blob: 8bf7081b1ec5201af66b08eaf3602177beef6368 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Peter Zijlstra029632f2011-10-25 10:00:11 +0200116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200220
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226
227/* cpu runqueue to which this cfs_rq is attached */
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
230 return cfs_rq->rq;
231}
232
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
235
Peter Zijlstra8f488942009-07-24 12:25:30 +0200236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
Peter Zijlstrab7581492008-04-19 19:45:00 +0200244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
Paul Turneraff3e492012-10-04 13:18:30 +0200265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200267
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800285
286 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200287 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200288 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
Peter Zijlstrab7581492008-04-19 19:45:00 +0200300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
Peter Zijlstra464b7522008-10-24 11:06:15 +0200319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
Peter Zijlstra8f488942009-07-24 12:25:30 +0200362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200368
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
372}
373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374#define entity_is_task(se) 1
375
Peter Zijlstrab7581492008-04-19 19:45:00 +0200376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200378
Peter Zijlstrab7581492008-04-19 19:45:00 +0200379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200380{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200381 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200382}
383
Peter Zijlstrab7581492008-04-19 19:45:00 +0200384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
Peter Zijlstrab7581492008-04-19 19:45:00 +0200406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
Peter Zijlstra464b7522008-10-24 11:06:15 +0200420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
Peter Zijlstrab7581492008-04-19 19:45:00 +0200425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
Andrei Epure1bf08232013-03-12 21:12:24 +0200434static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200435{
Andrei Epure1bf08232013-03-12 21:12:24 +0200436 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200437 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200438 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200439
Andrei Epure1bf08232013-03-12 21:12:24 +0200440 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200441}
442
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
Fabio Checconi54fdc582009-07-16 12:32:27 +0200452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100470 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
Andrei Epure1bf08232013-03-12 21:12:24 +0200476 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200478#ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200482}
483
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200484/*
485 * Enqueue an entity into the rb-tree:
486 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200487static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200488{
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200504 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200516 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200517 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200521}
522
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200523static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200524{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100530 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200531
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200533}
534
Peter Zijlstra029632f2011-10-25 10:00:11 +0200535struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200543}
544
Rik van Rielac53db52011-02-01 09:51:03 -0500545static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546{
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553}
554
555#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200556struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200557{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200559
Balbir Singh70eee742008-02-22 13:25:53 +0530560 if (!last)
561 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100562
563 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200564}
565
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200566/**************************************************************
567 * Scheduling class statistics methods:
568 */
569
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100570int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700571 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100572 loff_t *ppos)
573{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100575 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100583#define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588#undef WRT_SYSCTL
589
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 return 0;
591}
592#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200593
594/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200595 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200596 */
597static inline unsigned long
598calc_delta_fair(unsigned long delta, struct sched_entity *se)
599{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200602
603 return delta;
604}
605
606/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200607 * The idea is to set a period in which each task runs once.
608 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200609 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200614static u64 __sched_period(unsigned long nr_running)
615{
616 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100617 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200618
619 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100620 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200621 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200622 }
623
624 return period;
625}
626
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200627/*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200631 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200632 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200633static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200634{
Mike Galbraith0a582442009-01-02 12:16:42 +0100635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200636
Mike Galbraith0a582442009-01-02 12:16:42 +0100637 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100638 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200639 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200643
Mike Galbraith0a582442009-01-02 12:16:42 +0100644 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200645 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200653}
654
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200655/*
Andrei Epure660cc002013-03-11 12:03:20 +0200656 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200657 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200658 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200659 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200660static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200661{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200663}
664
665/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200670__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200672{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200673 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200674
Lucas De Marchi41acab82010-03-10 23:37:45 -0300675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200677
678 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200679 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100681
Ingo Molnare9acbff2007-10-15 17:00:04 +0200682 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200683 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200684}
685
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200686static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200687{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200688 struct sched_entity *curr = cfs_rq->curr;
Venkatesh Pallipadi305e6832010-10-04 17:03:21 -0700689 u64 now = rq_of(cfs_rq)->clock_task;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200700 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100701 if (!delta_exec)
702 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200703
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
Ingo Molnarf977bb42009-09-13 18:15:54 +0200710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100711 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700712 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100713 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200716}
717
718static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200720{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200722}
723
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724/*
725 * Task is being enqueued - update stats:
726 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200728{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200733 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200734 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200735}
736
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200739{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200745#ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200749 }
750#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300751 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200752}
753
754static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200761 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200762 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200763}
764
765/*
766 * We are picking a new current task - update its stats:
767 */
768static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200770{
771 /*
772 * We are starting a new run period:
773 */
Venkatesh Pallipadi305e6832010-10-04 17:03:21 -0700774 se->exec_start = rq_of(cfs_rq)->clock_task;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777/**************************************************
778 * Scheduling class queueing methods:
779 */
780
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200781#ifdef CONFIG_NUMA_BALANCING
782/*
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200783 * numa task sample period in ms
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200784 */
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200785unsigned int sysctl_numa_balancing_scan_period_min = 100;
Mel Gormanb8593bf2012-11-21 01:18:23 +0000786unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200788
789/* Portion of address space to scan in MB */
790unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200791
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200795static void task_numa_placement(struct task_struct *p)
796{
Hugh Dickins2832bc12012-12-19 17:42:16 -0800797 int seq;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200798
Hugh Dickins2832bc12012-12-19 17:42:16 -0800799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807}
808
809/*
810 * Got a PROT_NONE fault for a page on @node.
811 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000812void task_numa_fault(int node, int pages, bool migrated)
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200813{
814 struct task_struct *p = current;
815
Mel Gorman1a687c22012-11-22 11:16:36 +0000816 if (!sched_feat_numa(NUMA))
817 return;
818
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200819 /* FIXME: Allocate task-specific structure for placement policy here */
820
Mel Gormanfb003b82012-11-15 09:01:14 +0000821 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +0000824 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
Mel Gormanfb003b82012-11-15 09:01:14 +0000828
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200829 task_numa_placement(p);
830}
831
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200832static void reset_ptenuma_scan(struct task_struct *p)
833{
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836}
837
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200838/*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
842void task_numa_work(struct callback_head *work)
843{
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200847 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +0000848 unsigned long start, end;
849 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
865 /*
Mel Gorman5bca2302012-11-22 14:40:03 +0000866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
883 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
896 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
Mel Gormanfb003b82012-11-15 09:01:14 +0000906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
Mel Gormane14808b2012-11-19 10:59:15 +0000910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
Mel Gorman9f406042012-11-14 18:34:32 +0000918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200923
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200924 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +0000925 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200926 if (!vma) {
927 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +0000928 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200929 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200930 }
Mel Gorman9f406042012-11-14 18:34:32 +0000931 for (; vma; vma = vma->vm_next) {
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
Mel Gorman221392c2012-12-17 14:05:53 +0000936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200937 continue;
938
Mel Gorman9f406042012-11-14 18:34:32 +0000939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200944
Mel Gorman9f406042012-11-14 18:34:32 +0000945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200949 }
950
Mel Gorman9f406042012-11-14 18:34:32 +0000951out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +0000959 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200963}
964
965/*
966 * Drive the periodic memory faults..
967 */
968void task_tick_numa(struct rq *rq, struct task_struct *curr)
969{
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998}
999#else
1000static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001{
1002}
1003#endif /* CONFIG_NUMA_BALANCING */
1004
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001005static void
1006account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007{
1008 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001009 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001011#ifdef CONFIG_SMP
1012 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001014#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001015 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001016}
1017
1018static void
1019account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
1021 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001022 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001024 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301025 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001026 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001027}
1028
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001029#ifdef CONFIG_FAIR_GROUP_SCHED
1030# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001031static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032{
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
Paul Turner82958362012-10-04 13:18:31 +02001040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045}
1046
Paul Turner6d5ab292011-01-21 20:45:01 -08001047static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001048{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001049 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001050
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001051 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001052 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001053
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001054 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001055 if (tg_weight)
1056 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001065# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001066static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001067{
1068 return tg->shares;
1069}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001070# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001071static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001078 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001079 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085}
1086
Paul Turner82958362012-10-04 13:18:31 +02001087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
Paul Turner6d5ab292011-01-21 20:45:01 -08001089static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001090{
1091 struct task_group *tg;
1092 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001093 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001094
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001097 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001098 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001099#ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001103 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106}
1107#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001108static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001109{
1110}
1111#endif /* CONFIG_FAIR_GROUP_SCHED */
1112
Paul Turnerf4e26b12012-10-04 13:18:32 +02001113/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
Paul Turner9d85f212012-10-04 13:18:29 +02001115/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119#define LOAD_AVG_PERIOD 32
1120#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123/* Precomputed fixed inverse multiplies for multiplication by y^n */
1124static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131};
1132
1133/*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141};
1142
1143/*
Paul Turner9d85f212012-10-04 13:18:29 +02001144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147static __always_inline u64 decay_load(u64 val, u64 n)
1148{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001169 }
1170
Paul Turner5b51f2f2012-10-04 13:18:32 +02001171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174}
1175
1176/*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
1183static u32 __compute_runnable_contrib(u64 n)
1184{
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001202}
1203
1204/*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001236 u64 delta, periods;
1237 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001274
Paul Turner5b51f2f2012-10-04 13:18:32 +02001275 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001276
Paul Turner5b51f2f2012-10-04 13:18:32 +02001277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299}
1300
Paul Turner9ee474f2012-10-04 13:18:30 +02001301/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001302static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001303{
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001309 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001313
1314 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001315}
1316
Paul Turnerc566e8e2012-10-04 13:18:30 +02001317#ifdef CONFIG_FAIR_GROUP_SCHED
1318static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320{
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331}
Paul Turner8165e142012-10-04 13:18:31 +02001332
Paul Turnerbb17f652012-10-04 13:18:31 +02001333/*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339{
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352}
1353
Paul Turner8165e142012-10-04 13:18:31 +02001354static inline void __update_group_entity_contrib(struct sched_entity *se)
1355{
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001358 int runnable_avg;
1359
Paul Turner8165e142012-10-04 13:18:31 +02001360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
Paul Turner8165e142012-10-04 13:18:31 +02001394}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001395#else
1396static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02001398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02001400static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001401#endif
1402
Paul Turner8165e142012-10-04 13:18:31 +02001403static inline void __update_task_entity_contrib(struct sched_entity *se)
1404{
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411}
1412
Paul Turner2dac7542012-10-04 13:18:30 +02001413/* Compute the current contribution to load_avg by se, return any delta */
1414static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415{
1416 long old_contrib = se->avg.load_avg_contrib;
1417
Paul Turner8165e142012-10-04 13:18:31 +02001418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02001421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02001422 __update_group_entity_contrib(se);
1423 }
Paul Turner2dac7542012-10-04 13:18:30 +02001424
1425 return se->avg.load_avg_contrib - old_contrib;
1426}
1427
Paul Turner9ee474f2012-10-04 13:18:30 +02001428static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430{
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435}
1436
Paul Turnerf1b17282012-10-04 13:18:31 +02001437static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
Paul Turner9d85f212012-10-04 13:18:29 +02001439/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02001440static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02001442{
Paul Turner2dac7542012-10-04 13:18:30 +02001443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02001445 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02001446
Paul Turnerf1b17282012-10-04 13:18:31 +02001447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02001457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02001460
1461 if (!update_cfs_rq)
1462 return;
1463
Paul Turner2dac7542012-10-04 13:18:30 +02001464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02001466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468}
1469
1470/*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
Paul Turneraff3e492012-10-04 13:18:30 +02001474static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001475{
Paul Turnerf1b17282012-10-04 13:18:31 +02001476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02001480 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001481 return;
1482
Paul Turneraff3e492012-10-04 13:18:30 +02001483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001487
Paul Turneraff3e492012-10-04 13:18:30 +02001488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02001494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02001496}
Ben Segall18bf2802012-10-04 12:51:20 +02001497
1498static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499{
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02001501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02001502}
Paul Turner2dac7542012-10-04 13:18:30 +02001503
1504/* Add the load generated by se into cfs_rq's child load-average */
1505static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001506 struct sched_entity *se,
1507 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02001508{
Paul Turneraff3e492012-10-04 13:18:30 +02001509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
Paul Turneraff3e492012-10-04 13:18:30 +02001516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
Paul Turneraff3e492012-10-04 13:18:30 +02001536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02001539 update_entity_load_avg(se, 0);
1540 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001541
Paul Turner2dac7542012-10-04 13:18:30 +02001542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02001543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02001545}
1546
Paul Turner9ee474f2012-10-04 13:18:30 +02001547/*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
Paul Turner2dac7542012-10-04 13:18:30 +02001552static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001553 struct sched_entity *se,
1554 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02001555{
Paul Turner9ee474f2012-10-04 13:18:30 +02001556 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02001557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02001559
Paul Turner2dac7542012-10-04 13:18:30 +02001560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02001561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02001565}
Vincent Guittot642dbc32013-04-18 18:34:26 +02001566
1567/*
1568 * Update the rq's load with the elapsed running time before entering
1569 * idle. if the last scheduled task is not a CFS task, idle_enter will
1570 * be the only way to update the runnable statistic.
1571 */
1572void idle_enter_fair(struct rq *this_rq)
1573{
1574 update_rq_runnable_avg(this_rq, 1);
1575}
1576
1577/*
1578 * Update the rq's load with the elapsed idle time before a task is
1579 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1580 * be the only way to update the runnable statistic.
1581 */
1582void idle_exit_fair(struct rq *this_rq)
1583{
1584 update_rq_runnable_avg(this_rq, 0);
1585}
1586
Paul Turner9d85f212012-10-04 13:18:29 +02001587#else
Paul Turner9ee474f2012-10-04 13:18:30 +02001588static inline void update_entity_load_avg(struct sched_entity *se,
1589 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02001590static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001591static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001592 struct sched_entity *se,
1593 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001595 struct sched_entity *se,
1596 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02001597static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1598 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02001599#endif
1600
Ingo Molnar2396af62007-08-09 11:16:48 +02001601static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001602{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001603#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02001604 struct task_struct *tsk = NULL;
1605
1606 if (entity_is_task(se))
1607 tsk = task_of(se);
1608
Lucas De Marchi41acab82010-03-10 23:37:45 -03001609 if (se->statistics.sleep_start) {
1610 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001611
1612 if ((s64)delta < 0)
1613 delta = 0;
1614
Lucas De Marchi41acab82010-03-10 23:37:45 -03001615 if (unlikely(delta > se->statistics.sleep_max))
1616 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001617
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001618 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001619 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01001620
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001621 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02001622 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001623 trace_sched_stat_sleep(tsk, delta);
1624 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001625 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03001626 if (se->statistics.block_start) {
1627 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001628
1629 if ((s64)delta < 0)
1630 delta = 0;
1631
Lucas De Marchi41acab82010-03-10 23:37:45 -03001632 if (unlikely(delta > se->statistics.block_max))
1633 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001634
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001635 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001636 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02001637
Peter Zijlstrae4143142009-07-23 20:13:26 +02001638 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001639 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001640 se->statistics.iowait_sum += delta;
1641 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001642 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001643 }
1644
Andrew Vaginb781a602011-11-28 12:03:35 +03001645 trace_sched_stat_blocked(tsk, delta);
1646
Peter Zijlstrae4143142009-07-23 20:13:26 +02001647 /*
1648 * Blocking time is in units of nanosecs, so shift by
1649 * 20 to get a milliseconds-range estimation of the
1650 * amount of time that the task spent sleeping:
1651 */
1652 if (unlikely(prof_on == SLEEP_PROFILING)) {
1653 profile_hits(SLEEP_PROFILING,
1654 (void *)get_wchan(tsk),
1655 delta >> 20);
1656 }
1657 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02001658 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001659 }
1660#endif
1661}
1662
Peter Zijlstraddc97292007-10-15 17:00:10 +02001663static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1664{
1665#ifdef CONFIG_SCHED_DEBUG
1666 s64 d = se->vruntime - cfs_rq->min_vruntime;
1667
1668 if (d < 0)
1669 d = -d;
1670
1671 if (d > 3*sysctl_sched_latency)
1672 schedstat_inc(cfs_rq, nr_spread_over);
1673#endif
1674}
1675
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001676static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001677place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1678{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02001679 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001680
Peter Zijlstra2cb86002007-11-09 22:39:37 +01001681 /*
1682 * The 'current' period is already promised to the current tasks,
1683 * however the extra weight of the new task will slow them down a
1684 * little, place the new task so that it fits in the slot that
1685 * stays open at the end.
1686 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001687 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02001688 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001689
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001690 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01001691 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001692 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02001693
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001694 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001695 * Halve their sleep time's effect, to allow
1696 * for a gentler effect of sleepers:
1697 */
1698 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1699 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02001700
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001701 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001702 }
1703
Mike Galbraithb5d9d732009-09-08 11:12:28 +02001704 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05301705 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001706}
1707
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001708static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1709
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001710static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001712{
1713 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001714 * Update the normalized vruntime before updating min_vruntime
1715 * through callig update_curr().
1716 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001717 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001718 se->vruntime += cfs_rq->min_vruntime;
1719
1720 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001721 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001722 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02001723 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02001724 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001725 account_entity_enqueue(cfs_rq, se);
1726 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001727
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001728 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001729 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02001730 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02001731 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001732
Ingo Molnard2417e52007-08-09 11:16:47 +02001733 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02001734 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001735 if (se != cfs_rq->curr)
1736 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001737 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001738
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001739 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001740 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001741 check_enqueue_throttle(cfs_rq);
1742 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001743}
1744
Rik van Riel2c13c9192011-02-01 09:48:37 -05001745static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01001746{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001747 for_each_sched_entity(se) {
1748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749 if (cfs_rq->last == se)
1750 cfs_rq->last = NULL;
1751 else
1752 break;
1753 }
1754}
Peter Zijlstra2002c692008-11-11 11:52:33 +01001755
Rik van Riel2c13c9192011-02-01 09:48:37 -05001756static void __clear_buddies_next(struct sched_entity *se)
1757{
1758 for_each_sched_entity(se) {
1759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1760 if (cfs_rq->next == se)
1761 cfs_rq->next = NULL;
1762 else
1763 break;
1764 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01001765}
1766
Rik van Rielac53db52011-02-01 09:51:03 -05001767static void __clear_buddies_skip(struct sched_entity *se)
1768{
1769 for_each_sched_entity(se) {
1770 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1771 if (cfs_rq->skip == se)
1772 cfs_rq->skip = NULL;
1773 else
1774 break;
1775 }
1776}
1777
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001778static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1779{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001780 if (cfs_rq->last == se)
1781 __clear_buddies_last(se);
1782
1783 if (cfs_rq->next == se)
1784 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05001785
1786 if (cfs_rq->skip == se)
1787 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001788}
1789
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07001790static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07001791
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001792static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001793dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001794{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001795 /*
1796 * Update run-time statistics of the 'current'.
1797 */
1798 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001799 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001800
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02001801 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001802 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001803#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001804 if (entity_is_task(se)) {
1805 struct task_struct *tsk = task_of(se);
1806
1807 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -03001808 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001809 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -03001810 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001811 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02001812#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001813 }
1814
Peter Zijlstra2002c692008-11-11 11:52:33 +01001815 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001816
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001817 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001818 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001819 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001820 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001821
1822 /*
1823 * Normalize the entity after updating the min_vruntime because the
1824 * update can refer to the ->curr item and we need to reflect this
1825 * movement in our normalized position.
1826 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001827 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001828 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07001829
Paul Turnerd8b49862011-07-21 09:43:41 -07001830 /* return excess runtime on last dequeue */
1831 return_cfs_rq_runtime(cfs_rq);
1832
Peter Zijlstra1e876232011-05-17 16:21:10 -07001833 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001834 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001835}
1836
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02001840static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02001841check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001842{
Peter Zijlstra11697832007-09-05 14:32:49 +02001843 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001844 struct sched_entity *se;
1845 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02001846
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02001847 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02001848 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001849 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001850 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001851 /*
1852 * The current task ran long enough, ensure it doesn't get
1853 * re-elected due to buddy favours.
1854 */
1855 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001856 return;
1857 }
1858
1859 /*
1860 * Ensure that a task that missed wakeup preemption by a
1861 * narrow margin doesn't have to wait for a full slice.
1862 * This also mitigates buddy induced latencies under load.
1863 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02001864 if (delta_exec < sysctl_sched_min_granularity)
1865 return;
1866
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001867 se = __pick_first_entity(cfs_rq);
1868 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001869
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001870 if (delta < 0)
1871 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01001872
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001873 if (delta > ideal_runtime)
1874 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001875}
1876
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001877static void
Ingo Molnar8494f412007-08-09 11:16:48 +02001878set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001879{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001880 /* 'current' is not kept within the tree. */
1881 if (se->on_rq) {
1882 /*
1883 * Any task has to be enqueued before it get to execute on
1884 * a CPU. So account for the time it spent waiting on the
1885 * runqueue.
1886 */
1887 update_stats_wait_end(cfs_rq, se);
1888 __dequeue_entity(cfs_rq, se);
1889 }
1890
Ingo Molnar79303e92007-08-09 11:16:47 +02001891 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02001892 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02001893#ifdef CONFIG_SCHEDSTATS
1894 /*
1895 * Track our maximum slice length, if the CPU's load is at
1896 * least twice that of our own weight (i.e. dont track it
1897 * when there are only lesser-weight tasks around):
1898 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02001899 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001900 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02001901 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1902 }
1903#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02001904 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001905}
1906
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02001907static int
1908wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1909
Rik van Rielac53db52011-02-01 09:51:03 -05001910/*
1911 * Pick the next process, keeping these things in mind, in this order:
1912 * 1) keep things fair between processes/task groups
1913 * 2) pick the "next" process, since someone really wants that to run
1914 * 3) pick the "last" process, for cache locality
1915 * 4) do not run the "skip" process, if something else is available
1916 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001917static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001918{
Rik van Rielac53db52011-02-01 09:51:03 -05001919 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001920 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001921
Rik van Rielac53db52011-02-01 09:51:03 -05001922 /*
1923 * Avoid running the skip buddy, if running something else can
1924 * be done without getting too unfair.
1925 */
1926 if (cfs_rq->skip == se) {
1927 struct sched_entity *second = __pick_next_entity(se);
1928 if (second && wakeup_preempt_entity(second, left) < 1)
1929 se = second;
1930 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001931
Mike Galbraithf685cea2009-10-23 23:09:22 +02001932 /*
1933 * Prefer last buddy, try to return the CPU to a preempted task.
1934 */
1935 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1936 se = cfs_rq->last;
1937
Rik van Rielac53db52011-02-01 09:51:03 -05001938 /*
1939 * Someone really wants this to run. If it's not unfair, run it.
1940 */
1941 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1942 se = cfs_rq->next;
1943
Mike Galbraithf685cea2009-10-23 23:09:22 +02001944 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001945
1946 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001947}
1948
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001949static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1950
Ingo Molnarab6cde22007-08-09 11:16:48 +02001951static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001952{
1953 /*
1954 * If still on the runqueue then deactivate_task()
1955 * was not called and update_curr() has to be done:
1956 */
1957 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02001958 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001959
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001960 /* throttle cfs_rqs exceeding runtime */
1961 check_cfs_rq_runtime(cfs_rq);
1962
Peter Zijlstraddc97292007-10-15 17:00:10 +02001963 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001964 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02001965 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001966 /* Put 'current' back into the tree. */
1967 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02001968 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02001969 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001970 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02001971 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001972}
1973
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001974static void
1975entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001976{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001977 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001978 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001979 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001980 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001981
Paul Turner43365bd2010-12-15 19:10:17 -08001982 /*
Paul Turner9d85f212012-10-04 13:18:29 +02001983 * Ensure that runnable average is periodically updated.
1984 */
Paul Turner9ee474f2012-10-04 13:18:30 +02001985 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02001986 update_cfs_rq_blocked_load(cfs_rq, 1);
Paul Turner9d85f212012-10-04 13:18:29 +02001987
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001988#ifdef CONFIG_SCHED_HRTICK
1989 /*
1990 * queued ticks are scheduled to match the slice, so don't bother
1991 * validating it and just reschedule.
1992 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07001993 if (queued) {
1994 resched_task(rq_of(cfs_rq)->curr);
1995 return;
1996 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001997 /*
1998 * don't let the period tick interfere with the hrtick preemption
1999 */
2000 if (!sched_feat(DOUBLE_TICK) &&
2001 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2002 return;
2003#endif
2004
Yong Zhang2c2efae2011-07-29 16:20:33 +08002005 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002006 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002007}
2008
Paul Turnerab84d312011-07-21 09:43:28 -07002009
2010/**************************************************
2011 * CFS bandwidth control machinery
2012 */
2013
2014#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002015
2016#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002017static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002018
2019static inline bool cfs_bandwidth_used(void)
2020{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002021 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002022}
2023
2024void account_cfs_bandwidth_used(int enabled, int was_enabled)
2025{
2026 /* only need to count groups transitioning between enabled/!enabled */
2027 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002028 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002029 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002030 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002031}
2032#else /* HAVE_JUMP_LABEL */
2033static bool cfs_bandwidth_used(void)
2034{
2035 return true;
2036}
2037
2038void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2039#endif /* HAVE_JUMP_LABEL */
2040
Paul Turnerab84d312011-07-21 09:43:28 -07002041/*
2042 * default period for cfs group bandwidth.
2043 * default: 0.1s, units: nanoseconds
2044 */
2045static inline u64 default_cfs_period(void)
2046{
2047 return 100000000ULL;
2048}
Paul Turnerec12cb72011-07-21 09:43:30 -07002049
2050static inline u64 sched_cfs_bandwidth_slice(void)
2051{
2052 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2053}
2054
Paul Turnera9cf55b2011-07-21 09:43:32 -07002055/*
2056 * Replenish runtime according to assigned quota and update expiration time.
2057 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2058 * additional synchronization around rq->lock.
2059 *
2060 * requires cfs_b->lock
2061 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002062void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002063{
2064 u64 now;
2065
2066 if (cfs_b->quota == RUNTIME_INF)
2067 return;
2068
2069 now = sched_clock_cpu(smp_processor_id());
2070 cfs_b->runtime = cfs_b->quota;
2071 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2072}
2073
Peter Zijlstra029632f2011-10-25 10:00:11 +02002074static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2075{
2076 return &tg->cfs_bandwidth;
2077}
2078
Paul Turnerf1b17282012-10-04 13:18:31 +02002079/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2080static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2081{
2082 if (unlikely(cfs_rq->throttle_count))
2083 return cfs_rq->throttled_clock_task;
2084
2085 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2086}
2087
Paul Turner85dac902011-07-21 09:43:33 -07002088/* returns 0 on failure to allocate runtime */
2089static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002090{
2091 struct task_group *tg = cfs_rq->tg;
2092 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002093 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002094
2095 /* note: this is a positive sum as runtime_remaining <= 0 */
2096 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2097
2098 raw_spin_lock(&cfs_b->lock);
2099 if (cfs_b->quota == RUNTIME_INF)
2100 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002101 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002102 /*
2103 * If the bandwidth pool has become inactive, then at least one
2104 * period must have elapsed since the last consumption.
2105 * Refresh the global state and ensure bandwidth timer becomes
2106 * active.
2107 */
2108 if (!cfs_b->timer_active) {
2109 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002110 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002111 }
Paul Turner58088ad2011-07-21 09:43:31 -07002112
2113 if (cfs_b->runtime > 0) {
2114 amount = min(cfs_b->runtime, min_amount);
2115 cfs_b->runtime -= amount;
2116 cfs_b->idle = 0;
2117 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002118 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002119 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002120 raw_spin_unlock(&cfs_b->lock);
2121
2122 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002123 /*
2124 * we may have advanced our local expiration to account for allowed
2125 * spread between our sched_clock and the one on which runtime was
2126 * issued.
2127 */
2128 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2129 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002130
2131 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002132}
2133
2134/*
2135 * Note: This depends on the synchronization provided by sched_clock and the
2136 * fact that rq->clock snapshots this value.
2137 */
2138static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2139{
2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2141 struct rq *rq = rq_of(cfs_rq);
2142
2143 /* if the deadline is ahead of our clock, nothing to do */
2144 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2145 return;
2146
2147 if (cfs_rq->runtime_remaining < 0)
2148 return;
2149
2150 /*
2151 * If the local deadline has passed we have to consider the
2152 * possibility that our sched_clock is 'fast' and the global deadline
2153 * has not truly expired.
2154 *
2155 * Fortunately we can check determine whether this the case by checking
2156 * whether the global deadline has advanced.
2157 */
2158
2159 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2160 /* extend local deadline, drift is bounded above by 2 ticks */
2161 cfs_rq->runtime_expires += TICK_NSEC;
2162 } else {
2163 /* global deadline is ahead, expiration has passed */
2164 cfs_rq->runtime_remaining = 0;
2165 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002166}
2167
2168static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2169 unsigned long delta_exec)
2170{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002171 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002172 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002173 expire_cfs_rq_runtime(cfs_rq);
2174
2175 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002176 return;
2177
Paul Turner85dac902011-07-21 09:43:33 -07002178 /*
2179 * if we're unable to extend our runtime we resched so that the active
2180 * hierarchy can be throttled
2181 */
2182 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2183 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002184}
2185
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002186static __always_inline
2187void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002188{
Paul Turner56f570e2011-11-07 20:26:33 -08002189 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002190 return;
2191
2192 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2193}
2194
Paul Turner85dac902011-07-21 09:43:33 -07002195static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2196{
Paul Turner56f570e2011-11-07 20:26:33 -08002197 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002198}
2199
Paul Turner64660c82011-07-21 09:43:36 -07002200/* check whether cfs_rq, or any parent, is throttled */
2201static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2202{
Paul Turner56f570e2011-11-07 20:26:33 -08002203 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002204}
2205
2206/*
2207 * Ensure that neither of the group entities corresponding to src_cpu or
2208 * dest_cpu are members of a throttled hierarchy when performing group
2209 * load-balance operations.
2210 */
2211static inline int throttled_lb_pair(struct task_group *tg,
2212 int src_cpu, int dest_cpu)
2213{
2214 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2215
2216 src_cfs_rq = tg->cfs_rq[src_cpu];
2217 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2218
2219 return throttled_hierarchy(src_cfs_rq) ||
2220 throttled_hierarchy(dest_cfs_rq);
2221}
2222
2223/* updated child weight may affect parent so we have to do this bottom up */
2224static int tg_unthrottle_up(struct task_group *tg, void *data)
2225{
2226 struct rq *rq = data;
2227 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2228
2229 cfs_rq->throttle_count--;
2230#ifdef CONFIG_SMP
2231 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002232 /* adjust cfs_rq_clock_task() */
2233 cfs_rq->throttled_clock_task_time += rq->clock_task -
2234 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002235 }
2236#endif
2237
2238 return 0;
2239}
2240
2241static int tg_throttle_down(struct task_group *tg, void *data)
2242{
2243 struct rq *rq = data;
2244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
Paul Turner82958362012-10-04 13:18:31 +02002246 /* group is entering throttled state, stop time */
2247 if (!cfs_rq->throttle_count)
Paul Turnerf1b17282012-10-04 13:18:31 +02002248 cfs_rq->throttled_clock_task = rq->clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002249 cfs_rq->throttle_count++;
2250
2251 return 0;
2252}
2253
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002254static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002255{
2256 struct rq *rq = rq_of(cfs_rq);
2257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2258 struct sched_entity *se;
2259 long task_delta, dequeue = 1;
2260
2261 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2262
Paul Turnerf1b17282012-10-04 13:18:31 +02002263 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002264 rcu_read_lock();
2265 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2266 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002267
2268 task_delta = cfs_rq->h_nr_running;
2269 for_each_sched_entity(se) {
2270 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2271 /* throttled entity or throttle-on-deactivate */
2272 if (!se->on_rq)
2273 break;
2274
2275 if (dequeue)
2276 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2277 qcfs_rq->h_nr_running -= task_delta;
2278
2279 if (qcfs_rq->load.weight)
2280 dequeue = 0;
2281 }
2282
2283 if (!se)
2284 rq->nr_running -= task_delta;
2285
2286 cfs_rq->throttled = 1;
Paul Turnerf1b17282012-10-04 13:18:31 +02002287 cfs_rq->throttled_clock = rq->clock;
Paul Turner85dac902011-07-21 09:43:33 -07002288 raw_spin_lock(&cfs_b->lock);
2289 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2290 raw_spin_unlock(&cfs_b->lock);
2291}
2292
Peter Zijlstra029632f2011-10-25 10:00:11 +02002293void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002294{
2295 struct rq *rq = rq_of(cfs_rq);
2296 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2297 struct sched_entity *se;
2298 int enqueue = 1;
2299 long task_delta;
2300
2301 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
2303 cfs_rq->throttled = 0;
2304 raw_spin_lock(&cfs_b->lock);
Paul Turnerf1b17282012-10-04 13:18:31 +02002305 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002306 list_del_rcu(&cfs_rq->throttled_list);
2307 raw_spin_unlock(&cfs_b->lock);
2308
Paul Turner64660c82011-07-21 09:43:36 -07002309 update_rq_clock(rq);
2310 /* update hierarchical throttle state */
2311 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2312
Paul Turner671fd9d2011-07-21 09:43:34 -07002313 if (!cfs_rq->load.weight)
2314 return;
2315
2316 task_delta = cfs_rq->h_nr_running;
2317 for_each_sched_entity(se) {
2318 if (se->on_rq)
2319 enqueue = 0;
2320
2321 cfs_rq = cfs_rq_of(se);
2322 if (enqueue)
2323 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2324 cfs_rq->h_nr_running += task_delta;
2325
2326 if (cfs_rq_throttled(cfs_rq))
2327 break;
2328 }
2329
2330 if (!se)
2331 rq->nr_running += task_delta;
2332
2333 /* determine whether we need to wake up potentially idle cpu */
2334 if (rq->curr == rq->idle && rq->cfs.nr_running)
2335 resched_task(rq->curr);
2336}
2337
2338static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2339 u64 remaining, u64 expires)
2340{
2341 struct cfs_rq *cfs_rq;
2342 u64 runtime = remaining;
2343
2344 rcu_read_lock();
2345 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2346 throttled_list) {
2347 struct rq *rq = rq_of(cfs_rq);
2348
2349 raw_spin_lock(&rq->lock);
2350 if (!cfs_rq_throttled(cfs_rq))
2351 goto next;
2352
2353 runtime = -cfs_rq->runtime_remaining + 1;
2354 if (runtime > remaining)
2355 runtime = remaining;
2356 remaining -= runtime;
2357
2358 cfs_rq->runtime_remaining += runtime;
2359 cfs_rq->runtime_expires = expires;
2360
2361 /* we check whether we're throttled above */
2362 if (cfs_rq->runtime_remaining > 0)
2363 unthrottle_cfs_rq(cfs_rq);
2364
2365next:
2366 raw_spin_unlock(&rq->lock);
2367
2368 if (!remaining)
2369 break;
2370 }
2371 rcu_read_unlock();
2372
2373 return remaining;
2374}
2375
Paul Turner58088ad2011-07-21 09:43:31 -07002376/*
2377 * Responsible for refilling a task_group's bandwidth and unthrottling its
2378 * cfs_rqs as appropriate. If there has been no activity within the last
2379 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2380 * used to track this state.
2381 */
2382static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2383{
Paul Turner671fd9d2011-07-21 09:43:34 -07002384 u64 runtime, runtime_expires;
2385 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07002386
2387 raw_spin_lock(&cfs_b->lock);
2388 /* no need to continue the timer with no bandwidth constraint */
2389 if (cfs_b->quota == RUNTIME_INF)
2390 goto out_unlock;
2391
Paul Turner671fd9d2011-07-21 09:43:34 -07002392 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2393 /* idle depends on !throttled (for the case of a large deficit) */
2394 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002395 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07002396
Paul Turnera9cf55b2011-07-21 09:43:32 -07002397 /* if we're going inactive then everything else can be deferred */
2398 if (idle)
2399 goto out_unlock;
2400
2401 __refill_cfs_bandwidth_runtime(cfs_b);
2402
Paul Turner671fd9d2011-07-21 09:43:34 -07002403 if (!throttled) {
2404 /* mark as potentially idle for the upcoming period */
2405 cfs_b->idle = 1;
2406 goto out_unlock;
2407 }
Paul Turner58088ad2011-07-21 09:43:31 -07002408
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002409 /* account preceding periods in which throttling occurred */
2410 cfs_b->nr_throttled += overrun;
2411
Paul Turner671fd9d2011-07-21 09:43:34 -07002412 /*
2413 * There are throttled entities so we must first use the new bandwidth
2414 * to unthrottle them before making it generally available. This
2415 * ensures that all existing debts will be paid before a new cfs_rq is
2416 * allowed to run.
2417 */
2418 runtime = cfs_b->runtime;
2419 runtime_expires = cfs_b->runtime_expires;
2420 cfs_b->runtime = 0;
2421
2422 /*
2423 * This check is repeated as we are holding onto the new bandwidth
2424 * while we unthrottle. This can potentially race with an unthrottled
2425 * group trying to acquire new bandwidth from the global pool.
2426 */
2427 while (throttled && runtime > 0) {
2428 raw_spin_unlock(&cfs_b->lock);
2429 /* we can't nest cfs_b->lock while distributing bandwidth */
2430 runtime = distribute_cfs_runtime(cfs_b, runtime,
2431 runtime_expires);
2432 raw_spin_lock(&cfs_b->lock);
2433
2434 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435 }
2436
2437 /* return (any) remaining runtime */
2438 cfs_b->runtime = runtime;
2439 /*
2440 * While we are ensured activity in the period following an
2441 * unthrottle, this also covers the case in which the new bandwidth is
2442 * insufficient to cover the existing bandwidth deficit. (Forcing the
2443 * timer to remain active while there are any throttled entities.)
2444 */
2445 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07002446out_unlock:
2447 if (idle)
2448 cfs_b->timer_active = 0;
2449 raw_spin_unlock(&cfs_b->lock);
2450
2451 return idle;
2452}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002453
Paul Turnerd8b49862011-07-21 09:43:41 -07002454/* a cfs_rq won't donate quota below this amount */
2455static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2456/* minimum remaining period time to redistribute slack quota */
2457static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2458/* how long we wait to gather additional slack before distributing */
2459static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2460
2461/* are we near the end of the current quota period? */
2462static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2463{
2464 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2465 u64 remaining;
2466
2467 /* if the call-back is running a quota refresh is already occurring */
2468 if (hrtimer_callback_running(refresh_timer))
2469 return 1;
2470
2471 /* is a quota refresh about to occur? */
2472 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2473 if (remaining < min_expire)
2474 return 1;
2475
2476 return 0;
2477}
2478
2479static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2480{
2481 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2482
2483 /* if there's a quota refresh soon don't bother with slack */
2484 if (runtime_refresh_within(cfs_b, min_left))
2485 return;
2486
2487 start_bandwidth_timer(&cfs_b->slack_timer,
2488 ns_to_ktime(cfs_bandwidth_slack_period));
2489}
2490
2491/* we know any runtime found here is valid as update_curr() precedes return */
2492static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2493{
2494 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2495 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2496
2497 if (slack_runtime <= 0)
2498 return;
2499
2500 raw_spin_lock(&cfs_b->lock);
2501 if (cfs_b->quota != RUNTIME_INF &&
2502 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2503 cfs_b->runtime += slack_runtime;
2504
2505 /* we are under rq->lock, defer unthrottling using a timer */
2506 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2507 !list_empty(&cfs_b->throttled_cfs_rq))
2508 start_cfs_slack_bandwidth(cfs_b);
2509 }
2510 raw_spin_unlock(&cfs_b->lock);
2511
2512 /* even if it's not valid for return we don't want to try again */
2513 cfs_rq->runtime_remaining -= slack_runtime;
2514}
2515
2516static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2517{
Paul Turner56f570e2011-11-07 20:26:33 -08002518 if (!cfs_bandwidth_used())
2519 return;
2520
Paul Turnerfccfdc62011-11-07 20:26:34 -08002521 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07002522 return;
2523
2524 __return_cfs_rq_runtime(cfs_rq);
2525}
2526
2527/*
2528 * This is done with a timer (instead of inline with bandwidth return) since
2529 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2530 */
2531static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2532{
2533 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2534 u64 expires;
2535
2536 /* confirm we're still not at a refresh boundary */
2537 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2538 return;
2539
2540 raw_spin_lock(&cfs_b->lock);
2541 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2542 runtime = cfs_b->runtime;
2543 cfs_b->runtime = 0;
2544 }
2545 expires = cfs_b->runtime_expires;
2546 raw_spin_unlock(&cfs_b->lock);
2547
2548 if (!runtime)
2549 return;
2550
2551 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2552
2553 raw_spin_lock(&cfs_b->lock);
2554 if (expires == cfs_b->runtime_expires)
2555 cfs_b->runtime = runtime;
2556 raw_spin_unlock(&cfs_b->lock);
2557}
2558
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002559/*
2560 * When a group wakes up we want to make sure that its quota is not already
2561 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2562 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2563 */
2564static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2565{
Paul Turner56f570e2011-11-07 20:26:33 -08002566 if (!cfs_bandwidth_used())
2567 return;
2568
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002569 /* an active group must be handled by the update_curr()->put() path */
2570 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2571 return;
2572
2573 /* ensure the group is not already throttled */
2574 if (cfs_rq_throttled(cfs_rq))
2575 return;
2576
2577 /* update runtime allocation */
2578 account_cfs_rq_runtime(cfs_rq, 0);
2579 if (cfs_rq->runtime_remaining <= 0)
2580 throttle_cfs_rq(cfs_rq);
2581}
2582
2583/* conditionally throttle active cfs_rq's from put_prev_entity() */
2584static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2585{
Paul Turner56f570e2011-11-07 20:26:33 -08002586 if (!cfs_bandwidth_used())
2587 return;
2588
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002589 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2590 return;
2591
2592 /*
2593 * it's possible for a throttled entity to be forced into a running
2594 * state (e.g. set_curr_task), in this case we're finished.
2595 */
2596 if (cfs_rq_throttled(cfs_rq))
2597 return;
2598
2599 throttle_cfs_rq(cfs_rq);
2600}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002601
2602static inline u64 default_cfs_period(void);
2603static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2604static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2605
2606static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2607{
2608 struct cfs_bandwidth *cfs_b =
2609 container_of(timer, struct cfs_bandwidth, slack_timer);
2610 do_sched_cfs_slack_timer(cfs_b);
2611
2612 return HRTIMER_NORESTART;
2613}
2614
2615static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2616{
2617 struct cfs_bandwidth *cfs_b =
2618 container_of(timer, struct cfs_bandwidth, period_timer);
2619 ktime_t now;
2620 int overrun;
2621 int idle = 0;
2622
2623 for (;;) {
2624 now = hrtimer_cb_get_time(timer);
2625 overrun = hrtimer_forward(timer, now, cfs_b->period);
2626
2627 if (!overrun)
2628 break;
2629
2630 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2631 }
2632
2633 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2634}
2635
2636void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637{
2638 raw_spin_lock_init(&cfs_b->lock);
2639 cfs_b->runtime = 0;
2640 cfs_b->quota = RUNTIME_INF;
2641 cfs_b->period = ns_to_ktime(default_cfs_period());
2642
2643 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2644 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2645 cfs_b->period_timer.function = sched_cfs_period_timer;
2646 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2647 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2648}
2649
2650static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2651{
2652 cfs_rq->runtime_enabled = 0;
2653 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2654}
2655
2656/* requires cfs_b->lock, may release to reprogram timer */
2657void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658{
2659 /*
2660 * The timer may be active because we're trying to set a new bandwidth
2661 * period or because we're racing with the tear-down path
2662 * (timer_active==0 becomes visible before the hrtimer call-back
2663 * terminates). In either case we ensure that it's re-programmed
2664 */
2665 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2666 raw_spin_unlock(&cfs_b->lock);
2667 /* ensure cfs_b->lock is available while we wait */
2668 hrtimer_cancel(&cfs_b->period_timer);
2669
2670 raw_spin_lock(&cfs_b->lock);
2671 /* if someone else restarted the timer then we're done */
2672 if (cfs_b->timer_active)
2673 return;
2674 }
2675
2676 cfs_b->timer_active = 1;
2677 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2678}
2679
2680static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681{
2682 hrtimer_cancel(&cfs_b->period_timer);
2683 hrtimer_cancel(&cfs_b->slack_timer);
2684}
2685
Arnd Bergmann38dc3342013-01-25 14:14:22 +00002686static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02002687{
2688 struct cfs_rq *cfs_rq;
2689
2690 for_each_leaf_cfs_rq(rq, cfs_rq) {
2691 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2692
2693 if (!cfs_rq->runtime_enabled)
2694 continue;
2695
2696 /*
2697 * clock_task is not advancing so we just need to make sure
2698 * there's some valid quota amount
2699 */
2700 cfs_rq->runtime_remaining = cfs_b->quota;
2701 if (cfs_rq_throttled(cfs_rq))
2702 unthrottle_cfs_rq(cfs_rq);
2703 }
2704}
2705
2706#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02002707static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2708{
2709 return rq_of(cfs_rq)->clock_task;
2710}
2711
2712static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2713 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002714static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2715static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002716static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07002717
2718static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2719{
2720 return 0;
2721}
Paul Turner64660c82011-07-21 09:43:36 -07002722
2723static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2724{
2725 return 0;
2726}
2727
2728static inline int throttled_lb_pair(struct task_group *tg,
2729 int src_cpu, int dest_cpu)
2730{
2731 return 0;
2732}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002733
2734void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2735
2736#ifdef CONFIG_FAIR_GROUP_SCHED
2737static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07002738#endif
2739
Peter Zijlstra029632f2011-10-25 10:00:11 +02002740static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2741{
2742 return NULL;
2743}
2744static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07002745static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002746
2747#endif /* CONFIG_CFS_BANDWIDTH */
2748
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002749/**************************************************
2750 * CFS operations on tasks:
2751 */
2752
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002753#ifdef CONFIG_SCHED_HRTICK
2754static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2755{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002756 struct sched_entity *se = &p->se;
2757 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2758
2759 WARN_ON(task_rq(p) != rq);
2760
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002761 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002762 u64 slice = sched_slice(cfs_rq, se);
2763 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2764 s64 delta = slice - ran;
2765
2766 if (delta < 0) {
2767 if (rq->curr == p)
2768 resched_task(p);
2769 return;
2770 }
2771
2772 /*
2773 * Don't schedule slices shorter than 10000ns, that just
2774 * doesn't make sense. Rely on vruntime for fairness.
2775 */
Peter Zijlstra31656512008-07-18 18:01:23 +02002776 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02002777 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002778
Peter Zijlstra31656512008-07-18 18:01:23 +02002779 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002780 }
2781}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002782
2783/*
2784 * called from enqueue/dequeue and updates the hrtick when the
2785 * current task is from our class and nr_running is low enough
2786 * to matter.
2787 */
2788static void hrtick_update(struct rq *rq)
2789{
2790 struct task_struct *curr = rq->curr;
2791
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002792 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002793 return;
2794
2795 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2796 hrtick_start_fair(rq, curr);
2797}
Dhaval Giani55e12e52008-06-24 23:39:43 +05302798#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002799static inline void
2800hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801{
2802}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002803
2804static inline void hrtick_update(struct rq *rq)
2805{
2806}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002807#endif
2808
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002809/*
2810 * The enqueue_task method is called before nr_running is
2811 * increased. Here we update the fair scheduling stats and
2812 * then put the task into the rbtree:
2813 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00002814static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002815enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002816{
2817 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002818 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002819
2820 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002821 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002822 break;
2823 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002824 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002825
2826 /*
2827 * end evaluation on encountering a throttled cfs_rq
2828 *
2829 * note: in the case of encountering a throttled cfs_rq we will
2830 * post the final h_nr_running increment below.
2831 */
2832 if (cfs_rq_throttled(cfs_rq))
2833 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002834 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07002835
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002836 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002837 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002838
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002839 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002840 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002841 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002842
Paul Turner85dac902011-07-21 09:43:33 -07002843 if (cfs_rq_throttled(cfs_rq))
2844 break;
2845
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002846 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002847 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002848 }
2849
Ben Segall18bf2802012-10-04 12:51:20 +02002850 if (!se) {
2851 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07002852 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002853 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002854 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002855}
2856
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002857static void set_next_buddy(struct sched_entity *se);
2858
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002859/*
2860 * The dequeue_task method is called before nr_running is
2861 * decreased. We remove the task from the rbtree and
2862 * update the fair scheduling stats:
2863 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002864static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002865{
2866 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002867 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002868 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002869
2870 for_each_sched_entity(se) {
2871 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002872 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002873
2874 /*
2875 * end evaluation on encountering a throttled cfs_rq
2876 *
2877 * note: in the case of encountering a throttled cfs_rq we will
2878 * post the final h_nr_running decrement below.
2879 */
2880 if (cfs_rq_throttled(cfs_rq))
2881 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002882 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002883
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002884 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002885 if (cfs_rq->load.weight) {
2886 /*
2887 * Bias pick_next to pick a task from this cfs_rq, as
2888 * p is sleeping when it is within its sched_slice.
2889 */
2890 if (task_sleep && parent_entity(se))
2891 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07002892
2893 /* avoid re-evaluating load for this entity */
2894 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002895 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002896 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002897 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002898 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002899
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002900 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002901 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002902 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002903
Paul Turner85dac902011-07-21 09:43:33 -07002904 if (cfs_rq_throttled(cfs_rq))
2905 break;
2906
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002907 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002908 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002909 }
2910
Ben Segall18bf2802012-10-04 12:51:20 +02002911 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07002912 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002913 update_rq_runnable_avg(rq, 1);
2914 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002915 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002916}
2917
Gregory Haskinse7693a32008-01-25 21:08:09 +01002918#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02002919/* Used instead of source_load when we know the type == 0 */
2920static unsigned long weighted_cpuload(const int cpu)
2921{
2922 return cpu_rq(cpu)->load.weight;
2923}
2924
2925/*
2926 * Return a low guess at the load of a migration-source cpu weighted
2927 * according to the scheduling class and "nice" value.
2928 *
2929 * We want to under-estimate the load of migration sources, to
2930 * balance conservatively.
2931 */
2932static unsigned long source_load(int cpu, int type)
2933{
2934 struct rq *rq = cpu_rq(cpu);
2935 unsigned long total = weighted_cpuload(cpu);
2936
2937 if (type == 0 || !sched_feat(LB_BIAS))
2938 return total;
2939
2940 return min(rq->cpu_load[type-1], total);
2941}
2942
2943/*
2944 * Return a high guess at the load of a migration-target cpu weighted
2945 * according to the scheduling class and "nice" value.
2946 */
2947static unsigned long target_load(int cpu, int type)
2948{
2949 struct rq *rq = cpu_rq(cpu);
2950 unsigned long total = weighted_cpuload(cpu);
2951
2952 if (type == 0 || !sched_feat(LB_BIAS))
2953 return total;
2954
2955 return max(rq->cpu_load[type-1], total);
2956}
2957
2958static unsigned long power_of(int cpu)
2959{
2960 return cpu_rq(cpu)->cpu_power;
2961}
2962
2963static unsigned long cpu_avg_load_per_task(int cpu)
2964{
2965 struct rq *rq = cpu_rq(cpu);
2966 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2967
2968 if (nr_running)
2969 return rq->load.weight / nr_running;
2970
2971 return 0;
2972}
2973
Ingo Molnar098fb9d2008-03-16 20:36:10 +01002974
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02002975static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002976{
2977 struct sched_entity *se = &p->se;
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02002979 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002980
Peter Zijlstra3fe16982011-04-05 17:23:48 +02002981#ifndef CONFIG_64BIT
2982 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02002983
Peter Zijlstra3fe16982011-04-05 17:23:48 +02002984 do {
2985 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2986 smp_rmb();
2987 min_vruntime = cfs_rq->min_vruntime;
2988 } while (min_vruntime != min_vruntime_copy);
2989#else
2990 min_vruntime = cfs_rq->min_vruntime;
2991#endif
2992
2993 se->vruntime -= min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002994}
2995
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02002996#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02002997/*
2998 * effective_load() calculates the load change as seen from the root_task_group
2999 *
3000 * Adding load to a group doesn't make a group heavier, but can cause movement
3001 * of group shares between cpus. Assuming the shares were perfectly aligned one
3002 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003003 *
3004 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3005 * on this @cpu and results in a total addition (subtraction) of @wg to the
3006 * total group weight.
3007 *
3008 * Given a runqueue weight distribution (rw_i) we can compute a shares
3009 * distribution (s_i) using:
3010 *
3011 * s_i = rw_i / \Sum rw_j (1)
3012 *
3013 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3014 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3015 * shares distribution (s_i):
3016 *
3017 * rw_i = { 2, 4, 1, 0 }
3018 * s_i = { 2/7, 4/7, 1/7, 0 }
3019 *
3020 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3021 * task used to run on and the CPU the waker is running on), we need to
3022 * compute the effect of waking a task on either CPU and, in case of a sync
3023 * wakeup, compute the effect of the current task going to sleep.
3024 *
3025 * So for a change of @wl to the local @cpu with an overall group weight change
3026 * of @wl we can compute the new shares distribution (s'_i) using:
3027 *
3028 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3029 *
3030 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3031 * differences in waking a task to CPU 0. The additional task changes the
3032 * weight and shares distributions like:
3033 *
3034 * rw'_i = { 3, 4, 1, 0 }
3035 * s'_i = { 3/8, 4/8, 1/8, 0 }
3036 *
3037 * We can then compute the difference in effective weight by using:
3038 *
3039 * dw_i = S * (s'_i - s_i) (3)
3040 *
3041 * Where 'S' is the group weight as seen by its parent.
3042 *
3043 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3044 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3045 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003046 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003047static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003048{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003049 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003050
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003051 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003052 return wl;
3053
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003054 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003055 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003056
Paul Turner977dda72011-01-14 17:57:50 -08003057 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003058
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003059 /*
3060 * W = @wg + \Sum rw_j
3061 */
3062 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003063
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003064 /*
3065 * w = rw_i + @wl
3066 */
3067 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003068
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003069 /*
3070 * wl = S * s'_i; see (2)
3071 */
3072 if (W > 0 && w < W)
3073 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003074 else
3075 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003076
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003077 /*
3078 * Per the above, wl is the new se->load.weight value; since
3079 * those are clipped to [MIN_SHARES, ...) do so now. See
3080 * calc_cfs_shares().
3081 */
Paul Turner977dda72011-01-14 17:57:50 -08003082 if (wl < MIN_SHARES)
3083 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003084
3085 /*
3086 * wl = dw_i = S * (s'_i - s_i); see (3)
3087 */
Paul Turner977dda72011-01-14 17:57:50 -08003088 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003089
3090 /*
3091 * Recursively apply this logic to all parent groups to compute
3092 * the final effective load change on the root group. Since
3093 * only the @tg group gets extra weight, all parent groups can
3094 * only redistribute existing shares. @wl is the shift in shares
3095 * resulting from this level per the above.
3096 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003097 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003098 }
3099
3100 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003101}
3102#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003103
Peter Zijlstra83378262008-06-27 13:41:37 +02003104static inline unsigned long effective_load(struct task_group *tg, int cpu,
3105 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003106{
Peter Zijlstra83378262008-06-27 13:41:37 +02003107 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003108}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003109
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003110#endif
3111
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003112static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003113{
Paul Turnere37b6a72011-01-21 20:44:59 -08003114 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003115 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003116 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003117 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003118 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003119 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003120
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003121 idx = sd->wake_idx;
3122 this_cpu = smp_processor_id();
3123 prev_cpu = task_cpu(p);
3124 load = source_load(prev_cpu, idx);
3125 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003126
3127 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003128 * If sync wakeup then subtract the (maximum possible)
3129 * effect of the currently running task from the load
3130 * of the current CPU:
3131 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003132 if (sync) {
3133 tg = task_group(current);
3134 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003135
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003136 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003137 load += effective_load(tg, prev_cpu, 0, -weight);
3138 }
3139
3140 tg = task_group(p);
3141 weight = p->se.load.weight;
3142
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003143 /*
3144 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003145 * due to the sync cause above having dropped this_load to 0, we'll
3146 * always have an imbalance, but there's really nothing you can do
3147 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003148 *
3149 * Otherwise check if either cpus are near enough in load to allow this
3150 * task to be woken on this_cpu.
3151 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003152 if (this_load > 0) {
3153 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003154
3155 this_eff_load = 100;
3156 this_eff_load *= power_of(prev_cpu);
3157 this_eff_load *= this_load +
3158 effective_load(tg, this_cpu, weight, weight);
3159
3160 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3161 prev_eff_load *= power_of(this_cpu);
3162 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3163
3164 balanced = this_eff_load <= prev_eff_load;
3165 } else
3166 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003167
3168 /*
3169 * If the currently running task will sleep within
3170 * a reasonable amount of time then attract this newly
3171 * woken task:
3172 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003173 if (sync && balanced)
3174 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003175
Lucas De Marchi41acab82010-03-10 23:37:45 -03003176 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003177 tl_per_task = cpu_avg_load_per_task(this_cpu);
3178
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003179 if (balanced ||
3180 (this_load <= load &&
3181 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003182 /*
3183 * This domain has SD_WAKE_AFFINE and
3184 * p is cache cold in this domain, and
3185 * there is no bad imbalance.
3186 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003187 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003188 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003189
3190 return 1;
3191 }
3192 return 0;
3193}
3194
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003195/*
3196 * find_idlest_group finds and returns the least busy CPU group within the
3197 * domain.
3198 */
3199static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003200find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003201 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003202{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003203 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003204 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003205 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003206
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003207 do {
3208 unsigned long load, avg_load;
3209 int local_group;
3210 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003211
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003212 /* Skip over this group if it has no CPUs allowed */
3213 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003214 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003215 continue;
3216
3217 local_group = cpumask_test_cpu(this_cpu,
3218 sched_group_cpus(group));
3219
3220 /* Tally up the load of all CPUs in the group */
3221 avg_load = 0;
3222
3223 for_each_cpu(i, sched_group_cpus(group)) {
3224 /* Bias balancing toward cpus of our domain */
3225 if (local_group)
3226 load = source_load(i, load_idx);
3227 else
3228 load = target_load(i, load_idx);
3229
3230 avg_load += load;
3231 }
3232
3233 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003234 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003235
3236 if (local_group) {
3237 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003238 } else if (avg_load < min_load) {
3239 min_load = avg_load;
3240 idlest = group;
3241 }
3242 } while (group = group->next, group != sd->groups);
3243
3244 if (!idlest || 100*this_load < imbalance*min_load)
3245 return NULL;
3246 return idlest;
3247}
3248
3249/*
3250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3251 */
3252static int
3253find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3254{
3255 unsigned long load, min_load = ULONG_MAX;
3256 int idlest = -1;
3257 int i;
3258
3259 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003260 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003261 load = weighted_cpuload(i);
3262
3263 if (load < min_load || (load == min_load && i == this_cpu)) {
3264 min_load = load;
3265 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003266 }
3267 }
3268
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003269 return idlest;
3270}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003271
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003272/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003273 * Try and locate an idle CPU in the sched_domain.
3274 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003275static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003276{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003277 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003278 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003279 int i = task_cpu(p);
3280
3281 if (idle_cpu(target))
3282 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003283
3284 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003285 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003286 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003287 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3288 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003289
3290 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003291 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003292 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003293 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003294 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003295 sg = sd->groups;
3296 do {
3297 if (!cpumask_intersects(sched_group_cpus(sg),
3298 tsk_cpus_allowed(p)))
3299 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003300
Linus Torvalds37407ea2012-09-16 12:29:43 -07003301 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003302 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003303 goto next;
3304 }
3305
3306 target = cpumask_first_and(sched_group_cpus(sg),
3307 tsk_cpus_allowed(p));
3308 goto done;
3309next:
3310 sg = sg->next;
3311 } while (sg != sd->groups);
3312 }
3313done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003314 return target;
3315}
3316
3317/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003318 * sched_balance_self: balance the current task (running on cpu) in domains
3319 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3320 * SD_BALANCE_EXEC.
3321 *
3322 * Balance, ie. select the least loaded group.
3323 *
3324 * Returns the target CPU number, or the same CPU if no balancing is needed.
3325 *
3326 * preempt must be disabled.
3327 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003328static int
Peter Zijlstra7608dec2011-04-05 17:23:46 +02003329select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003330{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003331 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003332 int cpu = smp_processor_id();
3333 int prev_cpu = task_cpu(p);
3334 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003335 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003336 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003337
Peter Zijlstra29baa742012-04-23 12:11:21 +02003338 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01003339 return prev_cpu;
3340
Peter Zijlstra0763a662009-09-14 19:37:39 +02003341 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003342 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003343 want_affine = 1;
3344 new_cpu = prev_cpu;
3345 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01003346
Peter Zijlstradce840a2011-04-07 14:09:50 +02003347 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003348 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01003349 if (!(tmp->flags & SD_LOAD_BALANCE))
3350 continue;
3351
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003352 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003353 * If both cpu and prev_cpu are part of this domain,
3354 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01003355 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003356 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3357 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3358 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08003359 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003360 }
3361
Alex Shif03542a2012-07-26 08:55:34 +08003362 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003363 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003364 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003365
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003366 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08003367 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02003368 prev_cpu = cpu;
3369
3370 new_cpu = select_idle_sibling(p, prev_cpu);
3371 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003372 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02003373
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003374 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003375 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003376 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003377 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003378
Peter Zijlstra0763a662009-09-14 19:37:39 +02003379 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003380 sd = sd->child;
3381 continue;
3382 }
3383
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003384 if (sd_flag & SD_BALANCE_WAKE)
3385 load_idx = sd->wake_idx;
3386
3387 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003388 if (!group) {
3389 sd = sd->child;
3390 continue;
3391 }
3392
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02003393 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003394 if (new_cpu == -1 || new_cpu == cpu) {
3395 /* Now try balancing at a lower domain level of cpu */
3396 sd = sd->child;
3397 continue;
3398 }
3399
3400 /* Now try balancing at a lower domain level of new_cpu */
3401 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003402 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003403 sd = NULL;
3404 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003405 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003406 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02003407 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003408 sd = tmp;
3409 }
3410 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01003411 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02003412unlock:
3413 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01003414
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003415 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003416}
Paul Turner0a74bef2012-10-04 13:18:30 +02003417
3418/*
Paul Turnerf4e26b12012-10-04 13:18:32 +02003419 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3420 * removed when useful for applications beyond shares distribution (e.g.
3421 * load-balance).
3422 */
3423#ifdef CONFIG_FAIR_GROUP_SCHED
3424/*
Paul Turner0a74bef2012-10-04 13:18:30 +02003425 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3426 * cfs_rq_of(p) references at time of call are still valid and identify the
3427 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3428 * other assumptions, including the state of rq->lock, should be made.
3429 */
3430static void
3431migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3432{
Paul Turneraff3e492012-10-04 13:18:30 +02003433 struct sched_entity *se = &p->se;
3434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3435
3436 /*
3437 * Load tracking: accumulate removed load so that it can be processed
3438 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3439 * to blocked load iff they have a positive decay-count. It can never
3440 * be negative here since on-rq tasks have decay-count == 0.
3441 */
3442 if (se->avg.decay_count) {
3443 se->avg.decay_count = -__synchronize_entity_decay(se);
3444 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3445 }
Paul Turner0a74bef2012-10-04 13:18:30 +02003446}
Paul Turnerf4e26b12012-10-04 13:18:32 +02003447#endif
Gregory Haskinse7693a32008-01-25 21:08:09 +01003448#endif /* CONFIG_SMP */
3449
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003450static unsigned long
3451wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003452{
3453 unsigned long gran = sysctl_sched_wakeup_granularity;
3454
3455 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003456 * Since its curr running now, convert the gran from real-time
3457 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01003458 *
3459 * By using 'se' instead of 'curr' we penalize light tasks, so
3460 * they get preempted easier. That is, if 'se' < 'curr' then
3461 * the resulting gran will be larger, therefore penalizing the
3462 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3463 * be smaller, again penalizing the lighter task.
3464 *
3465 * This is especially important for buddies when the leftmost
3466 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003467 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08003468 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003469}
3470
3471/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02003472 * Should 'se' preempt 'curr'.
3473 *
3474 * |s1
3475 * |s2
3476 * |s3
3477 * g
3478 * |<--->|c
3479 *
3480 * w(c, s1) = -1
3481 * w(c, s2) = 0
3482 * w(c, s3) = 1
3483 *
3484 */
3485static int
3486wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3487{
3488 s64 gran, vdiff = curr->vruntime - se->vruntime;
3489
3490 if (vdiff <= 0)
3491 return -1;
3492
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003493 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02003494 if (vdiff > gran)
3495 return 1;
3496
3497 return 0;
3498}
3499
Peter Zijlstra02479092008-11-04 21:25:10 +01003500static void set_last_buddy(struct sched_entity *se)
3501{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003502 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3503 return;
3504
3505 for_each_sched_entity(se)
3506 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003507}
3508
3509static void set_next_buddy(struct sched_entity *se)
3510{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003511 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3512 return;
3513
3514 for_each_sched_entity(se)
3515 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003516}
3517
Rik van Rielac53db52011-02-01 09:51:03 -05003518static void set_skip_buddy(struct sched_entity *se)
3519{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003520 for_each_sched_entity(se)
3521 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05003522}
3523
Peter Zijlstra464b7522008-10-24 11:06:15 +02003524/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003525 * Preempt the current task with a newly woken task if needed:
3526 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02003527static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003528{
3529 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02003530 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003531 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02003532 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003533 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003534
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01003535 if (unlikely(se == pse))
3536 return;
3537
Paul Turner5238cdd2011-07-21 09:43:37 -07003538 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003539 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07003540 * unconditionally check_prempt_curr() after an enqueue (which may have
3541 * lead to a throttle). This both saves work and prevents false
3542 * next-buddy nomination below.
3543 */
3544 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3545 return;
3546
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003547 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02003548 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003549 next_buddy_marked = 1;
3550 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02003551
Bharata B Raoaec0a512008-08-28 14:42:49 +05303552 /*
3553 * We can come here with TIF_NEED_RESCHED already set from new task
3554 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07003555 *
3556 * Note: this also catches the edge-case of curr being in a throttled
3557 * group (e.g. via set_curr_task), since update_curr() (in the
3558 * enqueue of curr) will have resulted in resched being set. This
3559 * prevents us from potentially nominating it as a false LAST_BUDDY
3560 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05303561 */
3562 if (test_tsk_need_resched(curr))
3563 return;
3564
Darren Harta2f5c9a2011-02-22 13:04:33 -08003565 /* Idle tasks are by definition preempted by non-idle tasks. */
3566 if (unlikely(curr->policy == SCHED_IDLE) &&
3567 likely(p->policy != SCHED_IDLE))
3568 goto preempt;
3569
Ingo Molnar91c234b2007-10-15 17:00:18 +02003570 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08003571 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3572 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02003573 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02003574 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02003575 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003576
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003577 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07003578 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003579 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003580 if (wakeup_preempt_entity(se, pse) == 1) {
3581 /*
3582 * Bias pick_next to pick the sched entity that is
3583 * triggering this preemption.
3584 */
3585 if (!next_buddy_marked)
3586 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003587 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003588 }
Jupyung Leea65ac742009-11-17 18:51:40 +09003589
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003590 return;
3591
3592preempt:
3593 resched_task(curr);
3594 /*
3595 * Only set the backward buddy when the current task is still
3596 * on the rq. This can happen when a wakeup gets interleaved
3597 * with schedule on the ->pre_schedule() or idle_balance()
3598 * point, either of which can * drop the rq lock.
3599 *
3600 * Also, during early boot the idle thread is in the fair class,
3601 * for obvious reasons its a bad idea to schedule back to it.
3602 */
3603 if (unlikely(!se->on_rq || curr == rq->idle))
3604 return;
3605
3606 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3607 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003608}
3609
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003610static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003611{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003612 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003613 struct cfs_rq *cfs_rq = &rq->cfs;
3614 struct sched_entity *se;
3615
Tim Blechmann36ace272009-11-24 11:55:45 +01003616 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003617 return NULL;
3618
3619 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02003620 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01003621 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003622 cfs_rq = group_cfs_rq(se);
3623 } while (cfs_rq);
3624
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003625 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003626 if (hrtick_enabled(rq))
3627 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003628
3629 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003630}
3631
3632/*
3633 * Account for a descheduled task:
3634 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02003635static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003636{
3637 struct sched_entity *se = &prev->se;
3638 struct cfs_rq *cfs_rq;
3639
3640 for_each_sched_entity(se) {
3641 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02003642 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003643 }
3644}
3645
Rik van Rielac53db52011-02-01 09:51:03 -05003646/*
3647 * sched_yield() is very simple
3648 *
3649 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3650 */
3651static void yield_task_fair(struct rq *rq)
3652{
3653 struct task_struct *curr = rq->curr;
3654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3655 struct sched_entity *se = &curr->se;
3656
3657 /*
3658 * Are we the only task in the tree?
3659 */
3660 if (unlikely(rq->nr_running == 1))
3661 return;
3662
3663 clear_buddies(cfs_rq, se);
3664
3665 if (curr->policy != SCHED_BATCH) {
3666 update_rq_clock(rq);
3667 /*
3668 * Update run-time statistics of the 'current'.
3669 */
3670 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01003671 /*
3672 * Tell update_rq_clock() that we've just updated,
3673 * so we don't do microscopic update in schedule()
3674 * and double the fastpath cost.
3675 */
3676 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05003677 }
3678
3679 set_skip_buddy(se);
3680}
3681
Mike Galbraithd95f4122011-02-01 09:50:51 -05003682static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3683{
3684 struct sched_entity *se = &p->se;
3685
Paul Turner5238cdd2011-07-21 09:43:37 -07003686 /* throttled hierarchies are not runnable */
3687 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05003688 return false;
3689
3690 /* Tell the scheduler that we'd really like pse to run next. */
3691 set_next_buddy(se);
3692
Mike Galbraithd95f4122011-02-01 09:50:51 -05003693 yield_task_fair(rq);
3694
3695 return true;
3696}
3697
Peter Williams681f3e62007-10-24 18:23:51 +02003698#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003699/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02003700 * Fair scheduling class load-balancing methods.
3701 *
3702 * BASICS
3703 *
3704 * The purpose of load-balancing is to achieve the same basic fairness the
3705 * per-cpu scheduler provides, namely provide a proportional amount of compute
3706 * time to each task. This is expressed in the following equation:
3707 *
3708 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3709 *
3710 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3711 * W_i,0 is defined as:
3712 *
3713 * W_i,0 = \Sum_j w_i,j (2)
3714 *
3715 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3716 * is derived from the nice value as per prio_to_weight[].
3717 *
3718 * The weight average is an exponential decay average of the instantaneous
3719 * weight:
3720 *
3721 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3722 *
3723 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3724 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3725 * can also include other factors [XXX].
3726 *
3727 * To achieve this balance we define a measure of imbalance which follows
3728 * directly from (1):
3729 *
3730 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3731 *
3732 * We them move tasks around to minimize the imbalance. In the continuous
3733 * function space it is obvious this converges, in the discrete case we get
3734 * a few fun cases generally called infeasible weight scenarios.
3735 *
3736 * [XXX expand on:
3737 * - infeasible weights;
3738 * - local vs global optima in the discrete case. ]
3739 *
3740 *
3741 * SCHED DOMAINS
3742 *
3743 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3744 * for all i,j solution, we create a tree of cpus that follows the hardware
3745 * topology where each level pairs two lower groups (or better). This results
3746 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3747 * tree to only the first of the previous level and we decrease the frequency
3748 * of load-balance at each level inv. proportional to the number of cpus in
3749 * the groups.
3750 *
3751 * This yields:
3752 *
3753 * log_2 n 1 n
3754 * \Sum { --- * --- * 2^i } = O(n) (5)
3755 * i = 0 2^i 2^i
3756 * `- size of each group
3757 * | | `- number of cpus doing load-balance
3758 * | `- freq
3759 * `- sum over all levels
3760 *
3761 * Coupled with a limit on how many tasks we can migrate every balance pass,
3762 * this makes (5) the runtime complexity of the balancer.
3763 *
3764 * An important property here is that each CPU is still (indirectly) connected
3765 * to every other cpu in at most O(log n) steps:
3766 *
3767 * The adjacency matrix of the resulting graph is given by:
3768 *
3769 * log_2 n
3770 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3771 * k = 0
3772 *
3773 * And you'll find that:
3774 *
3775 * A^(log_2 n)_i,j != 0 for all i,j (7)
3776 *
3777 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3778 * The task movement gives a factor of O(m), giving a convergence complexity
3779 * of:
3780 *
3781 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3782 *
3783 *
3784 * WORK CONSERVING
3785 *
3786 * In order to avoid CPUs going idle while there's still work to do, new idle
3787 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3788 * tree itself instead of relying on other CPUs to bring it work.
3789 *
3790 * This adds some complexity to both (5) and (8) but it reduces the total idle
3791 * time.
3792 *
3793 * [XXX more?]
3794 *
3795 *
3796 * CGROUPS
3797 *
3798 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3799 *
3800 * s_k,i
3801 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3802 * S_k
3803 *
3804 * Where
3805 *
3806 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3807 *
3808 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3809 *
3810 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3811 * property.
3812 *
3813 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3814 * rewrite all of this once again.]
3815 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003816
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09003817static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3818
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003819#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01003820#define LBF_NEED_BREAK 0x02
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303821#define LBF_SOME_PINNED 0x04
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003822
3823struct lb_env {
3824 struct sched_domain *sd;
3825
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003826 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05303827 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003828
3829 int dst_cpu;
3830 struct rq *dst_rq;
3831
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303832 struct cpumask *dst_grpmask;
3833 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003834 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02003835 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08003836 /* The set of CPUs under consideration for load-balancing */
3837 struct cpumask *cpus;
3838
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003839 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01003840
3841 unsigned int loop;
3842 unsigned int loop_break;
3843 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003844};
3845
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003846/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003847 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003848 * Both runqueues must be locked.
3849 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003850static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003851{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003852 deactivate_task(env->src_rq, p, 0);
3853 set_task_cpu(p, env->dst_cpu);
3854 activate_task(env->dst_rq, p, 0);
3855 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003856}
3857
3858/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02003859 * Is this task likely cache-hot:
3860 */
3861static int
3862task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3863{
3864 s64 delta;
3865
3866 if (p->sched_class != &fair_sched_class)
3867 return 0;
3868
3869 if (unlikely(p->policy == SCHED_IDLE))
3870 return 0;
3871
3872 /*
3873 * Buddy candidates are cache hot:
3874 */
3875 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3876 (&p->se == cfs_rq_of(&p->se)->next ||
3877 &p->se == cfs_rq_of(&p->se)->last))
3878 return 1;
3879
3880 if (sysctl_sched_migration_cost == -1)
3881 return 1;
3882 if (sysctl_sched_migration_cost == 0)
3883 return 0;
3884
3885 delta = now - p->se.exec_start;
3886
3887 return delta < (s64)sysctl_sched_migration_cost;
3888}
3889
3890/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003891 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3892 */
3893static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003894int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003895{
3896 int tsk_cache_hot = 0;
3897 /*
3898 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09003899 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003900 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09003901 * 3) running (obviously), or
3902 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003903 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09003904 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3905 return 0;
3906
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003907 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003908 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303909
Lucas De Marchi41acab82010-03-10 23:37:45 -03003910 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303911
3912 /*
3913 * Remember if this task can be migrated to any other cpu in
3914 * our sched_group. We may want to revisit it if we couldn't
3915 * meet load balance goals by pulling other tasks on src_cpu.
3916 *
3917 * Also avoid computing new_dst_cpu if we have already computed
3918 * one in current iteration.
3919 */
3920 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3921 return 0;
3922
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003923 /* Prevent to re-select dst_cpu via env's cpus */
3924 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3925 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3926 env->flags |= LBF_SOME_PINNED;
3927 env->new_dst_cpu = cpu;
3928 break;
3929 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303930 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003931
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003932 return 0;
3933 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303934
3935 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003936 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003937
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003938 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03003939 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003940 return 0;
3941 }
3942
3943 /*
3944 * Aggressive migration if:
3945 * 1) task is cache cold, or
3946 * 2) too many balance attempts have failed.
3947 */
3948
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003949 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003950 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003951 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003952
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003953 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003954 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003955 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003956 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003957
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003958 return 1;
3959 }
3960
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003961 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3962 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003963}
3964
Peter Zijlstra897c3952009-12-17 17:45:42 +01003965/*
3966 * move_one_task tries to move exactly one task from busiest to this_rq, as
3967 * part of active balancing operations within "domain".
3968 * Returns 1 if successful and 0 otherwise.
3969 *
3970 * Called with both runqueues locked.
3971 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003972static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01003973{
3974 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01003975
Peter Zijlstra367456c2012-02-20 21:49:09 +01003976 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01003977 if (!can_migrate_task(p, env))
3978 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01003979
Peter Zijlstra367456c2012-02-20 21:49:09 +01003980 move_task(p, env);
3981 /*
3982 * Right now, this is only the second place move_task()
3983 * is called, so we can safely collect move_task()
3984 * stats here rather than inside move_task().
3985 */
3986 schedstat_inc(env->sd, lb_gained[env->idle]);
3987 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01003988 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01003989 return 0;
3990}
3991
Peter Zijlstra367456c2012-02-20 21:49:09 +01003992static unsigned long task_h_load(struct task_struct *p);
3993
Peter Zijlstraeb953082012-04-17 13:38:40 +02003994static const unsigned int sched_nr_migrate_break = 32;
3995
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01003996/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02003997 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01003998 * this_rq, as part of a balancing operation within domain "sd".
3999 * Returns 1 if successful and 0 otherwise.
4000 *
4001 * Called with both runqueues locked.
4002 */
4003static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004004{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004005 struct list_head *tasks = &env->src_rq->cfs_tasks;
4006 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004007 unsigned long load;
4008 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004009
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004010 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004011 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004012
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004013 while (!list_empty(tasks)) {
4014 p = list_first_entry(tasks, struct task_struct, se.group_node);
4015
Peter Zijlstra367456c2012-02-20 21:49:09 +01004016 env->loop++;
4017 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004018 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004019 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004020
4021 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004022 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004023 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004024 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004025 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004026 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004027
Joonsoo Kimd3198082013-04-23 17:27:40 +09004028 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004029 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004030
Peter Zijlstra367456c2012-02-20 21:49:09 +01004031 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004032
Peter Zijlstraeb953082012-04-17 13:38:40 +02004033 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004034 goto next;
4035
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004036 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004037 goto next;
4038
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004039 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004040 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004041 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004042
4043#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004044 /*
4045 * NEWIDLE balancing is a source of latency, so preemptible
4046 * kernels will stop after the first task is pulled to minimize
4047 * the critical section.
4048 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004049 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004050 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004051#endif
4052
Peter Zijlstraee00e662009-12-17 17:25:20 +01004053 /*
4054 * We only want to steal up to the prescribed amount of
4055 * weighted load.
4056 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004057 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004058 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004059
Peter Zijlstra367456c2012-02-20 21:49:09 +01004060 continue;
4061next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004062 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004063 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004064
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004065 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004066 * Right now, this is one of only two places move_task() is called,
4067 * so we can safely collect move_task() stats here rather than
4068 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004069 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004070 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004071
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004072 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004073}
4074
Peter Zijlstra230059de2009-12-17 17:47:12 +01004075#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004076/*
4077 * update tg->load_weight by folding this cpu's load_avg
4078 */
Paul Turner48a16752012-10-04 13:18:31 +02004079static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004080{
Paul Turner48a16752012-10-04 13:18:31 +02004081 struct sched_entity *se = tg->se[cpu];
4082 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004083
Paul Turner48a16752012-10-04 13:18:31 +02004084 /* throttled entities do not contribute to load */
4085 if (throttled_hierarchy(cfs_rq))
4086 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004087
Paul Turneraff3e492012-10-04 13:18:30 +02004088 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004089
Paul Turner82958362012-10-04 13:18:31 +02004090 if (se) {
4091 update_entity_load_avg(se, 1);
4092 /*
4093 * We pivot on our runnable average having decayed to zero for
4094 * list removal. This generally implies that all our children
4095 * have also been removed (modulo rounding error or bandwidth
4096 * control); however, such cases are rare and we can fix these
4097 * at enqueue.
4098 *
4099 * TODO: fix up out-of-order children on enqueue.
4100 */
4101 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4102 list_del_leaf_cfs_rq(cfs_rq);
4103 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004104 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004105 update_rq_runnable_avg(rq, rq->nr_running);
4106 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004107}
4108
Paul Turner48a16752012-10-04 13:18:31 +02004109static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004110{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004111 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004112 struct cfs_rq *cfs_rq;
4113 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004114
Paul Turner48a16752012-10-04 13:18:31 +02004115 raw_spin_lock_irqsave(&rq->lock, flags);
4116 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004117 /*
4118 * Iterates the task_group tree in a bottom up fashion, see
4119 * list_add_leaf_cfs_rq() for details.
4120 */
Paul Turner64660c82011-07-21 09:43:36 -07004121 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004122 /*
4123 * Note: We may want to consider periodically releasing
4124 * rq->lock about these updates so that creating many task
4125 * groups does not result in continually extending hold time.
4126 */
4127 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004128 }
Paul Turner48a16752012-10-04 13:18:31 +02004129
4130 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004131}
4132
Peter Zijlstra9763b672011-07-13 13:09:25 +02004133/*
4134 * Compute the cpu's hierarchical load factor for each task group.
4135 * This needs to be done in a top-down fashion because the load of a child
4136 * group is a fraction of its parents load.
4137 */
4138static int tg_load_down(struct task_group *tg, void *data)
4139{
4140 unsigned long load;
4141 long cpu = (long)data;
4142
4143 if (!tg->parent) {
4144 load = cpu_rq(cpu)->load.weight;
4145 } else {
4146 load = tg->parent->cfs_rq[cpu]->h_load;
4147 load *= tg->se[cpu]->load.weight;
4148 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4149 }
4150
4151 tg->cfs_rq[cpu]->h_load = load;
4152
4153 return 0;
4154}
4155
4156static void update_h_load(long cpu)
4157{
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004158 struct rq *rq = cpu_rq(cpu);
4159 unsigned long now = jiffies;
4160
4161 if (rq->h_load_throttle == now)
4162 return;
4163
4164 rq->h_load_throttle = now;
4165
Peter Zijlstra367456c2012-02-20 21:49:09 +01004166 rcu_read_lock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004167 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
Peter Zijlstra367456c2012-02-20 21:49:09 +01004168 rcu_read_unlock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004169}
4170
Peter Zijlstra367456c2012-02-20 21:49:09 +01004171static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004172{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004173 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4174 unsigned long load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004175
Peter Zijlstra367456c2012-02-20 21:49:09 +01004176 load = p->se.load.weight;
4177 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004178
Peter Zijlstra367456c2012-02-20 21:49:09 +01004179 return load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004180}
4181#else
Paul Turner48a16752012-10-04 13:18:31 +02004182static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004183{
4184}
4185
Peter Zijlstra367456c2012-02-20 21:49:09 +01004186static inline void update_h_load(long cpu)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004187{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004188}
4189
4190static unsigned long task_h_load(struct task_struct *p)
4191{
4192 return p->se.load.weight;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004193}
4194#endif
4195
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004196/********** Helpers for find_busiest_group ************************/
4197/*
4198 * sd_lb_stats - Structure to store the statistics of a sched_domain
4199 * during load balancing.
4200 */
4201struct sd_lb_stats {
4202 struct sched_group *busiest; /* Busiest group in this sd */
4203 struct sched_group *this; /* Local group in this sd */
4204 unsigned long total_load; /* Total load of all groups in sd */
4205 unsigned long total_pwr; /* Total power of all groups in sd */
4206 unsigned long avg_load; /* Average load across all groups in sd */
4207
4208 /** Statistics of this group */
4209 unsigned long this_load;
4210 unsigned long this_load_per_task;
4211 unsigned long this_nr_running;
Nikhil Raofab47622010-10-15 13:12:29 -07004212 unsigned long this_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004213 unsigned int this_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004214
4215 /* Statistics of the busiest group */
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004216 unsigned int busiest_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004217 unsigned long max_load;
4218 unsigned long busiest_load_per_task;
4219 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004220 unsigned long busiest_group_capacity;
Nikhil Raofab47622010-10-15 13:12:29 -07004221 unsigned long busiest_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004222 unsigned int busiest_group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004223
4224 int group_imb; /* Is there imbalance in this sd */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004225};
4226
4227/*
4228 * sg_lb_stats - stats of a sched_group required for load_balancing
4229 */
4230struct sg_lb_stats {
4231 unsigned long avg_load; /*Avg load across the CPUs of the group */
4232 unsigned long group_load; /* Total load over the CPUs of the group */
4233 unsigned long sum_nr_running; /* Nr tasks running in the group */
4234 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4235 unsigned long group_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004236 unsigned long idle_cpus;
4237 unsigned long group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004238 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004239 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004240};
4241
4242/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004243 * get_sd_load_idx - Obtain the load index for a given sched domain.
4244 * @sd: The sched_domain whose load_idx is to be obtained.
4245 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4246 */
4247static inline int get_sd_load_idx(struct sched_domain *sd,
4248 enum cpu_idle_type idle)
4249{
4250 int load_idx;
4251
4252 switch (idle) {
4253 case CPU_NOT_IDLE:
4254 load_idx = sd->busy_idx;
4255 break;
4256
4257 case CPU_NEWLY_IDLE:
4258 load_idx = sd->newidle_idx;
4259 break;
4260 default:
4261 load_idx = sd->idle_idx;
4262 break;
4263 }
4264
4265 return load_idx;
4266}
4267
Li Zefan15f803c2013-03-05 16:07:11 +08004268static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004269{
Nikhil Rao1399fa72011-05-18 10:09:39 -07004270 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004271}
4272
4273unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4274{
4275 return default_scale_freq_power(sd, cpu);
4276}
4277
Li Zefan15f803c2013-03-05 16:07:11 +08004278static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004279{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004280 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004281 unsigned long smt_gain = sd->smt_gain;
4282
4283 smt_gain /= weight;
4284
4285 return smt_gain;
4286}
4287
4288unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4289{
4290 return default_scale_smt_power(sd, cpu);
4291}
4292
Li Zefan15f803c2013-03-05 16:07:11 +08004293static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004294{
4295 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004296 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004297
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004298 /*
4299 * Since we're reading these variables without serialization make sure
4300 * we read them once before doing sanity checks on them.
4301 */
4302 age_stamp = ACCESS_ONCE(rq->age_stamp);
4303 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004304
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004305 total = sched_avg_period() + (rq->clock - age_stamp);
4306
4307 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004308 /* Ensures that power won't end up being negative */
4309 available = 0;
4310 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004311 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004312 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004313
Nikhil Rao1399fa72011-05-18 10:09:39 -07004314 if (unlikely((s64)total < SCHED_POWER_SCALE))
4315 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004316
Nikhil Rao1399fa72011-05-18 10:09:39 -07004317 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004318
4319 return div_u64(available, total);
4320}
4321
4322static void update_cpu_power(struct sched_domain *sd, int cpu)
4323{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004324 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07004325 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004326 struct sched_group *sdg = sd->groups;
4327
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004328 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4329 if (sched_feat(ARCH_POWER))
4330 power *= arch_scale_smt_power(sd, cpu);
4331 else
4332 power *= default_scale_smt_power(sd, cpu);
4333
Nikhil Rao1399fa72011-05-18 10:09:39 -07004334 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004335 }
4336
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004337 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004338
4339 if (sched_feat(ARCH_POWER))
4340 power *= arch_scale_freq_power(sd, cpu);
4341 else
4342 power *= default_scale_freq_power(sd, cpu);
4343
Nikhil Rao1399fa72011-05-18 10:09:39 -07004344 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004345
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004346 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004347 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004348
4349 if (!power)
4350 power = 1;
4351
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004352 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004353 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004354}
4355
Peter Zijlstra029632f2011-10-25 10:00:11 +02004356void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004357{
4358 struct sched_domain *child = sd->child;
4359 struct sched_group *group, *sdg = sd->groups;
4360 unsigned long power;
Vincent Guittot4ec44122011-12-12 20:21:08 +01004361 unsigned long interval;
4362
4363 interval = msecs_to_jiffies(sd->balance_interval);
4364 interval = clamp(interval, 1UL, max_load_balance_interval);
4365 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004366
4367 if (!child) {
4368 update_cpu_power(sd, cpu);
4369 return;
4370 }
4371
4372 power = 0;
4373
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004374 if (child->flags & SD_OVERLAP) {
4375 /*
4376 * SD_OVERLAP domains cannot assume that child groups
4377 * span the current group.
4378 */
4379
4380 for_each_cpu(cpu, sched_group_cpus(sdg))
4381 power += power_of(cpu);
4382 } else {
4383 /*
4384 * !SD_OVERLAP domains can assume that child groups
4385 * span the current group.
4386 */
4387
4388 group = child->groups;
4389 do {
4390 power += group->sgp->power;
4391 group = group->next;
4392 } while (group != child->groups);
4393 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004394
Peter Zijlstrac3decf02012-05-31 12:05:32 +02004395 sdg->sgp->power_orig = sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004396}
4397
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004398/*
4399 * Try and fix up capacity for tiny siblings, this is needed when
4400 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4401 * which on its own isn't powerful enough.
4402 *
4403 * See update_sd_pick_busiest() and check_asym_packing().
4404 */
4405static inline int
4406fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4407{
4408 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07004409 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004410 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02004411 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004412 return 0;
4413
4414 /*
4415 * If ~90% of the cpu_power is still there, we're good.
4416 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004417 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004418 return 1;
4419
4420 return 0;
4421}
4422
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004423/**
4424 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004425 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004426 * @group: sched_group whose statistics are to be updated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004427 * @load_idx: Load index of sched_domain of this_cpu for load calc.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004428 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004429 * @balance: Should we balance.
4430 * @sgs: variable to hold the statistics for this group.
4431 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004432static inline void update_sg_lb_stats(struct lb_env *env,
4433 struct sched_group *group, int load_idx,
Michael Wangb94031302012-07-12 16:10:13 +08004434 int local_group, int *balance, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004435{
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004436 unsigned long nr_running, max_nr_running, min_nr_running;
4437 unsigned long load, max_cpu_load, min_cpu_load;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004438 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004439 unsigned long avg_load_per_task = 0;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004440 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004441
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06004442 if (local_group)
Peter Zijlstrac1174872012-05-31 14:47:33 +02004443 balance_cpu = group_balance_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004444
4445 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004446 max_cpu_load = 0;
4447 min_cpu_load = ~0UL;
Nikhil Rao2582f0e2010-10-13 12:09:36 -07004448 max_nr_running = 0;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004449 min_nr_running = ~0UL;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004450
Michael Wangb94031302012-07-12 16:10:13 +08004451 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004452 struct rq *rq = cpu_rq(i);
4453
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004454 nr_running = rq->nr_running;
4455
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004456 /* Bias balancing toward cpus of our domain */
4457 if (local_group) {
Peter Zijlstrac1174872012-05-31 14:47:33 +02004458 if (idle_cpu(i) && !first_idle_cpu &&
4459 cpumask_test_cpu(i, sched_group_mask(group))) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004460 first_idle_cpu = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004461 balance_cpu = i;
4462 }
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004463
4464 load = target_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004465 } else {
4466 load = source_load(i, load_idx);
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004467 if (load > max_cpu_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004468 max_cpu_load = load;
4469 if (min_cpu_load > load)
4470 min_cpu_load = load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004471
4472 if (nr_running > max_nr_running)
4473 max_nr_running = nr_running;
4474 if (min_nr_running > nr_running)
4475 min_nr_running = nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004476 }
4477
4478 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004479 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004480 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004481 if (idle_cpu(i))
4482 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004483 }
4484
4485 /*
4486 * First idle cpu or the first cpu(busiest) in this sched group
4487 * is eligible for doing load balancing at this and above
4488 * domains. In the newly idle case, we will allow all the cpu's
4489 * to do the newly idle load balance.
4490 */
Vincent Guittot4ec44122011-12-12 20:21:08 +01004491 if (local_group) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004492 if (env->idle != CPU_NEWLY_IDLE) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004493 if (balance_cpu != env->dst_cpu) {
Vincent Guittot4ec44122011-12-12 20:21:08 +01004494 *balance = 0;
4495 return;
4496 }
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004497 update_group_power(env->sd, env->dst_cpu);
Vincent Guittot4ec44122011-12-12 20:21:08 +01004498 } else if (time_after_eq(jiffies, group->sgp->next_update))
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004499 update_group_power(env->sd, env->dst_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004500 }
4501
4502 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004503 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004504
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004505 /*
4506 * Consider the group unbalanced when the imbalance is larger
Peter Zijlstra866ab432011-02-21 18:56:47 +01004507 * than the average weight of a task.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004508 *
4509 * APZ: with cgroup the avg task weight can vary wildly and
4510 * might not be a suitable number - should we keep a
4511 * normalized nr_running number somewhere that negates
4512 * the hierarchy?
4513 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004514 if (sgs->sum_nr_running)
4515 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004516
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004517 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4518 (max_nr_running - min_nr_running) > 1)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004519 sgs->group_imb = 1;
4520
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004521 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
Nikhil Rao1399fa72011-05-18 10:09:39 -07004522 SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004523 if (!sgs->group_capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004524 sgs->group_capacity = fix_small_capacity(env->sd, group);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004525 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07004526
4527 if (sgs->group_capacity > sgs->sum_nr_running)
4528 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004529}
4530
4531/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10004532 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07004533 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004534 * @sds: sched_domain statistics
4535 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10004536 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10004537 *
4538 * Determine if @sg is a busier group than the previously selected
4539 * busiest group.
4540 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004541static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10004542 struct sd_lb_stats *sds,
4543 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004544 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004545{
4546 if (sgs->avg_load <= sds->max_load)
4547 return false;
4548
4549 if (sgs->sum_nr_running > sgs->group_capacity)
4550 return true;
4551
4552 if (sgs->group_imb)
4553 return true;
4554
4555 /*
4556 * ASYM_PACKING needs to move all the work to the lowest
4557 * numbered CPUs in the group, therefore mark all groups
4558 * higher than ourself as busy.
4559 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004560 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4561 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10004562 if (!sds->busiest)
4563 return true;
4564
4565 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4566 return true;
4567 }
4568
4569 return false;
4570}
4571
4572/**
Hui Kang461819a2011-10-11 23:00:59 -04004573 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004574 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004575 * @balance: Should we balance.
4576 * @sds: variable to hold the statistics for this sched_domain.
4577 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004578static inline void update_sd_lb_stats(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08004579 int *balance, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004580{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004581 struct sched_domain *child = env->sd->child;
4582 struct sched_group *sg = env->sd->groups;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004583 struct sg_lb_stats sgs;
4584 int load_idx, prefer_sibling = 0;
4585
4586 if (child && child->flags & SD_PREFER_SIBLING)
4587 prefer_sibling = 1;
4588
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004589 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004590
4591 do {
4592 int local_group;
4593
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004594 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004595 memset(&sgs, 0, sizeof(sgs));
Michael Wangb94031302012-07-12 16:10:13 +08004596 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004597
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004598 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004599 return;
4600
4601 sds->total_load += sgs.group_load;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004602 sds->total_pwr += sg->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004603
4604 /*
4605 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10004606 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07004607 * and move all the excess tasks away. We lower the capacity
4608 * of a group only if the local group has the capacity to fit
4609 * these excess tasks, i.e. nr_running < group_capacity. The
4610 * extra check prevents the case where you always pull from the
4611 * heaviest group when it is already under-utilized (possible
4612 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004613 */
Nikhil Rao75dd3212010-10-15 13:12:30 -07004614 if (prefer_sibling && !local_group && sds->this_has_capacity)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004615 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4616
4617 if (local_group) {
4618 sds->this_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004619 sds->this = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004620 sds->this_nr_running = sgs.sum_nr_running;
4621 sds->this_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004622 sds->this_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004623 sds->this_idle_cpus = sgs.idle_cpus;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004624 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004625 sds->max_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004626 sds->busiest = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004627 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004628 sds->busiest_idle_cpus = sgs.idle_cpus;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004629 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004630 sds->busiest_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004631 sds->busiest_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004632 sds->busiest_group_weight = sgs.group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004633 sds->group_imb = sgs.group_imb;
4634 }
4635
Michael Neuling532cb4c2010-06-08 14:57:02 +10004636 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004637 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10004638}
4639
Michael Neuling532cb4c2010-06-08 14:57:02 +10004640/**
4641 * check_asym_packing - Check to see if the group is packed into the
4642 * sched doman.
4643 *
4644 * This is primarily intended to used at the sibling level. Some
4645 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4646 * case of POWER7, it can move to lower SMT modes only when higher
4647 * threads are idle. When in lower SMT modes, the threads will
4648 * perform better since they share less core resources. Hence when we
4649 * have idle threads, we want them to be the higher ones.
4650 *
4651 * This packing function is run on idle threads. It checks to see if
4652 * the busiest CPU in this domain (core in the P7 case) has a higher
4653 * CPU number than the packing function is being run on. Here we are
4654 * assuming lower CPU number will be equivalent to lower a SMT thread
4655 * number.
4656 *
Michael Neulingb6b12292010-06-10 12:06:21 +10004657 * Returns 1 when packing is required and a task should be moved to
4658 * this CPU. The amount of the imbalance is returned in *imbalance.
4659 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004660 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004661 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10004662 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004663static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004664{
4665 int busiest_cpu;
4666
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004667 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004668 return 0;
4669
4670 if (!sds->busiest)
4671 return 0;
4672
4673 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004674 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004675 return 0;
4676
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004677 env->imbalance = DIV_ROUND_CLOSEST(
4678 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4679
Michael Neuling532cb4c2010-06-08 14:57:02 +10004680 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004681}
4682
4683/**
4684 * fix_small_imbalance - Calculate the minor imbalance that exists
4685 * amongst the groups of a sched_domain, during
4686 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004687 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004688 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004689 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004690static inline
4691void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004692{
4693 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4694 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004695 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004696
4697 if (sds->this_nr_running) {
4698 sds->this_load_per_task /= sds->this_nr_running;
4699 if (sds->busiest_load_per_task >
4700 sds->this_load_per_task)
4701 imbn = 1;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004702 } else {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004703 sds->this_load_per_task =
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004704 cpu_avg_load_per_task(env->dst_cpu);
4705 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004706
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004707 scaled_busy_load_per_task = sds->busiest_load_per_task
Nikhil Rao1399fa72011-05-18 10:09:39 -07004708 * SCHED_POWER_SCALE;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004709 scaled_busy_load_per_task /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004710
4711 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4712 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004713 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004714 return;
4715 }
4716
4717 /*
4718 * OK, we don't have enough imbalance to justify moving tasks,
4719 * however we may be able to increase total CPU power used by
4720 * moving them.
4721 */
4722
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004723 pwr_now += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004724 min(sds->busiest_load_per_task, sds->max_load);
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004725 pwr_now += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004726 min(sds->this_load_per_task, sds->this_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004727 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004728
4729 /* Amount of load we'd subtract */
Nikhil Rao1399fa72011-05-18 10:09:39 -07004730 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004731 sds->busiest->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004732 if (sds->max_load > tmp)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004733 pwr_move += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004734 min(sds->busiest_load_per_task, sds->max_load - tmp);
4735
4736 /* Amount of load we'd add */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004737 if (sds->max_load * sds->busiest->sgp->power <
Nikhil Rao1399fa72011-05-18 10:09:39 -07004738 sds->busiest_load_per_task * SCHED_POWER_SCALE)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004739 tmp = (sds->max_load * sds->busiest->sgp->power) /
4740 sds->this->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004741 else
Nikhil Rao1399fa72011-05-18 10:09:39 -07004742 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004743 sds->this->sgp->power;
4744 pwr_move += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004745 min(sds->this_load_per_task, sds->this_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004746 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004747
4748 /* Move if we gain throughput */
4749 if (pwr_move > pwr_now)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004750 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004751}
4752
4753/**
4754 * calculate_imbalance - Calculate the amount of imbalance present within the
4755 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004756 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004757 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004758 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004759static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004760{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004761 unsigned long max_pull, load_above_capacity = ~0UL;
4762
4763 sds->busiest_load_per_task /= sds->busiest_nr_running;
4764 if (sds->group_imb) {
4765 sds->busiest_load_per_task =
4766 min(sds->busiest_load_per_task, sds->avg_load);
4767 }
4768
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004769 /*
4770 * In the presence of smp nice balancing, certain scenarios can have
4771 * max load less than avg load(as we skip the groups at or below
4772 * its cpu_power, while calculating max_load..)
4773 */
4774 if (sds->max_load < sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004775 env->imbalance = 0;
4776 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004777 }
4778
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004779 if (!sds->group_imb) {
4780 /*
4781 * Don't want to pull so many tasks that a group would go idle.
4782 */
4783 load_above_capacity = (sds->busiest_nr_running -
4784 sds->busiest_group_capacity);
4785
Nikhil Rao1399fa72011-05-18 10:09:39 -07004786 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004787
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004788 load_above_capacity /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004789 }
4790
4791 /*
4792 * We're trying to get all the cpus to the average_load, so we don't
4793 * want to push ourselves above the average load, nor do we wish to
4794 * reduce the max loaded cpu below the average load. At the same time,
4795 * we also don't want to reduce the group load below the group capacity
4796 * (so that we can implement power-savings policies etc). Thus we look
4797 * for the minimum possible imbalance.
4798 * Be careful of negative numbers as they'll appear as very large values
4799 * with unsigned longs.
4800 */
4801 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004802
4803 /* How much load to actually move to equalise the imbalance */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004804 env->imbalance = min(max_pull * sds->busiest->sgp->power,
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004805 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
Nikhil Rao1399fa72011-05-18 10:09:39 -07004806 / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004807
4808 /*
4809 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03004810 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004811 * a think about bumping its value to force at least one task to be
4812 * moved
4813 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004814 if (env->imbalance < sds->busiest_load_per_task)
4815 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004816
4817}
Nikhil Raofab47622010-10-15 13:12:29 -07004818
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004819/******* find_busiest_group() helpers end here *********************/
4820
4821/**
4822 * find_busiest_group - Returns the busiest group within the sched_domain
4823 * if there is an imbalance. If there isn't an imbalance, and
4824 * the user has opted for power-savings, it returns a group whose
4825 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4826 * such a group exists.
4827 *
4828 * Also calculates the amount of weighted load which should be moved
4829 * to restore balance.
4830 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004831 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004832 * @balance: Pointer to a variable indicating if this_cpu
4833 * is the appropriate cpu to perform load balancing at this_level.
4834 *
4835 * Returns: - the busiest group if imbalance exists.
4836 * - If no imbalance and user has opted for power-savings balance,
4837 * return the least loaded group whose CPUs can be
4838 * put to idle by rebalancing its tasks onto our group.
4839 */
4840static struct sched_group *
Michael Wangb94031302012-07-12 16:10:13 +08004841find_busiest_group(struct lb_env *env, int *balance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004842{
4843 struct sd_lb_stats sds;
4844
4845 memset(&sds, 0, sizeof(sds));
4846
4847 /*
4848 * Compute the various statistics relavent for load balancing at
4849 * this level.
4850 */
Michael Wangb94031302012-07-12 16:10:13 +08004851 update_sd_lb_stats(env, balance, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004852
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004853 /*
4854 * this_cpu is not the appropriate cpu to perform load balancing at
4855 * this level.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004856 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004857 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004858 goto ret;
4859
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004860 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4861 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004862 return sds.busiest;
4863
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004864 /* There is no busy sibling group to pull tasks from */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004865 if (!sds.busiest || sds.busiest_nr_running == 0)
4866 goto out_balanced;
4867
Nikhil Rao1399fa72011-05-18 10:09:39 -07004868 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07004869
Peter Zijlstra866ab432011-02-21 18:56:47 +01004870 /*
4871 * If the busiest group is imbalanced the below checks don't
4872 * work because they assumes all things are equal, which typically
4873 * isn't true due to cpus_allowed constraints and the like.
4874 */
4875 if (sds.group_imb)
4876 goto force_balance;
4877
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004878 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004879 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
Nikhil Raofab47622010-10-15 13:12:29 -07004880 !sds.busiest_has_capacity)
4881 goto force_balance;
4882
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004883 /*
4884 * If the local group is more busy than the selected busiest group
4885 * don't try and pull any tasks.
4886 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004887 if (sds.this_load >= sds.max_load)
4888 goto out_balanced;
4889
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004890 /*
4891 * Don't pull any tasks if this group is already above the domain
4892 * average load.
4893 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004894 if (sds.this_load >= sds.avg_load)
4895 goto out_balanced;
4896
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004897 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004898 /*
4899 * This cpu is idle. If the busiest group load doesn't
4900 * have more tasks than the number of available cpu's and
4901 * there is no imbalance between this and busiest group
4902 * wrt to idle cpu's, it is balanced.
4903 */
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004904 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004905 sds.busiest_nr_running <= sds.busiest_group_weight)
4906 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004907 } else {
4908 /*
4909 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4910 * imbalance_pct to be conservative.
4911 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004912 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004913 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004914 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004915
Nikhil Raofab47622010-10-15 13:12:29 -07004916force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004917 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004918 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004919 return sds.busiest;
4920
4921out_balanced:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004922ret:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004923 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004924 return NULL;
4925}
4926
4927/*
4928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4929 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004930static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08004931 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004932{
4933 struct rq *busiest = NULL, *rq;
4934 unsigned long max_load = 0;
4935 int i;
4936
4937 for_each_cpu(i, sched_group_cpus(group)) {
4938 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004939 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4940 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004941 unsigned long wl;
4942
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004943 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004944 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004945
Michael Wangb94031302012-07-12 16:10:13 +08004946 if (!cpumask_test_cpu(i, env->cpus))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004947 continue;
4948
4949 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004950 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004951
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004952 /*
4953 * When comparing with imbalance, use weighted_cpuload()
4954 * which is not scaled with the cpu power.
4955 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004956 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004957 continue;
4958
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004959 /*
4960 * For the load comparisons with the other cpu's, consider
4961 * the weighted_cpuload() scaled with the cpu power, so that
4962 * the load can be moved away from the cpu that is potentially
4963 * running at a lower capacity.
4964 */
Nikhil Rao1399fa72011-05-18 10:09:39 -07004965 wl = (wl * SCHED_POWER_SCALE) / power;
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004966
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004967 if (wl > max_load) {
4968 max_load = wl;
4969 busiest = rq;
4970 }
4971 }
4972
4973 return busiest;
4974}
4975
4976/*
4977 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4978 * so long as it is large enough.
4979 */
4980#define MAX_PINNED_INTERVAL 512
4981
4982/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09004983DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004984
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004985static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01004986{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004987 struct sched_domain *sd = env->sd;
4988
4989 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10004990
4991 /*
4992 * ASYM_PACKING needs to force migrate tasks from busy but
4993 * higher numbered CPUs in order to pack all tasks in the
4994 * lowest numbered CPUs.
4995 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004996 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004997 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01004998 }
4999
5000 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5001}
5002
Tejun Heo969c7922010-05-06 18:49:21 +02005003static int active_load_balance_cpu_stop(void *data);
5004
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005005/*
5006 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5007 * tasks if there is an imbalance.
5008 */
5009static int load_balance(int this_cpu, struct rq *this_rq,
5010 struct sched_domain *sd, enum cpu_idle_type idle,
5011 int *balance)
5012{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305013 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005014 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005015 struct rq *busiest;
5016 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005017 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005018
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005019 struct lb_env env = {
5020 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005021 .dst_cpu = this_cpu,
5022 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305023 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005024 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005025 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08005026 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005027 };
5028
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005029 /*
5030 * For NEWLY_IDLE load_balancing, we don't need to consider
5031 * other cpus in our group
5032 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005033 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005034 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005035
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005036 cpumask_copy(cpus, cpu_active_mask);
5037
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005038 schedstat_inc(sd, lb_count[idle]);
5039
5040redo:
Michael Wangb94031302012-07-12 16:10:13 +08005041 group = find_busiest_group(&env, balance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005042
5043 if (*balance == 0)
5044 goto out_balanced;
5045
5046 if (!group) {
5047 schedstat_inc(sd, lb_nobusyg[idle]);
5048 goto out_balanced;
5049 }
5050
Michael Wangb94031302012-07-12 16:10:13 +08005051 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005052 if (!busiest) {
5053 schedstat_inc(sd, lb_nobusyq[idle]);
5054 goto out_balanced;
5055 }
5056
Michael Wang78feefc2012-08-06 16:41:59 +08005057 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005058
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005059 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005060
5061 ld_moved = 0;
5062 if (busiest->nr_running > 1) {
5063 /*
5064 * Attempt to move tasks. If find_busiest_group has found
5065 * an imbalance but busiest->nr_running <= 1, the group is
5066 * still unbalanced. ld_moved simply stays zero, so it is
5067 * correctly treated as an imbalance.
5068 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005069 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005070 env.src_cpu = busiest->cpu;
5071 env.src_rq = busiest;
5072 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005073
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005074 update_h_load(env.src_cpu);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005075more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005076 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005077 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305078
5079 /*
5080 * cur_ld_moved - load moved in current iteration
5081 * ld_moved - cumulative load moved across iterations
5082 */
5083 cur_ld_moved = move_tasks(&env);
5084 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005085 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005086 local_irq_restore(flags);
5087
5088 /*
5089 * some other cpu did the load balance for us.
5090 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305091 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5092 resched_cpu(env.dst_cpu);
5093
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005094 if (env.flags & LBF_NEED_BREAK) {
5095 env.flags &= ~LBF_NEED_BREAK;
5096 goto more_balance;
5097 }
5098
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305099 /*
5100 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5101 * us and move them to an alternate dst_cpu in our sched_group
5102 * where they can run. The upper limit on how many times we
5103 * iterate on same src_cpu is dependent on number of cpus in our
5104 * sched_group.
5105 *
5106 * This changes load balance semantics a bit on who can move
5107 * load to a given_cpu. In addition to the given_cpu itself
5108 * (or a ilb_cpu acting on its behalf where given_cpu is
5109 * nohz-idle), we now have balance_cpu in a position to move
5110 * load to given_cpu. In rare situations, this may cause
5111 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5112 * _independently_ and at _same_ time to move some load to
5113 * given_cpu) causing exceess load to be moved to given_cpu.
5114 * This however should not happen so much in practice and
5115 * moreover subsequent load balance cycles should correct the
5116 * excess load moved.
5117 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005118 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305119
Michael Wang78feefc2012-08-06 16:41:59 +08005120 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305121 env.dst_cpu = env.new_dst_cpu;
5122 env.flags &= ~LBF_SOME_PINNED;
5123 env.loop = 0;
5124 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005125
5126 /* Prevent to re-select dst_cpu via env's cpus */
5127 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5128
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305129 /*
5130 * Go back to "more_balance" rather than "redo" since we
5131 * need to continue with same src_cpu.
5132 */
5133 goto more_balance;
5134 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005135
5136 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005137 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005138 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305139 if (!cpumask_empty(cpus)) {
5140 env.loop = 0;
5141 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005142 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305143 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005144 goto out_balanced;
5145 }
5146 }
5147
5148 if (!ld_moved) {
5149 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005150 /*
5151 * Increment the failure counter only on periodic balance.
5152 * We do not want newidle balance, which can be very
5153 * frequent, pollute the failure counter causing
5154 * excessive cache_hot migrations and active balances.
5155 */
5156 if (idle != CPU_NEWLY_IDLE)
5157 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005158
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005159 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005160 raw_spin_lock_irqsave(&busiest->lock, flags);
5161
Tejun Heo969c7922010-05-06 18:49:21 +02005162 /* don't kick the active_load_balance_cpu_stop,
5163 * if the curr task on busiest cpu can't be
5164 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005165 */
5166 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005167 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005168 raw_spin_unlock_irqrestore(&busiest->lock,
5169 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005170 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005171 goto out_one_pinned;
5172 }
5173
Tejun Heo969c7922010-05-06 18:49:21 +02005174 /*
5175 * ->active_balance synchronizes accesses to
5176 * ->active_balance_work. Once set, it's cleared
5177 * only after active load balance is finished.
5178 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005179 if (!busiest->active_balance) {
5180 busiest->active_balance = 1;
5181 busiest->push_cpu = this_cpu;
5182 active_balance = 1;
5183 }
5184 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005185
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005186 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005187 stop_one_cpu_nowait(cpu_of(busiest),
5188 active_load_balance_cpu_stop, busiest,
5189 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005190 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005191
5192 /*
5193 * We've kicked active balancing, reset the failure
5194 * counter.
5195 */
5196 sd->nr_balance_failed = sd->cache_nice_tries+1;
5197 }
5198 } else
5199 sd->nr_balance_failed = 0;
5200
5201 if (likely(!active_balance)) {
5202 /* We were unbalanced, so reset the balancing interval */
5203 sd->balance_interval = sd->min_interval;
5204 } else {
5205 /*
5206 * If we've begun active balancing, start to back off. This
5207 * case may not be covered by the all_pinned logic if there
5208 * is only 1 task on the busy runqueue (because we don't call
5209 * move_tasks).
5210 */
5211 if (sd->balance_interval < sd->max_interval)
5212 sd->balance_interval *= 2;
5213 }
5214
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005215 goto out;
5216
5217out_balanced:
5218 schedstat_inc(sd, lb_balanced[idle]);
5219
5220 sd->nr_balance_failed = 0;
5221
5222out_one_pinned:
5223 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005224 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02005225 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005226 (sd->balance_interval < sd->max_interval))
5227 sd->balance_interval *= 2;
5228
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08005229 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005230out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005231 return ld_moved;
5232}
5233
5234/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005235 * idle_balance is called by schedule() if this_cpu is about to become
5236 * idle. Attempts to pull tasks from other CPUs.
5237 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005238void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005239{
5240 struct sched_domain *sd;
5241 int pulled_task = 0;
5242 unsigned long next_balance = jiffies + HZ;
5243
5244 this_rq->idle_stamp = this_rq->clock;
5245
5246 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5247 return;
5248
Peter Zijlstraf492e122009-12-23 15:29:42 +01005249 /*
5250 * Drop the rq->lock, but keep IRQ/preempt disabled.
5251 */
5252 raw_spin_unlock(&this_rq->lock);
5253
Paul Turner48a16752012-10-04 13:18:31 +02005254 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02005255 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005256 for_each_domain(this_cpu, sd) {
5257 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01005258 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259
5260 if (!(sd->flags & SD_LOAD_BALANCE))
5261 continue;
5262
Peter Zijlstraf492e122009-12-23 15:29:42 +01005263 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005264 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01005265 pulled_task = load_balance(this_cpu, this_rq,
5266 sd, CPU_NEWLY_IDLE, &balance);
5267 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005268
5269 interval = msecs_to_jiffies(sd->balance_interval);
5270 if (time_after(next_balance, sd->last_balance + interval))
5271 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005272 if (pulled_task) {
5273 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005274 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005275 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005276 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005277 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01005278
5279 raw_spin_lock(&this_rq->lock);
5280
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005281 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5282 /*
5283 * We are going idle. next_balance may be set based on
5284 * a busy processor. So reset next_balance.
5285 */
5286 this_rq->next_balance = next_balance;
5287 }
5288}
5289
5290/*
Tejun Heo969c7922010-05-06 18:49:21 +02005291 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5292 * running tasks off the busiest CPU onto idle CPUs. It requires at
5293 * least 1 task to be running on each physical CPU where possible, and
5294 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005295 */
Tejun Heo969c7922010-05-06 18:49:21 +02005296static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005297{
Tejun Heo969c7922010-05-06 18:49:21 +02005298 struct rq *busiest_rq = data;
5299 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005300 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02005301 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005302 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02005303
5304 raw_spin_lock_irq(&busiest_rq->lock);
5305
5306 /* make sure the requested cpu hasn't gone down in the meantime */
5307 if (unlikely(busiest_cpu != smp_processor_id() ||
5308 !busiest_rq->active_balance))
5309 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005310
5311 /* Is there any task to move? */
5312 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02005313 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005314
5315 /*
5316 * This condition is "impossible", if it occurs
5317 * we need to fix it. Originally reported by
5318 * Bjorn Helgaas on a 128-cpu setup.
5319 */
5320 BUG_ON(busiest_rq == target_rq);
5321
5322 /* move a task from busiest_rq to target_rq */
5323 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005324
5325 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02005326 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005327 for_each_domain(target_cpu, sd) {
5328 if ((sd->flags & SD_LOAD_BALANCE) &&
5329 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5330 break;
5331 }
5332
5333 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005334 struct lb_env env = {
5335 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005336 .dst_cpu = target_cpu,
5337 .dst_rq = target_rq,
5338 .src_cpu = busiest_rq->cpu,
5339 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005340 .idle = CPU_IDLE,
5341 };
5342
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005343 schedstat_inc(sd, alb_count);
5344
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005345 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005346 schedstat_inc(sd, alb_pushed);
5347 else
5348 schedstat_inc(sd, alb_failed);
5349 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005350 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005351 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02005352out_unlock:
5353 busiest_rq->active_balance = 0;
5354 raw_spin_unlock_irq(&busiest_rq->lock);
5355 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005356}
5357
5358#ifdef CONFIG_NO_HZ
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005359/*
5360 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005361 * - When one of the busy CPUs notice that there may be an idle rebalancing
5362 * needed, they will kick the idle load balancer, which then does idle
5363 * load balancing for all the idle CPUs.
5364 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005365static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005366 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005367 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005368 unsigned long next_balance; /* in jiffy units */
5369} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005370
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01005371static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005372{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005373 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005374
Suresh Siddha786d6dc72011-12-01 17:07:35 -08005375 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5376 return ilb;
5377
5378 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005379}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005380
5381/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005382 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5383 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5384 * CPU (if there is one).
5385 */
5386static void nohz_balancer_kick(int cpu)
5387{
5388 int ilb_cpu;
5389
5390 nohz.next_balance++;
5391
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005392 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005393
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005394 if (ilb_cpu >= nr_cpu_ids)
5395 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005396
Suresh Siddhacd490c52011-12-06 11:26:34 -08005397 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08005398 return;
5399 /*
5400 * Use smp_send_reschedule() instead of resched_cpu().
5401 * This way we generate a sched IPI on the target cpu which
5402 * is idle. And the softirq performing nohz idle load balance
5403 * will be run before returning from the IPI.
5404 */
5405 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005406 return;
5407}
5408
Alex Shic1cc0172012-09-10 15:10:58 +08005409static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08005410{
5411 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5412 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5413 atomic_dec(&nohz.nr_cpus);
5414 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5415 }
5416}
5417
Suresh Siddha69e1e812011-12-01 17:07:33 -08005418static inline void set_cpu_sd_state_busy(void)
5419{
5420 struct sched_domain *sd;
5421 int cpu = smp_processor_id();
5422
Suresh Siddha69e1e812011-12-01 17:07:33 -08005423 rcu_read_lock();
Vincent Guittot25f55d92013-04-23 16:59:02 +02005424 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5425
5426 if (!sd || !sd->nohz_idle)
5427 goto unlock;
5428 sd->nohz_idle = 0;
5429
5430 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005431 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005432unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005433 rcu_read_unlock();
5434}
5435
5436void set_cpu_sd_state_idle(void)
5437{
5438 struct sched_domain *sd;
5439 int cpu = smp_processor_id();
5440
Suresh Siddha69e1e812011-12-01 17:07:33 -08005441 rcu_read_lock();
Vincent Guittot25f55d92013-04-23 16:59:02 +02005442 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5443
5444 if (!sd || sd->nohz_idle)
5445 goto unlock;
5446 sd->nohz_idle = 1;
5447
5448 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005449 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005450unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005451 rcu_read_unlock();
5452}
5453
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005454/*
Alex Shic1cc0172012-09-10 15:10:58 +08005455 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005456 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005457 */
Alex Shic1cc0172012-09-10 15:10:58 +08005458void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005459{
Suresh Siddha71325962012-01-19 18:28:57 -08005460 /*
5461 * If this cpu is going down, then nothing needs to be done.
5462 */
5463 if (!cpu_active(cpu))
5464 return;
5465
Alex Shic1cc0172012-09-10 15:10:58 +08005466 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5467 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005468
Alex Shic1cc0172012-09-10 15:10:58 +08005469 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5470 atomic_inc(&nohz.nr_cpus);
5471 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472}
Suresh Siddha71325962012-01-19 18:28:57 -08005473
5474static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5475 unsigned long action, void *hcpu)
5476{
5477 switch (action & ~CPU_TASKS_FROZEN) {
5478 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08005479 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08005480 return NOTIFY_OK;
5481 default:
5482 return NOTIFY_DONE;
5483 }
5484}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005485#endif
5486
5487static DEFINE_SPINLOCK(balancing);
5488
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005489/*
5490 * Scale the max load_balance interval with the number of CPUs in the system.
5491 * This trades load-balance latency on larger machines for less cross talk.
5492 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005493void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005494{
5495 max_load_balance_interval = HZ*num_online_cpus()/10;
5496}
5497
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005498/*
5499 * It checks each scheduling domain to see if it is due to be balanced,
5500 * and initiates a balancing operation if so.
5501 *
Libinb9b08532013-04-01 19:14:01 +08005502 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005503 */
5504static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5505{
5506 int balance = 1;
5507 struct rq *rq = cpu_rq(cpu);
5508 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005509 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510 /* Earliest time when we have to do rebalance again */
5511 unsigned long next_balance = jiffies + 60*HZ;
5512 int update_next_balance = 0;
5513 int need_serialize;
5514
Paul Turner48a16752012-10-04 13:18:31 +02005515 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08005516
Peter Zijlstradce840a2011-04-07 14:09:50 +02005517 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005518 for_each_domain(cpu, sd) {
5519 if (!(sd->flags & SD_LOAD_BALANCE))
5520 continue;
5521
5522 interval = sd->balance_interval;
5523 if (idle != CPU_IDLE)
5524 interval *= sd->busy_factor;
5525
5526 /* scale ms to jiffies */
5527 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005528 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005529
5530 need_serialize = sd->flags & SD_SERIALIZE;
5531
5532 if (need_serialize) {
5533 if (!spin_trylock(&balancing))
5534 goto out;
5535 }
5536
5537 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5538 if (load_balance(cpu, rq, sd, idle, &balance)) {
5539 /*
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005540 * The LBF_SOME_PINNED logic could have changed
5541 * env->dst_cpu, so we can't know our idle
5542 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005543 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005544 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005545 }
5546 sd->last_balance = jiffies;
5547 }
5548 if (need_serialize)
5549 spin_unlock(&balancing);
5550out:
5551 if (time_after(next_balance, sd->last_balance + interval)) {
5552 next_balance = sd->last_balance + interval;
5553 update_next_balance = 1;
5554 }
5555
5556 /*
5557 * Stop the load balance at this level. There is another
5558 * CPU in our sched group which is doing load balancing more
5559 * actively.
5560 */
5561 if (!balance)
5562 break;
5563 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005564 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005565
5566 /*
5567 * next_balance will be updated only when there is a need.
5568 * When the cpu is attached to null domain for ex, it will not be
5569 * updated.
5570 */
5571 if (likely(update_next_balance))
5572 rq->next_balance = next_balance;
5573}
5574
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005575#ifdef CONFIG_NO_HZ
5576/*
5577 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5578 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5579 */
5580static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5581{
5582 struct rq *this_rq = cpu_rq(this_cpu);
5583 struct rq *rq;
5584 int balance_cpu;
5585
Suresh Siddha1c792db2011-12-01 17:07:32 -08005586 if (idle != CPU_IDLE ||
5587 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5588 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005589
5590 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08005591 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005592 continue;
5593
5594 /*
5595 * If this cpu gets work to do, stop the load balancing
5596 * work being done for other cpus. Next load
5597 * balancing owner will pick it up.
5598 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08005599 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005600 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005601
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02005602 rq = cpu_rq(balance_cpu);
5603
5604 raw_spin_lock_irq(&rq->lock);
5605 update_rq_clock(rq);
5606 update_idle_cpu_load(rq);
5607 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005608
5609 rebalance_domains(balance_cpu, CPU_IDLE);
5610
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005611 if (time_after(this_rq->next_balance, rq->next_balance))
5612 this_rq->next_balance = rq->next_balance;
5613 }
5614 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005615end:
5616 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005617}
5618
5619/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005620 * Current heuristic for kicking the idle load balancer in the presence
5621 * of an idle cpu is the system.
5622 * - This rq has more than one task.
5623 * - At any scheduler domain level, this cpu's scheduler group has multiple
5624 * busy cpu's exceeding the group's power.
5625 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5626 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005627 */
5628static inline int nohz_kick_needed(struct rq *rq, int cpu)
5629{
5630 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005631 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005632
Suresh Siddha1c792db2011-12-01 17:07:32 -08005633 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005634 return 0;
5635
Suresh Siddha1c792db2011-12-01 17:07:32 -08005636 /*
5637 * We may be recently in ticked or tickless idle mode. At the first
5638 * busy tick after returning from idle, we will update the busy stats.
5639 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08005640 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08005641 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005642
5643 /*
5644 * None are in tickless mode and hence no need for NOHZ idle load
5645 * balancing.
5646 */
5647 if (likely(!atomic_read(&nohz.nr_cpus)))
5648 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005649
5650 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005651 return 0;
5652
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005653 if (rq->nr_running >= 2)
5654 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005655
Peter Zijlstra067491b2011-12-07 14:32:08 +01005656 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005657 for_each_domain(cpu, sd) {
5658 struct sched_group *sg = sd->groups;
5659 struct sched_group_power *sgp = sg->sgp;
5660 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005661
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005662 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01005663 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005664
5665 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5666 && (cpumask_first_and(nohz.idle_cpus_mask,
5667 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01005668 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005669
5670 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5671 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005672 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01005673 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005674 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01005675
5676need_kick_unlock:
5677 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005678need_kick:
5679 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005680}
5681#else
5682static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5683#endif
5684
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005685/*
5686 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005687 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005688 */
5689static void run_rebalance_domains(struct softirq_action *h)
5690{
5691 int this_cpu = smp_processor_id();
5692 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07005693 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005694 CPU_IDLE : CPU_NOT_IDLE;
5695
5696 rebalance_domains(this_cpu, idle);
5697
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005698 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005699 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005700 * balancing on behalf of the other idle cpus whose ticks are
5701 * stopped.
5702 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005703 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704}
5705
5706static inline int on_null_domain(int cpu)
5707{
Paul E. McKenney90a65012010-02-28 08:32:18 -08005708 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005709}
5710
5711/*
5712 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005713 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005714void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005715{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005716 /* Don't need to rebalance while attached to NULL domain */
5717 if (time_after_eq(jiffies, rq->next_balance) &&
5718 likely(!on_null_domain(cpu)))
5719 raise_softirq(SCHED_SOFTIRQ);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005720#ifdef CONFIG_NO_HZ
Suresh Siddha1c792db2011-12-01 17:07:32 -08005721 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005722 nohz_balancer_kick(cpu);
5723#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005724}
5725
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005726static void rq_online_fair(struct rq *rq)
5727{
5728 update_sysctl();
5729}
5730
5731static void rq_offline_fair(struct rq *rq)
5732{
5733 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07005734
5735 /* Ensure any throttled groups are reachable by pick_next_task */
5736 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005737}
5738
Dhaval Giani55e12e52008-06-24 23:39:43 +05305739#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02005740
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005741/*
5742 * scheduler tick hitting a task of our scheduling class:
5743 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005744static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005745{
5746 struct cfs_rq *cfs_rq;
5747 struct sched_entity *se = &curr->se;
5748
5749 for_each_sched_entity(se) {
5750 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005751 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005752 }
Ben Segall18bf2802012-10-04 12:51:20 +02005753
Peter Zijlstracbee9f82012-10-25 14:16:43 +02005754 if (sched_feat_numa(NUMA))
5755 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08005756
Ben Segall18bf2802012-10-04 12:51:20 +02005757 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005758}
5759
5760/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005761 * called on fork with the child task as argument from the parent's context
5762 * - child not yet on the tasklist
5763 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005764 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005765static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005766{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005767 struct cfs_rq *cfs_rq;
5768 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02005769 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005770 struct rq *rq = this_rq();
5771 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005772
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005773 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005774
Peter Zijlstra861d0342010-08-19 13:31:43 +02005775 update_rq_clock(rq);
5776
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005777 cfs_rq = task_cfs_rq(current);
5778 curr = cfs_rq->curr;
5779
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005780 if (unlikely(task_cpu(p) != this_cpu)) {
5781 rcu_read_lock();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005782 __set_task_cpu(p, this_cpu);
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005783 rcu_read_unlock();
5784 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005785
Ting Yang7109c442007-08-28 12:53:24 +02005786 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005787
Mike Galbraithb5d9d732009-09-08 11:12:28 +02005788 if (curr)
5789 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02005790 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005791
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005792 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02005793 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02005794 * Upon rescheduling, sched_class::put_prev_task() will place
5795 * 'current' within the tree based on its new key value.
5796 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005797 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05305798 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005799 }
5800
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005801 se->vruntime -= cfs_rq->min_vruntime;
5802
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005803 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005804}
5805
Steven Rostedtcb469842008-01-25 21:08:22 +01005806/*
5807 * Priority of the task has changed. Check to see if we preempt
5808 * the current task.
5809 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005810static void
5811prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01005812{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005813 if (!p->se.on_rq)
5814 return;
5815
Steven Rostedtcb469842008-01-25 21:08:22 +01005816 /*
5817 * Reschedule if we are currently running on this runqueue and
5818 * our priority decreased, or if we are not currently running on
5819 * this runqueue and our priority is higher than the current's
5820 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005821 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01005822 if (p->prio > oldprio)
5823 resched_task(rq->curr);
5824 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005825 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005826}
5827
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005828static void switched_from_fair(struct rq *rq, struct task_struct *p)
5829{
5830 struct sched_entity *se = &p->se;
5831 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5832
5833 /*
5834 * Ensure the task's vruntime is normalized, so that when its
5835 * switched back to the fair class the enqueue_entity(.flags=0) will
5836 * do the right thing.
5837 *
5838 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5839 * have normalized the vruntime, if it was !on_rq, then only when
5840 * the task is sleeping will it still have non-normalized vruntime.
5841 */
5842 if (!se->on_rq && p->state != TASK_RUNNING) {
5843 /*
5844 * Fix up our vruntime so that the current sleep doesn't
5845 * cause 'unlimited' sleep bonus.
5846 */
5847 place_entity(cfs_rq, se, 0);
5848 se->vruntime -= cfs_rq->min_vruntime;
5849 }
Paul Turner9ee474f2012-10-04 13:18:30 +02005850
5851#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5852 /*
5853 * Remove our load from contribution when we leave sched_fair
5854 * and ensure we don't carry in an old decay_count if we
5855 * switch back.
5856 */
5857 if (p->se.avg.decay_count) {
5858 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5859 __synchronize_entity_decay(&p->se);
5860 subtract_blocked_load_contrib(cfs_rq,
5861 p->se.avg.load_avg_contrib);
5862 }
5863#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005864}
5865
Steven Rostedtcb469842008-01-25 21:08:22 +01005866/*
5867 * We switched to the sched_fair class.
5868 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005869static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005870{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005871 if (!p->se.on_rq)
5872 return;
5873
Steven Rostedtcb469842008-01-25 21:08:22 +01005874 /*
5875 * We were most likely switched from sched_rt, so
5876 * kick off the schedule if running, otherwise just see
5877 * if we can still preempt the current task.
5878 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005879 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005880 resched_task(rq->curr);
5881 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005882 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005883}
5884
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005885/* Account for a task changing its policy or group.
5886 *
5887 * This routine is mostly called to set cfs_rq->curr field when a task
5888 * migrates between groups/classes.
5889 */
5890static void set_curr_task_fair(struct rq *rq)
5891{
5892 struct sched_entity *se = &rq->curr->se;
5893
Paul Turnerec12cb72011-07-21 09:43:30 -07005894 for_each_sched_entity(se) {
5895 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5896
5897 set_next_entity(cfs_rq, se);
5898 /* ensure bandwidth has been allocated on our new cfs_rq */
5899 account_cfs_rq_runtime(cfs_rq, 0);
5900 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005901}
5902
Peter Zijlstra029632f2011-10-25 10:00:11 +02005903void init_cfs_rq(struct cfs_rq *cfs_rq)
5904{
5905 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02005906 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5907#ifndef CONFIG_64BIT
5908 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5909#endif
Paul Turner9ee474f2012-10-04 13:18:30 +02005910#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5911 atomic64_set(&cfs_rq->decay_counter, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02005912 atomic64_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02005913#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02005914}
5915
Peter Zijlstra810b3812008-02-29 15:21:01 -05005916#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005917static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05005918{
Paul Turneraff3e492012-10-04 13:18:30 +02005919 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005920 /*
5921 * If the task was not on the rq at the time of this cgroup movement
5922 * it must have been asleep, sleeping tasks keep their ->vruntime
5923 * absolute on their old rq until wakeup (needed for the fair sleeper
5924 * bonus in place_entity()).
5925 *
5926 * If it was on the rq, we've just 'preempted' it, which does convert
5927 * ->vruntime to a relative base.
5928 *
5929 * Make sure both cases convert their relative position when migrating
5930 * to another cgroup's rq. This does somewhat interfere with the
5931 * fair sleeper stuff for the first placement, but who cares.
5932 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005933 /*
5934 * When !on_rq, vruntime of the task has usually NOT been normalized.
5935 * But there are some cases where it has already been normalized:
5936 *
5937 * - Moving a forked child which is waiting for being woken up by
5938 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005939 * - Moving a task which has been woken up by try_to_wake_up() and
5940 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005941 *
5942 * To prevent boost or penalty in the new cfs_rq caused by delta
5943 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5944 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005945 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005946 on_rq = 1;
5947
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005948 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005949 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5950 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02005951 if (!on_rq) {
5952 cfs_rq = cfs_rq_of(&p->se);
5953 p->se.vruntime += cfs_rq->min_vruntime;
5954#ifdef CONFIG_SMP
5955 /*
5956 * migrate_task_rq_fair() will have removed our previous
5957 * contribution, but we must synchronize for ongoing future
5958 * decay.
5959 */
5960 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5961 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5962#endif
5963 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05005964}
Peter Zijlstra029632f2011-10-25 10:00:11 +02005965
5966void free_fair_sched_group(struct task_group *tg)
5967{
5968 int i;
5969
5970 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5971
5972 for_each_possible_cpu(i) {
5973 if (tg->cfs_rq)
5974 kfree(tg->cfs_rq[i]);
5975 if (tg->se)
5976 kfree(tg->se[i]);
5977 }
5978
5979 kfree(tg->cfs_rq);
5980 kfree(tg->se);
5981}
5982
5983int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5984{
5985 struct cfs_rq *cfs_rq;
5986 struct sched_entity *se;
5987 int i;
5988
5989 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5990 if (!tg->cfs_rq)
5991 goto err;
5992 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5993 if (!tg->se)
5994 goto err;
5995
5996 tg->shares = NICE_0_LOAD;
5997
5998 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5999
6000 for_each_possible_cpu(i) {
6001 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6002 GFP_KERNEL, cpu_to_node(i));
6003 if (!cfs_rq)
6004 goto err;
6005
6006 se = kzalloc_node(sizeof(struct sched_entity),
6007 GFP_KERNEL, cpu_to_node(i));
6008 if (!se)
6009 goto err_free_rq;
6010
6011 init_cfs_rq(cfs_rq);
6012 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6013 }
6014
6015 return 1;
6016
6017err_free_rq:
6018 kfree(cfs_rq);
6019err:
6020 return 0;
6021}
6022
6023void unregister_fair_sched_group(struct task_group *tg, int cpu)
6024{
6025 struct rq *rq = cpu_rq(cpu);
6026 unsigned long flags;
6027
6028 /*
6029 * Only empty task groups can be destroyed; so we can speculatively
6030 * check on_list without danger of it being re-added.
6031 */
6032 if (!tg->cfs_rq[cpu]->on_list)
6033 return;
6034
6035 raw_spin_lock_irqsave(&rq->lock, flags);
6036 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6037 raw_spin_unlock_irqrestore(&rq->lock, flags);
6038}
6039
6040void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6041 struct sched_entity *se, int cpu,
6042 struct sched_entity *parent)
6043{
6044 struct rq *rq = cpu_rq(cpu);
6045
6046 cfs_rq->tg = tg;
6047 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006048 init_cfs_rq_runtime(cfs_rq);
6049
6050 tg->cfs_rq[cpu] = cfs_rq;
6051 tg->se[cpu] = se;
6052
6053 /* se could be NULL for root_task_group */
6054 if (!se)
6055 return;
6056
6057 if (!parent)
6058 se->cfs_rq = &rq->cfs;
6059 else
6060 se->cfs_rq = parent->my_q;
6061
6062 se->my_q = cfs_rq;
6063 update_load_set(&se->load, 0);
6064 se->parent = parent;
6065}
6066
6067static DEFINE_MUTEX(shares_mutex);
6068
6069int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6070{
6071 int i;
6072 unsigned long flags;
6073
6074 /*
6075 * We can't change the weight of the root cgroup.
6076 */
6077 if (!tg->se[0])
6078 return -EINVAL;
6079
6080 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6081
6082 mutex_lock(&shares_mutex);
6083 if (tg->shares == shares)
6084 goto done;
6085
6086 tg->shares = shares;
6087 for_each_possible_cpu(i) {
6088 struct rq *rq = cpu_rq(i);
6089 struct sched_entity *se;
6090
6091 se = tg->se[i];
6092 /* Propagate contribution to hierarchy */
6093 raw_spin_lock_irqsave(&rq->lock, flags);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006094 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006095 update_cfs_shares(group_cfs_rq(se));
6096 raw_spin_unlock_irqrestore(&rq->lock, flags);
6097 }
6098
6099done:
6100 mutex_unlock(&shares_mutex);
6101 return 0;
6102}
6103#else /* CONFIG_FAIR_GROUP_SCHED */
6104
6105void free_fair_sched_group(struct task_group *tg) { }
6106
6107int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6108{
6109 return 1;
6110}
6111
6112void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6113
6114#endif /* CONFIG_FAIR_GROUP_SCHED */
6115
Peter Zijlstra810b3812008-02-29 15:21:01 -05006116
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006117static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006118{
6119 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006120 unsigned int rr_interval = 0;
6121
6122 /*
6123 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6124 * idle runqueue:
6125 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006126 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006127 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006128
6129 return rr_interval;
6130}
6131
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006132/*
6133 * All the scheduling class methods:
6134 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006135const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006136 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006137 .enqueue_task = enqueue_task_fair,
6138 .dequeue_task = dequeue_task_fair,
6139 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006140 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006141
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006142 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006143
6144 .pick_next_task = pick_next_task_fair,
6145 .put_prev_task = put_prev_task_fair,
6146
Peter Williams681f3e62007-10-24 18:23:51 +02006147#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08006148 .select_task_rq = select_task_rq_fair,
Paul Turnerf4e26b12012-10-04 13:18:32 +02006149#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner0a74bef2012-10-04 13:18:30 +02006150 .migrate_task_rq = migrate_task_rq_fair,
Paul Turnerf4e26b12012-10-04 13:18:32 +02006151#endif
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006152 .rq_online = rq_online_fair,
6153 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006154
6155 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02006156#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006157
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006158 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006159 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006160 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006161
6162 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006163 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006164 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006165
Peter Williams0d721ce2009-09-21 01:31:53 +00006166 .get_rr_interval = get_rr_interval_fair,
6167
Peter Zijlstra810b3812008-02-29 15:21:01 -05006168#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006169 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006170#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006171};
6172
6173#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02006174void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006175{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006176 struct cfs_rq *cfs_rq;
6177
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006178 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02006179 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02006180 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006181 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006182}
6183#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006184
6185__init void init_sched_fair_class(void)
6186{
6187#ifdef CONFIG_SMP
6188 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6189
6190#ifdef CONFIG_NO_HZ
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08006191 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006192 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08006193 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02006194#endif
6195#endif /* SMP */
6196
6197}