blob: efd3bfc7e34722883e2f08ca82f91cffde812963 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Steven Rostedtb6366f02015-03-18 14:49:46 -04009#include <linux/irq_work.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +020010#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010011#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020012
Peter Zijlstra391e43d2011-11-15 17:14:39 +010013#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010014#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080015#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020016
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040017struct rq;
Daniel Lezcano442bf3a2014-09-04 11:32:09 -040018struct cpuidle_state;
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040019
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040020/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
Kirill Tkhaicca26e82014-08-20 13:47:42 +040022#define TASK_ON_RQ_MIGRATING 2
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040023
Peter Zijlstra029632f2011-10-25 10:00:11 +020024extern __read_mostly int scheduler_running;
25
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040026extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
Peter Zijlstra3289bdb2015-04-14 13:19:42 +020029extern void calc_global_load_tick(struct rq *this_rq);
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040030extern long calc_load_fold_active(struct rq *this_rq);
Peter Zijlstra3289bdb2015-04-14 13:19:42 +020031
32#ifdef CONFIG_SMP
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040033extern void update_cpu_load_active(struct rq *this_rq);
Peter Zijlstra3289bdb2015-04-14 13:19:42 +020034#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040037
Peter Zijlstra029632f2011-10-25 10:00:11 +020038/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020039 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
Li Zefancc1f4b12013-03-05 16:06:09 +080043/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
Peter Zijlstra029632f2011-10-25 10:00:11 +020068#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
71/*
Dario Faggioli332ac172013-11-07 14:43:45 +010072 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
78/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020079 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020080 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020081
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
Henrik Austad20f9cd22015-09-09 17:00:41 +020087static inline int idle_policy(int policy)
88{
89 return policy == SCHED_IDLE;
90}
Dario Faggiolid50dde52013-11-07 14:43:36 +010091static inline int fair_policy(int policy)
92{
93 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
94}
95
Peter Zijlstra029632f2011-10-25 10:00:11 +020096static inline int rt_policy(int policy)
97{
Dario Faggiolid50dde52013-11-07 14:43:36 +010098 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020099}
100
Dario Faggioliaab03e02013-11-28 11:14:43 +0100101static inline int dl_policy(int policy)
102{
103 return policy == SCHED_DEADLINE;
104}
Henrik Austad20f9cd22015-09-09 17:00:41 +0200105static inline bool valid_policy(int policy)
106{
107 return idle_policy(policy) || fair_policy(policy) ||
108 rt_policy(policy) || dl_policy(policy);
109}
Dario Faggioliaab03e02013-11-28 11:14:43 +0100110
Peter Zijlstra029632f2011-10-25 10:00:11 +0200111static inline int task_has_rt_policy(struct task_struct *p)
112{
113 return rt_policy(p->policy);
114}
115
Dario Faggioliaab03e02013-11-28 11:14:43 +0100116static inline int task_has_dl_policy(struct task_struct *p)
117{
118 return dl_policy(p->policy);
119}
120
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100121/*
122 * Tells if entity @a should preempt entity @b.
123 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100124static inline bool
125dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100126{
127 return dl_time_before(a->deadline, b->deadline);
128}
129
Peter Zijlstra029632f2011-10-25 10:00:11 +0200130/*
131 * This is the priority-queue data structure of the RT scheduling class:
132 */
133struct rt_prio_array {
134 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
135 struct list_head queue[MAX_RT_PRIO];
136};
137
138struct rt_bandwidth {
139 /* nests inside the rq lock: */
140 raw_spinlock_t rt_runtime_lock;
141 ktime_t rt_period;
142 u64 rt_runtime;
143 struct hrtimer rt_period_timer;
Peter Zijlstra4cfafd32015-05-14 12:23:11 +0200144 unsigned int rt_period_active;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200145};
Juri Lellia5e7be32014-09-19 10:22:39 +0100146
147void __dl_clear_params(struct task_struct *p);
148
Dario Faggioli332ac172013-11-07 14:43:45 +0100149/*
150 * To keep the bandwidth of -deadline tasks and groups under control
151 * we need some place where:
152 * - store the maximum -deadline bandwidth of the system (the group);
153 * - cache the fraction of that bandwidth that is currently allocated.
154 *
155 * This is all done in the data structure below. It is similar to the
156 * one used for RT-throttling (rt_bandwidth), with the main difference
157 * that, since here we are only interested in admission control, we
158 * do not decrease any runtime while the group "executes", neither we
159 * need a timer to replenish it.
160 *
161 * With respect to SMP, the bandwidth is given on a per-CPU basis,
162 * meaning that:
163 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
164 * - dl_total_bw array contains, in the i-eth element, the currently
165 * allocated bandwidth on the i-eth CPU.
166 * Moreover, groups consume bandwidth on each CPU, while tasks only
167 * consume bandwidth on the CPU they're running on.
168 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
169 * that will be shown the next time the proc or cgroup controls will
170 * be red. It on its turn can be changed by writing on its own
171 * control.
172 */
173struct dl_bandwidth {
174 raw_spinlock_t dl_runtime_lock;
175 u64 dl_runtime;
176 u64 dl_period;
177};
178
179static inline int dl_bandwidth_enabled(void)
180{
Peter Zijlstra17248132013-12-17 12:44:49 +0100181 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100182}
183
184extern struct dl_bw *dl_bw_of(int i);
185
186struct dl_bw {
187 raw_spinlock_t lock;
188 u64 bw, total_bw;
189};
190
Juri Lelli7f514122014-09-19 10:22:40 +0100191static inline
192void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
193{
194 dl_b->total_bw -= tsk_bw;
195}
196
197static inline
198void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
199{
200 dl_b->total_bw += tsk_bw;
201}
202
203static inline
204bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
205{
206 return dl_b->bw != -1 &&
207 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
208}
209
Peter Zijlstra029632f2011-10-25 10:00:11 +0200210extern struct mutex sched_domains_mutex;
211
212#ifdef CONFIG_CGROUP_SCHED
213
214#include <linux/cgroup.h>
215
216struct cfs_rq;
217struct rt_rq;
218
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200219extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200220
221struct cfs_bandwidth {
222#ifdef CONFIG_CFS_BANDWIDTH
223 raw_spinlock_t lock;
224 ktime_t period;
225 u64 quota, runtime;
Zhihui Zhang9c58c792014-09-20 21:24:36 -0400226 s64 hierarchical_quota;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200227 u64 runtime_expires;
228
Peter Zijlstra4cfafd32015-05-14 12:23:11 +0200229 int idle, period_active;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200230 struct hrtimer period_timer, slack_timer;
231 struct list_head throttled_cfs_rq;
232
233 /* statistics */
234 int nr_periods, nr_throttled;
235 u64 throttled_time;
236#endif
237};
238
239/* task group related information */
240struct task_group {
241 struct cgroup_subsys_state css;
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 /* schedulable entities of this group on each cpu */
245 struct sched_entity **se;
246 /* runqueue "owned" by this group on each cpu */
247 struct cfs_rq **cfs_rq;
248 unsigned long shares;
249
Alex Shifa6bdde2013-06-20 10:18:46 +0800250#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800251 atomic_long_t load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200252#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800253#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200254
255#ifdef CONFIG_RT_GROUP_SCHED
256 struct sched_rt_entity **rt_se;
257 struct rt_rq **rt_rq;
258
259 struct rt_bandwidth rt_bandwidth;
260#endif
261
262 struct rcu_head rcu;
263 struct list_head list;
264
265 struct task_group *parent;
266 struct list_head siblings;
267 struct list_head children;
268
269#ifdef CONFIG_SCHED_AUTOGROUP
270 struct autogroup *autogroup;
271#endif
272
273 struct cfs_bandwidth cfs_bandwidth;
274};
275
276#ifdef CONFIG_FAIR_GROUP_SCHED
277#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
278
279/*
280 * A weight of 0 or 1 can cause arithmetics problems.
281 * A weight of a cfs_rq is the sum of weights of which entities
282 * are queued on this cfs_rq, so a weight of a entity should not be
283 * too large, so as the shares value of a task group.
284 * (The default weight is 1024 - so there's no practical
285 * limitation from this.)
286 */
287#define MIN_SHARES (1UL << 1)
288#define MAX_SHARES (1UL << 18)
289#endif
290
Peter Zijlstra029632f2011-10-25 10:00:11 +0200291typedef int (*tg_visitor)(struct task_group *, void *);
292
293extern int walk_tg_tree_from(struct task_group *from,
294 tg_visitor down, tg_visitor up, void *data);
295
296/*
297 * Iterate the full tree, calling @down when first entering a node and @up when
298 * leaving it for the final time.
299 *
300 * Caller must hold rcu_lock or sufficient equivalent.
301 */
302static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
303{
304 return walk_tg_tree_from(&root_task_group, down, up, data);
305}
306
307extern int tg_nop(struct task_group *tg, void *data);
308
309extern void free_fair_sched_group(struct task_group *tg);
310extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
311extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
312extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
313 struct sched_entity *se, int cpu,
314 struct sched_entity *parent);
315extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
316extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
317
318extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
Peter Zijlstra77a4d1a2015-04-15 11:41:57 +0200319extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200320extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
321
322extern void free_rt_sched_group(struct task_group *tg);
323extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
324extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
325 struct sched_rt_entity *rt_se, int cpu,
326 struct sched_rt_entity *parent);
327
Li Zefan25cc7da2013-03-05 16:07:33 +0800328extern struct task_group *sched_create_group(struct task_group *parent);
329extern void sched_online_group(struct task_group *tg,
330 struct task_group *parent);
331extern void sched_destroy_group(struct task_group *tg);
332extern void sched_offline_group(struct task_group *tg);
333
334extern void sched_move_task(struct task_struct *tsk);
335
336#ifdef CONFIG_FAIR_GROUP_SCHED
337extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
338#endif
339
Peter Zijlstra029632f2011-10-25 10:00:11 +0200340#else /* CONFIG_CGROUP_SCHED */
341
342struct cfs_bandwidth { };
343
344#endif /* CONFIG_CGROUP_SCHED */
345
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200349 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200350
351 u64 exec_clock;
352 u64 min_vruntime;
353#ifndef CONFIG_64BIT
354 u64 min_vruntime_copy;
355#endif
356
357 struct rb_root tasks_timeline;
358 struct rb_node *rb_leftmost;
359
Peter Zijlstra029632f2011-10-25 10:00:11 +0200360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last, *skip;
365
366#ifdef CONFIG_SCHED_DEBUG
367 unsigned int nr_spread_over;
368#endif
369
Paul Turner2dac7542012-10-04 13:18:30 +0200370#ifdef CONFIG_SMP
371 /*
Yuyang Du9d89c252015-07-15 08:04:37 +0800372 * CFS load tracking
Paul Turner2dac7542012-10-04 13:18:30 +0200373 */
Yuyang Du9d89c252015-07-15 08:04:37 +0800374 struct sched_avg avg;
Yuyang Du13962232015-07-15 08:04:41 +0800375 u64 runnable_load_sum;
376 unsigned long runnable_load_avg;
Yuyang Du9d89c252015-07-15 08:04:37 +0800377#ifdef CONFIG_FAIR_GROUP_SCHED
378 unsigned long tg_load_avg_contrib;
379#endif
380 atomic_long_t removed_load_avg, removed_util_avg;
381#ifndef CONFIG_64BIT
382 u64 load_last_update_time_copy;
383#endif
Alex Shi141965c2013-06-26 13:05:39 +0800384
Paul Turnerc566e8e2012-10-04 13:18:30 +0200385#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner82958362012-10-04 13:18:31 +0200386 /*
387 * h_load = weight * f(tg)
388 *
389 * Where f(tg) is the recursive weight fraction assigned to
390 * this group.
391 */
392 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400393 u64 last_h_load_update;
394 struct sched_entity *h_load_next;
395#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200396#endif /* CONFIG_SMP */
397
Peter Zijlstra029632f2011-10-25 10:00:11 +0200398#ifdef CONFIG_FAIR_GROUP_SCHED
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
409 int on_list;
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
Peter Zijlstra029632f2011-10-25 10:00:11 +0200413#ifdef CONFIG_CFS_BANDWIDTH
414 int runtime_enabled;
415 u64 runtime_expires;
416 s64 runtime_remaining;
417
Paul Turnerf1b17282012-10-04 13:18:31 +0200418 u64 throttled_clock, throttled_clock_task;
419 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200420 int throttled, throttle_count;
421 struct list_head throttled_list;
422#endif /* CONFIG_CFS_BANDWIDTH */
423#endif /* CONFIG_FAIR_GROUP_SCHED */
424};
425
426static inline int rt_bandwidth_enabled(void)
427{
428 return sysctl_sched_rt_runtime >= 0;
429}
430
Steven Rostedtb6366f02015-03-18 14:49:46 -0400431/* RT IPI pull logic requires IRQ_WORK */
432#ifdef CONFIG_IRQ_WORK
433# define HAVE_RT_PUSH_IPI
434#endif
435
Peter Zijlstra029632f2011-10-25 10:00:11 +0200436/* Real-Time classes' related field in a runqueue: */
437struct rt_rq {
438 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200439 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200440#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
441 struct {
442 int curr; /* highest queued rt task prio */
443#ifdef CONFIG_SMP
444 int next; /* next highest */
445#endif
446 } highest_prio;
447#endif
448#ifdef CONFIG_SMP
449 unsigned long rt_nr_migratory;
450 unsigned long rt_nr_total;
451 int overloaded;
452 struct plist_head pushable_tasks;
Steven Rostedtb6366f02015-03-18 14:49:46 -0400453#ifdef HAVE_RT_PUSH_IPI
454 int push_flags;
455 int push_cpu;
456 struct irq_work push_work;
457 raw_spinlock_t push_lock;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200458#endif
Steven Rostedtb6366f02015-03-18 14:49:46 -0400459#endif /* CONFIG_SMP */
Kirill Tkhaif4ebcbc2014-03-15 02:15:00 +0400460 int rt_queued;
461
Peter Zijlstra029632f2011-10-25 10:00:11 +0200462 int rt_throttled;
463 u64 rt_time;
464 u64 rt_runtime;
465 /* Nests inside the rq lock: */
466 raw_spinlock_t rt_runtime_lock;
467
468#ifdef CONFIG_RT_GROUP_SCHED
469 unsigned long rt_nr_boosted;
470
471 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200472 struct task_group *tg;
473#endif
474};
475
Dario Faggioliaab03e02013-11-28 11:14:43 +0100476/* Deadline class' related fields in a runqueue */
477struct dl_rq {
478 /* runqueue is an rbtree, ordered by deadline */
479 struct rb_root rb_root;
480 struct rb_node *rb_leftmost;
481
482 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100483
484#ifdef CONFIG_SMP
485 /*
486 * Deadline values of the currently executing and the
487 * earliest ready task on this rq. Caching these facilitates
488 * the decision wether or not a ready but not running task
489 * should migrate somewhere else.
490 */
491 struct {
492 u64 curr;
493 u64 next;
494 } earliest_dl;
495
496 unsigned long dl_nr_migratory;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100497 int overloaded;
498
499 /*
500 * Tasks on this rq that can be pushed away. They are kept in
501 * an rb-tree, ordered by tasks' deadlines, with caching
502 * of the leftmost (earliest deadline) element.
503 */
504 struct rb_root pushable_dl_tasks_root;
505 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100506#else
507 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100508#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100509};
510
Peter Zijlstra029632f2011-10-25 10:00:11 +0200511#ifdef CONFIG_SMP
512
513/*
514 * We add the notion of a root-domain which will be used to define per-domain
515 * variables. Each exclusive cpuset essentially defines an island domain by
516 * fully partitioning the member cpus from any other cpuset. Whenever a new
517 * exclusive cpuset is created, we also create and attach a new root-domain
518 * object.
519 *
520 */
521struct root_domain {
522 atomic_t refcount;
523 atomic_t rto_count;
524 struct rcu_head rcu;
525 cpumask_var_t span;
526 cpumask_var_t online;
527
Tim Chen4486edd2014-06-23 12:16:49 -0700528 /* Indicate more than one runnable task for any CPU */
529 bool overload;
530
Peter Zijlstra029632f2011-10-25 10:00:11 +0200531 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100532 * The bit corresponding to a CPU gets set here if such CPU has more
533 * than one runnable -deadline task (as it is below for RT tasks).
534 */
535 cpumask_var_t dlo_mask;
536 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100537 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100538 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100539
540 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200541 * The "RT overload" flag: it gets set if a CPU has more than
542 * one runnable RT task.
543 */
544 cpumask_var_t rto_mask;
545 struct cpupri cpupri;
546};
547
548extern struct root_domain def_root_domain;
549
550#endif /* CONFIG_SMP */
551
552/*
553 * This is the main, per-CPU runqueue data structure.
554 *
555 * Locking rule: those places that want to lock multiple runqueues
556 * (such as the load balancing or the thread migration code), lock
557 * acquire operations must be ordered by ascending &runqueue.
558 */
559struct rq {
560 /* runqueue lock: */
561 raw_spinlock_t lock;
562
563 /*
564 * nr_running and cpu_load should be in the same cacheline because
565 * remote CPUs use both these fields when doing load calculation.
566 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200567 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100568#ifdef CONFIG_NUMA_BALANCING
569 unsigned int nr_numa_running;
570 unsigned int nr_preferred_running;
571#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200572 #define CPU_LOAD_IDX_MAX 5
573 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
574 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200575#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200576 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800577 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200578#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200579#ifdef CONFIG_NO_HZ_FULL
580 unsigned long last_sched_tick;
581#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200582 /* capture load from *all* tasks on this cpu: */
583 struct load_weight load;
584 unsigned long nr_load_updates;
585 u64 nr_switches;
586
587 struct cfs_rq cfs;
588 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100589 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200590
591#ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200594#endif /* CONFIG_FAIR_GROUP_SCHED */
595
Peter Zijlstra029632f2011-10-25 10:00:11 +0200596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
604 struct task_struct *curr, *idle, *stop;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
607
Peter Zijlstra9edfbfe2015-01-05 11:18:11 +0100608 unsigned int clock_skip_update;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200609 u64 clock;
610 u64 clock_task;
611
612 atomic_t nr_iowait;
613
614#ifdef CONFIG_SMP
615 struct root_domain *rd;
616 struct sched_domain *sd;
617
Nicolas Pitreced549f2014-05-26 18:19:38 -0400618 unsigned long cpu_capacity;
Vincent Guittotca6d75e2015-02-27 16:54:09 +0100619 unsigned long cpu_capacity_orig;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200620
Peter Zijlstrae3fca9e2015-06-11 14:46:37 +0200621 struct callback_head *balance_callback;
622
Peter Zijlstra029632f2011-10-25 10:00:11 +0200623 unsigned char idle_balance;
624 /* For active balancing */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200625 int active_balance;
626 int push_cpu;
627 struct cpu_stop_work active_balance_work;
628 /* cpu of this runqueue: */
629 int cpu;
630 int online;
631
Peter Zijlstra367456c2012-02-20 21:49:09 +0100632 struct list_head cfs_tasks;
633
Peter Zijlstra029632f2011-10-25 10:00:11 +0200634 u64 rt_avg;
635 u64 age_stamp;
636 u64 idle_stamp;
637 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700638
639 /* This is used to determine avg_idle's max value */
640 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200641#endif
642
643#ifdef CONFIG_IRQ_TIME_ACCOUNTING
644 u64 prev_irq_time;
645#endif
646#ifdef CONFIG_PARAVIRT
647 u64 prev_steal_time;
648#endif
649#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
650 u64 prev_steal_time_rq;
651#endif
652
653 /* calc_load related fields */
654 unsigned long calc_load_update;
655 long calc_load_active;
656
657#ifdef CONFIG_SCHED_HRTICK
658#ifdef CONFIG_SMP
659 int hrtick_csd_pending;
660 struct call_single_data hrtick_csd;
661#endif
662 struct hrtimer hrtick_timer;
663#endif
664
665#ifdef CONFIG_SCHEDSTATS
666 /* latency stats */
667 struct sched_info rq_sched_info;
668 unsigned long long rq_cpu_time;
669 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
670
671 /* sys_sched_yield() stats */
672 unsigned int yld_count;
673
674 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200675 unsigned int sched_count;
676 unsigned int sched_goidle;
677
678 /* try_to_wake_up() stats */
679 unsigned int ttwu_count;
680 unsigned int ttwu_local;
681#endif
682
683#ifdef CONFIG_SMP
684 struct llist_head wake_list;
685#endif
Daniel Lezcano442bf3a2014-09-04 11:32:09 -0400686
687#ifdef CONFIG_CPU_IDLE
688 /* Must be inspected within a rcu lock section */
689 struct cpuidle_state *idle_state;
690#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200691};
692
693static inline int cpu_of(struct rq *rq)
694{
695#ifdef CONFIG_SMP
696 return rq->cpu;
697#else
698 return 0;
699#endif
700}
701
Pranith Kumar8b06c552014-08-13 13:28:12 -0400702DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200703
Peter Zijlstra518cd622011-12-07 15:07:31 +0100704#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500705#define this_rq() this_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100706#define task_rq(p) cpu_rq(task_cpu(p))
707#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500708#define raw_rq() raw_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100709
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100710static inline u64 __rq_clock_broken(struct rq *rq)
711{
Jason Low316c1608d2015-04-28 13:00:20 -0700712 return READ_ONCE(rq->clock);
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100713}
714
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200715static inline u64 rq_clock(struct rq *rq)
716{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100717 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200718 return rq->clock;
719}
720
721static inline u64 rq_clock_task(struct rq *rq)
722{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100723 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200724 return rq->clock_task;
725}
726
Peter Zijlstra9edfbfe2015-01-05 11:18:11 +0100727#define RQCF_REQ_SKIP 0x01
728#define RQCF_ACT_SKIP 0x02
729
730static inline void rq_clock_skip_update(struct rq *rq, bool skip)
731{
732 lockdep_assert_held(&rq->lock);
733 if (skip)
734 rq->clock_skip_update |= RQCF_REQ_SKIP;
735 else
736 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
737}
738
Rik van Riel9942f792014-10-17 03:29:49 -0400739#ifdef CONFIG_NUMA
Rik van Riele3fe70b2014-10-17 03:29:50 -0400740enum numa_topology_type {
741 NUMA_DIRECT,
742 NUMA_GLUELESS_MESH,
743 NUMA_BACKPLANE,
744};
745extern enum numa_topology_type sched_numa_topology_type;
Rik van Riel9942f792014-10-17 03:29:49 -0400746extern int sched_max_numa_distance;
747extern bool find_numa_distance(int distance);
748#endif
749
Mel Gormanf809ca92013-10-07 11:28:57 +0100750#ifdef CONFIG_NUMA_BALANCING
Iulia Manda44dba3d2014-10-31 02:13:31 +0200751/* The regions in numa_faults array from task_struct */
752enum numa_faults_stats {
753 NUMA_MEM = 0,
754 NUMA_CPU,
755 NUMA_MEMBUF,
756 NUMA_CPUBUF
757};
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100758extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100759extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100760extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100761#endif /* CONFIG_NUMA_BALANCING */
762
Peter Zijlstra518cd622011-12-07 15:07:31 +0100763#ifdef CONFIG_SMP
764
Peter Zijlstrae3fca9e2015-06-11 14:46:37 +0200765static inline void
766queue_balance_callback(struct rq *rq,
767 struct callback_head *head,
768 void (*func)(struct rq *rq))
769{
770 lockdep_assert_held(&rq->lock);
771
772 if (unlikely(head->next))
773 return;
774
775 head->func = (void (*)(struct callback_head *))func;
776 head->next = rq->balance_callback;
777 rq->balance_callback = head;
778}
779
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700780extern void sched_ttwu_pending(void);
781
Peter Zijlstra029632f2011-10-25 10:00:11 +0200782#define rcu_dereference_check_sched_domain(p) \
783 rcu_dereference_check((p), \
784 lockdep_is_held(&sched_domains_mutex))
785
786/*
787 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
788 * See detach_destroy_domains: synchronize_sched for details.
789 *
790 * The domain tree of any CPU may only be accessed from within
791 * preempt-disabled sections.
792 */
793#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100794 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
795 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200796
Suresh Siddha77e81362011-11-17 11:08:23 -0800797#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
798
Peter Zijlstra518cd622011-12-07 15:07:31 +0100799/**
800 * highest_flag_domain - Return highest sched_domain containing flag.
801 * @cpu: The cpu whose highest level of sched domain is to
802 * be returned.
803 * @flag: The flag to check for the highest sched_domain
804 * for the given cpu.
805 *
806 * Returns the highest sched_domain of a cpu which contains the given flag.
807 */
808static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
809{
810 struct sched_domain *sd, *hsd = NULL;
811
812 for_each_domain(cpu, sd) {
813 if (!(sd->flags & flag))
814 break;
815 hsd = sd;
816 }
817
818 return hsd;
819}
820
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100821static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
822{
823 struct sched_domain *sd;
824
825 for_each_domain(cpu, sd) {
826 if (sd->flags & flag)
827 break;
828 }
829
830 return sd;
831}
832
Peter Zijlstra518cd622011-12-07 15:07:31 +0100833DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800834DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100835DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100836DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530837DECLARE_PER_CPU(struct sched_domain *, sd_busy);
838DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100839
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400840struct sched_group_capacity {
Li Zefan5e6521e2013-03-05 16:06:23 +0800841 atomic_t ref;
842 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400843 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
844 * for a single CPU.
Li Zefan5e6521e2013-03-05 16:06:23 +0800845 */
Vincent Guittotdc7ff762015-03-03 11:35:03 +0100846 unsigned int capacity;
Li Zefan5e6521e2013-03-05 16:06:23 +0800847 unsigned long next_update;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400848 int imbalance; /* XXX unrelated to capacity but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800849 /*
850 * Number of busy cpus in this group.
851 */
852 atomic_t nr_busy_cpus;
853
854 unsigned long cpumask[0]; /* iteration mask */
855};
856
857struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859 atomic_t ref;
860
861 unsigned int group_weight;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400862 struct sched_group_capacity *sgc;
Li Zefan5e6521e2013-03-05 16:06:23 +0800863
864 /*
865 * The CPUs this group covers.
866 *
867 * NOTE: this field is variable length. (Allocated dynamically
868 * by attaching extra space to the end of the structure,
869 * depending on how many CPUs the kernel has booted up with)
870 */
871 unsigned long cpumask[0];
872};
873
874static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
875{
876 return to_cpumask(sg->cpumask);
877}
878
879/*
880 * cpumask masking which cpus in the group are allowed to iterate up the domain
881 * tree.
882 */
883static inline struct cpumask *sched_group_mask(struct sched_group *sg)
884{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400885 return to_cpumask(sg->sgc->cpumask);
Li Zefan5e6521e2013-03-05 16:06:23 +0800886}
887
888/**
889 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
890 * @group: The group whose first cpu is to be returned.
891 */
892static inline unsigned int group_first_cpu(struct sched_group *group)
893{
894 return cpumask_first(sched_group_cpus(group));
895}
896
Peter Zijlstrac1174872012-05-31 14:47:33 +0200897extern int group_balance_cpu(struct sched_group *sg);
898
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700899#else
900
901static inline void sched_ttwu_pending(void) { }
902
Peter Zijlstra518cd622011-12-07 15:07:31 +0100903#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200904
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100905#include "stats.h"
906#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200907
908#ifdef CONFIG_CGROUP_SCHED
909
910/*
911 * Return the group to which this tasks belongs.
912 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400913 * We cannot use task_css() and friends because the cgroup subsystem
914 * changes that value before the cgroup_subsys::attach() method is called,
915 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200916 *
917 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
918 * core changes this before calling sched_move_task().
919 *
920 * Instead we use a 'copy' which is updated from sched_move_task() while
921 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200922 */
923static inline struct task_group *task_group(struct task_struct *p)
924{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200925 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200926}
927
928/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
929static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
930{
931#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
932 struct task_group *tg = task_group(p);
933#endif
934
935#ifdef CONFIG_FAIR_GROUP_SCHED
936 p->se.cfs_rq = tg->cfs_rq[cpu];
937 p->se.parent = tg->se[cpu];
938#endif
939
940#ifdef CONFIG_RT_GROUP_SCHED
941 p->rt.rt_rq = tg->rt_rq[cpu];
942 p->rt.parent = tg->rt_se[cpu];
943#endif
944}
945
946#else /* CONFIG_CGROUP_SCHED */
947
948static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
949static inline struct task_group *task_group(struct task_struct *p)
950{
951 return NULL;
952}
953
954#endif /* CONFIG_CGROUP_SCHED */
955
956static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
957{
958 set_task_rq(p, cpu);
959#ifdef CONFIG_SMP
960 /*
961 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
962 * successfuly executed on another CPU. We must ensure that updates of
963 * per-task data have been completed by this moment.
964 */
965 smp_wmb();
966 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100967 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200968#endif
969}
970
971/*
972 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
973 */
974#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100975# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200976# define const_debug __read_mostly
977#else
978# define const_debug const
979#endif
980
981extern const_debug unsigned int sysctl_sched_features;
982
983#define SCHED_FEAT(name, enabled) \
984 __SCHED_FEAT_##name ,
985
986enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100987#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200988 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200989};
990
991#undef SCHED_FEAT
992
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200993#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200994#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100995static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200996{ \
Jason Baron6e76ea82014-07-02 15:52:41 +0000997 return static_key_##enabled(key); \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200998}
999
1000#include "features.h"
1001
1002#undef SCHED_FEAT
1003
Ingo Molnarc5905af2012-02-24 08:31:31 +01001004extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +02001005#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1006#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +02001007#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +02001008#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +02001009
Srikar Dronamraju2a595722015-08-11 21:54:21 +05301010extern struct static_key_false sched_numa_balancing;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001011
Peter Zijlstra029632f2011-10-25 10:00:11 +02001012static inline u64 global_rt_period(void)
1013{
1014 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1015}
1016
1017static inline u64 global_rt_runtime(void)
1018{
1019 if (sysctl_sched_rt_runtime < 0)
1020 return RUNTIME_INF;
1021
1022 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1023}
1024
Peter Zijlstra029632f2011-10-25 10:00:11 +02001025static inline int task_current(struct rq *rq, struct task_struct *p)
1026{
1027 return rq->curr == p;
1028}
1029
1030static inline int task_running(struct rq *rq, struct task_struct *p)
1031{
1032#ifdef CONFIG_SMP
1033 return p->on_cpu;
1034#else
1035 return task_current(rq, p);
1036#endif
1037}
1038
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04001039static inline int task_on_rq_queued(struct task_struct *p)
1040{
1041 return p->on_rq == TASK_ON_RQ_QUEUED;
1042}
Peter Zijlstra029632f2011-10-25 10:00:11 +02001043
Kirill Tkhaicca26e82014-08-20 13:47:42 +04001044static inline int task_on_rq_migrating(struct task_struct *p)
1045{
1046 return p->on_rq == TASK_ON_RQ_MIGRATING;
1047}
1048
Peter Zijlstra029632f2011-10-25 10:00:11 +02001049#ifndef prepare_arch_switch
1050# define prepare_arch_switch(next) do { } while (0)
1051#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +00001052#ifndef finish_arch_post_lock_switch
1053# define finish_arch_post_lock_switch() do { } while (0)
1054#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001055
Peter Zijlstra029632f2011-10-25 10:00:11 +02001056static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1057{
1058#ifdef CONFIG_SMP
1059 /*
1060 * We can optimise this out completely for !SMP, because the
1061 * SMP rebalancing from interrupt is the only thing that cares
1062 * here.
1063 */
1064 next->on_cpu = 1;
1065#endif
1066}
1067
1068static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1069{
1070#ifdef CONFIG_SMP
1071 /*
1072 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1073 * We must ensure this doesn't happen until the switch is completely
1074 * finished.
Peter Zijlstra95913d92015-09-29 14:45:09 +02001075 *
1076 * Pairs with the control dependency and rmb in try_to_wake_up().
Peter Zijlstra029632f2011-10-25 10:00:11 +02001077 */
Peter Zijlstra95913d92015-09-29 14:45:09 +02001078 smp_store_release(&prev->on_cpu, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001079#endif
1080#ifdef CONFIG_DEBUG_SPINLOCK
1081 /* this is a valid case when another task releases the spinlock */
1082 rq->lock.owner = current;
1083#endif
1084 /*
1085 * If we are tracking spinlock dependencies then we have to
1086 * fix up the runqueue lock - which gets 'carried over' from
1087 * prev into current:
1088 */
1089 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1090
1091 raw_spin_unlock_irq(&rq->lock);
1092}
1093
Li Zefanb13095f2013-03-05 16:06:38 +08001094/*
1095 * wake flags
1096 */
1097#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1098#define WF_FORK 0x02 /* child wakeup after fork */
1099#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1100
Peter Zijlstra029632f2011-10-25 10:00:11 +02001101/*
1102 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1103 * of tasks with abnormal "nice" values across CPUs the contribution that
1104 * each task makes to its run queue's load is weighted according to its
1105 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1106 * scaled version of the new time slice allocation that they receive on time
1107 * slice expiry etc.
1108 */
1109
1110#define WEIGHT_IDLEPRIO 3
1111#define WMULT_IDLEPRIO 1431655765
1112
1113/*
1114 * Nice levels are multiplicative, with a gentle 10% change for every
1115 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1116 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1117 * that remained on nice 0.
1118 *
1119 * The "10% effect" is relative and cumulative: from _any_ nice level,
1120 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1121 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1122 * If a task goes up by ~10% and another task goes down by ~10% then
1123 * the relative distance between them is ~25%.)
1124 */
1125static const int prio_to_weight[40] = {
1126 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1127 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1128 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1129 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1130 /* 0 */ 1024, 820, 655, 526, 423,
1131 /* 5 */ 335, 272, 215, 172, 137,
1132 /* 10 */ 110, 87, 70, 56, 45,
1133 /* 15 */ 36, 29, 23, 18, 15,
1134};
1135
1136/*
1137 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1138 *
1139 * In cases where the weight does not change often, we can use the
1140 * precalculated inverse to speed up arithmetics by turning divisions
1141 * into multiplications:
1142 */
1143static const u32 prio_to_wmult[40] = {
1144 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1145 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1146 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1147 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1148 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1149 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1150 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1151 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1152};
1153
Peter Zijlstra1de64442015-09-30 17:44:13 +02001154#define ENQUEUE_WAKEUP 0x01
1155#define ENQUEUE_HEAD 0x02
Li Zefanc82ba9f2013-03-05 16:06:55 +08001156#ifdef CONFIG_SMP
Peter Zijlstra1de64442015-09-30 17:44:13 +02001157#define ENQUEUE_WAKING 0x04 /* sched_class::task_waking was called */
Li Zefanc82ba9f2013-03-05 16:06:55 +08001158#else
Peter Zijlstra1de64442015-09-30 17:44:13 +02001159#define ENQUEUE_WAKING 0x00
Li Zefanc82ba9f2013-03-05 16:06:55 +08001160#endif
Peter Zijlstra1de64442015-09-30 17:44:13 +02001161#define ENQUEUE_REPLENISH 0x08
1162#define ENQUEUE_RESTORE 0x10
Li Zefanc82ba9f2013-03-05 16:06:55 +08001163
Peter Zijlstra1de64442015-09-30 17:44:13 +02001164#define DEQUEUE_SLEEP 0x01
1165#define DEQUEUE_SAVE 0x02
Li Zefanc82ba9f2013-03-05 16:06:55 +08001166
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001167#define RETRY_TASK ((void *)-1UL)
1168
Li Zefanc82ba9f2013-03-05 16:06:55 +08001169struct sched_class {
1170 const struct sched_class *next;
1171
1172 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1173 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1174 void (*yield_task) (struct rq *rq);
1175 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1176
1177 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1178
Peter Zijlstra606dba22012-02-11 06:05:00 +01001179 /*
1180 * It is the responsibility of the pick_next_task() method that will
1181 * return the next task to call put_prev_task() on the @prev task or
1182 * something equivalent.
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001183 *
1184 * May return RETRY_TASK when it finds a higher prio class has runnable
1185 * tasks.
Peter Zijlstra606dba22012-02-11 06:05:00 +01001186 */
1187 struct task_struct * (*pick_next_task) (struct rq *rq,
1188 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001189 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1190
1191#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001192 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
xiaofeng.yan5a4fd032015-09-23 14:55:59 +08001193 void (*migrate_task_rq)(struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001194
Li Zefanc82ba9f2013-03-05 16:06:55 +08001195 void (*task_waking) (struct task_struct *task);
1196 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1197
1198 void (*set_cpus_allowed)(struct task_struct *p,
1199 const struct cpumask *newmask);
1200
1201 void (*rq_online)(struct rq *rq);
1202 void (*rq_offline)(struct rq *rq);
1203#endif
1204
1205 void (*set_curr_task) (struct rq *rq);
1206 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1207 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001208 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001209
Kirill Tkhai67dfa1b2014-10-27 17:40:52 +03001210 /*
1211 * The switched_from() call is allowed to drop rq->lock, therefore we
1212 * cannot assume the switched_from/switched_to pair is serliazed by
1213 * rq->lock. They are however serialized by p->pi_lock.
1214 */
Li Zefanc82ba9f2013-03-05 16:06:55 +08001215 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1216 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1217 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1218 int oldprio);
1219
1220 unsigned int (*get_rr_interval) (struct rq *rq,
1221 struct task_struct *task);
1222
Stanislaw Gruszka6e998912014-11-12 16:58:44 +01001223 void (*update_curr) (struct rq *rq);
1224
Li Zefanc82ba9f2013-03-05 16:06:55 +08001225#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrabc54da22015-08-31 17:13:55 +02001226 void (*task_move_group) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001227#endif
1228};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001229
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01001230static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1231{
1232 prev->sched_class->put_prev_task(rq, prev);
1233}
1234
Peter Zijlstra029632f2011-10-25 10:00:11 +02001235#define sched_class_highest (&stop_sched_class)
1236#define for_each_class(class) \
1237 for (class = sched_class_highest; class; class = class->next)
1238
1239extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001240extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001241extern const struct sched_class rt_sched_class;
1242extern const struct sched_class fair_sched_class;
1243extern const struct sched_class idle_sched_class;
1244
1245
1246#ifdef CONFIG_SMP
1247
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04001248extern void update_group_capacity(struct sched_domain *sd, int cpu);
Li Zefanb7192032013-03-07 10:00:26 +08001249
Daniel Lezcano7caff662014-01-06 12:34:38 +01001250extern void trigger_load_balance(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001251
Vincent Guittot642dbc32013-04-18 18:34:26 +02001252extern void idle_enter_fair(struct rq *this_rq);
1253extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001254
Peter Zijlstrac5b28032015-05-15 17:43:35 +02001255extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1256
Peter Zijlstradc877342014-02-12 15:47:29 +01001257#else
1258
1259static inline void idle_enter_fair(struct rq *rq) { }
1260static inline void idle_exit_fair(struct rq *rq) { }
1261
Peter Zijlstra029632f2011-10-25 10:00:11 +02001262#endif
1263
Daniel Lezcano442bf3a2014-09-04 11:32:09 -04001264#ifdef CONFIG_CPU_IDLE
1265static inline void idle_set_state(struct rq *rq,
1266 struct cpuidle_state *idle_state)
1267{
1268 rq->idle_state = idle_state;
1269}
1270
1271static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1272{
1273 WARN_ON(!rcu_read_lock_held());
1274 return rq->idle_state;
1275}
1276#else
1277static inline void idle_set_state(struct rq *rq,
1278 struct cpuidle_state *idle_state)
1279{
1280}
1281
1282static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1283{
1284 return NULL;
1285}
1286#endif
1287
Peter Zijlstra029632f2011-10-25 10:00:11 +02001288extern void sysrq_sched_debug_show(void);
1289extern void sched_init_granularity(void);
1290extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001291
1292extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001293extern void init_sched_rt_class(void);
1294extern void init_sched_fair_class(void);
1295
Kirill Tkhai88751252014-06-29 00:03:57 +04001296extern void resched_curr(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001297extern void resched_cpu(int cpu);
1298
1299extern struct rt_bandwidth def_rt_bandwidth;
1300extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1301
Dario Faggioli332ac172013-11-07 14:43:45 +01001302extern struct dl_bandwidth def_dl_bandwidth;
1303extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001304extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1305
Dario Faggioli332ac172013-11-07 14:43:45 +01001306unsigned long to_ratio(u64 period, u64 runtime);
1307
Yuyang Du540247f2015-07-15 08:04:39 +08001308extern void init_entity_runnable_average(struct sched_entity *se);
Alex Shia75cdaa2013-06-20 10:18:47 +08001309
Kirill Tkhai72465442014-05-09 03:00:14 +04001310static inline void add_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001311{
Kirill Tkhai72465442014-05-09 03:00:14 +04001312 unsigned prev_nr = rq->nr_running;
1313
1314 rq->nr_running = prev_nr + count;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001315
Kirill Tkhai72465442014-05-09 03:00:14 +04001316 if (prev_nr < 2 && rq->nr_running >= 2) {
Tim Chen4486edd2014-06-23 12:16:49 -07001317#ifdef CONFIG_SMP
1318 if (!rq->rd->overload)
1319 rq->rd->overload = true;
1320#endif
1321
1322#ifdef CONFIG_NO_HZ_FULL
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001323 if (tick_nohz_full_cpu(rq->cpu)) {
Frederic Weisbecker3882ec62014-03-18 22:54:04 +01001324 /*
1325 * Tick is needed if more than one task runs on a CPU.
1326 * Send the target an IPI to kick it out of nohz mode.
1327 *
1328 * We assume that IPI implies full memory barrier and the
1329 * new value of rq->nr_running is visible on reception
1330 * from the target.
1331 */
Frederic Weisbeckerfd2ac4f2014-03-18 21:12:53 +01001332 tick_nohz_full_kick_cpu(rq->cpu);
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001333 }
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001334#endif
Tim Chen4486edd2014-06-23 12:16:49 -07001335 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02001336}
1337
Kirill Tkhai72465442014-05-09 03:00:14 +04001338static inline void sub_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001339{
Kirill Tkhai72465442014-05-09 03:00:14 +04001340 rq->nr_running -= count;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001341}
1342
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001343static inline void rq_last_tick_reset(struct rq *rq)
1344{
1345#ifdef CONFIG_NO_HZ_FULL
1346 rq->last_sched_tick = jiffies;
1347#endif
1348}
1349
Peter Zijlstra029632f2011-10-25 10:00:11 +02001350extern void update_rq_clock(struct rq *rq);
1351
1352extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1353extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1354
1355extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1356
1357extern const_debug unsigned int sysctl_sched_time_avg;
1358extern const_debug unsigned int sysctl_sched_nr_migrate;
1359extern const_debug unsigned int sysctl_sched_migration_cost;
1360
1361static inline u64 sched_avg_period(void)
1362{
1363 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1364}
1365
Peter Zijlstra029632f2011-10-25 10:00:11 +02001366#ifdef CONFIG_SCHED_HRTICK
1367
1368/*
1369 * Use hrtick when:
1370 * - enabled by features
1371 * - hrtimer is actually high res
1372 */
1373static inline int hrtick_enabled(struct rq *rq)
1374{
1375 if (!sched_feat(HRTICK))
1376 return 0;
1377 if (!cpu_active(cpu_of(rq)))
1378 return 0;
1379 return hrtimer_is_hres_active(&rq->hrtick_timer);
1380}
1381
1382void hrtick_start(struct rq *rq, u64 delay);
1383
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001384#else
1385
1386static inline int hrtick_enabled(struct rq *rq)
1387{
1388 return 0;
1389}
1390
Peter Zijlstra029632f2011-10-25 10:00:11 +02001391#endif /* CONFIG_SCHED_HRTICK */
1392
1393#ifdef CONFIG_SMP
1394extern void sched_avg_update(struct rq *rq);
Peter Zijlstradfbca412015-03-23 14:19:05 +01001395
1396#ifndef arch_scale_freq_capacity
1397static __always_inline
1398unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1399{
1400 return SCHED_CAPACITY_SCALE;
1401}
1402#endif
Vincent Guittotb5b48602015-02-27 16:54:08 +01001403
Morten Rasmussen8cd56012015-08-14 17:23:10 +01001404#ifndef arch_scale_cpu_capacity
1405static __always_inline
1406unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1407{
Dietmar Eggemanne3279a22015-08-15 00:04:41 +01001408 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
Morten Rasmussen8cd56012015-08-14 17:23:10 +01001409 return sd->smt_gain / sd->span_weight;
1410
1411 return SCHED_CAPACITY_SCALE;
1412}
1413#endif
1414
Peter Zijlstra029632f2011-10-25 10:00:11 +02001415static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1416{
Vincent Guittotb5b48602015-02-27 16:54:08 +01001417 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
Peter Zijlstra029632f2011-10-25 10:00:11 +02001418 sched_avg_update(rq);
1419}
1420#else
1421static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1422static inline void sched_avg_update(struct rq *rq) { }
1423#endif
1424
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001425/*
1426 * __task_rq_lock - lock the rq @p resides on.
1427 */
1428static inline struct rq *__task_rq_lock(struct task_struct *p)
1429 __acquires(rq->lock)
1430{
1431 struct rq *rq;
1432
1433 lockdep_assert_held(&p->pi_lock);
1434
1435 for (;;) {
1436 rq = task_rq(p);
1437 raw_spin_lock(&rq->lock);
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001438 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1439 lockdep_pin_lock(&rq->lock);
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001440 return rq;
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001441 }
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001442 raw_spin_unlock(&rq->lock);
1443
1444 while (unlikely(task_on_rq_migrating(p)))
1445 cpu_relax();
1446 }
1447}
1448
1449/*
1450 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1451 */
1452static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1453 __acquires(p->pi_lock)
1454 __acquires(rq->lock)
1455{
1456 struct rq *rq;
1457
1458 for (;;) {
1459 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1460 rq = task_rq(p);
1461 raw_spin_lock(&rq->lock);
1462 /*
1463 * move_queued_task() task_rq_lock()
1464 *
1465 * ACQUIRE (rq->lock)
1466 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1467 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1468 * [S] ->cpu = new_cpu [L] task_rq()
1469 * [L] ->on_rq
1470 * RELEASE (rq->lock)
1471 *
1472 * If we observe the old cpu in task_rq_lock, the acquire of
1473 * the old rq->lock will fully serialize against the stores.
1474 *
1475 * If we observe the new cpu in task_rq_lock, the acquire will
1476 * pair with the WMB to ensure we must then also see migrating.
1477 */
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001478 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1479 lockdep_pin_lock(&rq->lock);
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001480 return rq;
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001481 }
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001482 raw_spin_unlock(&rq->lock);
1483 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1484
1485 while (unlikely(task_on_rq_migrating(p)))
1486 cpu_relax();
1487 }
1488}
1489
1490static inline void __task_rq_unlock(struct rq *rq)
1491 __releases(rq->lock)
1492{
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001493 lockdep_unpin_lock(&rq->lock);
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001494 raw_spin_unlock(&rq->lock);
1495}
1496
1497static inline void
1498task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1499 __releases(rq->lock)
1500 __releases(p->pi_lock)
1501{
Peter Zijlstracbce1a62015-06-11 14:46:54 +02001502 lockdep_unpin_lock(&rq->lock);
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001503 raw_spin_unlock(&rq->lock);
1504 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1505}
1506
Peter Zijlstra029632f2011-10-25 10:00:11 +02001507#ifdef CONFIG_SMP
1508#ifdef CONFIG_PREEMPT
1509
1510static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1511
1512/*
1513 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1514 * way at the expense of forcing extra atomic operations in all
1515 * invocations. This assures that the double_lock is acquired using the
1516 * same underlying policy as the spinlock_t on this architecture, which
1517 * reduces latency compared to the unfair variant below. However, it
1518 * also adds more overhead and therefore may reduce throughput.
1519 */
1520static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1521 __releases(this_rq->lock)
1522 __acquires(busiest->lock)
1523 __acquires(this_rq->lock)
1524{
1525 raw_spin_unlock(&this_rq->lock);
1526 double_rq_lock(this_rq, busiest);
1527
1528 return 1;
1529}
1530
1531#else
1532/*
1533 * Unfair double_lock_balance: Optimizes throughput at the expense of
1534 * latency by eliminating extra atomic operations when the locks are
1535 * already in proper order on entry. This favors lower cpu-ids and will
1536 * grant the double lock to lower cpus over higher ids under contention,
1537 * regardless of entry order into the function.
1538 */
1539static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1540 __releases(this_rq->lock)
1541 __acquires(busiest->lock)
1542 __acquires(this_rq->lock)
1543{
1544 int ret = 0;
1545
1546 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1547 if (busiest < this_rq) {
1548 raw_spin_unlock(&this_rq->lock);
1549 raw_spin_lock(&busiest->lock);
1550 raw_spin_lock_nested(&this_rq->lock,
1551 SINGLE_DEPTH_NESTING);
1552 ret = 1;
1553 } else
1554 raw_spin_lock_nested(&busiest->lock,
1555 SINGLE_DEPTH_NESTING);
1556 }
1557 return ret;
1558}
1559
1560#endif /* CONFIG_PREEMPT */
1561
1562/*
1563 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1564 */
1565static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566{
1567 if (unlikely(!irqs_disabled())) {
1568 /* printk() doesn't work good under rq->lock */
1569 raw_spin_unlock(&this_rq->lock);
1570 BUG_ON(1);
1571 }
1572
1573 return _double_lock_balance(this_rq, busiest);
1574}
1575
1576static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1577 __releases(busiest->lock)
1578{
1579 raw_spin_unlock(&busiest->lock);
1580 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1581}
1582
Peter Zijlstra74602312013-10-10 20:17:22 +02001583static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1584{
1585 if (l1 > l2)
1586 swap(l1, l2);
1587
1588 spin_lock(l1);
1589 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590}
1591
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001592static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1593{
1594 if (l1 > l2)
1595 swap(l1, l2);
1596
1597 spin_lock_irq(l1);
1598 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1599}
1600
Peter Zijlstra74602312013-10-10 20:17:22 +02001601static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1602{
1603 if (l1 > l2)
1604 swap(l1, l2);
1605
1606 raw_spin_lock(l1);
1607 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1608}
1609
Peter Zijlstra029632f2011-10-25 10:00:11 +02001610/*
1611 * double_rq_lock - safely lock two runqueues
1612 *
1613 * Note this does not disable interrupts like task_rq_lock,
1614 * you need to do so manually before calling.
1615 */
1616static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1617 __acquires(rq1->lock)
1618 __acquires(rq2->lock)
1619{
1620 BUG_ON(!irqs_disabled());
1621 if (rq1 == rq2) {
1622 raw_spin_lock(&rq1->lock);
1623 __acquire(rq2->lock); /* Fake it out ;) */
1624 } else {
1625 if (rq1 < rq2) {
1626 raw_spin_lock(&rq1->lock);
1627 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1628 } else {
1629 raw_spin_lock(&rq2->lock);
1630 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1631 }
1632 }
1633}
1634
1635/*
1636 * double_rq_unlock - safely unlock two runqueues
1637 *
1638 * Note this does not restore interrupts like task_rq_unlock,
1639 * you need to do so manually after calling.
1640 */
1641static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1642 __releases(rq1->lock)
1643 __releases(rq2->lock)
1644{
1645 raw_spin_unlock(&rq1->lock);
1646 if (rq1 != rq2)
1647 raw_spin_unlock(&rq2->lock);
1648 else
1649 __release(rq2->lock);
1650}
1651
1652#else /* CONFIG_SMP */
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 BUG_ON(rq1 != rq2);
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668}
1669
1670/*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679{
1680 BUG_ON(rq1 != rq2);
1681 raw_spin_unlock(&rq1->lock);
1682 __release(rq2->lock);
1683}
1684
1685#endif
1686
1687extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1688extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
Srikar Dronamraju6b55c962015-06-25 22:51:41 +05301689
1690#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02001691extern void print_cfs_stats(struct seq_file *m, int cpu);
1692extern void print_rt_stats(struct seq_file *m, int cpu);
Wanpeng Liacb32132014-10-31 06:39:33 +08001693extern void print_dl_stats(struct seq_file *m, int cpu);
Srikar Dronamraju6b55c962015-06-25 22:51:41 +05301694extern void
1695print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
Srikar Dronamraju397f2372015-06-25 22:51:43 +05301696
1697#ifdef CONFIG_NUMA_BALANCING
1698extern void
1699show_numa_stats(struct task_struct *p, struct seq_file *m);
1700extern void
1701print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1702 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1703#endif /* CONFIG_NUMA_BALANCING */
1704#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstra029632f2011-10-25 10:00:11 +02001705
1706extern void init_cfs_rq(struct cfs_rq *cfs_rq);
Abel Vesa07c54f72015-03-03 13:50:27 +02001707extern void init_rt_rq(struct rt_rq *rt_rq);
1708extern void init_dl_rq(struct dl_rq *dl_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001709
Ben Segall1ee14e62013-10-16 11:16:12 -07001710extern void cfs_bandwidth_usage_inc(void);
1711extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001712
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001713#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001714enum rq_nohz_flag_bits {
1715 NOHZ_TICK_STOPPED,
1716 NOHZ_BALANCE_KICK,
1717};
1718
1719#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1720#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001721
1722#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1723
1724DECLARE_PER_CPU(u64, cpu_hardirq_time);
1725DECLARE_PER_CPU(u64, cpu_softirq_time);
1726
1727#ifndef CONFIG_64BIT
1728DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1729
1730static inline void irq_time_write_begin(void)
1731{
1732 __this_cpu_inc(irq_time_seq.sequence);
1733 smp_wmb();
1734}
1735
1736static inline void irq_time_write_end(void)
1737{
1738 smp_wmb();
1739 __this_cpu_inc(irq_time_seq.sequence);
1740}
1741
1742static inline u64 irq_time_read(int cpu)
1743{
1744 u64 irq_time;
1745 unsigned seq;
1746
1747 do {
1748 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1749 irq_time = per_cpu(cpu_softirq_time, cpu) +
1750 per_cpu(cpu_hardirq_time, cpu);
1751 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1752
1753 return irq_time;
1754}
1755#else /* CONFIG_64BIT */
1756static inline void irq_time_write_begin(void)
1757{
1758}
1759
1760static inline void irq_time_write_end(void)
1761{
1762}
1763
1764static inline u64 irq_time_read(int cpu)
1765{
1766 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1767}
1768#endif /* CONFIG_64BIT */
1769#endif /* CONFIG_IRQ_TIME_ACCOUNTING */