blob: 0a413c7e3ab887c53d360329609becf0915db555 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Arjan van de Ven97455122008-01-25 21:08:34 +010025
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020026/*
Peter Zijlstra21805082007-08-25 18:41:53 +020027 * Targeted preemption latency for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020028 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020029 *
Peter Zijlstra21805082007-08-25 18:41:53 +020030 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020031 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020034 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020035 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037 */
Mike Galbraith21406922010-03-11 17:17:15 +010038unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020040
41/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010042 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010054 * Minimal preemption granularity for CPU-bound tasks:
Mike Galbraith21406922010-03-11 17:17:15 +010055 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010056 */
Mike Galbraith21406922010-03-11 17:17:15 +010057unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010059
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
Mike Galbraith21406922010-03-11 17:17:15 +010063static unsigned int sched_nr_latency = 3;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010064
65/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020066 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020067 * parent will (try to) run first.
68 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020069unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020070
71/*
Ingo Molnar1799e352007-09-19 23:34:46 +020072 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020080 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020081 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020082 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
Mike Galbraith172e0822009-09-09 15:41:37 +020087unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010088unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020089
Ingo Molnarda84d962007-10-15 17:00:18 +020090const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
Peter Zijlstraa4c2f002008-10-17 19:27:03 +020092static const struct sched_class fair_sched_class;
93
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020094/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return cfs_rq->rq;
104}
105
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
108
Peter Zijlstra8f488942009-07-24 12:25:30 +0200109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
Peter Zijlstrab7581492008-04-19 19:45:00 +0200117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
Peter Zijlstra464b7522008-10-24 11:06:15 +0200165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
Peter Zijlstra8f488942009-07-24 12:25:30 +0200208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
218}
219
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200220#define entity_is_task(se) 1
221
Peter Zijlstrab7581492008-04-19 19:45:00 +0200222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200224
Peter Zijlstrab7581492008-04-19 19:45:00 +0200225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200226{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200227 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200228}
229
Peter Zijlstrab7581492008-04-19 19:45:00 +0200230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
Peter Zijlstra464b7522008-10-24 11:06:15 +0200263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
Peter Zijlstrab7581492008-04-19 19:45:00 +0200268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200276{
Peter Zijlstra368059a2007-10-15 17:00:11 +0200277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
Fabio Checconi54fdc582009-07-16 12:32:27 +0200293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra90146232007-10-15 17:00:05 +0200300{
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200301 return se->vruntime - cfs_rq->min_vruntime;
Peter Zijlstra90146232007-10-15 17:00:05 +0200302}
303
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100316 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200325/*
326 * Enqueue an entity into the rb-tree:
327 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
Peter Zijlstra90146232007-10-15 17:00:05 +0200333 s64 key = entity_key(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
Peter Zijlstra90146232007-10-15 17:00:05 +0200346 if (key < entity_key(cfs_rq, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200358 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200359 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200363}
364
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200366{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100372 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200375}
376
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200385}
386
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200388{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200390
Balbir Singh70eee742008-02-22 13:25:53 +0530391 if (!last)
392 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100393
394 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200395}
396
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100401#ifdef CONFIG_SCHED_DEBUG
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100402int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700403 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100404 loff_t *ppos)
405{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100407 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100423 return 0;
424}
425#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200426
427/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200428 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200435
436 return delta;
437}
438
439/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100450 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200451
452 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100453 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200454 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200455 }
456
457 return period;
458}
459
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200464 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200465 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200467{
Mike Galbraith0a582442009-01-02 12:16:42 +0100468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200469
Mike Galbraith0a582442009-01-02 12:16:42 +0100470 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100471 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200472 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200476
Mike Galbraith0a582442009-01-02 12:16:42 +0100477 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200478 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200486}
487
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200488/*
Peter Zijlstraac884de2008-04-19 19:45:00 +0200489 * We calculate the vruntime slice of a to be inserted task
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200490 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200491 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200492 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200494{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200496}
497
498/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200506 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200507
Lucas De Marchi41acab82010-03-10 23:37:45 -0300508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510
511 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200512 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100514
Ingo Molnare9acbff2007-10-15 17:00:04 +0200515 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200516 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200517}
518
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200519static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200520{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200521 struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200522 u64 now = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200533 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100534 if (!delta_exec)
535 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
Ingo Molnarf977bb42009-09-13 18:15:54 +0200543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100544 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700545 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100546 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200547}
548
549static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200553}
554
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200555/*
556 * Task is being enqueued - update stats:
557 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200559{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200564 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200565 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200566}
567
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200568static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200570{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200580 }
581#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300582 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200583}
584
585static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200587{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200592 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200593 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200601{
602 /*
603 * We are starting a new run period:
604 */
Ingo Molnard2819182007-08-09 11:16:47 +0200605 se->exec_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200606}
607
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530631 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200632 add_cfs_task_weight(cfs_rq, se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530645 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200646 add_cfs_task_weight(cfs_rq, -se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530647 list_del_init(&se->group_node);
648 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
Ingo Molnar2396af62007-08-09 11:16:48 +0200653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200654{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +0200656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
Lucas De Marchi41acab82010-03-10 23:37:45 -0300661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200663
664 if ((s64)delta < 0)
665 delta = 0;
666
Lucas De Marchi41acab82010-03-10 23:37:45 -0300667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200669
Lucas De Marchi41acab82010-03-10 23:37:45 -0300670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +0100672
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200673 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +0200674 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200675 trace_sched_stat_sleep(tsk, delta);
676 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200677 }
Lucas De Marchi41acab82010-03-10 23:37:45 -0300678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200680
681 if ((s64)delta < 0)
682 delta = 0;
683
Lucas De Marchi41acab82010-03-10 23:37:45 -0300684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200686
Lucas De Marchi41acab82010-03-10 23:37:45 -0300687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +0200689
Peter Zijlstrae4143142009-07-23 20:13:26 +0200690 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700691 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200694 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700695 }
696
Peter Zijlstrae4143142009-07-23 20:13:26 +0200697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +0200708 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200709 }
710#endif
711}
712
Peter Zijlstraddc97292007-10-15 17:00:10 +0200713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200726static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200729 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200730
Peter Zijlstra2cb86002007-11-09 22:39:37 +0100731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200737 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200738 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200739
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200740 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +0100741 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200742 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200743
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200744 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +0200750
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200751 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200752 }
753
Mike Galbraithb5d9d732009-09-08 11:12:28 +0200754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200757 se->vruntime = vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200758}
759
760static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762{
763 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200771 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200773 update_curr(cfs_rq);
Peter Zijlstraa9922412008-05-05 23:56:17 +0200774 account_entity_enqueue(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100776 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200777 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +0200778 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +0200779 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200780
Ingo Molnard2417e52007-08-09 11:16:47 +0200781 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +0200782 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200785}
786
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100787static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100788{
Peter Zijlstrade69a802009-09-17 09:01:20 +0200789 if (!se || cfs_rq->last == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100790 cfs_rq->last = NULL;
791
Peter Zijlstrade69a802009-09-17 09:01:20 +0200792 if (!se || cfs_rq->next == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100793 cfs_rq->next = NULL;
794}
795
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797{
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800}
801
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200802static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100803dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200804{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200810 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100811 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200812#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200818 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300819 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200820 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200821#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200822 }
823
Peter Zijlstra2002c692008-11-11 11:52:33 +0100824 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100825
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200826 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200829 update_min_vruntime(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100836 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100837 se->vruntime -= cfs_rq->min_vruntime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200838}
839
840/*
841 * Preempt the current task with a newly woken task if needed:
842 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +0200843static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200844check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200845{
Peter Zijlstra11697832007-09-05 14:32:49 +0200846 unsigned long ideal_runtime, delta_exec;
847
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200848 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +0200849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100850 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200851 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100877 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200878}
879
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200880static void
Ingo Molnar8494f412007-08-09 11:16:48 +0200881set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200882{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
Ingo Molnar79303e92007-08-09 11:16:47 +0200894 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +0200895 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +0200896#ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +0200902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300903 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +0200904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +0200907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200908}
909
Peter Zijlstra3f3a4902008-10-24 11:06:16 +0200910static int
911wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100913static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100914{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100915 struct sched_entity *se = __pick_next_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200916 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100917
Mike Galbraithf685cea2009-10-23 23:09:22 +0200918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100920
Mike Galbraithf685cea2009-10-23 23:09:22 +0200921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100928
929 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100930}
931
Ingo Molnarab6cde22007-08-09 11:16:48 +0200932static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200933{
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200939 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200940
Peter Zijlstraddc97292007-10-15 17:00:10 +0200941 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200942 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +0200943 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
Ingo Molnar429d43b2007-10-15 17:00:03 +0200947 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200948}
949
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100950static void
951entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200952{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200953 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200954 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200955 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200956 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200957
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100958#ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -0700963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973#endif
974
Peter Zijlstrace6c1312007-10-15 17:00:14 +0200975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200976 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200977}
978
979/**************************************************
980 * CFS operations on tasks:
981 */
982
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100983#ifdef CONFIG_SCHED_HRTICK
984static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
Peter Zijlstra31656512008-07-18 18:01:23 +02001006 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02001007 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001008
Peter Zijlstra31656512008-07-18 18:01:23 +02001009 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001010 }
1011}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001012
1013/*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018static void hrtick_update(struct rq *rq)
1019{
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027}
Dhaval Giani55e12e52008-06-24 23:39:43 +05301028#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001029static inline void
1030hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031{
1032}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001033
1034static inline void hrtick_update(struct rq *rq)
1035{
1036}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001037#endif
1038
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001039/*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00001044static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001045enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001046{
1047 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001048 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001049
1050 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001051 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001052 break;
1053 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001056 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001057
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001058 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001059}
1060
1061/*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001066static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001067{
1068 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001069 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001073 dequeue_entity(cfs_rq, se, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001074 /* Don't dequeue parent if it has other entities besides us */
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001075 if (cfs_rq->load.weight)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001076 break;
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001077 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001078 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001079
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001080 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001081}
1082
1083/*
Ingo Molnar1799e352007-09-19 23:34:46 +02001084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001087 */
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +02001088static void yield_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001089{
Ingo Molnardb292ca2007-12-04 17:04:39 +01001090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001093
1094 /*
Ingo Molnar1799e352007-09-19 23:34:46 +02001095 * Are we the only task in the tree?
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001096 */
Ingo Molnar1799e352007-09-19 23:34:46 +02001097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
Peter Zijlstra2002c692008-11-11 11:52:33 +01001100 clear_buddies(cfs_rq, se);
1101
Ingo Molnardb292ca2007-12-04 17:04:39 +01001102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
Peter Zijlstra3e51f332008-05-03 18:29:28 +02001103 update_rq_clock(rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001104 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001105 * Update run-time statistics of the 'current'.
Ingo Molnar1799e352007-09-19 23:34:46 +02001106 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001107 update_curr(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001114 rightmost = __pick_last_entity(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001115 /*
1116 * Already in the rightmost position?
1117 */
Fabio Checconi54fdc582009-07-16 12:32:27 +02001118 if (unlikely(!rightmost || entity_before(rightmost, se)))
Ingo Molnar1799e352007-09-19 23:34:46 +02001119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
Ingo Molnar1799e352007-09-19 23:34:46 +02001125 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001126 se->vruntime = rightmost->vruntime + 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001127}
1128
Gregory Haskinse7693a32008-01-25 21:08:09 +01001129#ifdef CONFIG_SMP
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001130
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001131static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132{
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137}
1138
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001139#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001140/*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001161static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001163{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001164 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001176 for_each_sched_entity(se) {
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001177 long S, rw, s, a, b;
Peter Zijlstra940959e2008-09-23 15:33:42 +02001178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001187
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001190 rw = se->my_q->rq_weight;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001191
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001194
Peter Zijlstra940959e2008-09-23 15:33:42 +02001195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
Peter Zijlstra83378262008-06-27 13:41:37 +02001200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001207 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001208 }
1209
1210 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001211}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001212
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001213#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001214
Peter Zijlstra83378262008-06-27 13:41:37 +02001215static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001217{
Peter Zijlstra83378262008-06-27 13:41:37 +02001218 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001219}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001220
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001221#endif
1222
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001223static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001224{
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001227 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001228 unsigned int imbalance;
1229 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02001230 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001231 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001232
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001233 idx = sd->wake_idx;
1234 this_cpu = smp_processor_id();
1235 prev_cpu = task_cpu(p);
1236 load = source_load(prev_cpu, idx);
1237 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001238
1239 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001240 * If sync wakeup then subtract the (maximum possible)
1241 * effect of the currently running task from the load
1242 * of the current CPU:
1243 */
Peter Zijlstra83378262008-06-27 13:41:37 +02001244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001247
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001248 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02001249 load += effective_load(tg, prev_cpu, 0, -weight);
1250 }
1251
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1254
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001255 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1256
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001257 /*
1258 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001259 * due to the sync cause above having dropped this_load to 0, we'll
1260 * always have an imbalance, but there's really nothing you can do
1261 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001262 *
1263 * Otherwise check if either cpus are near enough in load to allow this
1264 * task to be woken on this_cpu.
1265 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001266 balanced = !this_load ||
1267 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
Peter Zijlstra83378262008-06-27 13:41:37 +02001268 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001269
1270 /*
1271 * If the currently running task will sleep within
1272 * a reasonable amount of time then attract this newly
1273 * woken task:
1274 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02001275 if (sync && balanced)
1276 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001277
Lucas De Marchi41acab82010-03-10 23:37:45 -03001278 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001279 tl_per_task = cpu_avg_load_per_task(this_cpu);
1280
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001281 if (balanced ||
1282 (this_load <= load &&
1283 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001284 /*
1285 * This domain has SD_WAKE_AFFINE and
1286 * p is cache cold in this domain, and
1287 * there is no bad imbalance.
1288 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001289 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001290 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001291
1292 return 1;
1293 }
1294 return 0;
1295}
1296
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001297/*
1298 * find_idlest_group finds and returns the least busy CPU group within the
1299 * domain.
1300 */
1301static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02001302find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001303 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01001304{
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001305 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1306 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001307 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001308
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001309 do {
1310 unsigned long load, avg_load;
1311 int local_group;
1312 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001313
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001314 /* Skip over this group if it has no CPUs allowed */
1315 if (!cpumask_intersects(sched_group_cpus(group),
1316 &p->cpus_allowed))
1317 continue;
1318
1319 local_group = cpumask_test_cpu(this_cpu,
1320 sched_group_cpus(group));
1321
1322 /* Tally up the load of all CPUs in the group */
1323 avg_load = 0;
1324
1325 for_each_cpu(i, sched_group_cpus(group)) {
1326 /* Bias balancing toward cpus of our domain */
1327 if (local_group)
1328 load = source_load(i, load_idx);
1329 else
1330 load = target_load(i, load_idx);
1331
1332 avg_load += load;
1333 }
1334
1335 /* Adjust by relative CPU power of the group */
1336 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1337
1338 if (local_group) {
1339 this_load = avg_load;
1340 this = group;
1341 } else if (avg_load < min_load) {
1342 min_load = avg_load;
1343 idlest = group;
1344 }
1345 } while (group = group->next, group != sd->groups);
1346
1347 if (!idlest || 100*this_load < imbalance*min_load)
1348 return NULL;
1349 return idlest;
1350}
1351
1352/*
1353 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1354 */
1355static int
1356find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1357{
1358 unsigned long load, min_load = ULONG_MAX;
1359 int idlest = -1;
1360 int i;
1361
1362 /* Traverse only the allowed CPUs */
1363 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1364 load = weighted_cpuload(i);
1365
1366 if (load < min_load || (load == min_load && i == this_cpu)) {
1367 min_load = load;
1368 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001369 }
1370 }
1371
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001372 return idlest;
1373}
Gregory Haskinse7693a32008-01-25 21:08:09 +01001374
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001375/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001376 * Try and locate an idle CPU in the sched_domain.
1377 */
1378static int
1379select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1380{
1381 int cpu = smp_processor_id();
1382 int prev_cpu = task_cpu(p);
1383 int i;
1384
1385 /*
1386 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1387 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1388 * always a better target than the current cpu.
1389 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001390 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1391 return prev_cpu;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001392
1393 /*
1394 * Otherwise, iterate the domain and find an elegible idle cpu.
1395 */
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001396 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1397 if (!cpu_rq(i)->cfs.nr_running) {
1398 target = i;
1399 break;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001400 }
1401 }
1402
1403 return target;
1404}
1405
1406/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001407 * sched_balance_self: balance the current task (running on cpu) in domains
1408 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1409 * SD_BALANCE_EXEC.
1410 *
1411 * Balance, ie. select the least loaded group.
1412 *
1413 * Returns the target CPU number, or the same CPU if no balancing is needed.
1414 *
1415 * preempt must be disabled.
1416 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01001417static int
1418select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001419{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001420 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001421 int cpu = smp_processor_id();
1422 int prev_cpu = task_cpu(p);
1423 int new_cpu = cpu;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001424 int want_affine = 0, cpu_idle = !current->pid;
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001425 int want_sd = 1;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001426 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001427
Peter Zijlstra0763a662009-09-14 19:37:39 +02001428 if (sd_flag & SD_BALANCE_WAKE) {
Mike Galbraithbeac4c72010-03-11 17:17:20 +01001429 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001430 want_affine = 1;
1431 new_cpu = prev_cpu;
1432 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001433
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001434 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01001435 if (!(tmp->flags & SD_LOAD_BALANCE))
1436 continue;
1437
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001438 /*
Peter Zijlstraae154be2009-09-10 14:40:57 +02001439 * If power savings logic is enabled for a domain, see if we
1440 * are not overloaded, if so, don't balance wider.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001441 */
Peter Zijlstra59abf022009-09-16 08:28:30 +02001442 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
Peter Zijlstraae154be2009-09-10 14:40:57 +02001443 unsigned long power = 0;
1444 unsigned long nr_running = 0;
1445 unsigned long capacity;
1446 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001447
Peter Zijlstraae154be2009-09-10 14:40:57 +02001448 for_each_cpu(i, sched_domain_span(tmp)) {
1449 power += power_of(i);
1450 nr_running += cpu_rq(i)->cfs.nr_running;
1451 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001452
Peter Zijlstraae154be2009-09-10 14:40:57 +02001453 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001454
Peter Zijlstra59abf022009-09-16 08:28:30 +02001455 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1456 nr_running /= 2;
1457
1458 if (nr_running < capacity)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001459 want_sd = 0;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001460 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001461
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001462 /*
1463 * While iterating the domains looking for a spanning
1464 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1465 * in cache sharing domains along the way.
1466 */
1467 if (want_affine) {
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001468 int target = -1;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001469
1470 /*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001471 * If both cpu and prev_cpu are part of this domain,
1472 * cpu is a valid SD_WAKE_AFFINE target.
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001473 */
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001474 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1475 target = cpu;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001476
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001477 /*
1478 * If there's an idle sibling in this domain, make that
1479 * the wake_affine target instead of the current cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001480 */
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001481 if (!cpu_idle && tmp->flags & SD_SHARE_PKG_RESOURCES)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001482 target = select_idle_sibling(p, tmp, target);
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001483
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001484 if (target >= 0) {
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001485 if (tmp->flags & SD_WAKE_AFFINE) {
1486 affine_sd = tmp;
1487 want_affine = 0;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001488 if (target != cpu)
1489 cpu_idle = 1;
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001490 }
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001491 cpu = target;
Mike Galbraitha1f84a32009-10-27 15:35:38 +01001492 }
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001493 }
1494
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001495 if (!want_sd && !want_affine)
1496 break;
1497
Peter Zijlstra0763a662009-09-14 19:37:39 +02001498 if (!(tmp->flags & sd_flag))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001499 continue;
1500
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001501 if (want_sd)
1502 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001503 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001504
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001505#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001506 if (sched_feat(LB_SHARES_UPDATE)) {
1507 /*
1508 * Pick the largest domain to update shares over
1509 */
1510 tmp = sd;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001511 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001512 tmp = affine_sd;
1513
Peter Zijlstra0017d732010-03-24 18:34:10 +01001514 if (tmp) {
1515 raw_spin_unlock(&rq->lock);
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001516 update_shares(tmp);
Peter Zijlstra0017d732010-03-24 18:34:10 +01001517 raw_spin_lock(&rq->lock);
1518 }
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001519 }
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001520#endif
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001521
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001522 if (affine_sd) {
1523 if (cpu_idle || cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1524 return cpu;
1525 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02001526
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001527 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001528 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001529 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001530 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001531
Peter Zijlstra0763a662009-09-14 19:37:39 +02001532 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001533 sd = sd->child;
1534 continue;
1535 }
1536
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001537 if (sd_flag & SD_BALANCE_WAKE)
1538 load_idx = sd->wake_idx;
1539
1540 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001541 if (!group) {
1542 sd = sd->child;
1543 continue;
1544 }
1545
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02001546 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001547 if (new_cpu == -1 || new_cpu == cpu) {
1548 /* Now try balancing at a lower domain level of cpu */
1549 sd = sd->child;
1550 continue;
1551 }
1552
1553 /* Now try balancing at a lower domain level of new_cpu */
1554 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001555 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001556 sd = NULL;
1557 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001558 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001559 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02001560 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001561 sd = tmp;
1562 }
1563 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01001564 }
1565
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001566 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001567}
1568#endif /* CONFIG_SMP */
1569
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001570static unsigned long
1571wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001572{
1573 unsigned long gran = sysctl_sched_wakeup_granularity;
1574
1575 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001576 * Since its curr running now, convert the gran from real-time
1577 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01001578 *
1579 * By using 'se' instead of 'curr' we penalize light tasks, so
1580 * they get preempted easier. That is, if 'se' < 'curr' then
1581 * the resulting gran will be larger, therefore penalizing the
1582 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1583 * be smaller, again penalizing the lighter task.
1584 *
1585 * This is especially important for buddies when the leftmost
1586 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001587 */
Mike Galbraith13814d42010-03-11 17:17:04 +01001588 if (unlikely(se->load.weight != NICE_0_LOAD))
1589 gran = calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001590
1591 return gran;
1592}
1593
1594/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02001595 * Should 'se' preempt 'curr'.
1596 *
1597 * |s1
1598 * |s2
1599 * |s3
1600 * g
1601 * |<--->|c
1602 *
1603 * w(c, s1) = -1
1604 * w(c, s2) = 0
1605 * w(c, s3) = 1
1606 *
1607 */
1608static int
1609wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1610{
1611 s64 gran, vdiff = curr->vruntime - se->vruntime;
1612
1613 if (vdiff <= 0)
1614 return -1;
1615
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001616 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02001617 if (vdiff > gran)
1618 return 1;
1619
1620 return 0;
1621}
1622
Peter Zijlstra02479092008-11-04 21:25:10 +01001623static void set_last_buddy(struct sched_entity *se)
1624{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001625 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1626 for_each_sched_entity(se)
1627 cfs_rq_of(se)->last = se;
1628 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001629}
1630
1631static void set_next_buddy(struct sched_entity *se)
1632{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001633 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634 for_each_sched_entity(se)
1635 cfs_rq_of(se)->next = se;
1636 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001637}
1638
Peter Zijlstra464b7522008-10-24 11:06:15 +02001639/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001640 * Preempt the current task with a newly woken task if needed:
1641 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001642static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001643{
1644 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02001645 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001646 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001647 int scale = cfs_rq->nr_running >= sched_nr_latency;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001648
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001649 if (unlikely(rt_prio(p->prio)))
1650 goto preempt;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001651
Peter Zijlstrad95f98d2008-11-04 21:25:08 +01001652 if (unlikely(p->sched_class != &fair_sched_class))
1653 return;
1654
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001655 if (unlikely(se == pse))
1656 return;
1657
Mike Galbraithf685cea2009-10-23 23:09:22 +02001658 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
Mike Galbraith3cb63d52009-09-11 12:01:17 +02001659 set_next_buddy(pse);
Peter Zijlstra57fdc262008-09-23 15:33:45 +02001660
Bharata B Raoaec0a512008-08-28 14:42:49 +05301661 /*
1662 * We can come here with TIF_NEED_RESCHED already set from new task
1663 * wake up path.
1664 */
1665 if (test_tsk_need_resched(curr))
1666 return;
1667
Ingo Molnar91c234b2007-10-15 17:00:18 +02001668 /*
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001669 * Batch and idle tasks do not preempt (their preemption is driven by
Ingo Molnar91c234b2007-10-15 17:00:18 +02001670 * the tick):
1671 */
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001672 if (unlikely(p->policy != SCHED_NORMAL))
Ingo Molnar91c234b2007-10-15 17:00:18 +02001673 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001674
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001675 /* Idle tasks are by definition preempted by everybody. */
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001676 if (unlikely(curr->policy == SCHED_IDLE))
1677 goto preempt;
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001678
Peter Zijlstraad4b78b2009-09-16 12:31:31 +02001679 if (!sched_feat(WAKEUP_PREEMPT))
1680 return;
1681
Jupyung Leea65ac742009-11-17 18:51:40 +09001682 update_curr(cfs_rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001683 find_matching_se(&se, &pse);
1684 BUG_ON(!pse);
1685 if (wakeup_preempt_entity(se, pse) == 1)
1686 goto preempt;
Jupyung Leea65ac742009-11-17 18:51:40 +09001687
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001688 return;
1689
1690preempt:
1691 resched_task(curr);
1692 /*
1693 * Only set the backward buddy when the current task is still
1694 * on the rq. This can happen when a wakeup gets interleaved
1695 * with schedule on the ->pre_schedule() or idle_balance()
1696 * point, either of which can * drop the rq lock.
1697 *
1698 * Also, during early boot the idle thread is in the fair class,
1699 * for obvious reasons its a bad idea to schedule back to it.
1700 */
1701 if (unlikely(!se->on_rq || curr == rq->idle))
1702 return;
1703
1704 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1705 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001706}
1707
Ingo Molnarfb8d4722007-08-09 11:16:48 +02001708static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001709{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001710 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001711 struct cfs_rq *cfs_rq = &rq->cfs;
1712 struct sched_entity *se;
1713
Tim Blechmann36ace272009-11-24 11:55:45 +01001714 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001715 return NULL;
1716
1717 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02001718 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001719 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001720 cfs_rq = group_cfs_rq(se);
1721 } while (cfs_rq);
1722
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001723 p = task_of(se);
1724 hrtick_start_fair(rq, p);
1725
1726 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001727}
1728
1729/*
1730 * Account for a descheduled task:
1731 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02001732static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001733{
1734 struct sched_entity *se = &prev->se;
1735 struct cfs_rq *cfs_rq;
1736
1737 for_each_sched_entity(se) {
1738 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02001739 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001740 }
1741}
1742
Peter Williams681f3e62007-10-24 18:23:51 +02001743#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001744/**************************************************
1745 * Fair scheduling class load-balancing methods:
1746 */
1747
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001748/*
1749 * pull_task - move a task from a remote runqueue to the local runqueue.
1750 * Both runqueues must be locked.
1751 */
1752static void pull_task(struct rq *src_rq, struct task_struct *p,
1753 struct rq *this_rq, int this_cpu)
1754{
1755 deactivate_task(src_rq, p, 0);
1756 set_task_cpu(p, this_cpu);
1757 activate_task(this_rq, p, 0);
1758 check_preempt_curr(this_rq, p, 0);
1759}
1760
1761/*
1762 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1763 */
1764static
1765int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1766 struct sched_domain *sd, enum cpu_idle_type idle,
1767 int *all_pinned)
1768{
1769 int tsk_cache_hot = 0;
1770 /*
1771 * We do not migrate tasks that are:
1772 * 1) running (obviously), or
1773 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1774 * 3) are cache-hot on their current CPU.
1775 */
1776 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001777 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001778 return 0;
1779 }
1780 *all_pinned = 0;
1781
1782 if (task_running(rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001783 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001784 return 0;
1785 }
1786
1787 /*
1788 * Aggressive migration if:
1789 * 1) task is cache cold, or
1790 * 2) too many balance attempts have failed.
1791 */
1792
1793 tsk_cache_hot = task_hot(p, rq->clock, sd);
1794 if (!tsk_cache_hot ||
1795 sd->nr_balance_failed > sd->cache_nice_tries) {
1796#ifdef CONFIG_SCHEDSTATS
1797 if (tsk_cache_hot) {
1798 schedstat_inc(sd, lb_hot_gained[idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001799 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001800 }
1801#endif
1802 return 1;
1803 }
1804
1805 if (tsk_cache_hot) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001806 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001807 return 0;
1808 }
1809 return 1;
1810}
1811
Peter Zijlstra897c3952009-12-17 17:45:42 +01001812/*
1813 * move_one_task tries to move exactly one task from busiest to this_rq, as
1814 * part of active balancing operations within "domain".
1815 * Returns 1 if successful and 0 otherwise.
1816 *
1817 * Called with both runqueues locked.
1818 */
1819static int
1820move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1821 struct sched_domain *sd, enum cpu_idle_type idle)
1822{
1823 struct task_struct *p, *n;
1824 struct cfs_rq *cfs_rq;
1825 int pinned = 0;
1826
1827 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1828 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1829
1830 if (!can_migrate_task(p, busiest, this_cpu,
1831 sd, idle, &pinned))
1832 continue;
1833
1834 pull_task(busiest, p, this_rq, this_cpu);
1835 /*
1836 * Right now, this is only the second place pull_task()
1837 * is called, so we can safely collect pull_task()
1838 * stats here rather than inside pull_task().
1839 */
1840 schedstat_inc(sd, lb_gained[idle]);
1841 return 1;
1842 }
1843 }
1844
1845 return 0;
1846}
1847
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001848static unsigned long
1849balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1850 unsigned long max_load_move, struct sched_domain *sd,
1851 enum cpu_idle_type idle, int *all_pinned,
Peter Zijlstraee00e662009-12-17 17:25:20 +01001852 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001853{
1854 int loops = 0, pulled = 0, pinned = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001855 long rem_load_move = max_load_move;
Peter Zijlstraee00e662009-12-17 17:25:20 +01001856 struct task_struct *p, *n;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001857
1858 if (max_load_move == 0)
1859 goto out;
1860
1861 pinned = 1;
1862
Peter Zijlstraee00e662009-12-17 17:25:20 +01001863 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1864 if (loops++ > sysctl_sched_nr_migrate)
1865 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001866
Peter Zijlstraee00e662009-12-17 17:25:20 +01001867 if ((p->se.load.weight >> 1) > rem_load_move ||
1868 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1869 continue;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001870
Peter Zijlstraee00e662009-12-17 17:25:20 +01001871 pull_task(busiest, p, this_rq, this_cpu);
1872 pulled++;
1873 rem_load_move -= p->se.load.weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001874
1875#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01001876 /*
1877 * NEWIDLE balancing is a source of latency, so preemptible
1878 * kernels will stop after the first task is pulled to minimize
1879 * the critical section.
1880 */
1881 if (idle == CPU_NEWLY_IDLE)
1882 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001883#endif
1884
Peter Zijlstraee00e662009-12-17 17:25:20 +01001885 /*
1886 * We only want to steal up to the prescribed amount of
1887 * weighted load.
1888 */
1889 if (rem_load_move <= 0)
1890 break;
1891
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001892 if (p->prio < *this_best_prio)
1893 *this_best_prio = p->prio;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001894 }
1895out:
1896 /*
1897 * Right now, this is one of only two places pull_task() is called,
1898 * so we can safely collect pull_task() stats here rather than
1899 * inside pull_task().
1900 */
1901 schedstat_add(sd, lb_gained[idle], pulled);
1902
1903 if (all_pinned)
1904 *all_pinned = pinned;
1905
1906 return max_load_move - rem_load_move;
1907}
1908
Peter Zijlstra230059de2009-12-17 17:47:12 +01001909#ifdef CONFIG_FAIR_GROUP_SCHED
1910static unsigned long
1911load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1912 unsigned long max_load_move,
1913 struct sched_domain *sd, enum cpu_idle_type idle,
1914 int *all_pinned, int *this_best_prio)
1915{
1916 long rem_load_move = max_load_move;
1917 int busiest_cpu = cpu_of(busiest);
1918 struct task_group *tg;
1919
1920 rcu_read_lock();
1921 update_h_load(busiest_cpu);
1922
1923 list_for_each_entry_rcu(tg, &task_groups, list) {
1924 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1925 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1926 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1927 u64 rem_load, moved_load;
1928
1929 /*
1930 * empty group
1931 */
1932 if (!busiest_cfs_rq->task_weight)
1933 continue;
1934
1935 rem_load = (u64)rem_load_move * busiest_weight;
1936 rem_load = div_u64(rem_load, busiest_h_load + 1);
1937
1938 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1939 rem_load, sd, idle, all_pinned, this_best_prio,
1940 busiest_cfs_rq);
1941
1942 if (!moved_load)
1943 continue;
1944
1945 moved_load *= busiest_h_load;
1946 moved_load = div_u64(moved_load, busiest_weight + 1);
1947
1948 rem_load_move -= moved_load;
1949 if (rem_load_move < 0)
1950 break;
1951 }
1952 rcu_read_unlock();
1953
1954 return max_load_move - rem_load_move;
1955}
1956#else
1957static unsigned long
1958load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1959 unsigned long max_load_move,
1960 struct sched_domain *sd, enum cpu_idle_type idle,
1961 int *all_pinned, int *this_best_prio)
1962{
1963 return balance_tasks(this_rq, this_cpu, busiest,
1964 max_load_move, sd, idle, all_pinned,
1965 this_best_prio, &busiest->cfs);
1966}
1967#endif
1968
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001969/*
1970 * move_tasks tries to move up to max_load_move weighted load from busiest to
1971 * this_rq, as part of a balancing operation within domain "sd".
1972 * Returns 1 if successful and 0 otherwise.
1973 *
1974 * Called with both runqueues locked.
1975 */
1976static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1977 unsigned long max_load_move,
1978 struct sched_domain *sd, enum cpu_idle_type idle,
1979 int *all_pinned)
1980{
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001981 unsigned long total_load_moved = 0, load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001982 int this_best_prio = this_rq->curr->prio;
1983
1984 do {
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001985 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001986 max_load_move - total_load_moved,
1987 sd, idle, all_pinned, &this_best_prio);
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001988
1989 total_load_moved += load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001990
1991#ifdef CONFIG_PREEMPT
1992 /*
1993 * NEWIDLE balancing is a source of latency, so preemptible
1994 * kernels will stop after the first task is pulled to minimize
1995 * the critical section.
1996 */
1997 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
1998 break;
Peter Zijlstrabaa8c112009-12-17 18:10:09 +01001999
2000 if (raw_spin_is_contended(&this_rq->lock) ||
2001 raw_spin_is_contended(&busiest->lock))
2002 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002003#endif
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002004 } while (load_moved && max_load_move > total_load_moved);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002005
2006 return total_load_moved > 0;
2007}
2008
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002009/********** Helpers for find_busiest_group ************************/
2010/*
2011 * sd_lb_stats - Structure to store the statistics of a sched_domain
2012 * during load balancing.
2013 */
2014struct sd_lb_stats {
2015 struct sched_group *busiest; /* Busiest group in this sd */
2016 struct sched_group *this; /* Local group in this sd */
2017 unsigned long total_load; /* Total load of all groups in sd */
2018 unsigned long total_pwr; /* Total power of all groups in sd */
2019 unsigned long avg_load; /* Average load across all groups in sd */
2020
2021 /** Statistics of this group */
2022 unsigned long this_load;
2023 unsigned long this_load_per_task;
2024 unsigned long this_nr_running;
2025
2026 /* Statistics of the busiest group */
2027 unsigned long max_load;
2028 unsigned long busiest_load_per_task;
2029 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002030 unsigned long busiest_group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002031
2032 int group_imb; /* Is there imbalance in this sd */
2033#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2034 int power_savings_balance; /* Is powersave balance needed for this sd */
2035 struct sched_group *group_min; /* Least loaded group in sd */
2036 struct sched_group *group_leader; /* Group which relieves group_min */
2037 unsigned long min_load_per_task; /* load_per_task in group_min */
2038 unsigned long leader_nr_running; /* Nr running of group_leader */
2039 unsigned long min_nr_running; /* Nr running of group_min */
2040#endif
2041};
2042
2043/*
2044 * sg_lb_stats - stats of a sched_group required for load_balancing
2045 */
2046struct sg_lb_stats {
2047 unsigned long avg_load; /*Avg load across the CPUs of the group */
2048 unsigned long group_load; /* Total load over the CPUs of the group */
2049 unsigned long sum_nr_running; /* Nr tasks running in the group */
2050 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2051 unsigned long group_capacity;
2052 int group_imb; /* Is there an imbalance in the group ? */
2053};
2054
2055/**
2056 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2057 * @group: The group whose first cpu is to be returned.
2058 */
2059static inline unsigned int group_first_cpu(struct sched_group *group)
2060{
2061 return cpumask_first(sched_group_cpus(group));
2062}
2063
2064/**
2065 * get_sd_load_idx - Obtain the load index for a given sched domain.
2066 * @sd: The sched_domain whose load_idx is to be obtained.
2067 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2068 */
2069static inline int get_sd_load_idx(struct sched_domain *sd,
2070 enum cpu_idle_type idle)
2071{
2072 int load_idx;
2073
2074 switch (idle) {
2075 case CPU_NOT_IDLE:
2076 load_idx = sd->busy_idx;
2077 break;
2078
2079 case CPU_NEWLY_IDLE:
2080 load_idx = sd->newidle_idx;
2081 break;
2082 default:
2083 load_idx = sd->idle_idx;
2084 break;
2085 }
2086
2087 return load_idx;
2088}
2089
2090
2091#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2092/**
2093 * init_sd_power_savings_stats - Initialize power savings statistics for
2094 * the given sched_domain, during load balancing.
2095 *
2096 * @sd: Sched domain whose power-savings statistics are to be initialized.
2097 * @sds: Variable containing the statistics for sd.
2098 * @idle: Idle status of the CPU at which we're performing load-balancing.
2099 */
2100static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2101 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2102{
2103 /*
2104 * Busy processors will not participate in power savings
2105 * balance.
2106 */
2107 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2108 sds->power_savings_balance = 0;
2109 else {
2110 sds->power_savings_balance = 1;
2111 sds->min_nr_running = ULONG_MAX;
2112 sds->leader_nr_running = 0;
2113 }
2114}
2115
2116/**
2117 * update_sd_power_savings_stats - Update the power saving stats for a
2118 * sched_domain while performing load balancing.
2119 *
2120 * @group: sched_group belonging to the sched_domain under consideration.
2121 * @sds: Variable containing the statistics of the sched_domain
2122 * @local_group: Does group contain the CPU for which we're performing
2123 * load balancing ?
2124 * @sgs: Variable containing the statistics of the group.
2125 */
2126static inline void update_sd_power_savings_stats(struct sched_group *group,
2127 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2128{
2129
2130 if (!sds->power_savings_balance)
2131 return;
2132
2133 /*
2134 * If the local group is idle or completely loaded
2135 * no need to do power savings balance at this domain
2136 */
2137 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2138 !sds->this_nr_running))
2139 sds->power_savings_balance = 0;
2140
2141 /*
2142 * If a group is already running at full capacity or idle,
2143 * don't include that group in power savings calculations
2144 */
2145 if (!sds->power_savings_balance ||
2146 sgs->sum_nr_running >= sgs->group_capacity ||
2147 !sgs->sum_nr_running)
2148 return;
2149
2150 /*
2151 * Calculate the group which has the least non-idle load.
2152 * This is the group from where we need to pick up the load
2153 * for saving power
2154 */
2155 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2156 (sgs->sum_nr_running == sds->min_nr_running &&
2157 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2158 sds->group_min = group;
2159 sds->min_nr_running = sgs->sum_nr_running;
2160 sds->min_load_per_task = sgs->sum_weighted_load /
2161 sgs->sum_nr_running;
2162 }
2163
2164 /*
2165 * Calculate the group which is almost near its
2166 * capacity but still has some space to pick up some load
2167 * from other group and save more power
2168 */
2169 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2170 return;
2171
2172 if (sgs->sum_nr_running > sds->leader_nr_running ||
2173 (sgs->sum_nr_running == sds->leader_nr_running &&
2174 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2175 sds->group_leader = group;
2176 sds->leader_nr_running = sgs->sum_nr_running;
2177 }
2178}
2179
2180/**
2181 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2182 * @sds: Variable containing the statistics of the sched_domain
2183 * under consideration.
2184 * @this_cpu: Cpu at which we're currently performing load-balancing.
2185 * @imbalance: Variable to store the imbalance.
2186 *
2187 * Description:
2188 * Check if we have potential to perform some power-savings balance.
2189 * If yes, set the busiest group to be the least loaded group in the
2190 * sched_domain, so that it's CPUs can be put to idle.
2191 *
2192 * Returns 1 if there is potential to perform power-savings balance.
2193 * Else returns 0.
2194 */
2195static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2196 int this_cpu, unsigned long *imbalance)
2197{
2198 if (!sds->power_savings_balance)
2199 return 0;
2200
2201 if (sds->this != sds->group_leader ||
2202 sds->group_leader == sds->group_min)
2203 return 0;
2204
2205 *imbalance = sds->min_load_per_task;
2206 sds->busiest = sds->group_min;
2207
2208 return 1;
2209
2210}
2211#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2212static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2213 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2214{
2215 return;
2216}
2217
2218static inline void update_sd_power_savings_stats(struct sched_group *group,
2219 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2220{
2221 return;
2222}
2223
2224static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2225 int this_cpu, unsigned long *imbalance)
2226{
2227 return 0;
2228}
2229#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2230
2231
2232unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2233{
2234 return SCHED_LOAD_SCALE;
2235}
2236
2237unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2238{
2239 return default_scale_freq_power(sd, cpu);
2240}
2241
2242unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2243{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02002244 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002245 unsigned long smt_gain = sd->smt_gain;
2246
2247 smt_gain /= weight;
2248
2249 return smt_gain;
2250}
2251
2252unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2253{
2254 return default_scale_smt_power(sd, cpu);
2255}
2256
2257unsigned long scale_rt_power(int cpu)
2258{
2259 struct rq *rq = cpu_rq(cpu);
2260 u64 total, available;
2261
2262 sched_avg_update(rq);
2263
2264 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2265 available = total - rq->rt_avg;
2266
2267 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2268 total = SCHED_LOAD_SCALE;
2269
2270 total >>= SCHED_LOAD_SHIFT;
2271
2272 return div_u64(available, total);
2273}
2274
2275static void update_cpu_power(struct sched_domain *sd, int cpu)
2276{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02002277 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002278 unsigned long power = SCHED_LOAD_SCALE;
2279 struct sched_group *sdg = sd->groups;
2280
2281 if (sched_feat(ARCH_POWER))
2282 power *= arch_scale_freq_power(sd, cpu);
2283 else
2284 power *= default_scale_freq_power(sd, cpu);
2285
2286 power >>= SCHED_LOAD_SHIFT;
2287
2288 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2289 if (sched_feat(ARCH_POWER))
2290 power *= arch_scale_smt_power(sd, cpu);
2291 else
2292 power *= default_scale_smt_power(sd, cpu);
2293
2294 power >>= SCHED_LOAD_SHIFT;
2295 }
2296
2297 power *= scale_rt_power(cpu);
2298 power >>= SCHED_LOAD_SHIFT;
2299
2300 if (!power)
2301 power = 1;
2302
2303 sdg->cpu_power = power;
2304}
2305
2306static void update_group_power(struct sched_domain *sd, int cpu)
2307{
2308 struct sched_domain *child = sd->child;
2309 struct sched_group *group, *sdg = sd->groups;
2310 unsigned long power;
2311
2312 if (!child) {
2313 update_cpu_power(sd, cpu);
2314 return;
2315 }
2316
2317 power = 0;
2318
2319 group = child->groups;
2320 do {
2321 power += group->cpu_power;
2322 group = group->next;
2323 } while (group != child->groups);
2324
2325 sdg->cpu_power = power;
2326}
2327
2328/**
2329 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2330 * @sd: The sched_domain whose statistics are to be updated.
2331 * @group: sched_group whose statistics are to be updated.
2332 * @this_cpu: Cpu for which load balance is currently performed.
2333 * @idle: Idle status of this_cpu
2334 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2335 * @sd_idle: Idle status of the sched_domain containing group.
2336 * @local_group: Does group contain this_cpu.
2337 * @cpus: Set of cpus considered for load balancing.
2338 * @balance: Should we balance.
2339 * @sgs: variable to hold the statistics for this group.
2340 */
2341static inline void update_sg_lb_stats(struct sched_domain *sd,
2342 struct sched_group *group, int this_cpu,
2343 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2344 int local_group, const struct cpumask *cpus,
2345 int *balance, struct sg_lb_stats *sgs)
2346{
2347 unsigned long load, max_cpu_load, min_cpu_load;
2348 int i;
2349 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002350 unsigned long avg_load_per_task = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002351
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002352 if (local_group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002353 balance_cpu = group_first_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002354
2355 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002356 max_cpu_load = 0;
2357 min_cpu_load = ~0UL;
2358
2359 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2360 struct rq *rq = cpu_rq(i);
2361
2362 if (*sd_idle && rq->nr_running)
2363 *sd_idle = 0;
2364
2365 /* Bias balancing toward cpus of our domain */
2366 if (local_group) {
2367 if (idle_cpu(i) && !first_idle_cpu) {
2368 first_idle_cpu = 1;
2369 balance_cpu = i;
2370 }
2371
2372 load = target_load(i, load_idx);
2373 } else {
2374 load = source_load(i, load_idx);
2375 if (load > max_cpu_load)
2376 max_cpu_load = load;
2377 if (min_cpu_load > load)
2378 min_cpu_load = load;
2379 }
2380
2381 sgs->group_load += load;
2382 sgs->sum_nr_running += rq->nr_running;
2383 sgs->sum_weighted_load += weighted_cpuload(i);
2384
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002385 }
2386
2387 /*
2388 * First idle cpu or the first cpu(busiest) in this sched group
2389 * is eligible for doing load balancing at this and above
2390 * domains. In the newly idle case, we will allow all the cpu's
2391 * to do the newly idle load balance.
2392 */
2393 if (idle != CPU_NEWLY_IDLE && local_group &&
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002394 balance_cpu != this_cpu) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002395 *balance = 0;
2396 return;
2397 }
2398
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002399 update_group_power(sd, this_cpu);
2400
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002401 /* Adjust by relative CPU power of the group */
2402 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2403
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002404 /*
2405 * Consider the group unbalanced when the imbalance is larger
2406 * than the average weight of two tasks.
2407 *
2408 * APZ: with cgroup the avg task weight can vary wildly and
2409 * might not be a suitable number - should we keep a
2410 * normalized nr_running number somewhere that negates
2411 * the hierarchy?
2412 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002413 if (sgs->sum_nr_running)
2414 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002415
2416 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2417 sgs->group_imb = 1;
2418
2419 sgs->group_capacity =
2420 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2421}
2422
2423/**
2424 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2425 * @sd: sched_domain whose statistics are to be updated.
2426 * @this_cpu: Cpu for which load balance is currently performed.
2427 * @idle: Idle status of this_cpu
2428 * @sd_idle: Idle status of the sched_domain containing group.
2429 * @cpus: Set of cpus considered for load balancing.
2430 * @balance: Should we balance.
2431 * @sds: variable to hold the statistics for this sched_domain.
2432 */
2433static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2434 enum cpu_idle_type idle, int *sd_idle,
2435 const struct cpumask *cpus, int *balance,
2436 struct sd_lb_stats *sds)
2437{
2438 struct sched_domain *child = sd->child;
2439 struct sched_group *group = sd->groups;
2440 struct sg_lb_stats sgs;
2441 int load_idx, prefer_sibling = 0;
2442
2443 if (child && child->flags & SD_PREFER_SIBLING)
2444 prefer_sibling = 1;
2445
2446 init_sd_power_savings_stats(sd, sds, idle);
2447 load_idx = get_sd_load_idx(sd, idle);
2448
2449 do {
2450 int local_group;
2451
2452 local_group = cpumask_test_cpu(this_cpu,
2453 sched_group_cpus(group));
2454 memset(&sgs, 0, sizeof(sgs));
2455 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2456 local_group, cpus, balance, &sgs);
2457
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002458 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002459 return;
2460
2461 sds->total_load += sgs.group_load;
2462 sds->total_pwr += group->cpu_power;
2463
2464 /*
2465 * In case the child domain prefers tasks go to siblings
2466 * first, lower the group capacity to one so that we'll try
2467 * and move all the excess tasks away.
2468 */
2469 if (prefer_sibling)
2470 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2471
2472 if (local_group) {
2473 sds->this_load = sgs.avg_load;
2474 sds->this = group;
2475 sds->this_nr_running = sgs.sum_nr_running;
2476 sds->this_load_per_task = sgs.sum_weighted_load;
2477 } else if (sgs.avg_load > sds->max_load &&
2478 (sgs.sum_nr_running > sgs.group_capacity ||
2479 sgs.group_imb)) {
2480 sds->max_load = sgs.avg_load;
2481 sds->busiest = group;
2482 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002483 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002484 sds->busiest_load_per_task = sgs.sum_weighted_load;
2485 sds->group_imb = sgs.group_imb;
2486 }
2487
2488 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2489 group = group->next;
2490 } while (group != sd->groups);
2491}
2492
2493/**
2494 * fix_small_imbalance - Calculate the minor imbalance that exists
2495 * amongst the groups of a sched_domain, during
2496 * load balancing.
2497 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2498 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2499 * @imbalance: Variable to store the imbalance.
2500 */
2501static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2502 int this_cpu, unsigned long *imbalance)
2503{
2504 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2505 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002506 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002507
2508 if (sds->this_nr_running) {
2509 sds->this_load_per_task /= sds->this_nr_running;
2510 if (sds->busiest_load_per_task >
2511 sds->this_load_per_task)
2512 imbn = 1;
2513 } else
2514 sds->this_load_per_task =
2515 cpu_avg_load_per_task(this_cpu);
2516
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002517 scaled_busy_load_per_task = sds->busiest_load_per_task
2518 * SCHED_LOAD_SCALE;
2519 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2520
2521 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2522 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002523 *imbalance = sds->busiest_load_per_task;
2524 return;
2525 }
2526
2527 /*
2528 * OK, we don't have enough imbalance to justify moving tasks,
2529 * however we may be able to increase total CPU power used by
2530 * moving them.
2531 */
2532
2533 pwr_now += sds->busiest->cpu_power *
2534 min(sds->busiest_load_per_task, sds->max_load);
2535 pwr_now += sds->this->cpu_power *
2536 min(sds->this_load_per_task, sds->this_load);
2537 pwr_now /= SCHED_LOAD_SCALE;
2538
2539 /* Amount of load we'd subtract */
2540 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2541 sds->busiest->cpu_power;
2542 if (sds->max_load > tmp)
2543 pwr_move += sds->busiest->cpu_power *
2544 min(sds->busiest_load_per_task, sds->max_load - tmp);
2545
2546 /* Amount of load we'd add */
2547 if (sds->max_load * sds->busiest->cpu_power <
2548 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2549 tmp = (sds->max_load * sds->busiest->cpu_power) /
2550 sds->this->cpu_power;
2551 else
2552 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2553 sds->this->cpu_power;
2554 pwr_move += sds->this->cpu_power *
2555 min(sds->this_load_per_task, sds->this_load + tmp);
2556 pwr_move /= SCHED_LOAD_SCALE;
2557
2558 /* Move if we gain throughput */
2559 if (pwr_move > pwr_now)
2560 *imbalance = sds->busiest_load_per_task;
2561}
2562
2563/**
2564 * calculate_imbalance - Calculate the amount of imbalance present within the
2565 * groups of a given sched_domain during load balance.
2566 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2567 * @this_cpu: Cpu for which currently load balance is being performed.
2568 * @imbalance: The variable to store the imbalance.
2569 */
2570static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2571 unsigned long *imbalance)
2572{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002573 unsigned long max_pull, load_above_capacity = ~0UL;
2574
2575 sds->busiest_load_per_task /= sds->busiest_nr_running;
2576 if (sds->group_imb) {
2577 sds->busiest_load_per_task =
2578 min(sds->busiest_load_per_task, sds->avg_load);
2579 }
2580
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002581 /*
2582 * In the presence of smp nice balancing, certain scenarios can have
2583 * max load less than avg load(as we skip the groups at or below
2584 * its cpu_power, while calculating max_load..)
2585 */
2586 if (sds->max_load < sds->avg_load) {
2587 *imbalance = 0;
2588 return fix_small_imbalance(sds, this_cpu, imbalance);
2589 }
2590
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002591 if (!sds->group_imb) {
2592 /*
2593 * Don't want to pull so many tasks that a group would go idle.
2594 */
2595 load_above_capacity = (sds->busiest_nr_running -
2596 sds->busiest_group_capacity);
2597
2598 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2599
2600 load_above_capacity /= sds->busiest->cpu_power;
2601 }
2602
2603 /*
2604 * We're trying to get all the cpus to the average_load, so we don't
2605 * want to push ourselves above the average load, nor do we wish to
2606 * reduce the max loaded cpu below the average load. At the same time,
2607 * we also don't want to reduce the group load below the group capacity
2608 * (so that we can implement power-savings policies etc). Thus we look
2609 * for the minimum possible imbalance.
2610 * Be careful of negative numbers as they'll appear as very large values
2611 * with unsigned longs.
2612 */
2613 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002614
2615 /* How much load to actually move to equalise the imbalance */
2616 *imbalance = min(max_pull * sds->busiest->cpu_power,
2617 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2618 / SCHED_LOAD_SCALE;
2619
2620 /*
2621 * if *imbalance is less than the average load per runnable task
2622 * there is no gaurantee that any tasks will be moved so we'll have
2623 * a think about bumping its value to force at least one task to be
2624 * moved
2625 */
2626 if (*imbalance < sds->busiest_load_per_task)
2627 return fix_small_imbalance(sds, this_cpu, imbalance);
2628
2629}
2630/******* find_busiest_group() helpers end here *********************/
2631
2632/**
2633 * find_busiest_group - Returns the busiest group within the sched_domain
2634 * if there is an imbalance. If there isn't an imbalance, and
2635 * the user has opted for power-savings, it returns a group whose
2636 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2637 * such a group exists.
2638 *
2639 * Also calculates the amount of weighted load which should be moved
2640 * to restore balance.
2641 *
2642 * @sd: The sched_domain whose busiest group is to be returned.
2643 * @this_cpu: The cpu for which load balancing is currently being performed.
2644 * @imbalance: Variable which stores amount of weighted load which should
2645 * be moved to restore balance/put a group to idle.
2646 * @idle: The idle status of this_cpu.
2647 * @sd_idle: The idleness of sd
2648 * @cpus: The set of CPUs under consideration for load-balancing.
2649 * @balance: Pointer to a variable indicating if this_cpu
2650 * is the appropriate cpu to perform load balancing at this_level.
2651 *
2652 * Returns: - the busiest group if imbalance exists.
2653 * - If no imbalance and user has opted for power-savings balance,
2654 * return the least loaded group whose CPUs can be
2655 * put to idle by rebalancing its tasks onto our group.
2656 */
2657static struct sched_group *
2658find_busiest_group(struct sched_domain *sd, int this_cpu,
2659 unsigned long *imbalance, enum cpu_idle_type idle,
2660 int *sd_idle, const struct cpumask *cpus, int *balance)
2661{
2662 struct sd_lb_stats sds;
2663
2664 memset(&sds, 0, sizeof(sds));
2665
2666 /*
2667 * Compute the various statistics relavent for load balancing at
2668 * this level.
2669 */
2670 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2671 balance, &sds);
2672
2673 /* Cases where imbalance does not exist from POV of this_cpu */
2674 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2675 * at this level.
2676 * 2) There is no busy sibling group to pull from.
2677 * 3) This group is the busiest group.
2678 * 4) This group is more busy than the avg busieness at this
2679 * sched_domain.
2680 * 5) The imbalance is within the specified limit.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002681 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002682 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002683 goto ret;
2684
2685 if (!sds.busiest || sds.busiest_nr_running == 0)
2686 goto out_balanced;
2687
2688 if (sds.this_load >= sds.max_load)
2689 goto out_balanced;
2690
2691 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2692
2693 if (sds.this_load >= sds.avg_load)
2694 goto out_balanced;
2695
2696 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2697 goto out_balanced;
2698
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002699 /* Looks like there is an imbalance. Compute it */
2700 calculate_imbalance(&sds, this_cpu, imbalance);
2701 return sds.busiest;
2702
2703out_balanced:
2704 /*
2705 * There is no obvious imbalance. But check if we can do some balancing
2706 * to save power.
2707 */
2708 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2709 return sds.busiest;
2710ret:
2711 *imbalance = 0;
2712 return NULL;
2713}
2714
2715/*
2716 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2717 */
2718static struct rq *
2719find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2720 unsigned long imbalance, const struct cpumask *cpus)
2721{
2722 struct rq *busiest = NULL, *rq;
2723 unsigned long max_load = 0;
2724 int i;
2725
2726 for_each_cpu(i, sched_group_cpus(group)) {
2727 unsigned long power = power_of(i);
2728 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2729 unsigned long wl;
2730
2731 if (!cpumask_test_cpu(i, cpus))
2732 continue;
2733
2734 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002735 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002736
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002737 /*
2738 * When comparing with imbalance, use weighted_cpuload()
2739 * which is not scaled with the cpu power.
2740 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002741 if (capacity && rq->nr_running == 1 && wl > imbalance)
2742 continue;
2743
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002744 /*
2745 * For the load comparisons with the other cpu's, consider
2746 * the weighted_cpuload() scaled with the cpu power, so that
2747 * the load can be moved away from the cpu that is potentially
2748 * running at a lower capacity.
2749 */
2750 wl = (wl * SCHED_LOAD_SCALE) / power;
2751
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002752 if (wl > max_load) {
2753 max_load = wl;
2754 busiest = rq;
2755 }
2756 }
2757
2758 return busiest;
2759}
2760
2761/*
2762 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2763 * so long as it is large enough.
2764 */
2765#define MAX_PINNED_INTERVAL 512
2766
2767/* Working cpumask for load_balance and load_balance_newidle. */
2768static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2769
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002770static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2771{
2772 if (idle == CPU_NEWLY_IDLE) {
2773 /*
2774 * The only task running in a non-idle cpu can be moved to this
2775 * cpu in an attempt to completely freeup the other CPU
2776 * package.
2777 *
2778 * The package power saving logic comes from
2779 * find_busiest_group(). If there are no imbalance, then
2780 * f_b_g() will return NULL. However when sched_mc={1,2} then
2781 * f_b_g() will select a group from which a running task may be
2782 * pulled to this cpu in order to make the other package idle.
2783 * If there is no opportunity to make a package idle and if
2784 * there are no imbalance, then f_b_g() will return NULL and no
2785 * action will be taken in load_balance_newidle().
2786 *
2787 * Under normal task pull operation due to imbalance, there
2788 * will be more than one task in the source run queue and
2789 * move_tasks() will succeed. ld_moved will be true and this
2790 * active balance code will not be triggered.
2791 */
2792 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2793 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2794 return 0;
2795
2796 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2797 return 0;
2798 }
2799
2800 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2801}
2802
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002803/*
2804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2805 * tasks if there is an imbalance.
2806 */
2807static int load_balance(int this_cpu, struct rq *this_rq,
2808 struct sched_domain *sd, enum cpu_idle_type idle,
2809 int *balance)
2810{
2811 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2812 struct sched_group *group;
2813 unsigned long imbalance;
2814 struct rq *busiest;
2815 unsigned long flags;
2816 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2817
2818 cpumask_copy(cpus, cpu_active_mask);
2819
2820 /*
2821 * When power savings policy is enabled for the parent domain, idle
2822 * sibling can pick up load irrespective of busy siblings. In this case,
2823 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2824 * portraying it as CPU_NOT_IDLE.
2825 */
2826 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2827 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2828 sd_idle = 1;
2829
2830 schedstat_inc(sd, lb_count[idle]);
2831
2832redo:
2833 update_shares(sd);
2834 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2835 cpus, balance);
2836
2837 if (*balance == 0)
2838 goto out_balanced;
2839
2840 if (!group) {
2841 schedstat_inc(sd, lb_nobusyg[idle]);
2842 goto out_balanced;
2843 }
2844
2845 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2846 if (!busiest) {
2847 schedstat_inc(sd, lb_nobusyq[idle]);
2848 goto out_balanced;
2849 }
2850
2851 BUG_ON(busiest == this_rq);
2852
2853 schedstat_add(sd, lb_imbalance[idle], imbalance);
2854
2855 ld_moved = 0;
2856 if (busiest->nr_running > 1) {
2857 /*
2858 * Attempt to move tasks. If find_busiest_group has found
2859 * an imbalance but busiest->nr_running <= 1, the group is
2860 * still unbalanced. ld_moved simply stays zero, so it is
2861 * correctly treated as an imbalance.
2862 */
2863 local_irq_save(flags);
2864 double_rq_lock(this_rq, busiest);
2865 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2866 imbalance, sd, idle, &all_pinned);
2867 double_rq_unlock(this_rq, busiest);
2868 local_irq_restore(flags);
2869
2870 /*
2871 * some other cpu did the load balance for us.
2872 */
2873 if (ld_moved && this_cpu != smp_processor_id())
2874 resched_cpu(this_cpu);
2875
2876 /* All tasks on this runqueue were pinned by CPU affinity */
2877 if (unlikely(all_pinned)) {
2878 cpumask_clear_cpu(cpu_of(busiest), cpus);
2879 if (!cpumask_empty(cpus))
2880 goto redo;
2881 goto out_balanced;
2882 }
2883 }
2884
2885 if (!ld_moved) {
2886 schedstat_inc(sd, lb_failed[idle]);
2887 sd->nr_balance_failed++;
2888
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002889 if (need_active_balance(sd, sd_idle, idle)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002890 raw_spin_lock_irqsave(&busiest->lock, flags);
2891
2892 /* don't kick the migration_thread, if the curr
2893 * task on busiest cpu can't be moved to this_cpu
2894 */
2895 if (!cpumask_test_cpu(this_cpu,
2896 &busiest->curr->cpus_allowed)) {
2897 raw_spin_unlock_irqrestore(&busiest->lock,
2898 flags);
2899 all_pinned = 1;
2900 goto out_one_pinned;
2901 }
2902
2903 if (!busiest->active_balance) {
2904 busiest->active_balance = 1;
2905 busiest->push_cpu = this_cpu;
2906 active_balance = 1;
2907 }
2908 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2909 if (active_balance)
2910 wake_up_process(busiest->migration_thread);
2911
2912 /*
2913 * We've kicked active balancing, reset the failure
2914 * counter.
2915 */
2916 sd->nr_balance_failed = sd->cache_nice_tries+1;
2917 }
2918 } else
2919 sd->nr_balance_failed = 0;
2920
2921 if (likely(!active_balance)) {
2922 /* We were unbalanced, so reset the balancing interval */
2923 sd->balance_interval = sd->min_interval;
2924 } else {
2925 /*
2926 * If we've begun active balancing, start to back off. This
2927 * case may not be covered by the all_pinned logic if there
2928 * is only 1 task on the busy runqueue (because we don't call
2929 * move_tasks).
2930 */
2931 if (sd->balance_interval < sd->max_interval)
2932 sd->balance_interval *= 2;
2933 }
2934
2935 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2936 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2937 ld_moved = -1;
2938
2939 goto out;
2940
2941out_balanced:
2942 schedstat_inc(sd, lb_balanced[idle]);
2943
2944 sd->nr_balance_failed = 0;
2945
2946out_one_pinned:
2947 /* tune up the balancing interval */
2948 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2949 (sd->balance_interval < sd->max_interval))
2950 sd->balance_interval *= 2;
2951
2952 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2953 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2954 ld_moved = -1;
2955 else
2956 ld_moved = 0;
2957out:
2958 if (ld_moved)
2959 update_shares(sd);
2960 return ld_moved;
2961}
2962
2963/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002964 * idle_balance is called by schedule() if this_cpu is about to become
2965 * idle. Attempts to pull tasks from other CPUs.
2966 */
2967static void idle_balance(int this_cpu, struct rq *this_rq)
2968{
2969 struct sched_domain *sd;
2970 int pulled_task = 0;
2971 unsigned long next_balance = jiffies + HZ;
2972
2973 this_rq->idle_stamp = this_rq->clock;
2974
2975 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2976 return;
2977
Peter Zijlstraf492e122009-12-23 15:29:42 +01002978 /*
2979 * Drop the rq->lock, but keep IRQ/preempt disabled.
2980 */
2981 raw_spin_unlock(&this_rq->lock);
2982
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002983 for_each_domain(this_cpu, sd) {
2984 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01002985 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002986
2987 if (!(sd->flags & SD_LOAD_BALANCE))
2988 continue;
2989
Peter Zijlstraf492e122009-12-23 15:29:42 +01002990 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002991 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01002992 pulled_task = load_balance(this_cpu, this_rq,
2993 sd, CPU_NEWLY_IDLE, &balance);
2994 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002995
2996 interval = msecs_to_jiffies(sd->balance_interval);
2997 if (time_after(next_balance, sd->last_balance + interval))
2998 next_balance = sd->last_balance + interval;
2999 if (pulled_task) {
3000 this_rq->idle_stamp = 0;
3001 break;
3002 }
3003 }
Peter Zijlstraf492e122009-12-23 15:29:42 +01003004
3005 raw_spin_lock(&this_rq->lock);
3006
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003007 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3008 /*
3009 * We are going idle. next_balance may be set based on
3010 * a busy processor. So reset next_balance.
3011 */
3012 this_rq->next_balance = next_balance;
3013 }
3014}
3015
3016/*
3017 * active_load_balance is run by migration threads. It pushes running tasks
3018 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3019 * running on each physical CPU where possible, and avoids physical /
3020 * logical imbalances.
3021 *
3022 * Called with busiest_rq locked.
3023 */
3024static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3025{
3026 int target_cpu = busiest_rq->push_cpu;
3027 struct sched_domain *sd;
3028 struct rq *target_rq;
3029
3030 /* Is there any task to move? */
3031 if (busiest_rq->nr_running <= 1)
3032 return;
3033
3034 target_rq = cpu_rq(target_cpu);
3035
3036 /*
3037 * This condition is "impossible", if it occurs
3038 * we need to fix it. Originally reported by
3039 * Bjorn Helgaas on a 128-cpu setup.
3040 */
3041 BUG_ON(busiest_rq == target_rq);
3042
3043 /* move a task from busiest_rq to target_rq */
3044 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003045
3046 /* Search for an sd spanning us and the target CPU. */
3047 for_each_domain(target_cpu, sd) {
3048 if ((sd->flags & SD_LOAD_BALANCE) &&
3049 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3050 break;
3051 }
3052
3053 if (likely(sd)) {
3054 schedstat_inc(sd, alb_count);
3055
3056 if (move_one_task(target_rq, target_cpu, busiest_rq,
3057 sd, CPU_IDLE))
3058 schedstat_inc(sd, alb_pushed);
3059 else
3060 schedstat_inc(sd, alb_failed);
3061 }
3062 double_unlock_balance(busiest_rq, target_rq);
3063}
3064
3065#ifdef CONFIG_NO_HZ
3066static struct {
3067 atomic_t load_balancer;
3068 cpumask_var_t cpu_mask;
3069 cpumask_var_t ilb_grp_nohz_mask;
3070} nohz ____cacheline_aligned = {
3071 .load_balancer = ATOMIC_INIT(-1),
3072};
3073
3074int get_nohz_load_balancer(void)
3075{
3076 return atomic_read(&nohz.load_balancer);
3077}
3078
3079#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3080/**
3081 * lowest_flag_domain - Return lowest sched_domain containing flag.
3082 * @cpu: The cpu whose lowest level of sched domain is to
3083 * be returned.
3084 * @flag: The flag to check for the lowest sched_domain
3085 * for the given cpu.
3086 *
3087 * Returns the lowest sched_domain of a cpu which contains the given flag.
3088 */
3089static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3090{
3091 struct sched_domain *sd;
3092
3093 for_each_domain(cpu, sd)
3094 if (sd && (sd->flags & flag))
3095 break;
3096
3097 return sd;
3098}
3099
3100/**
3101 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3102 * @cpu: The cpu whose domains we're iterating over.
3103 * @sd: variable holding the value of the power_savings_sd
3104 * for cpu.
3105 * @flag: The flag to filter the sched_domains to be iterated.
3106 *
3107 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3108 * set, starting from the lowest sched_domain to the highest.
3109 */
3110#define for_each_flag_domain(cpu, sd, flag) \
3111 for (sd = lowest_flag_domain(cpu, flag); \
3112 (sd && (sd->flags & flag)); sd = sd->parent)
3113
3114/**
3115 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3116 * @ilb_group: group to be checked for semi-idleness
3117 *
3118 * Returns: 1 if the group is semi-idle. 0 otherwise.
3119 *
3120 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3121 * and atleast one non-idle CPU. This helper function checks if the given
3122 * sched_group is semi-idle or not.
3123 */
3124static inline int is_semi_idle_group(struct sched_group *ilb_group)
3125{
3126 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3127 sched_group_cpus(ilb_group));
3128
3129 /*
3130 * A sched_group is semi-idle when it has atleast one busy cpu
3131 * and atleast one idle cpu.
3132 */
3133 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3134 return 0;
3135
3136 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3137 return 0;
3138
3139 return 1;
3140}
3141/**
3142 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3143 * @cpu: The cpu which is nominating a new idle_load_balancer.
3144 *
3145 * Returns: Returns the id of the idle load balancer if it exists,
3146 * Else, returns >= nr_cpu_ids.
3147 *
3148 * This algorithm picks the idle load balancer such that it belongs to a
3149 * semi-idle powersavings sched_domain. The idea is to try and avoid
3150 * completely idle packages/cores just for the purpose of idle load balancing
3151 * when there are other idle cpu's which are better suited for that job.
3152 */
3153static int find_new_ilb(int cpu)
3154{
3155 struct sched_domain *sd;
3156 struct sched_group *ilb_group;
3157
3158 /*
3159 * Have idle load balancer selection from semi-idle packages only
3160 * when power-aware load balancing is enabled
3161 */
3162 if (!(sched_smt_power_savings || sched_mc_power_savings))
3163 goto out_done;
3164
3165 /*
3166 * Optimize for the case when we have no idle CPUs or only one
3167 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3168 */
3169 if (cpumask_weight(nohz.cpu_mask) < 2)
3170 goto out_done;
3171
3172 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3173 ilb_group = sd->groups;
3174
3175 do {
3176 if (is_semi_idle_group(ilb_group))
3177 return cpumask_first(nohz.ilb_grp_nohz_mask);
3178
3179 ilb_group = ilb_group->next;
3180
3181 } while (ilb_group != sd->groups);
3182 }
3183
3184out_done:
3185 return cpumask_first(nohz.cpu_mask);
3186}
3187#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3188static inline int find_new_ilb(int call_cpu)
3189{
3190 return cpumask_first(nohz.cpu_mask);
3191}
3192#endif
3193
3194/*
3195 * This routine will try to nominate the ilb (idle load balancing)
3196 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3197 * load balancing on behalf of all those cpus. If all the cpus in the system
3198 * go into this tickless mode, then there will be no ilb owner (as there is
3199 * no need for one) and all the cpus will sleep till the next wakeup event
3200 * arrives...
3201 *
3202 * For the ilb owner, tick is not stopped. And this tick will be used
3203 * for idle load balancing. ilb owner will still be part of
3204 * nohz.cpu_mask..
3205 *
3206 * While stopping the tick, this cpu will become the ilb owner if there
3207 * is no other owner. And will be the owner till that cpu becomes busy
3208 * or if all cpus in the system stop their ticks at which point
3209 * there is no need for ilb owner.
3210 *
3211 * When the ilb owner becomes busy, it nominates another owner, during the
3212 * next busy scheduler_tick()
3213 */
3214int select_nohz_load_balancer(int stop_tick)
3215{
3216 int cpu = smp_processor_id();
3217
3218 if (stop_tick) {
3219 cpu_rq(cpu)->in_nohz_recently = 1;
3220
3221 if (!cpu_active(cpu)) {
3222 if (atomic_read(&nohz.load_balancer) != cpu)
3223 return 0;
3224
3225 /*
3226 * If we are going offline and still the leader,
3227 * give up!
3228 */
3229 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3230 BUG();
3231
3232 return 0;
3233 }
3234
3235 cpumask_set_cpu(cpu, nohz.cpu_mask);
3236
3237 /* time for ilb owner also to sleep */
3238 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3239 if (atomic_read(&nohz.load_balancer) == cpu)
3240 atomic_set(&nohz.load_balancer, -1);
3241 return 0;
3242 }
3243
3244 if (atomic_read(&nohz.load_balancer) == -1) {
3245 /* make me the ilb owner */
3246 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3247 return 1;
3248 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3249 int new_ilb;
3250
3251 if (!(sched_smt_power_savings ||
3252 sched_mc_power_savings))
3253 return 1;
3254 /*
3255 * Check to see if there is a more power-efficient
3256 * ilb.
3257 */
3258 new_ilb = find_new_ilb(cpu);
3259 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3260 atomic_set(&nohz.load_balancer, -1);
3261 resched_cpu(new_ilb);
3262 return 0;
3263 }
3264 return 1;
3265 }
3266 } else {
3267 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3268 return 0;
3269
3270 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3271
3272 if (atomic_read(&nohz.load_balancer) == cpu)
3273 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3274 BUG();
3275 }
3276 return 0;
3277}
3278#endif
3279
3280static DEFINE_SPINLOCK(balancing);
3281
3282/*
3283 * It checks each scheduling domain to see if it is due to be balanced,
3284 * and initiates a balancing operation if so.
3285 *
3286 * Balancing parameters are set up in arch_init_sched_domains.
3287 */
3288static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3289{
3290 int balance = 1;
3291 struct rq *rq = cpu_rq(cpu);
3292 unsigned long interval;
3293 struct sched_domain *sd;
3294 /* Earliest time when we have to do rebalance again */
3295 unsigned long next_balance = jiffies + 60*HZ;
3296 int update_next_balance = 0;
3297 int need_serialize;
3298
3299 for_each_domain(cpu, sd) {
3300 if (!(sd->flags & SD_LOAD_BALANCE))
3301 continue;
3302
3303 interval = sd->balance_interval;
3304 if (idle != CPU_IDLE)
3305 interval *= sd->busy_factor;
3306
3307 /* scale ms to jiffies */
3308 interval = msecs_to_jiffies(interval);
3309 if (unlikely(!interval))
3310 interval = 1;
3311 if (interval > HZ*NR_CPUS/10)
3312 interval = HZ*NR_CPUS/10;
3313
3314 need_serialize = sd->flags & SD_SERIALIZE;
3315
3316 if (need_serialize) {
3317 if (!spin_trylock(&balancing))
3318 goto out;
3319 }
3320
3321 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3322 if (load_balance(cpu, rq, sd, idle, &balance)) {
3323 /*
3324 * We've pulled tasks over so either we're no
3325 * longer idle, or one of our SMT siblings is
3326 * not idle.
3327 */
3328 idle = CPU_NOT_IDLE;
3329 }
3330 sd->last_balance = jiffies;
3331 }
3332 if (need_serialize)
3333 spin_unlock(&balancing);
3334out:
3335 if (time_after(next_balance, sd->last_balance + interval)) {
3336 next_balance = sd->last_balance + interval;
3337 update_next_balance = 1;
3338 }
3339
3340 /*
3341 * Stop the load balance at this level. There is another
3342 * CPU in our sched group which is doing load balancing more
3343 * actively.
3344 */
3345 if (!balance)
3346 break;
3347 }
3348
3349 /*
3350 * next_balance will be updated only when there is a need.
3351 * When the cpu is attached to null domain for ex, it will not be
3352 * updated.
3353 */
3354 if (likely(update_next_balance))
3355 rq->next_balance = next_balance;
3356}
3357
3358/*
3359 * run_rebalance_domains is triggered when needed from the scheduler tick.
3360 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3361 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3362 */
3363static void run_rebalance_domains(struct softirq_action *h)
3364{
3365 int this_cpu = smp_processor_id();
3366 struct rq *this_rq = cpu_rq(this_cpu);
3367 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3368 CPU_IDLE : CPU_NOT_IDLE;
3369
3370 rebalance_domains(this_cpu, idle);
3371
3372#ifdef CONFIG_NO_HZ
3373 /*
3374 * If this cpu is the owner for idle load balancing, then do the
3375 * balancing on behalf of the other idle cpus whose ticks are
3376 * stopped.
3377 */
3378 if (this_rq->idle_at_tick &&
3379 atomic_read(&nohz.load_balancer) == this_cpu) {
3380 struct rq *rq;
3381 int balance_cpu;
3382
3383 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3384 if (balance_cpu == this_cpu)
3385 continue;
3386
3387 /*
3388 * If this cpu gets work to do, stop the load balancing
3389 * work being done for other cpus. Next load
3390 * balancing owner will pick it up.
3391 */
3392 if (need_resched())
3393 break;
3394
3395 rebalance_domains(balance_cpu, CPU_IDLE);
3396
3397 rq = cpu_rq(balance_cpu);
3398 if (time_after(this_rq->next_balance, rq->next_balance))
3399 this_rq->next_balance = rq->next_balance;
3400 }
3401 }
3402#endif
3403}
3404
3405static inline int on_null_domain(int cpu)
3406{
Paul E. McKenney90a65012010-02-28 08:32:18 -08003407 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003408}
3409
3410/*
3411 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3412 *
3413 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3414 * idle load balancing owner or decide to stop the periodic load balancing,
3415 * if the whole system is idle.
3416 */
3417static inline void trigger_load_balance(struct rq *rq, int cpu)
3418{
3419#ifdef CONFIG_NO_HZ
3420 /*
3421 * If we were in the nohz mode recently and busy at the current
3422 * scheduler tick, then check if we need to nominate new idle
3423 * load balancer.
3424 */
3425 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3426 rq->in_nohz_recently = 0;
3427
3428 if (atomic_read(&nohz.load_balancer) == cpu) {
3429 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3430 atomic_set(&nohz.load_balancer, -1);
3431 }
3432
3433 if (atomic_read(&nohz.load_balancer) == -1) {
3434 int ilb = find_new_ilb(cpu);
3435
3436 if (ilb < nr_cpu_ids)
3437 resched_cpu(ilb);
3438 }
3439 }
3440
3441 /*
3442 * If this cpu is idle and doing idle load balancing for all the
3443 * cpus with ticks stopped, is it time for that to stop?
3444 */
3445 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3446 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3447 resched_cpu(cpu);
3448 return;
3449 }
3450
3451 /*
3452 * If this cpu is idle and the idle load balancing is done by
3453 * someone else, then no need raise the SCHED_SOFTIRQ
3454 */
3455 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3456 cpumask_test_cpu(cpu, nohz.cpu_mask))
3457 return;
3458#endif
3459 /* Don't need to rebalance while attached to NULL domain */
3460 if (time_after_eq(jiffies, rq->next_balance) &&
3461 likely(!on_null_domain(cpu)))
3462 raise_softirq(SCHED_SOFTIRQ);
3463}
3464
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003465static void rq_online_fair(struct rq *rq)
3466{
3467 update_sysctl();
3468}
3469
3470static void rq_offline_fair(struct rq *rq)
3471{
3472 update_sysctl();
3473}
3474
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003475#else /* CONFIG_SMP */
3476
3477/*
3478 * on UP we do not need to balance between CPUs:
3479 */
3480static inline void idle_balance(int cpu, struct rq *rq)
3481{
3482}
3483
Dhaval Giani55e12e52008-06-24 23:39:43 +05303484#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02003485
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003486/*
3487 * scheduler tick hitting a task of our scheduling class:
3488 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003489static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003490{
3491 struct cfs_rq *cfs_rq;
3492 struct sched_entity *se = &curr->se;
3493
3494 for_each_sched_entity(se) {
3495 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003496 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003497 }
3498}
3499
3500/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003501 * called on fork with the child task as argument from the parent's context
3502 * - child not yet on the tasklist
3503 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003504 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003505static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003506{
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003507 struct cfs_rq *cfs_rq = task_cfs_rq(current);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003508 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02003509 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003510 struct rq *rq = this_rq();
3511 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003512
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003513 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003514
3515 if (unlikely(task_cpu(p) != this_cpu))
3516 __set_task_cpu(p, this_cpu);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003517
Ting Yang7109c442007-08-28 12:53:24 +02003518 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003519
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003520 if (curr)
3521 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003522 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003523
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003524 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02003525 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02003526 * Upon rescheduling, sched_class::put_prev_task() will place
3527 * 'current' within the tree based on its new key value.
3528 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003529 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05303530 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003531 }
3532
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003533 se->vruntime -= cfs_rq->min_vruntime;
3534
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003535 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003536}
3537
Steven Rostedtcb469842008-01-25 21:08:22 +01003538/*
3539 * Priority of the task has changed. Check to see if we preempt
3540 * the current task.
3541 */
3542static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3543 int oldprio, int running)
3544{
3545 /*
3546 * Reschedule if we are currently running on this runqueue and
3547 * our priority decreased, or if we are not currently running on
3548 * this runqueue and our priority is higher than the current's
3549 */
3550 if (running) {
3551 if (p->prio > oldprio)
3552 resched_task(rq->curr);
3553 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003554 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003555}
3556
3557/*
3558 * We switched to the sched_fair class.
3559 */
3560static void switched_to_fair(struct rq *rq, struct task_struct *p,
3561 int running)
3562{
3563 /*
3564 * We were most likely switched from sched_rt, so
3565 * kick off the schedule if running, otherwise just see
3566 * if we can still preempt the current task.
3567 */
3568 if (running)
3569 resched_task(rq->curr);
3570 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003571 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003572}
3573
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003574/* Account for a task changing its policy or group.
3575 *
3576 * This routine is mostly called to set cfs_rq->curr field when a task
3577 * migrates between groups/classes.
3578 */
3579static void set_curr_task_fair(struct rq *rq)
3580{
3581 struct sched_entity *se = &rq->curr->se;
3582
3583 for_each_sched_entity(se)
3584 set_next_entity(cfs_rq_of(se), se);
3585}
3586
Peter Zijlstra810b3812008-02-29 15:21:01 -05003587#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003588static void moved_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05003589{
3590 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3591
3592 update_curr(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003593 if (!on_rq)
3594 place_entity(cfs_rq, &p->se, 1);
Peter Zijlstra810b3812008-02-29 15:21:01 -05003595}
3596#endif
3597
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07003598static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00003599{
3600 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00003601 unsigned int rr_interval = 0;
3602
3603 /*
3604 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3605 * idle runqueue:
3606 */
Peter Williams0d721ce2009-09-21 01:31:53 +00003607 if (rq->cfs.load.weight)
3608 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
Peter Williams0d721ce2009-09-21 01:31:53 +00003609
3610 return rr_interval;
3611}
3612
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003613/*
3614 * All the scheduling class methods:
3615 */
Ingo Molnar5522d5d2007-10-15 17:00:12 +02003616static const struct sched_class fair_sched_class = {
3617 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003618 .enqueue_task = enqueue_task_fair,
3619 .dequeue_task = dequeue_task_fair,
3620 .yield_task = yield_task_fair,
3621
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003622 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003623
3624 .pick_next_task = pick_next_task_fair,
3625 .put_prev_task = put_prev_task_fair,
3626
Peter Williams681f3e62007-10-24 18:23:51 +02003627#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08003628 .select_task_rq = select_task_rq_fair,
3629
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003630 .rq_online = rq_online_fair,
3631 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003632
3633 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02003634#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003635
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003636 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003637 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003638 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01003639
3640 .prio_changed = prio_changed_fair,
3641 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05003642
Peter Williams0d721ce2009-09-21 01:31:53 +00003643 .get_rr_interval = get_rr_interval_fair,
3644
Peter Zijlstra810b3812008-02-29 15:21:01 -05003645#ifdef CONFIG_FAIR_GROUP_SCHED
3646 .moved_group = moved_group_fair,
3647#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648};
3649
3650#ifdef CONFIG_SCHED_DEBUG
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003651static void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003652{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003653 struct cfs_rq *cfs_rq;
3654
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003655 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02003656 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003657 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003658 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003659}
3660#endif