blob: e9149305c5fade3ef0e32fc49554085270a0d8ca [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
Mel Gorman598f0ec2013-10-07 11:28:55 +0100844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100897
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100915 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100916 struct list_head task_list;
917
918 struct rcu_head rcu;
Mel Gorman989348b2013-10-07 11:29:40 +0100919 unsigned long total_faults;
920 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100921};
922
Mel Gormane29cf082013-10-07 11:29:22 +0100923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
Mel Gormanac8e8952013-10-07 11:29:03 +0100928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
Mel Gorman989348b2013-10-07 11:29:40 +0100947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
Mel Gorman989348b2013-10-07 11:29:40 +0100973 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100974 return 0;
975
Mel Gorman989348b2013-10-07 11:29:40 +0100976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100977}
978
Mel Gormane6628d52013-10-07 11:29:02 +0100979static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100984
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100985/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100986struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100988 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996};
Mel Gormane6628d52013-10-07 11:29:02 +0100997
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
Mel Gorman58d081b2013-10-07 11:29:10 +01001019struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001031 int best_cpu;
1032};
1033
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
Rik van Riel887c2902013-10-07 11:29:31 +01001053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001061 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
Rik van Riel887c2902013-10-07 11:29:31 +01001080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001082 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001083 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001084 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001093 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001110 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001171 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001172 }
1173}
1174
Mel Gorman58d081b2013-10-07 11:29:10 +01001175static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001176{
Mel Gorman58d081b2013-10-07 11:29:10 +01001177 struct task_numa_env env = {
1178 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
Mel Gorman58d081b2013-10-07 11:29:10 +01001180 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001181 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 };
1189 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001190 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001191 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001192 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001193
Mel Gorman58d081b2013-10-07 11:29:10 +01001194 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001201 */
Mel Gormane6628d52013-10-07 11:29:02 +01001202 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001205 rcu_read_unlock();
1206
Rik van Riel887c2902013-10-07 11:29:31 +01001207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001209 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001210 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001214
Rik van Riele1dda8a2013-10-07 11:29:19 +01001215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001217 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001223 continue;
1224
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001225 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001229 continue;
1230
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001233 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001234 }
1235 }
1236
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001241 sched_setnuma(p, env.dst_nid);
1242
Rik van Riel04bb2f92013-10-07 11:29:36 +01001243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001257}
1258
Mel Gorman6b9a7462013-10-07 11:29:11 +01001259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1264 return;
1265
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
Mel Gorman6b9a7462013-10-07 11:29:11 +01001269 /* Success if task is already running on preferred CPU */
Rik van Riel1e3646f2013-10-07 11:29:38 +01001270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001271 return;
1272
Mel Gorman6b9a7462013-10-07 11:29:11 +01001273 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001274 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001275}
1276
Rik van Riel04bb2f92013-10-07 11:29:36 +01001277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001352static void task_numa_placement(struct task_struct *p)
1353{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001356 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001357 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001358
Hugh Dickins2832bc12012-12-19 17:42:16 -08001359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001363 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001364
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
Mel Gorman688b7582013-10-07 11:28:58 +01001371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001373 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001374 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001375
Mel Gormanac8e8952013-10-07 11:29:03 +01001376 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001377 long diff;
1378
Mel Gormanac8e8952013-10-07 11:29:03 +01001379 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001380 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001381
Mel Gormanac8e8952013-10-07 11:29:03 +01001382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001385 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001386 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001387
1388 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001389 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001390 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001396 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001397 }
1398
Mel Gorman688b7582013-10-07 11:28:58 +01001399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
Rik van Riel04bb2f92013-10-07 11:29:36 +01001410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001419
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001426 }
1427 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001428
1429 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001430 }
1431
Mel Gorman6b9a7462013-10-07 11:29:11 +01001432 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001433 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001434 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001435 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001436 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001437 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001438}
1439
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
1451static void double_lock(spinlock_t *l1, spinlock_t *l2)
1452{
1453 if (l1 > l2)
1454 swap(l1, l2);
1455
1456 spin_lock(l1);
1457 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1458}
1459
Mel Gorman3e6a9412013-10-07 11:29:35 +01001460static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1461 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001462{
1463 struct numa_group *grp, *my_grp;
1464 struct task_struct *tsk;
1465 bool join = false;
1466 int cpu = cpupid_to_cpu(cpupid);
1467 int i;
1468
1469 if (unlikely(!p->numa_group)) {
1470 unsigned int size = sizeof(struct numa_group) +
Mel Gorman989348b2013-10-07 11:29:40 +01001471 2*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001472
1473 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1474 if (!grp)
1475 return;
1476
1477 atomic_set(&grp->refcount, 1);
1478 spin_lock_init(&grp->lock);
1479 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001480 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001481
1482 for (i = 0; i < 2*nr_node_ids; i++)
Mel Gorman989348b2013-10-07 11:29:40 +01001483 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001484
Mel Gorman989348b2013-10-07 11:29:40 +01001485 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001486
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001487 list_add(&p->numa_entry, &grp->task_list);
1488 grp->nr_tasks++;
1489 rcu_assign_pointer(p->numa_group, grp);
1490 }
1491
1492 rcu_read_lock();
1493 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1494
1495 if (!cpupid_match_pid(tsk, cpupid))
1496 goto unlock;
1497
1498 grp = rcu_dereference(tsk->numa_group);
1499 if (!grp)
1500 goto unlock;
1501
1502 my_grp = p->numa_group;
1503 if (grp == my_grp)
1504 goto unlock;
1505
1506 /*
1507 * Only join the other group if its bigger; if we're the bigger group,
1508 * the other task will join us.
1509 */
1510 if (my_grp->nr_tasks > grp->nr_tasks)
1511 goto unlock;
1512
1513 /*
1514 * Tie-break on the grp address.
1515 */
1516 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1517 goto unlock;
1518
Rik van Rieldabe1d92013-10-07 11:29:34 +01001519 /* Always join threads in the same process. */
1520 if (tsk->mm == current->mm)
1521 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001522
Rik van Rieldabe1d92013-10-07 11:29:34 +01001523 /* Simple filter to avoid false positives due to PID collisions */
1524 if (flags & TNF_SHARED)
1525 join = true;
1526
Mel Gorman3e6a9412013-10-07 11:29:35 +01001527 /* Update priv based on whether false sharing was detected */
1528 *priv = !join;
1529
Rik van Rieldabe1d92013-10-07 11:29:34 +01001530 if (join && !get_numa_group(grp))
1531 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001532
1533unlock:
1534 rcu_read_unlock();
1535
1536 if (!join)
1537 return;
1538
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001539 double_lock(&my_grp->lock, &grp->lock);
1540
Mel Gorman989348b2013-10-07 11:29:40 +01001541 for (i = 0; i < 2*nr_node_ids; i++) {
1542 my_grp->faults[i] -= p->numa_faults[i];
1543 grp->faults[i] += p->numa_faults[i];
1544 }
1545 my_grp->total_faults -= p->total_numa_faults;
1546 grp->total_faults += p->total_numa_faults;
1547
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001548 list_move(&p->numa_entry, &grp->task_list);
1549 my_grp->nr_tasks--;
1550 grp->nr_tasks++;
1551
1552 spin_unlock(&my_grp->lock);
1553 spin_unlock(&grp->lock);
1554
1555 rcu_assign_pointer(p->numa_group, grp);
1556
1557 put_numa_group(my_grp);
1558}
1559
1560void task_numa_free(struct task_struct *p)
1561{
1562 struct numa_group *grp = p->numa_group;
1563 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001564 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001565
1566 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001567 spin_lock(&grp->lock);
Mel Gorman989348b2013-10-07 11:29:40 +01001568 for (i = 0; i < 2*nr_node_ids; i++)
1569 grp->faults[i] -= p->numa_faults[i];
1570 grp->total_faults -= p->total_numa_faults;
1571
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001572 list_del(&p->numa_entry);
1573 grp->nr_tasks--;
1574 spin_unlock(&grp->lock);
1575 rcu_assign_pointer(p->numa_group, NULL);
1576 put_numa_group(grp);
1577 }
1578
Rik van Riel82727012013-10-07 11:29:28 +01001579 p->numa_faults = NULL;
1580 p->numa_faults_buffer = NULL;
1581 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001582}
1583
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001584/*
1585 * Got a PROT_NONE fault for a page on @node.
1586 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001587void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001588{
1589 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001590 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001591 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001592
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001593 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001594 return;
1595
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001596 /* for example, ksmd faulting in a user's mm */
1597 if (!p->mm)
1598 return;
1599
Rik van Riel82727012013-10-07 11:29:28 +01001600 /* Do not worry about placement if exiting */
1601 if (p->state == TASK_DEAD)
1602 return;
1603
Mel Gormanf809ca92013-10-07 11:28:57 +01001604 /* Allocate buffer to track faults on a per-node basis */
1605 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001606 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001607
Mel Gorman745d6142013-10-07 11:28:59 +01001608 /* numa_faults and numa_faults_buffer share the allocation */
1609 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001610 if (!p->numa_faults)
1611 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001612
1613 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001614 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001615 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001616 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001617 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001618
Mel Gormanfb003b82012-11-15 09:01:14 +00001619 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001620 * First accesses are treated as private, otherwise consider accesses
1621 * to be private if the accessing pid has not changed
1622 */
1623 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1624 priv = 1;
1625 } else {
1626 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001627 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001628 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001629 }
1630
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001631 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001632
Rik van Riel2739d3e2013-10-07 11:29:41 +01001633 /*
1634 * Retry task to preferred node migration periodically, in case it
1635 * case it previously failed, or the scheduler moved us.
1636 */
1637 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001638 numa_migrate_preferred(p);
1639
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001640 if (migrated)
1641 p->numa_pages_migrated += pages;
1642
Mel Gormanac8e8952013-10-07 11:29:03 +01001643 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001644 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001645}
1646
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001647static void reset_ptenuma_scan(struct task_struct *p)
1648{
1649 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1650 p->mm->numa_scan_offset = 0;
1651}
1652
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001653/*
1654 * The expensive part of numa migration is done from task_work context.
1655 * Triggered from task_tick_numa().
1656 */
1657void task_numa_work(struct callback_head *work)
1658{
1659 unsigned long migrate, next_scan, now = jiffies;
1660 struct task_struct *p = current;
1661 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001662 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001663 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001664 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001665 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001666
1667 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1668
1669 work->next = work; /* protect against double add */
1670 /*
1671 * Who cares about NUMA placement when they're dying.
1672 *
1673 * NOTE: make sure not to dereference p->mm before this check,
1674 * exit_task_work() happens _after_ exit_mm() so we could be called
1675 * without p->mm even though we still had it when we enqueued this
1676 * work.
1677 */
1678 if (p->flags & PF_EXITING)
1679 return;
1680
Mel Gorman930aa172013-10-07 11:29:37 +01001681 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001682 mm->numa_next_scan = now +
1683 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001684 }
1685
1686 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001687 * Enforce maximal scan/migration frequency..
1688 */
1689 migrate = mm->numa_next_scan;
1690 if (time_before(now, migrate))
1691 return;
1692
Mel Gorman598f0ec2013-10-07 11:28:55 +01001693 if (p->numa_scan_period == 0) {
1694 p->numa_scan_period_max = task_scan_max(p);
1695 p->numa_scan_period = task_scan_min(p);
1696 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001697
Mel Gormanfb003b82012-11-15 09:01:14 +00001698 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001699 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1700 return;
1701
Mel Gormane14808b2012-11-19 10:59:15 +00001702 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001703 * Delay this task enough that another task of this mm will likely win
1704 * the next time around.
1705 */
1706 p->node_stamp += 2 * TICK_NSEC;
1707
Mel Gorman9f406042012-11-14 18:34:32 +00001708 start = mm->numa_scan_offset;
1709 pages = sysctl_numa_balancing_scan_size;
1710 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1711 if (!pages)
1712 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001713
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001714 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001715 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001716 if (!vma) {
1717 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001718 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001719 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001720 }
Mel Gorman9f406042012-11-14 18:34:32 +00001721 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001722 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001723 continue;
1724
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001725 /*
1726 * Shared library pages mapped by multiple processes are not
1727 * migrated as it is expected they are cache replicated. Avoid
1728 * hinting faults in read-only file-backed mappings or the vdso
1729 * as migrating the pages will be of marginal benefit.
1730 */
1731 if (!vma->vm_mm ||
1732 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1733 continue;
1734
Mel Gorman9f406042012-11-14 18:34:32 +00001735 do {
1736 start = max(start, vma->vm_start);
1737 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1738 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001739 nr_pte_updates += change_prot_numa(vma, start, end);
1740
1741 /*
1742 * Scan sysctl_numa_balancing_scan_size but ensure that
1743 * at least one PTE is updated so that unused virtual
1744 * address space is quickly skipped.
1745 */
1746 if (nr_pte_updates)
1747 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001748
Mel Gorman9f406042012-11-14 18:34:32 +00001749 start = end;
1750 if (pages <= 0)
1751 goto out;
1752 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001753 }
1754
Mel Gorman9f406042012-11-14 18:34:32 +00001755out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001756 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001757 * It is possible to reach the end of the VMA list but the last few
1758 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1759 * would find the !migratable VMA on the next scan but not reset the
1760 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001761 */
1762 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001763 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001764 else
1765 reset_ptenuma_scan(p);
1766 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001767}
1768
1769/*
1770 * Drive the periodic memory faults..
1771 */
1772void task_tick_numa(struct rq *rq, struct task_struct *curr)
1773{
1774 struct callback_head *work = &curr->numa_work;
1775 u64 period, now;
1776
1777 /*
1778 * We don't care about NUMA placement if we don't have memory.
1779 */
1780 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1781 return;
1782
1783 /*
1784 * Using runtime rather than walltime has the dual advantage that
1785 * we (mostly) drive the selection from busy threads and that the
1786 * task needs to have done some actual work before we bother with
1787 * NUMA placement.
1788 */
1789 now = curr->se.sum_exec_runtime;
1790 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1791
1792 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001793 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001794 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001795 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001796
1797 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1798 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1799 task_work_add(curr, work, true);
1800 }
1801 }
1802}
1803#else
1804static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1805{
1806}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001807
1808static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1809{
1810}
1811
1812static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1813{
1814}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001815#endif /* CONFIG_NUMA_BALANCING */
1816
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001817static void
1818account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1819{
1820 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001821 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001822 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001823#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001824 if (entity_is_task(se)) {
1825 struct rq *rq = rq_of(cfs_rq);
1826
1827 account_numa_enqueue(rq, task_of(se));
1828 list_add(&se->group_node, &rq->cfs_tasks);
1829 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001830#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001831 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001832}
1833
1834static void
1835account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1836{
1837 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001838 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001839 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001840 if (entity_is_task(se)) {
1841 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301842 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001843 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001844 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001845}
1846
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001847#ifdef CONFIG_FAIR_GROUP_SCHED
1848# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001849static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1850{
1851 long tg_weight;
1852
1853 /*
1854 * Use this CPU's actual weight instead of the last load_contribution
1855 * to gain a more accurate current total weight. See
1856 * update_cfs_rq_load_contribution().
1857 */
Alex Shibf5b9862013-06-20 10:18:54 +08001858 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001859 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001860 tg_weight += cfs_rq->load.weight;
1861
1862 return tg_weight;
1863}
1864
Paul Turner6d5ab292011-01-21 20:45:01 -08001865static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001866{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001867 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001868
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001869 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001870 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001871
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001872 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001873 if (tg_weight)
1874 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001875
1876 if (shares < MIN_SHARES)
1877 shares = MIN_SHARES;
1878 if (shares > tg->shares)
1879 shares = tg->shares;
1880
1881 return shares;
1882}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001883# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001884static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001885{
1886 return tg->shares;
1887}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001888# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001889static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1890 unsigned long weight)
1891{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001892 if (se->on_rq) {
1893 /* commit outstanding execution time */
1894 if (cfs_rq->curr == se)
1895 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001896 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001897 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001898
1899 update_load_set(&se->load, weight);
1900
1901 if (se->on_rq)
1902 account_entity_enqueue(cfs_rq, se);
1903}
1904
Paul Turner82958362012-10-04 13:18:31 +02001905static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1906
Paul Turner6d5ab292011-01-21 20:45:01 -08001907static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001908{
1909 struct task_group *tg;
1910 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001911 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001912
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001913 tg = cfs_rq->tg;
1914 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001915 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001916 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001917#ifndef CONFIG_SMP
1918 if (likely(se->load.weight == tg->shares))
1919 return;
1920#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001921 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001922
1923 reweight_entity(cfs_rq_of(se), se, shares);
1924}
1925#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001926static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001927{
1928}
1929#endif /* CONFIG_FAIR_GROUP_SCHED */
1930
Alex Shi141965c2013-06-26 13:05:39 +08001931#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001932/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001933 * We choose a half-life close to 1 scheduling period.
1934 * Note: The tables below are dependent on this value.
1935 */
1936#define LOAD_AVG_PERIOD 32
1937#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1938#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1939
1940/* Precomputed fixed inverse multiplies for multiplication by y^n */
1941static const u32 runnable_avg_yN_inv[] = {
1942 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1943 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1944 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1945 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1946 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1947 0x85aac367, 0x82cd8698,
1948};
1949
1950/*
1951 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1952 * over-estimates when re-combining.
1953 */
1954static const u32 runnable_avg_yN_sum[] = {
1955 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1956 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1957 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1958};
1959
1960/*
Paul Turner9d85f212012-10-04 13:18:29 +02001961 * Approximate:
1962 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1963 */
1964static __always_inline u64 decay_load(u64 val, u64 n)
1965{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001966 unsigned int local_n;
1967
1968 if (!n)
1969 return val;
1970 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1971 return 0;
1972
1973 /* after bounds checking we can collapse to 32-bit */
1974 local_n = n;
1975
1976 /*
1977 * As y^PERIOD = 1/2, we can combine
1978 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1979 * With a look-up table which covers k^n (n<PERIOD)
1980 *
1981 * To achieve constant time decay_load.
1982 */
1983 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1984 val >>= local_n / LOAD_AVG_PERIOD;
1985 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001986 }
1987
Paul Turner5b51f2f2012-10-04 13:18:32 +02001988 val *= runnable_avg_yN_inv[local_n];
1989 /* We don't use SRR here since we always want to round down. */
1990 return val >> 32;
1991}
1992
1993/*
1994 * For updates fully spanning n periods, the contribution to runnable
1995 * average will be: \Sum 1024*y^n
1996 *
1997 * We can compute this reasonably efficiently by combining:
1998 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1999 */
2000static u32 __compute_runnable_contrib(u64 n)
2001{
2002 u32 contrib = 0;
2003
2004 if (likely(n <= LOAD_AVG_PERIOD))
2005 return runnable_avg_yN_sum[n];
2006 else if (unlikely(n >= LOAD_AVG_MAX_N))
2007 return LOAD_AVG_MAX;
2008
2009 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2010 do {
2011 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2012 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2013
2014 n -= LOAD_AVG_PERIOD;
2015 } while (n > LOAD_AVG_PERIOD);
2016
2017 contrib = decay_load(contrib, n);
2018 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002019}
2020
2021/*
2022 * We can represent the historical contribution to runnable average as the
2023 * coefficients of a geometric series. To do this we sub-divide our runnable
2024 * history into segments of approximately 1ms (1024us); label the segment that
2025 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2026 *
2027 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2028 * p0 p1 p2
2029 * (now) (~1ms ago) (~2ms ago)
2030 *
2031 * Let u_i denote the fraction of p_i that the entity was runnable.
2032 *
2033 * We then designate the fractions u_i as our co-efficients, yielding the
2034 * following representation of historical load:
2035 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2036 *
2037 * We choose y based on the with of a reasonably scheduling period, fixing:
2038 * y^32 = 0.5
2039 *
2040 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2041 * approximately half as much as the contribution to load within the last ms
2042 * (u_0).
2043 *
2044 * When a period "rolls over" and we have new u_0`, multiplying the previous
2045 * sum again by y is sufficient to update:
2046 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2047 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2048 */
2049static __always_inline int __update_entity_runnable_avg(u64 now,
2050 struct sched_avg *sa,
2051 int runnable)
2052{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002053 u64 delta, periods;
2054 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002055 int delta_w, decayed = 0;
2056
2057 delta = now - sa->last_runnable_update;
2058 /*
2059 * This should only happen when time goes backwards, which it
2060 * unfortunately does during sched clock init when we swap over to TSC.
2061 */
2062 if ((s64)delta < 0) {
2063 sa->last_runnable_update = now;
2064 return 0;
2065 }
2066
2067 /*
2068 * Use 1024ns as the unit of measurement since it's a reasonable
2069 * approximation of 1us and fast to compute.
2070 */
2071 delta >>= 10;
2072 if (!delta)
2073 return 0;
2074 sa->last_runnable_update = now;
2075
2076 /* delta_w is the amount already accumulated against our next period */
2077 delta_w = sa->runnable_avg_period % 1024;
2078 if (delta + delta_w >= 1024) {
2079 /* period roll-over */
2080 decayed = 1;
2081
2082 /*
2083 * Now that we know we're crossing a period boundary, figure
2084 * out how much from delta we need to complete the current
2085 * period and accrue it.
2086 */
2087 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002088 if (runnable)
2089 sa->runnable_avg_sum += delta_w;
2090 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002091
Paul Turner5b51f2f2012-10-04 13:18:32 +02002092 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002093
Paul Turner5b51f2f2012-10-04 13:18:32 +02002094 /* Figure out how many additional periods this update spans */
2095 periods = delta / 1024;
2096 delta %= 1024;
2097
2098 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2099 periods + 1);
2100 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2101 periods + 1);
2102
2103 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2104 runnable_contrib = __compute_runnable_contrib(periods);
2105 if (runnable)
2106 sa->runnable_avg_sum += runnable_contrib;
2107 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002108 }
2109
2110 /* Remainder of delta accrued against u_0` */
2111 if (runnable)
2112 sa->runnable_avg_sum += delta;
2113 sa->runnable_avg_period += delta;
2114
2115 return decayed;
2116}
2117
Paul Turner9ee474f2012-10-04 13:18:30 +02002118/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002119static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002120{
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2123
2124 decays -= se->avg.decay_count;
2125 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002126 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002127
2128 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2129 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002130
2131 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002132}
2133
Paul Turnerc566e8e2012-10-04 13:18:30 +02002134#ifdef CONFIG_FAIR_GROUP_SCHED
2135static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2136 int force_update)
2137{
2138 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002139 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002140
2141 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2142 tg_contrib -= cfs_rq->tg_load_contrib;
2143
Alex Shibf5b9862013-06-20 10:18:54 +08002144 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2145 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002146 cfs_rq->tg_load_contrib += tg_contrib;
2147 }
2148}
Paul Turner8165e142012-10-04 13:18:31 +02002149
Paul Turnerbb17f652012-10-04 13:18:31 +02002150/*
2151 * Aggregate cfs_rq runnable averages into an equivalent task_group
2152 * representation for computing load contributions.
2153 */
2154static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2155 struct cfs_rq *cfs_rq)
2156{
2157 struct task_group *tg = cfs_rq->tg;
2158 long contrib;
2159
2160 /* The fraction of a cpu used by this cfs_rq */
2161 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2162 sa->runnable_avg_period + 1);
2163 contrib -= cfs_rq->tg_runnable_contrib;
2164
2165 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2166 atomic_add(contrib, &tg->runnable_avg);
2167 cfs_rq->tg_runnable_contrib += contrib;
2168 }
2169}
2170
Paul Turner8165e142012-10-04 13:18:31 +02002171static inline void __update_group_entity_contrib(struct sched_entity *se)
2172{
2173 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2174 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002175 int runnable_avg;
2176
Paul Turner8165e142012-10-04 13:18:31 +02002177 u64 contrib;
2178
2179 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002180 se->avg.load_avg_contrib = div_u64(contrib,
2181 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002182
2183 /*
2184 * For group entities we need to compute a correction term in the case
2185 * that they are consuming <1 cpu so that we would contribute the same
2186 * load as a task of equal weight.
2187 *
2188 * Explicitly co-ordinating this measurement would be expensive, but
2189 * fortunately the sum of each cpus contribution forms a usable
2190 * lower-bound on the true value.
2191 *
2192 * Consider the aggregate of 2 contributions. Either they are disjoint
2193 * (and the sum represents true value) or they are disjoint and we are
2194 * understating by the aggregate of their overlap.
2195 *
2196 * Extending this to N cpus, for a given overlap, the maximum amount we
2197 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2198 * cpus that overlap for this interval and w_i is the interval width.
2199 *
2200 * On a small machine; the first term is well-bounded which bounds the
2201 * total error since w_i is a subset of the period. Whereas on a
2202 * larger machine, while this first term can be larger, if w_i is the
2203 * of consequential size guaranteed to see n_i*w_i quickly converge to
2204 * our upper bound of 1-cpu.
2205 */
2206 runnable_avg = atomic_read(&tg->runnable_avg);
2207 if (runnable_avg < NICE_0_LOAD) {
2208 se->avg.load_avg_contrib *= runnable_avg;
2209 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2210 }
Paul Turner8165e142012-10-04 13:18:31 +02002211}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002212#else
2213static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2214 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002215static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2216 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002217static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002218#endif
2219
Paul Turner8165e142012-10-04 13:18:31 +02002220static inline void __update_task_entity_contrib(struct sched_entity *se)
2221{
2222 u32 contrib;
2223
2224 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2225 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2226 contrib /= (se->avg.runnable_avg_period + 1);
2227 se->avg.load_avg_contrib = scale_load(contrib);
2228}
2229
Paul Turner2dac7542012-10-04 13:18:30 +02002230/* Compute the current contribution to load_avg by se, return any delta */
2231static long __update_entity_load_avg_contrib(struct sched_entity *se)
2232{
2233 long old_contrib = se->avg.load_avg_contrib;
2234
Paul Turner8165e142012-10-04 13:18:31 +02002235 if (entity_is_task(se)) {
2236 __update_task_entity_contrib(se);
2237 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002238 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002239 __update_group_entity_contrib(se);
2240 }
Paul Turner2dac7542012-10-04 13:18:30 +02002241
2242 return se->avg.load_avg_contrib - old_contrib;
2243}
2244
Paul Turner9ee474f2012-10-04 13:18:30 +02002245static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2246 long load_contrib)
2247{
2248 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2249 cfs_rq->blocked_load_avg -= load_contrib;
2250 else
2251 cfs_rq->blocked_load_avg = 0;
2252}
2253
Paul Turnerf1b17282012-10-04 13:18:31 +02002254static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2255
Paul Turner9d85f212012-10-04 13:18:29 +02002256/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002257static inline void update_entity_load_avg(struct sched_entity *se,
2258 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002259{
Paul Turner2dac7542012-10-04 13:18:30 +02002260 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2261 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002262 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002263
Paul Turnerf1b17282012-10-04 13:18:31 +02002264 /*
2265 * For a group entity we need to use their owned cfs_rq_clock_task() in
2266 * case they are the parent of a throttled hierarchy.
2267 */
2268 if (entity_is_task(se))
2269 now = cfs_rq_clock_task(cfs_rq);
2270 else
2271 now = cfs_rq_clock_task(group_cfs_rq(se));
2272
2273 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002274 return;
2275
2276 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002277
2278 if (!update_cfs_rq)
2279 return;
2280
Paul Turner2dac7542012-10-04 13:18:30 +02002281 if (se->on_rq)
2282 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002283 else
2284 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2285}
2286
2287/*
2288 * Decay the load contributed by all blocked children and account this so that
2289 * their contribution may appropriately discounted when they wake up.
2290 */
Paul Turneraff3e492012-10-04 13:18:30 +02002291static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002292{
Paul Turnerf1b17282012-10-04 13:18:31 +02002293 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002294 u64 decays;
2295
2296 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002297 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002298 return;
2299
Alex Shi25099402013-06-20 10:18:55 +08002300 if (atomic_long_read(&cfs_rq->removed_load)) {
2301 unsigned long removed_load;
2302 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002303 subtract_blocked_load_contrib(cfs_rq, removed_load);
2304 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002305
Paul Turneraff3e492012-10-04 13:18:30 +02002306 if (decays) {
2307 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2308 decays);
2309 atomic64_add(decays, &cfs_rq->decay_counter);
2310 cfs_rq->last_decay = now;
2311 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002312
2313 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002314}
Ben Segall18bf2802012-10-04 12:51:20 +02002315
2316static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2317{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002318 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002319 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002320}
Paul Turner2dac7542012-10-04 13:18:30 +02002321
2322/* Add the load generated by se into cfs_rq's child load-average */
2323static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002324 struct sched_entity *se,
2325 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002326{
Paul Turneraff3e492012-10-04 13:18:30 +02002327 /*
2328 * We track migrations using entity decay_count <= 0, on a wake-up
2329 * migration we use a negative decay count to track the remote decays
2330 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002331 *
2332 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2333 * are seen by enqueue_entity_load_avg() as a migration with an already
2334 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002335 */
2336 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002337 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002338 if (se->avg.decay_count) {
2339 /*
2340 * In a wake-up migration we have to approximate the
2341 * time sleeping. This is because we can't synchronize
2342 * clock_task between the two cpus, and it is not
2343 * guaranteed to be read-safe. Instead, we can
2344 * approximate this using our carried decays, which are
2345 * explicitly atomically readable.
2346 */
2347 se->avg.last_runnable_update -= (-se->avg.decay_count)
2348 << 20;
2349 update_entity_load_avg(se, 0);
2350 /* Indicate that we're now synchronized and on-rq */
2351 se->avg.decay_count = 0;
2352 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002353 wakeup = 0;
2354 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002355 /*
2356 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2357 * would have made count negative); we must be careful to avoid
2358 * double-accounting blocked time after synchronizing decays.
2359 */
2360 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2361 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002362 }
2363
Paul Turneraff3e492012-10-04 13:18:30 +02002364 /* migrated tasks did not contribute to our blocked load */
2365 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002366 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002367 update_entity_load_avg(se, 0);
2368 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002369
Paul Turner2dac7542012-10-04 13:18:30 +02002370 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002371 /* we force update consideration on load-balancer moves */
2372 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002373}
2374
Paul Turner9ee474f2012-10-04 13:18:30 +02002375/*
2376 * Remove se's load from this cfs_rq child load-average, if the entity is
2377 * transitioning to a blocked state we track its projected decay using
2378 * blocked_load_avg.
2379 */
Paul Turner2dac7542012-10-04 13:18:30 +02002380static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002381 struct sched_entity *se,
2382 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002383{
Paul Turner9ee474f2012-10-04 13:18:30 +02002384 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002385 /* we force update consideration on load-balancer moves */
2386 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002387
Paul Turner2dac7542012-10-04 13:18:30 +02002388 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002389 if (sleep) {
2390 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2391 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2392 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002393}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002394
2395/*
2396 * Update the rq's load with the elapsed running time before entering
2397 * idle. if the last scheduled task is not a CFS task, idle_enter will
2398 * be the only way to update the runnable statistic.
2399 */
2400void idle_enter_fair(struct rq *this_rq)
2401{
2402 update_rq_runnable_avg(this_rq, 1);
2403}
2404
2405/*
2406 * Update the rq's load with the elapsed idle time before a task is
2407 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2408 * be the only way to update the runnable statistic.
2409 */
2410void idle_exit_fair(struct rq *this_rq)
2411{
2412 update_rq_runnable_avg(this_rq, 0);
2413}
2414
Paul Turner9d85f212012-10-04 13:18:29 +02002415#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002416static inline void update_entity_load_avg(struct sched_entity *se,
2417 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002418static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002419static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002420 struct sched_entity *se,
2421 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002422static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002423 struct sched_entity *se,
2424 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002425static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2426 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002427#endif
2428
Ingo Molnar2396af62007-08-09 11:16:48 +02002429static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002430{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002431#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002432 struct task_struct *tsk = NULL;
2433
2434 if (entity_is_task(se))
2435 tsk = task_of(se);
2436
Lucas De Marchi41acab82010-03-10 23:37:45 -03002437 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002438 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002439
2440 if ((s64)delta < 0)
2441 delta = 0;
2442
Lucas De Marchi41acab82010-03-10 23:37:45 -03002443 if (unlikely(delta > se->statistics.sleep_max))
2444 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002445
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002446 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002447 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002448
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002449 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002450 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002451 trace_sched_stat_sleep(tsk, delta);
2452 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002453 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002454 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002455 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002456
2457 if ((s64)delta < 0)
2458 delta = 0;
2459
Lucas De Marchi41acab82010-03-10 23:37:45 -03002460 if (unlikely(delta > se->statistics.block_max))
2461 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002462
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002463 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002464 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002465
Peter Zijlstrae4143142009-07-23 20:13:26 +02002466 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002467 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002468 se->statistics.iowait_sum += delta;
2469 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002470 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002471 }
2472
Andrew Vaginb781a602011-11-28 12:03:35 +03002473 trace_sched_stat_blocked(tsk, delta);
2474
Peter Zijlstrae4143142009-07-23 20:13:26 +02002475 /*
2476 * Blocking time is in units of nanosecs, so shift by
2477 * 20 to get a milliseconds-range estimation of the
2478 * amount of time that the task spent sleeping:
2479 */
2480 if (unlikely(prof_on == SLEEP_PROFILING)) {
2481 profile_hits(SLEEP_PROFILING,
2482 (void *)get_wchan(tsk),
2483 delta >> 20);
2484 }
2485 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002486 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002487 }
2488#endif
2489}
2490
Peter Zijlstraddc97292007-10-15 17:00:10 +02002491static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492{
2493#ifdef CONFIG_SCHED_DEBUG
2494 s64 d = se->vruntime - cfs_rq->min_vruntime;
2495
2496 if (d < 0)
2497 d = -d;
2498
2499 if (d > 3*sysctl_sched_latency)
2500 schedstat_inc(cfs_rq, nr_spread_over);
2501#endif
2502}
2503
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002504static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002505place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2506{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002507 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002508
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002509 /*
2510 * The 'current' period is already promised to the current tasks,
2511 * however the extra weight of the new task will slow them down a
2512 * little, place the new task so that it fits in the slot that
2513 * stays open at the end.
2514 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002515 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002516 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002517
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002518 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002519 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002520 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002521
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002522 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002523 * Halve their sleep time's effect, to allow
2524 * for a gentler effect of sleepers:
2525 */
2526 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2527 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002528
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002529 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002530 }
2531
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002532 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302533 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002534}
2535
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002536static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2537
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002538static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002539enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002540{
2541 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002542 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302543 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002544 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002545 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002546 se->vruntime += cfs_rq->min_vruntime;
2547
2548 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002549 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002550 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002551 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002552 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002553 account_entity_enqueue(cfs_rq, se);
2554 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002555
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002556 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002557 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002558 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002559 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002560
Ingo Molnard2417e52007-08-09 11:16:47 +02002561 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002562 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002563 if (se != cfs_rq->curr)
2564 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002565 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002566
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002567 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002568 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002569 check_enqueue_throttle(cfs_rq);
2570 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002571}
2572
Rik van Riel2c13c9192011-02-01 09:48:37 -05002573static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002574{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002575 for_each_sched_entity(se) {
2576 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2577 if (cfs_rq->last == se)
2578 cfs_rq->last = NULL;
2579 else
2580 break;
2581 }
2582}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002583
Rik van Riel2c13c9192011-02-01 09:48:37 -05002584static void __clear_buddies_next(struct sched_entity *se)
2585{
2586 for_each_sched_entity(se) {
2587 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2588 if (cfs_rq->next == se)
2589 cfs_rq->next = NULL;
2590 else
2591 break;
2592 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002593}
2594
Rik van Rielac53db52011-02-01 09:51:03 -05002595static void __clear_buddies_skip(struct sched_entity *se)
2596{
2597 for_each_sched_entity(se) {
2598 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2599 if (cfs_rq->skip == se)
2600 cfs_rq->skip = NULL;
2601 else
2602 break;
2603 }
2604}
2605
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002606static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2607{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002608 if (cfs_rq->last == se)
2609 __clear_buddies_last(se);
2610
2611 if (cfs_rq->next == se)
2612 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002613
2614 if (cfs_rq->skip == se)
2615 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002616}
2617
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002618static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002619
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002620static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002621dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002622{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002623 /*
2624 * Update run-time statistics of the 'current'.
2625 */
2626 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002627 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002628
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002629 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002630 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002631#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002632 if (entity_is_task(se)) {
2633 struct task_struct *tsk = task_of(se);
2634
2635 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002636 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002637 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002638 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002639 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002640#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002641 }
2642
Peter Zijlstra2002c692008-11-11 11:52:33 +01002643 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002644
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002645 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002646 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002647 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002648 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002649
2650 /*
2651 * Normalize the entity after updating the min_vruntime because the
2652 * update can refer to the ->curr item and we need to reflect this
2653 * movement in our normalized position.
2654 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002655 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002656 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002657
Paul Turnerd8b49862011-07-21 09:43:41 -07002658 /* return excess runtime on last dequeue */
2659 return_cfs_rq_runtime(cfs_rq);
2660
Peter Zijlstra1e876232011-05-17 16:21:10 -07002661 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002662 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002663}
2664
2665/*
2666 * Preempt the current task with a newly woken task if needed:
2667 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002668static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002669check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002670{
Peter Zijlstra11697832007-09-05 14:32:49 +02002671 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002672 struct sched_entity *se;
2673 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002674
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002675 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002676 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002677 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002678 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002679 /*
2680 * The current task ran long enough, ensure it doesn't get
2681 * re-elected due to buddy favours.
2682 */
2683 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002684 return;
2685 }
2686
2687 /*
2688 * Ensure that a task that missed wakeup preemption by a
2689 * narrow margin doesn't have to wait for a full slice.
2690 * This also mitigates buddy induced latencies under load.
2691 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002692 if (delta_exec < sysctl_sched_min_granularity)
2693 return;
2694
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002695 se = __pick_first_entity(cfs_rq);
2696 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002697
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002698 if (delta < 0)
2699 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002700
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002701 if (delta > ideal_runtime)
2702 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002703}
2704
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002705static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002706set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002707{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002708 /* 'current' is not kept within the tree. */
2709 if (se->on_rq) {
2710 /*
2711 * Any task has to be enqueued before it get to execute on
2712 * a CPU. So account for the time it spent waiting on the
2713 * runqueue.
2714 */
2715 update_stats_wait_end(cfs_rq, se);
2716 __dequeue_entity(cfs_rq, se);
2717 }
2718
Ingo Molnar79303e92007-08-09 11:16:47 +02002719 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002720 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002721#ifdef CONFIG_SCHEDSTATS
2722 /*
2723 * Track our maximum slice length, if the CPU's load is at
2724 * least twice that of our own weight (i.e. dont track it
2725 * when there are only lesser-weight tasks around):
2726 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002727 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002728 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002729 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2730 }
2731#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002732 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002733}
2734
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002735static int
2736wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2737
Rik van Rielac53db52011-02-01 09:51:03 -05002738/*
2739 * Pick the next process, keeping these things in mind, in this order:
2740 * 1) keep things fair between processes/task groups
2741 * 2) pick the "next" process, since someone really wants that to run
2742 * 3) pick the "last" process, for cache locality
2743 * 4) do not run the "skip" process, if something else is available
2744 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002745static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002746{
Rik van Rielac53db52011-02-01 09:51:03 -05002747 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002748 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002749
Rik van Rielac53db52011-02-01 09:51:03 -05002750 /*
2751 * Avoid running the skip buddy, if running something else can
2752 * be done without getting too unfair.
2753 */
2754 if (cfs_rq->skip == se) {
2755 struct sched_entity *second = __pick_next_entity(se);
2756 if (second && wakeup_preempt_entity(second, left) < 1)
2757 se = second;
2758 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002759
Mike Galbraithf685cea2009-10-23 23:09:22 +02002760 /*
2761 * Prefer last buddy, try to return the CPU to a preempted task.
2762 */
2763 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2764 se = cfs_rq->last;
2765
Rik van Rielac53db52011-02-01 09:51:03 -05002766 /*
2767 * Someone really wants this to run. If it's not unfair, run it.
2768 */
2769 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2770 se = cfs_rq->next;
2771
Mike Galbraithf685cea2009-10-23 23:09:22 +02002772 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002773
2774 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002775}
2776
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002777static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2778
Ingo Molnarab6cde22007-08-09 11:16:48 +02002779static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002780{
2781 /*
2782 * If still on the runqueue then deactivate_task()
2783 * was not called and update_curr() has to be done:
2784 */
2785 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002786 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002787
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002788 /* throttle cfs_rqs exceeding runtime */
2789 check_cfs_rq_runtime(cfs_rq);
2790
Peter Zijlstraddc97292007-10-15 17:00:10 +02002791 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002792 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002793 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002794 /* Put 'current' back into the tree. */
2795 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002796 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002797 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002798 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002799 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002800}
2801
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002802static void
2803entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002804{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002805 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002806 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002807 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002808 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002809
Paul Turner43365bd2010-12-15 19:10:17 -08002810 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002811 * Ensure that runnable average is periodically updated.
2812 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002813 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002814 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002815 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002816
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002817#ifdef CONFIG_SCHED_HRTICK
2818 /*
2819 * queued ticks are scheduled to match the slice, so don't bother
2820 * validating it and just reschedule.
2821 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002822 if (queued) {
2823 resched_task(rq_of(cfs_rq)->curr);
2824 return;
2825 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002826 /*
2827 * don't let the period tick interfere with the hrtick preemption
2828 */
2829 if (!sched_feat(DOUBLE_TICK) &&
2830 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2831 return;
2832#endif
2833
Yong Zhang2c2efae2011-07-29 16:20:33 +08002834 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002835 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002836}
2837
Paul Turnerab84d312011-07-21 09:43:28 -07002838
2839/**************************************************
2840 * CFS bandwidth control machinery
2841 */
2842
2843#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002844
2845#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002846static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002847
2848static inline bool cfs_bandwidth_used(void)
2849{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002850 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002851}
2852
2853void account_cfs_bandwidth_used(int enabled, int was_enabled)
2854{
2855 /* only need to count groups transitioning between enabled/!enabled */
2856 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002857 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002858 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002859 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002860}
2861#else /* HAVE_JUMP_LABEL */
2862static bool cfs_bandwidth_used(void)
2863{
2864 return true;
2865}
2866
2867void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2868#endif /* HAVE_JUMP_LABEL */
2869
Paul Turnerab84d312011-07-21 09:43:28 -07002870/*
2871 * default period for cfs group bandwidth.
2872 * default: 0.1s, units: nanoseconds
2873 */
2874static inline u64 default_cfs_period(void)
2875{
2876 return 100000000ULL;
2877}
Paul Turnerec12cb72011-07-21 09:43:30 -07002878
2879static inline u64 sched_cfs_bandwidth_slice(void)
2880{
2881 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2882}
2883
Paul Turnera9cf55b2011-07-21 09:43:32 -07002884/*
2885 * Replenish runtime according to assigned quota and update expiration time.
2886 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2887 * additional synchronization around rq->lock.
2888 *
2889 * requires cfs_b->lock
2890 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002891void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002892{
2893 u64 now;
2894
2895 if (cfs_b->quota == RUNTIME_INF)
2896 return;
2897
2898 now = sched_clock_cpu(smp_processor_id());
2899 cfs_b->runtime = cfs_b->quota;
2900 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2901}
2902
Peter Zijlstra029632f2011-10-25 10:00:11 +02002903static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2904{
2905 return &tg->cfs_bandwidth;
2906}
2907
Paul Turnerf1b17282012-10-04 13:18:31 +02002908/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2909static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2910{
2911 if (unlikely(cfs_rq->throttle_count))
2912 return cfs_rq->throttled_clock_task;
2913
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002914 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002915}
2916
Paul Turner85dac902011-07-21 09:43:33 -07002917/* returns 0 on failure to allocate runtime */
2918static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002919{
2920 struct task_group *tg = cfs_rq->tg;
2921 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002922 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002923
2924 /* note: this is a positive sum as runtime_remaining <= 0 */
2925 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2926
2927 raw_spin_lock(&cfs_b->lock);
2928 if (cfs_b->quota == RUNTIME_INF)
2929 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002930 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002931 /*
2932 * If the bandwidth pool has become inactive, then at least one
2933 * period must have elapsed since the last consumption.
2934 * Refresh the global state and ensure bandwidth timer becomes
2935 * active.
2936 */
2937 if (!cfs_b->timer_active) {
2938 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002939 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002940 }
Paul Turner58088ad2011-07-21 09:43:31 -07002941
2942 if (cfs_b->runtime > 0) {
2943 amount = min(cfs_b->runtime, min_amount);
2944 cfs_b->runtime -= amount;
2945 cfs_b->idle = 0;
2946 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002947 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002948 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002949 raw_spin_unlock(&cfs_b->lock);
2950
2951 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002952 /*
2953 * we may have advanced our local expiration to account for allowed
2954 * spread between our sched_clock and the one on which runtime was
2955 * issued.
2956 */
2957 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2958 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002959
2960 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002961}
2962
2963/*
2964 * Note: This depends on the synchronization provided by sched_clock and the
2965 * fact that rq->clock snapshots this value.
2966 */
2967static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2968{
2969 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002970
2971 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002972 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002973 return;
2974
2975 if (cfs_rq->runtime_remaining < 0)
2976 return;
2977
2978 /*
2979 * If the local deadline has passed we have to consider the
2980 * possibility that our sched_clock is 'fast' and the global deadline
2981 * has not truly expired.
2982 *
2983 * Fortunately we can check determine whether this the case by checking
2984 * whether the global deadline has advanced.
2985 */
2986
2987 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2988 /* extend local deadline, drift is bounded above by 2 ticks */
2989 cfs_rq->runtime_expires += TICK_NSEC;
2990 } else {
2991 /* global deadline is ahead, expiration has passed */
2992 cfs_rq->runtime_remaining = 0;
2993 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002994}
2995
2996static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2997 unsigned long delta_exec)
2998{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002999 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003000 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003001 expire_cfs_rq_runtime(cfs_rq);
3002
3003 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003004 return;
3005
Paul Turner85dac902011-07-21 09:43:33 -07003006 /*
3007 * if we're unable to extend our runtime we resched so that the active
3008 * hierarchy can be throttled
3009 */
3010 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3011 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003012}
3013
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003014static __always_inline
3015void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003016{
Paul Turner56f570e2011-11-07 20:26:33 -08003017 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003018 return;
3019
3020 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3021}
3022
Paul Turner85dac902011-07-21 09:43:33 -07003023static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3024{
Paul Turner56f570e2011-11-07 20:26:33 -08003025 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003026}
3027
Paul Turner64660c82011-07-21 09:43:36 -07003028/* check whether cfs_rq, or any parent, is throttled */
3029static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3030{
Paul Turner56f570e2011-11-07 20:26:33 -08003031 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003032}
3033
3034/*
3035 * Ensure that neither of the group entities corresponding to src_cpu or
3036 * dest_cpu are members of a throttled hierarchy when performing group
3037 * load-balance operations.
3038 */
3039static inline int throttled_lb_pair(struct task_group *tg,
3040 int src_cpu, int dest_cpu)
3041{
3042 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3043
3044 src_cfs_rq = tg->cfs_rq[src_cpu];
3045 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3046
3047 return throttled_hierarchy(src_cfs_rq) ||
3048 throttled_hierarchy(dest_cfs_rq);
3049}
3050
3051/* updated child weight may affect parent so we have to do this bottom up */
3052static int tg_unthrottle_up(struct task_group *tg, void *data)
3053{
3054 struct rq *rq = data;
3055 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3056
3057 cfs_rq->throttle_count--;
3058#ifdef CONFIG_SMP
3059 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003060 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003061 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003062 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003063 }
3064#endif
3065
3066 return 0;
3067}
3068
3069static int tg_throttle_down(struct task_group *tg, void *data)
3070{
3071 struct rq *rq = data;
3072 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3073
Paul Turner82958362012-10-04 13:18:31 +02003074 /* group is entering throttled state, stop time */
3075 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003076 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003077 cfs_rq->throttle_count++;
3078
3079 return 0;
3080}
3081
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003082static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003083{
3084 struct rq *rq = rq_of(cfs_rq);
3085 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3086 struct sched_entity *se;
3087 long task_delta, dequeue = 1;
3088
3089 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3090
Paul Turnerf1b17282012-10-04 13:18:31 +02003091 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003092 rcu_read_lock();
3093 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3094 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003095
3096 task_delta = cfs_rq->h_nr_running;
3097 for_each_sched_entity(se) {
3098 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3099 /* throttled entity or throttle-on-deactivate */
3100 if (!se->on_rq)
3101 break;
3102
3103 if (dequeue)
3104 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3105 qcfs_rq->h_nr_running -= task_delta;
3106
3107 if (qcfs_rq->load.weight)
3108 dequeue = 0;
3109 }
3110
3111 if (!se)
3112 rq->nr_running -= task_delta;
3113
3114 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003115 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003116 raw_spin_lock(&cfs_b->lock);
3117 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3118 raw_spin_unlock(&cfs_b->lock);
3119}
3120
Peter Zijlstra029632f2011-10-25 10:00:11 +02003121void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003122{
3123 struct rq *rq = rq_of(cfs_rq);
3124 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3125 struct sched_entity *se;
3126 int enqueue = 1;
3127 long task_delta;
3128
Michael Wang22b958d2013-06-04 14:23:39 +08003129 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003130
3131 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003132
3133 update_rq_clock(rq);
3134
Paul Turner671fd9d2011-07-21 09:43:34 -07003135 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003136 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003137 list_del_rcu(&cfs_rq->throttled_list);
3138 raw_spin_unlock(&cfs_b->lock);
3139
Paul Turner64660c82011-07-21 09:43:36 -07003140 /* update hierarchical throttle state */
3141 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3142
Paul Turner671fd9d2011-07-21 09:43:34 -07003143 if (!cfs_rq->load.weight)
3144 return;
3145
3146 task_delta = cfs_rq->h_nr_running;
3147 for_each_sched_entity(se) {
3148 if (se->on_rq)
3149 enqueue = 0;
3150
3151 cfs_rq = cfs_rq_of(se);
3152 if (enqueue)
3153 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3154 cfs_rq->h_nr_running += task_delta;
3155
3156 if (cfs_rq_throttled(cfs_rq))
3157 break;
3158 }
3159
3160 if (!se)
3161 rq->nr_running += task_delta;
3162
3163 /* determine whether we need to wake up potentially idle cpu */
3164 if (rq->curr == rq->idle && rq->cfs.nr_running)
3165 resched_task(rq->curr);
3166}
3167
3168static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3169 u64 remaining, u64 expires)
3170{
3171 struct cfs_rq *cfs_rq;
3172 u64 runtime = remaining;
3173
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3176 throttled_list) {
3177 struct rq *rq = rq_of(cfs_rq);
3178
3179 raw_spin_lock(&rq->lock);
3180 if (!cfs_rq_throttled(cfs_rq))
3181 goto next;
3182
3183 runtime = -cfs_rq->runtime_remaining + 1;
3184 if (runtime > remaining)
3185 runtime = remaining;
3186 remaining -= runtime;
3187
3188 cfs_rq->runtime_remaining += runtime;
3189 cfs_rq->runtime_expires = expires;
3190
3191 /* we check whether we're throttled above */
3192 if (cfs_rq->runtime_remaining > 0)
3193 unthrottle_cfs_rq(cfs_rq);
3194
3195next:
3196 raw_spin_unlock(&rq->lock);
3197
3198 if (!remaining)
3199 break;
3200 }
3201 rcu_read_unlock();
3202
3203 return remaining;
3204}
3205
Paul Turner58088ad2011-07-21 09:43:31 -07003206/*
3207 * Responsible for refilling a task_group's bandwidth and unthrottling its
3208 * cfs_rqs as appropriate. If there has been no activity within the last
3209 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3210 * used to track this state.
3211 */
3212static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3213{
Paul Turner671fd9d2011-07-21 09:43:34 -07003214 u64 runtime, runtime_expires;
3215 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003216
3217 raw_spin_lock(&cfs_b->lock);
3218 /* no need to continue the timer with no bandwidth constraint */
3219 if (cfs_b->quota == RUNTIME_INF)
3220 goto out_unlock;
3221
Paul Turner671fd9d2011-07-21 09:43:34 -07003222 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3223 /* idle depends on !throttled (for the case of a large deficit) */
3224 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003225 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003226
Paul Turnera9cf55b2011-07-21 09:43:32 -07003227 /* if we're going inactive then everything else can be deferred */
3228 if (idle)
3229 goto out_unlock;
3230
3231 __refill_cfs_bandwidth_runtime(cfs_b);
3232
Paul Turner671fd9d2011-07-21 09:43:34 -07003233 if (!throttled) {
3234 /* mark as potentially idle for the upcoming period */
3235 cfs_b->idle = 1;
3236 goto out_unlock;
3237 }
Paul Turner58088ad2011-07-21 09:43:31 -07003238
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003239 /* account preceding periods in which throttling occurred */
3240 cfs_b->nr_throttled += overrun;
3241
Paul Turner671fd9d2011-07-21 09:43:34 -07003242 /*
3243 * There are throttled entities so we must first use the new bandwidth
3244 * to unthrottle them before making it generally available. This
3245 * ensures that all existing debts will be paid before a new cfs_rq is
3246 * allowed to run.
3247 */
3248 runtime = cfs_b->runtime;
3249 runtime_expires = cfs_b->runtime_expires;
3250 cfs_b->runtime = 0;
3251
3252 /*
3253 * This check is repeated as we are holding onto the new bandwidth
3254 * while we unthrottle. This can potentially race with an unthrottled
3255 * group trying to acquire new bandwidth from the global pool.
3256 */
3257 while (throttled && runtime > 0) {
3258 raw_spin_unlock(&cfs_b->lock);
3259 /* we can't nest cfs_b->lock while distributing bandwidth */
3260 runtime = distribute_cfs_runtime(cfs_b, runtime,
3261 runtime_expires);
3262 raw_spin_lock(&cfs_b->lock);
3263
3264 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3265 }
3266
3267 /* return (any) remaining runtime */
3268 cfs_b->runtime = runtime;
3269 /*
3270 * While we are ensured activity in the period following an
3271 * unthrottle, this also covers the case in which the new bandwidth is
3272 * insufficient to cover the existing bandwidth deficit. (Forcing the
3273 * timer to remain active while there are any throttled entities.)
3274 */
3275 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003276out_unlock:
3277 if (idle)
3278 cfs_b->timer_active = 0;
3279 raw_spin_unlock(&cfs_b->lock);
3280
3281 return idle;
3282}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003283
Paul Turnerd8b49862011-07-21 09:43:41 -07003284/* a cfs_rq won't donate quota below this amount */
3285static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3286/* minimum remaining period time to redistribute slack quota */
3287static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3288/* how long we wait to gather additional slack before distributing */
3289static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3290
3291/* are we near the end of the current quota period? */
3292static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3293{
3294 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3295 u64 remaining;
3296
3297 /* if the call-back is running a quota refresh is already occurring */
3298 if (hrtimer_callback_running(refresh_timer))
3299 return 1;
3300
3301 /* is a quota refresh about to occur? */
3302 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3303 if (remaining < min_expire)
3304 return 1;
3305
3306 return 0;
3307}
3308
3309static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3310{
3311 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3312
3313 /* if there's a quota refresh soon don't bother with slack */
3314 if (runtime_refresh_within(cfs_b, min_left))
3315 return;
3316
3317 start_bandwidth_timer(&cfs_b->slack_timer,
3318 ns_to_ktime(cfs_bandwidth_slack_period));
3319}
3320
3321/* we know any runtime found here is valid as update_curr() precedes return */
3322static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3323{
3324 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3325 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3326
3327 if (slack_runtime <= 0)
3328 return;
3329
3330 raw_spin_lock(&cfs_b->lock);
3331 if (cfs_b->quota != RUNTIME_INF &&
3332 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3333 cfs_b->runtime += slack_runtime;
3334
3335 /* we are under rq->lock, defer unthrottling using a timer */
3336 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3337 !list_empty(&cfs_b->throttled_cfs_rq))
3338 start_cfs_slack_bandwidth(cfs_b);
3339 }
3340 raw_spin_unlock(&cfs_b->lock);
3341
3342 /* even if it's not valid for return we don't want to try again */
3343 cfs_rq->runtime_remaining -= slack_runtime;
3344}
3345
3346static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3347{
Paul Turner56f570e2011-11-07 20:26:33 -08003348 if (!cfs_bandwidth_used())
3349 return;
3350
Paul Turnerfccfdc62011-11-07 20:26:34 -08003351 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003352 return;
3353
3354 __return_cfs_rq_runtime(cfs_rq);
3355}
3356
3357/*
3358 * This is done with a timer (instead of inline with bandwidth return) since
3359 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3360 */
3361static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3362{
3363 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3364 u64 expires;
3365
3366 /* confirm we're still not at a refresh boundary */
3367 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3368 return;
3369
3370 raw_spin_lock(&cfs_b->lock);
3371 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3372 runtime = cfs_b->runtime;
3373 cfs_b->runtime = 0;
3374 }
3375 expires = cfs_b->runtime_expires;
3376 raw_spin_unlock(&cfs_b->lock);
3377
3378 if (!runtime)
3379 return;
3380
3381 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3382
3383 raw_spin_lock(&cfs_b->lock);
3384 if (expires == cfs_b->runtime_expires)
3385 cfs_b->runtime = runtime;
3386 raw_spin_unlock(&cfs_b->lock);
3387}
3388
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003389/*
3390 * When a group wakes up we want to make sure that its quota is not already
3391 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3392 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3393 */
3394static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3395{
Paul Turner56f570e2011-11-07 20:26:33 -08003396 if (!cfs_bandwidth_used())
3397 return;
3398
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003399 /* an active group must be handled by the update_curr()->put() path */
3400 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3401 return;
3402
3403 /* ensure the group is not already throttled */
3404 if (cfs_rq_throttled(cfs_rq))
3405 return;
3406
3407 /* update runtime allocation */
3408 account_cfs_rq_runtime(cfs_rq, 0);
3409 if (cfs_rq->runtime_remaining <= 0)
3410 throttle_cfs_rq(cfs_rq);
3411}
3412
3413/* conditionally throttle active cfs_rq's from put_prev_entity() */
3414static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3415{
Paul Turner56f570e2011-11-07 20:26:33 -08003416 if (!cfs_bandwidth_used())
3417 return;
3418
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003419 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3420 return;
3421
3422 /*
3423 * it's possible for a throttled entity to be forced into a running
3424 * state (e.g. set_curr_task), in this case we're finished.
3425 */
3426 if (cfs_rq_throttled(cfs_rq))
3427 return;
3428
3429 throttle_cfs_rq(cfs_rq);
3430}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003431
Peter Zijlstra029632f2011-10-25 10:00:11 +02003432static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3433{
3434 struct cfs_bandwidth *cfs_b =
3435 container_of(timer, struct cfs_bandwidth, slack_timer);
3436 do_sched_cfs_slack_timer(cfs_b);
3437
3438 return HRTIMER_NORESTART;
3439}
3440
3441static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3442{
3443 struct cfs_bandwidth *cfs_b =
3444 container_of(timer, struct cfs_bandwidth, period_timer);
3445 ktime_t now;
3446 int overrun;
3447 int idle = 0;
3448
3449 for (;;) {
3450 now = hrtimer_cb_get_time(timer);
3451 overrun = hrtimer_forward(timer, now, cfs_b->period);
3452
3453 if (!overrun)
3454 break;
3455
3456 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3457 }
3458
3459 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3460}
3461
3462void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3463{
3464 raw_spin_lock_init(&cfs_b->lock);
3465 cfs_b->runtime = 0;
3466 cfs_b->quota = RUNTIME_INF;
3467 cfs_b->period = ns_to_ktime(default_cfs_period());
3468
3469 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3470 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3471 cfs_b->period_timer.function = sched_cfs_period_timer;
3472 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3473 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3474}
3475
3476static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3477{
3478 cfs_rq->runtime_enabled = 0;
3479 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3480}
3481
3482/* requires cfs_b->lock, may release to reprogram timer */
3483void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3484{
3485 /*
3486 * The timer may be active because we're trying to set a new bandwidth
3487 * period or because we're racing with the tear-down path
3488 * (timer_active==0 becomes visible before the hrtimer call-back
3489 * terminates). In either case we ensure that it's re-programmed
3490 */
3491 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3492 raw_spin_unlock(&cfs_b->lock);
3493 /* ensure cfs_b->lock is available while we wait */
3494 hrtimer_cancel(&cfs_b->period_timer);
3495
3496 raw_spin_lock(&cfs_b->lock);
3497 /* if someone else restarted the timer then we're done */
3498 if (cfs_b->timer_active)
3499 return;
3500 }
3501
3502 cfs_b->timer_active = 1;
3503 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3504}
3505
3506static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3507{
3508 hrtimer_cancel(&cfs_b->period_timer);
3509 hrtimer_cancel(&cfs_b->slack_timer);
3510}
3511
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003512static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003513{
3514 struct cfs_rq *cfs_rq;
3515
3516 for_each_leaf_cfs_rq(rq, cfs_rq) {
3517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3518
3519 if (!cfs_rq->runtime_enabled)
3520 continue;
3521
3522 /*
3523 * clock_task is not advancing so we just need to make sure
3524 * there's some valid quota amount
3525 */
3526 cfs_rq->runtime_remaining = cfs_b->quota;
3527 if (cfs_rq_throttled(cfs_rq))
3528 unthrottle_cfs_rq(cfs_rq);
3529 }
3530}
3531
3532#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003533static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3534{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003535 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003536}
3537
3538static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3539 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003540static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3541static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003542static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003543
3544static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3545{
3546 return 0;
3547}
Paul Turner64660c82011-07-21 09:43:36 -07003548
3549static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3550{
3551 return 0;
3552}
3553
3554static inline int throttled_lb_pair(struct task_group *tg,
3555 int src_cpu, int dest_cpu)
3556{
3557 return 0;
3558}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003559
3560void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3561
3562#ifdef CONFIG_FAIR_GROUP_SCHED
3563static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003564#endif
3565
Peter Zijlstra029632f2011-10-25 10:00:11 +02003566static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3567{
3568 return NULL;
3569}
3570static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003571static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003572
3573#endif /* CONFIG_CFS_BANDWIDTH */
3574
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003575/**************************************************
3576 * CFS operations on tasks:
3577 */
3578
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003579#ifdef CONFIG_SCHED_HRTICK
3580static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3581{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003582 struct sched_entity *se = &p->se;
3583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3584
3585 WARN_ON(task_rq(p) != rq);
3586
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003587 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003588 u64 slice = sched_slice(cfs_rq, se);
3589 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3590 s64 delta = slice - ran;
3591
3592 if (delta < 0) {
3593 if (rq->curr == p)
3594 resched_task(p);
3595 return;
3596 }
3597
3598 /*
3599 * Don't schedule slices shorter than 10000ns, that just
3600 * doesn't make sense. Rely on vruntime for fairness.
3601 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003602 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003603 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003604
Peter Zijlstra31656512008-07-18 18:01:23 +02003605 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003606 }
3607}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003608
3609/*
3610 * called from enqueue/dequeue and updates the hrtick when the
3611 * current task is from our class and nr_running is low enough
3612 * to matter.
3613 */
3614static void hrtick_update(struct rq *rq)
3615{
3616 struct task_struct *curr = rq->curr;
3617
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003618 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003619 return;
3620
3621 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3622 hrtick_start_fair(rq, curr);
3623}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303624#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003625static inline void
3626hrtick_start_fair(struct rq *rq, struct task_struct *p)
3627{
3628}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003629
3630static inline void hrtick_update(struct rq *rq)
3631{
3632}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003633#endif
3634
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003635/*
3636 * The enqueue_task method is called before nr_running is
3637 * increased. Here we update the fair scheduling stats and
3638 * then put the task into the rbtree:
3639 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003640static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003641enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003642{
3643 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003644 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003645
3646 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003647 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648 break;
3649 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003650 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003651
3652 /*
3653 * end evaluation on encountering a throttled cfs_rq
3654 *
3655 * note: in the case of encountering a throttled cfs_rq we will
3656 * post the final h_nr_running increment below.
3657 */
3658 if (cfs_rq_throttled(cfs_rq))
3659 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003660 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003661
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003662 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003663 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003664
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003665 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003666 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003667 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003668
Paul Turner85dac902011-07-21 09:43:33 -07003669 if (cfs_rq_throttled(cfs_rq))
3670 break;
3671
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003672 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003673 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003674 }
3675
Ben Segall18bf2802012-10-04 12:51:20 +02003676 if (!se) {
3677 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003678 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003679 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003680 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003681}
3682
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003683static void set_next_buddy(struct sched_entity *se);
3684
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003685/*
3686 * The dequeue_task method is called before nr_running is
3687 * decreased. We remove the task from the rbtree and
3688 * update the fair scheduling stats:
3689 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003690static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003691{
3692 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003693 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003694 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003695
3696 for_each_sched_entity(se) {
3697 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003698 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003699
3700 /*
3701 * end evaluation on encountering a throttled cfs_rq
3702 *
3703 * note: in the case of encountering a throttled cfs_rq we will
3704 * post the final h_nr_running decrement below.
3705 */
3706 if (cfs_rq_throttled(cfs_rq))
3707 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003708 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003709
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003710 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003711 if (cfs_rq->load.weight) {
3712 /*
3713 * Bias pick_next to pick a task from this cfs_rq, as
3714 * p is sleeping when it is within its sched_slice.
3715 */
3716 if (task_sleep && parent_entity(se))
3717 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003718
3719 /* avoid re-evaluating load for this entity */
3720 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003721 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003722 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003723 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003724 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003725
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003726 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003727 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003728 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003729
Paul Turner85dac902011-07-21 09:43:33 -07003730 if (cfs_rq_throttled(cfs_rq))
3731 break;
3732
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003733 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003734 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003735 }
3736
Ben Segall18bf2802012-10-04 12:51:20 +02003737 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003738 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003739 update_rq_runnable_avg(rq, 1);
3740 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003741 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003742}
3743
Gregory Haskinse7693a32008-01-25 21:08:09 +01003744#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003745/* Used instead of source_load when we know the type == 0 */
3746static unsigned long weighted_cpuload(const int cpu)
3747{
Alex Shib92486c2013-06-20 10:18:50 +08003748 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003749}
3750
3751/*
3752 * Return a low guess at the load of a migration-source cpu weighted
3753 * according to the scheduling class and "nice" value.
3754 *
3755 * We want to under-estimate the load of migration sources, to
3756 * balance conservatively.
3757 */
3758static unsigned long source_load(int cpu, int type)
3759{
3760 struct rq *rq = cpu_rq(cpu);
3761 unsigned long total = weighted_cpuload(cpu);
3762
3763 if (type == 0 || !sched_feat(LB_BIAS))
3764 return total;
3765
3766 return min(rq->cpu_load[type-1], total);
3767}
3768
3769/*
3770 * Return a high guess at the load of a migration-target cpu weighted
3771 * according to the scheduling class and "nice" value.
3772 */
3773static unsigned long target_load(int cpu, int type)
3774{
3775 struct rq *rq = cpu_rq(cpu);
3776 unsigned long total = weighted_cpuload(cpu);
3777
3778 if (type == 0 || !sched_feat(LB_BIAS))
3779 return total;
3780
3781 return max(rq->cpu_load[type-1], total);
3782}
3783
3784static unsigned long power_of(int cpu)
3785{
3786 return cpu_rq(cpu)->cpu_power;
3787}
3788
3789static unsigned long cpu_avg_load_per_task(int cpu)
3790{
3791 struct rq *rq = cpu_rq(cpu);
3792 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003793 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003794
3795 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003796 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003797
3798 return 0;
3799}
3800
Michael Wang62470412013-07-04 12:55:51 +08003801static void record_wakee(struct task_struct *p)
3802{
3803 /*
3804 * Rough decay (wiping) for cost saving, don't worry
3805 * about the boundary, really active task won't care
3806 * about the loss.
3807 */
3808 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3809 current->wakee_flips = 0;
3810 current->wakee_flip_decay_ts = jiffies;
3811 }
3812
3813 if (current->last_wakee != p) {
3814 current->last_wakee = p;
3815 current->wakee_flips++;
3816 }
3817}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003818
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003819static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003820{
3821 struct sched_entity *se = &p->se;
3822 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003823 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003824
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003825#ifndef CONFIG_64BIT
3826 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003827
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003828 do {
3829 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3830 smp_rmb();
3831 min_vruntime = cfs_rq->min_vruntime;
3832 } while (min_vruntime != min_vruntime_copy);
3833#else
3834 min_vruntime = cfs_rq->min_vruntime;
3835#endif
3836
3837 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003838 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003839}
3840
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003841#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003842/*
3843 * effective_load() calculates the load change as seen from the root_task_group
3844 *
3845 * Adding load to a group doesn't make a group heavier, but can cause movement
3846 * of group shares between cpus. Assuming the shares were perfectly aligned one
3847 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003848 *
3849 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3850 * on this @cpu and results in a total addition (subtraction) of @wg to the
3851 * total group weight.
3852 *
3853 * Given a runqueue weight distribution (rw_i) we can compute a shares
3854 * distribution (s_i) using:
3855 *
3856 * s_i = rw_i / \Sum rw_j (1)
3857 *
3858 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3859 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3860 * shares distribution (s_i):
3861 *
3862 * rw_i = { 2, 4, 1, 0 }
3863 * s_i = { 2/7, 4/7, 1/7, 0 }
3864 *
3865 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3866 * task used to run on and the CPU the waker is running on), we need to
3867 * compute the effect of waking a task on either CPU and, in case of a sync
3868 * wakeup, compute the effect of the current task going to sleep.
3869 *
3870 * So for a change of @wl to the local @cpu with an overall group weight change
3871 * of @wl we can compute the new shares distribution (s'_i) using:
3872 *
3873 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3874 *
3875 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3876 * differences in waking a task to CPU 0. The additional task changes the
3877 * weight and shares distributions like:
3878 *
3879 * rw'_i = { 3, 4, 1, 0 }
3880 * s'_i = { 3/8, 4/8, 1/8, 0 }
3881 *
3882 * We can then compute the difference in effective weight by using:
3883 *
3884 * dw_i = S * (s'_i - s_i) (3)
3885 *
3886 * Where 'S' is the group weight as seen by its parent.
3887 *
3888 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3889 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3890 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003891 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003892static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003893{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003894 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003895
Mel Gorman58d081b2013-10-07 11:29:10 +01003896 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003897 return wl;
3898
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003899 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003900 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003901
Paul Turner977dda72011-01-14 17:57:50 -08003902 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003903
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003904 /*
3905 * W = @wg + \Sum rw_j
3906 */
3907 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003908
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003909 /*
3910 * w = rw_i + @wl
3911 */
3912 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003913
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003914 /*
3915 * wl = S * s'_i; see (2)
3916 */
3917 if (W > 0 && w < W)
3918 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003919 else
3920 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003921
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003922 /*
3923 * Per the above, wl is the new se->load.weight value; since
3924 * those are clipped to [MIN_SHARES, ...) do so now. See
3925 * calc_cfs_shares().
3926 */
Paul Turner977dda72011-01-14 17:57:50 -08003927 if (wl < MIN_SHARES)
3928 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003929
3930 /*
3931 * wl = dw_i = S * (s'_i - s_i); see (3)
3932 */
Paul Turner977dda72011-01-14 17:57:50 -08003933 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003934
3935 /*
3936 * Recursively apply this logic to all parent groups to compute
3937 * the final effective load change on the root group. Since
3938 * only the @tg group gets extra weight, all parent groups can
3939 * only redistribute existing shares. @wl is the shift in shares
3940 * resulting from this level per the above.
3941 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003942 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003943 }
3944
3945 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003946}
3947#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003948
Mel Gorman58d081b2013-10-07 11:29:10 +01003949static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003950{
Peter Zijlstra83378262008-06-27 13:41:37 +02003951 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003952}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003953
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003954#endif
3955
Michael Wang62470412013-07-04 12:55:51 +08003956static int wake_wide(struct task_struct *p)
3957{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003958 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003959
3960 /*
3961 * Yeah, it's the switching-frequency, could means many wakee or
3962 * rapidly switch, use factor here will just help to automatically
3963 * adjust the loose-degree, so bigger node will lead to more pull.
3964 */
3965 if (p->wakee_flips > factor) {
3966 /*
3967 * wakee is somewhat hot, it needs certain amount of cpu
3968 * resource, so if waker is far more hot, prefer to leave
3969 * it alone.
3970 */
3971 if (current->wakee_flips > (factor * p->wakee_flips))
3972 return 1;
3973 }
3974
3975 return 0;
3976}
3977
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003978static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003979{
Paul Turnere37b6a72011-01-21 20:44:59 -08003980 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003981 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003982 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003983 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003984 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003985 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003986
Michael Wang62470412013-07-04 12:55:51 +08003987 /*
3988 * If we wake multiple tasks be careful to not bounce
3989 * ourselves around too much.
3990 */
3991 if (wake_wide(p))
3992 return 0;
3993
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003994 idx = sd->wake_idx;
3995 this_cpu = smp_processor_id();
3996 prev_cpu = task_cpu(p);
3997 load = source_load(prev_cpu, idx);
3998 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003999
4000 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004001 * If sync wakeup then subtract the (maximum possible)
4002 * effect of the currently running task from the load
4003 * of the current CPU:
4004 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004005 if (sync) {
4006 tg = task_group(current);
4007 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004008
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004009 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004010 load += effective_load(tg, prev_cpu, 0, -weight);
4011 }
4012
4013 tg = task_group(p);
4014 weight = p->se.load.weight;
4015
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004016 /*
4017 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004018 * due to the sync cause above having dropped this_load to 0, we'll
4019 * always have an imbalance, but there's really nothing you can do
4020 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004021 *
4022 * Otherwise check if either cpus are near enough in load to allow this
4023 * task to be woken on this_cpu.
4024 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004025 if (this_load > 0) {
4026 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004027
4028 this_eff_load = 100;
4029 this_eff_load *= power_of(prev_cpu);
4030 this_eff_load *= this_load +
4031 effective_load(tg, this_cpu, weight, weight);
4032
4033 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4034 prev_eff_load *= power_of(this_cpu);
4035 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4036
4037 balanced = this_eff_load <= prev_eff_load;
4038 } else
4039 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004040
4041 /*
4042 * If the currently running task will sleep within
4043 * a reasonable amount of time then attract this newly
4044 * woken task:
4045 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004046 if (sync && balanced)
4047 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004048
Lucas De Marchi41acab82010-03-10 23:37:45 -03004049 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004050 tl_per_task = cpu_avg_load_per_task(this_cpu);
4051
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004052 if (balanced ||
4053 (this_load <= load &&
4054 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004055 /*
4056 * This domain has SD_WAKE_AFFINE and
4057 * p is cache cold in this domain, and
4058 * there is no bad imbalance.
4059 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004060 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004061 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004062
4063 return 1;
4064 }
4065 return 0;
4066}
4067
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004068/*
4069 * find_idlest_group finds and returns the least busy CPU group within the
4070 * domain.
4071 */
4072static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004073find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004074 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004075{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004076 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004077 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004078 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004079
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004080 do {
4081 unsigned long load, avg_load;
4082 int local_group;
4083 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004084
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004085 /* Skip over this group if it has no CPUs allowed */
4086 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004087 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004088 continue;
4089
4090 local_group = cpumask_test_cpu(this_cpu,
4091 sched_group_cpus(group));
4092
4093 /* Tally up the load of all CPUs in the group */
4094 avg_load = 0;
4095
4096 for_each_cpu(i, sched_group_cpus(group)) {
4097 /* Bias balancing toward cpus of our domain */
4098 if (local_group)
4099 load = source_load(i, load_idx);
4100 else
4101 load = target_load(i, load_idx);
4102
4103 avg_load += load;
4104 }
4105
4106 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004107 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004108
4109 if (local_group) {
4110 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004111 } else if (avg_load < min_load) {
4112 min_load = avg_load;
4113 idlest = group;
4114 }
4115 } while (group = group->next, group != sd->groups);
4116
4117 if (!idlest || 100*this_load < imbalance*min_load)
4118 return NULL;
4119 return idlest;
4120}
4121
4122/*
4123 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4124 */
4125static int
4126find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4127{
4128 unsigned long load, min_load = ULONG_MAX;
4129 int idlest = -1;
4130 int i;
4131
4132 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004133 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004134 load = weighted_cpuload(i);
4135
4136 if (load < min_load || (load == min_load && i == this_cpu)) {
4137 min_load = load;
4138 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004139 }
4140 }
4141
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004142 return idlest;
4143}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004144
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004145/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004146 * Try and locate an idle CPU in the sched_domain.
4147 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004148static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004149{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004150 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004151 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004152 int i = task_cpu(p);
4153
4154 if (idle_cpu(target))
4155 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004156
4157 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004158 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004159 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004160 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4161 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004162
4163 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004164 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004165 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004166 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004167 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004168 sg = sd->groups;
4169 do {
4170 if (!cpumask_intersects(sched_group_cpus(sg),
4171 tsk_cpus_allowed(p)))
4172 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004173
Linus Torvalds37407ea2012-09-16 12:29:43 -07004174 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004175 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004176 goto next;
4177 }
4178
4179 target = cpumask_first_and(sched_group_cpus(sg),
4180 tsk_cpus_allowed(p));
4181 goto done;
4182next:
4183 sg = sg->next;
4184 } while (sg != sd->groups);
4185 }
4186done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004187 return target;
4188}
4189
4190/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004191 * sched_balance_self: balance the current task (running on cpu) in domains
4192 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4193 * SD_BALANCE_EXEC.
4194 *
4195 * Balance, ie. select the least loaded group.
4196 *
4197 * Returns the target CPU number, or the same CPU if no balancing is needed.
4198 *
4199 * preempt must be disabled.
4200 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004201static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004202select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004203{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004204 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004205 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004206 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004207 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004208 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004209
Peter Zijlstra29baa742012-04-23 12:11:21 +02004210 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004211 return prev_cpu;
4212
Peter Zijlstra0763a662009-09-14 19:37:39 +02004213 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004214 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004215 want_affine = 1;
4216 new_cpu = prev_cpu;
4217 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004218
Peter Zijlstradce840a2011-04-07 14:09:50 +02004219 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004220 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004221 if (!(tmp->flags & SD_LOAD_BALANCE))
4222 continue;
4223
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004224 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004225 * If both cpu and prev_cpu are part of this domain,
4226 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004227 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004228 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4229 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4230 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004231 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004232 }
4233
Alex Shif03542a2012-07-26 08:55:34 +08004234 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004235 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004236 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004237
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004238 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004239 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004240 prev_cpu = cpu;
4241
4242 new_cpu = select_idle_sibling(p, prev_cpu);
4243 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004244 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004245
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004246 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004247 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004248 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004249 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004250
Peter Zijlstra0763a662009-09-14 19:37:39 +02004251 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004252 sd = sd->child;
4253 continue;
4254 }
4255
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004256 if (sd_flag & SD_BALANCE_WAKE)
4257 load_idx = sd->wake_idx;
4258
4259 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004260 if (!group) {
4261 sd = sd->child;
4262 continue;
4263 }
4264
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004265 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004266 if (new_cpu == -1 || new_cpu == cpu) {
4267 /* Now try balancing at a lower domain level of cpu */
4268 sd = sd->child;
4269 continue;
4270 }
4271
4272 /* Now try balancing at a lower domain level of new_cpu */
4273 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004274 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004275 sd = NULL;
4276 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004277 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004278 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004279 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004280 sd = tmp;
4281 }
4282 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004283 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004284unlock:
4285 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004286
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004287 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004288}
Paul Turner0a74bef2012-10-04 13:18:30 +02004289
4290/*
4291 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4292 * cfs_rq_of(p) references at time of call are still valid and identify the
4293 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4294 * other assumptions, including the state of rq->lock, should be made.
4295 */
4296static void
4297migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4298{
Paul Turneraff3e492012-10-04 13:18:30 +02004299 struct sched_entity *se = &p->se;
4300 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4301
4302 /*
4303 * Load tracking: accumulate removed load so that it can be processed
4304 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4305 * to blocked load iff they have a positive decay-count. It can never
4306 * be negative here since on-rq tasks have decay-count == 0.
4307 */
4308 if (se->avg.decay_count) {
4309 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004310 atomic_long_add(se->avg.load_avg_contrib,
4311 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004312 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004313}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004314#endif /* CONFIG_SMP */
4315
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004316static unsigned long
4317wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004318{
4319 unsigned long gran = sysctl_sched_wakeup_granularity;
4320
4321 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004322 * Since its curr running now, convert the gran from real-time
4323 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004324 *
4325 * By using 'se' instead of 'curr' we penalize light tasks, so
4326 * they get preempted easier. That is, if 'se' < 'curr' then
4327 * the resulting gran will be larger, therefore penalizing the
4328 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4329 * be smaller, again penalizing the lighter task.
4330 *
4331 * This is especially important for buddies when the leftmost
4332 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004333 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004334 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004335}
4336
4337/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004338 * Should 'se' preempt 'curr'.
4339 *
4340 * |s1
4341 * |s2
4342 * |s3
4343 * g
4344 * |<--->|c
4345 *
4346 * w(c, s1) = -1
4347 * w(c, s2) = 0
4348 * w(c, s3) = 1
4349 *
4350 */
4351static int
4352wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4353{
4354 s64 gran, vdiff = curr->vruntime - se->vruntime;
4355
4356 if (vdiff <= 0)
4357 return -1;
4358
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004359 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004360 if (vdiff > gran)
4361 return 1;
4362
4363 return 0;
4364}
4365
Peter Zijlstra02479092008-11-04 21:25:10 +01004366static void set_last_buddy(struct sched_entity *se)
4367{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004368 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4369 return;
4370
4371 for_each_sched_entity(se)
4372 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004373}
4374
4375static void set_next_buddy(struct sched_entity *se)
4376{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004377 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4378 return;
4379
4380 for_each_sched_entity(se)
4381 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004382}
4383
Rik van Rielac53db52011-02-01 09:51:03 -05004384static void set_skip_buddy(struct sched_entity *se)
4385{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004386 for_each_sched_entity(se)
4387 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004388}
4389
Peter Zijlstra464b7522008-10-24 11:06:15 +02004390/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004391 * Preempt the current task with a newly woken task if needed:
4392 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004393static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004394{
4395 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004396 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004397 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004398 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004399 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004400
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004401 if (unlikely(se == pse))
4402 return;
4403
Paul Turner5238cdd2011-07-21 09:43:37 -07004404 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004405 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004406 * unconditionally check_prempt_curr() after an enqueue (which may have
4407 * lead to a throttle). This both saves work and prevents false
4408 * next-buddy nomination below.
4409 */
4410 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4411 return;
4412
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004413 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004414 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004415 next_buddy_marked = 1;
4416 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004417
Bharata B Raoaec0a512008-08-28 14:42:49 +05304418 /*
4419 * We can come here with TIF_NEED_RESCHED already set from new task
4420 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004421 *
4422 * Note: this also catches the edge-case of curr being in a throttled
4423 * group (e.g. via set_curr_task), since update_curr() (in the
4424 * enqueue of curr) will have resulted in resched being set. This
4425 * prevents us from potentially nominating it as a false LAST_BUDDY
4426 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304427 */
4428 if (test_tsk_need_resched(curr))
4429 return;
4430
Darren Harta2f5c9a2011-02-22 13:04:33 -08004431 /* Idle tasks are by definition preempted by non-idle tasks. */
4432 if (unlikely(curr->policy == SCHED_IDLE) &&
4433 likely(p->policy != SCHED_IDLE))
4434 goto preempt;
4435
Ingo Molnar91c234b2007-10-15 17:00:18 +02004436 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004437 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4438 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004439 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004440 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004441 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004442
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004443 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004444 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004445 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004446 if (wakeup_preempt_entity(se, pse) == 1) {
4447 /*
4448 * Bias pick_next to pick the sched entity that is
4449 * triggering this preemption.
4450 */
4451 if (!next_buddy_marked)
4452 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004453 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004454 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004455
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004456 return;
4457
4458preempt:
4459 resched_task(curr);
4460 /*
4461 * Only set the backward buddy when the current task is still
4462 * on the rq. This can happen when a wakeup gets interleaved
4463 * with schedule on the ->pre_schedule() or idle_balance()
4464 * point, either of which can * drop the rq lock.
4465 *
4466 * Also, during early boot the idle thread is in the fair class,
4467 * for obvious reasons its a bad idea to schedule back to it.
4468 */
4469 if (unlikely(!se->on_rq || curr == rq->idle))
4470 return;
4471
4472 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4473 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004474}
4475
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004476static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004477{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004478 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004479 struct cfs_rq *cfs_rq = &rq->cfs;
4480 struct sched_entity *se;
4481
Tim Blechmann36ace272009-11-24 11:55:45 +01004482 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004483 return NULL;
4484
4485 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004486 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004487 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004488 cfs_rq = group_cfs_rq(se);
4489 } while (cfs_rq);
4490
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004491 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004492 if (hrtick_enabled(rq))
4493 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004494
4495 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004496}
4497
4498/*
4499 * Account for a descheduled task:
4500 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004501static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004502{
4503 struct sched_entity *se = &prev->se;
4504 struct cfs_rq *cfs_rq;
4505
4506 for_each_sched_entity(se) {
4507 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004508 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004509 }
4510}
4511
Rik van Rielac53db52011-02-01 09:51:03 -05004512/*
4513 * sched_yield() is very simple
4514 *
4515 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4516 */
4517static void yield_task_fair(struct rq *rq)
4518{
4519 struct task_struct *curr = rq->curr;
4520 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4521 struct sched_entity *se = &curr->se;
4522
4523 /*
4524 * Are we the only task in the tree?
4525 */
4526 if (unlikely(rq->nr_running == 1))
4527 return;
4528
4529 clear_buddies(cfs_rq, se);
4530
4531 if (curr->policy != SCHED_BATCH) {
4532 update_rq_clock(rq);
4533 /*
4534 * Update run-time statistics of the 'current'.
4535 */
4536 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004537 /*
4538 * Tell update_rq_clock() that we've just updated,
4539 * so we don't do microscopic update in schedule()
4540 * and double the fastpath cost.
4541 */
4542 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004543 }
4544
4545 set_skip_buddy(se);
4546}
4547
Mike Galbraithd95f4122011-02-01 09:50:51 -05004548static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4549{
4550 struct sched_entity *se = &p->se;
4551
Paul Turner5238cdd2011-07-21 09:43:37 -07004552 /* throttled hierarchies are not runnable */
4553 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004554 return false;
4555
4556 /* Tell the scheduler that we'd really like pse to run next. */
4557 set_next_buddy(se);
4558
Mike Galbraithd95f4122011-02-01 09:50:51 -05004559 yield_task_fair(rq);
4560
4561 return true;
4562}
4563
Peter Williams681f3e62007-10-24 18:23:51 +02004564#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004565/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004566 * Fair scheduling class load-balancing methods.
4567 *
4568 * BASICS
4569 *
4570 * The purpose of load-balancing is to achieve the same basic fairness the
4571 * per-cpu scheduler provides, namely provide a proportional amount of compute
4572 * time to each task. This is expressed in the following equation:
4573 *
4574 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4575 *
4576 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4577 * W_i,0 is defined as:
4578 *
4579 * W_i,0 = \Sum_j w_i,j (2)
4580 *
4581 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4582 * is derived from the nice value as per prio_to_weight[].
4583 *
4584 * The weight average is an exponential decay average of the instantaneous
4585 * weight:
4586 *
4587 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4588 *
4589 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4590 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4591 * can also include other factors [XXX].
4592 *
4593 * To achieve this balance we define a measure of imbalance which follows
4594 * directly from (1):
4595 *
4596 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4597 *
4598 * We them move tasks around to minimize the imbalance. In the continuous
4599 * function space it is obvious this converges, in the discrete case we get
4600 * a few fun cases generally called infeasible weight scenarios.
4601 *
4602 * [XXX expand on:
4603 * - infeasible weights;
4604 * - local vs global optima in the discrete case. ]
4605 *
4606 *
4607 * SCHED DOMAINS
4608 *
4609 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4610 * for all i,j solution, we create a tree of cpus that follows the hardware
4611 * topology where each level pairs two lower groups (or better). This results
4612 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4613 * tree to only the first of the previous level and we decrease the frequency
4614 * of load-balance at each level inv. proportional to the number of cpus in
4615 * the groups.
4616 *
4617 * This yields:
4618 *
4619 * log_2 n 1 n
4620 * \Sum { --- * --- * 2^i } = O(n) (5)
4621 * i = 0 2^i 2^i
4622 * `- size of each group
4623 * | | `- number of cpus doing load-balance
4624 * | `- freq
4625 * `- sum over all levels
4626 *
4627 * Coupled with a limit on how many tasks we can migrate every balance pass,
4628 * this makes (5) the runtime complexity of the balancer.
4629 *
4630 * An important property here is that each CPU is still (indirectly) connected
4631 * to every other cpu in at most O(log n) steps:
4632 *
4633 * The adjacency matrix of the resulting graph is given by:
4634 *
4635 * log_2 n
4636 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4637 * k = 0
4638 *
4639 * And you'll find that:
4640 *
4641 * A^(log_2 n)_i,j != 0 for all i,j (7)
4642 *
4643 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4644 * The task movement gives a factor of O(m), giving a convergence complexity
4645 * of:
4646 *
4647 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4648 *
4649 *
4650 * WORK CONSERVING
4651 *
4652 * In order to avoid CPUs going idle while there's still work to do, new idle
4653 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4654 * tree itself instead of relying on other CPUs to bring it work.
4655 *
4656 * This adds some complexity to both (5) and (8) but it reduces the total idle
4657 * time.
4658 *
4659 * [XXX more?]
4660 *
4661 *
4662 * CGROUPS
4663 *
4664 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4665 *
4666 * s_k,i
4667 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4668 * S_k
4669 *
4670 * Where
4671 *
4672 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4673 *
4674 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4675 *
4676 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4677 * property.
4678 *
4679 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4680 * rewrite all of this once again.]
4681 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004682
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004683static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4684
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004685enum fbq_type { regular, remote, all };
4686
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004687#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004688#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004689#define LBF_DST_PINNED 0x04
4690#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004691
4692struct lb_env {
4693 struct sched_domain *sd;
4694
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004695 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304696 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004697
4698 int dst_cpu;
4699 struct rq *dst_rq;
4700
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304701 struct cpumask *dst_grpmask;
4702 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004703 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004704 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004705 /* The set of CPUs under consideration for load-balancing */
4706 struct cpumask *cpus;
4707
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004708 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004709
4710 unsigned int loop;
4711 unsigned int loop_break;
4712 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004713
4714 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004715};
4716
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004717/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004718 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004719 * Both runqueues must be locked.
4720 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004721static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004722{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004723 deactivate_task(env->src_rq, p, 0);
4724 set_task_cpu(p, env->dst_cpu);
4725 activate_task(env->dst_rq, p, 0);
4726 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004727}
4728
4729/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004730 * Is this task likely cache-hot:
4731 */
4732static int
4733task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4734{
4735 s64 delta;
4736
4737 if (p->sched_class != &fair_sched_class)
4738 return 0;
4739
4740 if (unlikely(p->policy == SCHED_IDLE))
4741 return 0;
4742
4743 /*
4744 * Buddy candidates are cache hot:
4745 */
4746 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4747 (&p->se == cfs_rq_of(&p->se)->next ||
4748 &p->se == cfs_rq_of(&p->se)->last))
4749 return 1;
4750
4751 if (sysctl_sched_migration_cost == -1)
4752 return 1;
4753 if (sysctl_sched_migration_cost == 0)
4754 return 0;
4755
4756 delta = now - p->se.exec_start;
4757
4758 return delta < (s64)sysctl_sched_migration_cost;
4759}
4760
Mel Gorman3a7053b2013-10-07 11:29:00 +01004761#ifdef CONFIG_NUMA_BALANCING
4762/* Returns true if the destination node has incurred more faults */
4763static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4764{
4765 int src_nid, dst_nid;
4766
4767 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4768 !(env->sd->flags & SD_NUMA)) {
4769 return false;
4770 }
4771
4772 src_nid = cpu_to_node(env->src_cpu);
4773 dst_nid = cpu_to_node(env->dst_cpu);
4774
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004775 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004776 return false;
4777
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004778 /* Always encourage migration to the preferred node. */
4779 if (dst_nid == p->numa_preferred_nid)
4780 return true;
4781
Rik van Riel887c2902013-10-07 11:29:31 +01004782 /* If both task and group weight improve, this move is a winner. */
4783 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4784 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004785 return true;
4786
4787 return false;
4788}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004789
4790
4791static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4792{
4793 int src_nid, dst_nid;
4794
4795 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4796 return false;
4797
4798 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4799 return false;
4800
4801 src_nid = cpu_to_node(env->src_cpu);
4802 dst_nid = cpu_to_node(env->dst_cpu);
4803
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004804 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004805 return false;
4806
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004807 /* Migrating away from the preferred node is always bad. */
4808 if (src_nid == p->numa_preferred_nid)
4809 return true;
4810
Rik van Riel887c2902013-10-07 11:29:31 +01004811 /* If either task or group weight get worse, don't do it. */
4812 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4813 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004814 return true;
4815
4816 return false;
4817}
4818
Mel Gorman3a7053b2013-10-07 11:29:00 +01004819#else
4820static inline bool migrate_improves_locality(struct task_struct *p,
4821 struct lb_env *env)
4822{
4823 return false;
4824}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004825
4826static inline bool migrate_degrades_locality(struct task_struct *p,
4827 struct lb_env *env)
4828{
4829 return false;
4830}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004831#endif
4832
Peter Zijlstra029632f2011-10-25 10:00:11 +02004833/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004834 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4835 */
4836static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004837int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004838{
4839 int tsk_cache_hot = 0;
4840 /*
4841 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004842 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004844 * 3) running (obviously), or
4845 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004846 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004847 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4848 return 0;
4849
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004850 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004851 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304852
Lucas De Marchi41acab82010-03-10 23:37:45 -03004853 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304854
Peter Zijlstra62633222013-08-19 12:41:09 +02004855 env->flags |= LBF_SOME_PINNED;
4856
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304857 /*
4858 * Remember if this task can be migrated to any other cpu in
4859 * our sched_group. We may want to revisit it if we couldn't
4860 * meet load balance goals by pulling other tasks on src_cpu.
4861 *
4862 * Also avoid computing new_dst_cpu if we have already computed
4863 * one in current iteration.
4864 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004865 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304866 return 0;
4867
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004868 /* Prevent to re-select dst_cpu via env's cpus */
4869 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4870 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004871 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004872 env->new_dst_cpu = cpu;
4873 break;
4874 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304875 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004876
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004877 return 0;
4878 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304879
4880 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004881 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004882
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004883 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004884 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004885 return 0;
4886 }
4887
4888 /*
4889 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004890 * 1) destination numa is preferred
4891 * 2) task is cache cold, or
4892 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004893 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004894 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004895 if (!tsk_cache_hot)
4896 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004897
4898 if (migrate_improves_locality(p, env)) {
4899#ifdef CONFIG_SCHEDSTATS
4900 if (tsk_cache_hot) {
4901 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4902 schedstat_inc(p, se.statistics.nr_forced_migrations);
4903 }
4904#endif
4905 return 1;
4906 }
4907
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004908 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004909 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004910
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004911 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004912 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004913 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004914 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004915
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004916 return 1;
4917 }
4918
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004919 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4920 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004921}
4922
Peter Zijlstra897c3952009-12-17 17:45:42 +01004923/*
4924 * move_one_task tries to move exactly one task from busiest to this_rq, as
4925 * part of active balancing operations within "domain".
4926 * Returns 1 if successful and 0 otherwise.
4927 *
4928 * Called with both runqueues locked.
4929 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004930static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004931{
4932 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004933
Peter Zijlstra367456c2012-02-20 21:49:09 +01004934 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004935 if (!can_migrate_task(p, env))
4936 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004937
Peter Zijlstra367456c2012-02-20 21:49:09 +01004938 move_task(p, env);
4939 /*
4940 * Right now, this is only the second place move_task()
4941 * is called, so we can safely collect move_task()
4942 * stats here rather than inside move_task().
4943 */
4944 schedstat_inc(env->sd, lb_gained[env->idle]);
4945 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004946 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004947 return 0;
4948}
4949
Peter Zijlstraeb953082012-04-17 13:38:40 +02004950static const unsigned int sched_nr_migrate_break = 32;
4951
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004952/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004953 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004954 * this_rq, as part of a balancing operation within domain "sd".
4955 * Returns 1 if successful and 0 otherwise.
4956 *
4957 * Called with both runqueues locked.
4958 */
4959static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004960{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004961 struct list_head *tasks = &env->src_rq->cfs_tasks;
4962 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004963 unsigned long load;
4964 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004965
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004966 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004967 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004968
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004969 while (!list_empty(tasks)) {
4970 p = list_first_entry(tasks, struct task_struct, se.group_node);
4971
Peter Zijlstra367456c2012-02-20 21:49:09 +01004972 env->loop++;
4973 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004974 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004975 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004976
4977 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004978 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004979 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004980 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004981 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004982 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004983
Joonsoo Kimd3198082013-04-23 17:27:40 +09004984 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004985 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004986
Peter Zijlstra367456c2012-02-20 21:49:09 +01004987 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004988
Peter Zijlstraeb953082012-04-17 13:38:40 +02004989 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004990 goto next;
4991
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004992 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004993 goto next;
4994
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004995 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004996 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004997 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004998
4999#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005000 /*
5001 * NEWIDLE balancing is a source of latency, so preemptible
5002 * kernels will stop after the first task is pulled to minimize
5003 * the critical section.
5004 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005005 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005006 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005007#endif
5008
Peter Zijlstraee00e662009-12-17 17:25:20 +01005009 /*
5010 * We only want to steal up to the prescribed amount of
5011 * weighted load.
5012 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005013 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005014 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005015
Peter Zijlstra367456c2012-02-20 21:49:09 +01005016 continue;
5017next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005018 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005019 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005020
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005021 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005022 * Right now, this is one of only two places move_task() is called,
5023 * so we can safely collect move_task() stats here rather than
5024 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005025 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005026 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005027
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005028 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005029}
5030
Peter Zijlstra230059de2009-12-17 17:47:12 +01005031#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005032/*
5033 * update tg->load_weight by folding this cpu's load_avg
5034 */
Paul Turner48a16752012-10-04 13:18:31 +02005035static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005036{
Paul Turner48a16752012-10-04 13:18:31 +02005037 struct sched_entity *se = tg->se[cpu];
5038 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005039
Paul Turner48a16752012-10-04 13:18:31 +02005040 /* throttled entities do not contribute to load */
5041 if (throttled_hierarchy(cfs_rq))
5042 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005043
Paul Turneraff3e492012-10-04 13:18:30 +02005044 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005045
Paul Turner82958362012-10-04 13:18:31 +02005046 if (se) {
5047 update_entity_load_avg(se, 1);
5048 /*
5049 * We pivot on our runnable average having decayed to zero for
5050 * list removal. This generally implies that all our children
5051 * have also been removed (modulo rounding error or bandwidth
5052 * control); however, such cases are rare and we can fix these
5053 * at enqueue.
5054 *
5055 * TODO: fix up out-of-order children on enqueue.
5056 */
5057 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5058 list_del_leaf_cfs_rq(cfs_rq);
5059 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005060 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005061 update_rq_runnable_avg(rq, rq->nr_running);
5062 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005063}
5064
Paul Turner48a16752012-10-04 13:18:31 +02005065static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005066{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005067 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005068 struct cfs_rq *cfs_rq;
5069 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005070
Paul Turner48a16752012-10-04 13:18:31 +02005071 raw_spin_lock_irqsave(&rq->lock, flags);
5072 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005073 /*
5074 * Iterates the task_group tree in a bottom up fashion, see
5075 * list_add_leaf_cfs_rq() for details.
5076 */
Paul Turner64660c82011-07-21 09:43:36 -07005077 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005078 /*
5079 * Note: We may want to consider periodically releasing
5080 * rq->lock about these updates so that creating many task
5081 * groups does not result in continually extending hold time.
5082 */
5083 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005084 }
Paul Turner48a16752012-10-04 13:18:31 +02005085
5086 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005087}
5088
Peter Zijlstra9763b672011-07-13 13:09:25 +02005089/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005090 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005091 * This needs to be done in a top-down fashion because the load of a child
5092 * group is a fraction of its parents load.
5093 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005094static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005095{
Vladimir Davydov68520792013-07-15 17:49:19 +04005096 struct rq *rq = rq_of(cfs_rq);
5097 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005098 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005099 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005100
Vladimir Davydov68520792013-07-15 17:49:19 +04005101 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005102 return;
5103
Vladimir Davydov68520792013-07-15 17:49:19 +04005104 cfs_rq->h_load_next = NULL;
5105 for_each_sched_entity(se) {
5106 cfs_rq = cfs_rq_of(se);
5107 cfs_rq->h_load_next = se;
5108 if (cfs_rq->last_h_load_update == now)
5109 break;
5110 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005111
Vladimir Davydov68520792013-07-15 17:49:19 +04005112 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005113 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005114 cfs_rq->last_h_load_update = now;
5115 }
5116
5117 while ((se = cfs_rq->h_load_next) != NULL) {
5118 load = cfs_rq->h_load;
5119 load = div64_ul(load * se->avg.load_avg_contrib,
5120 cfs_rq->runnable_load_avg + 1);
5121 cfs_rq = group_cfs_rq(se);
5122 cfs_rq->h_load = load;
5123 cfs_rq->last_h_load_update = now;
5124 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005125}
5126
Peter Zijlstra367456c2012-02-20 21:49:09 +01005127static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005128{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005129 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005130
Vladimir Davydov68520792013-07-15 17:49:19 +04005131 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005132 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5133 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005134}
5135#else
Paul Turner48a16752012-10-04 13:18:31 +02005136static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005137{
5138}
5139
Peter Zijlstra367456c2012-02-20 21:49:09 +01005140static unsigned long task_h_load(struct task_struct *p)
5141{
Alex Shia003a252013-06-20 10:18:51 +08005142 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005143}
5144#endif
5145
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005146/********** Helpers for find_busiest_group ************************/
5147/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005148 * sg_lb_stats - stats of a sched_group required for load_balancing
5149 */
5150struct sg_lb_stats {
5151 unsigned long avg_load; /*Avg load across the CPUs of the group */
5152 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005153 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005154 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005155 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005156 unsigned int sum_nr_running; /* Nr tasks running in the group */
5157 unsigned int group_capacity;
5158 unsigned int idle_cpus;
5159 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005160 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005161 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005162#ifdef CONFIG_NUMA_BALANCING
5163 unsigned int nr_numa_running;
5164 unsigned int nr_preferred_running;
5165#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005166};
5167
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005168/*
5169 * sd_lb_stats - Structure to store the statistics of a sched_domain
5170 * during load balancing.
5171 */
5172struct sd_lb_stats {
5173 struct sched_group *busiest; /* Busiest group in this sd */
5174 struct sched_group *local; /* Local group in this sd */
5175 unsigned long total_load; /* Total load of all groups in sd */
5176 unsigned long total_pwr; /* Total power of all groups in sd */
5177 unsigned long avg_load; /* Average load across all groups in sd */
5178
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005179 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005180 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005181};
5182
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005183static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5184{
5185 /*
5186 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5187 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5188 * We must however clear busiest_stat::avg_load because
5189 * update_sd_pick_busiest() reads this before assignment.
5190 */
5191 *sds = (struct sd_lb_stats){
5192 .busiest = NULL,
5193 .local = NULL,
5194 .total_load = 0UL,
5195 .total_pwr = 0UL,
5196 .busiest_stat = {
5197 .avg_load = 0UL,
5198 },
5199 };
5200}
5201
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005202/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005203 * get_sd_load_idx - Obtain the load index for a given sched domain.
5204 * @sd: The sched_domain whose load_idx is to be obtained.
5205 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005206 *
5207 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208 */
5209static inline int get_sd_load_idx(struct sched_domain *sd,
5210 enum cpu_idle_type idle)
5211{
5212 int load_idx;
5213
5214 switch (idle) {
5215 case CPU_NOT_IDLE:
5216 load_idx = sd->busy_idx;
5217 break;
5218
5219 case CPU_NEWLY_IDLE:
5220 load_idx = sd->newidle_idx;
5221 break;
5222 default:
5223 load_idx = sd->idle_idx;
5224 break;
5225 }
5226
5227 return load_idx;
5228}
5229
Li Zefan15f803c2013-03-05 16:07:11 +08005230static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005231{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005232 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005233}
5234
5235unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5236{
5237 return default_scale_freq_power(sd, cpu);
5238}
5239
Li Zefan15f803c2013-03-05 16:07:11 +08005240static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005241{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005242 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005243 unsigned long smt_gain = sd->smt_gain;
5244
5245 smt_gain /= weight;
5246
5247 return smt_gain;
5248}
5249
5250unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5251{
5252 return default_scale_smt_power(sd, cpu);
5253}
5254
Li Zefan15f803c2013-03-05 16:07:11 +08005255static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005256{
5257 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005258 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005260 /*
5261 * Since we're reading these variables without serialization make sure
5262 * we read them once before doing sanity checks on them.
5263 */
5264 age_stamp = ACCESS_ONCE(rq->age_stamp);
5265 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005266
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005267 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005268
5269 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005270 /* Ensures that power won't end up being negative */
5271 available = 0;
5272 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005273 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005274 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005275
Nikhil Rao1399fa72011-05-18 10:09:39 -07005276 if (unlikely((s64)total < SCHED_POWER_SCALE))
5277 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005278
Nikhil Rao1399fa72011-05-18 10:09:39 -07005279 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280
5281 return div_u64(available, total);
5282}
5283
5284static void update_cpu_power(struct sched_domain *sd, int cpu)
5285{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005286 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005287 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005288 struct sched_group *sdg = sd->groups;
5289
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005290 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5291 if (sched_feat(ARCH_POWER))
5292 power *= arch_scale_smt_power(sd, cpu);
5293 else
5294 power *= default_scale_smt_power(sd, cpu);
5295
Nikhil Rao1399fa72011-05-18 10:09:39 -07005296 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005297 }
5298
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005299 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005300
5301 if (sched_feat(ARCH_POWER))
5302 power *= arch_scale_freq_power(sd, cpu);
5303 else
5304 power *= default_scale_freq_power(sd, cpu);
5305
Nikhil Rao1399fa72011-05-18 10:09:39 -07005306 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005307
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005308 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005309 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005310
5311 if (!power)
5312 power = 1;
5313
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005314 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005315 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005316}
5317
Peter Zijlstra029632f2011-10-25 10:00:11 +02005318void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005319{
5320 struct sched_domain *child = sd->child;
5321 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005322 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005323 unsigned long interval;
5324
5325 interval = msecs_to_jiffies(sd->balance_interval);
5326 interval = clamp(interval, 1UL, max_load_balance_interval);
5327 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328
5329 if (!child) {
5330 update_cpu_power(sd, cpu);
5331 return;
5332 }
5333
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005334 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005335
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005336 if (child->flags & SD_OVERLAP) {
5337 /*
5338 * SD_OVERLAP domains cannot assume that child groups
5339 * span the current group.
5340 */
5341
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005342 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5343 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5344
5345 power_orig += sg->sgp->power_orig;
5346 power += sg->sgp->power;
5347 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005348 } else {
5349 /*
5350 * !SD_OVERLAP domains can assume that child groups
5351 * span the current group.
5352 */
5353
5354 group = child->groups;
5355 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005356 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005357 power += group->sgp->power;
5358 group = group->next;
5359 } while (group != child->groups);
5360 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005361
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005362 sdg->sgp->power_orig = power_orig;
5363 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005364}
5365
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005366/*
5367 * Try and fix up capacity for tiny siblings, this is needed when
5368 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5369 * which on its own isn't powerful enough.
5370 *
5371 * See update_sd_pick_busiest() and check_asym_packing().
5372 */
5373static inline int
5374fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5375{
5376 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005377 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005378 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005379 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005380 return 0;
5381
5382 /*
5383 * If ~90% of the cpu_power is still there, we're good.
5384 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005385 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005386 return 1;
5387
5388 return 0;
5389}
5390
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005391/*
5392 * Group imbalance indicates (and tries to solve) the problem where balancing
5393 * groups is inadequate due to tsk_cpus_allowed() constraints.
5394 *
5395 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5396 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5397 * Something like:
5398 *
5399 * { 0 1 2 3 } { 4 5 6 7 }
5400 * * * * *
5401 *
5402 * If we were to balance group-wise we'd place two tasks in the first group and
5403 * two tasks in the second group. Clearly this is undesired as it will overload
5404 * cpu 3 and leave one of the cpus in the second group unused.
5405 *
5406 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005407 * by noticing the lower domain failed to reach balance and had difficulty
5408 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005409 *
5410 * When this is so detected; this group becomes a candidate for busiest; see
5411 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005412 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005413 * to create an effective group imbalance.
5414 *
5415 * This is a somewhat tricky proposition since the next run might not find the
5416 * group imbalance and decide the groups need to be balanced again. A most
5417 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005418 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005419
Peter Zijlstra62633222013-08-19 12:41:09 +02005420static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005421{
Peter Zijlstra62633222013-08-19 12:41:09 +02005422 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005423}
5424
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005425/*
5426 * Compute the group capacity.
5427 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005428 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5429 * first dividing out the smt factor and computing the actual number of cores
5430 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005431 */
5432static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5433{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005434 unsigned int capacity, smt, cpus;
5435 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005436
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005437 power = group->sgp->power;
5438 power_orig = group->sgp->power_orig;
5439 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005440
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005441 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5442 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5443 capacity = cpus / smt; /* cores */
5444
5445 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005446 if (!capacity)
5447 capacity = fix_small_capacity(env->sd, group);
5448
5449 return capacity;
5450}
5451
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005452/**
5453 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5454 * @env: The load balancing environment.
5455 * @group: sched_group whose statistics are to be updated.
5456 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5457 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005458 * @sgs: variable to hold the statistics for this group.
5459 */
5460static inline void update_sg_lb_stats(struct lb_env *env,
5461 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005462 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005463{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005464 unsigned long nr_running;
5465 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005466 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005467
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005468 memset(sgs, 0, sizeof(*sgs));
5469
Michael Wangb94031302012-07-12 16:10:13 +08005470 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005471 struct rq *rq = cpu_rq(i);
5472
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005473 nr_running = rq->nr_running;
5474
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005475 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005476 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005477 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005478 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005479 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005480
5481 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005482 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005483#ifdef CONFIG_NUMA_BALANCING
5484 sgs->nr_numa_running += rq->nr_numa_running;
5485 sgs->nr_preferred_running += rq->nr_preferred_running;
5486#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005487 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005488 if (idle_cpu(i))
5489 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005490 }
5491
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005492 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005493 sgs->group_power = group->sgp->power;
5494 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005495
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005496 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005497 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005498
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005499 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005500
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005501 sgs->group_imb = sg_imbalanced(group);
5502 sgs->group_capacity = sg_capacity(env, group);
5503
Nikhil Raofab47622010-10-15 13:12:29 -07005504 if (sgs->group_capacity > sgs->sum_nr_running)
5505 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005506}
5507
5508/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005509 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005510 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005511 * @sds: sched_domain statistics
5512 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005513 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005514 *
5515 * Determine if @sg is a busier group than the previously selected
5516 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005517 *
5518 * Return: %true if @sg is a busier group than the previously selected
5519 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005520 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005521static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005522 struct sd_lb_stats *sds,
5523 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005524 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005525{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005526 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005527 return false;
5528
5529 if (sgs->sum_nr_running > sgs->group_capacity)
5530 return true;
5531
5532 if (sgs->group_imb)
5533 return true;
5534
5535 /*
5536 * ASYM_PACKING needs to move all the work to the lowest
5537 * numbered CPUs in the group, therefore mark all groups
5538 * higher than ourself as busy.
5539 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005540 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5541 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005542 if (!sds->busiest)
5543 return true;
5544
5545 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5546 return true;
5547 }
5548
5549 return false;
5550}
5551
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005552#ifdef CONFIG_NUMA_BALANCING
5553static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5554{
5555 if (sgs->sum_nr_running > sgs->nr_numa_running)
5556 return regular;
5557 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5558 return remote;
5559 return all;
5560}
5561
5562static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5563{
5564 if (rq->nr_running > rq->nr_numa_running)
5565 return regular;
5566 if (rq->nr_running > rq->nr_preferred_running)
5567 return remote;
5568 return all;
5569}
5570#else
5571static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5572{
5573 return all;
5574}
5575
5576static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5577{
5578 return regular;
5579}
5580#endif /* CONFIG_NUMA_BALANCING */
5581
Michael Neuling532cb4c2010-06-08 14:57:02 +10005582/**
Hui Kang461819a2011-10-11 23:00:59 -04005583 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005584 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005585 * @balance: Should we balance.
5586 * @sds: variable to hold the statistics for this sched_domain.
5587 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005588static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005590 struct sched_domain *child = env->sd->child;
5591 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005592 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005593 int load_idx, prefer_sibling = 0;
5594
5595 if (child && child->flags & SD_PREFER_SIBLING)
5596 prefer_sibling = 1;
5597
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005598 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005599
5600 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005601 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602 int local_group;
5603
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005604 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005605 if (local_group) {
5606 sds->local = sg;
5607 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005608
5609 if (env->idle != CPU_NEWLY_IDLE ||
5610 time_after_eq(jiffies, sg->sgp->next_update))
5611 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005612 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005613
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005614 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005615
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005616 if (local_group)
5617 goto next_group;
5618
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005619 /*
5620 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005621 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005622 * and move all the excess tasks away. We lower the capacity
5623 * of a group only if the local group has the capacity to fit
5624 * these excess tasks, i.e. nr_running < group_capacity. The
5625 * extra check prevents the case where you always pull from the
5626 * heaviest group when it is already under-utilized (possible
5627 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005628 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005629 if (prefer_sibling && sds->local &&
5630 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005631 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005632
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005633 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005634 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005635 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005636 }
5637
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005638next_group:
5639 /* Now, start updating sd_lb_stats */
5640 sds->total_load += sgs->group_load;
5641 sds->total_pwr += sgs->group_power;
5642
Michael Neuling532cb4c2010-06-08 14:57:02 +10005643 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005644 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005645
5646 if (env->sd->flags & SD_NUMA)
5647 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005648}
5649
Michael Neuling532cb4c2010-06-08 14:57:02 +10005650/**
5651 * check_asym_packing - Check to see if the group is packed into the
5652 * sched doman.
5653 *
5654 * This is primarily intended to used at the sibling level. Some
5655 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5656 * case of POWER7, it can move to lower SMT modes only when higher
5657 * threads are idle. When in lower SMT modes, the threads will
5658 * perform better since they share less core resources. Hence when we
5659 * have idle threads, we want them to be the higher ones.
5660 *
5661 * This packing function is run on idle threads. It checks to see if
5662 * the busiest CPU in this domain (core in the P7 case) has a higher
5663 * CPU number than the packing function is being run on. Here we are
5664 * assuming lower CPU number will be equivalent to lower a SMT thread
5665 * number.
5666 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005667 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005668 * this CPU. The amount of the imbalance is returned in *imbalance.
5669 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005670 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005671 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005672 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005673static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005674{
5675 int busiest_cpu;
5676
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005677 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005678 return 0;
5679
5680 if (!sds->busiest)
5681 return 0;
5682
5683 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005684 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005685 return 0;
5686
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005687 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005688 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5689 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005690
Michael Neuling532cb4c2010-06-08 14:57:02 +10005691 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005692}
5693
5694/**
5695 * fix_small_imbalance - Calculate the minor imbalance that exists
5696 * amongst the groups of a sched_domain, during
5697 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005698 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005699 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005700 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005701static inline
5702void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005703{
5704 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5705 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005706 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005707 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005708
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005709 local = &sds->local_stat;
5710 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005711
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005712 if (!local->sum_nr_running)
5713 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5714 else if (busiest->load_per_task > local->load_per_task)
5715 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005716
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005717 scaled_busy_load_per_task =
5718 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005719 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005720
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005721 if (busiest->avg_load + scaled_busy_load_per_task >=
5722 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005723 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005724 return;
5725 }
5726
5727 /*
5728 * OK, we don't have enough imbalance to justify moving tasks,
5729 * however we may be able to increase total CPU power used by
5730 * moving them.
5731 */
5732
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005733 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005734 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005735 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005736 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005737 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005738
5739 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005740 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005741 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005742 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005743 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005744 min(busiest->load_per_task,
5745 busiest->avg_load - tmp);
5746 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005747
5748 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005749 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005750 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005751 tmp = (busiest->avg_load * busiest->group_power) /
5752 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005753 } else {
5754 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005755 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005756 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005757 pwr_move += local->group_power *
5758 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005759 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005760
5761 /* Move if we gain throughput */
5762 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005763 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005764}
5765
5766/**
5767 * calculate_imbalance - Calculate the amount of imbalance present within the
5768 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005769 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005770 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005771 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005772static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005773{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005774 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005775 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005776
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005777 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005778 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005779
5780 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005781 /*
5782 * In the group_imb case we cannot rely on group-wide averages
5783 * to ensure cpu-load equilibrium, look at wider averages. XXX
5784 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005785 busiest->load_per_task =
5786 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005787 }
5788
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005789 /*
5790 * In the presence of smp nice balancing, certain scenarios can have
5791 * max load less than avg load(as we skip the groups at or below
5792 * its cpu_power, while calculating max_load..)
5793 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005794 if (busiest->avg_load <= sds->avg_load ||
5795 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005796 env->imbalance = 0;
5797 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005798 }
5799
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005800 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005801 /*
5802 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005803 * Except of course for the group_imb case, since then we might
5804 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005805 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005806 load_above_capacity =
5807 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005808
Nikhil Rao1399fa72011-05-18 10:09:39 -07005809 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005810 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005811 }
5812
5813 /*
5814 * We're trying to get all the cpus to the average_load, so we don't
5815 * want to push ourselves above the average load, nor do we wish to
5816 * reduce the max loaded cpu below the average load. At the same time,
5817 * we also don't want to reduce the group load below the group capacity
5818 * (so that we can implement power-savings policies etc). Thus we look
5819 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005820 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005821 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005822
5823 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005824 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005825 max_pull * busiest->group_power,
5826 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005827 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005828
5829 /*
5830 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005831 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005832 * a think about bumping its value to force at least one task to be
5833 * moved
5834 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005835 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005836 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005837}
Nikhil Raofab47622010-10-15 13:12:29 -07005838
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005839/******* find_busiest_group() helpers end here *********************/
5840
5841/**
5842 * find_busiest_group - Returns the busiest group within the sched_domain
5843 * if there is an imbalance. If there isn't an imbalance, and
5844 * the user has opted for power-savings, it returns a group whose
5845 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5846 * such a group exists.
5847 *
5848 * Also calculates the amount of weighted load which should be moved
5849 * to restore balance.
5850 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005851 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005852 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005853 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005854 * - If no imbalance and user has opted for power-savings balance,
5855 * return the least loaded group whose CPUs can be
5856 * put to idle by rebalancing its tasks onto our group.
5857 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005858static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005859{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005860 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005861 struct sd_lb_stats sds;
5862
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005863 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005864
5865 /*
5866 * Compute the various statistics relavent for load balancing at
5867 * this level.
5868 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005869 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005870 local = &sds.local_stat;
5871 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005873 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5874 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005875 return sds.busiest;
5876
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005877 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005878 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005879 goto out_balanced;
5880
Nikhil Rao1399fa72011-05-18 10:09:39 -07005881 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005882
Peter Zijlstra866ab432011-02-21 18:56:47 +01005883 /*
5884 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005885 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005886 * isn't true due to cpus_allowed constraints and the like.
5887 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005888 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005889 goto force_balance;
5890
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005891 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005892 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5893 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005894 goto force_balance;
5895
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005896 /*
5897 * If the local group is more busy than the selected busiest group
5898 * don't try and pull any tasks.
5899 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005900 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901 goto out_balanced;
5902
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005903 /*
5904 * Don't pull any tasks if this group is already above the domain
5905 * average load.
5906 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005907 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005908 goto out_balanced;
5909
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005910 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005911 /*
5912 * This cpu is idle. If the busiest group load doesn't
5913 * have more tasks than the number of available cpu's and
5914 * there is no imbalance between this and busiest group
5915 * wrt to idle cpu's, it is balanced.
5916 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005917 if ((local->idle_cpus < busiest->idle_cpus) &&
5918 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005919 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005920 } else {
5921 /*
5922 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5923 * imbalance_pct to be conservative.
5924 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005925 if (100 * busiest->avg_load <=
5926 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005927 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005928 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005929
Nikhil Raofab47622010-10-15 13:12:29 -07005930force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005931 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005932 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933 return sds.busiest;
5934
5935out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005936 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005937 return NULL;
5938}
5939
5940/*
5941 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5942 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005943static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005944 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005945{
5946 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005947 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005948 int i;
5949
Peter Zijlstra6906a402013-08-19 15:20:21 +02005950 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005951 unsigned long power, capacity, wl;
5952 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005953
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005954 rq = cpu_rq(i);
5955 rt = fbq_classify_rq(rq);
5956
5957 /*
5958 * We classify groups/runqueues into three groups:
5959 * - regular: there are !numa tasks
5960 * - remote: there are numa tasks that run on the 'wrong' node
5961 * - all: there is no distinction
5962 *
5963 * In order to avoid migrating ideally placed numa tasks,
5964 * ignore those when there's better options.
5965 *
5966 * If we ignore the actual busiest queue to migrate another
5967 * task, the next balance pass can still reduce the busiest
5968 * queue by moving tasks around inside the node.
5969 *
5970 * If we cannot move enough load due to this classification
5971 * the next pass will adjust the group classification and
5972 * allow migration of more tasks.
5973 *
5974 * Both cases only affect the total convergence complexity.
5975 */
5976 if (rt > env->fbq_type)
5977 continue;
5978
5979 power = power_of(i);
5980 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005981 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005982 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005983
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005984 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005985
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005986 /*
5987 * When comparing with imbalance, use weighted_cpuload()
5988 * which is not scaled with the cpu power.
5989 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005990 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005991 continue;
5992
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005993 /*
5994 * For the load comparisons with the other cpu's, consider
5995 * the weighted_cpuload() scaled with the cpu power, so that
5996 * the load can be moved away from the cpu that is potentially
5997 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005998 *
5999 * Thus we're looking for max(wl_i / power_i), crosswise
6000 * multiplication to rid ourselves of the division works out
6001 * to: wl_i * power_j > wl_j * power_i; where j is our
6002 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006003 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006004 if (wl * busiest_power > busiest_load * power) {
6005 busiest_load = wl;
6006 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006007 busiest = rq;
6008 }
6009 }
6010
6011 return busiest;
6012}
6013
6014/*
6015 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6016 * so long as it is large enough.
6017 */
6018#define MAX_PINNED_INTERVAL 512
6019
6020/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006021DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006022
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006023static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006024{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006025 struct sched_domain *sd = env->sd;
6026
6027 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006028
6029 /*
6030 * ASYM_PACKING needs to force migrate tasks from busy but
6031 * higher numbered CPUs in order to pack all tasks in the
6032 * lowest numbered CPUs.
6033 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006034 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006035 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006036 }
6037
6038 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6039}
6040
Tejun Heo969c7922010-05-06 18:49:21 +02006041static int active_load_balance_cpu_stop(void *data);
6042
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006043static int should_we_balance(struct lb_env *env)
6044{
6045 struct sched_group *sg = env->sd->groups;
6046 struct cpumask *sg_cpus, *sg_mask;
6047 int cpu, balance_cpu = -1;
6048
6049 /*
6050 * In the newly idle case, we will allow all the cpu's
6051 * to do the newly idle load balance.
6052 */
6053 if (env->idle == CPU_NEWLY_IDLE)
6054 return 1;
6055
6056 sg_cpus = sched_group_cpus(sg);
6057 sg_mask = sched_group_mask(sg);
6058 /* Try to find first idle cpu */
6059 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6060 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6061 continue;
6062
6063 balance_cpu = cpu;
6064 break;
6065 }
6066
6067 if (balance_cpu == -1)
6068 balance_cpu = group_balance_cpu(sg);
6069
6070 /*
6071 * First idle cpu or the first cpu(busiest) in this sched group
6072 * is eligible for doing load balancing at this and above domains.
6073 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006074 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006075}
6076
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006077/*
6078 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6079 * tasks if there is an imbalance.
6080 */
6081static int load_balance(int this_cpu, struct rq *this_rq,
6082 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006083 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006084{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306085 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006086 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006087 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006088 struct rq *busiest;
6089 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006090 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006092 struct lb_env env = {
6093 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006094 .dst_cpu = this_cpu,
6095 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306096 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006097 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006098 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006099 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006100 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006101 };
6102
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006103 /*
6104 * For NEWLY_IDLE load_balancing, we don't need to consider
6105 * other cpus in our group
6106 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006107 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006108 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006109
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006110 cpumask_copy(cpus, cpu_active_mask);
6111
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006112 schedstat_inc(sd, lb_count[idle]);
6113
6114redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006115 if (!should_we_balance(&env)) {
6116 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006117 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006118 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006119
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006120 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006121 if (!group) {
6122 schedstat_inc(sd, lb_nobusyg[idle]);
6123 goto out_balanced;
6124 }
6125
Michael Wangb94031302012-07-12 16:10:13 +08006126 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006127 if (!busiest) {
6128 schedstat_inc(sd, lb_nobusyq[idle]);
6129 goto out_balanced;
6130 }
6131
Michael Wang78feefc2012-08-06 16:41:59 +08006132 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006133
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006134 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006135
6136 ld_moved = 0;
6137 if (busiest->nr_running > 1) {
6138 /*
6139 * Attempt to move tasks. If find_busiest_group has found
6140 * an imbalance but busiest->nr_running <= 1, the group is
6141 * still unbalanced. ld_moved simply stays zero, so it is
6142 * correctly treated as an imbalance.
6143 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006144 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006145 env.src_cpu = busiest->cpu;
6146 env.src_rq = busiest;
6147 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006148
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006149more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006150 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006151 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306152
6153 /*
6154 * cur_ld_moved - load moved in current iteration
6155 * ld_moved - cumulative load moved across iterations
6156 */
6157 cur_ld_moved = move_tasks(&env);
6158 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006159 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006160 local_irq_restore(flags);
6161
6162 /*
6163 * some other cpu did the load balance for us.
6164 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306165 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6166 resched_cpu(env.dst_cpu);
6167
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006168 if (env.flags & LBF_NEED_BREAK) {
6169 env.flags &= ~LBF_NEED_BREAK;
6170 goto more_balance;
6171 }
6172
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306173 /*
6174 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6175 * us and move them to an alternate dst_cpu in our sched_group
6176 * where they can run. The upper limit on how many times we
6177 * iterate on same src_cpu is dependent on number of cpus in our
6178 * sched_group.
6179 *
6180 * This changes load balance semantics a bit on who can move
6181 * load to a given_cpu. In addition to the given_cpu itself
6182 * (or a ilb_cpu acting on its behalf where given_cpu is
6183 * nohz-idle), we now have balance_cpu in a position to move
6184 * load to given_cpu. In rare situations, this may cause
6185 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6186 * _independently_ and at _same_ time to move some load to
6187 * given_cpu) causing exceess load to be moved to given_cpu.
6188 * This however should not happen so much in practice and
6189 * moreover subsequent load balance cycles should correct the
6190 * excess load moved.
6191 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006192 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306193
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006194 /* Prevent to re-select dst_cpu via env's cpus */
6195 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6196
Michael Wang78feefc2012-08-06 16:41:59 +08006197 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306198 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006199 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306200 env.loop = 0;
6201 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006202
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306203 /*
6204 * Go back to "more_balance" rather than "redo" since we
6205 * need to continue with same src_cpu.
6206 */
6207 goto more_balance;
6208 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006209
Peter Zijlstra62633222013-08-19 12:41:09 +02006210 /*
6211 * We failed to reach balance because of affinity.
6212 */
6213 if (sd_parent) {
6214 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6215
6216 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6217 *group_imbalance = 1;
6218 } else if (*group_imbalance)
6219 *group_imbalance = 0;
6220 }
6221
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006222 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006223 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006224 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306225 if (!cpumask_empty(cpus)) {
6226 env.loop = 0;
6227 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306229 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006230 goto out_balanced;
6231 }
6232 }
6233
6234 if (!ld_moved) {
6235 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006236 /*
6237 * Increment the failure counter only on periodic balance.
6238 * We do not want newidle balance, which can be very
6239 * frequent, pollute the failure counter causing
6240 * excessive cache_hot migrations and active balances.
6241 */
6242 if (idle != CPU_NEWLY_IDLE)
6243 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006244
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006245 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006246 raw_spin_lock_irqsave(&busiest->lock, flags);
6247
Tejun Heo969c7922010-05-06 18:49:21 +02006248 /* don't kick the active_load_balance_cpu_stop,
6249 * if the curr task on busiest cpu can't be
6250 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006251 */
6252 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006253 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006254 raw_spin_unlock_irqrestore(&busiest->lock,
6255 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006256 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006257 goto out_one_pinned;
6258 }
6259
Tejun Heo969c7922010-05-06 18:49:21 +02006260 /*
6261 * ->active_balance synchronizes accesses to
6262 * ->active_balance_work. Once set, it's cleared
6263 * only after active load balance is finished.
6264 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006265 if (!busiest->active_balance) {
6266 busiest->active_balance = 1;
6267 busiest->push_cpu = this_cpu;
6268 active_balance = 1;
6269 }
6270 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006271
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006272 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006273 stop_one_cpu_nowait(cpu_of(busiest),
6274 active_load_balance_cpu_stop, busiest,
6275 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006276 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006277
6278 /*
6279 * We've kicked active balancing, reset the failure
6280 * counter.
6281 */
6282 sd->nr_balance_failed = sd->cache_nice_tries+1;
6283 }
6284 } else
6285 sd->nr_balance_failed = 0;
6286
6287 if (likely(!active_balance)) {
6288 /* We were unbalanced, so reset the balancing interval */
6289 sd->balance_interval = sd->min_interval;
6290 } else {
6291 /*
6292 * If we've begun active balancing, start to back off. This
6293 * case may not be covered by the all_pinned logic if there
6294 * is only 1 task on the busy runqueue (because we don't call
6295 * move_tasks).
6296 */
6297 if (sd->balance_interval < sd->max_interval)
6298 sd->balance_interval *= 2;
6299 }
6300
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006301 goto out;
6302
6303out_balanced:
6304 schedstat_inc(sd, lb_balanced[idle]);
6305
6306 sd->nr_balance_failed = 0;
6307
6308out_one_pinned:
6309 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006310 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006311 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006312 (sd->balance_interval < sd->max_interval))
6313 sd->balance_interval *= 2;
6314
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006315 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006316out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006317 return ld_moved;
6318}
6319
6320/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321 * idle_balance is called by schedule() if this_cpu is about to become
6322 * idle. Attempts to pull tasks from other CPUs.
6323 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006324void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006325{
6326 struct sched_domain *sd;
6327 int pulled_task = 0;
6328 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006329 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006330
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006331 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006332
6333 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6334 return;
6335
Peter Zijlstraf492e122009-12-23 15:29:42 +01006336 /*
6337 * Drop the rq->lock, but keep IRQ/preempt disabled.
6338 */
6339 raw_spin_unlock(&this_rq->lock);
6340
Paul Turner48a16752012-10-04 13:18:31 +02006341 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006342 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006343 for_each_domain(this_cpu, sd) {
6344 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006345 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006346 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006347
6348 if (!(sd->flags & SD_LOAD_BALANCE))
6349 continue;
6350
Jason Low9bd721c2013-09-13 11:26:52 -07006351 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6352 break;
6353
Peter Zijlstraf492e122009-12-23 15:29:42 +01006354 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006355 t0 = sched_clock_cpu(this_cpu);
6356
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006357 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006358 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006359 sd, CPU_NEWLY_IDLE,
6360 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006361
6362 domain_cost = sched_clock_cpu(this_cpu) - t0;
6363 if (domain_cost > sd->max_newidle_lb_cost)
6364 sd->max_newidle_lb_cost = domain_cost;
6365
6366 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006367 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006368
6369 interval = msecs_to_jiffies(sd->balance_interval);
6370 if (time_after(next_balance, sd->last_balance + interval))
6371 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006372 if (pulled_task) {
6373 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006374 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006375 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006376 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006377 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006378
6379 raw_spin_lock(&this_rq->lock);
6380
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006381 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6382 /*
6383 * We are going idle. next_balance may be set based on
6384 * a busy processor. So reset next_balance.
6385 */
6386 this_rq->next_balance = next_balance;
6387 }
Jason Low9bd721c2013-09-13 11:26:52 -07006388
6389 if (curr_cost > this_rq->max_idle_balance_cost)
6390 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006391}
6392
6393/*
Tejun Heo969c7922010-05-06 18:49:21 +02006394 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6395 * running tasks off the busiest CPU onto idle CPUs. It requires at
6396 * least 1 task to be running on each physical CPU where possible, and
6397 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006398 */
Tejun Heo969c7922010-05-06 18:49:21 +02006399static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006400{
Tejun Heo969c7922010-05-06 18:49:21 +02006401 struct rq *busiest_rq = data;
6402 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006403 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006404 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006405 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006406
6407 raw_spin_lock_irq(&busiest_rq->lock);
6408
6409 /* make sure the requested cpu hasn't gone down in the meantime */
6410 if (unlikely(busiest_cpu != smp_processor_id() ||
6411 !busiest_rq->active_balance))
6412 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006413
6414 /* Is there any task to move? */
6415 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006416 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006417
6418 /*
6419 * This condition is "impossible", if it occurs
6420 * we need to fix it. Originally reported by
6421 * Bjorn Helgaas on a 128-cpu setup.
6422 */
6423 BUG_ON(busiest_rq == target_rq);
6424
6425 /* move a task from busiest_rq to target_rq */
6426 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006427
6428 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006429 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006430 for_each_domain(target_cpu, sd) {
6431 if ((sd->flags & SD_LOAD_BALANCE) &&
6432 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6433 break;
6434 }
6435
6436 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006437 struct lb_env env = {
6438 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006439 .dst_cpu = target_cpu,
6440 .dst_rq = target_rq,
6441 .src_cpu = busiest_rq->cpu,
6442 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006443 .idle = CPU_IDLE,
6444 };
6445
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006446 schedstat_inc(sd, alb_count);
6447
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006448 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006449 schedstat_inc(sd, alb_pushed);
6450 else
6451 schedstat_inc(sd, alb_failed);
6452 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006453 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006454 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006455out_unlock:
6456 busiest_rq->active_balance = 0;
6457 raw_spin_unlock_irq(&busiest_rq->lock);
6458 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006459}
6460
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006461#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006462/*
6463 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006464 * - When one of the busy CPUs notice that there may be an idle rebalancing
6465 * needed, they will kick the idle load balancer, which then does idle
6466 * load balancing for all the idle CPUs.
6467 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006468static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006469 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006470 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006471 unsigned long next_balance; /* in jiffy units */
6472} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006473
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006474static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006475{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006476 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006477
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006478 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6479 return ilb;
6480
6481 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006482}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006483
6484/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006485 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6486 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6487 * CPU (if there is one).
6488 */
6489static void nohz_balancer_kick(int cpu)
6490{
6491 int ilb_cpu;
6492
6493 nohz.next_balance++;
6494
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006495 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006496
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006497 if (ilb_cpu >= nr_cpu_ids)
6498 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006499
Suresh Siddhacd490c52011-12-06 11:26:34 -08006500 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006501 return;
6502 /*
6503 * Use smp_send_reschedule() instead of resched_cpu().
6504 * This way we generate a sched IPI on the target cpu which
6505 * is idle. And the softirq performing nohz idle load balance
6506 * will be run before returning from the IPI.
6507 */
6508 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006509 return;
6510}
6511
Alex Shic1cc0172012-09-10 15:10:58 +08006512static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006513{
6514 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6515 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6516 atomic_dec(&nohz.nr_cpus);
6517 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6518 }
6519}
6520
Suresh Siddha69e1e812011-12-01 17:07:33 -08006521static inline void set_cpu_sd_state_busy(void)
6522{
6523 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006524
Suresh Siddha69e1e812011-12-01 17:07:33 -08006525 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006526 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006527
6528 if (!sd || !sd->nohz_idle)
6529 goto unlock;
6530 sd->nohz_idle = 0;
6531
6532 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006533 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006534unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006535 rcu_read_unlock();
6536}
6537
6538void set_cpu_sd_state_idle(void)
6539{
6540 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006541
Suresh Siddha69e1e812011-12-01 17:07:33 -08006542 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006543 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006544
6545 if (!sd || sd->nohz_idle)
6546 goto unlock;
6547 sd->nohz_idle = 1;
6548
6549 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006550 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006551unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006552 rcu_read_unlock();
6553}
6554
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006555/*
Alex Shic1cc0172012-09-10 15:10:58 +08006556 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006557 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006558 */
Alex Shic1cc0172012-09-10 15:10:58 +08006559void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006560{
Suresh Siddha71325962012-01-19 18:28:57 -08006561 /*
6562 * If this cpu is going down, then nothing needs to be done.
6563 */
6564 if (!cpu_active(cpu))
6565 return;
6566
Alex Shic1cc0172012-09-10 15:10:58 +08006567 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6568 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006569
Alex Shic1cc0172012-09-10 15:10:58 +08006570 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6571 atomic_inc(&nohz.nr_cpus);
6572 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006573}
Suresh Siddha71325962012-01-19 18:28:57 -08006574
Paul Gortmaker0db06282013-06-19 14:53:51 -04006575static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006576 unsigned long action, void *hcpu)
6577{
6578 switch (action & ~CPU_TASKS_FROZEN) {
6579 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006580 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006581 return NOTIFY_OK;
6582 default:
6583 return NOTIFY_DONE;
6584 }
6585}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006586#endif
6587
6588static DEFINE_SPINLOCK(balancing);
6589
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006590/*
6591 * Scale the max load_balance interval with the number of CPUs in the system.
6592 * This trades load-balance latency on larger machines for less cross talk.
6593 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006594void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006595{
6596 max_load_balance_interval = HZ*num_online_cpus()/10;
6597}
6598
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006599/*
6600 * It checks each scheduling domain to see if it is due to be balanced,
6601 * and initiates a balancing operation if so.
6602 *
Libinb9b08532013-04-01 19:14:01 +08006603 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006604 */
6605static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6606{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006607 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006608 struct rq *rq = cpu_rq(cpu);
6609 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006610 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006611 /* Earliest time when we have to do rebalance again */
6612 unsigned long next_balance = jiffies + 60*HZ;
6613 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006614 int need_serialize, need_decay = 0;
6615 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006616
Paul Turner48a16752012-10-04 13:18:31 +02006617 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006618
Peter Zijlstradce840a2011-04-07 14:09:50 +02006619 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006620 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006621 /*
6622 * Decay the newidle max times here because this is a regular
6623 * visit to all the domains. Decay ~1% per second.
6624 */
6625 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6626 sd->max_newidle_lb_cost =
6627 (sd->max_newidle_lb_cost * 253) / 256;
6628 sd->next_decay_max_lb_cost = jiffies + HZ;
6629 need_decay = 1;
6630 }
6631 max_cost += sd->max_newidle_lb_cost;
6632
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006633 if (!(sd->flags & SD_LOAD_BALANCE))
6634 continue;
6635
Jason Lowf48627e2013-09-13 11:26:53 -07006636 /*
6637 * Stop the load balance at this level. There is another
6638 * CPU in our sched group which is doing load balancing more
6639 * actively.
6640 */
6641 if (!continue_balancing) {
6642 if (need_decay)
6643 continue;
6644 break;
6645 }
6646
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006647 interval = sd->balance_interval;
6648 if (idle != CPU_IDLE)
6649 interval *= sd->busy_factor;
6650
6651 /* scale ms to jiffies */
6652 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006653 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654
6655 need_serialize = sd->flags & SD_SERIALIZE;
6656
6657 if (need_serialize) {
6658 if (!spin_trylock(&balancing))
6659 goto out;
6660 }
6661
6662 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006663 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006664 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006665 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006666 * env->dst_cpu, so we can't know our idle
6667 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006668 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006669 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006670 }
6671 sd->last_balance = jiffies;
6672 }
6673 if (need_serialize)
6674 spin_unlock(&balancing);
6675out:
6676 if (time_after(next_balance, sd->last_balance + interval)) {
6677 next_balance = sd->last_balance + interval;
6678 update_next_balance = 1;
6679 }
Jason Lowf48627e2013-09-13 11:26:53 -07006680 }
6681 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006682 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006683 * Ensure the rq-wide value also decays but keep it at a
6684 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006685 */
Jason Lowf48627e2013-09-13 11:26:53 -07006686 rq->max_idle_balance_cost =
6687 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006688 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006689 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006690
6691 /*
6692 * next_balance will be updated only when there is a need.
6693 * When the cpu is attached to null domain for ex, it will not be
6694 * updated.
6695 */
6696 if (likely(update_next_balance))
6697 rq->next_balance = next_balance;
6698}
6699
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006700#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006701/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006702 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006703 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6704 */
6705static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6706{
6707 struct rq *this_rq = cpu_rq(this_cpu);
6708 struct rq *rq;
6709 int balance_cpu;
6710
Suresh Siddha1c792db2011-12-01 17:07:32 -08006711 if (idle != CPU_IDLE ||
6712 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6713 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006714
6715 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006716 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006717 continue;
6718
6719 /*
6720 * If this cpu gets work to do, stop the load balancing
6721 * work being done for other cpus. Next load
6722 * balancing owner will pick it up.
6723 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006724 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006725 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006726
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006727 rq = cpu_rq(balance_cpu);
6728
6729 raw_spin_lock_irq(&rq->lock);
6730 update_rq_clock(rq);
6731 update_idle_cpu_load(rq);
6732 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006733
6734 rebalance_domains(balance_cpu, CPU_IDLE);
6735
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006736 if (time_after(this_rq->next_balance, rq->next_balance))
6737 this_rq->next_balance = rq->next_balance;
6738 }
6739 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006740end:
6741 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006742}
6743
6744/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006745 * Current heuristic for kicking the idle load balancer in the presence
6746 * of an idle cpu is the system.
6747 * - This rq has more than one task.
6748 * - At any scheduler domain level, this cpu's scheduler group has multiple
6749 * busy cpu's exceeding the group's power.
6750 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6751 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006752 */
6753static inline int nohz_kick_needed(struct rq *rq, int cpu)
6754{
6755 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006756 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006757
Suresh Siddha1c792db2011-12-01 17:07:32 -08006758 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006759 return 0;
6760
Suresh Siddha1c792db2011-12-01 17:07:32 -08006761 /*
6762 * We may be recently in ticked or tickless idle mode. At the first
6763 * busy tick after returning from idle, we will update the busy stats.
6764 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006765 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006766 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006767
6768 /*
6769 * None are in tickless mode and hence no need for NOHZ idle load
6770 * balancing.
6771 */
6772 if (likely(!atomic_read(&nohz.nr_cpus)))
6773 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006774
6775 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006776 return 0;
6777
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006778 if (rq->nr_running >= 2)
6779 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006780
Peter Zijlstra067491b2011-12-07 14:32:08 +01006781 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006782 for_each_domain(cpu, sd) {
6783 struct sched_group *sg = sd->groups;
6784 struct sched_group_power *sgp = sg->sgp;
6785 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006786
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006787 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006788 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006789
6790 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6791 && (cpumask_first_and(nohz.idle_cpus_mask,
6792 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006793 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006794
6795 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6796 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006797 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006798 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006799 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006800
6801need_kick_unlock:
6802 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006803need_kick:
6804 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006805}
6806#else
6807static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6808#endif
6809
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006810/*
6811 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006812 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006813 */
6814static void run_rebalance_domains(struct softirq_action *h)
6815{
6816 int this_cpu = smp_processor_id();
6817 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006818 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006819 CPU_IDLE : CPU_NOT_IDLE;
6820
6821 rebalance_domains(this_cpu, idle);
6822
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006823 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006824 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006825 * balancing on behalf of the other idle cpus whose ticks are
6826 * stopped.
6827 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006828 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006829}
6830
6831static inline int on_null_domain(int cpu)
6832{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006833 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006834}
6835
6836/*
6837 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006838 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006839void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006840{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006841 /* Don't need to rebalance while attached to NULL domain */
6842 if (time_after_eq(jiffies, rq->next_balance) &&
6843 likely(!on_null_domain(cpu)))
6844 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006845#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006846 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006847 nohz_balancer_kick(cpu);
6848#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006849}
6850
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006851static void rq_online_fair(struct rq *rq)
6852{
6853 update_sysctl();
6854}
6855
6856static void rq_offline_fair(struct rq *rq)
6857{
6858 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006859
6860 /* Ensure any throttled groups are reachable by pick_next_task */
6861 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006862}
6863
Dhaval Giani55e12e52008-06-24 23:39:43 +05306864#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006865
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006866/*
6867 * scheduler tick hitting a task of our scheduling class:
6868 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006869static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006870{
6871 struct cfs_rq *cfs_rq;
6872 struct sched_entity *se = &curr->se;
6873
6874 for_each_sched_entity(se) {
6875 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006876 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006877 }
Ben Segall18bf2802012-10-04 12:51:20 +02006878
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006879 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006880 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006881
Ben Segall18bf2802012-10-04 12:51:20 +02006882 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006883}
6884
6885/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006886 * called on fork with the child task as argument from the parent's context
6887 * - child not yet on the tasklist
6888 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006889 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006890static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006891{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006892 struct cfs_rq *cfs_rq;
6893 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006894 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006895 struct rq *rq = this_rq();
6896 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006897
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006898 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006899
Peter Zijlstra861d0342010-08-19 13:31:43 +02006900 update_rq_clock(rq);
6901
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006902 cfs_rq = task_cfs_rq(current);
6903 curr = cfs_rq->curr;
6904
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006905 /*
6906 * Not only the cpu but also the task_group of the parent might have
6907 * been changed after parent->se.parent,cfs_rq were copied to
6908 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6909 * of child point to valid ones.
6910 */
6911 rcu_read_lock();
6912 __set_task_cpu(p, this_cpu);
6913 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006914
Ting Yang7109c442007-08-28 12:53:24 +02006915 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006916
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006917 if (curr)
6918 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006919 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006920
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006921 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006922 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006923 * Upon rescheduling, sched_class::put_prev_task() will place
6924 * 'current' within the tree based on its new key value.
6925 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006926 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306927 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006928 }
6929
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006930 se->vruntime -= cfs_rq->min_vruntime;
6931
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006932 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006933}
6934
Steven Rostedtcb469842008-01-25 21:08:22 +01006935/*
6936 * Priority of the task has changed. Check to see if we preempt
6937 * the current task.
6938 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006939static void
6940prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006941{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006942 if (!p->se.on_rq)
6943 return;
6944
Steven Rostedtcb469842008-01-25 21:08:22 +01006945 /*
6946 * Reschedule if we are currently running on this runqueue and
6947 * our priority decreased, or if we are not currently running on
6948 * this runqueue and our priority is higher than the current's
6949 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006950 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006951 if (p->prio > oldprio)
6952 resched_task(rq->curr);
6953 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006954 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006955}
6956
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006957static void switched_from_fair(struct rq *rq, struct task_struct *p)
6958{
6959 struct sched_entity *se = &p->se;
6960 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6961
6962 /*
6963 * Ensure the task's vruntime is normalized, so that when its
6964 * switched back to the fair class the enqueue_entity(.flags=0) will
6965 * do the right thing.
6966 *
6967 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6968 * have normalized the vruntime, if it was !on_rq, then only when
6969 * the task is sleeping will it still have non-normalized vruntime.
6970 */
6971 if (!se->on_rq && p->state != TASK_RUNNING) {
6972 /*
6973 * Fix up our vruntime so that the current sleep doesn't
6974 * cause 'unlimited' sleep bonus.
6975 */
6976 place_entity(cfs_rq, se, 0);
6977 se->vruntime -= cfs_rq->min_vruntime;
6978 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006979
Alex Shi141965c2013-06-26 13:05:39 +08006980#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006981 /*
6982 * Remove our load from contribution when we leave sched_fair
6983 * and ensure we don't carry in an old decay_count if we
6984 * switch back.
6985 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006986 if (se->avg.decay_count) {
6987 __synchronize_entity_decay(se);
6988 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006989 }
6990#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006991}
6992
Steven Rostedtcb469842008-01-25 21:08:22 +01006993/*
6994 * We switched to the sched_fair class.
6995 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006996static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006997{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006998 if (!p->se.on_rq)
6999 return;
7000
Steven Rostedtcb469842008-01-25 21:08:22 +01007001 /*
7002 * We were most likely switched from sched_rt, so
7003 * kick off the schedule if running, otherwise just see
7004 * if we can still preempt the current task.
7005 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007006 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007007 resched_task(rq->curr);
7008 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007009 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007010}
7011
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007012/* Account for a task changing its policy or group.
7013 *
7014 * This routine is mostly called to set cfs_rq->curr field when a task
7015 * migrates between groups/classes.
7016 */
7017static void set_curr_task_fair(struct rq *rq)
7018{
7019 struct sched_entity *se = &rq->curr->se;
7020
Paul Turnerec12cb72011-07-21 09:43:30 -07007021 for_each_sched_entity(se) {
7022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7023
7024 set_next_entity(cfs_rq, se);
7025 /* ensure bandwidth has been allocated on our new cfs_rq */
7026 account_cfs_rq_runtime(cfs_rq, 0);
7027 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007028}
7029
Peter Zijlstra029632f2011-10-25 10:00:11 +02007030void init_cfs_rq(struct cfs_rq *cfs_rq)
7031{
7032 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007033 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7034#ifndef CONFIG_64BIT
7035 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7036#endif
Alex Shi141965c2013-06-26 13:05:39 +08007037#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007038 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007039 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007040#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007041}
7042
Peter Zijlstra810b3812008-02-29 15:21:01 -05007043#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007044static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007045{
Paul Turneraff3e492012-10-04 13:18:30 +02007046 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007047 /*
7048 * If the task was not on the rq at the time of this cgroup movement
7049 * it must have been asleep, sleeping tasks keep their ->vruntime
7050 * absolute on their old rq until wakeup (needed for the fair sleeper
7051 * bonus in place_entity()).
7052 *
7053 * If it was on the rq, we've just 'preempted' it, which does convert
7054 * ->vruntime to a relative base.
7055 *
7056 * Make sure both cases convert their relative position when migrating
7057 * to another cgroup's rq. This does somewhat interfere with the
7058 * fair sleeper stuff for the first placement, but who cares.
7059 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007060 /*
7061 * When !on_rq, vruntime of the task has usually NOT been normalized.
7062 * But there are some cases where it has already been normalized:
7063 *
7064 * - Moving a forked child which is waiting for being woken up by
7065 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007066 * - Moving a task which has been woken up by try_to_wake_up() and
7067 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007068 *
7069 * To prevent boost or penalty in the new cfs_rq caused by delta
7070 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7071 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007072 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007073 on_rq = 1;
7074
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007075 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007076 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7077 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007078 if (!on_rq) {
7079 cfs_rq = cfs_rq_of(&p->se);
7080 p->se.vruntime += cfs_rq->min_vruntime;
7081#ifdef CONFIG_SMP
7082 /*
7083 * migrate_task_rq_fair() will have removed our previous
7084 * contribution, but we must synchronize for ongoing future
7085 * decay.
7086 */
7087 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7088 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7089#endif
7090 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007091}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007092
7093void free_fair_sched_group(struct task_group *tg)
7094{
7095 int i;
7096
7097 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7098
7099 for_each_possible_cpu(i) {
7100 if (tg->cfs_rq)
7101 kfree(tg->cfs_rq[i]);
7102 if (tg->se)
7103 kfree(tg->se[i]);
7104 }
7105
7106 kfree(tg->cfs_rq);
7107 kfree(tg->se);
7108}
7109
7110int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7111{
7112 struct cfs_rq *cfs_rq;
7113 struct sched_entity *se;
7114 int i;
7115
7116 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7117 if (!tg->cfs_rq)
7118 goto err;
7119 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7120 if (!tg->se)
7121 goto err;
7122
7123 tg->shares = NICE_0_LOAD;
7124
7125 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7126
7127 for_each_possible_cpu(i) {
7128 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7129 GFP_KERNEL, cpu_to_node(i));
7130 if (!cfs_rq)
7131 goto err;
7132
7133 se = kzalloc_node(sizeof(struct sched_entity),
7134 GFP_KERNEL, cpu_to_node(i));
7135 if (!se)
7136 goto err_free_rq;
7137
7138 init_cfs_rq(cfs_rq);
7139 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7140 }
7141
7142 return 1;
7143
7144err_free_rq:
7145 kfree(cfs_rq);
7146err:
7147 return 0;
7148}
7149
7150void unregister_fair_sched_group(struct task_group *tg, int cpu)
7151{
7152 struct rq *rq = cpu_rq(cpu);
7153 unsigned long flags;
7154
7155 /*
7156 * Only empty task groups can be destroyed; so we can speculatively
7157 * check on_list without danger of it being re-added.
7158 */
7159 if (!tg->cfs_rq[cpu]->on_list)
7160 return;
7161
7162 raw_spin_lock_irqsave(&rq->lock, flags);
7163 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7164 raw_spin_unlock_irqrestore(&rq->lock, flags);
7165}
7166
7167void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7168 struct sched_entity *se, int cpu,
7169 struct sched_entity *parent)
7170{
7171 struct rq *rq = cpu_rq(cpu);
7172
7173 cfs_rq->tg = tg;
7174 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007175 init_cfs_rq_runtime(cfs_rq);
7176
7177 tg->cfs_rq[cpu] = cfs_rq;
7178 tg->se[cpu] = se;
7179
7180 /* se could be NULL for root_task_group */
7181 if (!se)
7182 return;
7183
7184 if (!parent)
7185 se->cfs_rq = &rq->cfs;
7186 else
7187 se->cfs_rq = parent->my_q;
7188
7189 se->my_q = cfs_rq;
7190 update_load_set(&se->load, 0);
7191 se->parent = parent;
7192}
7193
7194static DEFINE_MUTEX(shares_mutex);
7195
7196int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7197{
7198 int i;
7199 unsigned long flags;
7200
7201 /*
7202 * We can't change the weight of the root cgroup.
7203 */
7204 if (!tg->se[0])
7205 return -EINVAL;
7206
7207 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7208
7209 mutex_lock(&shares_mutex);
7210 if (tg->shares == shares)
7211 goto done;
7212
7213 tg->shares = shares;
7214 for_each_possible_cpu(i) {
7215 struct rq *rq = cpu_rq(i);
7216 struct sched_entity *se;
7217
7218 se = tg->se[i];
7219 /* Propagate contribution to hierarchy */
7220 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007221
7222 /* Possible calls to update_curr() need rq clock */
7223 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007224 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007225 update_cfs_shares(group_cfs_rq(se));
7226 raw_spin_unlock_irqrestore(&rq->lock, flags);
7227 }
7228
7229done:
7230 mutex_unlock(&shares_mutex);
7231 return 0;
7232}
7233#else /* CONFIG_FAIR_GROUP_SCHED */
7234
7235void free_fair_sched_group(struct task_group *tg) { }
7236
7237int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7238{
7239 return 1;
7240}
7241
7242void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7243
7244#endif /* CONFIG_FAIR_GROUP_SCHED */
7245
Peter Zijlstra810b3812008-02-29 15:21:01 -05007246
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007247static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007248{
7249 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007250 unsigned int rr_interval = 0;
7251
7252 /*
7253 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7254 * idle runqueue:
7255 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007256 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007257 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007258
7259 return rr_interval;
7260}
7261
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007262/*
7263 * All the scheduling class methods:
7264 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007265const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007266 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007267 .enqueue_task = enqueue_task_fair,
7268 .dequeue_task = dequeue_task_fair,
7269 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007270 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007271
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007272 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007273
7274 .pick_next_task = pick_next_task_fair,
7275 .put_prev_task = put_prev_task_fair,
7276
Peter Williams681f3e62007-10-24 18:23:51 +02007277#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007278 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007279 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007280
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007281 .rq_online = rq_online_fair,
7282 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007283
7284 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007285#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007286
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007287 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007288 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007289 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007290
7291 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007292 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007293 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007294
Peter Williams0d721ce2009-09-21 01:31:53 +00007295 .get_rr_interval = get_rr_interval_fair,
7296
Peter Zijlstra810b3812008-02-29 15:21:01 -05007297#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007298 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007299#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007300};
7301
7302#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007303void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007304{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007305 struct cfs_rq *cfs_rq;
7306
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007307 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007308 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007309 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007310 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007311}
7312#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007313
7314__init void init_sched_fair_class(void)
7315{
7316#ifdef CONFIG_SMP
7317 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7318
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007319#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007320 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007321 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007322 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007323#endif
7324#endif /* SMP */
7325
7326}