blocked_load_avg = 0;
2248}
2249
Paul Turnerf1b17282012-10-04 13:18:31 +02002250static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2251
Paul Turner9d85f212012-10-04 13:18:29 +02002252/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002253static inline void update_entity_load_avg(struct sched_entity *se,
2254 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002255{
Paul Turner2dac7542012-10-04 13:18:30 +02002256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2257 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002258 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002259
Paul Turnerf1b17282012-10-04 13:18:31 +02002260 /*
2261 * For a group entity we need to use their owned cfs_rq_clock_task() in
2262 * case they are the parent of a throttled hierarchy.
2263 */
2264 if (entity_is_task(se))
2265 now = cfs_rq_clock_task(cfs_rq);
2266 else
2267 now = cfs_rq_clock_task(group_cfs_rq(se));
2268
2269 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002270 return;
2271
2272 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002273
2274 if (!update_cfs_rq)
2275 return;
2276
Paul Turner2dac7542012-10-04 13:18:30 +02002277 if (se->on_rq)
2278 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002279 else
2280 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2281}
2282
2283/*
2284 * Decay the load contributed by all blocked children and account this so that
2285 * their contribution may appropriately discounted when they wake up.
2286 */
Paul Turneraff3e492012-10-04 13:18:30 +02002287static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002288{
Paul Turnerf1b17282012-10-04 13:18:31 +02002289 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002290 u64 decays;
2291
2292 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002293 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002294 return;
2295
Alex Shi25099402013-06-20 10:18:55 +08002296 if (atomic_long_read(&cfs_rq->removed_load)) {
2297 unsigned long removed_load;
2298 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002299 subtract_blocked_load_contrib(cfs_rq, removed_load);
2300 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002301
Paul Turneraff3e492012-10-04 13:18:30 +02002302 if (decays) {
2303 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2304 decays);
2305 atomic64_add(decays, &cfs_rq->decay_counter);
2306 cfs_rq->last_decay = now;
2307 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002308
2309 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002310}
Ben Segall18bf2802012-10-04 12:51:20 +02002311
2312static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2313{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002314 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002315 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002316}
Paul Turner2dac7542012-10-04 13:18:30 +02002317
2318/* Add the load generated by se into cfs_rq's child load-average */
2319static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002320 struct sched_entity *se,
2321 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002322{
Paul Turneraff3e492012-10-04 13:18:30 +02002323 /*
2324 * We track migrations using entity decay_count <= 0, on a wake-up
2325 * migration we use a negative decay count to track the remote decays
2326 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002327 *
2328 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2329 * are seen by enqueue_entity_load_avg() as a migration with an already
2330 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002331 */
2332 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002333 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002334 if (se->avg.decay_count) {
2335 /*
2336 * In a wake-up migration we have to approximate the
2337 * time sleeping. This is because we can't synchronize
2338 * clock_task between the two cpus, and it is not
2339 * guaranteed to be read-safe. Instead, we can
2340 * approximate this using our carried decays, which are
2341 * explicitly atomically readable.
2342 */
2343 se->avg.last_runnable_update -= (-se->avg.decay_count)
2344 << 20;
2345 update_entity_load_avg(se, 0);
2346 /* Indicate that we're now synchronized and on-rq */
2347 se->avg.decay_count = 0;
2348 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002349 wakeup = 0;
2350 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002351 /*
2352 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2353 * would have made count negative); we must be careful to avoid
2354 * double-accounting blocked time after synchronizing decays.
2355 */
2356 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2357 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002358 }
2359
Paul Turneraff3e492012-10-04 13:18:30 +02002360 /* migrated tasks did not contribute to our blocked load */
2361 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002362 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002363 update_entity_load_avg(se, 0);
2364 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002365
Paul Turner2dac7542012-10-04 13:18:30 +02002366 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002367 /* we force update consideration on load-balancer moves */
2368 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002369}
2370
Paul Turner9ee474f2012-10-04 13:18:30 +02002371/*
2372 * Remove se's load from this cfs_rq child load-average, if the entity is
2373 * transitioning to a blocked state we track its projected decay using
2374 * blocked_load_avg.
2375 */
Paul Turner2dac7542012-10-04 13:18:30 +02002376static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002377 struct sched_entity *se,
2378 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002379{
Paul Turner9ee474f2012-10-04 13:18:30 +02002380 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002381 /* we force update consideration on load-balancer moves */
2382 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002383
Paul Turner2dac7542012-10-04 13:18:30 +02002384 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002385 if (sleep) {
2386 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2387 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2388 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002389}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002390
2391/*
2392 * Update the rq's load with the elapsed running time before entering
2393 * idle. if the last scheduled task is not a CFS task, idle_enter will
2394 * be the only way to update the runnable statistic.
2395 */
2396void idle_enter_fair(struct rq *this_rq)
2397{
2398 update_rq_runnable_avg(this_rq, 1);
2399}
2400
2401/*
2402 * Update the rq's load with the elapsed idle time before a task is
2403 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2404 * be the only way to update the runnable statistic.
2405 */
2406void idle_exit_fair(struct rq *this_rq)
2407{
2408 update_rq_runnable_avg(this_rq, 0);
2409}
2410
Paul Turner9d85f212012-10-04 13:18:29 +02002411#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002412static inline void update_entity_load_avg(struct sched_entity *se,
2413 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002414static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002415static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002416 struct sched_entity *se,
2417 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002418static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002419 struct sched_entity *se,
2420 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002421static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2422 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002423#endif
2424
Ingo Molnar2396af62007-08-09 11:16:48 +02002425static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002426{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002427#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002428 struct task_struct *tsk = NULL;
2429
2430 if (entity_is_task(se))
2431 tsk = task_of(se);
2432
Lucas De Marchi41acab82010-03-10 23:37:45 -03002433 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002434 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002435
2436 if ((s64)delta < 0)
2437 delta = 0;
2438
Lucas De Marchi41acab82010-03-10 23:37:45 -03002439 if (unlikely(delta > se->statistics.sleep_max))
2440 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002441
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002442 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002443 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002444
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002445 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002446 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002447 trace_sched_stat_sleep(tsk, delta);
2448 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002449 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002450 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002452
2453 if ((s64)delta < 0)
2454 delta = 0;
2455
Lucas De Marchi41acab82010-03-10 23:37:45 -03002456 if (unlikely(delta > se->statistics.block_max))
2457 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002458
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002459 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002460 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002461
Peter Zijlstrae4143142009-07-23 20:13:26 +02002462 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002463 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002464 se->statistics.iowait_sum += delta;
2465 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002466 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002467 }
2468
Andrew Vaginb781a602011-11-28 12:03:35 +03002469 trace_sched_stat_blocked(tsk, delta);
2470
Peter Zijlstrae4143142009-07-23 20:13:26 +02002471 /*
2472 * Blocking time is in units of nanosecs, so shift by
2473 * 20 to get a milliseconds-range estimation of the
2474 * amount of time that the task spent sleeping:
2475 */
2476 if (unlikely(prof_on == SLEEP_PROFILING)) {
2477 profile_hits(SLEEP_PROFILING,
2478 (void *)get_wchan(tsk),
2479 delta >> 20);
2480 }
2481 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002482 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002483 }
2484#endif
2485}
2486
Peter Zijlstraddc97292007-10-15 17:00:10 +02002487static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2488{
2489#ifdef CONFIG_SCHED_DEBUG
2490 s64 d = se->vruntime - cfs_rq->min_vruntime;
2491
2492 if (d < 0)
2493 d = -d;
2494
2495 if (d > 3*sysctl_sched_latency)
2496 schedstat_inc(cfs_rq, nr_spread_over);
2497#endif
2498}
2499
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002500static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002501place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2502{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002503 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002504
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002505 /*
2506 * The 'current' period is already promised to the current tasks,
2507 * however the extra weight of the new task will slow them down a
2508 * little, place the new task so that it fits in the slot that
2509 * stays open at the end.
2510 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002511 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002512 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002513
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002514 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002515 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002516 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002517
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002518 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002519 * Halve their sleep time's effect, to allow
2520 * for a gentler effect of sleepers:
2521 */
2522 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2523 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002524
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002525 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002526 }
2527
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002528 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302529 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002530}
2531
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002532static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2533
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002534static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002535enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002536{
2537 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002538 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302539 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002540 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002541 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002542 se->vruntime += cfs_rq->min_vruntime;
2543
2544 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002545 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002546 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002547 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002548 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002549 account_entity_enqueue(cfs_rq, se);
2550 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002551
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002552 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002553 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002554 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002555 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002556
Ingo Molnard2417e52007-08-09 11:16:47 +02002557 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002558 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002559 if (se != cfs_rq->curr)
2560 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002561 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002562
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002563 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002564 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002565 check_enqueue_throttle(cfs_rq);
2566 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002567}
2568
Rik van Riel2c13c9192011-02-01 09:48:37 -05002569static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002570{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002571 for_each_sched_entity(se) {
2572 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2573 if (cfs_rq->last == se)
2574 cfs_rq->last = NULL;
2575 else
2576 break;
2577 }
2578}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002579
Rik van Riel2c13c9192011-02-01 09:48:37 -05002580static void __clear_buddies_next(struct sched_entity *se)
2581{
2582 for_each_sched_entity(se) {
2583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2584 if (cfs_rq->next == se)
2585 cfs_rq->next = NULL;
2586 else
2587 break;
2588 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002589}
2590
Rik van Rielac53db52011-02-01 09:51:03 -05002591static void __clear_buddies_skip(struct sched_entity *se)
2592{
2593 for_each_sched_entity(se) {
2594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2595 if (cfs_rq->skip == se)
2596 cfs_rq->skip = NULL;
2597 else
2598 break;
2599 }
2600}
2601
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002602static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002604 if (cfs_rq->last == se)
2605 __clear_buddies_last(se);
2606
2607 if (cfs_rq->next == se)
2608 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002609
2610 if (cfs_rq->skip == se)
2611 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002612}
2613
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002614static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002615
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002616static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002617dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002618{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002619 /*
2620 * Update run-time statistics of the 'current'.
2621 */
2622 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002623 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002624
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002625 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002626 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002627#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002628 if (entity_is_task(se)) {
2629 struct task_struct *tsk = task_of(se);
2630
2631 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002632 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002633 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002634 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002635 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002636#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002637 }
2638
Peter Zijlstra2002c692008-11-11 11:52:33 +01002639 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002640
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002641 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002642 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002643 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002644 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002645
2646 /*
2647 * Normalize the entity after updating the min_vruntime because the
2648 * update can refer to the ->curr item and we need to reflect this
2649 * movement in our normalized position.
2650 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002651 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002652 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002653
Paul Turnerd8b49862011-07-21 09:43:41 -07002654 /* return excess runtime on last dequeue */
2655 return_cfs_rq_runtime(cfs_rq);
2656
Peter Zijlstra1e876232011-05-17 16:21:10 -07002657 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002658 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002659}
2660
2661/*
2662 * Preempt the current task with a newly woken task if needed:
2663 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002664static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002665check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002666{
Peter Zijlstra11697832007-09-05 14:32:49 +02002667 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002668 struct sched_entity *se;
2669 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002670
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002671 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002672 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002673 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002674 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002675 /*
2676 * The current task ran long enough, ensure it doesn't get
2677 * re-elected due to buddy favours.
2678 */
2679 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002680 return;
2681 }
2682
2683 /*
2684 * Ensure that a task that missed wakeup preemption by a
2685 * narrow margin doesn't have to wait for a full slice.
2686 * This also mitigates buddy induced latencies under load.
2687 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002688 if (delta_exec < sysctl_sched_min_granularity)
2689 return;
2690
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002691 se = __pick_first_entity(cfs_rq);
2692 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002693
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002694 if (delta < 0)
2695 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002696
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002697 if (delta > ideal_runtime)
2698 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002699}
2700
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002701static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002702set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002703{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002704 /* 'current' is not kept within the tree. */
2705 if (se->on_rq) {
2706 /*
2707 * Any task has to be enqueued before it get to execute on
2708 * a CPU. So account for the time it spent waiting on the
2709 * runqueue.
2710 */
2711 update_stats_wait_end(cfs_rq, se);
2712 __dequeue_entity(cfs_rq, se);
2713 }
2714
Ingo Molnar79303e92007-08-09 11:16:47 +02002715 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002716 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002717#ifdef CONFIG_SCHEDSTATS
2718 /*
2719 * Track our maximum slice length, if the CPU's load is at
2720 * least twice that of our own weight (i.e. dont track it
2721 * when there are only lesser-weight tasks around):
2722 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002723 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002724 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002725 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2726 }
2727#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002728 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002729}
2730
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002731static int
2732wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2733
Rik van Rielac53db52011-02-01 09:51:03 -05002734/*
2735 * Pick the next process, keeping these things in mind, in this order:
2736 * 1) keep things fair between processes/task groups
2737 * 2) pick the "next" process, since someone really wants that to run
2738 * 3) pick the "last" process, for cache locality
2739 * 4) do not run the "skip" process, if something else is available
2740 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002741static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002742{
Rik van Rielac53db52011-02-01 09:51:03 -05002743 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002744 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002745
Rik van Rielac53db52011-02-01 09:51:03 -05002746 /*
2747 * Avoid running the skip buddy, if running something else can
2748 * be done without getting too unfair.
2749 */
2750 if (cfs_rq->skip == se) {
2751 struct sched_entity *second = __pick_next_entity(se);
2752 if (second && wakeup_preempt_entity(second, left) < 1)
2753 se = second;
2754 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002755
Mike Galbraithf685cea2009-10-23 23:09:22 +02002756 /*
2757 * Prefer last buddy, try to return the CPU to a preempted task.
2758 */
2759 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2760 se = cfs_rq->last;
2761
Rik van Rielac53db52011-02-01 09:51:03 -05002762 /*
2763 * Someone really wants this to run. If it's not unfair, run it.
2764 */
2765 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2766 se = cfs_rq->next;
2767
Mike Galbraithf685cea2009-10-23 23:09:22 +02002768 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002769
2770 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002771}
2772
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002773static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2774
Ingo Molnarab6cde22007-08-09 11:16:48 +02002775static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002776{
2777 /*
2778 * If still on the runqueue then deactivate_task()
2779 * was not called and update_curr() has to be done:
2780 */
2781 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002782 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002783
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002784 /* throttle cfs_rqs exceeding runtime */
2785 check_cfs_rq_runtime(cfs_rq);
2786
Peter Zijlstraddc97292007-10-15 17:00:10 +02002787 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002788 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002789 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002790 /* Put 'current' back into the tree. */
2791 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002792 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002793 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002794 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002795 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002796}
2797
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002798static void
2799entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002800{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002801 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002802 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002803 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002804 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002805
Paul Turner43365bd2010-12-15 19:10:17 -08002806 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002807 * Ensure that runnable average is periodically updated.
2808 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002809 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002810 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002811 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002812
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002813#ifdef CONFIG_SCHED_HRTICK
2814 /*
2815 * queued ticks are scheduled to match the slice, so don't bother
2816 * validating it and just reschedule.
2817 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002818 if (queued) {
2819 resched_task(rq_of(cfs_rq)->curr);
2820 return;
2821 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002822 /*
2823 * don't let the period tick interfere with the hrtick preemption
2824 */
2825 if (!sched_feat(DOUBLE_TICK) &&
2826 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2827 return;
2828#endif
2829
Yong Zhang2c2efae2011-07-29 16:20:33 +08002830 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002831 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002832}
2833
Paul Turnerab84d312011-07-21 09:43:28 -07002834
2835/**************************************************
2836 * CFS bandwidth control machinery
2837 */
2838
2839#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002840
2841#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002842static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002843
2844static inline bool cfs_bandwidth_used(void)
2845{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002846 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002847}
2848
2849void account_cfs_bandwidth_used(int enabled, int was_enabled)
2850{
2851 /* only need to count groups transitioning between enabled/!enabled */
2852 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002853 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002854 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002855 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002856}
2857#else /* HAVE_JUMP_LABEL */
2858static bool cfs_bandwidth_used(void)
2859{
2860 return true;
2861}
2862
2863void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2864#endif /* HAVE_JUMP_LABEL */
2865
Paul Turnerab84d312011-07-21 09:43:28 -07002866/*
2867 * default period for cfs group bandwidth.
2868 * default: 0.1s, units: nanoseconds
2869 */
2870static inline u64 default_cfs_period(void)
2871{
2872 return 100000000ULL;
2873}
Paul Turnerec12cb72011-07-21 09:43:30 -07002874
2875static inline u64 sched_cfs_bandwidth_slice(void)
2876{
2877 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2878}
2879
Paul Turnera9cf55b2011-07-21 09:43:32 -07002880/*
2881 * Replenish runtime according to assigned quota and update expiration time.
2882 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2883 * additional synchronization around rq->lock.
2884 *
2885 * requires cfs_b->lock
2886 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002887void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002888{
2889 u64 now;
2890
2891 if (cfs_b->quota == RUNTIME_INF)
2892 return;
2893
2894 now = sched_clock_cpu(smp_processor_id());
2895 cfs_b->runtime = cfs_b->quota;
2896 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2897}
2898
Peter Zijlstra029632f2011-10-25 10:00:11 +02002899static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2900{
2901 return &tg->cfs_bandwidth;
2902}
2903
Paul Turnerf1b17282012-10-04 13:18:31 +02002904/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2905static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2906{
2907 if (unlikely(cfs_rq->throttle_count))
2908 return cfs_rq->throttled_clock_task;
2909
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002910 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002911}
2912
Paul Turner85dac902011-07-21 09:43:33 -07002913/* returns 0 on failure to allocate runtime */
2914static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002915{
2916 struct task_group *tg = cfs_rq->tg;
2917 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002918 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002919
2920 /* note: this is a positive sum as runtime_remaining <= 0 */
2921 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2922
2923 raw_spin_lock(&cfs_b->lock);
2924 if (cfs_b->quota == RUNTIME_INF)
2925 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002926 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002927 /*
2928 * If the bandwidth pool has become inactive, then at least one
2929 * period must have elapsed since the last consumption.
2930 * Refresh the global state and ensure bandwidth timer becomes
2931 * active.
2932 */
2933 if (!cfs_b->timer_active) {
2934 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002935 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002936 }
Paul Turner58088ad2011-07-21 09:43:31 -07002937
2938 if (cfs_b->runtime > 0) {
2939 amount = min(cfs_b->runtime, min_amount);
2940 cfs_b->runtime -= amount;
2941 cfs_b->idle = 0;
2942 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002943 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002944 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002945 raw_spin_unlock(&cfs_b->lock);
2946
2947 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002948 /*
2949 * we may have advanced our local expiration to account for allowed
2950 * spread between our sched_clock and the one on which runtime was
2951 * issued.
2952 */
2953 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2954 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002955
2956 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002957}
2958
2959/*
2960 * Note: This depends on the synchronization provided by sched_clock and the
2961 * fact that rq->clock snapshots this value.
2962 */
2963static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2964{
2965 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002966
2967 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002968 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002969 return;
2970
2971 if (cfs_rq->runtime_remaining < 0)
2972 return;
2973
2974 /*
2975 * If the local deadline has passed we have to consider the
2976 * possibility that our sched_clock is 'fast' and the global deadline
2977 * has not truly expired.
2978 *
2979 * Fortunately we can check determine whether this the case by checking
2980 * whether the global deadline has advanced.
2981 */
2982
2983 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2984 /* extend local deadline, drift is bounded above by 2 ticks */
2985 cfs_rq->runtime_expires += TICK_NSEC;
2986 } else {
2987 /* global deadline is ahead, expiration has passed */
2988 cfs_rq->runtime_remaining = 0;
2989 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002990}
2991
2992static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2993 unsigned long delta_exec)
2994{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002995 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002996 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002997 expire_cfs_rq_runtime(cfs_rq);
2998
2999 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003000 return;
3001
Paul Turner85dac902011-07-21 09:43:33 -07003002 /*
3003 * if we're unable to extend our runtime we resched so that the active
3004 * hierarchy can be throttled
3005 */
3006 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3007 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003008}
3009
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003010static __always_inline
3011void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003012{
Paul Turner56f570e2011-11-07 20:26:33 -08003013 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003014 return;
3015
3016 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3017}
3018
Paul Turner85dac902011-07-21 09:43:33 -07003019static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3020{
Paul Turner56f570e2011-11-07 20:26:33 -08003021 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003022}
3023
Paul Turner64660c82011-07-21 09:43:36 -07003024/* check whether cfs_rq, or any parent, is throttled */
3025static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3026{
Paul Turner56f570e2011-11-07 20:26:33 -08003027 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003028}
3029
3030/*
3031 * Ensure that neither of the group entities corresponding to src_cpu or
3032 * dest_cpu are members of a throttled hierarchy when performing group
3033 * load-balance operations.
3034 */
3035static inline int throttled_lb_pair(struct task_group *tg,
3036 int src_cpu, int dest_cpu)
3037{
3038 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3039
3040 src_cfs_rq = tg->cfs_rq[src_cpu];
3041 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3042
3043 return throttled_hierarchy(src_cfs_rq) ||
3044 throttled_hierarchy(dest_cfs_rq);
3045}
3046
3047/* updated child weight may affect parent so we have to do this bottom up */
3048static int tg_unthrottle_up(struct task_group *tg, void *data)
3049{
3050 struct rq *rq = data;
3051 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3052
3053 cfs_rq->throttle_count--;
3054#ifdef CONFIG_SMP
3055 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003056 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003057 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003058 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003059 }
3060#endif
3061
3062 return 0;
3063}
3064
3065static int tg_throttle_down(struct task_group *tg, void *data)
3066{
3067 struct rq *rq = data;
3068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3069
Paul Turner82958362012-10-04 13:18:31 +02003070 /* group is entering throttled state, stop time */
3071 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003072 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003073 cfs_rq->throttle_count++;
3074
3075 return 0;
3076}
3077
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003078static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003079{
3080 struct rq *rq = rq_of(cfs_rq);
3081 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3082 struct sched_entity *se;
3083 long task_delta, dequeue = 1;
3084
3085 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3086
Paul Turnerf1b17282012-10-04 13:18:31 +02003087 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003088 rcu_read_lock();
3089 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3090 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003091
3092 task_delta = cfs_rq->h_nr_running;
3093 for_each_sched_entity(se) {
3094 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3095 /* throttled entity or throttle-on-deactivate */
3096 if (!se->on_rq)
3097 break;
3098
3099 if (dequeue)
3100 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3101 qcfs_rq->h_nr_running -= task_delta;
3102
3103 if (qcfs_rq->load.weight)
3104 dequeue = 0;
3105 }
3106
3107 if (!se)
3108 rq->nr_running -= task_delta;
3109
3110 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003111 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003112 raw_spin_lock(&cfs_b->lock);
3113 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3114 raw_spin_unlock(&cfs_b->lock);
3115}
3116
Peter Zijlstra029632f2011-10-25 10:00:11 +02003117void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003118{
3119 struct rq *rq = rq_of(cfs_rq);
3120 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3121 struct sched_entity *se;
3122 int enqueue = 1;
3123 long task_delta;
3124
Michael Wang22b958d2013-06-04 14:23:39 +08003125 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003126
3127 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003128
3129 update_rq_clock(rq);
3130
Paul Turner671fd9d2011-07-21 09:43:34 -07003131 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003132 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003133 list_del_rcu(&cfs_rq->throttled_list);
3134 raw_spin_unlock(&cfs_b->lock);
3135
Paul Turner64660c82011-07-21 09:43:36 -07003136 /* update hierarchical throttle state */
3137 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3138
Paul Turner671fd9d2011-07-21 09:43:34 -07003139 if (!cfs_rq->load.weight)
3140 return;
3141
3142 task_delta = cfs_rq->h_nr_running;
3143 for_each_sched_entity(se) {
3144 if (se->on_rq)
3145 enqueue = 0;
3146
3147 cfs_rq = cfs_rq_of(se);
3148 if (enqueue)
3149 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3150 cfs_rq->h_nr_running += task_delta;
3151
3152 if (cfs_rq_throttled(cfs_rq))
3153 break;
3154 }
3155
3156 if (!se)
3157 rq->nr_running += task_delta;
3158
3159 /* determine whether we need to wake up potentially idle cpu */
3160 if (rq->curr == rq->idle && rq->cfs.nr_running)
3161 resched_task(rq->curr);
3162}
3163
3164static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3165 u64 remaining, u64 expires)
3166{
3167 struct cfs_rq *cfs_rq;
3168 u64 runtime = remaining;
3169
3170 rcu_read_lock();
3171 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3172 throttled_list) {
3173 struct rq *rq = rq_of(cfs_rq);
3174
3175 raw_spin_lock(&rq->lock);
3176 if (!cfs_rq_throttled(cfs_rq))
3177 goto next;
3178
3179 runtime = -cfs_rq->runtime_remaining + 1;
3180 if (runtime > remaining)
3181 runtime = remaining;
3182 remaining -= runtime;
3183
3184 cfs_rq->runtime_remaining += runtime;
3185 cfs_rq->runtime_expires = expires;
3186
3187 /* we check whether we're throttled above */
3188 if (cfs_rq->runtime_remaining > 0)
3189 unthrottle_cfs_rq(cfs_rq);
3190
3191next:
3192 raw_spin_unlock(&rq->lock);
3193
3194 if (!remaining)
3195 break;
3196 }
3197 rcu_read_unlock();
3198
3199 return remaining;
3200}
3201
Paul Turner58088ad2011-07-21 09:43:31 -07003202/*
3203 * Responsible for refilling a task_group's bandwidth and unthrottling its
3204 * cfs_rqs as appropriate. If there has been no activity within the last
3205 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3206 * used to track this state.
3207 */
3208static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3209{
Paul Turner671fd9d2011-07-21 09:43:34 -07003210 u64 runtime, runtime_expires;
3211 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003212
3213 raw_spin_lock(&cfs_b->lock);
3214 /* no need to continue the timer with no bandwidth constraint */
3215 if (cfs_b->quota == RUNTIME_INF)
3216 goto out_unlock;
3217
Paul Turner671fd9d2011-07-21 09:43:34 -07003218 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3219 /* idle depends on !throttled (for the case of a large deficit) */
3220 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003221 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003222
Paul Turnera9cf55b2011-07-21 09:43:32 -07003223 /* if we're going inactive then everything else can be deferred */
3224 if (idle)
3225 goto out_unlock;
3226
3227 __refill_cfs_bandwidth_runtime(cfs_b);
3228
Paul Turner671fd9d2011-07-21 09:43:34 -07003229 if (!throttled) {
3230 /* mark as potentially idle for the upcoming period */
3231 cfs_b->idle = 1;
3232 goto out_unlock;
3233 }
Paul Turner58088ad2011-07-21 09:43:31 -07003234
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003235 /* account preceding periods in which throttling occurred */
3236 cfs_b->nr_throttled += overrun;
3237
Paul Turner671fd9d2011-07-21 09:43:34 -07003238 /*
3239 * There are throttled entities so we must first use the new bandwidth
3240 * to unthrottle them before making it generally available. This
3241 * ensures that all existing debts will be paid before a new cfs_rq is
3242 * allowed to run.
3243 */
3244 runtime = cfs_b->runtime;
3245 runtime_expires = cfs_b->runtime_expires;
3246 cfs_b->runtime = 0;
3247
3248 /*
3249 * This check is repeated as we are holding onto the new bandwidth
3250 * while we unthrottle. This can potentially race with an unthrottled
3251 * group trying to acquire new bandwidth from the global pool.
3252 */
3253 while (throttled && runtime > 0) {
3254 raw_spin_unlock(&cfs_b->lock);
3255 /* we can't nest cfs_b->lock while distributing bandwidth */
3256 runtime = distribute_cfs_runtime(cfs_b, runtime,
3257 runtime_expires);
3258 raw_spin_lock(&cfs_b->lock);
3259
3260 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3261 }
3262
3263 /* return (any) remaining runtime */
3264 cfs_b->runtime = runtime;
3265 /*
3266 * While we are ensured activity in the period following an
3267 * unthrottle, this also covers the case in which the new bandwidth is
3268 * insufficient to cover the existing bandwidth deficit. (Forcing the
3269 * timer to remain active while there are any throttled entities.)
3270 */
3271 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003272out_unlock:
3273 if (idle)
3274 cfs_b->timer_active = 0;
3275 raw_spin_unlock(&cfs_b->lock);
3276
3277 return idle;
3278}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003279
Paul Turnerd8b49862011-07-21 09:43:41 -07003280/* a cfs_rq won't donate quota below this amount */
3281static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3282/* minimum remaining period time to redistribute slack quota */
3283static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3284/* how long we wait to gather additional slack before distributing */
3285static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3286
3287/* are we near the end of the current quota period? */
3288static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3289{
3290 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3291 u64 remaining;
3292
3293 /* if the call-back is running a quota refresh is already occurring */
3294 if (hrtimer_callback_running(refresh_timer))
3295 return 1;
3296
3297 /* is a quota refresh about to occur? */
3298 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3299 if (remaining < min_expire)
3300 return 1;
3301
3302 return 0;
3303}
3304
3305static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3306{
3307 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3308
3309 /* if there's a quota refresh soon don't bother with slack */
3310 if (runtime_refresh_within(cfs_b, min_left))
3311 return;
3312
3313 start_bandwidth_timer(&cfs_b->slack_timer,
3314 ns_to_ktime(cfs_bandwidth_slack_period));
3315}
3316
3317/* we know any runtime found here is valid as update_curr() precedes return */
3318static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3319{
3320 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3321 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3322
3323 if (slack_runtime <= 0)
3324 return;
3325
3326 raw_spin_lock(&cfs_b->lock);
3327 if (cfs_b->quota != RUNTIME_INF &&
3328 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3329 cfs_b->runtime += slack_runtime;
3330
3331 /* we are under rq->lock, defer unthrottling using a timer */
3332 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3333 !list_empty(&cfs_b->throttled_cfs_rq))
3334 start_cfs_slack_bandwidth(cfs_b);
3335 }
3336 raw_spin_unlock(&cfs_b->lock);
3337
3338 /* even if it's not valid for return we don't want to try again */
3339 cfs_rq->runtime_remaining -= slack_runtime;
3340}
3341
3342static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3343{
Paul Turner56f570e2011-11-07 20:26:33 -08003344 if (!cfs_bandwidth_used())
3345 return;
3346
Paul Turnerfccfdc62011-11-07 20:26:34 -08003347 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003348 return;
3349
3350 __return_cfs_rq_runtime(cfs_rq);
3351}
3352
3353/*
3354 * This is done with a timer (instead of inline with bandwidth return) since
3355 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3356 */
3357static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3358{
3359 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3360 u64 expires;
3361
3362 /* confirm we're still not at a refresh boundary */
3363 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3364 return;
3365
3366 raw_spin_lock(&cfs_b->lock);
3367 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3368 runtime = cfs_b->runtime;
3369 cfs_b->runtime = 0;
3370 }
3371 expires = cfs_b->runtime_expires;
3372 raw_spin_unlock(&cfs_b->lock);
3373
3374 if (!runtime)
3375 return;
3376
3377 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3378
3379 raw_spin_lock(&cfs_b->lock);
3380 if (expires == cfs_b->runtime_expires)
3381 cfs_b->runtime = runtime;
3382 raw_spin_unlock(&cfs_b->lock);
3383}
3384
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003385/*
3386 * When a group wakes up we want to make sure that its quota is not already
3387 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3388 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3389 */
3390static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3391{
Paul Turner56f570e2011-11-07 20:26:33 -08003392 if (!cfs_bandwidth_used())
3393 return;
3394
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003395 /* an active group must be handled by the update_curr()->put() path */
3396 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3397 return;
3398
3399 /* ensure the group is not already throttled */
3400 if (cfs_rq_throttled(cfs_rq))
3401 return;
3402
3403 /* update runtime allocation */
3404 account_cfs_rq_runtime(cfs_rq, 0);
3405 if (cfs_rq->runtime_remaining <= 0)
3406 throttle_cfs_rq(cfs_rq);
3407}
3408
3409/* conditionally throttle active cfs_rq's from put_prev_entity() */
3410static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3411{
Paul Turner56f570e2011-11-07 20:26:33 -08003412 if (!cfs_bandwidth_used())
3413 return;
3414
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003415 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3416 return;
3417
3418 /*
3419 * it's possible for a throttled entity to be forced into a running
3420 * state (e.g. set_curr_task), in this case we're finished.
3421 */
3422 if (cfs_rq_throttled(cfs_rq))
3423 return;
3424
3425 throttle_cfs_rq(cfs_rq);
3426}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003427
Peter Zijlstra029632f2011-10-25 10:00:11 +02003428static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3429{
3430 struct cfs_bandwidth *cfs_b =
3431 container_of(timer, struct cfs_bandwidth, slack_timer);
3432 do_sched_cfs_slack_timer(cfs_b);
3433
3434 return HRTIMER_NORESTART;
3435}
3436
3437static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3438{
3439 struct cfs_bandwidth *cfs_b =
3440 container_of(timer, struct cfs_bandwidth, period_timer);
3441 ktime_t now;
3442 int overrun;
3443 int idle = 0;
3444
3445 for (;;) {
3446 now = hrtimer_cb_get_time(timer);
3447 overrun = hrtimer_forward(timer, now, cfs_b->period);
3448
3449 if (!overrun)
3450 break;
3451
3452 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3453 }
3454
3455 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3456}
3457
3458void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3459{
3460 raw_spin_lock_init(&cfs_b->lock);
3461 cfs_b->runtime = 0;
3462 cfs_b->quota = RUNTIME_INF;
3463 cfs_b->period = ns_to_ktime(default_cfs_period());
3464
3465 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3466 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3467 cfs_b->period_timer.function = sched_cfs_period_timer;
3468 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3469 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3470}
3471
3472static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3473{
3474 cfs_rq->runtime_enabled = 0;
3475 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3476}
3477
3478/* requires cfs_b->lock, may release to reprogram timer */
3479void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3480{
3481 /*
3482 * The timer may be active because we're trying to set a new bandwidth
3483 * period or because we're racing with the tear-down path
3484 * (timer_active==0 becomes visible before the hrtimer call-back
3485 * terminates). In either case we ensure that it's re-programmed
3486 */
3487 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3488 raw_spin_unlock(&cfs_b->lock);
3489 /* ensure cfs_b->lock is available while we wait */
3490 hrtimer_cancel(&cfs_b->period_timer);
3491
3492 raw_spin_lock(&cfs_b->lock);
3493 /* if someone else restarted the timer then we're done */
3494 if (cfs_b->timer_active)
3495 return;
3496 }
3497
3498 cfs_b->timer_active = 1;
3499 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3500}
3501
3502static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3503{
3504 hrtimer_cancel(&cfs_b->period_timer);
3505 hrtimer_cancel(&cfs_b->slack_timer);
3506}
3507
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003508static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003509{
3510 struct cfs_rq *cfs_rq;
3511
3512 for_each_leaf_cfs_rq(rq, cfs_rq) {
3513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3514
3515 if (!cfs_rq->runtime_enabled)
3516 continue;
3517
3518 /*
3519 * clock_task is not advancing so we just need to make sure
3520 * there's some valid quota amount
3521 */
3522 cfs_rq->runtime_remaining = cfs_b->quota;
3523 if (cfs_rq_throttled(cfs_rq))
3524 unthrottle_cfs_rq(cfs_rq);
3525 }
3526}
3527
3528#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003529static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3530{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003531 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003532}
3533
3534static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3535 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003536static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3537static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003538static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003539
3540static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3541{
3542 return 0;
3543}
Paul Turner64660c82011-07-21 09:43:36 -07003544
3545static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3546{
3547 return 0;
3548}
3549
3550static inline int throttled_lb_pair(struct task_group *tg,
3551 int src_cpu, int dest_cpu)
3552{
3553 return 0;
3554}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003555
3556void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3557
3558#ifdef CONFIG_FAIR_GROUP_SCHED
3559static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003560#endif
3561
Peter Zijlstra029632f2011-10-25 10:00:11 +02003562static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3563{
3564 return NULL;
3565}
3566static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003567static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003568
3569#endif /* CONFIG_CFS_BANDWIDTH */
3570
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003571/**************************************************
3572 * CFS operations on tasks:
3573 */
3574
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003575#ifdef CONFIG_SCHED_HRTICK
3576static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3577{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003578 struct sched_entity *se = &p->se;
3579 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3580
3581 WARN_ON(task_rq(p) != rq);
3582
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003583 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003584 u64 slice = sched_slice(cfs_rq, se);
3585 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3586 s64 delta = slice - ran;
3587
3588 if (delta < 0) {
3589 if (rq->curr == p)
3590 resched_task(p);
3591 return;
3592 }
3593
3594 /*
3595 * Don't schedule slices shorter than 10000ns, that just
3596 * doesn't make sense. Rely on vruntime for fairness.
3597 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003598 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003599 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003600
Peter Zijlstra31656512008-07-18 18:01:23 +02003601 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003602 }
3603}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003604
3605/*
3606 * called from enqueue/dequeue and updates the hrtick when the
3607 * current task is from our class and nr_running is low enough
3608 * to matter.
3609 */
3610static void hrtick_update(struct rq *rq)
3611{
3612 struct task_struct *curr = rq->curr;
3613
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003614 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003615 return;
3616
3617 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3618 hrtick_start_fair(rq, curr);
3619}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303620#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003621static inline void
3622hrtick_start_fair(struct rq *rq, struct task_struct *p)
3623{
3624}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003625
3626static inline void hrtick_update(struct rq *rq)
3627{
3628}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003629#endif
3630
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003631/*
3632 * The enqueue_task method is called before nr_running is
3633 * increased. Here we update the fair scheduling stats and
3634 * then put the task into the rbtree:
3635 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003636static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003637enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003638{
3639 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003640 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641
3642 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003643 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003644 break;
3645 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003646 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003647
3648 /*
3649 * end evaluation on encountering a throttled cfs_rq
3650 *
3651 * note: in the case of encountering a throttled cfs_rq we will
3652 * post the final h_nr_running increment below.
3653 */
3654 if (cfs_rq_throttled(cfs_rq))
3655 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003656 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003657
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003658 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003659 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003660
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003661 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003662 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003663 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003664
Paul Turner85dac902011-07-21 09:43:33 -07003665 if (cfs_rq_throttled(cfs_rq))
3666 break;
3667
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003668 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003669 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003670 }
3671
Ben Segall18bf2802012-10-04 12:51:20 +02003672 if (!se) {
3673 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003674 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003675 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003676 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003677}
3678
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003679static void set_next_buddy(struct sched_entity *se);
3680
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003681/*
3682 * The dequeue_task method is called before nr_running is
3683 * decreased. We remove the task from the rbtree and
3684 * update the fair scheduling stats:
3685 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003686static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003687{
3688 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003689 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003690 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003691
3692 for_each_sched_entity(se) {
3693 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003694 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003695
3696 /*
3697 * end evaluation on encountering a throttled cfs_rq
3698 *
3699 * note: in the case of encountering a throttled cfs_rq we will
3700 * post the final h_nr_running decrement below.
3701 */
3702 if (cfs_rq_throttled(cfs_rq))
3703 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003704 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003705
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003706 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003707 if (cfs_rq->load.weight) {
3708 /*
3709 * Bias pick_next to pick a task from this cfs_rq, as
3710 * p is sleeping when it is within its sched_slice.
3711 */
3712 if (task_sleep && parent_entity(se))
3713 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003714
3715 /* avoid re-evaluating load for this entity */
3716 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003717 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003718 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003719 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003720 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003721
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003722 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003723 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003724 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003725
Paul Turner85dac902011-07-21 09:43:33 -07003726 if (cfs_rq_throttled(cfs_rq))
3727 break;
3728
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003729 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003730 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003731 }
3732
Ben Segall18bf2802012-10-04 12:51:20 +02003733 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003734 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003735 update_rq_runnable_avg(rq, 1);
3736 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003737 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003738}
3739
Gregory Haskinse7693a32008-01-25 21:08:09 +01003740#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003741/* Used instead of source_load when we know the type == 0 */
3742static unsigned long weighted_cpuload(const int cpu)
3743{
Alex Shib92486c2013-06-20 10:18:50 +08003744 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003745}
3746
3747/*
3748 * Return a low guess at the load of a migration-source cpu weighted
3749 * according to the scheduling class and "nice" value.
3750 *
3751 * We want to under-estimate the load of migration sources, to
3752 * balance conservatively.
3753 */
3754static unsigned long source_load(int cpu, int type)
3755{
3756 struct rq *rq = cpu_rq(cpu);
3757 unsigned long total = weighted_cpuload(cpu);
3758
3759 if (type == 0 || !sched_feat(LB_BIAS))
3760 return total;
3761
3762 return min(rq->cpu_load[type-1], total);
3763}
3764
3765/*
3766 * Return a high guess at the load of a migration-target cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 */
3769static unsigned long target_load(int cpu, int type)
3770{
3771 struct rq *rq = cpu_rq(cpu);
3772 unsigned long total = weighted_cpuload(cpu);
3773
3774 if (type == 0 || !sched_feat(LB_BIAS))
3775 return total;
3776
3777 return max(rq->cpu_load[type-1], total);
3778}
3779
3780static unsigned long power_of(int cpu)
3781{
3782 return cpu_rq(cpu)->cpu_power;
3783}
3784
3785static unsigned long cpu_avg_load_per_task(int cpu)
3786{
3787 struct rq *rq = cpu_rq(cpu);
3788 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003789 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003790
3791 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003792 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003793
3794 return 0;
3795}
3796
Michael Wang62470412013-07-04 12:55:51 +08003797static void record_wakee(struct task_struct *p)
3798{
3799 /*
3800 * Rough decay (wiping) for cost saving, don't worry
3801 * about the boundary, really active task won't care
3802 * about the loss.
3803 */
3804 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3805 current->wakee_flips = 0;
3806 current->wakee_flip_decay_ts = jiffies;
3807 }
3808
3809 if (current->last_wakee != p) {
3810 current->last_wakee = p;
3811 current->wakee_flips++;
3812 }
3813}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003814
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003815static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003816{
3817 struct sched_entity *se = &p->se;
3818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003819 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003820
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003821#ifndef CONFIG_64BIT
3822 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003823
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003824 do {
3825 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3826 smp_rmb();
3827 min_vruntime = cfs_rq->min_vruntime;
3828 } while (min_vruntime != min_vruntime_copy);
3829#else
3830 min_vruntime = cfs_rq->min_vruntime;
3831#endif
3832
3833 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003834 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003835}
3836
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003837#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003838/*
3839 * effective_load() calculates the load change as seen from the root_task_group
3840 *
3841 * Adding load to a group doesn't make a group heavier, but can cause movement
3842 * of group shares between cpus. Assuming the shares were perfectly aligned one
3843 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003844 *
3845 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3846 * on this @cpu and results in a total addition (subtraction) of @wg to the
3847 * total group weight.
3848 *
3849 * Given a runqueue weight distribution (rw_i) we can compute a shares
3850 * distribution (s_i) using:
3851 *
3852 * s_i = rw_i / \Sum rw_j (1)
3853 *
3854 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3855 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3856 * shares distribution (s_i):
3857 *
3858 * rw_i = { 2, 4, 1, 0 }
3859 * s_i = { 2/7, 4/7, 1/7, 0 }
3860 *
3861 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3862 * task used to run on and the CPU the waker is running on), we need to
3863 * compute the effect of waking a task on either CPU and, in case of a sync
3864 * wakeup, compute the effect of the current task going to sleep.
3865 *
3866 * So for a change of @wl to the local @cpu with an overall group weight change
3867 * of @wl we can compute the new shares distribution (s'_i) using:
3868 *
3869 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3870 *
3871 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3872 * differences in waking a task to CPU 0. The additional task changes the
3873 * weight and shares distributions like:
3874 *
3875 * rw'_i = { 3, 4, 1, 0 }
3876 * s'_i = { 3/8, 4/8, 1/8, 0 }
3877 *
3878 * We can then compute the difference in effective weight by using:
3879 *
3880 * dw_i = S * (s'_i - s_i) (3)
3881 *
3882 * Where 'S' is the group weight as seen by its parent.
3883 *
3884 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3885 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3886 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003887 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003888static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003889{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003890 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003891
Mel Gorman58d081b2013-10-07 11:29:10 +01003892 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003893 return wl;
3894
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003895 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003896 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003897
Paul Turner977dda72011-01-14 17:57:50 -08003898 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003899
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003900 /*
3901 * W = @wg + \Sum rw_j
3902 */
3903 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003904
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003905 /*
3906 * w = rw_i + @wl
3907 */
3908 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003909
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003910 /*
3911 * wl = S * s'_i; see (2)
3912 */
3913 if (W > 0 && w < W)
3914 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003915 else
3916 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003917
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003918 /*
3919 * Per the above, wl is the new se->load.weight value; since
3920 * those are clipped to [MIN_SHARES, ...) do so now. See
3921 * calc_cfs_shares().
3922 */
Paul Turner977dda72011-01-14 17:57:50 -08003923 if (wl < MIN_SHARES)
3924 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003925
3926 /*
3927 * wl = dw_i = S * (s'_i - s_i); see (3)
3928 */
Paul Turner977dda72011-01-14 17:57:50 -08003929 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003930
3931 /*
3932 * Recursively apply this logic to all parent groups to compute
3933 * the final effective load change on the root group. Since
3934 * only the @tg group gets extra weight, all parent groups can
3935 * only redistribute existing shares. @wl is the shift in shares
3936 * resulting from this level per the above.
3937 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003938 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003939 }
3940
3941 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003942}
3943#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003944
Mel Gorman58d081b2013-10-07 11:29:10 +01003945static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003946{
Peter Zijlstra83378262008-06-27 13:41:37 +02003947 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003948}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003949
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003950#endif
3951
Michael Wang62470412013-07-04 12:55:51 +08003952static int wake_wide(struct task_struct *p)
3953{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003954 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003955
3956 /*
3957 * Yeah, it's the switching-frequency, could means many wakee or
3958 * rapidly switch, use factor here will just help to automatically
3959 * adjust the loose-degree, so bigger node will lead to more pull.
3960 */
3961 if (p->wakee_flips > factor) {
3962 /*
3963 * wakee is somewhat hot, it needs certain amount of cpu
3964 * resource, so if waker is far more hot, prefer to leave
3965 * it alone.
3966 */
3967 if (current->wakee_flips > (factor * p->wakee_flips))
3968 return 1;
3969 }
3970
3971 return 0;
3972}
3973
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003974static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003975{
Paul Turnere37b6a72011-01-21 20:44:59 -08003976 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003977 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003978 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003979 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003980 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003981 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003982
Michael Wang62470412013-07-04 12:55:51 +08003983 /*
3984 * If we wake multiple tasks be careful to not bounce
3985 * ourselves around too much.
3986 */
3987 if (wake_wide(p))
3988 return 0;
3989
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003990 idx = sd->wake_idx;
3991 this_cpu = smp_processor_id();
3992 prev_cpu = task_cpu(p);
3993 load = source_load(prev_cpu, idx);
3994 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003995
3996 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003997 * If sync wakeup then subtract the (maximum possible)
3998 * effect of the currently running task from the load
3999 * of the current CPU:
4000 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004001 if (sync) {
4002 tg = task_group(current);
4003 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004004
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004005 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004006 load += effective_load(tg, prev_cpu, 0, -weight);
4007 }
4008
4009 tg = task_group(p);
4010 weight = p->se.load.weight;
4011
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004012 /*
4013 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004014 * due to the sync cause above having dropped this_load to 0, we'll
4015 * always have an imbalance, but there's really nothing you can do
4016 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004017 *
4018 * Otherwise check if either cpus are near enough in load to allow this
4019 * task to be woken on this_cpu.
4020 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004021 if (this_load > 0) {
4022 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004023
4024 this_eff_load = 100;
4025 this_eff_load *= power_of(prev_cpu);
4026 this_eff_load *= this_load +
4027 effective_load(tg, this_cpu, weight, weight);
4028
4029 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4030 prev_eff_load *= power_of(this_cpu);
4031 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4032
4033 balanced = this_eff_load <= prev_eff_load;
4034 } else
4035 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004036
4037 /*
4038 * If the currently running task will sleep within
4039 * a reasonable amount of time then attract this newly
4040 * woken task:
4041 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004042 if (sync && balanced)
4043 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004044
Lucas De Marchi41acab82010-03-10 23:37:45 -03004045 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004046 tl_per_task = cpu_avg_load_per_task(this_cpu);
4047
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004048 if (balanced ||
4049 (this_load <= load &&
4050 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004051 /*
4052 * This domain has SD_WAKE_AFFINE and
4053 * p is cache cold in this domain, and
4054 * there is no bad imbalance.
4055 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004056 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004057 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004058
4059 return 1;
4060 }
4061 return 0;
4062}
4063
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004064/*
4065 * find_idlest_group finds and returns the least busy CPU group within the
4066 * domain.
4067 */
4068static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004069find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004070 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004071{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004072 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004073 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004075
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004076 do {
4077 unsigned long load, avg_load;
4078 int local_group;
4079 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004080
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004081 /* Skip over this group if it has no CPUs allowed */
4082 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004083 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004084 continue;
4085
4086 local_group = cpumask_test_cpu(this_cpu,
4087 sched_group_cpus(group));
4088
4089 /* Tally up the load of all CPUs in the group */
4090 avg_load = 0;
4091
4092 for_each_cpu(i, sched_group_cpus(group)) {
4093 /* Bias balancing toward cpus of our domain */
4094 if (local_group)
4095 load = source_load(i, load_idx);
4096 else
4097 load = target_load(i, load_idx);
4098
4099 avg_load += load;
4100 }
4101
4102 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004103 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004104
4105 if (local_group) {
4106 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004107 } else if (avg_load < min_load) {
4108 min_load = avg_load;
4109 idlest = group;
4110 }
4111 } while (group = group->next, group != sd->groups);
4112
4113 if (!idlest || 100*this_load < imbalance*min_load)
4114 return NULL;
4115 return idlest;
4116}
4117
4118/*
4119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4120 */
4121static int
4122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4123{
4124 unsigned long load, min_load = ULONG_MAX;
4125 int idlest = -1;
4126 int i;
4127
4128 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004129 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004130 load = weighted_cpuload(i);
4131
4132 if (load < min_load || (load == min_load && i == this_cpu)) {
4133 min_load = load;
4134 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004135 }
4136 }
4137
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004138 return idlest;
4139}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004140
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004141/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004142 * Try and locate an idle CPU in the sched_domain.
4143 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004144static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004145{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004146 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004147 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004148 int i = task_cpu(p);
4149
4150 if (idle_cpu(target))
4151 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004152
4153 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004154 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004155 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004156 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4157 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004158
4159 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004160 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004161 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004162 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004163 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004164 sg = sd->groups;
4165 do {
4166 if (!cpumask_intersects(sched_group_cpus(sg),
4167 tsk_cpus_allowed(p)))
4168 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004169
Linus Torvalds37407ea2012-09-16 12:29:43 -07004170 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004171 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004172 goto next;
4173 }
4174
4175 target = cpumask_first_and(sched_group_cpus(sg),
4176 tsk_cpus_allowed(p));
4177 goto done;
4178next:
4179 sg = sg->next;
4180 } while (sg != sd->groups);
4181 }
4182done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004183 return target;
4184}
4185
4186/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004187 * sched_balance_self: balance the current task (running on cpu) in domains
4188 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4189 * SD_BALANCE_EXEC.
4190 *
4191 * Balance, ie. select the least loaded group.
4192 *
4193 * Returns the target CPU number, or the same CPU if no balancing is needed.
4194 *
4195 * preempt must be disabled.
4196 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004197static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004198select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004199{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004200 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004201 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004202 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004203 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004204 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004205
Peter Zijlstra29baa742012-04-23 12:11:21 +02004206 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004207 return prev_cpu;
4208
Peter Zijlstra0763a662009-09-14 19:37:39 +02004209 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004210 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004211 want_affine = 1;
4212 new_cpu = prev_cpu;
4213 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004214
Peter Zijlstradce840a2011-04-07 14:09:50 +02004215 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004216 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004217 if (!(tmp->flags & SD_LOAD_BALANCE))
4218 continue;
4219
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004220 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004221 * If both cpu and prev_cpu are part of this domain,
4222 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004223 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004224 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4225 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4226 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004227 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004228 }
4229
Alex Shif03542a2012-07-26 08:55:34 +08004230 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004231 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004232 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004233
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004234 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004235 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004236 prev_cpu = cpu;
4237
4238 new_cpu = select_idle_sibling(p, prev_cpu);
4239 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004240 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004241
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004242 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004243 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004244 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004245 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004246
Peter Zijlstra0763a662009-09-14 19:37:39 +02004247 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004248 sd = sd->child;
4249 continue;
4250 }
4251
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004252 if (sd_flag & SD_BALANCE_WAKE)
4253 load_idx = sd->wake_idx;
4254
4255 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004256 if (!group) {
4257 sd = sd->child;
4258 continue;
4259 }
4260
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004261 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004262 if (new_cpu == -1 || new_cpu == cpu) {
4263 /* Now try balancing at a lower domain level of cpu */
4264 sd = sd->child;
4265 continue;
4266 }
4267
4268 /* Now try balancing at a lower domain level of new_cpu */
4269 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004270 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004271 sd = NULL;
4272 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004273 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004274 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004275 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004276 sd = tmp;
4277 }
4278 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004279 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004280unlock:
4281 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004282
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004283 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004284}
Paul Turner0a74bef2012-10-04 13:18:30 +02004285
4286/*
4287 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4288 * cfs_rq_of(p) references at time of call are still valid and identify the
4289 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4290 * other assumptions, including the state of rq->lock, should be made.
4291 */
4292static void
4293migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4294{
Paul Turneraff3e492012-10-04 13:18:30 +02004295 struct sched_entity *se = &p->se;
4296 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4297
4298 /*
4299 * Load tracking: accumulate removed load so that it can be processed
4300 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4301 * to blocked load iff they have a positive decay-count. It can never
4302 * be negative here since on-rq tasks have decay-count == 0.
4303 */
4304 if (se->avg.decay_count) {
4305 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004306 atomic_long_add(se->avg.load_avg_contrib,
4307 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004308 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004309}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004310#endif /* CONFIG_SMP */
4311
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004312static unsigned long
4313wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004314{
4315 unsigned long gran = sysctl_sched_wakeup_granularity;
4316
4317 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004318 * Since its curr running now, convert the gran from real-time
4319 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004320 *
4321 * By using 'se' instead of 'curr' we penalize light tasks, so
4322 * they get preempted easier. That is, if 'se' < 'curr' then
4323 * the resulting gran will be larger, therefore penalizing the
4324 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4325 * be smaller, again penalizing the lighter task.
4326 *
4327 * This is especially important for buddies when the leftmost
4328 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004329 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004330 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004331}
4332
4333/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004334 * Should 'se' preempt 'curr'.
4335 *
4336 * |s1
4337 * |s2
4338 * |s3
4339 * g
4340 * |<--->|c
4341 *
4342 * w(c, s1) = -1
4343 * w(c, s2) = 0
4344 * w(c, s3) = 1
4345 *
4346 */
4347static int
4348wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4349{
4350 s64 gran, vdiff = curr->vruntime - se->vruntime;
4351
4352 if (vdiff <= 0)
4353 return -1;
4354
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004355 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004356 if (vdiff > gran)
4357 return 1;
4358
4359 return 0;
4360}
4361
Peter Zijlstra02479092008-11-04 21:25:10 +01004362static void set_last_buddy(struct sched_entity *se)
4363{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004364 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4365 return;
4366
4367 for_each_sched_entity(se)
4368 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004369}
4370
4371static void set_next_buddy(struct sched_entity *se)
4372{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004373 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4374 return;
4375
4376 for_each_sched_entity(se)
4377 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004378}
4379
Rik van Rielac53db52011-02-01 09:51:03 -05004380static void set_skip_buddy(struct sched_entity *se)
4381{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004382 for_each_sched_entity(se)
4383 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004384}
4385
Peter Zijlstra464b7522008-10-24 11:06:15 +02004386/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004387 * Preempt the current task with a newly woken task if needed:
4388 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004389static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004390{
4391 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004392 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004393 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004394 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004395 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004396
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004397 if (unlikely(se == pse))
4398 return;
4399
Paul Turner5238cdd2011-07-21 09:43:37 -07004400 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004401 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004402 * unconditionally check_prempt_curr() after an enqueue (which may have
4403 * lead to a throttle). This both saves work and prevents false
4404 * next-buddy nomination below.
4405 */
4406 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4407 return;
4408
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004409 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004410 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004411 next_buddy_marked = 1;
4412 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004413
Bharata B Raoaec0a512008-08-28 14:42:49 +05304414 /*
4415 * We can come here with TIF_NEED_RESCHED already set from new task
4416 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004417 *
4418 * Note: this also catches the edge-case of curr being in a throttled
4419 * group (e.g. via set_curr_task), since update_curr() (in the
4420 * enqueue of curr) will have resulted in resched being set. This
4421 * prevents us from potentially nominating it as a false LAST_BUDDY
4422 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304423 */
4424 if (test_tsk_need_resched(curr))
4425 return;
4426
Darren Harta2f5c9a2011-02-22 13:04:33 -08004427 /* Idle tasks are by definition preempted by non-idle tasks. */
4428 if (unlikely(curr->policy == SCHED_IDLE) &&
4429 likely(p->policy != SCHED_IDLE))
4430 goto preempt;
4431
Ingo Molnar91c234b2007-10-15 17:00:18 +02004432 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004433 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4434 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004435 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004436 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004437 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004438
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004439 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004440 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004441 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004442 if (wakeup_preempt_entity(se, pse) == 1) {
4443 /*
4444 * Bias pick_next to pick the sched entity that is
4445 * triggering this preemption.
4446 */
4447 if (!next_buddy_marked)
4448 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004449 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004450 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004451
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004452 return;
4453
4454preempt:
4455 resched_task(curr);
4456 /*
4457 * Only set the backward buddy when the current task is still
4458 * on the rq. This can happen when a wakeup gets interleaved
4459 * with schedule on the ->pre_schedule() or idle_balance()
4460 * point, either of which can * drop the rq lock.
4461 *
4462 * Also, during early boot the idle thread is in the fair class,
4463 * for obvious reasons its a bad idea to schedule back to it.
4464 */
4465 if (unlikely(!se->on_rq || curr == rq->idle))
4466 return;
4467
4468 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4469 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004470}
4471
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004472static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004473{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004474 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004475 struct cfs_rq *cfs_rq = &rq->cfs;
4476 struct sched_entity *se;
4477
Tim Blechmann36ace272009-11-24 11:55:45 +01004478 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004479 return NULL;
4480
4481 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004482 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004483 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004484 cfs_rq = group_cfs_rq(se);
4485 } while (cfs_rq);
4486
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004487 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004488 if (hrtick_enabled(rq))
4489 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004490
4491 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004492}
4493
4494/*
4495 * Account for a descheduled task:
4496 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004497static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004498{
4499 struct sched_entity *se = &prev->se;
4500 struct cfs_rq *cfs_rq;
4501
4502 for_each_sched_entity(se) {
4503 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004504 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004505 }
4506}
4507
Rik van Rielac53db52011-02-01 09:51:03 -05004508/*
4509 * sched_yield() is very simple
4510 *
4511 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4512 */
4513static void yield_task_fair(struct rq *rq)
4514{
4515 struct task_struct *curr = rq->curr;
4516 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4517 struct sched_entity *se = &curr->se;
4518
4519 /*
4520 * Are we the only task in the tree?
4521 */
4522 if (unlikely(rq->nr_running == 1))
4523 return;
4524
4525 clear_buddies(cfs_rq, se);
4526
4527 if (curr->policy != SCHED_BATCH) {
4528 update_rq_clock(rq);
4529 /*
4530 * Update run-time statistics of the 'current'.
4531 */
4532 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004533 /*
4534 * Tell update_rq_clock() that we've just updated,
4535 * so we don't do microscopic update in schedule()
4536 * and double the fastpath cost.
4537 */
4538 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004539 }
4540
4541 set_skip_buddy(se);
4542}
4543
Mike Galbraithd95f4122011-02-01 09:50:51 -05004544static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4545{
4546 struct sched_entity *se = &p->se;
4547
Paul Turner5238cdd2011-07-21 09:43:37 -07004548 /* throttled hierarchies are not runnable */
4549 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004550 return false;
4551
4552 /* Tell the scheduler that we'd really like pse to run next. */
4553 set_next_buddy(se);
4554
Mike Galbraithd95f4122011-02-01 09:50:51 -05004555 yield_task_fair(rq);
4556
4557 return true;
4558}
4559
Peter Williams681f3e62007-10-24 18:23:51 +02004560#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004561/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004562 * Fair scheduling class load-balancing methods.
4563 *
4564 * BASICS
4565 *
4566 * The purpose of load-balancing is to achieve the same basic fairness the
4567 * per-cpu scheduler provides, namely provide a proportional amount of compute
4568 * time to each task. This is expressed in the following equation:
4569 *
4570 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4571 *
4572 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4573 * W_i,0 is defined as:
4574 *
4575 * W_i,0 = \Sum_j w_i,j (2)
4576 *
4577 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4578 * is derived from the nice value as per prio_to_weight[].
4579 *
4580 * The weight average is an exponential decay average of the instantaneous
4581 * weight:
4582 *
4583 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4584 *
4585 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4586 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4587 * can also include other factors [XXX].
4588 *
4589 * To achieve this balance we define a measure of imbalance which follows
4590 * directly from (1):
4591 *
4592 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4593 *
4594 * We them move tasks around to minimize the imbalance. In the continuous
4595 * function space it is obvious this converges, in the discrete case we get
4596 * a few fun cases generally called infeasible weight scenarios.
4597 *
4598 * [XXX expand on:
4599 * - infeasible weights;
4600 * - local vs global optima in the discrete case. ]
4601 *
4602 *
4603 * SCHED DOMAINS
4604 *
4605 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4606 * for all i,j solution, we create a tree of cpus that follows the hardware
4607 * topology where each level pairs two lower groups (or better). This results
4608 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4609 * tree to only the first of the previous level and we decrease the frequency
4610 * of load-balance at each level inv. proportional to the number of cpus in
4611 * the groups.
4612 *
4613 * This yields:
4614 *
4615 * log_2 n 1 n
4616 * \Sum { --- * --- * 2^i } = O(n) (5)
4617 * i = 0 2^i 2^i
4618 * `- size of each group
4619 * | | `- number of cpus doing load-balance
4620 * | `- freq
4621 * `- sum over all levels
4622 *
4623 * Coupled with a limit on how many tasks we can migrate every balance pass,
4624 * this makes (5) the runtime complexity of the balancer.
4625 *
4626 * An important property here is that each CPU is still (indirectly) connected
4627 * to every other cpu in at most O(log n) steps:
4628 *
4629 * The adjacency matrix of the resulting graph is given by:
4630 *
4631 * log_2 n
4632 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4633 * k = 0
4634 *
4635 * And you'll find that:
4636 *
4637 * A^(log_2 n)_i,j != 0 for all i,j (7)
4638 *
4639 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4640 * The task movement gives a factor of O(m), giving a convergence complexity
4641 * of:
4642 *
4643 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4644 *
4645 *
4646 * WORK CONSERVING
4647 *
4648 * In order to avoid CPUs going idle while there's still work to do, new idle
4649 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4650 * tree itself instead of relying on other CPUs to bring it work.
4651 *
4652 * This adds some complexity to both (5) and (8) but it reduces the total idle
4653 * time.
4654 *
4655 * [XXX more?]
4656 *
4657 *
4658 * CGROUPS
4659 *
4660 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4661 *
4662 * s_k,i
4663 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4664 * S_k
4665 *
4666 * Where
4667 *
4668 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4669 *
4670 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4671 *
4672 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4673 * property.
4674 *
4675 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4676 * rewrite all of this once again.]
4677 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004678
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004679static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4680
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004681enum fbq_type { regular, remote, all };
4682
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004683#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004684#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004685#define LBF_DST_PINNED 0x04
4686#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004687
4688struct lb_env {
4689 struct sched_domain *sd;
4690
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004691 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304692 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004693
4694 int dst_cpu;
4695 struct rq *dst_rq;
4696
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304697 struct cpumask *dst_grpmask;
4698 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004699 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004700 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004701 /* The set of CPUs under consideration for load-balancing */
4702 struct cpumask *cpus;
4703
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004704 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004705
4706 unsigned int loop;
4707 unsigned int loop_break;
4708 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004709
4710 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004711};
4712
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004713/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004714 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004715 * Both runqueues must be locked.
4716 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004717static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004718{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004719 deactivate_task(env->src_rq, p, 0);
4720 set_task_cpu(p, env->dst_cpu);
4721 activate_task(env->dst_rq, p, 0);
4722 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004723}
4724
4725/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004726 * Is this task likely cache-hot:
4727 */
4728static int
4729task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4730{
4731 s64 delta;
4732
4733 if (p->sched_class != &fair_sched_class)
4734 return 0;
4735
4736 if (unlikely(p->policy == SCHED_IDLE))
4737 return 0;
4738
4739 /*
4740 * Buddy candidates are cache hot:
4741 */
4742 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4743 (&p->se == cfs_rq_of(&p->se)->next ||
4744 &p->se == cfs_rq_of(&p->se)->last))
4745 return 1;
4746
4747 if (sysctl_sched_migration_cost == -1)
4748 return 1;
4749 if (sysctl_sched_migration_cost == 0)
4750 return 0;
4751
4752 delta = now - p->se.exec_start;
4753
4754 return delta < (s64)sysctl_sched_migration_cost;
4755}
4756
Mel Gorman3a7053b2013-10-07 11:29:00 +01004757#ifdef CONFIG_NUMA_BALANCING
4758/* Returns true if the destination node has incurred more faults */
4759static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4760{
4761 int src_nid, dst_nid;
4762
4763 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4764 !(env->sd->flags & SD_NUMA)) {
4765 return false;
4766 }
4767
4768 src_nid = cpu_to_node(env->src_cpu);
4769 dst_nid = cpu_to_node(env->dst_cpu);
4770
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004771 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004772 return false;
4773
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004774 /* Always encourage migration to the preferred node. */
4775 if (dst_nid == p->numa_preferred_nid)
4776 return true;
4777
Rik van Riel887c2902013-10-07 11:29:31 +01004778 /* If both task and group weight improve, this move is a winner. */
4779 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4780 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004781 return true;
4782
4783 return false;
4784}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004785
4786
4787static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4788{
4789 int src_nid, dst_nid;
4790
4791 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4792 return false;
4793
4794 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4795 return false;
4796
4797 src_nid = cpu_to_node(env->src_cpu);
4798 dst_nid = cpu_to_node(env->dst_cpu);
4799
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004800 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004801 return false;
4802
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004803 /* Migrating away from the preferred node is always bad. */
4804 if (src_nid == p->numa_preferred_nid)
4805 return true;
4806
Rik van Riel887c2902013-10-07 11:29:31 +01004807 /* If either task or group weight get worse, don't do it. */
4808 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4809 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004810 return true;
4811
4812 return false;
4813}
4814
Mel Gorman3a7053b2013-10-07 11:29:00 +01004815#else
4816static inline bool migrate_improves_locality(struct task_struct *p,
4817 struct lb_env *env)
4818{
4819 return false;
4820}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004821
4822static inline bool migrate_degrades_locality(struct task_struct *p,
4823 struct lb_env *env)
4824{
4825 return false;
4826}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004827#endif
4828
Peter Zijlstra029632f2011-10-25 10:00:11 +02004829/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004830 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4831 */
4832static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004833int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004834{
4835 int tsk_cache_hot = 0;
4836 /*
4837 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004838 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004839 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004840 * 3) running (obviously), or
4841 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004842 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004843 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4844 return 0;
4845
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004846 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004847 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304848
Lucas De Marchi41acab82010-03-10 23:37:45 -03004849 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304850
Peter Zijlstra62633222013-08-19 12:41:09 +02004851 env->flags |= LBF_SOME_PINNED;
4852
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304853 /*
4854 * Remember if this task can be migrated to any other cpu in
4855 * our sched_group. We may want to revisit it if we couldn't
4856 * meet load balance goals by pulling other tasks on src_cpu.
4857 *
4858 * Also avoid computing new_dst_cpu if we have already computed
4859 * one in current iteration.
4860 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004861 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304862 return 0;
4863
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004864 /* Prevent to re-select dst_cpu via env's cpus */
4865 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4866 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004867 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004868 env->new_dst_cpu = cpu;
4869 break;
4870 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304871 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004872
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004873 return 0;
4874 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304875
4876 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004877 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004878
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004879 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004880 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004881 return 0;
4882 }
4883
4884 /*
4885 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004886 * 1) destination numa is preferred
4887 * 2) task is cache cold, or
4888 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004889 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004890 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004891 if (!tsk_cache_hot)
4892 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004893
4894 if (migrate_improves_locality(p, env)) {
4895#ifdef CONFIG_SCHEDSTATS
4896 if (tsk_cache_hot) {
4897 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4898 schedstat_inc(p, se.statistics.nr_forced_migrations);
4899 }
4900#endif
4901 return 1;
4902 }
4903
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004904 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004905 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004906
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004907 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004908 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004909 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004910 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004911
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004912 return 1;
4913 }
4914
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004915 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4916 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004917}
4918
Peter Zijlstra897c3952009-12-17 17:45:42 +01004919/*
4920 * move_one_task tries to move exactly one task from busiest to this_rq, as
4921 * part of active balancing operations within "domain".
4922 * Returns 1 if successful and 0 otherwise.
4923 *
4924 * Called with both runqueues locked.
4925 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004926static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004927{
4928 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004929
Peter Zijlstra367456c2012-02-20 21:49:09 +01004930 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004931 if (!can_migrate_task(p, env))
4932 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004933
Peter Zijlstra367456c2012-02-20 21:49:09 +01004934 move_task(p, env);
4935 /*
4936 * Right now, this is only the second place move_task()
4937 * is called, so we can safely collect move_task()
4938 * stats here rather than inside move_task().
4939 */
4940 schedstat_inc(env->sd, lb_gained[env->idle]);
4941 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004942 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004943 return 0;
4944}
4945
Peter Zijlstraeb953082012-04-17 13:38:40 +02004946static const unsigned int sched_nr_migrate_break = 32;
4947
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004948/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004949 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004950 * this_rq, as part of a balancing operation within domain "sd".
4951 * Returns 1 if successful and 0 otherwise.
4952 *
4953 * Called with both runqueues locked.
4954 */
4955static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004956{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004957 struct list_head *tasks = &env->src_rq->cfs_tasks;
4958 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004959 unsigned long load;
4960 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004961
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004962 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004963 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004964
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004965 while (!list_empty(tasks)) {
4966 p = list_first_entry(tasks, struct task_struct, se.group_node);
4967
Peter Zijlstra367456c2012-02-20 21:49:09 +01004968 env->loop++;
4969 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004970 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004971 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004972
4973 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004974 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004975 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004976 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004977 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004978 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004979
Joonsoo Kimd3198082013-04-23 17:27:40 +09004980 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004981 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004982
Peter Zijlstra367456c2012-02-20 21:49:09 +01004983 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004984
Peter Zijlstraeb953082012-04-17 13:38:40 +02004985 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004986 goto next;
4987
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004988 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004989 goto next;
4990
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004991 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004992 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004993 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004994
4995#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004996 /*
4997 * NEWIDLE balancing is a source of latency, so preemptible
4998 * kernels will stop after the first task is pulled to minimize
4999 * the critical section.
5000 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005001 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005002 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005003#endif
5004
Peter Zijlstraee00e662009-12-17 17:25:20 +01005005 /*
5006 * We only want to steal up to the prescribed amount of
5007 * weighted load.
5008 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005009 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005010 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005011
Peter Zijlstra367456c2012-02-20 21:49:09 +01005012 continue;
5013next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005014 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005015 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005016
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005017 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005018 * Right now, this is one of only two places move_task() is called,
5019 * so we can safely collect move_task() stats here rather than
5020 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005021 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005022 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005023
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005024 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005025}
5026
Peter Zijlstra230059de2009-12-17 17:47:12 +01005027#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005028/*
5029 * update tg->load_weight by folding this cpu's load_avg
5030 */
Paul Turner48a16752012-10-04 13:18:31 +02005031static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005032{
Paul Turner48a16752012-10-04 13:18:31 +02005033 struct sched_entity *se = tg->se[cpu];
5034 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005035
Paul Turner48a16752012-10-04 13:18:31 +02005036 /* throttled entities do not contribute to load */
5037 if (throttled_hierarchy(cfs_rq))
5038 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005039
Paul Turneraff3e492012-10-04 13:18:30 +02005040 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005041
Paul Turner82958362012-10-04 13:18:31 +02005042 if (se) {
5043 update_entity_load_avg(se, 1);
5044 /*
5045 * We pivot on our runnable average having decayed to zero for
5046 * list removal. This generally implies that all our children
5047 * have also been removed (modulo rounding error or bandwidth
5048 * control); however, such cases are rare and we can fix these
5049 * at enqueue.
5050 *
5051 * TODO: fix up out-of-order children on enqueue.
5052 */
5053 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5054 list_del_leaf_cfs_rq(cfs_rq);
5055 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005056 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005057 update_rq_runnable_avg(rq, rq->nr_running);
5058 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005059}
5060
Paul Turner48a16752012-10-04 13:18:31 +02005061static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005062{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005063 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005064 struct cfs_rq *cfs_rq;
5065 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005066
Paul Turner48a16752012-10-04 13:18:31 +02005067 raw_spin_lock_irqsave(&rq->lock, flags);
5068 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005069 /*
5070 * Iterates the task_group tree in a bottom up fashion, see
5071 * list_add_leaf_cfs_rq() for details.
5072 */
Paul Turner64660c82011-07-21 09:43:36 -07005073 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005074 /*
5075 * Note: We may want to consider periodically releasing
5076 * rq->lock about these updates so that creating many task
5077 * groups does not result in continually extending hold time.
5078 */
5079 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005080 }
Paul Turner48a16752012-10-04 13:18:31 +02005081
5082 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005083}
5084
Peter Zijlstra9763b672011-07-13 13:09:25 +02005085/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005086 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005087 * This needs to be done in a top-down fashion because the load of a child
5088 * group is a fraction of its parents load.
5089 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005090static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005091{
Vladimir Davydov68520792013-07-15 17:49:19 +04005092 struct rq *rq = rq_of(cfs_rq);
5093 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005094 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005095 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005096
Vladimir Davydov68520792013-07-15 17:49:19 +04005097 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005098 return;
5099
Vladimir Davydov68520792013-07-15 17:49:19 +04005100 cfs_rq->h_load_next = NULL;
5101 for_each_sched_entity(se) {
5102 cfs_rq = cfs_rq_of(se);
5103 cfs_rq->h_load_next = se;
5104 if (cfs_rq->last_h_load_update == now)
5105 break;
5106 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005107
Vladimir Davydov68520792013-07-15 17:49:19 +04005108 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005109 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005110 cfs_rq->last_h_load_update = now;
5111 }
5112
5113 while ((se = cfs_rq->h_load_next) != NULL) {
5114 load = cfs_rq->h_load;
5115 load = div64_ul(load * se->avg.load_avg_contrib,
5116 cfs_rq->runnable_load_avg + 1);
5117 cfs_rq = group_cfs_rq(se);
5118 cfs_rq->h_load = load;
5119 cfs_rq->last_h_load_update = now;
5120 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005121}
5122
Peter Zijlstra367456c2012-02-20 21:49:09 +01005123static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005124{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005125 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005126
Vladimir Davydov68520792013-07-15 17:49:19 +04005127 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005128 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5129 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005130}
5131#else
Paul Turner48a16752012-10-04 13:18:31 +02005132static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005133{
5134}
5135
Peter Zijlstra367456c2012-02-20 21:49:09 +01005136static unsigned long task_h_load(struct task_struct *p)
5137{
Alex Shia003a252013-06-20 10:18:51 +08005138 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005139}
5140#endif
5141
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005142/********** Helpers for find_busiest_group ************************/
5143/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005144 * sg_lb_stats - stats of a sched_group required for load_balancing
5145 */
5146struct sg_lb_stats {
5147 unsigned long avg_load; /*Avg load across the CPUs of the group */
5148 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005149 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005150 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005151 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005152 unsigned int sum_nr_running; /* Nr tasks running in the group */
5153 unsigned int group_capacity;
5154 unsigned int idle_cpus;
5155 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005156 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005157 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005158#ifdef CONFIG_NUMA_BALANCING
5159 unsigned int nr_numa_running;
5160 unsigned int nr_preferred_running;
5161#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005162};
5163
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005164/*
5165 * sd_lb_stats - Structure to store the statistics of a sched_domain
5166 * during load balancing.
5167 */
5168struct sd_lb_stats {
5169 struct sched_group *busiest; /* Busiest group in this sd */
5170 struct sched_group *local; /* Local group in this sd */
5171 unsigned long total_load; /* Total load of all groups in sd */
5172 unsigned long total_pwr; /* Total power of all groups in sd */
5173 unsigned long avg_load; /* Average load across all groups in sd */
5174
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005175 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005176 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005177};
5178
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005179static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5180{
5181 /*
5182 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5183 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5184 * We must however clear busiest_stat::avg_load because
5185 * update_sd_pick_busiest() reads this before assignment.
5186 */
5187 *sds = (struct sd_lb_stats){
5188 .busiest = NULL,
5189 .local = NULL,
5190 .total_load = 0UL,
5191 .total_pwr = 0UL,
5192 .busiest_stat = {
5193 .avg_load = 0UL,
5194 },
5195 };
5196}
5197
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005198/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005199 * get_sd_load_idx - Obtain the load index for a given sched domain.
5200 * @sd: The sched_domain whose load_idx is to be obtained.
5201 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005202 *
5203 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005204 */
5205static inline int get_sd_load_idx(struct sched_domain *sd,
5206 enum cpu_idle_type idle)
5207{
5208 int load_idx;
5209
5210 switch (idle) {
5211 case CPU_NOT_IDLE:
5212 load_idx = sd->busy_idx;
5213 break;
5214
5215 case CPU_NEWLY_IDLE:
5216 load_idx = sd->newidle_idx;
5217 break;
5218 default:
5219 load_idx = sd->idle_idx;
5220 break;
5221 }
5222
5223 return load_idx;
5224}
5225
Li Zefan15f803c2013-03-05 16:07:11 +08005226static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005227{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005228 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005229}
5230
5231unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5232{
5233 return default_scale_freq_power(sd, cpu);
5234}
5235
Li Zefan15f803c2013-03-05 16:07:11 +08005236static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005237{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005238 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005239 unsigned long smt_gain = sd->smt_gain;
5240
5241 smt_gain /= weight;
5242
5243 return smt_gain;
5244}
5245
5246unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5247{
5248 return default_scale_smt_power(sd, cpu);
5249}
5250
Li Zefan15f803c2013-03-05 16:07:11 +08005251static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005252{
5253 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005254 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005255
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005256 /*
5257 * Since we're reading these variables without serialization make sure
5258 * we read them once before doing sanity checks on them.
5259 */
5260 age_stamp = ACCESS_ONCE(rq->age_stamp);
5261 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005262
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005263 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005264
5265 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005266 /* Ensures that power won't end up being negative */
5267 available = 0;
5268 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005269 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005270 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005271
Nikhil Rao1399fa72011-05-18 10:09:39 -07005272 if (unlikely((s64)total < SCHED_POWER_SCALE))
5273 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005274
Nikhil Rao1399fa72011-05-18 10:09:39 -07005275 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005276
5277 return div_u64(available, total);
5278}
5279
5280static void update_cpu_power(struct sched_domain *sd, int cpu)
5281{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005282 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005283 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005284 struct sched_group *sdg = sd->groups;
5285
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005286 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5287 if (sched_feat(ARCH_POWER))
5288 power *= arch_scale_smt_power(sd, cpu);
5289 else
5290 power *= default_scale_smt_power(sd, cpu);
5291
Nikhil Rao1399fa72011-05-18 10:09:39 -07005292 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293 }
5294
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005295 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005296
5297 if (sched_feat(ARCH_POWER))
5298 power *= arch_scale_freq_power(sd, cpu);
5299 else
5300 power *= default_scale_freq_power(sd, cpu);
5301
Nikhil Rao1399fa72011-05-18 10:09:39 -07005302 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005303
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005304 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005305 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005306
5307 if (!power)
5308 power = 1;
5309
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005310 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005311 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005312}
5313
Peter Zijlstra029632f2011-10-25 10:00:11 +02005314void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005315{
5316 struct sched_domain *child = sd->child;
5317 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005318 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005319 unsigned long interval;
5320
5321 interval = msecs_to_jiffies(sd->balance_interval);
5322 interval = clamp(interval, 1UL, max_load_balance_interval);
5323 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005324
5325 if (!child) {
5326 update_cpu_power(sd, cpu);
5327 return;
5328 }
5329
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005330 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005331
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005332 if (child->flags & SD_OVERLAP) {
5333 /*
5334 * SD_OVERLAP domains cannot assume that child groups
5335 * span the current group.
5336 */
5337
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005338 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5339 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5340
5341 power_orig += sg->sgp->power_orig;
5342 power += sg->sgp->power;
5343 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005344 } else {
5345 /*
5346 * !SD_OVERLAP domains can assume that child groups
5347 * span the current group.
5348 */
5349
5350 group = child->groups;
5351 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005352 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005353 power += group->sgp->power;
5354 group = group->next;
5355 } while (group != child->groups);
5356 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005357
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005358 sdg->sgp->power_orig = power_orig;
5359 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005360}
5361
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005362/*
5363 * Try and fix up capacity for tiny siblings, this is needed when
5364 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5365 * which on its own isn't powerful enough.
5366 *
5367 * See update_sd_pick_busiest() and check_asym_packing().
5368 */
5369static inline int
5370fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5371{
5372 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005373 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005374 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005375 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005376 return 0;
5377
5378 /*
5379 * If ~90% of the cpu_power is still there, we're good.
5380 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005381 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005382 return 1;
5383
5384 return 0;
5385}
5386
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005387/*
5388 * Group imbalance indicates (and tries to solve) the problem where balancing
5389 * groups is inadequate due to tsk_cpus_allowed() constraints.
5390 *
5391 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5392 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5393 * Something like:
5394 *
5395 * { 0 1 2 3 } { 4 5 6 7 }
5396 * * * * *
5397 *
5398 * If we were to balance group-wise we'd place two tasks in the first group and
5399 * two tasks in the second group. Clearly this is undesired as it will overload
5400 * cpu 3 and leave one of the cpus in the second group unused.
5401 *
5402 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005403 * by noticing the lower domain failed to reach balance and had difficulty
5404 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005405 *
5406 * When this is so detected; this group becomes a candidate for busiest; see
5407 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005408 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005409 * to create an effective group imbalance.
5410 *
5411 * This is a somewhat tricky proposition since the next run might not find the
5412 * group imbalance and decide the groups need to be balanced again. A most
5413 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005414 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005415
Peter Zijlstra62633222013-08-19 12:41:09 +02005416static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005417{
Peter Zijlstra62633222013-08-19 12:41:09 +02005418 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005419}
5420
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005421/*
5422 * Compute the group capacity.
5423 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005424 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5425 * first dividing out the smt factor and computing the actual number of cores
5426 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005427 */
5428static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5429{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005430 unsigned int capacity, smt, cpus;
5431 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005432
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005433 power = group->sgp->power;
5434 power_orig = group->sgp->power_orig;
5435 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005436
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005437 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5438 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5439 capacity = cpus / smt; /* cores */
5440
5441 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005442 if (!capacity)
5443 capacity = fix_small_capacity(env->sd, group);
5444
5445 return capacity;
5446}
5447
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005448/**
5449 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5450 * @env: The load balancing environment.
5451 * @group: sched_group whose statistics are to be updated.
5452 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5453 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454 * @sgs: variable to hold the statistics for this group.
5455 */
5456static inline void update_sg_lb_stats(struct lb_env *env,
5457 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005458 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005459{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005460 unsigned long nr_running;
5461 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005462 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005463
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005464 memset(sgs, 0, sizeof(*sgs));
5465
Michael Wangb94031302012-07-12 16:10:13 +08005466 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005467 struct rq *rq = cpu_rq(i);
5468
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005469 nr_running = rq->nr_running;
5470
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005471 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005472 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005473 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005474 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005475 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005476
5477 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005478 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005479#ifdef CONFIG_NUMA_BALANCING
5480 sgs->nr_numa_running += rq->nr_numa_running;
5481 sgs->nr_preferred_running += rq->nr_preferred_running;
5482#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005483 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005484 if (idle_cpu(i))
5485 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005486 }
5487
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005488 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005489 sgs->group_power = group->sgp->power;
5490 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005491
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005492 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005493 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005494
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005495 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005496
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005497 sgs->group_imb = sg_imbalanced(group);
5498 sgs->group_capacity = sg_capacity(env, group);
5499
Nikhil Raofab47622010-10-15 13:12:29 -07005500 if (sgs->group_capacity > sgs->sum_nr_running)
5501 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005502}
5503
5504/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005505 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005506 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005507 * @sds: sched_domain statistics
5508 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005509 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005510 *
5511 * Determine if @sg is a busier group than the previously selected
5512 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005513 *
5514 * Return: %true if @sg is a busier group than the previously selected
5515 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005516 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005517static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005518 struct sd_lb_stats *sds,
5519 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005520 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005521{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005522 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005523 return false;
5524
5525 if (sgs->sum_nr_running > sgs->group_capacity)
5526 return true;
5527
5528 if (sgs->group_imb)
5529 return true;
5530
5531 /*
5532 * ASYM_PACKING needs to move all the work to the lowest
5533 * numbered CPUs in the group, therefore mark all groups
5534 * higher than ourself as busy.
5535 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005536 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5537 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005538 if (!sds->busiest)
5539 return true;
5540
5541 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5542 return true;
5543 }
5544
5545 return false;
5546}
5547
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005548#ifdef CONFIG_NUMA_BALANCING
5549static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5550{
5551 if (sgs->sum_nr_running > sgs->nr_numa_running)
5552 return regular;
5553 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5554 return remote;
5555 return all;
5556}
5557
5558static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5559{
5560 if (rq->nr_running > rq->nr_numa_running)
5561 return regular;
5562 if (rq->nr_running > rq->nr_preferred_running)
5563 return remote;
5564 return all;
5565}
5566#else
5567static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5568{
5569 return all;
5570}
5571
5572static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5573{
5574 return regular;
5575}
5576#endif /* CONFIG_NUMA_BALANCING */
5577
Michael Neuling532cb4c2010-06-08 14:57:02 +10005578/**
Hui Kang461819a2011-10-11 23:00:59 -04005579 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005580 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005581 * @balance: Should we balance.
5582 * @sds: variable to hold the statistics for this sched_domain.
5583 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005584static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005585{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005586 struct sched_domain *child = env->sd->child;
5587 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005588 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589 int load_idx, prefer_sibling = 0;
5590
5591 if (child && child->flags & SD_PREFER_SIBLING)
5592 prefer_sibling = 1;
5593
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005594 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005595
5596 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005597 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005598 int local_group;
5599
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005600 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005601 if (local_group) {
5602 sds->local = sg;
5603 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005604
5605 if (env->idle != CPU_NEWLY_IDLE ||
5606 time_after_eq(jiffies, sg->sgp->next_update))
5607 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005608 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005609
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005610 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005611
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005612 if (local_group)
5613 goto next_group;
5614
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005615 /*
5616 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005617 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005618 * and move all the excess tasks away. We lower the capacity
5619 * of a group only if the local group has the capacity to fit
5620 * these excess tasks, i.e. nr_running < group_capacity. The
5621 * extra check prevents the case where you always pull from the
5622 * heaviest group when it is already under-utilized (possible
5623 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005624 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005625 if (prefer_sibling && sds->local &&
5626 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005627 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005628
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005629 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005630 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005631 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005632 }
5633
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005634next_group:
5635 /* Now, start updating sd_lb_stats */
5636 sds->total_load += sgs->group_load;
5637 sds->total_pwr += sgs->group_power;
5638
Michael Neuling532cb4c2010-06-08 14:57:02 +10005639 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005640 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005641
5642 if (env->sd->flags & SD_NUMA)
5643 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005644}
5645
Michael Neuling532cb4c2010-06-08 14:57:02 +10005646/**
5647 * check_asym_packing - Check to see if the group is packed into the
5648 * sched doman.
5649 *
5650 * This is primarily intended to used at the sibling level. Some
5651 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5652 * case of POWER7, it can move to lower SMT modes only when higher
5653 * threads are idle. When in lower SMT modes, the threads will
5654 * perform better since they share less core resources. Hence when we
5655 * have idle threads, we want them to be the higher ones.
5656 *
5657 * This packing function is run on idle threads. It checks to see if
5658 * the busiest CPU in this domain (core in the P7 case) has a higher
5659 * CPU number than the packing function is being run on. Here we are
5660 * assuming lower CPU number will be equivalent to lower a SMT thread
5661 * number.
5662 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005663 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005664 * this CPU. The amount of the imbalance is returned in *imbalance.
5665 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005666 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005667 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005668 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005669static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005670{
5671 int busiest_cpu;
5672
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005673 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005674 return 0;
5675
5676 if (!sds->busiest)
5677 return 0;
5678
5679 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005680 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005681 return 0;
5682
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005683 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005684 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5685 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005686
Michael Neuling532cb4c2010-06-08 14:57:02 +10005687 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005688}
5689
5690/**
5691 * fix_small_imbalance - Calculate the minor imbalance that exists
5692 * amongst the groups of a sched_domain, during
5693 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005694 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005695 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005696 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005697static inline
5698void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005699{
5700 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5701 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005702 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005703 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005705 local = &sds->local_stat;
5706 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005707
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005708 if (!local->sum_nr_running)
5709 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5710 else if (busiest->load_per_task > local->load_per_task)
5711 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005712
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005713 scaled_busy_load_per_task =
5714 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005715 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005716
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005717 if (busiest->avg_load + scaled_busy_load_per_task >=
5718 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005719 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720 return;
5721 }
5722
5723 /*
5724 * OK, we don't have enough imbalance to justify moving tasks,
5725 * however we may be able to increase total CPU power used by
5726 * moving them.
5727 */
5728
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005729 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005730 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005731 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005732 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005733 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734
5735 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005736 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005737 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005738 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005739 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005740 min(busiest->load_per_task,
5741 busiest->avg_load - tmp);
5742 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005743
5744 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005745 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005746 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005747 tmp = (busiest->avg_load * busiest->group_power) /
5748 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005749 } else {
5750 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005751 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005752 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005753 pwr_move += local->group_power *
5754 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005755 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005756
5757 /* Move if we gain throughput */
5758 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005759 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005760}
5761
5762/**
5763 * calculate_imbalance - Calculate the amount of imbalance present within the
5764 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005765 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005766 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005768static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005769{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005770 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005771 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005772
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005773 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005774 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005775
5776 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005777 /*
5778 * In the group_imb case we cannot rely on group-wide averages
5779 * to ensure cpu-load equilibrium, look at wider averages. XXX
5780 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005781 busiest->load_per_task =
5782 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005783 }
5784
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005785 /*
5786 * In the presence of smp nice balancing, certain scenarios can have
5787 * max load less than avg load(as we skip the groups at or below
5788 * its cpu_power, while calculating max_load..)
5789 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005790 if (busiest->avg_load <= sds->avg_load ||
5791 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005792 env->imbalance = 0;
5793 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005794 }
5795
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005796 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005797 /*
5798 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005799 * Except of course for the group_imb case, since then we might
5800 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005801 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005802 load_above_capacity =
5803 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005804
Nikhil Rao1399fa72011-05-18 10:09:39 -07005805 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005806 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005807 }
5808
5809 /*
5810 * We're trying to get all the cpus to the average_load, so we don't
5811 * want to push ourselves above the average load, nor do we wish to
5812 * reduce the max loaded cpu below the average load. At the same time,
5813 * we also don't want to reduce the group load below the group capacity
5814 * (so that we can implement power-savings policies etc). Thus we look
5815 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005816 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005817 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005818
5819 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005820 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005821 max_pull * busiest->group_power,
5822 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005823 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005824
5825 /*
5826 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005827 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005828 * a think about bumping its value to force at least one task to be
5829 * moved
5830 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005831 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005832 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005833}
Nikhil Raofab47622010-10-15 13:12:29 -07005834
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005835/******* find_busiest_group() helpers end here *********************/
5836
5837/**
5838 * find_busiest_group - Returns the busiest group within the sched_domain
5839 * if there is an imbalance. If there isn't an imbalance, and
5840 * the user has opted for power-savings, it returns a group whose
5841 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5842 * such a group exists.
5843 *
5844 * Also calculates the amount of weighted load which should be moved
5845 * to restore balance.
5846 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005847 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005848 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005849 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005850 * - If no imbalance and user has opted for power-savings balance,
5851 * return the least loaded group whose CPUs can be
5852 * put to idle by rebalancing its tasks onto our group.
5853 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005854static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005855{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005856 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857 struct sd_lb_stats sds;
5858
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005859 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005860
5861 /*
5862 * Compute the various statistics relavent for load balancing at
5863 * this level.
5864 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005865 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005866 local = &sds.local_stat;
5867 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005868
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005869 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5870 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005871 return sds.busiest;
5872
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005873 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005874 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005875 goto out_balanced;
5876
Nikhil Rao1399fa72011-05-18 10:09:39 -07005877 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005878
Peter Zijlstra866ab432011-02-21 18:56:47 +01005879 /*
5880 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005881 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005882 * isn't true due to cpus_allowed constraints and the like.
5883 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005884 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005885 goto force_balance;
5886
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005887 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005888 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5889 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005890 goto force_balance;
5891
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005892 /*
5893 * If the local group is more busy than the selected busiest group
5894 * don't try and pull any tasks.
5895 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005896 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005897 goto out_balanced;
5898
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005899 /*
5900 * Don't pull any tasks if this group is already above the domain
5901 * average load.
5902 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005903 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 goto out_balanced;
5905
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005906 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005907 /*
5908 * This cpu is idle. If the busiest group load doesn't
5909 * have more tasks than the number of available cpu's and
5910 * there is no imbalance between this and busiest group
5911 * wrt to idle cpu's, it is balanced.
5912 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005913 if ((local->idle_cpus < busiest->idle_cpus) &&
5914 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005915 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005916 } else {
5917 /*
5918 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5919 * imbalance_pct to be conservative.
5920 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005921 if (100 * busiest->avg_load <=
5922 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005923 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005924 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005925
Nikhil Raofab47622010-10-15 13:12:29 -07005926force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005927 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005928 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005929 return sds.busiest;
5930
5931out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005932 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933 return NULL;
5934}
5935
5936/*
5937 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5938 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005939static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005940 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005941{
5942 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005943 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005944 int i;
5945
Peter Zijlstra6906a402013-08-19 15:20:21 +02005946 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005947 unsigned long power, capacity, wl;
5948 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005950 rq = cpu_rq(i);
5951 rt = fbq_classify_rq(rq);
5952
5953 /*
5954 * We classify groups/runqueues into three groups:
5955 * - regular: there are !numa tasks
5956 * - remote: there are numa tasks that run on the 'wrong' node
5957 * - all: there is no distinction
5958 *
5959 * In order to avoid migrating ideally placed numa tasks,
5960 * ignore those when there's better options.
5961 *
5962 * If we ignore the actual busiest queue to migrate another
5963 * task, the next balance pass can still reduce the busiest
5964 * queue by moving tasks around inside the node.
5965 *
5966 * If we cannot move enough load due to this classification
5967 * the next pass will adjust the group classification and
5968 * allow migration of more tasks.
5969 *
5970 * Both cases only affect the total convergence complexity.
5971 */
5972 if (rt > env->fbq_type)
5973 continue;
5974
5975 power = power_of(i);
5976 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005977 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005978 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005979
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005980 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005981
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005982 /*
5983 * When comparing with imbalance, use weighted_cpuload()
5984 * which is not scaled with the cpu power.
5985 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005986 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005987 continue;
5988
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005989 /*
5990 * For the load comparisons with the other cpu's, consider
5991 * the weighted_cpuload() scaled with the cpu power, so that
5992 * the load can be moved away from the cpu that is potentially
5993 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005994 *
5995 * Thus we're looking for max(wl_i / power_i), crosswise
5996 * multiplication to rid ourselves of the division works out
5997 * to: wl_i * power_j > wl_j * power_i; where j is our
5998 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005999 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006000 if (wl * busiest_power > busiest_load * power) {
6001 busiest_load = wl;
6002 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006003 busiest = rq;
6004 }
6005 }
6006
6007 return busiest;
6008}
6009
6010/*
6011 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6012 * so long as it is large enough.
6013 */
6014#define MAX_PINNED_INTERVAL 512
6015
6016/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006017DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006018
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006019static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006020{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006021 struct sched_domain *sd = env->sd;
6022
6023 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006024
6025 /*
6026 * ASYM_PACKING needs to force migrate tasks from busy but
6027 * higher numbered CPUs in order to pack all tasks in the
6028 * lowest numbered CPUs.
6029 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006030 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006031 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006032 }
6033
6034 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6035}
6036
Tejun Heo969c7922010-05-06 18:49:21 +02006037static int active_load_balance_cpu_stop(void *data);
6038
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006039static int should_we_balance(struct lb_env *env)
6040{
6041 struct sched_group *sg = env->sd->groups;
6042 struct cpumask *sg_cpus, *sg_mask;
6043 int cpu, balance_cpu = -1;
6044
6045 /*
6046 * In the newly idle case, we will allow all the cpu's
6047 * to do the newly idle load balance.
6048 */
6049 if (env->idle == CPU_NEWLY_IDLE)
6050 return 1;
6051
6052 sg_cpus = sched_group_cpus(sg);
6053 sg_mask = sched_group_mask(sg);
6054 /* Try to find first idle cpu */
6055 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6056 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6057 continue;
6058
6059 balance_cpu = cpu;
6060 break;
6061 }
6062
6063 if (balance_cpu == -1)
6064 balance_cpu = group_balance_cpu(sg);
6065
6066 /*
6067 * First idle cpu or the first cpu(busiest) in this sched group
6068 * is eligible for doing load balancing at this and above domains.
6069 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006070 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006071}
6072
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006073/*
6074 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6075 * tasks if there is an imbalance.
6076 */
6077static int load_balance(int this_cpu, struct rq *this_rq,
6078 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006079 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006080{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306081 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006082 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006083 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006084 struct rq *busiest;
6085 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006086 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006087
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006088 struct lb_env env = {
6089 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006090 .dst_cpu = this_cpu,
6091 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306092 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006093 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006094 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006095 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006096 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006097 };
6098
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006099 /*
6100 * For NEWLY_IDLE load_balancing, we don't need to consider
6101 * other cpus in our group
6102 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006103 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006104 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006105
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006106 cpumask_copy(cpus, cpu_active_mask);
6107
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006108 schedstat_inc(sd, lb_count[idle]);
6109
6110redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006111 if (!should_we_balance(&env)) {
6112 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006113 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006114 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006115
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006116 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006117 if (!group) {
6118 schedstat_inc(sd, lb_nobusyg[idle]);
6119 goto out_balanced;
6120 }
6121
Michael Wangb94031302012-07-12 16:10:13 +08006122 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006123 if (!busiest) {
6124 schedstat_inc(sd, lb_nobusyq[idle]);
6125 goto out_balanced;
6126 }
6127
Michael Wang78feefc2012-08-06 16:41:59 +08006128 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006129
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006130 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006131
6132 ld_moved = 0;
6133 if (busiest->nr_running > 1) {
6134 /*
6135 * Attempt to move tasks. If find_busiest_group has found
6136 * an imbalance but busiest->nr_running <= 1, the group is
6137 * still unbalanced. ld_moved simply stays zero, so it is
6138 * correctly treated as an imbalance.
6139 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006140 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006141 env.src_cpu = busiest->cpu;
6142 env.src_rq = busiest;
6143 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006144
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006145more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006146 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006147 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306148
6149 /*
6150 * cur_ld_moved - load moved in current iteration
6151 * ld_moved - cumulative load moved across iterations
6152 */
6153 cur_ld_moved = move_tasks(&env);
6154 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006155 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006156 local_irq_restore(flags);
6157
6158 /*
6159 * some other cpu did the load balance for us.
6160 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306161 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6162 resched_cpu(env.dst_cpu);
6163
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006164 if (env.flags & LBF_NEED_BREAK) {
6165 env.flags &= ~LBF_NEED_BREAK;
6166 goto more_balance;
6167 }
6168
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306169 /*
6170 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6171 * us and move them to an alternate dst_cpu in our sched_group
6172 * where they can run. The upper limit on how many times we
6173 * iterate on same src_cpu is dependent on number of cpus in our
6174 * sched_group.
6175 *
6176 * This changes load balance semantics a bit on who can move
6177 * load to a given_cpu. In addition to the given_cpu itself
6178 * (or a ilb_cpu acting on its behalf where given_cpu is
6179 * nohz-idle), we now have balance_cpu in a position to move
6180 * load to given_cpu. In rare situations, this may cause
6181 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6182 * _independently_ and at _same_ time to move some load to
6183 * given_cpu) causing exceess load to be moved to given_cpu.
6184 * This however should not happen so much in practice and
6185 * moreover subsequent load balance cycles should correct the
6186 * excess load moved.
6187 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006188 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306189
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006190 /* Prevent to re-select dst_cpu via env's cpus */
6191 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6192
Michael Wang78feefc2012-08-06 16:41:59 +08006193 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306194 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006195 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306196 env.loop = 0;
6197 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006198
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306199 /*
6200 * Go back to "more_balance" rather than "redo" since we
6201 * need to continue with same src_cpu.
6202 */
6203 goto more_balance;
6204 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006205
Peter Zijlstra62633222013-08-19 12:41:09 +02006206 /*
6207 * We failed to reach balance because of affinity.
6208 */
6209 if (sd_parent) {
6210 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6211
6212 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6213 *group_imbalance = 1;
6214 } else if (*group_imbalance)
6215 *group_imbalance = 0;
6216 }
6217
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006218 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006219 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006220 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306221 if (!cpumask_empty(cpus)) {
6222 env.loop = 0;
6223 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006224 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306225 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006226 goto out_balanced;
6227 }
6228 }
6229
6230 if (!ld_moved) {
6231 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006232 /*
6233 * Increment the failure counter only on periodic balance.
6234 * We do not want newidle balance, which can be very
6235 * frequent, pollute the failure counter causing
6236 * excessive cache_hot migrations and active balances.
6237 */
6238 if (idle != CPU_NEWLY_IDLE)
6239 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006240
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006241 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006242 raw_spin_lock_irqsave(&busiest->lock, flags);
6243
Tejun Heo969c7922010-05-06 18:49:21 +02006244 /* don't kick the active_load_balance_cpu_stop,
6245 * if the curr task on busiest cpu can't be
6246 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006247 */
6248 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006249 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006250 raw_spin_unlock_irqrestore(&busiest->lock,
6251 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006252 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006253 goto out_one_pinned;
6254 }
6255
Tejun Heo969c7922010-05-06 18:49:21 +02006256 /*
6257 * ->active_balance synchronizes accesses to
6258 * ->active_balance_work. Once set, it's cleared
6259 * only after active load balance is finished.
6260 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006261 if (!busiest->active_balance) {
6262 busiest->active_balance = 1;
6263 busiest->push_cpu = this_cpu;
6264 active_balance = 1;
6265 }
6266 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006267
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006268 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006269 stop_one_cpu_nowait(cpu_of(busiest),
6270 active_load_balance_cpu_stop, busiest,
6271 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006272 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006273
6274 /*
6275 * We've kicked active balancing, reset the failure
6276 * counter.
6277 */
6278 sd->nr_balance_failed = sd->cache_nice_tries+1;
6279 }
6280 } else
6281 sd->nr_balance_failed = 0;
6282
6283 if (likely(!active_balance)) {
6284 /* We were unbalanced, so reset the balancing interval */
6285 sd->balance_interval = sd->min_interval;
6286 } else {
6287 /*
6288 * If we've begun active balancing, start to back off. This
6289 * case may not be covered by the all_pinned logic if there
6290 * is only 1 task on the busy runqueue (because we don't call
6291 * move_tasks).
6292 */
6293 if (sd->balance_interval < sd->max_interval)
6294 sd->balance_interval *= 2;
6295 }
6296
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006297 goto out;
6298
6299out_balanced:
6300 schedstat_inc(sd, lb_balanced[idle]);
6301
6302 sd->nr_balance_failed = 0;
6303
6304out_one_pinned:
6305 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006306 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006307 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006308 (sd->balance_interval < sd->max_interval))
6309 sd->balance_interval *= 2;
6310
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006311 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006312out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006313 return ld_moved;
6314}
6315
6316/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006317 * idle_balance is called by schedule() if this_cpu is about to become
6318 * idle. Attempts to pull tasks from other CPUs.
6319 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006320void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321{
6322 struct sched_domain *sd;
6323 int pulled_task = 0;
6324 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006325 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006326
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006327 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006328
6329 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6330 return;
6331
Peter Zijlstraf492e122009-12-23 15:29:42 +01006332 /*
6333 * Drop the rq->lock, but keep IRQ/preempt disabled.
6334 */
6335 raw_spin_unlock(&this_rq->lock);
6336
Paul Turner48a16752012-10-04 13:18:31 +02006337 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006338 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006339 for_each_domain(this_cpu, sd) {
6340 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006341 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006342 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006343
6344 if (!(sd->flags & SD_LOAD_BALANCE))
6345 continue;
6346
Jason Low9bd721c2013-09-13 11:26:52 -07006347 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6348 break;
6349
Peter Zijlstraf492e122009-12-23 15:29:42 +01006350 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006351 t0 = sched_clock_cpu(this_cpu);
6352
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006353 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006354 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006355 sd, CPU_NEWLY_IDLE,
6356 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006357
6358 domain_cost = sched_clock_cpu(this_cpu) - t0;
6359 if (domain_cost > sd->max_newidle_lb_cost)
6360 sd->max_newidle_lb_cost = domain_cost;
6361
6362 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006363 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006364
6365 interval = msecs_to_jiffies(sd->balance_interval);
6366 if (time_after(next_balance, sd->last_balance + interval))
6367 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006368 if (pulled_task) {
6369 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006370 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006371 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006372 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006373 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006374
6375 raw_spin_lock(&this_rq->lock);
6376
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006377 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6378 /*
6379 * We are going idle. next_balance may be set based on
6380 * a busy processor. So reset next_balance.
6381 */
6382 this_rq->next_balance = next_balance;
6383 }
Jason Low9bd721c2013-09-13 11:26:52 -07006384
6385 if (curr_cost > this_rq->max_idle_balance_cost)
6386 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006387}
6388
6389/*
Tejun Heo969c7922010-05-06 18:49:21 +02006390 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6391 * running tasks off the busiest CPU onto idle CPUs. It requires at
6392 * least 1 task to be running on each physical CPU where possible, and
6393 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394 */
Tejun Heo969c7922010-05-06 18:49:21 +02006395static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396{
Tejun Heo969c7922010-05-06 18:49:21 +02006397 struct rq *busiest_rq = data;
6398 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006399 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006400 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006402
6403 raw_spin_lock_irq(&busiest_rq->lock);
6404
6405 /* make sure the requested cpu hasn't gone down in the meantime */
6406 if (unlikely(busiest_cpu != smp_processor_id() ||
6407 !busiest_rq->active_balance))
6408 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006409
6410 /* Is there any task to move? */
6411 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006412 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006413
6414 /*
6415 * This condition is "impossible", if it occurs
6416 * we need to fix it. Originally reported by
6417 * Bjorn Helgaas on a 128-cpu setup.
6418 */
6419 BUG_ON(busiest_rq == target_rq);
6420
6421 /* move a task from busiest_rq to target_rq */
6422 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423
6424 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006425 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006426 for_each_domain(target_cpu, sd) {
6427 if ((sd->flags & SD_LOAD_BALANCE) &&
6428 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6429 break;
6430 }
6431
6432 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006433 struct lb_env env = {
6434 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006435 .dst_cpu = target_cpu,
6436 .dst_rq = target_rq,
6437 .src_cpu = busiest_rq->cpu,
6438 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006439 .idle = CPU_IDLE,
6440 };
6441
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006442 schedstat_inc(sd, alb_count);
6443
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006444 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006445 schedstat_inc(sd, alb_pushed);
6446 else
6447 schedstat_inc(sd, alb_failed);
6448 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006449 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006450 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006451out_unlock:
6452 busiest_rq->active_balance = 0;
6453 raw_spin_unlock_irq(&busiest_rq->lock);
6454 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006455}
6456
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006457#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006458/*
6459 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006460 * - When one of the busy CPUs notice that there may be an idle rebalancing
6461 * needed, they will kick the idle load balancer, which then does idle
6462 * load balancing for all the idle CPUs.
6463 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006464static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006465 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006466 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006467 unsigned long next_balance; /* in jiffy units */
6468} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006469
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006470static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006471{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006472 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006473
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006474 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6475 return ilb;
6476
6477 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006478}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006479
6480/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006481 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6482 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6483 * CPU (if there is one).
6484 */
6485static void nohz_balancer_kick(int cpu)
6486{
6487 int ilb_cpu;
6488
6489 nohz.next_balance++;
6490
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006491 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006492
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006493 if (ilb_cpu >= nr_cpu_ids)
6494 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006495
Suresh Siddhacd490c52011-12-06 11:26:34 -08006496 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006497 return;
6498 /*
6499 * Use smp_send_reschedule() instead of resched_cpu().
6500 * This way we generate a sched IPI on the target cpu which
6501 * is idle. And the softirq performing nohz idle load balance
6502 * will be run before returning from the IPI.
6503 */
6504 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006505 return;
6506}
6507
Alex Shic1cc0172012-09-10 15:10:58 +08006508static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006509{
6510 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6511 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6512 atomic_dec(&nohz.nr_cpus);
6513 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6514 }
6515}
6516
Suresh Siddha69e1e812011-12-01 17:07:33 -08006517static inline void set_cpu_sd_state_busy(void)
6518{
6519 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006520
Suresh Siddha69e1e812011-12-01 17:07:33 -08006521 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006522 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006523
6524 if (!sd || !sd->nohz_idle)
6525 goto unlock;
6526 sd->nohz_idle = 0;
6527
6528 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006529 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006530unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006531 rcu_read_unlock();
6532}
6533
6534void set_cpu_sd_state_idle(void)
6535{
6536 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006537
Suresh Siddha69e1e812011-12-01 17:07:33 -08006538 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006539 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006540
6541 if (!sd || sd->nohz_idle)
6542 goto unlock;
6543 sd->nohz_idle = 1;
6544
6545 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006546 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006547unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006548 rcu_read_unlock();
6549}
6550
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006551/*
Alex Shic1cc0172012-09-10 15:10:58 +08006552 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006553 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006554 */
Alex Shic1cc0172012-09-10 15:10:58 +08006555void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006556{
Suresh Siddha71325962012-01-19 18:28:57 -08006557 /*
6558 * If this cpu is going down, then nothing needs to be done.
6559 */
6560 if (!cpu_active(cpu))
6561 return;
6562
Alex Shic1cc0172012-09-10 15:10:58 +08006563 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6564 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006565
Alex Shic1cc0172012-09-10 15:10:58 +08006566 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6567 atomic_inc(&nohz.nr_cpus);
6568 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006569}
Suresh Siddha71325962012-01-19 18:28:57 -08006570
Paul Gortmaker0db06282013-06-19 14:53:51 -04006571static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006572 unsigned long action, void *hcpu)
6573{
6574 switch (action & ~CPU_TASKS_FROZEN) {
6575 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006576 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006577 return NOTIFY_OK;
6578 default:
6579 return NOTIFY_DONE;
6580 }
6581}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006582#endif
6583
6584static DEFINE_SPINLOCK(balancing);
6585
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006586/*
6587 * Scale the max load_balance interval with the number of CPUs in the system.
6588 * This trades load-balance latency on larger machines for less cross talk.
6589 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006590void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006591{
6592 max_load_balance_interval = HZ*num_online_cpus()/10;
6593}
6594
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006595/*
6596 * It checks each scheduling domain to see if it is due to be balanced,
6597 * and initiates a balancing operation if so.
6598 *
Libinb9b08532013-04-01 19:14:01 +08006599 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006600 */
6601static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6602{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006603 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006604 struct rq *rq = cpu_rq(cpu);
6605 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006606 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006607 /* Earliest time when we have to do rebalance again */
6608 unsigned long next_balance = jiffies + 60*HZ;
6609 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006610 int need_serialize, need_decay = 0;
6611 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006612
Paul Turner48a16752012-10-04 13:18:31 +02006613 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006614
Peter Zijlstradce840a2011-04-07 14:09:50 +02006615 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006616 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006617 /*
6618 * Decay the newidle max times here because this is a regular
6619 * visit to all the domains. Decay ~1% per second.
6620 */
6621 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6622 sd->max_newidle_lb_cost =
6623 (sd->max_newidle_lb_cost * 253) / 256;
6624 sd->next_decay_max_lb_cost = jiffies + HZ;
6625 need_decay = 1;
6626 }
6627 max_cost += sd->max_newidle_lb_cost;
6628
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006629 if (!(sd->flags & SD_LOAD_BALANCE))
6630 continue;
6631
Jason Lowf48627e2013-09-13 11:26:53 -07006632 /*
6633 * Stop the load balance at this level. There is another
6634 * CPU in our sched group which is doing load balancing more
6635 * actively.
6636 */
6637 if (!continue_balancing) {
6638 if (need_decay)
6639 continue;
6640 break;
6641 }
6642
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006643 interval = sd->balance_interval;
6644 if (idle != CPU_IDLE)
6645 interval *= sd->busy_factor;
6646
6647 /* scale ms to jiffies */
6648 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006649 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006650
6651 need_serialize = sd->flags & SD_SERIALIZE;
6652
6653 if (need_serialize) {
6654 if (!spin_trylock(&balancing))
6655 goto out;
6656 }
6657
6658 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006659 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006660 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006661 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006662 * env->dst_cpu, so we can't know our idle
6663 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006664 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006665 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006666 }
6667 sd->last_balance = jiffies;
6668 }
6669 if (need_serialize)
6670 spin_unlock(&balancing);
6671out:
6672 if (time_after(next_balance, sd->last_balance + interval)) {
6673 next_balance = sd->last_balance + interval;
6674 update_next_balance = 1;
6675 }
Jason Lowf48627e2013-09-13 11:26:53 -07006676 }
6677 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006678 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006679 * Ensure the rq-wide value also decays but keep it at a
6680 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006681 */
Jason Lowf48627e2013-09-13 11:26:53 -07006682 rq->max_idle_balance_cost =
6683 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006684 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006685 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006686
6687 /*
6688 * next_balance will be updated only when there is a need.
6689 * When the cpu is attached to null domain for ex, it will not be
6690 * updated.
6691 */
6692 if (likely(update_next_balance))
6693 rq->next_balance = next_balance;
6694}
6695
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006696#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006697/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006698 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006699 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6700 */
6701static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6702{
6703 struct rq *this_rq = cpu_rq(this_cpu);
6704 struct rq *rq;
6705 int balance_cpu;
6706
Suresh Siddha1c792db2011-12-01 17:07:32 -08006707 if (idle != CPU_IDLE ||
6708 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6709 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006710
6711 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006712 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006713 continue;
6714
6715 /*
6716 * If this cpu gets work to do, stop the load balancing
6717 * work being done for other cpus. Next load
6718 * balancing owner will pick it up.
6719 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006720 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006721 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006722
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006723 rq = cpu_rq(balance_cpu);
6724
6725 raw_spin_lock_irq(&rq->lock);
6726 update_rq_clock(rq);
6727 update_idle_cpu_load(rq);
6728 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006729
6730 rebalance_domains(balance_cpu, CPU_IDLE);
6731
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006732 if (time_after(this_rq->next_balance, rq->next_balance))
6733 this_rq->next_balance = rq->next_balance;
6734 }
6735 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006736end:
6737 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006738}
6739
6740/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006741 * Current heuristic for kicking the idle load balancer in the presence
6742 * of an idle cpu is the system.
6743 * - This rq has more than one task.
6744 * - At any scheduler domain level, this cpu's scheduler group has multiple
6745 * busy cpu's exceeding the group's power.
6746 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6747 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006748 */
6749static inline int nohz_kick_needed(struct rq *rq, int cpu)
6750{
6751 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006752 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006753
Suresh Siddha1c792db2011-12-01 17:07:32 -08006754 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006755 return 0;
6756
Suresh Siddha1c792db2011-12-01 17:07:32 -08006757 /*
6758 * We may be recently in ticked or tickless idle mode. At the first
6759 * busy tick after returning from idle, we will update the busy stats.
6760 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006761 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006762 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006763
6764 /*
6765 * None are in tickless mode and hence no need for NOHZ idle load
6766 * balancing.
6767 */
6768 if (likely(!atomic_read(&nohz.nr_cpus)))
6769 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006770
6771 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006772 return 0;
6773
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006774 if (rq->nr_running >= 2)
6775 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006776
Peter Zijlstra067491b2011-12-07 14:32:08 +01006777 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006778 for_each_domain(cpu, sd) {
6779 struct sched_group *sg = sd->groups;
6780 struct sched_group_power *sgp = sg->sgp;
6781 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006782
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006783 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006784 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006785
6786 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6787 && (cpumask_first_and(nohz.idle_cpus_mask,
6788 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006789 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006790
6791 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6792 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006793 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006794 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006795 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006796
6797need_kick_unlock:
6798 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006799need_kick:
6800 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006801}
6802#else
6803static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6804#endif
6805
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006806/*
6807 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006808 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006809 */
6810static void run_rebalance_domains(struct softirq_action *h)
6811{
6812 int this_cpu = smp_processor_id();
6813 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006814 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006815 CPU_IDLE : CPU_NOT_IDLE;
6816
6817 rebalance_domains(this_cpu, idle);
6818
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006819 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006820 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006821 * balancing on behalf of the other idle cpus whose ticks are
6822 * stopped.
6823 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006824 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006825}
6826
6827static inline int on_null_domain(int cpu)
6828{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006829 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006830}
6831
6832/*
6833 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006834 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006835void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006836{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006837 /* Don't need to rebalance while attached to NULL domain */
6838 if (time_after_eq(jiffies, rq->next_balance) &&
6839 likely(!on_null_domain(cpu)))
6840 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006841#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006842 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006843 nohz_balancer_kick(cpu);
6844#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006845}
6846
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006847static void rq_online_fair(struct rq *rq)
6848{
6849 update_sysctl();
6850}
6851
6852static void rq_offline_fair(struct rq *rq)
6853{
6854 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006855
6856 /* Ensure any throttled groups are reachable by pick_next_task */
6857 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006858}
6859
Dhaval Giani55e12e52008-06-24 23:39:43 +05306860#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006861
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006862/*
6863 * scheduler tick hitting a task of our scheduling class:
6864 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006865static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006866{
6867 struct cfs_rq *cfs_rq;
6868 struct sched_entity *se = &curr->se;
6869
6870 for_each_sched_entity(se) {
6871 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006872 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006873 }
Ben Segall18bf2802012-10-04 12:51:20 +02006874
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006875 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006876 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006877
Ben Segall18bf2802012-10-04 12:51:20 +02006878 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006879}
6880
6881/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006882 * called on fork with the child task as argument from the parent's context
6883 * - child not yet on the tasklist
6884 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006885 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006886static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006887{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006888 struct cfs_rq *cfs_rq;
6889 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006890 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006891 struct rq *rq = this_rq();
6892 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006893
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006894 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006895
Peter Zijlstra861d0342010-08-19 13:31:43 +02006896 update_rq_clock(rq);
6897
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006898 cfs_rq = task_cfs_rq(current);
6899 curr = cfs_rq->curr;
6900
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006901 /*
6902 * Not only the cpu but also the task_group of the parent might have
6903 * been changed after parent->se.parent,cfs_rq were copied to
6904 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6905 * of child point to valid ones.
6906 */
6907 rcu_read_lock();
6908 __set_task_cpu(p, this_cpu);
6909 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006910
Ting Yang7109c442007-08-28 12:53:24 +02006911 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006912
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006913 if (curr)
6914 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006915 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006916
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006917 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006918 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006919 * Upon rescheduling, sched_class::put_prev_task() will place
6920 * 'current' within the tree based on its new key value.
6921 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006922 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306923 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006924 }
6925
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006926 se->vruntime -= cfs_rq->min_vruntime;
6927
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006928 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006929}
6930
Steven Rostedtcb469842008-01-25 21:08:22 +01006931/*
6932 * Priority of the task has changed. Check to see if we preempt
6933 * the current task.
6934 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006935static void
6936prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006937{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006938 if (!p->se.on_rq)
6939 return;
6940
Steven Rostedtcb469842008-01-25 21:08:22 +01006941 /*
6942 * Reschedule if we are currently running on this runqueue and
6943 * our priority decreased, or if we are not currently running on
6944 * this runqueue and our priority is higher than the current's
6945 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006946 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006947 if (p->prio > oldprio)
6948 resched_task(rq->curr);
6949 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006950 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006951}
6952
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006953static void switched_from_fair(struct rq *rq, struct task_struct *p)
6954{
6955 struct sched_entity *se = &p->se;
6956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6957
6958 /*
6959 * Ensure the task's vruntime is normalized, so that when its
6960 * switched back to the fair class the enqueue_entity(.flags=0) will
6961 * do the right thing.
6962 *
6963 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6964 * have normalized the vruntime, if it was !on_rq, then only when
6965 * the task is sleeping will it still have non-normalized vruntime.
6966 */
6967 if (!se->on_rq && p->state != TASK_RUNNING) {
6968 /*
6969 * Fix up our vruntime so that the current sleep doesn't
6970 * cause 'unlimited' sleep bonus.
6971 */
6972 place_entity(cfs_rq, se, 0);
6973 se->vruntime -= cfs_rq->min_vruntime;
6974 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006975
Alex Shi141965c2013-06-26 13:05:39 +08006976#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006977 /*
6978 * Remove our load from contribution when we leave sched_fair
6979 * and ensure we don't carry in an old decay_count if we
6980 * switch back.
6981 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006982 if (se->avg.decay_count) {
6983 __synchronize_entity_decay(se);
6984 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006985 }
6986#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006987}
6988
Steven Rostedtcb469842008-01-25 21:08:22 +01006989/*
6990 * We switched to the sched_fair class.
6991 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006992static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006993{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006994 if (!p->se.on_rq)
6995 return;
6996
Steven Rostedtcb469842008-01-25 21:08:22 +01006997 /*
6998 * We were most likely switched from sched_rt, so
6999 * kick off the schedule if running, otherwise just see
7000 * if we can still preempt the current task.
7001 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007002 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007003 resched_task(rq->curr);
7004 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007005 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007006}
7007
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007008/* Account for a task changing its policy or group.
7009 *
7010 * This routine is mostly called to set cfs_rq->curr field when a task
7011 * migrates between groups/classes.
7012 */
7013static void set_curr_task_fair(struct rq *rq)
7014{
7015 struct sched_entity *se = &rq->curr->se;
7016
Paul Turnerec12cb72011-07-21 09:43:30 -07007017 for_each_sched_entity(se) {
7018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7019
7020 set_next_entity(cfs_rq, se);
7021 /* ensure bandwidth has been allocated on our new cfs_rq */
7022 account_cfs_rq_runtime(cfs_rq, 0);
7023 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007024}
7025
Peter Zijlstra029632f2011-10-25 10:00:11 +02007026void init_cfs_rq(struct cfs_rq *cfs_rq)
7027{
7028 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007029 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7030#ifndef CONFIG_64BIT
7031 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7032#endif
Alex Shi141965c2013-06-26 13:05:39 +08007033#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007034 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007035 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007036#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007037}
7038
Peter Zijlstra810b3812008-02-29 15:21:01 -05007039#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007040static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007041{
Paul Turneraff3e492012-10-04 13:18:30 +02007042 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007043 /*
7044 * If the task was not on the rq at the time of this cgroup movement
7045 * it must have been asleep, sleeping tasks keep their ->vruntime
7046 * absolute on their old rq until wakeup (needed for the fair sleeper
7047 * bonus in place_entity()).
7048 *
7049 * If it was on the rq, we've just 'preempted' it, which does convert
7050 * ->vruntime to a relative base.
7051 *
7052 * Make sure both cases convert their relative position when migrating
7053 * to another cgroup's rq. This does somewhat interfere with the
7054 * fair sleeper stuff for the first placement, but who cares.
7055 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007056 /*
7057 * When !on_rq, vruntime of the task has usually NOT been normalized.
7058 * But there are some cases where it has already been normalized:
7059 *
7060 * - Moving a forked child which is waiting for being woken up by
7061 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007062 * - Moving a task which has been woken up by try_to_wake_up() and
7063 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007064 *
7065 * To prevent boost or penalty in the new cfs_rq caused by delta
7066 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7067 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007068 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007069 on_rq = 1;
7070
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007071 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007072 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7073 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007074 if (!on_rq) {
7075 cfs_rq = cfs_rq_of(&p->se);
7076 p->se.vruntime += cfs_rq->min_vruntime;
7077#ifdef CONFIG_SMP
7078 /*
7079 * migrate_task_rq_fair() will have removed our previous
7080 * contribution, but we must synchronize for ongoing future
7081 * decay.
7082 */
7083 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7084 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7085#endif
7086 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007087}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007088
7089void free_fair_sched_group(struct task_group *tg)
7090{
7091 int i;
7092
7093 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7094
7095 for_each_possible_cpu(i) {
7096 if (tg->cfs_rq)
7097 kfree(tg->cfs_rq[i]);
7098 if (tg->se)
7099 kfree(tg->se[i]);
7100 }
7101
7102 kfree(tg->cfs_rq);
7103 kfree(tg->se);
7104}
7105
7106int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7107{
7108 struct cfs_rq *cfs_rq;
7109 struct sched_entity *se;
7110 int i;
7111
7112 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7113 if (!tg->cfs_rq)
7114 goto err;
7115 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7116 if (!tg->se)
7117 goto err;
7118
7119 tg->shares = NICE_0_LOAD;
7120
7121 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7122
7123 for_each_possible_cpu(i) {
7124 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7125 GFP_KERNEL, cpu_to_node(i));
7126 if (!cfs_rq)
7127 goto err;
7128
7129 se = kzalloc_node(sizeof(struct sched_entity),
7130 GFP_KERNEL, cpu_to_node(i));
7131 if (!se)
7132 goto err_free_rq;
7133
7134 init_cfs_rq(cfs_rq);
7135 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7136 }
7137
7138 return 1;
7139
7140err_free_rq:
7141 kfree(cfs_rq);
7142err:
7143 return 0;
7144}
7145
7146void unregister_fair_sched_group(struct task_group *tg, int cpu)
7147{
7148 struct rq *rq = cpu_rq(cpu);
7149 unsigned long flags;
7150
7151 /*
7152 * Only empty task groups can be destroyed; so we can speculatively
7153 * check on_list without danger of it being re-added.
7154 */
7155 if (!tg->cfs_rq[cpu]->on_list)
7156 return;
7157
7158 raw_spin_lock_irqsave(&rq->lock, flags);
7159 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7160 raw_spin_unlock_irqrestore(&rq->lock, flags);
7161}
7162
7163void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7164 struct sched_entity *se, int cpu,
7165 struct sched_entity *parent)
7166{
7167 struct rq *rq = cpu_rq(cpu);
7168
7169 cfs_rq->tg = tg;
7170 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007171 init_cfs_rq_runtime(cfs_rq);
7172
7173 tg->cfs_rq[cpu] = cfs_rq;
7174 tg->se[cpu] = se;
7175
7176 /* se could be NULL for root_task_group */
7177 if (!se)
7178 return;
7179
7180 if (!parent)
7181 se->cfs_rq = &rq->cfs;
7182 else
7183 se->cfs_rq = parent->my_q;
7184
7185 se->my_q = cfs_rq;
7186 update_load_set(&se->load, 0);
7187 se->parent = parent;
7188}
7189
7190static DEFINE_MUTEX(shares_mutex);
7191
7192int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7193{
7194 int i;
7195 unsigned long flags;
7196
7197 /*
7198 * We can't change the weight of the root cgroup.
7199 */
7200 if (!tg->se[0])
7201 return -EINVAL;
7202
7203 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7204
7205 mutex_lock(&shares_mutex);
7206 if (tg->shares == shares)
7207 goto done;
7208
7209 tg->shares = shares;
7210 for_each_possible_cpu(i) {
7211 struct rq *rq = cpu_rq(i);
7212 struct sched_entity *se;
7213
7214 se = tg->se[i];
7215 /* Propagate contribution to hierarchy */
7216 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007217
7218 /* Possible calls to update_curr() need rq clock */
7219 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007220 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007221 update_cfs_shares(group_cfs_rq(se));
7222 raw_spin_unlock_irqrestore(&rq->lock, flags);
7223 }
7224
7225done:
7226 mutex_unlock(&shares_mutex);
7227 return 0;
7228}
7229#else /* CONFIG_FAIR_GROUP_SCHED */
7230
7231void free_fair_sched_group(struct task_group *tg) { }
7232
7233int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7234{
7235 return 1;
7236}
7237
7238void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7239
7240#endif /* CONFIG_FAIR_GROUP_SCHED */
7241
Peter Zijlstra810b3812008-02-29 15:21:01 -05007242
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007243static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007244{
7245 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007246 unsigned int rr_interval = 0;
7247
7248 /*
7249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7250 * idle runqueue:
7251 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007252 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007253 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007254
7255 return rr_interval;
7256}
7257
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007258/*
7259 * All the scheduling class methods:
7260 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007261const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007262 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007263 .enqueue_task = enqueue_task_fair,
7264 .dequeue_task = dequeue_task_fair,
7265 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007266 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007267
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007268 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007269
7270 .pick_next_task = pick_next_task_fair,
7271 .put_prev_task = put_prev_task_fair,
7272
Peter Williams681f3e62007-10-24 18:23:51 +02007273#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007274 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007275 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007276
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007277 .rq_online = rq_online_fair,
7278 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007279
7280 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007281#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007282
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007283 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007284 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007285 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007286
7287 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007288 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007289 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007290
Peter Williams0d721ce2009-09-21 01:31:53 +00007291 .get_rr_interval = get_rr_interval_fair,
7292
Peter Zijlstra810b3812008-02-29 15:21:01 -05007293#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007294 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007295#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007296};
7297
7298#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007299void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007300{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007301 struct cfs_rq *cfs_rq;
7302
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007303 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007304 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007305 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007306 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007307}
7308#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007309
7310__init void init_sched_fair_class(void)
7311{
7312#ifdef CONFIG_SMP
7313 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7314
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007315#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007316 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007317 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007318 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007319#endif
7320#endif /* SMP */
7321
7322}