blob: e401e446e87cbf01538ace57e214134e7aa2fa06 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100181#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200182#define WMULT_SHIFT 32
183
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100184static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200185{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100186 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200197 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100198 lw->inv_weight = WMULT_CONST / w;
199}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200200
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200225 }
226
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200229
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200236}
237
238
239const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200240
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
Peter Zijlstra8f488942009-07-24 12:25:30 +0200256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
Peter Zijlstrab7581492008-04-19 19:45:00 +0200264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
Paul Turneraff3e492012-10-04 13:18:30 +0200285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200287
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800305
306 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200307 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200308 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
Peter Zijlstrab7581492008-04-19 19:45:00 +0200320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100325static inline struct cfs_rq *
Peter Zijlstrab7581492008-04-19 19:45:00 +0200326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100329 return se->cfs_rq;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200330
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100331 return NULL;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
Peter Zijlstra464b7522008-10-24 11:06:15 +0200339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
Peter Zijlstra464b7522008-10-24 11:06:15 +0200354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
Peter Zijlstra8f488942009-07-24 12:25:30 +0200371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
381}
382
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200383#define entity_is_task(se) 1
384
Peter Zijlstrab7581492008-04-19 19:45:00 +0200385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200387
Peter Zijlstrab7581492008-04-19 19:45:00 +0200388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200389{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200390 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200391}
392
Peter Zijlstrab7581492008-04-19 19:45:00 +0200393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
Peter Zijlstrab7581492008-04-19 19:45:00 +0200415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
Peter Zijlstrab7581492008-04-19 19:45:00 +0200418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
Peter Zijlstra464b7522008-10-24 11:06:15 +0200423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
Peter Zijlstrab7581492008-04-19 19:45:00 +0200428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700430static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
Andrei Epure1bf08232013-03-12 21:12:24 +0200437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200438{
Andrei Epure1bf08232013-03-12 21:12:24 +0200439 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200440 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200441 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200442
Andrei Epure1bf08232013-03-12 21:12:24 +0200443 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200444}
445
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
Fabio Checconi54fdc582009-07-16 12:32:27 +0200455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100473 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
Andrei Epure1bf08232013-03-12 21:12:24 +0200479 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200485}
486
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200487/*
488 * Enqueue an entity into the rb-tree:
489 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200507 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200519 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200520 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200524}
525
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200527{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100533 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200534
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536}
537
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200546}
547
Rik van Rielac53db52011-02-01 09:51:03 -0500548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200560{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200562
Balbir Singh70eee742008-02-22 13:25:53 +0530563 if (!last)
564 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100565
566 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200567}
568
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100573int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700574 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100575 loff_t *ppos)
576{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100578 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100591#undef WRT_SYSCTL
592
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100593 return 0;
594}
595#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200596
597/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200598 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200599 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200601{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200602 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200604
605 return delta;
606}
607
608/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200609 * The idea is to set a period in which each task runs once.
610 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200611 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100619 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200620
621 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100622 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200623 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200624 }
625
626 return period;
627}
628
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200633 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200634 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200636{
Mike Galbraith0a582442009-01-02 12:16:42 +0100637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200638
Mike Galbraith0a582442009-01-02 12:16:42 +0100639 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100640 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200641 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200645
Mike Galbraith0a582442009-01-02 12:16:42 +0100646 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200647 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100652 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 }
654 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655}
656
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200657/*
Andrei Epure660cc002013-03-11 12:03:20 +0200658 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200659 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200660 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200661 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200663{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200665}
666
Alex Shia75cdaa2013-06-20 10:18:47 +0800667#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100668static unsigned long task_h_load(struct task_struct *p);
669
Alex Shia75cdaa2013-06-20 10:18:47 +0800670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200689/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100690 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200691 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200692static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200693{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200694 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200695 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100696 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200697
698 if (unlikely(!curr))
699 return;
700
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100703 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200704
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200705 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100706
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
Ingo Molnarf977bb42009-09-13 18:15:54 +0200719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100720 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700721 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100722 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725}
726
727static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200729{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200731}
732
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200733/*
734 * Task is being enqueued - update stats:
735 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200742 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200743 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200744}
745
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200748{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200758 }
759#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300760 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200761}
762
763static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200765{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200770 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200771 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
780 /*
781 * We are starting a new run period:
782 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200784}
785
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200790#ifdef CONFIG_NUMA_BALANCING
791/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200795 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200801
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
Mel Gorman598f0ec2013-10-07 11:28:55 +0100805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100867 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100868 struct list_head task_list;
869
870 struct rcu_head rcu;
Rik van Riel20e07de2014-01-27 17:03:43 -0500871 nodemask_t active_nodes;
Mel Gorman989348b2013-10-07 11:29:40 +0100872 unsigned long total_faults;
Rik van Riel7e2703e2014-01-27 17:03:45 -0500873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
Rik van Riel50ec8a42014-01-27 17:03:42 -0500878 unsigned long *faults_cpu;
Mel Gorman989348b2013-10-07 11:29:40 +0100879 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100880};
881
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
Mel Gormane29cf082013-10-07 11:29:22 +0100891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
Mel Gormanac8e8952013-10-07 11:29:03 +0100896static inline int task_faults_idx(int nid, int priv)
897{
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
Mel Gormanac8e8952013-10-07 11:29:03 +0100899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
Rik van Rielff1df892014-01-27 17:03:41 -0500903 if (!p->numa_faults_memory)
Mel Gormanac8e8952013-10-07 11:29:03 +0100904 return 0;
905
Rik van Rielff1df892014-01-27 17:03:41 -0500906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
Mel Gormanac8e8952013-10-07 11:29:03 +0100908}
909
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
Wanpeng Li82897b42013-12-12 15:23:25 +0800915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100917}
918
Rik van Riel20e07de2014-01-27 17:03:43 -0500919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
Rik van Rielff1df892014-01-27 17:03:41 -0500935 if (!p->numa_faults_memory)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
Mel Gorman989348b2013-10-07 11:29:40 +0100948 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100949 return 0;
950
Mel Gorman989348b2013-10-07 11:29:40 +0100951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100952}
953
Rik van Riel10f39042014-01-27 17:03:44 -0500954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
Mel Gormane6628d52013-10-07 11:29:02 +01001017static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +01001022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +01001024struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001025 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +01001026 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027
1028 /* Total compute capacity of CPUs on a node */
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001029 unsigned long compute_capacity;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001030
1031 /* Approximate capacity in terms of runnable tasks on a node */
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001032 unsigned long task_capacity;
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001033 int has_free_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001034};
Mel Gormane6628d52013-10-07 11:29:02 +01001035
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001041 int cpu, cpus = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001049 ns->compute_capacity += power_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001050
1051 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001052 }
1053
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001061 */
1062 if (!cpus)
1063 return;
1064
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->compute_capacity;
1066 ns->task_capacity =
1067 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_POWER_SCALE);
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001068 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001069}
1070
Mel Gorman58d081b2013-10-07 11:29:10 +01001071struct task_numa_env {
1072 struct task_struct *p;
1073
1074 int src_cpu, src_nid;
1075 int dst_cpu, dst_nid;
1076
1077 struct numa_stats src_stats, dst_stats;
1078
Wanpeng Li40ea2b42013-12-05 19:10:17 +08001079 int imbalance_pct;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001080
1081 struct task_struct *best_task;
1082 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001083 int best_cpu;
1084};
1085
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001086static void task_numa_assign(struct task_numa_env *env,
1087 struct task_struct *p, long imp)
1088{
1089 if (env->best_task)
1090 put_task_struct(env->best_task);
1091 if (p)
1092 get_task_struct(p);
1093
1094 env->best_task = p;
1095 env->best_imp = imp;
1096 env->best_cpu = env->dst_cpu;
1097}
1098
Rik van Riele63da032014-05-14 13:22:21 -04001099static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1100 long src_load, long dst_load,
1101 struct task_numa_env *env)
1102{
1103 long imb, old_imb;
1104
1105 /* We care about the slope of the imbalance, not the direction. */
1106 if (dst_load < src_load)
1107 swap(dst_load, src_load);
1108
1109 /* Is the difference below the threshold? */
1110 imb = dst_load * 100 - src_load * env->imbalance_pct;
1111 if (imb <= 0)
1112 return false;
1113
1114 /*
1115 * The imbalance is above the allowed threshold.
1116 * Compare it with the old imbalance.
1117 */
1118 if (orig_dst_load < orig_src_load)
1119 swap(orig_dst_load, orig_src_load);
1120
1121 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1122
1123 /* Would this change make things worse? */
1124 return (old_imb > imb);
1125}
1126
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001127/*
1128 * This checks if the overall compute and NUMA accesses of the system would
1129 * be improved if the source tasks was migrated to the target dst_cpu taking
1130 * into account that it might be best if task running on the dst_cpu should
1131 * be exchanged with the source task
1132 */
Rik van Riel887c2902013-10-07 11:29:31 +01001133static void task_numa_compare(struct task_numa_env *env,
1134 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001135{
1136 struct rq *src_rq = cpu_rq(env->src_cpu);
1137 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1138 struct task_struct *cur;
Rik van Riele63da032014-05-14 13:22:21 -04001139 long orig_src_load, src_load;
1140 long orig_dst_load, dst_load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001141 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001142 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001143
1144 rcu_read_lock();
1145 cur = ACCESS_ONCE(dst_rq->curr);
1146 if (cur->pid == 0) /* idle */
1147 cur = NULL;
1148
1149 /*
1150 * "imp" is the fault differential for the source task between the
1151 * source and destination node. Calculate the total differential for
1152 * the source task and potential destination task. The more negative
1153 * the value is, the more rmeote accesses that would be expected to
1154 * be incurred if the tasks were swapped.
1155 */
1156 if (cur) {
1157 /* Skip this swap candidate if cannot move to the source cpu */
1158 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1159 goto unlock;
1160
Rik van Riel887c2902013-10-07 11:29:31 +01001161 /*
1162 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001163 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001164 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001165 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001166 imp = taskimp + task_weight(cur, env->src_nid) -
1167 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001168 /*
1169 * Add some hysteresis to prevent swapping the
1170 * tasks within a group over tiny differences.
1171 */
1172 if (cur->numa_group)
1173 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001174 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001175 /*
1176 * Compare the group weights. If a task is all by
1177 * itself (not part of a group), use the task weight
1178 * instead.
1179 */
1180 if (env->p->numa_group)
1181 imp = groupimp;
1182 else
1183 imp = taskimp;
1184
1185 if (cur->numa_group)
1186 imp += group_weight(cur, env->src_nid) -
1187 group_weight(cur, env->dst_nid);
1188 else
1189 imp += task_weight(cur, env->src_nid) -
1190 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001191 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001192 }
1193
1194 if (imp < env->best_imp)
1195 goto unlock;
1196
1197 if (!cur) {
1198 /* Is there capacity at our destination? */
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001199 if (env->src_stats.has_free_capacity &&
1200 !env->dst_stats.has_free_capacity)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001201 goto unlock;
1202
1203 goto balance;
1204 }
1205
1206 /* Balance doesn't matter much if we're running a task per cpu */
1207 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1208 goto assign;
1209
1210 /*
1211 * In the overloaded case, try and keep the load balanced.
1212 */
1213balance:
Rik van Riele63da032014-05-14 13:22:21 -04001214 orig_dst_load = env->dst_stats.load;
1215 orig_src_load = env->src_stats.load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001216
1217 /* XXX missing power terms */
1218 load = task_h_load(env->p);
Rik van Riele63da032014-05-14 13:22:21 -04001219 dst_load = orig_dst_load + load;
1220 src_load = orig_src_load - load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001221
1222 if (cur) {
1223 load = task_h_load(cur);
1224 dst_load -= load;
1225 src_load += load;
1226 }
1227
Rik van Riele63da032014-05-14 13:22:21 -04001228 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1229 src_load, dst_load, env))
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001230 goto unlock;
1231
1232assign:
1233 task_numa_assign(env, cur, imp);
1234unlock:
1235 rcu_read_unlock();
1236}
1237
Rik van Riel887c2902013-10-07 11:29:31 +01001238static void task_numa_find_cpu(struct task_numa_env *env,
1239 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001240{
1241 int cpu;
1242
1243 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1244 /* Skip this CPU if the source task cannot migrate */
1245 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1246 continue;
1247
1248 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001249 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001250 }
1251}
1252
Mel Gorman58d081b2013-10-07 11:29:10 +01001253static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001254{
Mel Gorman58d081b2013-10-07 11:29:10 +01001255 struct task_numa_env env = {
1256 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001257
Mel Gorman58d081b2013-10-07 11:29:10 +01001258 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001259 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001260
1261 .imbalance_pct = 112,
1262
1263 .best_task = NULL,
1264 .best_imp = 0,
1265 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001266 };
1267 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001268 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001269 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001270 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001271
Mel Gorman58d081b2013-10-07 11:29:10 +01001272 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001273 * Pick the lowest SD_NUMA domain, as that would have the smallest
1274 * imbalance and would be the first to start moving tasks about.
1275 *
1276 * And we want to avoid any moving of tasks about, as that would create
1277 * random movement of tasks -- counter the numa conditions we're trying
1278 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001279 */
Mel Gormane6628d52013-10-07 11:29:02 +01001280 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001281 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001282 if (sd)
1283 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001284 rcu_read_unlock();
1285
Rik van Riel46a73e82013-11-11 19:29:25 -05001286 /*
1287 * Cpusets can break the scheduler domain tree into smaller
1288 * balance domains, some of which do not cross NUMA boundaries.
1289 * Tasks that are "trapped" in such domains cannot be migrated
1290 * elsewhere, so there is no point in (re)trying.
1291 */
1292 if (unlikely(!sd)) {
Wanpeng Lide1b3012013-12-12 15:23:24 +08001293 p->numa_preferred_nid = task_node(p);
Rik van Riel46a73e82013-11-11 19:29:25 -05001294 return -EINVAL;
1295 }
1296
Rik van Riel887c2902013-10-07 11:29:31 +01001297 taskweight = task_weight(p, env.src_nid);
1298 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001299 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001300 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001301 taskimp = task_weight(p, env.dst_nid) - taskweight;
1302 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001303 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001304
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001305 /* If the preferred nid has free capacity, try to use it. */
1306 if (env.dst_stats.has_free_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001307 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001308
1309 /* No space available on the preferred nid. Look elsewhere. */
1310 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001311 for_each_online_node(nid) {
1312 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001313 continue;
1314
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001315 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001316 taskimp = task_weight(p, nid) - taskweight;
1317 groupimp = group_weight(p, nid) - groupweight;
1318 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001319 continue;
1320
1321 env.dst_nid = nid;
1322 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001323 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001324 }
1325 }
1326
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001327 /* No better CPU than the current one was found. */
1328 if (env.best_cpu == -1)
1329 return -EAGAIN;
1330
Rik van Riel68d1b022014-04-11 13:00:29 -04001331 /*
1332 * If the task is part of a workload that spans multiple NUMA nodes,
1333 * and is migrating into one of the workload's active nodes, remember
1334 * this node as the task's preferred numa node, so the workload can
1335 * settle down.
1336 * A task that migrated to a second choice node will be better off
1337 * trying for a better one later. Do not set the preferred node here.
1338 */
1339 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1340 sched_setnuma(p, env.dst_nid);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001341
Rik van Riel04bb2f92013-10-07 11:29:36 +01001342 /*
1343 * Reset the scan period if the task is being rescheduled on an
1344 * alternative node to recheck if the tasks is now properly placed.
1345 */
1346 p->numa_scan_period = task_scan_min(p);
1347
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001348 if (env.best_task == NULL) {
Mel Gorman286549d2014-01-21 15:51:03 -08001349 ret = migrate_task_to(p, env.best_cpu);
1350 if (ret != 0)
1351 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001352 return ret;
1353 }
1354
1355 ret = migrate_swap(p, env.best_task);
Mel Gorman286549d2014-01-21 15:51:03 -08001356 if (ret != 0)
1357 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001358 put_task_struct(env.best_task);
1359 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001360}
1361
Mel Gorman6b9a7462013-10-07 11:29:11 +01001362/* Attempt to migrate a task to a CPU on the preferred node. */
1363static void numa_migrate_preferred(struct task_struct *p)
1364{
Rik van Riel5085e2a2014-04-11 13:00:28 -04001365 unsigned long interval = HZ;
1366
Rik van Riel2739d3e2013-10-07 11:29:41 +01001367 /* This task has no NUMA fault statistics yet */
Rik van Rielff1df892014-01-27 17:03:41 -05001368 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
Rik van Riel2739d3e2013-10-07 11:29:41 +01001369 return;
1370
1371 /* Periodically retry migrating the task to the preferred node */
Rik van Riel5085e2a2014-04-11 13:00:28 -04001372 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1373 p->numa_migrate_retry = jiffies + interval;
Rik van Riel2739d3e2013-10-07 11:29:41 +01001374
Mel Gorman6b9a7462013-10-07 11:29:11 +01001375 /* Success if task is already running on preferred CPU */
Wanpeng Lide1b3012013-12-12 15:23:24 +08001376 if (task_node(p) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001377 return;
1378
Mel Gorman6b9a7462013-10-07 11:29:11 +01001379 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001380 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001381}
1382
Rik van Riel04bb2f92013-10-07 11:29:36 +01001383/*
Rik van Riel20e07de2014-01-27 17:03:43 -05001384 * Find the nodes on which the workload is actively running. We do this by
1385 * tracking the nodes from which NUMA hinting faults are triggered. This can
1386 * be different from the set of nodes where the workload's memory is currently
1387 * located.
1388 *
1389 * The bitmask is used to make smarter decisions on when to do NUMA page
1390 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1391 * are added when they cause over 6/16 of the maximum number of faults, but
1392 * only removed when they drop below 3/16.
1393 */
1394static void update_numa_active_node_mask(struct numa_group *numa_group)
1395{
1396 unsigned long faults, max_faults = 0;
1397 int nid;
1398
1399 for_each_online_node(nid) {
1400 faults = group_faults_cpu(numa_group, nid);
1401 if (faults > max_faults)
1402 max_faults = faults;
1403 }
1404
1405 for_each_online_node(nid) {
1406 faults = group_faults_cpu(numa_group, nid);
1407 if (!node_isset(nid, numa_group->active_nodes)) {
1408 if (faults > max_faults * 6 / 16)
1409 node_set(nid, numa_group->active_nodes);
1410 } else if (faults < max_faults * 3 / 16)
1411 node_clear(nid, numa_group->active_nodes);
1412 }
1413}
1414
1415/*
Rik van Riel04bb2f92013-10-07 11:29:36 +01001416 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1417 * increments. The more local the fault statistics are, the higher the scan
1418 * period will be for the next scan window. If local/remote ratio is below
1419 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1420 * scan period will decrease
1421 */
1422#define NUMA_PERIOD_SLOTS 10
1423#define NUMA_PERIOD_THRESHOLD 3
1424
1425/*
1426 * Increase the scan period (slow down scanning) if the majority of
1427 * our memory is already on our local node, or if the majority of
1428 * the page accesses are shared with other processes.
1429 * Otherwise, decrease the scan period.
1430 */
1431static void update_task_scan_period(struct task_struct *p,
1432 unsigned long shared, unsigned long private)
1433{
1434 unsigned int period_slot;
1435 int ratio;
1436 int diff;
1437
1438 unsigned long remote = p->numa_faults_locality[0];
1439 unsigned long local = p->numa_faults_locality[1];
1440
1441 /*
1442 * If there were no record hinting faults then either the task is
1443 * completely idle or all activity is areas that are not of interest
1444 * to automatic numa balancing. Scan slower
1445 */
1446 if (local + shared == 0) {
1447 p->numa_scan_period = min(p->numa_scan_period_max,
1448 p->numa_scan_period << 1);
1449
1450 p->mm->numa_next_scan = jiffies +
1451 msecs_to_jiffies(p->numa_scan_period);
1452
1453 return;
1454 }
1455
1456 /*
1457 * Prepare to scale scan period relative to the current period.
1458 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1459 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1460 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1461 */
1462 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1463 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1464 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1465 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1466 if (!slot)
1467 slot = 1;
1468 diff = slot * period_slot;
1469 } else {
1470 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1471
1472 /*
1473 * Scale scan rate increases based on sharing. There is an
1474 * inverse relationship between the degree of sharing and
1475 * the adjustment made to the scanning period. Broadly
1476 * speaking the intent is that there is little point
1477 * scanning faster if shared accesses dominate as it may
1478 * simply bounce migrations uselessly
1479 */
Rik van Riel04bb2f92013-10-07 11:29:36 +01001480 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1481 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1482 }
1483
1484 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1485 task_scan_min(p), task_scan_max(p));
1486 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1487}
1488
Rik van Riel7e2703e2014-01-27 17:03:45 -05001489/*
1490 * Get the fraction of time the task has been running since the last
1491 * NUMA placement cycle. The scheduler keeps similar statistics, but
1492 * decays those on a 32ms period, which is orders of magnitude off
1493 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1494 * stats only if the task is so new there are no NUMA statistics yet.
1495 */
1496static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1497{
1498 u64 runtime, delta, now;
1499 /* Use the start of this time slice to avoid calculations. */
1500 now = p->se.exec_start;
1501 runtime = p->se.sum_exec_runtime;
1502
1503 if (p->last_task_numa_placement) {
1504 delta = runtime - p->last_sum_exec_runtime;
1505 *period = now - p->last_task_numa_placement;
1506 } else {
1507 delta = p->se.avg.runnable_avg_sum;
1508 *period = p->se.avg.runnable_avg_period;
1509 }
1510
1511 p->last_sum_exec_runtime = runtime;
1512 p->last_task_numa_placement = now;
1513
1514 return delta;
1515}
1516
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001517static void task_numa_placement(struct task_struct *p)
1518{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001519 int seq, nid, max_nid = -1, max_group_nid = -1;
1520 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001521 unsigned long fault_types[2] = { 0, 0 };
Rik van Riel7e2703e2014-01-27 17:03:45 -05001522 unsigned long total_faults;
1523 u64 runtime, period;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001524 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001525
Hugh Dickins2832bc12012-12-19 17:42:16 -08001526 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001527 if (p->numa_scan_seq == seq)
1528 return;
1529 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001530 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001531
Rik van Riel7e2703e2014-01-27 17:03:45 -05001532 total_faults = p->numa_faults_locality[0] +
1533 p->numa_faults_locality[1];
1534 runtime = numa_get_avg_runtime(p, &period);
1535
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001536 /* If the task is part of a group prevent parallel updates to group stats */
1537 if (p->numa_group) {
1538 group_lock = &p->numa_group->lock;
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001539 spin_lock_irq(group_lock);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001540 }
1541
Mel Gorman688b7582013-10-07 11:28:58 +01001542 /* Find the node with the highest number of faults */
1543 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001544 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001545 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001546
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001547 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
Rik van Riel7e2703e2014-01-27 17:03:45 -05001548 long diff, f_diff, f_weight;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001549
Mel Gormanac8e8952013-10-07 11:29:03 +01001550 i = task_faults_idx(nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001551
Mel Gormanac8e8952013-10-07 11:29:03 +01001552 /* Decay existing window, copy faults since last scan */
Rik van Riel35664fd2014-01-27 17:03:46 -05001553 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
Rik van Rielff1df892014-01-27 17:03:41 -05001554 fault_types[priv] += p->numa_faults_buffer_memory[i];
1555 p->numa_faults_buffer_memory[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001556
Rik van Riel7e2703e2014-01-27 17:03:45 -05001557 /*
1558 * Normalize the faults_from, so all tasks in a group
1559 * count according to CPU use, instead of by the raw
1560 * number of faults. Tasks with little runtime have
1561 * little over-all impact on throughput, and thus their
1562 * faults are less important.
1563 */
1564 f_weight = div64_u64(runtime << 16, period + 1);
1565 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1566 (total_faults + 1);
Rik van Riel35664fd2014-01-27 17:03:46 -05001567 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001568 p->numa_faults_buffer_cpu[i] = 0;
1569
Rik van Riel35664fd2014-01-27 17:03:46 -05001570 p->numa_faults_memory[i] += diff;
1571 p->numa_faults_cpu[i] += f_diff;
Rik van Rielff1df892014-01-27 17:03:41 -05001572 faults += p->numa_faults_memory[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001573 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001574 if (p->numa_group) {
1575 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001576 p->numa_group->faults[i] += diff;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001577 p->numa_group->faults_cpu[i] += f_diff;
Mel Gorman989348b2013-10-07 11:29:40 +01001578 p->numa_group->total_faults += diff;
1579 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001580 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001581 }
1582
Mel Gorman688b7582013-10-07 11:28:58 +01001583 if (faults > max_faults) {
1584 max_faults = faults;
1585 max_nid = nid;
1586 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001587
1588 if (group_faults > max_group_faults) {
1589 max_group_faults = group_faults;
1590 max_group_nid = nid;
1591 }
1592 }
1593
Rik van Riel04bb2f92013-10-07 11:29:36 +01001594 update_task_scan_period(p, fault_types[0], fault_types[1]);
1595
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001596 if (p->numa_group) {
Rik van Riel20e07de2014-01-27 17:03:43 -05001597 update_numa_active_node_mask(p->numa_group);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001598 /*
1599 * If the preferred task and group nids are different,
1600 * iterate over the nodes again to find the best place.
1601 */
1602 if (max_nid != max_group_nid) {
1603 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001604
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001605 for_each_online_node(nid) {
1606 weight = task_weight(p, nid) + group_weight(p, nid);
1607 if (weight > max_weight) {
1608 max_weight = weight;
1609 max_nid = nid;
1610 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001611 }
1612 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001613
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001614 spin_unlock_irq(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001615 }
1616
Mel Gorman6b9a7462013-10-07 11:29:11 +01001617 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001618 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001619 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001620 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001621 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001622 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001623}
1624
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001625static inline int get_numa_group(struct numa_group *grp)
1626{
1627 return atomic_inc_not_zero(&grp->refcount);
1628}
1629
1630static inline void put_numa_group(struct numa_group *grp)
1631{
1632 if (atomic_dec_and_test(&grp->refcount))
1633 kfree_rcu(grp, rcu);
1634}
1635
Mel Gorman3e6a9412013-10-07 11:29:35 +01001636static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1637 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001638{
1639 struct numa_group *grp, *my_grp;
1640 struct task_struct *tsk;
1641 bool join = false;
1642 int cpu = cpupid_to_cpu(cpupid);
1643 int i;
1644
1645 if (unlikely(!p->numa_group)) {
1646 unsigned int size = sizeof(struct numa_group) +
Rik van Riel50ec8a42014-01-27 17:03:42 -05001647 4*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001648
1649 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1650 if (!grp)
1651 return;
1652
1653 atomic_set(&grp->refcount, 1);
1654 spin_lock_init(&grp->lock);
1655 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001656 grp->gid = p->pid;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001657 /* Second half of the array tracks nids where faults happen */
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001658 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1659 nr_node_ids;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001660
Rik van Riel20e07de2014-01-27 17:03:43 -05001661 node_set(task_node(current), grp->active_nodes);
1662
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001663 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001664 grp->faults[i] = p->numa_faults_memory[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001665
Mel Gorman989348b2013-10-07 11:29:40 +01001666 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001667
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001668 list_add(&p->numa_entry, &grp->task_list);
1669 grp->nr_tasks++;
1670 rcu_assign_pointer(p->numa_group, grp);
1671 }
1672
1673 rcu_read_lock();
1674 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1675
1676 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001677 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001678
1679 grp = rcu_dereference(tsk->numa_group);
1680 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001681 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001682
1683 my_grp = p->numa_group;
1684 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001685 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001686
1687 /*
1688 * Only join the other group if its bigger; if we're the bigger group,
1689 * the other task will join us.
1690 */
1691 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001692 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001693
1694 /*
1695 * Tie-break on the grp address.
1696 */
1697 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001698 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001699
Rik van Rieldabe1d92013-10-07 11:29:34 +01001700 /* Always join threads in the same process. */
1701 if (tsk->mm == current->mm)
1702 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001703
Rik van Rieldabe1d92013-10-07 11:29:34 +01001704 /* Simple filter to avoid false positives due to PID collisions */
1705 if (flags & TNF_SHARED)
1706 join = true;
1707
Mel Gorman3e6a9412013-10-07 11:29:35 +01001708 /* Update priv based on whether false sharing was detected */
1709 *priv = !join;
1710
Rik van Rieldabe1d92013-10-07 11:29:34 +01001711 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001712 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001713
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001714 rcu_read_unlock();
1715
1716 if (!join)
1717 return;
1718
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001719 BUG_ON(irqs_disabled());
1720 double_lock_irq(&my_grp->lock, &grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001721
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001722 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
Rik van Rielff1df892014-01-27 17:03:41 -05001723 my_grp->faults[i] -= p->numa_faults_memory[i];
1724 grp->faults[i] += p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001725 }
1726 my_grp->total_faults -= p->total_numa_faults;
1727 grp->total_faults += p->total_numa_faults;
1728
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001729 list_move(&p->numa_entry, &grp->task_list);
1730 my_grp->nr_tasks--;
1731 grp->nr_tasks++;
1732
1733 spin_unlock(&my_grp->lock);
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001734 spin_unlock_irq(&grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001735
1736 rcu_assign_pointer(p->numa_group, grp);
1737
1738 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001739 return;
1740
1741no_join:
1742 rcu_read_unlock();
1743 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001744}
1745
1746void task_numa_free(struct task_struct *p)
1747{
1748 struct numa_group *grp = p->numa_group;
1749 int i;
Rik van Rielff1df892014-01-27 17:03:41 -05001750 void *numa_faults = p->numa_faults_memory;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001751
1752 if (grp) {
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001753 spin_lock_irq(&grp->lock);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001754 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001755 grp->faults[i] -= p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001756 grp->total_faults -= p->total_numa_faults;
1757
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001758 list_del(&p->numa_entry);
1759 grp->nr_tasks--;
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001760 spin_unlock_irq(&grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001761 rcu_assign_pointer(p->numa_group, NULL);
1762 put_numa_group(grp);
1763 }
1764
Rik van Rielff1df892014-01-27 17:03:41 -05001765 p->numa_faults_memory = NULL;
1766 p->numa_faults_buffer_memory = NULL;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001767 p->numa_faults_cpu= NULL;
1768 p->numa_faults_buffer_cpu = NULL;
Rik van Riel82727012013-10-07 11:29:28 +01001769 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001770}
1771
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001772/*
1773 * Got a PROT_NONE fault for a page on @node.
1774 */
Rik van Riel58b46da2014-01-27 17:03:47 -05001775void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001776{
1777 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001778 bool migrated = flags & TNF_MIGRATED;
Rik van Riel58b46da2014-01-27 17:03:47 -05001779 int cpu_node = task_node(current);
Rik van Riel792568e2014-04-11 13:00:27 -04001780 int local = !!(flags & TNF_FAULT_LOCAL);
Mel Gormanac8e8952013-10-07 11:29:03 +01001781 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001782
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001783 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001784 return;
1785
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001786 /* for example, ksmd faulting in a user's mm */
1787 if (!p->mm)
1788 return;
1789
Rik van Riel82727012013-10-07 11:29:28 +01001790 /* Do not worry about placement if exiting */
1791 if (p->state == TASK_DEAD)
1792 return;
1793
Mel Gormanf809ca92013-10-07 11:28:57 +01001794 /* Allocate buffer to track faults on a per-node basis */
Rik van Rielff1df892014-01-27 17:03:41 -05001795 if (unlikely(!p->numa_faults_memory)) {
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001796 int size = sizeof(*p->numa_faults_memory) *
1797 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001798
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001799 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
Rik van Rielff1df892014-01-27 17:03:41 -05001800 if (!p->numa_faults_memory)
Mel Gormanf809ca92013-10-07 11:28:57 +01001801 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001802
Rik van Rielff1df892014-01-27 17:03:41 -05001803 BUG_ON(p->numa_faults_buffer_memory);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001804 /*
1805 * The averaged statistics, shared & private, memory & cpu,
1806 * occupy the first half of the array. The second half of the
1807 * array is for current counters, which are averaged into the
1808 * first set by task_numa_placement.
1809 */
Rik van Riel50ec8a42014-01-27 17:03:42 -05001810 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1811 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1812 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001813 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001814 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001815 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001816
Mel Gormanfb003b82012-11-15 09:01:14 +00001817 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001818 * First accesses are treated as private, otherwise consider accesses
1819 * to be private if the accessing pid has not changed
1820 */
1821 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1822 priv = 1;
1823 } else {
1824 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001825 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001826 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001827 }
1828
Rik van Riel792568e2014-04-11 13:00:27 -04001829 /*
1830 * If a workload spans multiple NUMA nodes, a shared fault that
1831 * occurs wholly within the set of nodes that the workload is
1832 * actively using should be counted as local. This allows the
1833 * scan rate to slow down when a workload has settled down.
1834 */
1835 if (!priv && !local && p->numa_group &&
1836 node_isset(cpu_node, p->numa_group->active_nodes) &&
1837 node_isset(mem_node, p->numa_group->active_nodes))
1838 local = 1;
1839
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001840 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001841
Rik van Riel2739d3e2013-10-07 11:29:41 +01001842 /*
1843 * Retry task to preferred node migration periodically, in case it
1844 * case it previously failed, or the scheduler moved us.
1845 */
1846 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001847 numa_migrate_preferred(p);
1848
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001849 if (migrated)
1850 p->numa_pages_migrated += pages;
1851
Rik van Riel58b46da2014-01-27 17:03:47 -05001852 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1853 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
Rik van Riel792568e2014-04-11 13:00:27 -04001854 p->numa_faults_locality[local] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001855}
1856
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001857static void reset_ptenuma_scan(struct task_struct *p)
1858{
1859 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1860 p->mm->numa_scan_offset = 0;
1861}
1862
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001863/*
1864 * The expensive part of numa migration is done from task_work context.
1865 * Triggered from task_tick_numa().
1866 */
1867void task_numa_work(struct callback_head *work)
1868{
1869 unsigned long migrate, next_scan, now = jiffies;
1870 struct task_struct *p = current;
1871 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001872 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001873 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001874 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001875 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001876
1877 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1878
1879 work->next = work; /* protect against double add */
1880 /*
1881 * Who cares about NUMA placement when they're dying.
1882 *
1883 * NOTE: make sure not to dereference p->mm before this check,
1884 * exit_task_work() happens _after_ exit_mm() so we could be called
1885 * without p->mm even though we still had it when we enqueued this
1886 * work.
1887 */
1888 if (p->flags & PF_EXITING)
1889 return;
1890
Mel Gorman930aa172013-10-07 11:29:37 +01001891 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001892 mm->numa_next_scan = now +
1893 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001894 }
1895
1896 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001897 * Enforce maximal scan/migration frequency..
1898 */
1899 migrate = mm->numa_next_scan;
1900 if (time_before(now, migrate))
1901 return;
1902
Mel Gorman598f0ec2013-10-07 11:28:55 +01001903 if (p->numa_scan_period == 0) {
1904 p->numa_scan_period_max = task_scan_max(p);
1905 p->numa_scan_period = task_scan_min(p);
1906 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001907
Mel Gormanfb003b82012-11-15 09:01:14 +00001908 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001909 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1910 return;
1911
Mel Gormane14808b2012-11-19 10:59:15 +00001912 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001913 * Delay this task enough that another task of this mm will likely win
1914 * the next time around.
1915 */
1916 p->node_stamp += 2 * TICK_NSEC;
1917
Mel Gorman9f406042012-11-14 18:34:32 +00001918 start = mm->numa_scan_offset;
1919 pages = sysctl_numa_balancing_scan_size;
1920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1921 if (!pages)
1922 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001923
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001924 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001925 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001926 if (!vma) {
1927 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001928 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001929 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001930 }
Mel Gorman9f406042012-11-14 18:34:32 +00001931 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001932 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001933 continue;
1934
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001935 /*
1936 * Shared library pages mapped by multiple processes are not
1937 * migrated as it is expected they are cache replicated. Avoid
1938 * hinting faults in read-only file-backed mappings or the vdso
1939 * as migrating the pages will be of marginal benefit.
1940 */
1941 if (!vma->vm_mm ||
1942 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1943 continue;
1944
Mel Gorman3c67f472013-12-18 17:08:40 -08001945 /*
1946 * Skip inaccessible VMAs to avoid any confusion between
1947 * PROT_NONE and NUMA hinting ptes
1948 */
1949 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1950 continue;
1951
Mel Gorman9f406042012-11-14 18:34:32 +00001952 do {
1953 start = max(start, vma->vm_start);
1954 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1955 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001956 nr_pte_updates += change_prot_numa(vma, start, end);
1957
1958 /*
1959 * Scan sysctl_numa_balancing_scan_size but ensure that
1960 * at least one PTE is updated so that unused virtual
1961 * address space is quickly skipped.
1962 */
1963 if (nr_pte_updates)
1964 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001965
Mel Gorman9f406042012-11-14 18:34:32 +00001966 start = end;
1967 if (pages <= 0)
1968 goto out;
Rik van Riel3cf19622014-02-18 17:12:44 -05001969
1970 cond_resched();
Mel Gorman9f406042012-11-14 18:34:32 +00001971 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001972 }
1973
Mel Gorman9f406042012-11-14 18:34:32 +00001974out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001975 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001976 * It is possible to reach the end of the VMA list but the last few
1977 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1978 * would find the !migratable VMA on the next scan but not reset the
1979 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001980 */
1981 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001982 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001983 else
1984 reset_ptenuma_scan(p);
1985 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001986}
1987
1988/*
1989 * Drive the periodic memory faults..
1990 */
1991void task_tick_numa(struct rq *rq, struct task_struct *curr)
1992{
1993 struct callback_head *work = &curr->numa_work;
1994 u64 period, now;
1995
1996 /*
1997 * We don't care about NUMA placement if we don't have memory.
1998 */
1999 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2000 return;
2001
2002 /*
2003 * Using runtime rather than walltime has the dual advantage that
2004 * we (mostly) drive the selection from busy threads and that the
2005 * task needs to have done some actual work before we bother with
2006 * NUMA placement.
2007 */
2008 now = curr->se.sum_exec_runtime;
2009 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2010
2011 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02002012 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01002013 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01002014 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002015
2016 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2017 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2018 task_work_add(curr, work, true);
2019 }
2020 }
2021}
2022#else
2023static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2024{
2025}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002026
2027static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2028{
2029}
2030
2031static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2032{
2033}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002034#endif /* CONFIG_NUMA_BALANCING */
2035
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002036static void
2037account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2038{
2039 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002040 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002041 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01002042#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002043 if (entity_is_task(se)) {
2044 struct rq *rq = rq_of(cfs_rq);
2045
2046 account_numa_enqueue(rq, task_of(se));
2047 list_add(&se->group_node, &rq->cfs_tasks);
2048 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01002049#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002050 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002051}
2052
2053static void
2054account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055{
2056 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002057 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002058 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002059 if (entity_is_task(se)) {
2060 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05302061 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002062 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002063 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002064}
2065
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002066#ifdef CONFIG_FAIR_GROUP_SCHED
2067# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002068static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2069{
2070 long tg_weight;
2071
2072 /*
2073 * Use this CPU's actual weight instead of the last load_contribution
2074 * to gain a more accurate current total weight. See
2075 * update_cfs_rq_load_contribution().
2076 */
Alex Shibf5b9862013-06-20 10:18:54 +08002077 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02002078 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002079 tg_weight += cfs_rq->load.weight;
2080
2081 return tg_weight;
2082}
2083
Paul Turner6d5ab292011-01-21 20:45:01 -08002084static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002085{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002086 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002087
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002088 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08002089 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002090
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002091 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002092 if (tg_weight)
2093 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002094
2095 if (shares < MIN_SHARES)
2096 shares = MIN_SHARES;
2097 if (shares > tg->shares)
2098 shares = tg->shares;
2099
2100 return shares;
2101}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002102# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08002103static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002104{
2105 return tg->shares;
2106}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002107# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002108static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2109 unsigned long weight)
2110{
Paul Turner19e5eeb2010-12-15 19:10:18 -08002111 if (se->on_rq) {
2112 /* commit outstanding execution time */
2113 if (cfs_rq->curr == se)
2114 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002115 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08002116 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002117
2118 update_load_set(&se->load, weight);
2119
2120 if (se->on_rq)
2121 account_entity_enqueue(cfs_rq, se);
2122}
2123
Paul Turner82958362012-10-04 13:18:31 +02002124static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2125
Paul Turner6d5ab292011-01-21 20:45:01 -08002126static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002127{
2128 struct task_group *tg;
2129 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002130 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002131
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002132 tg = cfs_rq->tg;
2133 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07002134 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002135 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002136#ifndef CONFIG_SMP
2137 if (likely(se->load.weight == tg->shares))
2138 return;
2139#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08002140 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002141
2142 reweight_entity(cfs_rq_of(se), se, shares);
2143}
2144#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08002145static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002146{
2147}
2148#endif /* CONFIG_FAIR_GROUP_SCHED */
2149
Alex Shi141965c2013-06-26 13:05:39 +08002150#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02002151/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02002152 * We choose a half-life close to 1 scheduling period.
2153 * Note: The tables below are dependent on this value.
2154 */
2155#define LOAD_AVG_PERIOD 32
2156#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2157#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2158
2159/* Precomputed fixed inverse multiplies for multiplication by y^n */
2160static const u32 runnable_avg_yN_inv[] = {
2161 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2162 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2163 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2164 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2165 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2166 0x85aac367, 0x82cd8698,
2167};
2168
2169/*
2170 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2171 * over-estimates when re-combining.
2172 */
2173static const u32 runnable_avg_yN_sum[] = {
2174 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2175 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2176 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2177};
2178
2179/*
Paul Turner9d85f212012-10-04 13:18:29 +02002180 * Approximate:
2181 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2182 */
2183static __always_inline u64 decay_load(u64 val, u64 n)
2184{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002185 unsigned int local_n;
2186
2187 if (!n)
2188 return val;
2189 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2190 return 0;
2191
2192 /* after bounds checking we can collapse to 32-bit */
2193 local_n = n;
2194
2195 /*
2196 * As y^PERIOD = 1/2, we can combine
2197 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2198 * With a look-up table which covers k^n (n<PERIOD)
2199 *
2200 * To achieve constant time decay_load.
2201 */
2202 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2203 val >>= local_n / LOAD_AVG_PERIOD;
2204 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02002205 }
2206
Paul Turner5b51f2f2012-10-04 13:18:32 +02002207 val *= runnable_avg_yN_inv[local_n];
2208 /* We don't use SRR here since we always want to round down. */
2209 return val >> 32;
2210}
2211
2212/*
2213 * For updates fully spanning n periods, the contribution to runnable
2214 * average will be: \Sum 1024*y^n
2215 *
2216 * We can compute this reasonably efficiently by combining:
2217 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2218 */
2219static u32 __compute_runnable_contrib(u64 n)
2220{
2221 u32 contrib = 0;
2222
2223 if (likely(n <= LOAD_AVG_PERIOD))
2224 return runnable_avg_yN_sum[n];
2225 else if (unlikely(n >= LOAD_AVG_MAX_N))
2226 return LOAD_AVG_MAX;
2227
2228 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2229 do {
2230 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2231 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2232
2233 n -= LOAD_AVG_PERIOD;
2234 } while (n > LOAD_AVG_PERIOD);
2235
2236 contrib = decay_load(contrib, n);
2237 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002238}
2239
2240/*
2241 * We can represent the historical contribution to runnable average as the
2242 * coefficients of a geometric series. To do this we sub-divide our runnable
2243 * history into segments of approximately 1ms (1024us); label the segment that
2244 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2245 *
2246 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2247 * p0 p1 p2
2248 * (now) (~1ms ago) (~2ms ago)
2249 *
2250 * Let u_i denote the fraction of p_i that the entity was runnable.
2251 *
2252 * We then designate the fractions u_i as our co-efficients, yielding the
2253 * following representation of historical load:
2254 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2255 *
2256 * We choose y based on the with of a reasonably scheduling period, fixing:
2257 * y^32 = 0.5
2258 *
2259 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2260 * approximately half as much as the contribution to load within the last ms
2261 * (u_0).
2262 *
2263 * When a period "rolls over" and we have new u_0`, multiplying the previous
2264 * sum again by y is sufficient to update:
2265 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2266 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2267 */
2268static __always_inline int __update_entity_runnable_avg(u64 now,
2269 struct sched_avg *sa,
2270 int runnable)
2271{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002272 u64 delta, periods;
2273 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002274 int delta_w, decayed = 0;
2275
2276 delta = now - sa->last_runnable_update;
2277 /*
2278 * This should only happen when time goes backwards, which it
2279 * unfortunately does during sched clock init when we swap over to TSC.
2280 */
2281 if ((s64)delta < 0) {
2282 sa->last_runnable_update = now;
2283 return 0;
2284 }
2285
2286 /*
2287 * Use 1024ns as the unit of measurement since it's a reasonable
2288 * approximation of 1us and fast to compute.
2289 */
2290 delta >>= 10;
2291 if (!delta)
2292 return 0;
2293 sa->last_runnable_update = now;
2294
2295 /* delta_w is the amount already accumulated against our next period */
2296 delta_w = sa->runnable_avg_period % 1024;
2297 if (delta + delta_w >= 1024) {
2298 /* period roll-over */
2299 decayed = 1;
2300
2301 /*
2302 * Now that we know we're crossing a period boundary, figure
2303 * out how much from delta we need to complete the current
2304 * period and accrue it.
2305 */
2306 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002307 if (runnable)
2308 sa->runnable_avg_sum += delta_w;
2309 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002310
Paul Turner5b51f2f2012-10-04 13:18:32 +02002311 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002312
Paul Turner5b51f2f2012-10-04 13:18:32 +02002313 /* Figure out how many additional periods this update spans */
2314 periods = delta / 1024;
2315 delta %= 1024;
2316
2317 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2318 periods + 1);
2319 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2320 periods + 1);
2321
2322 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2323 runnable_contrib = __compute_runnable_contrib(periods);
2324 if (runnable)
2325 sa->runnable_avg_sum += runnable_contrib;
2326 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002327 }
2328
2329 /* Remainder of delta accrued against u_0` */
2330 if (runnable)
2331 sa->runnable_avg_sum += delta;
2332 sa->runnable_avg_period += delta;
2333
2334 return decayed;
2335}
2336
Paul Turner9ee474f2012-10-04 13:18:30 +02002337/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002338static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002339{
2340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2341 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2342
2343 decays -= se->avg.decay_count;
2344 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002345 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002346
2347 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2348 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002349
2350 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002351}
2352
Paul Turnerc566e8e2012-10-04 13:18:30 +02002353#ifdef CONFIG_FAIR_GROUP_SCHED
2354static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2355 int force_update)
2356{
2357 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002358 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002359
2360 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2361 tg_contrib -= cfs_rq->tg_load_contrib;
2362
Alex Shibf5b9862013-06-20 10:18:54 +08002363 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2364 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002365 cfs_rq->tg_load_contrib += tg_contrib;
2366 }
2367}
Paul Turner8165e142012-10-04 13:18:31 +02002368
Paul Turnerbb17f652012-10-04 13:18:31 +02002369/*
2370 * Aggregate cfs_rq runnable averages into an equivalent task_group
2371 * representation for computing load contributions.
2372 */
2373static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2374 struct cfs_rq *cfs_rq)
2375{
2376 struct task_group *tg = cfs_rq->tg;
2377 long contrib;
2378
2379 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002380 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Paul Turnerbb17f652012-10-04 13:18:31 +02002381 sa->runnable_avg_period + 1);
2382 contrib -= cfs_rq->tg_runnable_contrib;
2383
2384 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2385 atomic_add(contrib, &tg->runnable_avg);
2386 cfs_rq->tg_runnable_contrib += contrib;
2387 }
2388}
2389
Paul Turner8165e142012-10-04 13:18:31 +02002390static inline void __update_group_entity_contrib(struct sched_entity *se)
2391{
2392 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2393 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002394 int runnable_avg;
2395
Paul Turner8165e142012-10-04 13:18:31 +02002396 u64 contrib;
2397
2398 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002399 se->avg.load_avg_contrib = div_u64(contrib,
2400 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002401
2402 /*
2403 * For group entities we need to compute a correction term in the case
2404 * that they are consuming <1 cpu so that we would contribute the same
2405 * load as a task of equal weight.
2406 *
2407 * Explicitly co-ordinating this measurement would be expensive, but
2408 * fortunately the sum of each cpus contribution forms a usable
2409 * lower-bound on the true value.
2410 *
2411 * Consider the aggregate of 2 contributions. Either they are disjoint
2412 * (and the sum represents true value) or they are disjoint and we are
2413 * understating by the aggregate of their overlap.
2414 *
2415 * Extending this to N cpus, for a given overlap, the maximum amount we
2416 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2417 * cpus that overlap for this interval and w_i is the interval width.
2418 *
2419 * On a small machine; the first term is well-bounded which bounds the
2420 * total error since w_i is a subset of the period. Whereas on a
2421 * larger machine, while this first term can be larger, if w_i is the
2422 * of consequential size guaranteed to see n_i*w_i quickly converge to
2423 * our upper bound of 1-cpu.
2424 */
2425 runnable_avg = atomic_read(&tg->runnable_avg);
2426 if (runnable_avg < NICE_0_LOAD) {
2427 se->avg.load_avg_contrib *= runnable_avg;
2428 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2429 }
Paul Turner8165e142012-10-04 13:18:31 +02002430}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002431
2432static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2433{
2434 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2435 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2436}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002437#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002438static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2439 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002440static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2441 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002442static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002443static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002444#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002445
Paul Turner8165e142012-10-04 13:18:31 +02002446static inline void __update_task_entity_contrib(struct sched_entity *se)
2447{
2448 u32 contrib;
2449
2450 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2451 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2452 contrib /= (se->avg.runnable_avg_period + 1);
2453 se->avg.load_avg_contrib = scale_load(contrib);
2454}
2455
Paul Turner2dac7542012-10-04 13:18:30 +02002456/* Compute the current contribution to load_avg by se, return any delta */
2457static long __update_entity_load_avg_contrib(struct sched_entity *se)
2458{
2459 long old_contrib = se->avg.load_avg_contrib;
2460
Paul Turner8165e142012-10-04 13:18:31 +02002461 if (entity_is_task(se)) {
2462 __update_task_entity_contrib(se);
2463 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002464 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002465 __update_group_entity_contrib(se);
2466 }
Paul Turner2dac7542012-10-04 13:18:30 +02002467
2468 return se->avg.load_avg_contrib - old_contrib;
2469}
2470
Paul Turner9ee474f2012-10-04 13:18:30 +02002471static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2472 long load_contrib)
2473{
2474 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2475 cfs_rq->blocked_load_avg -= load_contrib;
2476 else
2477 cfs_rq->blocked_load_avg = 0;
2478}
2479
Paul Turnerf1b17282012-10-04 13:18:31 +02002480static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2481
Paul Turner9d85f212012-10-04 13:18:29 +02002482/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002483static inline void update_entity_load_avg(struct sched_entity *se,
2484 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002485{
Paul Turner2dac7542012-10-04 13:18:30 +02002486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2487 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002488 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002489
Paul Turnerf1b17282012-10-04 13:18:31 +02002490 /*
2491 * For a group entity we need to use their owned cfs_rq_clock_task() in
2492 * case they are the parent of a throttled hierarchy.
2493 */
2494 if (entity_is_task(se))
2495 now = cfs_rq_clock_task(cfs_rq);
2496 else
2497 now = cfs_rq_clock_task(group_cfs_rq(se));
2498
2499 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002500 return;
2501
2502 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002503
2504 if (!update_cfs_rq)
2505 return;
2506
Paul Turner2dac7542012-10-04 13:18:30 +02002507 if (se->on_rq)
2508 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002509 else
2510 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2511}
2512
2513/*
2514 * Decay the load contributed by all blocked children and account this so that
2515 * their contribution may appropriately discounted when they wake up.
2516 */
Paul Turneraff3e492012-10-04 13:18:30 +02002517static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002518{
Paul Turnerf1b17282012-10-04 13:18:31 +02002519 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002520 u64 decays;
2521
2522 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002523 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002524 return;
2525
Alex Shi25099402013-06-20 10:18:55 +08002526 if (atomic_long_read(&cfs_rq->removed_load)) {
2527 unsigned long removed_load;
2528 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002529 subtract_blocked_load_contrib(cfs_rq, removed_load);
2530 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002531
Paul Turneraff3e492012-10-04 13:18:30 +02002532 if (decays) {
2533 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2534 decays);
2535 atomic64_add(decays, &cfs_rq->decay_counter);
2536 cfs_rq->last_decay = now;
2537 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002538
2539 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002540}
Ben Segall18bf2802012-10-04 12:51:20 +02002541
Paul Turner2dac7542012-10-04 13:18:30 +02002542/* Add the load generated by se into cfs_rq's child load-average */
2543static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002544 struct sched_entity *se,
2545 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002546{
Paul Turneraff3e492012-10-04 13:18:30 +02002547 /*
2548 * We track migrations using entity decay_count <= 0, on a wake-up
2549 * migration we use a negative decay count to track the remote decays
2550 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002551 *
2552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2553 * are seen by enqueue_entity_load_avg() as a migration with an already
2554 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002555 */
2556 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002558 if (se->avg.decay_count) {
2559 /*
2560 * In a wake-up migration we have to approximate the
2561 * time sleeping. This is because we can't synchronize
2562 * clock_task between the two cpus, and it is not
2563 * guaranteed to be read-safe. Instead, we can
2564 * approximate this using our carried decays, which are
2565 * explicitly atomically readable.
2566 */
2567 se->avg.last_runnable_update -= (-se->avg.decay_count)
2568 << 20;
2569 update_entity_load_avg(se, 0);
2570 /* Indicate that we're now synchronized and on-rq */
2571 se->avg.decay_count = 0;
2572 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002573 wakeup = 0;
2574 } else {
Vincent Guittot93906752014-01-22 08:45:34 +01002575 __synchronize_entity_decay(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002576 }
2577
Paul Turneraff3e492012-10-04 13:18:30 +02002578 /* migrated tasks did not contribute to our blocked load */
2579 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002580 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002581 update_entity_load_avg(se, 0);
2582 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002583
Paul Turner2dac7542012-10-04 13:18:30 +02002584 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002585 /* we force update consideration on load-balancer moves */
2586 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002587}
2588
Paul Turner9ee474f2012-10-04 13:18:30 +02002589/*
2590 * Remove se's load from this cfs_rq child load-average, if the entity is
2591 * transitioning to a blocked state we track its projected decay using
2592 * blocked_load_avg.
2593 */
Paul Turner2dac7542012-10-04 13:18:30 +02002594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002595 struct sched_entity *se,
2596 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002597{
Paul Turner9ee474f2012-10-04 13:18:30 +02002598 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002599 /* we force update consideration on load-balancer moves */
2600 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002601
Paul Turner2dac7542012-10-04 13:18:30 +02002602 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002603 if (sleep) {
2604 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2605 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2606 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002607}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002608
2609/*
2610 * Update the rq's load with the elapsed running time before entering
2611 * idle. if the last scheduled task is not a CFS task, idle_enter will
2612 * be the only way to update the runnable statistic.
2613 */
2614void idle_enter_fair(struct rq *this_rq)
2615{
2616 update_rq_runnable_avg(this_rq, 1);
2617}
2618
2619/*
2620 * Update the rq's load with the elapsed idle time before a task is
2621 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2622 * be the only way to update the runnable statistic.
2623 */
2624void idle_exit_fair(struct rq *this_rq)
2625{
2626 update_rq_runnable_avg(this_rq, 0);
2627}
2628
Peter Zijlstra6e831252014-02-11 16:11:48 +01002629static int idle_balance(struct rq *this_rq);
2630
Peter Zijlstra38033c32014-01-23 20:32:21 +01002631#else /* CONFIG_SMP */
2632
Paul Turner9ee474f2012-10-04 13:18:30 +02002633static inline void update_entity_load_avg(struct sched_entity *se,
2634 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002635static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002636static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002637 struct sched_entity *se,
2638 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002639static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002640 struct sched_entity *se,
2641 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002642static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2643 int force_update) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002644
2645static inline int idle_balance(struct rq *rq)
2646{
2647 return 0;
2648}
2649
Peter Zijlstra38033c32014-01-23 20:32:21 +01002650#endif /* CONFIG_SMP */
Paul Turner9d85f212012-10-04 13:18:29 +02002651
Ingo Molnar2396af62007-08-09 11:16:48 +02002652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002653{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002654#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002655 struct task_struct *tsk = NULL;
2656
2657 if (entity_is_task(se))
2658 tsk = task_of(se);
2659
Lucas De Marchi41acab82010-03-10 23:37:45 -03002660 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002661 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002662
2663 if ((s64)delta < 0)
2664 delta = 0;
2665
Lucas De Marchi41acab82010-03-10 23:37:45 -03002666 if (unlikely(delta > se->statistics.sleep_max))
2667 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002668
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002669 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002670 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002671
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002672 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002673 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002674 trace_sched_stat_sleep(tsk, delta);
2675 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002676 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002677 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002679
2680 if ((s64)delta < 0)
2681 delta = 0;
2682
Lucas De Marchi41acab82010-03-10 23:37:45 -03002683 if (unlikely(delta > se->statistics.block_max))
2684 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002685
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002686 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002687 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002688
Peter Zijlstrae4143142009-07-23 20:13:26 +02002689 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002690 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002691 se->statistics.iowait_sum += delta;
2692 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002693 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002694 }
2695
Andrew Vaginb781a602011-11-28 12:03:35 +03002696 trace_sched_stat_blocked(tsk, delta);
2697
Peter Zijlstrae4143142009-07-23 20:13:26 +02002698 /*
2699 * Blocking time is in units of nanosecs, so shift by
2700 * 20 to get a milliseconds-range estimation of the
2701 * amount of time that the task spent sleeping:
2702 */
2703 if (unlikely(prof_on == SLEEP_PROFILING)) {
2704 profile_hits(SLEEP_PROFILING,
2705 (void *)get_wchan(tsk),
2706 delta >> 20);
2707 }
2708 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002709 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002710 }
2711#endif
2712}
2713
Peter Zijlstraddc97292007-10-15 17:00:10 +02002714static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2715{
2716#ifdef CONFIG_SCHED_DEBUG
2717 s64 d = se->vruntime - cfs_rq->min_vruntime;
2718
2719 if (d < 0)
2720 d = -d;
2721
2722 if (d > 3*sysctl_sched_latency)
2723 schedstat_inc(cfs_rq, nr_spread_over);
2724#endif
2725}
2726
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002727static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002728place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2729{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002730 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002731
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002732 /*
2733 * The 'current' period is already promised to the current tasks,
2734 * however the extra weight of the new task will slow them down a
2735 * little, place the new task so that it fits in the slot that
2736 * stays open at the end.
2737 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002738 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002739 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002740
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002741 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002742 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002743 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002744
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002745 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002746 * Halve their sleep time's effect, to allow
2747 * for a gentler effect of sleepers:
2748 */
2749 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2750 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002751
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002752 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002753 }
2754
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002755 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302756 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002757}
2758
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002759static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2760
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002761static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002762enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002763{
2764 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002765 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302766 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002767 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002768 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002769 se->vruntime += cfs_rq->min_vruntime;
2770
2771 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002772 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002773 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002774 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002775 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002776 account_entity_enqueue(cfs_rq, se);
2777 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002778
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002779 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002780 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002781 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002782 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002783
Ingo Molnard2417e52007-08-09 11:16:47 +02002784 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002785 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002786 if (se != cfs_rq->curr)
2787 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002788 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002789
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002790 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002791 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002792 check_enqueue_throttle(cfs_rq);
2793 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002794}
2795
Rik van Riel2c13c9192011-02-01 09:48:37 -05002796static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002797{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002798 for_each_sched_entity(se) {
2799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002800 if (cfs_rq->last != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002801 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002802
2803 cfs_rq->last = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002804 }
2805}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002806
Rik van Riel2c13c9192011-02-01 09:48:37 -05002807static void __clear_buddies_next(struct sched_entity *se)
2808{
2809 for_each_sched_entity(se) {
2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002811 if (cfs_rq->next != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002812 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002813
2814 cfs_rq->next = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002815 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002816}
2817
Rik van Rielac53db52011-02-01 09:51:03 -05002818static void __clear_buddies_skip(struct sched_entity *se)
2819{
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002822 if (cfs_rq->skip != se)
Rik van Rielac53db52011-02-01 09:51:03 -05002823 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002824
2825 cfs_rq->skip = NULL;
Rik van Rielac53db52011-02-01 09:51:03 -05002826 }
2827}
2828
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002829static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2830{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002831 if (cfs_rq->last == se)
2832 __clear_buddies_last(se);
2833
2834 if (cfs_rq->next == se)
2835 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002836
2837 if (cfs_rq->skip == se)
2838 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002839}
2840
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002841static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002842
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002843static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002844dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002845{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002846 /*
2847 * Update run-time statistics of the 'current'.
2848 */
2849 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002850 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002851
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002852 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002853 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002854#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002855 if (entity_is_task(se)) {
2856 struct task_struct *tsk = task_of(se);
2857
2858 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002859 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002860 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002861 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002862 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002863#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002864 }
2865
Peter Zijlstra2002c692008-11-11 11:52:33 +01002866 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002867
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002868 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002869 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002870 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002871 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002872
2873 /*
2874 * Normalize the entity after updating the min_vruntime because the
2875 * update can refer to the ->curr item and we need to reflect this
2876 * movement in our normalized position.
2877 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002878 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002879 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002880
Paul Turnerd8b49862011-07-21 09:43:41 -07002881 /* return excess runtime on last dequeue */
2882 return_cfs_rq_runtime(cfs_rq);
2883
Peter Zijlstra1e876232011-05-17 16:21:10 -07002884 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002885 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002886}
2887
2888/*
2889 * Preempt the current task with a newly woken task if needed:
2890 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002891static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002892check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002893{
Peter Zijlstra11697832007-09-05 14:32:49 +02002894 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002895 struct sched_entity *se;
2896 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002897
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02002898 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002899 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002900 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002901 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002902 /*
2903 * The current task ran long enough, ensure it doesn't get
2904 * re-elected due to buddy favours.
2905 */
2906 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002907 return;
2908 }
2909
2910 /*
2911 * Ensure that a task that missed wakeup preemption by a
2912 * narrow margin doesn't have to wait for a full slice.
2913 * This also mitigates buddy induced latencies under load.
2914 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002915 if (delta_exec < sysctl_sched_min_granularity)
2916 return;
2917
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002918 se = __pick_first_entity(cfs_rq);
2919 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002920
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002921 if (delta < 0)
2922 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002923
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002924 if (delta > ideal_runtime)
2925 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002926}
2927
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002928static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002929set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002930{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002931 /* 'current' is not kept within the tree. */
2932 if (se->on_rq) {
2933 /*
2934 * Any task has to be enqueued before it get to execute on
2935 * a CPU. So account for the time it spent waiting on the
2936 * runqueue.
2937 */
2938 update_stats_wait_end(cfs_rq, se);
2939 __dequeue_entity(cfs_rq, se);
2940 }
2941
Ingo Molnar79303e92007-08-09 11:16:47 +02002942 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002943 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002944#ifdef CONFIG_SCHEDSTATS
2945 /*
2946 * Track our maximum slice length, if the CPU's load is at
2947 * least twice that of our own weight (i.e. dont track it
2948 * when there are only lesser-weight tasks around):
2949 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002950 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002951 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002952 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2953 }
2954#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002955 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002956}
2957
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002958static int
2959wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2960
Rik van Rielac53db52011-02-01 09:51:03 -05002961/*
2962 * Pick the next process, keeping these things in mind, in this order:
2963 * 1) keep things fair between processes/task groups
2964 * 2) pick the "next" process, since someone really wants that to run
2965 * 3) pick the "last" process, for cache locality
2966 * 4) do not run the "skip" process, if something else is available
2967 */
Peter Zijlstra678d5712012-02-11 06:05:00 +01002968static struct sched_entity *
2969pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002970{
Peter Zijlstra678d5712012-02-11 06:05:00 +01002971 struct sched_entity *left = __pick_first_entity(cfs_rq);
2972 struct sched_entity *se;
2973
2974 /*
2975 * If curr is set we have to see if its left of the leftmost entity
2976 * still in the tree, provided there was anything in the tree at all.
2977 */
2978 if (!left || (curr && entity_before(curr, left)))
2979 left = curr;
2980
2981 se = left; /* ideally we run the leftmost entity */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002982
Rik van Rielac53db52011-02-01 09:51:03 -05002983 /*
2984 * Avoid running the skip buddy, if running something else can
2985 * be done without getting too unfair.
2986 */
2987 if (cfs_rq->skip == se) {
Peter Zijlstra678d5712012-02-11 06:05:00 +01002988 struct sched_entity *second;
2989
2990 if (se == curr) {
2991 second = __pick_first_entity(cfs_rq);
2992 } else {
2993 second = __pick_next_entity(se);
2994 if (!second || (curr && entity_before(curr, second)))
2995 second = curr;
2996 }
2997
Rik van Rielac53db52011-02-01 09:51:03 -05002998 if (second && wakeup_preempt_entity(second, left) < 1)
2999 se = second;
3000 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003001
Mike Galbraithf685cea2009-10-23 23:09:22 +02003002 /*
3003 * Prefer last buddy, try to return the CPU to a preempted task.
3004 */
3005 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3006 se = cfs_rq->last;
3007
Rik van Rielac53db52011-02-01 09:51:03 -05003008 /*
3009 * Someone really wants this to run. If it's not unfair, run it.
3010 */
3011 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3012 se = cfs_rq->next;
3013
Mike Galbraithf685cea2009-10-23 23:09:22 +02003014 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01003015
3016 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003017}
3018
Peter Zijlstra678d5712012-02-11 06:05:00 +01003019static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003020
Ingo Molnarab6cde22007-08-09 11:16:48 +02003021static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003022{
3023 /*
3024 * If still on the runqueue then deactivate_task()
3025 * was not called and update_curr() has to be done:
3026 */
3027 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02003028 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003029
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003030 /* throttle cfs_rqs exceeding runtime */
3031 check_cfs_rq_runtime(cfs_rq);
3032
Peter Zijlstraddc97292007-10-15 17:00:10 +02003033 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003034 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02003035 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003036 /* Put 'current' back into the tree. */
3037 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02003038 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02003039 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003040 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02003041 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003042}
3043
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003044static void
3045entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003046{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003047 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003048 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003049 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003050 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003051
Paul Turner43365bd2010-12-15 19:10:17 -08003052 /*
Paul Turner9d85f212012-10-04 13:18:29 +02003053 * Ensure that runnable average is periodically updated.
3054 */
Paul Turner9ee474f2012-10-04 13:18:30 +02003055 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02003056 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02003057 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02003058
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003059#ifdef CONFIG_SCHED_HRTICK
3060 /*
3061 * queued ticks are scheduled to match the slice, so don't bother
3062 * validating it and just reschedule.
3063 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003064 if (queued) {
3065 resched_task(rq_of(cfs_rq)->curr);
3066 return;
3067 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003068 /*
3069 * don't let the period tick interfere with the hrtick preemption
3070 */
3071 if (!sched_feat(DOUBLE_TICK) &&
3072 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3073 return;
3074#endif
3075
Yong Zhang2c2efae2011-07-29 16:20:33 +08003076 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003077 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003078}
3079
Paul Turnerab84d312011-07-21 09:43:28 -07003080
3081/**************************************************
3082 * CFS bandwidth control machinery
3083 */
3084
3085#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02003086
3087#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01003088static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003089
3090static inline bool cfs_bandwidth_used(void)
3091{
Ingo Molnarc5905af2012-02-24 08:31:31 +01003092 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003093}
3094
Ben Segall1ee14e62013-10-16 11:16:12 -07003095void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003096{
Ben Segall1ee14e62013-10-16 11:16:12 -07003097 static_key_slow_inc(&__cfs_bandwidth_used);
3098}
3099
3100void cfs_bandwidth_usage_dec(void)
3101{
3102 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003103}
3104#else /* HAVE_JUMP_LABEL */
3105static bool cfs_bandwidth_used(void)
3106{
3107 return true;
3108}
3109
Ben Segall1ee14e62013-10-16 11:16:12 -07003110void cfs_bandwidth_usage_inc(void) {}
3111void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003112#endif /* HAVE_JUMP_LABEL */
3113
Paul Turnerab84d312011-07-21 09:43:28 -07003114/*
3115 * default period for cfs group bandwidth.
3116 * default: 0.1s, units: nanoseconds
3117 */
3118static inline u64 default_cfs_period(void)
3119{
3120 return 100000000ULL;
3121}
Paul Turnerec12cb72011-07-21 09:43:30 -07003122
3123static inline u64 sched_cfs_bandwidth_slice(void)
3124{
3125 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3126}
3127
Paul Turnera9cf55b2011-07-21 09:43:32 -07003128/*
3129 * Replenish runtime according to assigned quota and update expiration time.
3130 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3131 * additional synchronization around rq->lock.
3132 *
3133 * requires cfs_b->lock
3134 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003135void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07003136{
3137 u64 now;
3138
3139 if (cfs_b->quota == RUNTIME_INF)
3140 return;
3141
3142 now = sched_clock_cpu(smp_processor_id());
3143 cfs_b->runtime = cfs_b->quota;
3144 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3145}
3146
Peter Zijlstra029632f2011-10-25 10:00:11 +02003147static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3148{
3149 return &tg->cfs_bandwidth;
3150}
3151
Paul Turnerf1b17282012-10-04 13:18:31 +02003152/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3153static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3154{
3155 if (unlikely(cfs_rq->throttle_count))
3156 return cfs_rq->throttled_clock_task;
3157
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003158 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02003159}
3160
Paul Turner85dac902011-07-21 09:43:33 -07003161/* returns 0 on failure to allocate runtime */
3162static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07003163{
3164 struct task_group *tg = cfs_rq->tg;
3165 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003166 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003167
3168 /* note: this is a positive sum as runtime_remaining <= 0 */
3169 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3170
3171 raw_spin_lock(&cfs_b->lock);
3172 if (cfs_b->quota == RUNTIME_INF)
3173 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07003174 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003175 /*
3176 * If the bandwidth pool has become inactive, then at least one
3177 * period must have elapsed since the last consumption.
3178 * Refresh the global state and ensure bandwidth timer becomes
3179 * active.
3180 */
3181 if (!cfs_b->timer_active) {
3182 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07003183 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003184 }
Paul Turner58088ad2011-07-21 09:43:31 -07003185
3186 if (cfs_b->runtime > 0) {
3187 amount = min(cfs_b->runtime, min_amount);
3188 cfs_b->runtime -= amount;
3189 cfs_b->idle = 0;
3190 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003191 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07003192 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003193 raw_spin_unlock(&cfs_b->lock);
3194
3195 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003196 /*
3197 * we may have advanced our local expiration to account for allowed
3198 * spread between our sched_clock and the one on which runtime was
3199 * issued.
3200 */
3201 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3202 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07003203
3204 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003205}
3206
3207/*
3208 * Note: This depends on the synchronization provided by sched_clock and the
3209 * fact that rq->clock snapshots this value.
3210 */
3211static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3212{
3213 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003214
3215 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003216 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07003217 return;
3218
3219 if (cfs_rq->runtime_remaining < 0)
3220 return;
3221
3222 /*
3223 * If the local deadline has passed we have to consider the
3224 * possibility that our sched_clock is 'fast' and the global deadline
3225 * has not truly expired.
3226 *
3227 * Fortunately we can check determine whether this the case by checking
Ben Segall51f21762014-05-19 15:49:45 -07003228 * whether the global deadline has advanced. It is valid to compare
3229 * cfs_b->runtime_expires without any locks since we only care about
3230 * exact equality, so a partial write will still work.
Paul Turnera9cf55b2011-07-21 09:43:32 -07003231 */
3232
Ben Segall51f21762014-05-19 15:49:45 -07003233 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003234 /* extend local deadline, drift is bounded above by 2 ticks */
3235 cfs_rq->runtime_expires += TICK_NSEC;
3236 } else {
3237 /* global deadline is ahead, expiration has passed */
3238 cfs_rq->runtime_remaining = 0;
3239 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003240}
3241
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003242static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003243{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003244 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003245 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003246 expire_cfs_rq_runtime(cfs_rq);
3247
3248 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003249 return;
3250
Paul Turner85dac902011-07-21 09:43:33 -07003251 /*
3252 * if we're unable to extend our runtime we resched so that the active
3253 * hierarchy can be throttled
3254 */
3255 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3256 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003257}
3258
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003259static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003260void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003261{
Paul Turner56f570e2011-11-07 20:26:33 -08003262 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003263 return;
3264
3265 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3266}
3267
Paul Turner85dac902011-07-21 09:43:33 -07003268static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3269{
Paul Turner56f570e2011-11-07 20:26:33 -08003270 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003271}
3272
Paul Turner64660c82011-07-21 09:43:36 -07003273/* check whether cfs_rq, or any parent, is throttled */
3274static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3275{
Paul Turner56f570e2011-11-07 20:26:33 -08003276 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003277}
3278
3279/*
3280 * Ensure that neither of the group entities corresponding to src_cpu or
3281 * dest_cpu are members of a throttled hierarchy when performing group
3282 * load-balance operations.
3283 */
3284static inline int throttled_lb_pair(struct task_group *tg,
3285 int src_cpu, int dest_cpu)
3286{
3287 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3288
3289 src_cfs_rq = tg->cfs_rq[src_cpu];
3290 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3291
3292 return throttled_hierarchy(src_cfs_rq) ||
3293 throttled_hierarchy(dest_cfs_rq);
3294}
3295
3296/* updated child weight may affect parent so we have to do this bottom up */
3297static int tg_unthrottle_up(struct task_group *tg, void *data)
3298{
3299 struct rq *rq = data;
3300 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3301
3302 cfs_rq->throttle_count--;
3303#ifdef CONFIG_SMP
3304 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003305 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003306 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003307 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003308 }
3309#endif
3310
3311 return 0;
3312}
3313
3314static int tg_throttle_down(struct task_group *tg, void *data)
3315{
3316 struct rq *rq = data;
3317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3318
Paul Turner82958362012-10-04 13:18:31 +02003319 /* group is entering throttled state, stop time */
3320 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003321 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003322 cfs_rq->throttle_count++;
3323
3324 return 0;
3325}
3326
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003327static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003328{
3329 struct rq *rq = rq_of(cfs_rq);
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 struct sched_entity *se;
3332 long task_delta, dequeue = 1;
3333
3334 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3335
Paul Turnerf1b17282012-10-04 13:18:31 +02003336 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003337 rcu_read_lock();
3338 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3339 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003340
3341 task_delta = cfs_rq->h_nr_running;
3342 for_each_sched_entity(se) {
3343 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3344 /* throttled entity or throttle-on-deactivate */
3345 if (!se->on_rq)
3346 break;
3347
3348 if (dequeue)
3349 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3350 qcfs_rq->h_nr_running -= task_delta;
3351
3352 if (qcfs_rq->load.weight)
3353 dequeue = 0;
3354 }
3355
3356 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003357 sub_nr_running(rq, task_delta);
Paul Turner85dac902011-07-21 09:43:33 -07003358
3359 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003360 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003361 raw_spin_lock(&cfs_b->lock);
3362 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003363 if (!cfs_b->timer_active)
3364 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003365 raw_spin_unlock(&cfs_b->lock);
3366}
3367
Peter Zijlstra029632f2011-10-25 10:00:11 +02003368void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003369{
3370 struct rq *rq = rq_of(cfs_rq);
3371 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3372 struct sched_entity *se;
3373 int enqueue = 1;
3374 long task_delta;
3375
Michael Wang22b958d2013-06-04 14:23:39 +08003376 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003377
3378 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003379
3380 update_rq_clock(rq);
3381
Paul Turner671fd9d2011-07-21 09:43:34 -07003382 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003383 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003384 list_del_rcu(&cfs_rq->throttled_list);
3385 raw_spin_unlock(&cfs_b->lock);
3386
Paul Turner64660c82011-07-21 09:43:36 -07003387 /* update hierarchical throttle state */
3388 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3389
Paul Turner671fd9d2011-07-21 09:43:34 -07003390 if (!cfs_rq->load.weight)
3391 return;
3392
3393 task_delta = cfs_rq->h_nr_running;
3394 for_each_sched_entity(se) {
3395 if (se->on_rq)
3396 enqueue = 0;
3397
3398 cfs_rq = cfs_rq_of(se);
3399 if (enqueue)
3400 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3401 cfs_rq->h_nr_running += task_delta;
3402
3403 if (cfs_rq_throttled(cfs_rq))
3404 break;
3405 }
3406
3407 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003408 add_nr_running(rq, task_delta);
Paul Turner671fd9d2011-07-21 09:43:34 -07003409
3410 /* determine whether we need to wake up potentially idle cpu */
3411 if (rq->curr == rq->idle && rq->cfs.nr_running)
3412 resched_task(rq->curr);
3413}
3414
3415static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3416 u64 remaining, u64 expires)
3417{
3418 struct cfs_rq *cfs_rq;
3419 u64 runtime = remaining;
3420
3421 rcu_read_lock();
3422 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3423 throttled_list) {
3424 struct rq *rq = rq_of(cfs_rq);
3425
3426 raw_spin_lock(&rq->lock);
3427 if (!cfs_rq_throttled(cfs_rq))
3428 goto next;
3429
3430 runtime = -cfs_rq->runtime_remaining + 1;
3431 if (runtime > remaining)
3432 runtime = remaining;
3433 remaining -= runtime;
3434
3435 cfs_rq->runtime_remaining += runtime;
3436 cfs_rq->runtime_expires = expires;
3437
3438 /* we check whether we're throttled above */
3439 if (cfs_rq->runtime_remaining > 0)
3440 unthrottle_cfs_rq(cfs_rq);
3441
3442next:
3443 raw_spin_unlock(&rq->lock);
3444
3445 if (!remaining)
3446 break;
3447 }
3448 rcu_read_unlock();
3449
3450 return remaining;
3451}
3452
Paul Turner58088ad2011-07-21 09:43:31 -07003453/*
3454 * Responsible for refilling a task_group's bandwidth and unthrottling its
3455 * cfs_rqs as appropriate. If there has been no activity within the last
3456 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3457 * used to track this state.
3458 */
3459static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3460{
Paul Turner671fd9d2011-07-21 09:43:34 -07003461 u64 runtime, runtime_expires;
Ben Segall51f21762014-05-19 15:49:45 -07003462 int throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003463
Paul Turner58088ad2011-07-21 09:43:31 -07003464 /* no need to continue the timer with no bandwidth constraint */
3465 if (cfs_b->quota == RUNTIME_INF)
Ben Segall51f21762014-05-19 15:49:45 -07003466 goto out_deactivate;
Paul Turner58088ad2011-07-21 09:43:31 -07003467
Paul Turner671fd9d2011-07-21 09:43:34 -07003468 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003469 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003470
Ben Segall51f21762014-05-19 15:49:45 -07003471 /*
3472 * idle depends on !throttled (for the case of a large deficit), and if
3473 * we're going inactive then everything else can be deferred
3474 */
3475 if (cfs_b->idle && !throttled)
3476 goto out_deactivate;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003477
Ben Segall927b54f2013-10-16 11:16:22 -07003478 /*
3479 * if we have relooped after returning idle once, we need to update our
3480 * status as actually running, so that other cpus doing
3481 * __start_cfs_bandwidth will stop trying to cancel us.
3482 */
3483 cfs_b->timer_active = 1;
3484
Paul Turnera9cf55b2011-07-21 09:43:32 -07003485 __refill_cfs_bandwidth_runtime(cfs_b);
3486
Paul Turner671fd9d2011-07-21 09:43:34 -07003487 if (!throttled) {
3488 /* mark as potentially idle for the upcoming period */
3489 cfs_b->idle = 1;
Ben Segall51f21762014-05-19 15:49:45 -07003490 return 0;
Paul Turner671fd9d2011-07-21 09:43:34 -07003491 }
Paul Turner58088ad2011-07-21 09:43:31 -07003492
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003493 /* account preceding periods in which throttling occurred */
3494 cfs_b->nr_throttled += overrun;
3495
Paul Turner671fd9d2011-07-21 09:43:34 -07003496 /*
3497 * There are throttled entities so we must first use the new bandwidth
3498 * to unthrottle them before making it generally available. This
3499 * ensures that all existing debts will be paid before a new cfs_rq is
3500 * allowed to run.
3501 */
3502 runtime = cfs_b->runtime;
3503 runtime_expires = cfs_b->runtime_expires;
3504 cfs_b->runtime = 0;
3505
3506 /*
3507 * This check is repeated as we are holding onto the new bandwidth
3508 * while we unthrottle. This can potentially race with an unthrottled
3509 * group trying to acquire new bandwidth from the global pool.
3510 */
3511 while (throttled && runtime > 0) {
3512 raw_spin_unlock(&cfs_b->lock);
3513 /* we can't nest cfs_b->lock while distributing bandwidth */
3514 runtime = distribute_cfs_runtime(cfs_b, runtime,
3515 runtime_expires);
3516 raw_spin_lock(&cfs_b->lock);
3517
3518 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3519 }
3520
3521 /* return (any) remaining runtime */
3522 cfs_b->runtime = runtime;
3523 /*
3524 * While we are ensured activity in the period following an
3525 * unthrottle, this also covers the case in which the new bandwidth is
3526 * insufficient to cover the existing bandwidth deficit. (Forcing the
3527 * timer to remain active while there are any throttled entities.)
3528 */
3529 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003530
Ben Segall51f21762014-05-19 15:49:45 -07003531 return 0;
3532
3533out_deactivate:
3534 cfs_b->timer_active = 0;
3535 return 1;
Paul Turner58088ad2011-07-21 09:43:31 -07003536}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003537
Paul Turnerd8b49862011-07-21 09:43:41 -07003538/* a cfs_rq won't donate quota below this amount */
3539static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3540/* minimum remaining period time to redistribute slack quota */
3541static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3542/* how long we wait to gather additional slack before distributing */
3543static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3544
Ben Segalldb06e782013-10-16 11:16:17 -07003545/*
3546 * Are we near the end of the current quota period?
3547 *
3548 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3549 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3550 * migrate_hrtimers, base is never cleared, so we are fine.
3551 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003552static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3553{
3554 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3555 u64 remaining;
3556
3557 /* if the call-back is running a quota refresh is already occurring */
3558 if (hrtimer_callback_running(refresh_timer))
3559 return 1;
3560
3561 /* is a quota refresh about to occur? */
3562 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3563 if (remaining < min_expire)
3564 return 1;
3565
3566 return 0;
3567}
3568
3569static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3570{
3571 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3572
3573 /* if there's a quota refresh soon don't bother with slack */
3574 if (runtime_refresh_within(cfs_b, min_left))
3575 return;
3576
3577 start_bandwidth_timer(&cfs_b->slack_timer,
3578 ns_to_ktime(cfs_bandwidth_slack_period));
3579}
3580
3581/* we know any runtime found here is valid as update_curr() precedes return */
3582static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3583{
3584 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3585 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3586
3587 if (slack_runtime <= 0)
3588 return;
3589
3590 raw_spin_lock(&cfs_b->lock);
3591 if (cfs_b->quota != RUNTIME_INF &&
3592 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3593 cfs_b->runtime += slack_runtime;
3594
3595 /* we are under rq->lock, defer unthrottling using a timer */
3596 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3597 !list_empty(&cfs_b->throttled_cfs_rq))
3598 start_cfs_slack_bandwidth(cfs_b);
3599 }
3600 raw_spin_unlock(&cfs_b->lock);
3601
3602 /* even if it's not valid for return we don't want to try again */
3603 cfs_rq->runtime_remaining -= slack_runtime;
3604}
3605
3606static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3607{
Paul Turner56f570e2011-11-07 20:26:33 -08003608 if (!cfs_bandwidth_used())
3609 return;
3610
Paul Turnerfccfdc62011-11-07 20:26:34 -08003611 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003612 return;
3613
3614 __return_cfs_rq_runtime(cfs_rq);
3615}
3616
3617/*
3618 * This is done with a timer (instead of inline with bandwidth return) since
3619 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3620 */
3621static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3622{
3623 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3624 u64 expires;
3625
3626 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003627 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003628 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3629 raw_spin_unlock(&cfs_b->lock);
3630 return;
3631 }
3632
Paul Turnerd8b49862011-07-21 09:43:41 -07003633 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3634 runtime = cfs_b->runtime;
3635 cfs_b->runtime = 0;
3636 }
3637 expires = cfs_b->runtime_expires;
3638 raw_spin_unlock(&cfs_b->lock);
3639
3640 if (!runtime)
3641 return;
3642
3643 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3644
3645 raw_spin_lock(&cfs_b->lock);
3646 if (expires == cfs_b->runtime_expires)
3647 cfs_b->runtime = runtime;
3648 raw_spin_unlock(&cfs_b->lock);
3649}
3650
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003651/*
3652 * When a group wakes up we want to make sure that its quota is not already
3653 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3654 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3655 */
3656static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3657{
Paul Turner56f570e2011-11-07 20:26:33 -08003658 if (!cfs_bandwidth_used())
3659 return;
3660
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003661 /* an active group must be handled by the update_curr()->put() path */
3662 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3663 return;
3664
3665 /* ensure the group is not already throttled */
3666 if (cfs_rq_throttled(cfs_rq))
3667 return;
3668
3669 /* update runtime allocation */
3670 account_cfs_rq_runtime(cfs_rq, 0);
3671 if (cfs_rq->runtime_remaining <= 0)
3672 throttle_cfs_rq(cfs_rq);
3673}
3674
3675/* conditionally throttle active cfs_rq's from put_prev_entity() */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003676static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003677{
Paul Turner56f570e2011-11-07 20:26:33 -08003678 if (!cfs_bandwidth_used())
Peter Zijlstra678d5712012-02-11 06:05:00 +01003679 return false;
Paul Turner56f570e2011-11-07 20:26:33 -08003680
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003681 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003682 return false;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003683
3684 /*
3685 * it's possible for a throttled entity to be forced into a running
3686 * state (e.g. set_curr_task), in this case we're finished.
3687 */
3688 if (cfs_rq_throttled(cfs_rq))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003689 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003690
3691 throttle_cfs_rq(cfs_rq);
Peter Zijlstra678d5712012-02-11 06:05:00 +01003692 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003693}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003694
Peter Zijlstra029632f2011-10-25 10:00:11 +02003695static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3696{
3697 struct cfs_bandwidth *cfs_b =
3698 container_of(timer, struct cfs_bandwidth, slack_timer);
3699 do_sched_cfs_slack_timer(cfs_b);
3700
3701 return HRTIMER_NORESTART;
3702}
3703
3704static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3705{
3706 struct cfs_bandwidth *cfs_b =
3707 container_of(timer, struct cfs_bandwidth, period_timer);
3708 ktime_t now;
3709 int overrun;
3710 int idle = 0;
3711
Ben Segall51f21762014-05-19 15:49:45 -07003712 raw_spin_lock(&cfs_b->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003713 for (;;) {
3714 now = hrtimer_cb_get_time(timer);
3715 overrun = hrtimer_forward(timer, now, cfs_b->period);
3716
3717 if (!overrun)
3718 break;
3719
3720 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3721 }
Ben Segall51f21762014-05-19 15:49:45 -07003722 raw_spin_unlock(&cfs_b->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003723
3724 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3725}
3726
3727void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3728{
3729 raw_spin_lock_init(&cfs_b->lock);
3730 cfs_b->runtime = 0;
3731 cfs_b->quota = RUNTIME_INF;
3732 cfs_b->period = ns_to_ktime(default_cfs_period());
3733
3734 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3735 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3736 cfs_b->period_timer.function = sched_cfs_period_timer;
3737 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3738 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3739}
3740
3741static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3742{
3743 cfs_rq->runtime_enabled = 0;
3744 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3745}
3746
3747/* requires cfs_b->lock, may release to reprogram timer */
3748void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3749{
3750 /*
3751 * The timer may be active because we're trying to set a new bandwidth
3752 * period or because we're racing with the tear-down path
3753 * (timer_active==0 becomes visible before the hrtimer call-back
3754 * terminates). In either case we ensure that it's re-programmed
3755 */
Ben Segall927b54f2013-10-16 11:16:22 -07003756 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3757 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3758 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003759 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003760 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003761 raw_spin_lock(&cfs_b->lock);
3762 /* if someone else restarted the timer then we're done */
3763 if (cfs_b->timer_active)
3764 return;
3765 }
3766
3767 cfs_b->timer_active = 1;
3768 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3769}
3770
3771static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3772{
3773 hrtimer_cancel(&cfs_b->period_timer);
3774 hrtimer_cancel(&cfs_b->slack_timer);
3775}
3776
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003777static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003778{
3779 struct cfs_rq *cfs_rq;
3780
3781 for_each_leaf_cfs_rq(rq, cfs_rq) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02003782 if (!cfs_rq->runtime_enabled)
3783 continue;
3784
3785 /*
3786 * clock_task is not advancing so we just need to make sure
3787 * there's some valid quota amount
3788 */
Ben Segall51f21762014-05-19 15:49:45 -07003789 cfs_rq->runtime_remaining = 1;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003790 if (cfs_rq_throttled(cfs_rq))
3791 unthrottle_cfs_rq(cfs_rq);
3792 }
3793}
3794
3795#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003796static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3797{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003798 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003799}
3800
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003801static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Peter Zijlstra678d5712012-02-11 06:05:00 +01003802static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003803static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003804static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003805
3806static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3807{
3808 return 0;
3809}
Paul Turner64660c82011-07-21 09:43:36 -07003810
3811static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3812{
3813 return 0;
3814}
3815
3816static inline int throttled_lb_pair(struct task_group *tg,
3817 int src_cpu, int dest_cpu)
3818{
3819 return 0;
3820}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003821
3822void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3823
3824#ifdef CONFIG_FAIR_GROUP_SCHED
3825static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003826#endif
3827
Peter Zijlstra029632f2011-10-25 10:00:11 +02003828static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3829{
3830 return NULL;
3831}
3832static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003833static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003834
3835#endif /* CONFIG_CFS_BANDWIDTH */
3836
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003837/**************************************************
3838 * CFS operations on tasks:
3839 */
3840
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003841#ifdef CONFIG_SCHED_HRTICK
3842static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3843{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003844 struct sched_entity *se = &p->se;
3845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3846
3847 WARN_ON(task_rq(p) != rq);
3848
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003849 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003850 u64 slice = sched_slice(cfs_rq, se);
3851 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3852 s64 delta = slice - ran;
3853
3854 if (delta < 0) {
3855 if (rq->curr == p)
3856 resched_task(p);
3857 return;
3858 }
3859
3860 /*
3861 * Don't schedule slices shorter than 10000ns, that just
3862 * doesn't make sense. Rely on vruntime for fairness.
3863 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003864 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003865 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003866
Peter Zijlstra31656512008-07-18 18:01:23 +02003867 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003868 }
3869}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003870
3871/*
3872 * called from enqueue/dequeue and updates the hrtick when the
3873 * current task is from our class and nr_running is low enough
3874 * to matter.
3875 */
3876static void hrtick_update(struct rq *rq)
3877{
3878 struct task_struct *curr = rq->curr;
3879
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003880 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003881 return;
3882
3883 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3884 hrtick_start_fair(rq, curr);
3885}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303886#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003887static inline void
3888hrtick_start_fair(struct rq *rq, struct task_struct *p)
3889{
3890}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003891
3892static inline void hrtick_update(struct rq *rq)
3893{
3894}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003895#endif
3896
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003897/*
3898 * The enqueue_task method is called before nr_running is
3899 * increased. Here we update the fair scheduling stats and
3900 * then put the task into the rbtree:
3901 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003902static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003903enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003904{
3905 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003906 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003907
3908 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003909 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003910 break;
3911 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003912 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003913
3914 /*
3915 * end evaluation on encountering a throttled cfs_rq
3916 *
3917 * note: in the case of encountering a throttled cfs_rq we will
3918 * post the final h_nr_running increment below.
3919 */
3920 if (cfs_rq_throttled(cfs_rq))
3921 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003922 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003923
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003924 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003925 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003926
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003927 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003928 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003929 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003930
Paul Turner85dac902011-07-21 09:43:33 -07003931 if (cfs_rq_throttled(cfs_rq))
3932 break;
3933
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003934 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003935 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003936 }
3937
Ben Segall18bf2802012-10-04 12:51:20 +02003938 if (!se) {
3939 update_rq_runnable_avg(rq, rq->nr_running);
Kirill Tkhai72465442014-05-09 03:00:14 +04003940 add_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02003941 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003942 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003943}
3944
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003945static void set_next_buddy(struct sched_entity *se);
3946
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003947/*
3948 * The dequeue_task method is called before nr_running is
3949 * decreased. We remove the task from the rbtree and
3950 * update the fair scheduling stats:
3951 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003952static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003953{
3954 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003955 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003956 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003957
3958 for_each_sched_entity(se) {
3959 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003960 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003961
3962 /*
3963 * end evaluation on encountering a throttled cfs_rq
3964 *
3965 * note: in the case of encountering a throttled cfs_rq we will
3966 * post the final h_nr_running decrement below.
3967 */
3968 if (cfs_rq_throttled(cfs_rq))
3969 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003970 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003971
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003972 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003973 if (cfs_rq->load.weight) {
3974 /*
3975 * Bias pick_next to pick a task from this cfs_rq, as
3976 * p is sleeping when it is within its sched_slice.
3977 */
3978 if (task_sleep && parent_entity(se))
3979 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003980
3981 /* avoid re-evaluating load for this entity */
3982 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003983 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003984 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003985 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003986 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003987
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003988 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003989 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003990 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003991
Paul Turner85dac902011-07-21 09:43:33 -07003992 if (cfs_rq_throttled(cfs_rq))
3993 break;
3994
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003995 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003996 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003997 }
3998
Ben Segall18bf2802012-10-04 12:51:20 +02003999 if (!se) {
Kirill Tkhai72465442014-05-09 03:00:14 +04004000 sub_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02004001 update_rq_runnable_avg(rq, 1);
4002 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004003 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004004}
4005
Gregory Haskinse7693a32008-01-25 21:08:09 +01004006#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02004007/* Used instead of source_load when we know the type == 0 */
4008static unsigned long weighted_cpuload(const int cpu)
4009{
Alex Shib92486c2013-06-20 10:18:50 +08004010 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004011}
4012
4013/*
4014 * Return a low guess at the load of a migration-source cpu weighted
4015 * according to the scheduling class and "nice" value.
4016 *
4017 * We want to under-estimate the load of migration sources, to
4018 * balance conservatively.
4019 */
4020static unsigned long source_load(int cpu, int type)
4021{
4022 struct rq *rq = cpu_rq(cpu);
4023 unsigned long total = weighted_cpuload(cpu);
4024
4025 if (type == 0 || !sched_feat(LB_BIAS))
4026 return total;
4027
4028 return min(rq->cpu_load[type-1], total);
4029}
4030
4031/*
4032 * Return a high guess at the load of a migration-target cpu weighted
4033 * according to the scheduling class and "nice" value.
4034 */
4035static unsigned long target_load(int cpu, int type)
4036{
4037 struct rq *rq = cpu_rq(cpu);
4038 unsigned long total = weighted_cpuload(cpu);
4039
4040 if (type == 0 || !sched_feat(LB_BIAS))
4041 return total;
4042
4043 return max(rq->cpu_load[type-1], total);
4044}
4045
4046static unsigned long power_of(int cpu)
4047{
4048 return cpu_rq(cpu)->cpu_power;
4049}
4050
4051static unsigned long cpu_avg_load_per_task(int cpu)
4052{
4053 struct rq *rq = cpu_rq(cpu);
4054 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08004055 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004056
4057 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08004058 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004059
4060 return 0;
4061}
4062
Michael Wang62470412013-07-04 12:55:51 +08004063static void record_wakee(struct task_struct *p)
4064{
4065 /*
4066 * Rough decay (wiping) for cost saving, don't worry
4067 * about the boundary, really active task won't care
4068 * about the loss.
4069 */
Manuel Schölling2538d962014-05-22 19:45:23 +02004070 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
Rik van Riel096aa332014-05-16 00:13:32 -04004071 current->wakee_flips >>= 1;
Michael Wang62470412013-07-04 12:55:51 +08004072 current->wakee_flip_decay_ts = jiffies;
4073 }
4074
4075 if (current->last_wakee != p) {
4076 current->last_wakee = p;
4077 current->wakee_flips++;
4078 }
4079}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004080
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004081static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004082{
4083 struct sched_entity *se = &p->se;
4084 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004085 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004086
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004087#ifndef CONFIG_64BIT
4088 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004089
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004090 do {
4091 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4092 smp_rmb();
4093 min_vruntime = cfs_rq->min_vruntime;
4094 } while (min_vruntime != min_vruntime_copy);
4095#else
4096 min_vruntime = cfs_rq->min_vruntime;
4097#endif
4098
4099 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08004100 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004101}
4102
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004103#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004104/*
4105 * effective_load() calculates the load change as seen from the root_task_group
4106 *
4107 * Adding load to a group doesn't make a group heavier, but can cause movement
4108 * of group shares between cpus. Assuming the shares were perfectly aligned one
4109 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004110 *
4111 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4112 * on this @cpu and results in a total addition (subtraction) of @wg to the
4113 * total group weight.
4114 *
4115 * Given a runqueue weight distribution (rw_i) we can compute a shares
4116 * distribution (s_i) using:
4117 *
4118 * s_i = rw_i / \Sum rw_j (1)
4119 *
4120 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4121 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4122 * shares distribution (s_i):
4123 *
4124 * rw_i = { 2, 4, 1, 0 }
4125 * s_i = { 2/7, 4/7, 1/7, 0 }
4126 *
4127 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4128 * task used to run on and the CPU the waker is running on), we need to
4129 * compute the effect of waking a task on either CPU and, in case of a sync
4130 * wakeup, compute the effect of the current task going to sleep.
4131 *
4132 * So for a change of @wl to the local @cpu with an overall group weight change
4133 * of @wl we can compute the new shares distribution (s'_i) using:
4134 *
4135 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4136 *
4137 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4138 * differences in waking a task to CPU 0. The additional task changes the
4139 * weight and shares distributions like:
4140 *
4141 * rw'_i = { 3, 4, 1, 0 }
4142 * s'_i = { 3/8, 4/8, 1/8, 0 }
4143 *
4144 * We can then compute the difference in effective weight by using:
4145 *
4146 * dw_i = S * (s'_i - s_i) (3)
4147 *
4148 * Where 'S' is the group weight as seen by its parent.
4149 *
4150 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4151 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4152 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004153 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004154static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004155{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004156 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004157
Rik van Riel9722c2d2014-01-06 11:39:12 +00004158 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004159 return wl;
4160
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004161 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004162 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004163
Paul Turner977dda72011-01-14 17:57:50 -08004164 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004165
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004166 /*
4167 * W = @wg + \Sum rw_j
4168 */
4169 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004170
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004171 /*
4172 * w = rw_i + @wl
4173 */
4174 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004175
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004176 /*
4177 * wl = S * s'_i; see (2)
4178 */
4179 if (W > 0 && w < W)
4180 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08004181 else
4182 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004183
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004184 /*
4185 * Per the above, wl is the new se->load.weight value; since
4186 * those are clipped to [MIN_SHARES, ...) do so now. See
4187 * calc_cfs_shares().
4188 */
Paul Turner977dda72011-01-14 17:57:50 -08004189 if (wl < MIN_SHARES)
4190 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004191
4192 /*
4193 * wl = dw_i = S * (s'_i - s_i); see (3)
4194 */
Paul Turner977dda72011-01-14 17:57:50 -08004195 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004196
4197 /*
4198 * Recursively apply this logic to all parent groups to compute
4199 * the final effective load change on the root group. Since
4200 * only the @tg group gets extra weight, all parent groups can
4201 * only redistribute existing shares. @wl is the shift in shares
4202 * resulting from this level per the above.
4203 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004204 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004205 }
4206
4207 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004208}
4209#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004210
Mel Gorman58d081b2013-10-07 11:29:10 +01004211static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004212{
Peter Zijlstra83378262008-06-27 13:41:37 +02004213 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004214}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004215
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004216#endif
4217
Michael Wang62470412013-07-04 12:55:51 +08004218static int wake_wide(struct task_struct *p)
4219{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08004220 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08004221
4222 /*
4223 * Yeah, it's the switching-frequency, could means many wakee or
4224 * rapidly switch, use factor here will just help to automatically
4225 * adjust the loose-degree, so bigger node will lead to more pull.
4226 */
4227 if (p->wakee_flips > factor) {
4228 /*
4229 * wakee is somewhat hot, it needs certain amount of cpu
4230 * resource, so if waker is far more hot, prefer to leave
4231 * it alone.
4232 */
4233 if (current->wakee_flips > (factor * p->wakee_flips))
4234 return 1;
4235 }
4236
4237 return 0;
4238}
4239
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004240static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004241{
Paul Turnere37b6a72011-01-21 20:44:59 -08004242 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004243 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004244 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004245 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004246 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004247 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004248
Michael Wang62470412013-07-04 12:55:51 +08004249 /*
4250 * If we wake multiple tasks be careful to not bounce
4251 * ourselves around too much.
4252 */
4253 if (wake_wide(p))
4254 return 0;
4255
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004256 idx = sd->wake_idx;
4257 this_cpu = smp_processor_id();
4258 prev_cpu = task_cpu(p);
4259 load = source_load(prev_cpu, idx);
4260 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004261
4262 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004263 * If sync wakeup then subtract the (maximum possible)
4264 * effect of the currently running task from the load
4265 * of the current CPU:
4266 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004267 if (sync) {
4268 tg = task_group(current);
4269 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004270
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004271 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004272 load += effective_load(tg, prev_cpu, 0, -weight);
4273 }
4274
4275 tg = task_group(p);
4276 weight = p->se.load.weight;
4277
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004278 /*
4279 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004280 * due to the sync cause above having dropped this_load to 0, we'll
4281 * always have an imbalance, but there's really nothing you can do
4282 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004283 *
4284 * Otherwise check if either cpus are near enough in load to allow this
4285 * task to be woken on this_cpu.
4286 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004287 if (this_load > 0) {
4288 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004289
4290 this_eff_load = 100;
4291 this_eff_load *= power_of(prev_cpu);
4292 this_eff_load *= this_load +
4293 effective_load(tg, this_cpu, weight, weight);
4294
4295 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4296 prev_eff_load *= power_of(this_cpu);
4297 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4298
4299 balanced = this_eff_load <= prev_eff_load;
4300 } else
4301 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004302
4303 /*
4304 * If the currently running task will sleep within
4305 * a reasonable amount of time then attract this newly
4306 * woken task:
4307 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004308 if (sync && balanced)
4309 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004310
Lucas De Marchi41acab82010-03-10 23:37:45 -03004311 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004312 tl_per_task = cpu_avg_load_per_task(this_cpu);
4313
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004314 if (balanced ||
4315 (this_load <= load &&
4316 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004317 /*
4318 * This domain has SD_WAKE_AFFINE and
4319 * p is cache cold in this domain, and
4320 * there is no bad imbalance.
4321 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004322 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004323 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004324
4325 return 1;
4326 }
4327 return 0;
4328}
4329
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004330/*
4331 * find_idlest_group finds and returns the least busy CPU group within the
4332 * domain.
4333 */
4334static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004335find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004336 int this_cpu, int sd_flag)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004337{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004338 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004339 unsigned long min_load = ULONG_MAX, this_load = 0;
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004340 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004341 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004342
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004343 if (sd_flag & SD_BALANCE_WAKE)
4344 load_idx = sd->wake_idx;
4345
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004346 do {
4347 unsigned long load, avg_load;
4348 int local_group;
4349 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004350
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004351 /* Skip over this group if it has no CPUs allowed */
4352 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004353 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004354 continue;
4355
4356 local_group = cpumask_test_cpu(this_cpu,
4357 sched_group_cpus(group));
4358
4359 /* Tally up the load of all CPUs in the group */
4360 avg_load = 0;
4361
4362 for_each_cpu(i, sched_group_cpus(group)) {
4363 /* Bias balancing toward cpus of our domain */
4364 if (local_group)
4365 load = source_load(i, load_idx);
4366 else
4367 load = target_load(i, load_idx);
4368
4369 avg_load += load;
4370 }
4371
4372 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004373 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004374
4375 if (local_group) {
4376 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004377 } else if (avg_load < min_load) {
4378 min_load = avg_load;
4379 idlest = group;
4380 }
4381 } while (group = group->next, group != sd->groups);
4382
4383 if (!idlest || 100*this_load < imbalance*min_load)
4384 return NULL;
4385 return idlest;
4386}
4387
4388/*
4389 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4390 */
4391static int
4392find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4393{
4394 unsigned long load, min_load = ULONG_MAX;
4395 int idlest = -1;
4396 int i;
4397
4398 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004399 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004400 load = weighted_cpuload(i);
4401
4402 if (load < min_load || (load == min_load && i == this_cpu)) {
4403 min_load = load;
4404 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004405 }
4406 }
4407
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004408 return idlest;
4409}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004410
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004411/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004412 * Try and locate an idle CPU in the sched_domain.
4413 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004414static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004415{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004416 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004417 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004418 int i = task_cpu(p);
4419
4420 if (idle_cpu(target))
4421 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004422
4423 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004424 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004425 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004426 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4427 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004428
4429 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004430 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004431 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004432 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004433 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004434 sg = sd->groups;
4435 do {
4436 if (!cpumask_intersects(sched_group_cpus(sg),
4437 tsk_cpus_allowed(p)))
4438 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004439
Linus Torvalds37407ea2012-09-16 12:29:43 -07004440 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004441 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004442 goto next;
4443 }
4444
4445 target = cpumask_first_and(sched_group_cpus(sg),
4446 tsk_cpus_allowed(p));
4447 goto done;
4448next:
4449 sg = sg->next;
4450 } while (sg != sd->groups);
4451 }
4452done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004453 return target;
4454}
4455
4456/*
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004457 * select_task_rq_fair: Select target runqueue for the waking task in domains
4458 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4459 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004460 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004461 * Balances load by selecting the idlest cpu in the idlest group, or under
4462 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004463 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004464 * Returns the target cpu number.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004465 *
4466 * preempt must be disabled.
4467 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004468static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004469select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004470{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004471 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004472 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004473 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004474 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004475 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004476
Peter Zijlstra29baa742012-04-23 12:11:21 +02004477 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004478 return prev_cpu;
4479
Peter Zijlstra0763a662009-09-14 19:37:39 +02004480 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004481 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004482 want_affine = 1;
4483 new_cpu = prev_cpu;
4484 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004485
Peter Zijlstradce840a2011-04-07 14:09:50 +02004486 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004487 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01004488 if (!(tmp->flags & SD_LOAD_BALANCE))
4489 continue;
4490
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004491 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004492 * If both cpu and prev_cpu are part of this domain,
4493 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004494 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4497 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004498 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004499 }
4500
Alex Shif03542a2012-07-26 08:55:34 +08004501 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004502 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004503 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004504
Rik van Riel8bf21432014-05-14 11:40:37 -04004505 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4506 prev_cpu = cpu;
Peter Zijlstradce840a2011-04-07 14:09:50 +02004507
Rik van Riel8bf21432014-05-14 11:40:37 -04004508 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstradce840a2011-04-07 14:09:50 +02004509 new_cpu = select_idle_sibling(p, prev_cpu);
4510 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004511 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004512
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004513 while (sd) {
4514 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004515 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004516
Peter Zijlstra0763a662009-09-14 19:37:39 +02004517 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004518 sd = sd->child;
4519 continue;
4520 }
4521
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004522 group = find_idlest_group(sd, p, cpu, sd_flag);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004523 if (!group) {
4524 sd = sd->child;
4525 continue;
4526 }
4527
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004528 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004529 if (new_cpu == -1 || new_cpu == cpu) {
4530 /* Now try balancing at a lower domain level of cpu */
4531 sd = sd->child;
4532 continue;
4533 }
4534
4535 /* Now try balancing at a lower domain level of new_cpu */
4536 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004537 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004538 sd = NULL;
4539 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004540 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004541 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004542 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004543 sd = tmp;
4544 }
4545 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004546 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004547unlock:
4548 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004549
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004550 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004551}
Paul Turner0a74bef2012-10-04 13:18:30 +02004552
4553/*
4554 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4555 * cfs_rq_of(p) references at time of call are still valid and identify the
4556 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4557 * other assumptions, including the state of rq->lock, should be made.
4558 */
4559static void
4560migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4561{
Paul Turneraff3e492012-10-04 13:18:30 +02004562 struct sched_entity *se = &p->se;
4563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4564
4565 /*
4566 * Load tracking: accumulate removed load so that it can be processed
4567 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4568 * to blocked load iff they have a positive decay-count. It can never
4569 * be negative here since on-rq tasks have decay-count == 0.
4570 */
4571 if (se->avg.decay_count) {
4572 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004573 atomic_long_add(se->avg.load_avg_contrib,
4574 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004575 }
Ben Segall3944a922014-05-15 15:59:20 -07004576
4577 /* We have migrated, no longer consider this task hot */
4578 se->exec_start = 0;
Paul Turner0a74bef2012-10-04 13:18:30 +02004579}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004580#endif /* CONFIG_SMP */
4581
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004582static unsigned long
4583wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004584{
4585 unsigned long gran = sysctl_sched_wakeup_granularity;
4586
4587 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004588 * Since its curr running now, convert the gran from real-time
4589 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004590 *
4591 * By using 'se' instead of 'curr' we penalize light tasks, so
4592 * they get preempted easier. That is, if 'se' < 'curr' then
4593 * the resulting gran will be larger, therefore penalizing the
4594 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4595 * be smaller, again penalizing the lighter task.
4596 *
4597 * This is especially important for buddies when the leftmost
4598 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004599 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004600 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004601}
4602
4603/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004604 * Should 'se' preempt 'curr'.
4605 *
4606 * |s1
4607 * |s2
4608 * |s3
4609 * g
4610 * |<--->|c
4611 *
4612 * w(c, s1) = -1
4613 * w(c, s2) = 0
4614 * w(c, s3) = 1
4615 *
4616 */
4617static int
4618wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4619{
4620 s64 gran, vdiff = curr->vruntime - se->vruntime;
4621
4622 if (vdiff <= 0)
4623 return -1;
4624
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004625 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004626 if (vdiff > gran)
4627 return 1;
4628
4629 return 0;
4630}
4631
Peter Zijlstra02479092008-11-04 21:25:10 +01004632static void set_last_buddy(struct sched_entity *se)
4633{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004634 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4635 return;
4636
4637 for_each_sched_entity(se)
4638 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004639}
4640
4641static void set_next_buddy(struct sched_entity *se)
4642{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004643 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4644 return;
4645
4646 for_each_sched_entity(se)
4647 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004648}
4649
Rik van Rielac53db52011-02-01 09:51:03 -05004650static void set_skip_buddy(struct sched_entity *se)
4651{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004652 for_each_sched_entity(se)
4653 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004654}
4655
Peter Zijlstra464b7522008-10-24 11:06:15 +02004656/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004657 * Preempt the current task with a newly woken task if needed:
4658 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004659static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004660{
4661 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004662 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004663 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004664 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004665 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004666
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004667 if (unlikely(se == pse))
4668 return;
4669
Paul Turner5238cdd2011-07-21 09:43:37 -07004670 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004671 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004672 * unconditionally check_prempt_curr() after an enqueue (which may have
4673 * lead to a throttle). This both saves work and prevents false
4674 * next-buddy nomination below.
4675 */
4676 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4677 return;
4678
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004679 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004680 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004681 next_buddy_marked = 1;
4682 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004683
Bharata B Raoaec0a512008-08-28 14:42:49 +05304684 /*
4685 * We can come here with TIF_NEED_RESCHED already set from new task
4686 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004687 *
4688 * Note: this also catches the edge-case of curr being in a throttled
4689 * group (e.g. via set_curr_task), since update_curr() (in the
4690 * enqueue of curr) will have resulted in resched being set. This
4691 * prevents us from potentially nominating it as a false LAST_BUDDY
4692 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304693 */
4694 if (test_tsk_need_resched(curr))
4695 return;
4696
Darren Harta2f5c9a2011-02-22 13:04:33 -08004697 /* Idle tasks are by definition preempted by non-idle tasks. */
4698 if (unlikely(curr->policy == SCHED_IDLE) &&
4699 likely(p->policy != SCHED_IDLE))
4700 goto preempt;
4701
Ingo Molnar91c234b2007-10-15 17:00:18 +02004702 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004703 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4704 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004705 */
Ingo Molnar8ed92e512012-10-14 14:28:50 +02004706 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004707 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004708
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004709 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004710 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004711 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004712 if (wakeup_preempt_entity(se, pse) == 1) {
4713 /*
4714 * Bias pick_next to pick the sched entity that is
4715 * triggering this preemption.
4716 */
4717 if (!next_buddy_marked)
4718 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004719 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004720 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004721
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004722 return;
4723
4724preempt:
4725 resched_task(curr);
4726 /*
4727 * Only set the backward buddy when the current task is still
4728 * on the rq. This can happen when a wakeup gets interleaved
4729 * with schedule on the ->pre_schedule() or idle_balance()
4730 * point, either of which can * drop the rq lock.
4731 *
4732 * Also, during early boot the idle thread is in the fair class,
4733 * for obvious reasons its a bad idea to schedule back to it.
4734 */
4735 if (unlikely(!se->on_rq || curr == rq->idle))
4736 return;
4737
4738 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4739 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004740}
4741
Peter Zijlstra606dba22012-02-11 06:05:00 +01004742static struct task_struct *
4743pick_next_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004744{
4745 struct cfs_rq *cfs_rq = &rq->cfs;
4746 struct sched_entity *se;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004747 struct task_struct *p;
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004748 int new_tasks;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004749
Peter Zijlstra6e831252014-02-11 16:11:48 +01004750again:
Peter Zijlstra678d5712012-02-11 06:05:00 +01004751#ifdef CONFIG_FAIR_GROUP_SCHED
4752 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004753 goto idle;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004754
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004755 if (prev->sched_class != &fair_sched_class)
Peter Zijlstra678d5712012-02-11 06:05:00 +01004756 goto simple;
4757
4758 /*
4759 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4760 * likely that a next task is from the same cgroup as the current.
4761 *
4762 * Therefore attempt to avoid putting and setting the entire cgroup
4763 * hierarchy, only change the part that actually changes.
4764 */
4765
4766 do {
4767 struct sched_entity *curr = cfs_rq->curr;
4768
4769 /*
4770 * Since we got here without doing put_prev_entity() we also
4771 * have to consider cfs_rq->curr. If it is still a runnable
4772 * entity, update_curr() will update its vruntime, otherwise
4773 * forget we've ever seen it.
4774 */
4775 if (curr && curr->on_rq)
4776 update_curr(cfs_rq);
4777 else
4778 curr = NULL;
4779
4780 /*
4781 * This call to check_cfs_rq_runtime() will do the throttle and
4782 * dequeue its entity in the parent(s). Therefore the 'simple'
4783 * nr_running test will indeed be correct.
4784 */
4785 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4786 goto simple;
4787
4788 se = pick_next_entity(cfs_rq, curr);
4789 cfs_rq = group_cfs_rq(se);
4790 } while (cfs_rq);
4791
4792 p = task_of(se);
4793
4794 /*
4795 * Since we haven't yet done put_prev_entity and if the selected task
4796 * is a different task than we started out with, try and touch the
4797 * least amount of cfs_rqs.
4798 */
4799 if (prev != p) {
4800 struct sched_entity *pse = &prev->se;
4801
4802 while (!(cfs_rq = is_same_group(se, pse))) {
4803 int se_depth = se->depth;
4804 int pse_depth = pse->depth;
4805
4806 if (se_depth <= pse_depth) {
4807 put_prev_entity(cfs_rq_of(pse), pse);
4808 pse = parent_entity(pse);
4809 }
4810 if (se_depth >= pse_depth) {
4811 set_next_entity(cfs_rq_of(se), se);
4812 se = parent_entity(se);
4813 }
4814 }
4815
4816 put_prev_entity(cfs_rq, pse);
4817 set_next_entity(cfs_rq, se);
4818 }
4819
4820 if (hrtick_enabled(rq))
4821 hrtick_start_fair(rq, p);
4822
4823 return p;
4824simple:
4825 cfs_rq = &rq->cfs;
4826#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004827
Tim Blechmann36ace272009-11-24 11:55:45 +01004828 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004829 goto idle;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004830
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004831 put_prev_task(rq, prev);
Peter Zijlstra606dba22012-02-11 06:05:00 +01004832
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004833 do {
Peter Zijlstra678d5712012-02-11 06:05:00 +01004834 se = pick_next_entity(cfs_rq, NULL);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004835 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004836 cfs_rq = group_cfs_rq(se);
4837 } while (cfs_rq);
4838
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004839 p = task_of(se);
Peter Zijlstra678d5712012-02-11 06:05:00 +01004840
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004841 if (hrtick_enabled(rq))
4842 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004843
4844 return p;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004845
4846idle:
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004847 new_tasks = idle_balance(rq);
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004848 /*
4849 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4850 * possible for any higher priority task to appear. In that case we
4851 * must re-start the pick_next_entity() loop.
4852 */
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004853 if (new_tasks < 0)
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004854 return RETRY_TASK;
4855
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004856 if (new_tasks > 0)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004857 goto again;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004858
4859 return NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004860}
4861
4862/*
4863 * Account for a descheduled task:
4864 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004865static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004866{
4867 struct sched_entity *se = &prev->se;
4868 struct cfs_rq *cfs_rq;
4869
4870 for_each_sched_entity(se) {
4871 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004872 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004873 }
4874}
4875
Rik van Rielac53db52011-02-01 09:51:03 -05004876/*
4877 * sched_yield() is very simple
4878 *
4879 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4880 */
4881static void yield_task_fair(struct rq *rq)
4882{
4883 struct task_struct *curr = rq->curr;
4884 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4885 struct sched_entity *se = &curr->se;
4886
4887 /*
4888 * Are we the only task in the tree?
4889 */
4890 if (unlikely(rq->nr_running == 1))
4891 return;
4892
4893 clear_buddies(cfs_rq, se);
4894
4895 if (curr->policy != SCHED_BATCH) {
4896 update_rq_clock(rq);
4897 /*
4898 * Update run-time statistics of the 'current'.
4899 */
4900 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004901 /*
4902 * Tell update_rq_clock() that we've just updated,
4903 * so we don't do microscopic update in schedule()
4904 * and double the fastpath cost.
4905 */
4906 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004907 }
4908
4909 set_skip_buddy(se);
4910}
4911
Mike Galbraithd95f4122011-02-01 09:50:51 -05004912static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4913{
4914 struct sched_entity *se = &p->se;
4915
Paul Turner5238cdd2011-07-21 09:43:37 -07004916 /* throttled hierarchies are not runnable */
4917 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004918 return false;
4919
4920 /* Tell the scheduler that we'd really like pse to run next. */
4921 set_next_buddy(se);
4922
Mike Galbraithd95f4122011-02-01 09:50:51 -05004923 yield_task_fair(rq);
4924
4925 return true;
4926}
4927
Peter Williams681f3e62007-10-24 18:23:51 +02004928#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004929/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004930 * Fair scheduling class load-balancing methods.
4931 *
4932 * BASICS
4933 *
4934 * The purpose of load-balancing is to achieve the same basic fairness the
4935 * per-cpu scheduler provides, namely provide a proportional amount of compute
4936 * time to each task. This is expressed in the following equation:
4937 *
4938 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4939 *
4940 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4941 * W_i,0 is defined as:
4942 *
4943 * W_i,0 = \Sum_j w_i,j (2)
4944 *
4945 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4946 * is derived from the nice value as per prio_to_weight[].
4947 *
4948 * The weight average is an exponential decay average of the instantaneous
4949 * weight:
4950 *
4951 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4952 *
4953 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4954 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4955 * can also include other factors [XXX].
4956 *
4957 * To achieve this balance we define a measure of imbalance which follows
4958 * directly from (1):
4959 *
4960 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4961 *
4962 * We them move tasks around to minimize the imbalance. In the continuous
4963 * function space it is obvious this converges, in the discrete case we get
4964 * a few fun cases generally called infeasible weight scenarios.
4965 *
4966 * [XXX expand on:
4967 * - infeasible weights;
4968 * - local vs global optima in the discrete case. ]
4969 *
4970 *
4971 * SCHED DOMAINS
4972 *
4973 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4974 * for all i,j solution, we create a tree of cpus that follows the hardware
4975 * topology where each level pairs two lower groups (or better). This results
4976 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4977 * tree to only the first of the previous level and we decrease the frequency
4978 * of load-balance at each level inv. proportional to the number of cpus in
4979 * the groups.
4980 *
4981 * This yields:
4982 *
4983 * log_2 n 1 n
4984 * \Sum { --- * --- * 2^i } = O(n) (5)
4985 * i = 0 2^i 2^i
4986 * `- size of each group
4987 * | | `- number of cpus doing load-balance
4988 * | `- freq
4989 * `- sum over all levels
4990 *
4991 * Coupled with a limit on how many tasks we can migrate every balance pass,
4992 * this makes (5) the runtime complexity of the balancer.
4993 *
4994 * An important property here is that each CPU is still (indirectly) connected
4995 * to every other cpu in at most O(log n) steps:
4996 *
4997 * The adjacency matrix of the resulting graph is given by:
4998 *
4999 * log_2 n
5000 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5001 * k = 0
5002 *
5003 * And you'll find that:
5004 *
5005 * A^(log_2 n)_i,j != 0 for all i,j (7)
5006 *
5007 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5008 * The task movement gives a factor of O(m), giving a convergence complexity
5009 * of:
5010 *
5011 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5012 *
5013 *
5014 * WORK CONSERVING
5015 *
5016 * In order to avoid CPUs going idle while there's still work to do, new idle
5017 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5018 * tree itself instead of relying on other CPUs to bring it work.
5019 *
5020 * This adds some complexity to both (5) and (8) but it reduces the total idle
5021 * time.
5022 *
5023 * [XXX more?]
5024 *
5025 *
5026 * CGROUPS
5027 *
5028 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5029 *
5030 * s_k,i
5031 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5032 * S_k
5033 *
5034 * Where
5035 *
5036 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5037 *
5038 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5039 *
5040 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5041 * property.
5042 *
5043 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5044 * rewrite all of this once again.]
5045 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005046
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09005047static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5048
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005049enum fbq_type { regular, remote, all };
5050
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005051#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01005052#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02005053#define LBF_DST_PINNED 0x04
5054#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005055
5056struct lb_env {
5057 struct sched_domain *sd;
5058
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005059 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05305060 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005061
5062 int dst_cpu;
5063 struct rq *dst_rq;
5064
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305065 struct cpumask *dst_grpmask;
5066 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005067 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005068 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08005069 /* The set of CPUs under consideration for load-balancing */
5070 struct cpumask *cpus;
5071
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005072 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005073
5074 unsigned int loop;
5075 unsigned int loop_break;
5076 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005077
5078 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005079};
5080
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005081/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005082 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005083 * Both runqueues must be locked.
5084 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005085static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005086{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005087 deactivate_task(env->src_rq, p, 0);
5088 set_task_cpu(p, env->dst_cpu);
5089 activate_task(env->dst_rq, p, 0);
5090 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005091}
5092
5093/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02005094 * Is this task likely cache-hot:
5095 */
5096static int
Alex Shi6037dd12014-03-12 14:51:51 +08005097task_hot(struct task_struct *p, u64 now)
Peter Zijlstra029632f2011-10-25 10:00:11 +02005098{
5099 s64 delta;
5100
5101 if (p->sched_class != &fair_sched_class)
5102 return 0;
5103
5104 if (unlikely(p->policy == SCHED_IDLE))
5105 return 0;
5106
5107 /*
5108 * Buddy candidates are cache hot:
5109 */
5110 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5111 (&p->se == cfs_rq_of(&p->se)->next ||
5112 &p->se == cfs_rq_of(&p->se)->last))
5113 return 1;
5114
5115 if (sysctl_sched_migration_cost == -1)
5116 return 1;
5117 if (sysctl_sched_migration_cost == 0)
5118 return 0;
5119
5120 delta = now - p->se.exec_start;
5121
5122 return delta < (s64)sysctl_sched_migration_cost;
5123}
5124
Mel Gorman3a7053b2013-10-07 11:29:00 +01005125#ifdef CONFIG_NUMA_BALANCING
5126/* Returns true if the destination node has incurred more faults */
5127static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5128{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005129 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005130 int src_nid, dst_nid;
5131
Rik van Rielff1df892014-01-27 17:03:41 -05005132 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
Mel Gorman3a7053b2013-10-07 11:29:00 +01005133 !(env->sd->flags & SD_NUMA)) {
5134 return false;
5135 }
5136
5137 src_nid = cpu_to_node(env->src_cpu);
5138 dst_nid = cpu_to_node(env->dst_cpu);
5139
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005140 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01005141 return false;
5142
Rik van Rielb1ad0652014-05-15 13:03:06 -04005143 if (numa_group) {
5144 /* Task is already in the group's interleave set. */
5145 if (node_isset(src_nid, numa_group->active_nodes))
5146 return false;
5147
5148 /* Task is moving into the group's interleave set. */
5149 if (node_isset(dst_nid, numa_group->active_nodes))
5150 return true;
5151
5152 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5153 }
5154
5155 /* Encourage migration to the preferred node. */
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005156 if (dst_nid == p->numa_preferred_nid)
5157 return true;
5158
Rik van Rielb1ad0652014-05-15 13:03:06 -04005159 return task_faults(p, dst_nid) > task_faults(p, src_nid);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005160}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005161
5162
5163static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5164{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005165 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005166 int src_nid, dst_nid;
5167
5168 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5169 return false;
5170
Rik van Rielff1df892014-01-27 17:03:41 -05005171 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005172 return false;
5173
5174 src_nid = cpu_to_node(env->src_cpu);
5175 dst_nid = cpu_to_node(env->dst_cpu);
5176
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005177 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01005178 return false;
5179
Rik van Rielb1ad0652014-05-15 13:03:06 -04005180 if (numa_group) {
5181 /* Task is moving within/into the group's interleave set. */
5182 if (node_isset(dst_nid, numa_group->active_nodes))
5183 return false;
5184
5185 /* Task is moving out of the group's interleave set. */
5186 if (node_isset(src_nid, numa_group->active_nodes))
5187 return true;
5188
5189 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5190 }
5191
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005192 /* Migrating away from the preferred node is always bad. */
5193 if (src_nid == p->numa_preferred_nid)
5194 return true;
5195
Rik van Rielb1ad0652014-05-15 13:03:06 -04005196 return task_faults(p, dst_nid) < task_faults(p, src_nid);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005197}
5198
Mel Gorman3a7053b2013-10-07 11:29:00 +01005199#else
5200static inline bool migrate_improves_locality(struct task_struct *p,
5201 struct lb_env *env)
5202{
5203 return false;
5204}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005205
5206static inline bool migrate_degrades_locality(struct task_struct *p,
5207 struct lb_env *env)
5208{
5209 return false;
5210}
Mel Gorman3a7053b2013-10-07 11:29:00 +01005211#endif
5212
Peter Zijlstra029632f2011-10-25 10:00:11 +02005213/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005214 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5215 */
5216static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005217int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005218{
5219 int tsk_cache_hot = 0;
5220 /*
5221 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09005222 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005223 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09005224 * 3) running (obviously), or
5225 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005226 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09005227 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5228 return 0;
5229
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005230 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005231 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305232
Lucas De Marchi41acab82010-03-10 23:37:45 -03005233 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305234
Peter Zijlstra62633222013-08-19 12:41:09 +02005235 env->flags |= LBF_SOME_PINNED;
5236
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305237 /*
5238 * Remember if this task can be migrated to any other cpu in
5239 * our sched_group. We may want to revisit it if we couldn't
5240 * meet load balance goals by pulling other tasks on src_cpu.
5241 *
5242 * Also avoid computing new_dst_cpu if we have already computed
5243 * one in current iteration.
5244 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005245 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305246 return 0;
5247
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005248 /* Prevent to re-select dst_cpu via env's cpus */
5249 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5250 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02005251 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005252 env->new_dst_cpu = cpu;
5253 break;
5254 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305255 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005256
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005257 return 0;
5258 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305259
5260 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005261 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005263 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03005264 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005265 return 0;
5266 }
5267
5268 /*
5269 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01005270 * 1) destination numa is preferred
5271 * 2) task is cache cold, or
5272 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005273 */
Alex Shi6037dd12014-03-12 14:51:51 +08005274 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
Mel Gorman7a0f3082013-10-07 11:29:01 +01005275 if (!tsk_cache_hot)
5276 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005277
5278 if (migrate_improves_locality(p, env)) {
5279#ifdef CONFIG_SCHEDSTATS
5280 if (tsk_cache_hot) {
5281 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5282 schedstat_inc(p, se.statistics.nr_forced_migrations);
5283 }
5284#endif
5285 return 1;
5286 }
5287
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005288 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005289 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005290
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005291 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005292 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03005293 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005294 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005295
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005296 return 1;
5297 }
5298
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005299 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5300 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005301}
5302
Peter Zijlstra897c3952009-12-17 17:45:42 +01005303/*
5304 * move_one_task tries to move exactly one task from busiest to this_rq, as
5305 * part of active balancing operations within "domain".
5306 * Returns 1 if successful and 0 otherwise.
5307 *
5308 * Called with both runqueues locked.
5309 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005310static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01005311{
5312 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005313
Peter Zijlstra367456c2012-02-20 21:49:09 +01005314 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01005315 if (!can_migrate_task(p, env))
5316 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005317
Peter Zijlstra367456c2012-02-20 21:49:09 +01005318 move_task(p, env);
5319 /*
5320 * Right now, this is only the second place move_task()
5321 * is called, so we can safely collect move_task()
5322 * stats here rather than inside move_task().
5323 */
5324 schedstat_inc(env->sd, lb_gained[env->idle]);
5325 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005326 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01005327 return 0;
5328}
5329
Peter Zijlstraeb953082012-04-17 13:38:40 +02005330static const unsigned int sched_nr_migrate_break = 32;
5331
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005332/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005333 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005334 * this_rq, as part of a balancing operation within domain "sd".
5335 * Returns 1 if successful and 0 otherwise.
5336 *
5337 * Called with both runqueues locked.
5338 */
5339static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005340{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005341 struct list_head *tasks = &env->src_rq->cfs_tasks;
5342 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005343 unsigned long load;
5344 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005345
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005346 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005347 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005348
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005349 while (!list_empty(tasks)) {
5350 p = list_first_entry(tasks, struct task_struct, se.group_node);
5351
Peter Zijlstra367456c2012-02-20 21:49:09 +01005352 env->loop++;
5353 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005354 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005355 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005356
5357 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005358 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005359 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005360 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005361 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005362 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005363
Joonsoo Kimd3198082013-04-23 17:27:40 +09005364 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005365 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005366
Peter Zijlstra367456c2012-02-20 21:49:09 +01005367 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005368
Peter Zijlstraeb953082012-04-17 13:38:40 +02005369 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005370 goto next;
5371
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005372 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005373 goto next;
5374
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005375 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005376 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005377 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005378
5379#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005380 /*
5381 * NEWIDLE balancing is a source of latency, so preemptible
5382 * kernels will stop after the first task is pulled to minimize
5383 * the critical section.
5384 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005385 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005386 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005387#endif
5388
Peter Zijlstraee00e662009-12-17 17:25:20 +01005389 /*
5390 * We only want to steal up to the prescribed amount of
5391 * weighted load.
5392 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005393 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005394 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005395
Peter Zijlstra367456c2012-02-20 21:49:09 +01005396 continue;
5397next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005398 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005399 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005400
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005401 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005402 * Right now, this is one of only two places move_task() is called,
5403 * so we can safely collect move_task() stats here rather than
5404 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005405 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005406 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005407
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005408 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005409}
5410
Peter Zijlstra230059de2009-12-17 17:47:12 +01005411#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005412/*
5413 * update tg->load_weight by folding this cpu's load_avg
5414 */
Paul Turner48a16752012-10-04 13:18:31 +02005415static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005416{
Paul Turner48a16752012-10-04 13:18:31 +02005417 struct sched_entity *se = tg->se[cpu];
5418 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005419
Paul Turner48a16752012-10-04 13:18:31 +02005420 /* throttled entities do not contribute to load */
5421 if (throttled_hierarchy(cfs_rq))
5422 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005423
Paul Turneraff3e492012-10-04 13:18:30 +02005424 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005425
Paul Turner82958362012-10-04 13:18:31 +02005426 if (se) {
5427 update_entity_load_avg(se, 1);
5428 /*
5429 * We pivot on our runnable average having decayed to zero for
5430 * list removal. This generally implies that all our children
5431 * have also been removed (modulo rounding error or bandwidth
5432 * control); however, such cases are rare and we can fix these
5433 * at enqueue.
5434 *
5435 * TODO: fix up out-of-order children on enqueue.
5436 */
5437 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5438 list_del_leaf_cfs_rq(cfs_rq);
5439 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005440 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005441 update_rq_runnable_avg(rq, rq->nr_running);
5442 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005443}
5444
Paul Turner48a16752012-10-04 13:18:31 +02005445static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005446{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005447 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005448 struct cfs_rq *cfs_rq;
5449 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005450
Paul Turner48a16752012-10-04 13:18:31 +02005451 raw_spin_lock_irqsave(&rq->lock, flags);
5452 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005453 /*
5454 * Iterates the task_group tree in a bottom up fashion, see
5455 * list_add_leaf_cfs_rq() for details.
5456 */
Paul Turner64660c82011-07-21 09:43:36 -07005457 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005458 /*
5459 * Note: We may want to consider periodically releasing
5460 * rq->lock about these updates so that creating many task
5461 * groups does not result in continually extending hold time.
5462 */
5463 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005464 }
Paul Turner48a16752012-10-04 13:18:31 +02005465
5466 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005467}
5468
Peter Zijlstra9763b672011-07-13 13:09:25 +02005469/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005470 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005471 * This needs to be done in a top-down fashion because the load of a child
5472 * group is a fraction of its parents load.
5473 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005474static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005475{
Vladimir Davydov68520792013-07-15 17:49:19 +04005476 struct rq *rq = rq_of(cfs_rq);
5477 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005478 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005479 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005480
Vladimir Davydov68520792013-07-15 17:49:19 +04005481 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005482 return;
5483
Vladimir Davydov68520792013-07-15 17:49:19 +04005484 cfs_rq->h_load_next = NULL;
5485 for_each_sched_entity(se) {
5486 cfs_rq = cfs_rq_of(se);
5487 cfs_rq->h_load_next = se;
5488 if (cfs_rq->last_h_load_update == now)
5489 break;
5490 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005491
Vladimir Davydov68520792013-07-15 17:49:19 +04005492 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005493 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005494 cfs_rq->last_h_load_update = now;
5495 }
5496
5497 while ((se = cfs_rq->h_load_next) != NULL) {
5498 load = cfs_rq->h_load;
5499 load = div64_ul(load * se->avg.load_avg_contrib,
5500 cfs_rq->runnable_load_avg + 1);
5501 cfs_rq = group_cfs_rq(se);
5502 cfs_rq->h_load = load;
5503 cfs_rq->last_h_load_update = now;
5504 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005505}
5506
Peter Zijlstra367456c2012-02-20 21:49:09 +01005507static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005508{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005509 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005510
Vladimir Davydov68520792013-07-15 17:49:19 +04005511 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005512 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5513 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005514}
5515#else
Paul Turner48a16752012-10-04 13:18:31 +02005516static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005517{
5518}
5519
Peter Zijlstra367456c2012-02-20 21:49:09 +01005520static unsigned long task_h_load(struct task_struct *p)
5521{
Alex Shia003a252013-06-20 10:18:51 +08005522 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005523}
5524#endif
5525
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005526/********** Helpers for find_busiest_group ************************/
5527/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005528 * sg_lb_stats - stats of a sched_group required for load_balancing
5529 */
5530struct sg_lb_stats {
5531 unsigned long avg_load; /*Avg load across the CPUs of the group */
5532 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005533 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005534 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005535 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005536 unsigned int sum_nr_running; /* Nr tasks running in the group */
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005537 unsigned int group_capacity_factor;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005538 unsigned int idle_cpus;
5539 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540 int group_imb; /* Is there an imbalance in the group ? */
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04005541 int group_has_free_capacity;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005542#ifdef CONFIG_NUMA_BALANCING
5543 unsigned int nr_numa_running;
5544 unsigned int nr_preferred_running;
5545#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005546};
5547
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005548/*
5549 * sd_lb_stats - Structure to store the statistics of a sched_domain
5550 * during load balancing.
5551 */
5552struct sd_lb_stats {
5553 struct sched_group *busiest; /* Busiest group in this sd */
5554 struct sched_group *local; /* Local group in this sd */
5555 unsigned long total_load; /* Total load of all groups in sd */
5556 unsigned long total_pwr; /* Total power of all groups in sd */
5557 unsigned long avg_load; /* Average load across all groups in sd */
5558
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005559 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005560 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005561};
5562
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005563static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5564{
5565 /*
5566 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5567 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5568 * We must however clear busiest_stat::avg_load because
5569 * update_sd_pick_busiest() reads this before assignment.
5570 */
5571 *sds = (struct sd_lb_stats){
5572 .busiest = NULL,
5573 .local = NULL,
5574 .total_load = 0UL,
5575 .total_pwr = 0UL,
5576 .busiest_stat = {
5577 .avg_load = 0UL,
5578 },
5579 };
5580}
5581
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005582/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005583 * get_sd_load_idx - Obtain the load index for a given sched domain.
5584 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305585 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005586 *
5587 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005588 */
5589static inline int get_sd_load_idx(struct sched_domain *sd,
5590 enum cpu_idle_type idle)
5591{
5592 int load_idx;
5593
5594 switch (idle) {
5595 case CPU_NOT_IDLE:
5596 load_idx = sd->busy_idx;
5597 break;
5598
5599 case CPU_NEWLY_IDLE:
5600 load_idx = sd->newidle_idx;
5601 break;
5602 default:
5603 load_idx = sd->idle_idx;
5604 break;
5605 }
5606
5607 return load_idx;
5608}
5609
Li Zefan15f803c2013-03-05 16:07:11 +08005610static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005611{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005612 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005613}
5614
5615unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5616{
5617 return default_scale_freq_power(sd, cpu);
5618}
5619
Li Zefan15f803c2013-03-05 16:07:11 +08005620static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005621{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005622 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005623 unsigned long smt_gain = sd->smt_gain;
5624
5625 smt_gain /= weight;
5626
5627 return smt_gain;
5628}
5629
5630unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5631{
5632 return default_scale_smt_power(sd, cpu);
5633}
5634
Li Zefan15f803c2013-03-05 16:07:11 +08005635static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005636{
5637 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005638 u64 total, available, age_stamp, avg;
Peter Zijlstracadefd32014-02-27 10:40:35 +01005639 s64 delta;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005640
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005641 /*
5642 * Since we're reading these variables without serialization make sure
5643 * we read them once before doing sanity checks on them.
5644 */
5645 age_stamp = ACCESS_ONCE(rq->age_stamp);
5646 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005647
Peter Zijlstracadefd32014-02-27 10:40:35 +01005648 delta = rq_clock(rq) - age_stamp;
5649 if (unlikely(delta < 0))
5650 delta = 0;
5651
5652 total = sched_avg_period() + delta;
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005653
5654 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005655 /* Ensures that power won't end up being negative */
5656 available = 0;
5657 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005658 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005659 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005660
Nikhil Rao1399fa72011-05-18 10:09:39 -07005661 if (unlikely((s64)total < SCHED_POWER_SCALE))
5662 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005663
Nikhil Rao1399fa72011-05-18 10:09:39 -07005664 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005665
5666 return div_u64(available, total);
5667}
5668
5669static void update_cpu_power(struct sched_domain *sd, int cpu)
5670{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005671 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005672 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005673 struct sched_group *sdg = sd->groups;
5674
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005675 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5676 if (sched_feat(ARCH_POWER))
5677 power *= arch_scale_smt_power(sd, cpu);
5678 else
5679 power *= default_scale_smt_power(sd, cpu);
5680
Nikhil Rao1399fa72011-05-18 10:09:39 -07005681 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005682 }
5683
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005684 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005685
5686 if (sched_feat(ARCH_POWER))
5687 power *= arch_scale_freq_power(sd, cpu);
5688 else
5689 power *= default_scale_freq_power(sd, cpu);
5690
Nikhil Rao1399fa72011-05-18 10:09:39 -07005691 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005692
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005693 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005694 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005695
5696 if (!power)
5697 power = 1;
5698
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005699 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005700 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005701}
5702
Peter Zijlstra029632f2011-10-25 10:00:11 +02005703void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704{
5705 struct sched_domain *child = sd->child;
5706 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005707 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005708 unsigned long interval;
5709
5710 interval = msecs_to_jiffies(sd->balance_interval);
5711 interval = clamp(interval, 1UL, max_load_balance_interval);
5712 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005713
5714 if (!child) {
5715 update_cpu_power(sd, cpu);
5716 return;
5717 }
5718
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005719 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005721 if (child->flags & SD_OVERLAP) {
5722 /*
5723 * SD_OVERLAP domains cannot assume that child groups
5724 * span the current group.
5725 */
5726
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005727 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305728 struct sched_group_power *sgp;
5729 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005730
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305731 /*
5732 * build_sched_domains() -> init_sched_groups_power()
5733 * gets here before we've attached the domains to the
5734 * runqueues.
5735 *
5736 * Use power_of(), which is set irrespective of domains
5737 * in update_cpu_power().
5738 *
5739 * This avoids power/power_orig from being 0 and
5740 * causing divide-by-zero issues on boot.
5741 *
5742 * Runtime updates will correct power_orig.
5743 */
5744 if (unlikely(!rq->sd)) {
5745 power_orig += power_of(cpu);
5746 power += power_of(cpu);
5747 continue;
5748 }
5749
5750 sgp = rq->sd->groups->sgp;
5751 power_orig += sgp->power_orig;
5752 power += sgp->power;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005753 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005754 } else {
5755 /*
5756 * !SD_OVERLAP domains can assume that child groups
5757 * span the current group.
5758 */
5759
5760 group = child->groups;
5761 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005762 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005763 power += group->sgp->power;
5764 group = group->next;
5765 } while (group != child->groups);
5766 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005768 sdg->sgp->power_orig = power_orig;
5769 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005770}
5771
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005772/*
5773 * Try and fix up capacity for tiny siblings, this is needed when
5774 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5775 * which on its own isn't powerful enough.
5776 *
5777 * See update_sd_pick_busiest() and check_asym_packing().
5778 */
5779static inline int
5780fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5781{
5782 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005783 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005784 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005785 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005786 return 0;
5787
5788 /*
5789 * If ~90% of the cpu_power is still there, we're good.
5790 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005791 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005792 return 1;
5793
5794 return 0;
5795}
5796
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005797/*
5798 * Group imbalance indicates (and tries to solve) the problem where balancing
5799 * groups is inadequate due to tsk_cpus_allowed() constraints.
5800 *
5801 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5802 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5803 * Something like:
5804 *
5805 * { 0 1 2 3 } { 4 5 6 7 }
5806 * * * * *
5807 *
5808 * If we were to balance group-wise we'd place two tasks in the first group and
5809 * two tasks in the second group. Clearly this is undesired as it will overload
5810 * cpu 3 and leave one of the cpus in the second group unused.
5811 *
5812 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005813 * by noticing the lower domain failed to reach balance and had difficulty
5814 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005815 *
5816 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305817 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005818 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005819 * to create an effective group imbalance.
5820 *
5821 * This is a somewhat tricky proposition since the next run might not find the
5822 * group imbalance and decide the groups need to be balanced again. A most
5823 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005824 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005825
Peter Zijlstra62633222013-08-19 12:41:09 +02005826static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005827{
Peter Zijlstra62633222013-08-19 12:41:09 +02005828 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005829}
5830
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005831/*
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005832 * Compute the group capacity factor.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005833 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005834 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5835 * first dividing out the smt factor and computing the actual number of cores
5836 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005837 */
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005838static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005839{
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005840 unsigned int capacity_factor, smt, cpus;
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005841 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005842
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005843 power = group->sgp->power;
5844 power_orig = group->sgp->power_orig;
5845 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005846
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005847 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5848 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005849 capacity_factor = cpus / smt; /* cores */
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005850
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005851 capacity_factor = min_t(unsigned, capacity_factor, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5852 if (!capacity_factor)
5853 capacity_factor = fix_small_capacity(env->sd, group);
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005854
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005855 return capacity_factor;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005856}
5857
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005858/**
5859 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5860 * @env: The load balancing environment.
5861 * @group: sched_group whose statistics are to be updated.
5862 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5863 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005864 * @sgs: variable to hold the statistics for this group.
5865 */
5866static inline void update_sg_lb_stats(struct lb_env *env,
5867 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005868 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005869{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005870 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005871 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005873 memset(sgs, 0, sizeof(*sgs));
5874
Michael Wangb94031302012-07-12 16:10:13 +08005875 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005876 struct rq *rq = cpu_rq(i);
5877
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005878 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005879 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005880 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005881 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005882 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005883
5884 sgs->group_load += load;
Kamalesh Babulal380c9072013-11-15 15:06:52 +05305885 sgs->sum_nr_running += rq->nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005886#ifdef CONFIG_NUMA_BALANCING
5887 sgs->nr_numa_running += rq->nr_numa_running;
5888 sgs->nr_preferred_running += rq->nr_preferred_running;
5889#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005890 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005891 if (idle_cpu(i))
5892 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005893 }
5894
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005895 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005896 sgs->group_power = group->sgp->power;
5897 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005898
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005899 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005900 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005902 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005903
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005904 sgs->group_imb = sg_imbalanced(group);
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005905 sgs->group_capacity_factor = sg_capacity_factor(env, group);
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005906
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005907 if (sgs->group_capacity_factor > sgs->sum_nr_running)
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04005908 sgs->group_has_free_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005909}
5910
5911/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005912 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005913 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005914 * @sds: sched_domain statistics
5915 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005916 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005917 *
5918 * Determine if @sg is a busier group than the previously selected
5919 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005920 *
5921 * Return: %true if @sg is a busier group than the previously selected
5922 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005923 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005924static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005925 struct sd_lb_stats *sds,
5926 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005927 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005928{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005929 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005930 return false;
5931
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04005932 if (sgs->sum_nr_running > sgs->group_capacity_factor)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005933 return true;
5934
5935 if (sgs->group_imb)
5936 return true;
5937
5938 /*
5939 * ASYM_PACKING needs to move all the work to the lowest
5940 * numbered CPUs in the group, therefore mark all groups
5941 * higher than ourself as busy.
5942 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005943 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5944 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005945 if (!sds->busiest)
5946 return true;
5947
5948 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5949 return true;
5950 }
5951
5952 return false;
5953}
5954
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005955#ifdef CONFIG_NUMA_BALANCING
5956static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5957{
5958 if (sgs->sum_nr_running > sgs->nr_numa_running)
5959 return regular;
5960 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5961 return remote;
5962 return all;
5963}
5964
5965static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5966{
5967 if (rq->nr_running > rq->nr_numa_running)
5968 return regular;
5969 if (rq->nr_running > rq->nr_preferred_running)
5970 return remote;
5971 return all;
5972}
5973#else
5974static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5975{
5976 return all;
5977}
5978
5979static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5980{
5981 return regular;
5982}
5983#endif /* CONFIG_NUMA_BALANCING */
5984
Michael Neuling532cb4c2010-06-08 14:57:02 +10005985/**
Hui Kang461819a2011-10-11 23:00:59 -04005986 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005987 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005988 * @sds: variable to hold the statistics for this sched_domain.
5989 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005990static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005991{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005992 struct sched_domain *child = env->sd->child;
5993 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005994 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005995 int load_idx, prefer_sibling = 0;
5996
5997 if (child && child->flags & SD_PREFER_SIBLING)
5998 prefer_sibling = 1;
5999
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006000 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006001
6002 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006003 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006004 int local_group;
6005
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006006 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006007 if (local_group) {
6008 sds->local = sg;
6009 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006010
6011 if (env->idle != CPU_NEWLY_IDLE ||
6012 time_after_eq(jiffies, sg->sgp->next_update))
6013 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006014 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006015
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006016 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006017
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006018 if (local_group)
6019 goto next_group;
6020
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006021 /*
6022 * In case the child domain prefers tasks go to siblings
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006023 * first, lower the sg capacity factor to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07006024 * and move all the excess tasks away. We lower the capacity
6025 * of a group only if the local group has the capacity to fit
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006026 * these excess tasks, i.e. nr_running < group_capacity_factor. The
Nikhil Rao75dd3212010-10-15 13:12:30 -07006027 * extra check prevents the case where you always pull from the
6028 * heaviest group when it is already under-utilized (possible
6029 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006030 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006031 if (prefer_sibling && sds->local &&
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04006032 sds->local_stat.group_has_free_capacity)
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006033 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006034
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006035 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006036 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006037 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006038 }
6039
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006040next_group:
6041 /* Now, start updating sd_lb_stats */
6042 sds->total_load += sgs->group_load;
6043 sds->total_pwr += sgs->group_power;
6044
Michael Neuling532cb4c2010-06-08 14:57:02 +10006045 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006046 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006047
6048 if (env->sd->flags & SD_NUMA)
6049 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10006050}
6051
Michael Neuling532cb4c2010-06-08 14:57:02 +10006052/**
6053 * check_asym_packing - Check to see if the group is packed into the
6054 * sched doman.
6055 *
6056 * This is primarily intended to used at the sibling level. Some
6057 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6058 * case of POWER7, it can move to lower SMT modes only when higher
6059 * threads are idle. When in lower SMT modes, the threads will
6060 * perform better since they share less core resources. Hence when we
6061 * have idle threads, we want them to be the higher ones.
6062 *
6063 * This packing function is run on idle threads. It checks to see if
6064 * the busiest CPU in this domain (core in the P7 case) has a higher
6065 * CPU number than the packing function is being run on. Here we are
6066 * assuming lower CPU number will be equivalent to lower a SMT thread
6067 * number.
6068 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006069 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10006070 * this CPU. The amount of the imbalance is returned in *imbalance.
6071 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006072 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10006073 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10006074 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006075static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006076{
6077 int busiest_cpu;
6078
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006079 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006080 return 0;
6081
6082 if (!sds->busiest)
6083 return 0;
6084
6085 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006086 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006087 return 0;
6088
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006089 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006090 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6091 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006092
Michael Neuling532cb4c2010-06-08 14:57:02 +10006093 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006094}
6095
6096/**
6097 * fix_small_imbalance - Calculate the minor imbalance that exists
6098 * amongst the groups of a sched_domain, during
6099 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006100 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006101 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006102 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006103static inline
6104void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006105{
6106 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6107 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006108 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006109 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006110
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006111 local = &sds->local_stat;
6112 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006113
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006114 if (!local->sum_nr_running)
6115 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6116 else if (busiest->load_per_task > local->load_per_task)
6117 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006118
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006119 scaled_busy_load_per_task =
6120 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006121 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006122
Vladimir Davydov3029ede2013-09-15 17:49:14 +04006123 if (busiest->avg_load + scaled_busy_load_per_task >=
6124 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006125 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006126 return;
6127 }
6128
6129 /*
6130 * OK, we don't have enough imbalance to justify moving tasks,
6131 * however we may be able to increase total CPU power used by
6132 * moving them.
6133 */
6134
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006135 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006136 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006137 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006138 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006139 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006140
6141 /* Amount of load we'd subtract */
Vincent Guittota2cd4262014-03-11 17:26:06 +01006142 if (busiest->avg_load > scaled_busy_load_per_task) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006143 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006144 min(busiest->load_per_task,
Vincent Guittota2cd4262014-03-11 17:26:06 +01006145 busiest->avg_load - scaled_busy_load_per_task);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006146 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006147
6148 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006149 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006150 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006151 tmp = (busiest->avg_load * busiest->group_power) /
6152 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006153 } else {
6154 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006155 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006156 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006157 pwr_move += local->group_power *
6158 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006159 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006160
6161 /* Move if we gain throughput */
6162 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006163 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006164}
6165
6166/**
6167 * calculate_imbalance - Calculate the amount of imbalance present within the
6168 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006169 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006170 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006171 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006172static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006173{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006174 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006175 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006176
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006177 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006178 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006179
6180 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006181 /*
6182 * In the group_imb case we cannot rely on group-wide averages
6183 * to ensure cpu-load equilibrium, look at wider averages. XXX
6184 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006185 busiest->load_per_task =
6186 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006187 }
6188
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006189 /*
6190 * In the presence of smp nice balancing, certain scenarios can have
6191 * max load less than avg load(as we skip the groups at or below
6192 * its cpu_power, while calculating max_load..)
6193 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04006194 if (busiest->avg_load <= sds->avg_load ||
6195 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006196 env->imbalance = 0;
6197 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006198 }
6199
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006200 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006201 /*
6202 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006203 * Except of course for the group_imb case, since then we might
6204 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006205 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006206 load_above_capacity =
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006207 (busiest->sum_nr_running - busiest->group_capacity_factor);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006208
Nikhil Rao1399fa72011-05-18 10:09:39 -07006209 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006210 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006211 }
6212
6213 /*
6214 * We're trying to get all the cpus to the average_load, so we don't
6215 * want to push ourselves above the average load, nor do we wish to
6216 * reduce the max loaded cpu below the average load. At the same time,
6217 * we also don't want to reduce the group load below the group capacity
6218 * (so that we can implement power-savings policies etc). Thus we look
6219 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006220 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006221 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006222
6223 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006224 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006225 max_pull * busiest->group_power,
6226 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006227 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228
6229 /*
6230 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03006231 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006232 * a think about bumping its value to force at least one task to be
6233 * moved
6234 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006235 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006236 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006237}
Nikhil Raofab47622010-10-15 13:12:29 -07006238
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006239/******* find_busiest_group() helpers end here *********************/
6240
6241/**
6242 * find_busiest_group - Returns the busiest group within the sched_domain
6243 * if there is an imbalance. If there isn't an imbalance, and
6244 * the user has opted for power-savings, it returns a group whose
6245 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6246 * such a group exists.
6247 *
6248 * Also calculates the amount of weighted load which should be moved
6249 * to restore balance.
6250 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006251 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006252 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006253 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006254 * - If no imbalance and user has opted for power-savings balance,
6255 * return the least loaded group whose CPUs can be
6256 * put to idle by rebalancing its tasks onto our group.
6257 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006258static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006259{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006260 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006261 struct sd_lb_stats sds;
6262
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006263 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006264
6265 /*
6266 * Compute the various statistics relavent for load balancing at
6267 * this level.
6268 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006269 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006270 local = &sds.local_stat;
6271 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006272
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006273 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6274 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006275 return sds.busiest;
6276
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006277 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006278 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006279 goto out_balanced;
6280
Nikhil Rao1399fa72011-05-18 10:09:39 -07006281 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07006282
Peter Zijlstra866ab432011-02-21 18:56:47 +01006283 /*
6284 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006285 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01006286 * isn't true due to cpus_allowed constraints and the like.
6287 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006288 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01006289 goto force_balance;
6290
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006291 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04006292 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6293 !busiest->group_has_free_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07006294 goto force_balance;
6295
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006296 /*
6297 * If the local group is more busy than the selected busiest group
6298 * don't try and pull any tasks.
6299 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006300 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006301 goto out_balanced;
6302
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006303 /*
6304 * Don't pull any tasks if this group is already above the domain
6305 * average load.
6306 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006307 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006308 goto out_balanced;
6309
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006310 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006311 /*
6312 * This cpu is idle. If the busiest group load doesn't
6313 * have more tasks than the number of available cpu's and
6314 * there is no imbalance between this and busiest group
6315 * wrt to idle cpu's, it is balanced.
6316 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006317 if ((local->idle_cpus < busiest->idle_cpus) &&
6318 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006319 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006320 } else {
6321 /*
6322 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6323 * imbalance_pct to be conservative.
6324 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006325 if (100 * busiest->avg_load <=
6326 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006327 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006328 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006329
Nikhil Raofab47622010-10-15 13:12:29 -07006330force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006331 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006332 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006333 return sds.busiest;
6334
6335out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006336 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006337 return NULL;
6338}
6339
6340/*
6341 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6342 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006343static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08006344 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006345{
6346 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006347 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006348 int i;
6349
Peter Zijlstra6906a402013-08-19 15:20:21 +02006350 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006351 unsigned long power, capacity_factor, wl;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006352 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006353
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006354 rq = cpu_rq(i);
6355 rt = fbq_classify_rq(rq);
6356
6357 /*
6358 * We classify groups/runqueues into three groups:
6359 * - regular: there are !numa tasks
6360 * - remote: there are numa tasks that run on the 'wrong' node
6361 * - all: there is no distinction
6362 *
6363 * In order to avoid migrating ideally placed numa tasks,
6364 * ignore those when there's better options.
6365 *
6366 * If we ignore the actual busiest queue to migrate another
6367 * task, the next balance pass can still reduce the busiest
6368 * queue by moving tasks around inside the node.
6369 *
6370 * If we cannot move enough load due to this classification
6371 * the next pass will adjust the group classification and
6372 * allow migration of more tasks.
6373 *
6374 * Both cases only affect the total convergence complexity.
6375 */
6376 if (rt > env->fbq_type)
6377 continue;
6378
6379 power = power_of(i);
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006380 capacity_factor = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6381 if (!capacity_factor)
6382 capacity_factor = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006383
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006384 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006385
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006386 /*
6387 * When comparing with imbalance, use weighted_cpuload()
6388 * which is not scaled with the cpu power.
6389 */
Nicolas Pitre0fedc6c2014-05-26 18:19:36 -04006390 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006391 continue;
6392
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006393 /*
6394 * For the load comparisons with the other cpu's, consider
6395 * the weighted_cpuload() scaled with the cpu power, so that
6396 * the load can be moved away from the cpu that is potentially
6397 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006398 *
6399 * Thus we're looking for max(wl_i / power_i), crosswise
6400 * multiplication to rid ourselves of the division works out
6401 * to: wl_i * power_j > wl_j * power_i; where j is our
6402 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006403 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006404 if (wl * busiest_power > busiest_load * power) {
6405 busiest_load = wl;
6406 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006407 busiest = rq;
6408 }
6409 }
6410
6411 return busiest;
6412}
6413
6414/*
6415 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6416 * so long as it is large enough.
6417 */
6418#define MAX_PINNED_INTERVAL 512
6419
6420/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006421DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006422
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006423static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006424{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006425 struct sched_domain *sd = env->sd;
6426
6427 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006428
6429 /*
6430 * ASYM_PACKING needs to force migrate tasks from busy but
6431 * higher numbered CPUs in order to pack all tasks in the
6432 * lowest numbered CPUs.
6433 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006434 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006435 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006436 }
6437
6438 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6439}
6440
Tejun Heo969c7922010-05-06 18:49:21 +02006441static int active_load_balance_cpu_stop(void *data);
6442
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006443static int should_we_balance(struct lb_env *env)
6444{
6445 struct sched_group *sg = env->sd->groups;
6446 struct cpumask *sg_cpus, *sg_mask;
6447 int cpu, balance_cpu = -1;
6448
6449 /*
6450 * In the newly idle case, we will allow all the cpu's
6451 * to do the newly idle load balance.
6452 */
6453 if (env->idle == CPU_NEWLY_IDLE)
6454 return 1;
6455
6456 sg_cpus = sched_group_cpus(sg);
6457 sg_mask = sched_group_mask(sg);
6458 /* Try to find first idle cpu */
6459 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6460 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6461 continue;
6462
6463 balance_cpu = cpu;
6464 break;
6465 }
6466
6467 if (balance_cpu == -1)
6468 balance_cpu = group_balance_cpu(sg);
6469
6470 /*
6471 * First idle cpu or the first cpu(busiest) in this sched group
6472 * is eligible for doing load balancing at this and above domains.
6473 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006474 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006475}
6476
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006477/*
6478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6479 * tasks if there is an imbalance.
6480 */
6481static int load_balance(int this_cpu, struct rq *this_rq,
6482 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006483 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306485 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006486 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006487 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006488 struct rq *busiest;
6489 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006490 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006491
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006492 struct lb_env env = {
6493 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006494 .dst_cpu = this_cpu,
6495 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306496 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006497 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006498 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006499 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006500 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006501 };
6502
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006503 /*
6504 * For NEWLY_IDLE load_balancing, we don't need to consider
6505 * other cpus in our group
6506 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006507 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006508 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006509
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006510 cpumask_copy(cpus, cpu_active_mask);
6511
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006512 schedstat_inc(sd, lb_count[idle]);
6513
6514redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006515 if (!should_we_balance(&env)) {
6516 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006517 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006518 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006519
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006520 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006521 if (!group) {
6522 schedstat_inc(sd, lb_nobusyg[idle]);
6523 goto out_balanced;
6524 }
6525
Michael Wangb94031302012-07-12 16:10:13 +08006526 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006527 if (!busiest) {
6528 schedstat_inc(sd, lb_nobusyq[idle]);
6529 goto out_balanced;
6530 }
6531
Michael Wang78feefc2012-08-06 16:41:59 +08006532 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006533
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006534 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006535
6536 ld_moved = 0;
6537 if (busiest->nr_running > 1) {
6538 /*
6539 * Attempt to move tasks. If find_busiest_group has found
6540 * an imbalance but busiest->nr_running <= 1, the group is
6541 * still unbalanced. ld_moved simply stays zero, so it is
6542 * correctly treated as an imbalance.
6543 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006544 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006545 env.src_cpu = busiest->cpu;
6546 env.src_rq = busiest;
6547 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006548
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006549more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006550 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006551 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306552
6553 /*
6554 * cur_ld_moved - load moved in current iteration
6555 * ld_moved - cumulative load moved across iterations
6556 */
6557 cur_ld_moved = move_tasks(&env);
6558 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006559 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006560 local_irq_restore(flags);
6561
6562 /*
6563 * some other cpu did the load balance for us.
6564 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306565 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6566 resched_cpu(env.dst_cpu);
6567
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006568 if (env.flags & LBF_NEED_BREAK) {
6569 env.flags &= ~LBF_NEED_BREAK;
6570 goto more_balance;
6571 }
6572
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306573 /*
6574 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6575 * us and move them to an alternate dst_cpu in our sched_group
6576 * where they can run. The upper limit on how many times we
6577 * iterate on same src_cpu is dependent on number of cpus in our
6578 * sched_group.
6579 *
6580 * This changes load balance semantics a bit on who can move
6581 * load to a given_cpu. In addition to the given_cpu itself
6582 * (or a ilb_cpu acting on its behalf where given_cpu is
6583 * nohz-idle), we now have balance_cpu in a position to move
6584 * load to given_cpu. In rare situations, this may cause
6585 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6586 * _independently_ and at _same_ time to move some load to
6587 * given_cpu) causing exceess load to be moved to given_cpu.
6588 * This however should not happen so much in practice and
6589 * moreover subsequent load balance cycles should correct the
6590 * excess load moved.
6591 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006592 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306593
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006594 /* Prevent to re-select dst_cpu via env's cpus */
6595 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6596
Michael Wang78feefc2012-08-06 16:41:59 +08006597 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306598 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006599 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306600 env.loop = 0;
6601 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006602
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306603 /*
6604 * Go back to "more_balance" rather than "redo" since we
6605 * need to continue with same src_cpu.
6606 */
6607 goto more_balance;
6608 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006609
Peter Zijlstra62633222013-08-19 12:41:09 +02006610 /*
6611 * We failed to reach balance because of affinity.
6612 */
6613 if (sd_parent) {
6614 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6615
6616 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6617 *group_imbalance = 1;
6618 } else if (*group_imbalance)
6619 *group_imbalance = 0;
6620 }
6621
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006622 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006623 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006624 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306625 if (!cpumask_empty(cpus)) {
6626 env.loop = 0;
6627 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006628 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306629 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006630 goto out_balanced;
6631 }
6632 }
6633
6634 if (!ld_moved) {
6635 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006636 /*
6637 * Increment the failure counter only on periodic balance.
6638 * We do not want newidle balance, which can be very
6639 * frequent, pollute the failure counter causing
6640 * excessive cache_hot migrations and active balances.
6641 */
6642 if (idle != CPU_NEWLY_IDLE)
6643 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006644
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006645 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006646 raw_spin_lock_irqsave(&busiest->lock, flags);
6647
Tejun Heo969c7922010-05-06 18:49:21 +02006648 /* don't kick the active_load_balance_cpu_stop,
6649 * if the curr task on busiest cpu can't be
6650 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006651 */
6652 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006653 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654 raw_spin_unlock_irqrestore(&busiest->lock,
6655 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006656 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006657 goto out_one_pinned;
6658 }
6659
Tejun Heo969c7922010-05-06 18:49:21 +02006660 /*
6661 * ->active_balance synchronizes accesses to
6662 * ->active_balance_work. Once set, it's cleared
6663 * only after active load balance is finished.
6664 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006665 if (!busiest->active_balance) {
6666 busiest->active_balance = 1;
6667 busiest->push_cpu = this_cpu;
6668 active_balance = 1;
6669 }
6670 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006671
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006672 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006673 stop_one_cpu_nowait(cpu_of(busiest),
6674 active_load_balance_cpu_stop, busiest,
6675 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006676 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006677
6678 /*
6679 * We've kicked active balancing, reset the failure
6680 * counter.
6681 */
6682 sd->nr_balance_failed = sd->cache_nice_tries+1;
6683 }
6684 } else
6685 sd->nr_balance_failed = 0;
6686
6687 if (likely(!active_balance)) {
6688 /* We were unbalanced, so reset the balancing interval */
6689 sd->balance_interval = sd->min_interval;
6690 } else {
6691 /*
6692 * If we've begun active balancing, start to back off. This
6693 * case may not be covered by the all_pinned logic if there
6694 * is only 1 task on the busy runqueue (because we don't call
6695 * move_tasks).
6696 */
6697 if (sd->balance_interval < sd->max_interval)
6698 sd->balance_interval *= 2;
6699 }
6700
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006701 goto out;
6702
6703out_balanced:
6704 schedstat_inc(sd, lb_balanced[idle]);
6705
6706 sd->nr_balance_failed = 0;
6707
6708out_one_pinned:
6709 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006710 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006711 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006712 (sd->balance_interval < sd->max_interval))
6713 sd->balance_interval *= 2;
6714
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006715 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006716out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006717 return ld_moved;
6718}
6719
Jason Low52a08ef2014-05-08 17:49:22 -07006720static inline unsigned long
6721get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6722{
6723 unsigned long interval = sd->balance_interval;
6724
6725 if (cpu_busy)
6726 interval *= sd->busy_factor;
6727
6728 /* scale ms to jiffies */
6729 interval = msecs_to_jiffies(interval);
6730 interval = clamp(interval, 1UL, max_load_balance_interval);
6731
6732 return interval;
6733}
6734
6735static inline void
6736update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6737{
6738 unsigned long interval, next;
6739
6740 interval = get_sd_balance_interval(sd, cpu_busy);
6741 next = sd->last_balance + interval;
6742
6743 if (time_after(*next_balance, next))
6744 *next_balance = next;
6745}
6746
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006747/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006748 * idle_balance is called by schedule() if this_cpu is about to become
6749 * idle. Attempts to pull tasks from other CPUs.
6750 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006751static int idle_balance(struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006752{
Jason Low52a08ef2014-05-08 17:49:22 -07006753 unsigned long next_balance = jiffies + HZ;
6754 int this_cpu = this_rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006755 struct sched_domain *sd;
6756 int pulled_task = 0;
Jason Low9bd721c2013-09-13 11:26:52 -07006757 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006758
Peter Zijlstra6e831252014-02-11 16:11:48 +01006759 idle_enter_fair(this_rq);
Jason Low0e5b5332014-04-28 15:45:54 -07006760
Peter Zijlstra6e831252014-02-11 16:11:48 +01006761 /*
6762 * We must set idle_stamp _before_ calling idle_balance(), such that we
6763 * measure the duration of idle_balance() as idle time.
6764 */
6765 this_rq->idle_stamp = rq_clock(this_rq);
6766
Jason Low52a08ef2014-05-08 17:49:22 -07006767 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6768 rcu_read_lock();
6769 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6770 if (sd)
6771 update_next_balance(sd, 0, &next_balance);
6772 rcu_read_unlock();
6773
Peter Zijlstra6e831252014-02-11 16:11:48 +01006774 goto out;
Jason Low52a08ef2014-05-08 17:49:22 -07006775 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006776
Peter Zijlstraf492e122009-12-23 15:29:42 +01006777 /*
6778 * Drop the rq->lock, but keep IRQ/preempt disabled.
6779 */
6780 raw_spin_unlock(&this_rq->lock);
6781
Paul Turner48a16752012-10-04 13:18:31 +02006782 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006783 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006784 for_each_domain(this_cpu, sd) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006785 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006786 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006787
6788 if (!(sd->flags & SD_LOAD_BALANCE))
6789 continue;
6790
Jason Low52a08ef2014-05-08 17:49:22 -07006791 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6792 update_next_balance(sd, 0, &next_balance);
Jason Low9bd721c2013-09-13 11:26:52 -07006793 break;
Jason Low52a08ef2014-05-08 17:49:22 -07006794 }
Jason Low9bd721c2013-09-13 11:26:52 -07006795
Peter Zijlstraf492e122009-12-23 15:29:42 +01006796 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006797 t0 = sched_clock_cpu(this_cpu);
6798
Peter Zijlstraf492e122009-12-23 15:29:42 +01006799 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006800 sd, CPU_NEWLY_IDLE,
6801 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006802
6803 domain_cost = sched_clock_cpu(this_cpu) - t0;
6804 if (domain_cost > sd->max_newidle_lb_cost)
6805 sd->max_newidle_lb_cost = domain_cost;
6806
6807 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006808 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006809
Jason Low52a08ef2014-05-08 17:49:22 -07006810 update_next_balance(sd, 0, &next_balance);
Jason Low39a4d9c2014-04-23 18:30:35 -07006811
6812 /*
6813 * Stop searching for tasks to pull if there are
6814 * now runnable tasks on this rq.
6815 */
6816 if (pulled_task || this_rq->nr_running > 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006817 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006818 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006819 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006820
6821 raw_spin_lock(&this_rq->lock);
6822
Jason Low0e5b5332014-04-28 15:45:54 -07006823 if (curr_cost > this_rq->max_idle_balance_cost)
6824 this_rq->max_idle_balance_cost = curr_cost;
6825
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006826 /*
Jason Low0e5b5332014-04-28 15:45:54 -07006827 * While browsing the domains, we released the rq lock, a task could
6828 * have been enqueued in the meantime. Since we're not going idle,
6829 * pretend we pulled a task.
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006830 */
Jason Low0e5b5332014-04-28 15:45:54 -07006831 if (this_rq->cfs.h_nr_running && !pulled_task)
Peter Zijlstra6e831252014-02-11 16:11:48 +01006832 pulled_task = 1;
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006833
Peter Zijlstra6e831252014-02-11 16:11:48 +01006834out:
Jason Low52a08ef2014-05-08 17:49:22 -07006835 /* Move the next balance forward */
6836 if (time_after(this_rq->next_balance, next_balance))
6837 this_rq->next_balance = next_balance;
6838
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006839 /* Is there a task of a high priority class? */
Kirill Tkhai46383642014-03-15 02:15:07 +04006840 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006841 pulled_task = -1;
6842
6843 if (pulled_task) {
6844 idle_exit_fair(this_rq);
Peter Zijlstra6e831252014-02-11 16:11:48 +01006845 this_rq->idle_stamp = 0;
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006846 }
Peter Zijlstra6e831252014-02-11 16:11:48 +01006847
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006848 return pulled_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006849}
6850
6851/*
Tejun Heo969c7922010-05-06 18:49:21 +02006852 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6853 * running tasks off the busiest CPU onto idle CPUs. It requires at
6854 * least 1 task to be running on each physical CPU where possible, and
6855 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006856 */
Tejun Heo969c7922010-05-06 18:49:21 +02006857static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006858{
Tejun Heo969c7922010-05-06 18:49:21 +02006859 struct rq *busiest_rq = data;
6860 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006861 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006862 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006863 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006864
6865 raw_spin_lock_irq(&busiest_rq->lock);
6866
6867 /* make sure the requested cpu hasn't gone down in the meantime */
6868 if (unlikely(busiest_cpu != smp_processor_id() ||
6869 !busiest_rq->active_balance))
6870 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006871
6872 /* Is there any task to move? */
6873 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006874 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006875
6876 /*
6877 * This condition is "impossible", if it occurs
6878 * we need to fix it. Originally reported by
6879 * Bjorn Helgaas on a 128-cpu setup.
6880 */
6881 BUG_ON(busiest_rq == target_rq);
6882
6883 /* move a task from busiest_rq to target_rq */
6884 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006885
6886 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006887 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006888 for_each_domain(target_cpu, sd) {
6889 if ((sd->flags & SD_LOAD_BALANCE) &&
6890 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6891 break;
6892 }
6893
6894 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006895 struct lb_env env = {
6896 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006897 .dst_cpu = target_cpu,
6898 .dst_rq = target_rq,
6899 .src_cpu = busiest_rq->cpu,
6900 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006901 .idle = CPU_IDLE,
6902 };
6903
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006904 schedstat_inc(sd, alb_count);
6905
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006906 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006907 schedstat_inc(sd, alb_pushed);
6908 else
6909 schedstat_inc(sd, alb_failed);
6910 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006911 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006912 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006913out_unlock:
6914 busiest_rq->active_balance = 0;
6915 raw_spin_unlock_irq(&busiest_rq->lock);
6916 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006917}
6918
Mike Galbraithd987fc72011-12-05 10:01:47 +01006919static inline int on_null_domain(struct rq *rq)
6920{
6921 return unlikely(!rcu_dereference_sched(rq->sd));
6922}
6923
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006924#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006925/*
6926 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006927 * - When one of the busy CPUs notice that there may be an idle rebalancing
6928 * needed, they will kick the idle load balancer, which then does idle
6929 * load balancing for all the idle CPUs.
6930 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006931static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006932 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006933 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006934 unsigned long next_balance; /* in jiffy units */
6935} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006936
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006937static inline int find_new_ilb(void)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006938{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006939 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006940
Suresh Siddha786d6dc72011-12-01 17:07:35 -08006941 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6942 return ilb;
6943
6944 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006945}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006946
6947/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006948 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6949 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6950 * CPU (if there is one).
6951 */
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01006952static void nohz_balancer_kick(void)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006953{
6954 int ilb_cpu;
6955
6956 nohz.next_balance++;
6957
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006958 ilb_cpu = find_new_ilb();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006959
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006960 if (ilb_cpu >= nr_cpu_ids)
6961 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006962
Suresh Siddhacd490c52011-12-06 11:26:34 -08006963 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006964 return;
6965 /*
6966 * Use smp_send_reschedule() instead of resched_cpu().
6967 * This way we generate a sched IPI on the target cpu which
6968 * is idle. And the softirq performing nohz idle load balance
6969 * will be run before returning from the IPI.
6970 */
6971 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006972 return;
6973}
6974
Alex Shic1cc0172012-09-10 15:10:58 +08006975static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006976{
6977 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
Mike Galbraithd987fc72011-12-05 10:01:47 +01006978 /*
6979 * Completely isolated CPUs don't ever set, so we must test.
6980 */
6981 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6982 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6983 atomic_dec(&nohz.nr_cpus);
6984 }
Suresh Siddha71325962012-01-19 18:28:57 -08006985 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6986 }
6987}
6988
Suresh Siddha69e1e812011-12-01 17:07:33 -08006989static inline void set_cpu_sd_state_busy(void)
6990{
6991 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306992 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006993
Suresh Siddha69e1e812011-12-01 17:07:33 -08006994 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306995 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006996
6997 if (!sd || !sd->nohz_idle)
6998 goto unlock;
6999 sd->nohz_idle = 0;
7000
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307001 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02007002unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007003 rcu_read_unlock();
7004}
7005
7006void set_cpu_sd_state_idle(void)
7007{
7008 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307009 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08007010
Suresh Siddha69e1e812011-12-01 17:07:33 -08007011 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307012 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02007013
7014 if (!sd || sd->nohz_idle)
7015 goto unlock;
7016 sd->nohz_idle = 1;
7017
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307018 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02007019unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007020 rcu_read_unlock();
7021}
7022
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007023/*
Alex Shic1cc0172012-09-10 15:10:58 +08007024 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007025 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007026 */
Alex Shic1cc0172012-09-10 15:10:58 +08007027void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007028{
Suresh Siddha71325962012-01-19 18:28:57 -08007029 /*
7030 * If this cpu is going down, then nothing needs to be done.
7031 */
7032 if (!cpu_active(cpu))
7033 return;
7034
Alex Shic1cc0172012-09-10 15:10:58 +08007035 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7036 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007037
Mike Galbraithd987fc72011-12-05 10:01:47 +01007038 /*
7039 * If we're a completely isolated CPU, we don't play.
7040 */
7041 if (on_null_domain(cpu_rq(cpu)))
7042 return;
7043
Alex Shic1cc0172012-09-10 15:10:58 +08007044 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7045 atomic_inc(&nohz.nr_cpus);
7046 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007047}
Suresh Siddha71325962012-01-19 18:28:57 -08007048
Paul Gortmaker0db06282013-06-19 14:53:51 -04007049static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08007050 unsigned long action, void *hcpu)
7051{
7052 switch (action & ~CPU_TASKS_FROZEN) {
7053 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08007054 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08007055 return NOTIFY_OK;
7056 default:
7057 return NOTIFY_DONE;
7058 }
7059}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007060#endif
7061
7062static DEFINE_SPINLOCK(balancing);
7063
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007064/*
7065 * Scale the max load_balance interval with the number of CPUs in the system.
7066 * This trades load-balance latency on larger machines for less cross talk.
7067 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007068void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007069{
7070 max_load_balance_interval = HZ*num_online_cpus()/10;
7071}
7072
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007073/*
7074 * It checks each scheduling domain to see if it is due to be balanced,
7075 * and initiates a balancing operation if so.
7076 *
Libinb9b08532013-04-01 19:14:01 +08007077 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007078 */
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007079static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007080{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007081 int continue_balancing = 1;
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007082 int cpu = rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007083 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02007084 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007085 /* Earliest time when we have to do rebalance again */
7086 unsigned long next_balance = jiffies + 60*HZ;
7087 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07007088 int need_serialize, need_decay = 0;
7089 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007090
Paul Turner48a16752012-10-04 13:18:31 +02007091 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08007092
Peter Zijlstradce840a2011-04-07 14:09:50 +02007093 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007094 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07007095 /*
7096 * Decay the newidle max times here because this is a regular
7097 * visit to all the domains. Decay ~1% per second.
7098 */
7099 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7100 sd->max_newidle_lb_cost =
7101 (sd->max_newidle_lb_cost * 253) / 256;
7102 sd->next_decay_max_lb_cost = jiffies + HZ;
7103 need_decay = 1;
7104 }
7105 max_cost += sd->max_newidle_lb_cost;
7106
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007107 if (!(sd->flags & SD_LOAD_BALANCE))
7108 continue;
7109
Jason Lowf48627e2013-09-13 11:26:53 -07007110 /*
7111 * Stop the load balance at this level. There is another
7112 * CPU in our sched group which is doing load balancing more
7113 * actively.
7114 */
7115 if (!continue_balancing) {
7116 if (need_decay)
7117 continue;
7118 break;
7119 }
7120
Jason Low52a08ef2014-05-08 17:49:22 -07007121 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007122
7123 need_serialize = sd->flags & SD_SERIALIZE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007124 if (need_serialize) {
7125 if (!spin_trylock(&balancing))
7126 goto out;
7127 }
7128
7129 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007130 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007131 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02007132 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007133 * env->dst_cpu, so we can't know our idle
7134 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007135 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007136 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007137 }
7138 sd->last_balance = jiffies;
Jason Low52a08ef2014-05-08 17:49:22 -07007139 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007140 }
7141 if (need_serialize)
7142 spin_unlock(&balancing);
7143out:
7144 if (time_after(next_balance, sd->last_balance + interval)) {
7145 next_balance = sd->last_balance + interval;
7146 update_next_balance = 1;
7147 }
Jason Lowf48627e2013-09-13 11:26:53 -07007148 }
7149 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007150 /*
Jason Lowf48627e2013-09-13 11:26:53 -07007151 * Ensure the rq-wide value also decays but keep it at a
7152 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007153 */
Jason Lowf48627e2013-09-13 11:26:53 -07007154 rq->max_idle_balance_cost =
7155 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007156 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007157 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007158
7159 /*
7160 * next_balance will be updated only when there is a need.
7161 * When the cpu is attached to null domain for ex, it will not be
7162 * updated.
7163 */
7164 if (likely(update_next_balance))
7165 rq->next_balance = next_balance;
7166}
7167
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007168#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007169/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007170 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007171 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7172 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007173static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007174{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007175 int this_cpu = this_rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007176 struct rq *rq;
7177 int balance_cpu;
7178
Suresh Siddha1c792db2011-12-01 17:07:32 -08007179 if (idle != CPU_IDLE ||
7180 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7181 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007182
7183 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08007184 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007185 continue;
7186
7187 /*
7188 * If this cpu gets work to do, stop the load balancing
7189 * work being done for other cpus. Next load
7190 * balancing owner will pick it up.
7191 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08007192 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007193 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007194
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02007195 rq = cpu_rq(balance_cpu);
7196
Tim Chened61bbc2014-05-20 14:39:27 -07007197 /*
7198 * If time for next balance is due,
7199 * do the balance.
7200 */
7201 if (time_after_eq(jiffies, rq->next_balance)) {
7202 raw_spin_lock_irq(&rq->lock);
7203 update_rq_clock(rq);
7204 update_idle_cpu_load(rq);
7205 raw_spin_unlock_irq(&rq->lock);
7206 rebalance_domains(rq, CPU_IDLE);
7207 }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007208
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007209 if (time_after(this_rq->next_balance, rq->next_balance))
7210 this_rq->next_balance = rq->next_balance;
7211 }
7212 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007213end:
7214 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007215}
7216
7217/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007218 * Current heuristic for kicking the idle load balancer in the presence
7219 * of an idle cpu is the system.
7220 * - This rq has more than one task.
7221 * - At any scheduler domain level, this cpu's scheduler group has multiple
7222 * busy cpu's exceeding the group's power.
7223 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7224 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007225 */
Daniel Lezcano4a725622014-01-06 12:34:39 +01007226static inline int nohz_kick_needed(struct rq *rq)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007227{
7228 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007229 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307230 struct sched_group_power *sgp;
Daniel Lezcano4a725622014-01-06 12:34:39 +01007231 int nr_busy, cpu = rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007232
Daniel Lezcano4a725622014-01-06 12:34:39 +01007233 if (unlikely(rq->idle_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007234 return 0;
7235
Suresh Siddha1c792db2011-12-01 17:07:32 -08007236 /*
7237 * We may be recently in ticked or tickless idle mode. At the first
7238 * busy tick after returning from idle, we will update the busy stats.
7239 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08007240 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08007241 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007242
7243 /*
7244 * None are in tickless mode and hence no need for NOHZ idle load
7245 * balancing.
7246 */
7247 if (likely(!atomic_read(&nohz.nr_cpus)))
7248 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007249
7250 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007251 return 0;
7252
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007253 if (rq->nr_running >= 2)
7254 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007255
Peter Zijlstra067491b2011-12-07 14:32:08 +01007256 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307257 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007258
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307259 if (sd) {
7260 sgp = sd->groups->sgp;
7261 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7262
7263 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01007264 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007265 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307266
7267 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7268
7269 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7270 sched_domain_span(sd)) < cpu))
7271 goto need_kick_unlock;
7272
Peter Zijlstra067491b2011-12-07 14:32:08 +01007273 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007274 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01007275
7276need_kick_unlock:
7277 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007278need_kick:
7279 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007280}
7281#else
Daniel Lezcano208cb162014-01-06 12:34:44 +01007282static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007283#endif
7284
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007285/*
7286 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007287 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007288 */
7289static void run_rebalance_domains(struct softirq_action *h)
7290{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007291 struct rq *this_rq = this_rq();
Suresh Siddha6eb57e02011-10-03 15:09:01 -07007292 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007293 CPU_IDLE : CPU_NOT_IDLE;
7294
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007295 rebalance_domains(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007296
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007297 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007298 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007299 * balancing on behalf of the other idle cpus whose ticks are
7300 * stopped.
7301 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007302 nohz_idle_balance(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007303}
7304
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007305/*
7306 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007307 */
Daniel Lezcano7caff662014-01-06 12:34:38 +01007308void trigger_load_balance(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007309{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007310 /* Don't need to rebalance while attached to NULL domain */
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007311 if (unlikely(on_null_domain(rq)))
7312 return;
7313
7314 if (time_after_eq(jiffies, rq->next_balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007315 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007316#ifdef CONFIG_NO_HZ_COMMON
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007317 if (nohz_kick_needed(rq))
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007318 nohz_balancer_kick();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007319#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007320}
7321
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007322static void rq_online_fair(struct rq *rq)
7323{
7324 update_sysctl();
7325}
7326
7327static void rq_offline_fair(struct rq *rq)
7328{
7329 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07007330
7331 /* Ensure any throttled groups are reachable by pick_next_task */
7332 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007333}
7334
Dhaval Giani55e12e52008-06-24 23:39:43 +05307335#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02007336
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007337/*
7338 * scheduler tick hitting a task of our scheduling class:
7339 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007340static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007341{
7342 struct cfs_rq *cfs_rq;
7343 struct sched_entity *se = &curr->se;
7344
7345 for_each_sched_entity(se) {
7346 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007347 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007348 }
Ben Segall18bf2802012-10-04 12:51:20 +02007349
Dave Kleikamp10e84b92013-07-31 13:53:35 -07007350 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02007351 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08007352
Ben Segall18bf2802012-10-04 12:51:20 +02007353 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007354}
7355
7356/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007357 * called on fork with the child task as argument from the parent's context
7358 * - child not yet on the tasklist
7359 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007360 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007361static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007362{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007363 struct cfs_rq *cfs_rq;
7364 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02007365 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007366 struct rq *rq = this_rq();
7367 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007368
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007369 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007370
Peter Zijlstra861d0342010-08-19 13:31:43 +02007371 update_rq_clock(rq);
7372
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007373 cfs_rq = task_cfs_rq(current);
7374 curr = cfs_rq->curr;
7375
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09007376 /*
7377 * Not only the cpu but also the task_group of the parent might have
7378 * been changed after parent->se.parent,cfs_rq were copied to
7379 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7380 * of child point to valid ones.
7381 */
7382 rcu_read_lock();
7383 __set_task_cpu(p, this_cpu);
7384 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007385
Ting Yang7109c442007-08-28 12:53:24 +02007386 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007387
Mike Galbraithb5d9d732009-09-08 11:12:28 +02007388 if (curr)
7389 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02007390 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007391
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007392 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02007393 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02007394 * Upon rescheduling, sched_class::put_prev_task() will place
7395 * 'current' within the tree based on its new key value.
7396 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007397 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05307398 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007399 }
7400
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007401 se->vruntime -= cfs_rq->min_vruntime;
7402
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007403 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007404}
7405
Steven Rostedtcb469842008-01-25 21:08:22 +01007406/*
7407 * Priority of the task has changed. Check to see if we preempt
7408 * the current task.
7409 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007410static void
7411prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01007412{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007413 if (!p->se.on_rq)
7414 return;
7415
Steven Rostedtcb469842008-01-25 21:08:22 +01007416 /*
7417 * Reschedule if we are currently running on this runqueue and
7418 * our priority decreased, or if we are not currently running on
7419 * this runqueue and our priority is higher than the current's
7420 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007421 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01007422 if (p->prio > oldprio)
7423 resched_task(rq->curr);
7424 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007425 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007426}
7427
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007428static void switched_from_fair(struct rq *rq, struct task_struct *p)
7429{
7430 struct sched_entity *se = &p->se;
7431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7432
7433 /*
George McCollister791c9e02014-02-18 17:56:51 -06007434 * Ensure the task's vruntime is normalized, so that when it's
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007435 * switched back to the fair class the enqueue_entity(.flags=0) will
7436 * do the right thing.
7437 *
George McCollister791c9e02014-02-18 17:56:51 -06007438 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7439 * have normalized the vruntime, if it's !on_rq, then only when
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007440 * the task is sleeping will it still have non-normalized vruntime.
7441 */
George McCollister791c9e02014-02-18 17:56:51 -06007442 if (!p->on_rq && p->state != TASK_RUNNING) {
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007443 /*
7444 * Fix up our vruntime so that the current sleep doesn't
7445 * cause 'unlimited' sleep bonus.
7446 */
7447 place_entity(cfs_rq, se, 0);
7448 se->vruntime -= cfs_rq->min_vruntime;
7449 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007450
Alex Shi141965c2013-06-26 13:05:39 +08007451#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007452 /*
7453 * Remove our load from contribution when we leave sched_fair
7454 * and ensure we don't carry in an old decay_count if we
7455 * switch back.
7456 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007457 if (se->avg.decay_count) {
7458 __synchronize_entity_decay(se);
7459 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007460 }
7461#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007462}
7463
Steven Rostedtcb469842008-01-25 21:08:22 +01007464/*
7465 * We switched to the sched_fair class.
7466 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007467static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007468{
Michael wangeb7a59b2014-02-20 11:14:53 +08007469 struct sched_entity *se = &p->se;
7470#ifdef CONFIG_FAIR_GROUP_SCHED
7471 /*
7472 * Since the real-depth could have been changed (only FAIR
7473 * class maintain depth value), reset depth properly.
7474 */
7475 se->depth = se->parent ? se->parent->depth + 1 : 0;
7476#endif
7477 if (!se->on_rq)
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007478 return;
7479
Steven Rostedtcb469842008-01-25 21:08:22 +01007480 /*
7481 * We were most likely switched from sched_rt, so
7482 * kick off the schedule if running, otherwise just see
7483 * if we can still preempt the current task.
7484 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007485 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007486 resched_task(rq->curr);
7487 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007488 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007489}
7490
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007491/* Account for a task changing its policy or group.
7492 *
7493 * This routine is mostly called to set cfs_rq->curr field when a task
7494 * migrates between groups/classes.
7495 */
7496static void set_curr_task_fair(struct rq *rq)
7497{
7498 struct sched_entity *se = &rq->curr->se;
7499
Paul Turnerec12cb72011-07-21 09:43:30 -07007500 for_each_sched_entity(se) {
7501 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7502
7503 set_next_entity(cfs_rq, se);
7504 /* ensure bandwidth has been allocated on our new cfs_rq */
7505 account_cfs_rq_runtime(cfs_rq, 0);
7506 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007507}
7508
Peter Zijlstra029632f2011-10-25 10:00:11 +02007509void init_cfs_rq(struct cfs_rq *cfs_rq)
7510{
7511 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007512 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7513#ifndef CONFIG_64BIT
7514 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7515#endif
Alex Shi141965c2013-06-26 13:05:39 +08007516#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007517 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007518 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007519#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007520}
7521
Peter Zijlstra810b3812008-02-29 15:21:01 -05007522#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007523static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007524{
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007525 struct sched_entity *se = &p->se;
Paul Turneraff3e492012-10-04 13:18:30 +02007526 struct cfs_rq *cfs_rq;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007527
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007528 /*
7529 * If the task was not on the rq at the time of this cgroup movement
7530 * it must have been asleep, sleeping tasks keep their ->vruntime
7531 * absolute on their old rq until wakeup (needed for the fair sleeper
7532 * bonus in place_entity()).
7533 *
7534 * If it was on the rq, we've just 'preempted' it, which does convert
7535 * ->vruntime to a relative base.
7536 *
7537 * Make sure both cases convert their relative position when migrating
7538 * to another cgroup's rq. This does somewhat interfere with the
7539 * fair sleeper stuff for the first placement, but who cares.
7540 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007541 /*
7542 * When !on_rq, vruntime of the task has usually NOT been normalized.
7543 * But there are some cases where it has already been normalized:
7544 *
7545 * - Moving a forked child which is waiting for being woken up by
7546 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007547 * - Moving a task which has been woken up by try_to_wake_up() and
7548 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007549 *
7550 * To prevent boost or penalty in the new cfs_rq caused by delta
7551 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7552 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007553 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007554 on_rq = 1;
7555
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007556 if (!on_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007557 se->vruntime -= cfs_rq_of(se)->min_vruntime;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007558 set_task_rq(p, task_cpu(p));
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007559 se->depth = se->parent ? se->parent->depth + 1 : 0;
Paul Turneraff3e492012-10-04 13:18:30 +02007560 if (!on_rq) {
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007561 cfs_rq = cfs_rq_of(se);
7562 se->vruntime += cfs_rq->min_vruntime;
Paul Turneraff3e492012-10-04 13:18:30 +02007563#ifdef CONFIG_SMP
7564 /*
7565 * migrate_task_rq_fair() will have removed our previous
7566 * contribution, but we must synchronize for ongoing future
7567 * decay.
7568 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007569 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7570 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02007571#endif
7572 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007573}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007574
7575void free_fair_sched_group(struct task_group *tg)
7576{
7577 int i;
7578
7579 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7580
7581 for_each_possible_cpu(i) {
7582 if (tg->cfs_rq)
7583 kfree(tg->cfs_rq[i]);
7584 if (tg->se)
7585 kfree(tg->se[i]);
7586 }
7587
7588 kfree(tg->cfs_rq);
7589 kfree(tg->se);
7590}
7591
7592int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7593{
7594 struct cfs_rq *cfs_rq;
7595 struct sched_entity *se;
7596 int i;
7597
7598 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7599 if (!tg->cfs_rq)
7600 goto err;
7601 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7602 if (!tg->se)
7603 goto err;
7604
7605 tg->shares = NICE_0_LOAD;
7606
7607 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7608
7609 for_each_possible_cpu(i) {
7610 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7611 GFP_KERNEL, cpu_to_node(i));
7612 if (!cfs_rq)
7613 goto err;
7614
7615 se = kzalloc_node(sizeof(struct sched_entity),
7616 GFP_KERNEL, cpu_to_node(i));
7617 if (!se)
7618 goto err_free_rq;
7619
7620 init_cfs_rq(cfs_rq);
7621 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7622 }
7623
7624 return 1;
7625
7626err_free_rq:
7627 kfree(cfs_rq);
7628err:
7629 return 0;
7630}
7631
7632void unregister_fair_sched_group(struct task_group *tg, int cpu)
7633{
7634 struct rq *rq = cpu_rq(cpu);
7635 unsigned long flags;
7636
7637 /*
7638 * Only empty task groups can be destroyed; so we can speculatively
7639 * check on_list without danger of it being re-added.
7640 */
7641 if (!tg->cfs_rq[cpu]->on_list)
7642 return;
7643
7644 raw_spin_lock_irqsave(&rq->lock, flags);
7645 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7646 raw_spin_unlock_irqrestore(&rq->lock, flags);
7647}
7648
7649void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7650 struct sched_entity *se, int cpu,
7651 struct sched_entity *parent)
7652{
7653 struct rq *rq = cpu_rq(cpu);
7654
7655 cfs_rq->tg = tg;
7656 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007657 init_cfs_rq_runtime(cfs_rq);
7658
7659 tg->cfs_rq[cpu] = cfs_rq;
7660 tg->se[cpu] = se;
7661
7662 /* se could be NULL for root_task_group */
7663 if (!se)
7664 return;
7665
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007666 if (!parent) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007667 se->cfs_rq = &rq->cfs;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007668 se->depth = 0;
7669 } else {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007670 se->cfs_rq = parent->my_q;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007671 se->depth = parent->depth + 1;
7672 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02007673
7674 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007675 /* guarantee group entities always have weight */
7676 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007677 se->parent = parent;
7678}
7679
7680static DEFINE_MUTEX(shares_mutex);
7681
7682int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7683{
7684 int i;
7685 unsigned long flags;
7686
7687 /*
7688 * We can't change the weight of the root cgroup.
7689 */
7690 if (!tg->se[0])
7691 return -EINVAL;
7692
7693 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7694
7695 mutex_lock(&shares_mutex);
7696 if (tg->shares == shares)
7697 goto done;
7698
7699 tg->shares = shares;
7700 for_each_possible_cpu(i) {
7701 struct rq *rq = cpu_rq(i);
7702 struct sched_entity *se;
7703
7704 se = tg->se[i];
7705 /* Propagate contribution to hierarchy */
7706 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007707
7708 /* Possible calls to update_curr() need rq clock */
7709 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007710 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007711 update_cfs_shares(group_cfs_rq(se));
7712 raw_spin_unlock_irqrestore(&rq->lock, flags);
7713 }
7714
7715done:
7716 mutex_unlock(&shares_mutex);
7717 return 0;
7718}
7719#else /* CONFIG_FAIR_GROUP_SCHED */
7720
7721void free_fair_sched_group(struct task_group *tg) { }
7722
7723int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7724{
7725 return 1;
7726}
7727
7728void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7729
7730#endif /* CONFIG_FAIR_GROUP_SCHED */
7731
Peter Zijlstra810b3812008-02-29 15:21:01 -05007732
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007733static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007734{
7735 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007736 unsigned int rr_interval = 0;
7737
7738 /*
7739 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7740 * idle runqueue:
7741 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007742 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007743 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007744
7745 return rr_interval;
7746}
7747
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007748/*
7749 * All the scheduling class methods:
7750 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007751const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007752 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007753 .enqueue_task = enqueue_task_fair,
7754 .dequeue_task = dequeue_task_fair,
7755 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007756 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007757
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007758 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007759
7760 .pick_next_task = pick_next_task_fair,
7761 .put_prev_task = put_prev_task_fair,
7762
Peter Williams681f3e62007-10-24 18:23:51 +02007763#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007764 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007765 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007766
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007767 .rq_online = rq_online_fair,
7768 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007769
7770 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007771#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007772
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007773 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007774 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007775 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007776
7777 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007778 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007779 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007780
Peter Williams0d721ce2009-09-21 01:31:53 +00007781 .get_rr_interval = get_rr_interval_fair,
7782
Peter Zijlstra810b3812008-02-29 15:21:01 -05007783#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007784 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007785#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007786};
7787
7788#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007789void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007790{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007791 struct cfs_rq *cfs_rq;
7792
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007793 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007794 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007795 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007796 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007797}
7798#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007799
7800__init void init_sched_fair_class(void)
7801{
7802#ifdef CONFIG_SMP
7803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7804
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007805#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007806 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007807 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007808 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007809#endif
7810#endif /* SMP */
7811
7812}