blob: c534cf4181ab00dcb3b00f3e53d29c1ab2f5d2f3 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02009#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010010#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020011
Peter Zijlstra391e43d2011-11-15 17:14:39 +010012#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010013#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080014#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020015
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040016struct rq;
17
Peter Zijlstra029632f2011-10-25 10:00:11 +020018extern __read_mostly int scheduler_running;
19
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040020extern unsigned long calc_load_update;
21extern atomic_long_t calc_load_tasks;
22
23extern long calc_load_fold_active(struct rq *this_rq);
24extern void update_cpu_load_active(struct rq *this_rq);
25
Peter Zijlstra029632f2011-10-25 10:00:11 +020026/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020027 * Helpers for converting nanosecond timing to jiffy resolution
28 */
29#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30
Li Zefancc1f4b12013-03-05 16:06:09 +080031/*
32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights.
37 *
38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs.
42 */
43#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44# define SCHED_LOAD_RESOLUTION 10
45# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47#else
48# define SCHED_LOAD_RESOLUTION 0
49# define scale_load(w) (w)
50# define scale_load_down(w) (w)
51#endif
52
53#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55
Peter Zijlstra029632f2011-10-25 10:00:11 +020056#define NICE_0_LOAD SCHED_LOAD_SCALE
57#define NICE_0_SHIFT SCHED_LOAD_SHIFT
58
59/*
Dario Faggioli332ac172013-11-07 14:43:45 +010060 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us
62 * 9 -> just above 0.5us
63 */
64#define DL_SCALE (10)
65
66/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020067 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020068 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020069
70/*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73#define RUNTIME_INF ((u64)~0ULL)
74
Dario Faggiolid50dde52013-11-07 14:43:36 +010075static inline int fair_policy(int policy)
76{
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78}
79
Peter Zijlstra029632f2011-10-25 10:00:11 +020080static inline int rt_policy(int policy)
81{
Dario Faggiolid50dde52013-11-07 14:43:36 +010082 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020083}
84
Dario Faggioliaab03e02013-11-28 11:14:43 +010085static inline int dl_policy(int policy)
86{
87 return policy == SCHED_DEADLINE;
88}
89
Peter Zijlstra029632f2011-10-25 10:00:11 +020090static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
Dario Faggioliaab03e02013-11-28 11:14:43 +010095static inline int task_has_dl_policy(struct task_struct *p)
96{
97 return dl_policy(p->policy);
98}
99
Dario Faggioli332ac172013-11-07 14:43:45 +0100100static inline bool dl_time_before(u64 a, u64 b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100101{
102 return (s64)(a - b) < 0;
103}
104
105/*
106 * Tells if entity @a should preempt entity @b.
107 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100108static inline bool
109dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100110{
111 return dl_time_before(a->deadline, b->deadline);
112}
113
Peter Zijlstra029632f2011-10-25 10:00:11 +0200114/*
115 * This is the priority-queue data structure of the RT scheduling class:
116 */
117struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO];
120};
121
122struct rt_bandwidth {
123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period;
126 u64 rt_runtime;
127 struct hrtimer rt_period_timer;
128};
Dario Faggioli332ac172013-11-07 14:43:45 +0100129/*
130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated.
134 *
135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it.
140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own
151 * control.
152 */
153struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime;
156 u64 dl_period;
157};
158
159static inline int dl_bandwidth_enabled(void)
160{
Peter Zijlstra17248132013-12-17 12:44:49 +0100161 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100162}
163
164extern struct dl_bw *dl_bw_of(int i);
165
166struct dl_bw {
167 raw_spinlock_t lock;
168 u64 bw, total_bw;
169};
170
Peter Zijlstra029632f2011-10-25 10:00:11 +0200171extern struct mutex sched_domains_mutex;
172
173#ifdef CONFIG_CGROUP_SCHED
174
175#include <linux/cgroup.h>
176
177struct cfs_rq;
178struct rt_rq;
179
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200180extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200181
182struct cfs_bandwidth {
183#ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock;
185 ktime_t period;
186 u64 quota, runtime;
187 s64 hierarchal_quota;
188 u64 runtime_expires;
189
190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq;
193
194 /* statistics */
195 int nr_periods, nr_throttled;
196 u64 throttled_time;
197#endif
198};
199
200/* task group related information */
201struct task_group {
202 struct cgroup_subsys_state css;
203
204#ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq;
209 unsigned long shares;
210
Alex Shifa6bdde2013-06-20 10:18:46 +0800211#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800212 atomic_long_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200213 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200214#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800215#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200216
217#ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq;
220
221 struct rt_bandwidth rt_bandwidth;
222#endif
223
224 struct rcu_head rcu;
225 struct list_head list;
226
227 struct task_group *parent;
228 struct list_head siblings;
229 struct list_head children;
230
231#ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup;
233#endif
234
235 struct cfs_bandwidth cfs_bandwidth;
236};
237
238#ifdef CONFIG_FAIR_GROUP_SCHED
239#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240
241/*
242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.)
248 */
249#define MIN_SHARES (1UL << 1)
250#define MAX_SHARES (1UL << 18)
251#endif
252
Peter Zijlstra029632f2011-10-25 10:00:11 +0200253typedef int (*tg_visitor)(struct task_group *, void *);
254
255extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data);
257
258/*
259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time.
261 *
262 * Caller must hold rcu_lock or sufficient equivalent.
263 */
264static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265{
266 return walk_tg_tree_from(&root_task_group, down, up, data);
267}
268
269extern int tg_nop(struct task_group *tg, void *data);
270
271extern void free_fair_sched_group(struct task_group *tg);
272extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent);
277extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279
280extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283
284extern void free_rt_sched_group(struct task_group *tg);
285extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent);
289
Li Zefan25cc7da2013-03-05 16:07:33 +0800290extern struct task_group *sched_create_group(struct task_group *parent);
291extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent);
293extern void sched_destroy_group(struct task_group *tg);
294extern void sched_offline_group(struct task_group *tg);
295
296extern void sched_move_task(struct task_struct *tsk);
297
298#ifdef CONFIG_FAIR_GROUP_SCHED
299extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300#endif
301
Peter Zijlstra029632f2011-10-25 10:00:11 +0200302#else /* CONFIG_CGROUP_SCHED */
303
304struct cfs_bandwidth { };
305
306#endif /* CONFIG_CGROUP_SCHED */
307
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200311 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200312
313 u64 exec_clock;
314 u64 min_vruntime;
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
Peter Zijlstra029632f2011-10-25 10:00:11 +0200322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328#ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over;
330#endif
331
Paul Turner2dac7542012-10-04 13:18:30 +0200332#ifdef CONFIG_SMP
333 /*
334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case).
338 */
Alex Shi72a4cf22013-06-20 10:18:53 +0800339 unsigned long runnable_load_avg, blocked_load_avg;
Alex Shi25099402013-06-20 10:18:55 +0800340 atomic64_t decay_counter;
Paul Turner9ee474f2012-10-04 13:18:30 +0200341 u64 last_decay;
Alex Shi25099402013-06-20 10:18:55 +0800342 atomic_long_t removed_load;
Alex Shi141965c2013-06-26 13:05:39 +0800343
Paul Turnerc566e8e2012-10-04 13:18:30 +0200344#ifdef CONFIG_FAIR_GROUP_SCHED
Alex Shi141965c2013-06-26 13:05:39 +0800345 /* Required to track per-cpu representation of a task_group */
Paul Turnerbb17f652012-10-04 13:18:31 +0200346 u32 tg_runnable_contrib;
Alex Shibf5b9862013-06-20 10:18:54 +0800347 unsigned long tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200348
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400356 u64 last_h_load_update;
357 struct sched_entity *h_load_next;
358#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200359#endif /* CONFIG_SMP */
360
Peter Zijlstra029632f2011-10-25 10:00:11 +0200361#ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
Peter Zijlstra029632f2011-10-25 10:00:11 +0200376#ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled;
378 u64 runtime_expires;
379 s64 runtime_remaining;
380
Paul Turnerf1b17282012-10-04 13:18:31 +0200381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200383 int throttled, throttle_count;
384 struct list_head throttled_list;
385#endif /* CONFIG_CFS_BANDWIDTH */
386#endif /* CONFIG_FAIR_GROUP_SCHED */
387};
388
389static inline int rt_bandwidth_enabled(void)
390{
391 return sysctl_sched_rt_runtime >= 0;
392}
393
394/* Real-Time classes' related field in a runqueue: */
395struct rt_rq {
396 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200397 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200398#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct {
400 int curr; /* highest queued rt task prio */
401#ifdef CONFIG_SMP
402 int next; /* next highest */
403#endif
404 } highest_prio;
405#endif
406#ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total;
409 int overloaded;
410 struct plist_head pushable_tasks;
411#endif
412 int rt_throttled;
413 u64 rt_time;
414 u64 rt_runtime;
415 /* Nests inside the rq lock: */
416 raw_spinlock_t rt_runtime_lock;
417
418#ifdef CONFIG_RT_GROUP_SCHED
419 unsigned long rt_nr_boosted;
420
421 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200422 struct task_group *tg;
423#endif
424};
425
Dario Faggioliaab03e02013-11-28 11:14:43 +0100426/* Deadline class' related fields in a runqueue */
427struct dl_rq {
428 /* runqueue is an rbtree, ordered by deadline */
429 struct rb_root rb_root;
430 struct rb_node *rb_leftmost;
431
432 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100433
434#ifdef CONFIG_SMP
435 /*
436 * Deadline values of the currently executing and the
437 * earliest ready task on this rq. Caching these facilitates
438 * the decision wether or not a ready but not running task
439 * should migrate somewhere else.
440 */
441 struct {
442 u64 curr;
443 u64 next;
444 } earliest_dl;
445
446 unsigned long dl_nr_migratory;
447 unsigned long dl_nr_total;
448 int overloaded;
449
450 /*
451 * Tasks on this rq that can be pushed away. They are kept in
452 * an rb-tree, ordered by tasks' deadlines, with caching
453 * of the leftmost (earliest deadline) element.
454 */
455 struct rb_root pushable_dl_tasks_root;
456 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100457#else
458 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100459#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100460};
461
Peter Zijlstra029632f2011-10-25 10:00:11 +0200462#ifdef CONFIG_SMP
463
464/*
465 * We add the notion of a root-domain which will be used to define per-domain
466 * variables. Each exclusive cpuset essentially defines an island domain by
467 * fully partitioning the member cpus from any other cpuset. Whenever a new
468 * exclusive cpuset is created, we also create and attach a new root-domain
469 * object.
470 *
471 */
472struct root_domain {
473 atomic_t refcount;
474 atomic_t rto_count;
475 struct rcu_head rcu;
476 cpumask_var_t span;
477 cpumask_var_t online;
478
479 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100480 * The bit corresponding to a CPU gets set here if such CPU has more
481 * than one runnable -deadline task (as it is below for RT tasks).
482 */
483 cpumask_var_t dlo_mask;
484 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100485 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100486 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100487
488 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200489 * The "RT overload" flag: it gets set if a CPU has more than
490 * one runnable RT task.
491 */
492 cpumask_var_t rto_mask;
493 struct cpupri cpupri;
494};
495
496extern struct root_domain def_root_domain;
497
498#endif /* CONFIG_SMP */
499
500/*
501 * This is the main, per-CPU runqueue data structure.
502 *
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
506 */
507struct rq {
508 /* runqueue lock: */
509 raw_spinlock_t lock;
510
511 /*
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
514 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200515 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100516#ifdef CONFIG_NUMA_BALANCING
517 unsigned int nr_numa_running;
518 unsigned int nr_preferred_running;
519#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200520 #define CPU_LOAD_IDX_MAX 5
521 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
522 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200523#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200524 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800525 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200526#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200527#ifdef CONFIG_NO_HZ_FULL
528 unsigned long last_sched_tick;
529#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200530 int skip_clock_update;
531
532 /* capture load from *all* tasks on this cpu: */
533 struct load_weight load;
534 unsigned long nr_load_updates;
535 u64 nr_switches;
536
537 struct cfs_rq cfs;
538 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100539 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200540
541#ifdef CONFIG_FAIR_GROUP_SCHED
542 /* list of leaf cfs_rq on this cpu: */
543 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200544#endif /* CONFIG_FAIR_GROUP_SCHED */
545
Peter Zijlstra029632f2011-10-25 10:00:11 +0200546#ifdef CONFIG_RT_GROUP_SCHED
547 struct list_head leaf_rt_rq_list;
548#endif
549
550 /*
551 * This is part of a global counter where only the total sum
552 * over all CPUs matters. A task can increase this counter on
553 * one CPU and if it got migrated afterwards it may decrease
554 * it on another CPU. Always updated under the runqueue lock:
555 */
556 unsigned long nr_uninterruptible;
557
558 struct task_struct *curr, *idle, *stop;
559 unsigned long next_balance;
560 struct mm_struct *prev_mm;
561
562 u64 clock;
563 u64 clock_task;
564
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
568 struct root_domain *rd;
569 struct sched_domain *sd;
570
571 unsigned long cpu_power;
572
573 unsigned char idle_balance;
574 /* For active balancing */
575 int post_schedule;
576 int active_balance;
577 int push_cpu;
578 struct cpu_stop_work active_balance_work;
579 /* cpu of this runqueue: */
580 int cpu;
581 int online;
582
Peter Zijlstra367456c2012-02-20 21:49:09 +0100583 struct list_head cfs_tasks;
584
Peter Zijlstra029632f2011-10-25 10:00:11 +0200585 u64 rt_avg;
586 u64 age_stamp;
587 u64 idle_stamp;
588 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700589
590 /* This is used to determine avg_idle's max value */
591 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200592#endif
593
594#ifdef CONFIG_IRQ_TIME_ACCOUNTING
595 u64 prev_irq_time;
596#endif
597#ifdef CONFIG_PARAVIRT
598 u64 prev_steal_time;
599#endif
600#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
601 u64 prev_steal_time_rq;
602#endif
603
604 /* calc_load related fields */
605 unsigned long calc_load_update;
606 long calc_load_active;
607
608#ifdef CONFIG_SCHED_HRTICK
609#ifdef CONFIG_SMP
610 int hrtick_csd_pending;
611 struct call_single_data hrtick_csd;
612#endif
613 struct hrtimer hrtick_timer;
614#endif
615
616#ifdef CONFIG_SCHEDSTATS
617 /* latency stats */
618 struct sched_info rq_sched_info;
619 unsigned long long rq_cpu_time;
620 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
621
622 /* sys_sched_yield() stats */
623 unsigned int yld_count;
624
625 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200626 unsigned int sched_count;
627 unsigned int sched_goidle;
628
629 /* try_to_wake_up() stats */
630 unsigned int ttwu_count;
631 unsigned int ttwu_local;
632#endif
633
634#ifdef CONFIG_SMP
635 struct llist_head wake_list;
636#endif
Ben Segall18bf2802012-10-04 12:51:20 +0200637
638 struct sched_avg avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200639};
640
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
650DECLARE_PER_CPU(struct rq, runqueues);
651
Peter Zijlstra518cd622011-12-07 15:07:31 +0100652#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
653#define this_rq() (&__get_cpu_var(runqueues))
654#define task_rq(p) cpu_rq(task_cpu(p))
655#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
656#define raw_rq() (&__raw_get_cpu_var(runqueues))
657
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200658static inline u64 rq_clock(struct rq *rq)
659{
660 return rq->clock;
661}
662
663static inline u64 rq_clock_task(struct rq *rq)
664{
665 return rq->clock_task;
666}
667
Mel Gormanf809ca92013-10-07 11:28:57 +0100668#ifdef CONFIG_NUMA_BALANCING
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100669extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100670extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100671extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100672#endif /* CONFIG_NUMA_BALANCING */
673
Peter Zijlstra518cd622011-12-07 15:07:31 +0100674#ifdef CONFIG_SMP
675
Peter Zijlstra029632f2011-10-25 10:00:11 +0200676#define rcu_dereference_check_sched_domain(p) \
677 rcu_dereference_check((p), \
678 lockdep_is_held(&sched_domains_mutex))
679
680/*
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
683 *
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
686 */
687#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100688 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
689 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200690
Suresh Siddha77e81362011-11-17 11:08:23 -0800691#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
692
Peter Zijlstra518cd622011-12-07 15:07:31 +0100693/**
694 * highest_flag_domain - Return highest sched_domain containing flag.
695 * @cpu: The cpu whose highest level of sched domain is to
696 * be returned.
697 * @flag: The flag to check for the highest sched_domain
698 * for the given cpu.
699 *
700 * Returns the highest sched_domain of a cpu which contains the given flag.
701 */
702static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
703{
704 struct sched_domain *sd, *hsd = NULL;
705
706 for_each_domain(cpu, sd) {
707 if (!(sd->flags & flag))
708 break;
709 hsd = sd;
710 }
711
712 return hsd;
713}
714
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100715static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
716{
717 struct sched_domain *sd;
718
719 for_each_domain(cpu, sd) {
720 if (sd->flags & flag)
721 break;
722 }
723
724 return sd;
725}
726
Peter Zijlstra518cd622011-12-07 15:07:31 +0100727DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800728DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100729DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100730DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530731DECLARE_PER_CPU(struct sched_domain *, sd_busy);
732DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100733
Li Zefan5e6521e2013-03-05 16:06:23 +0800734struct sched_group_power {
735 atomic_t ref;
736 /*
737 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
738 * single CPU.
739 */
740 unsigned int power, power_orig;
741 unsigned long next_update;
Peter Zijlstra62633222013-08-19 12:41:09 +0200742 int imbalance; /* XXX unrelated to power but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800743 /*
744 * Number of busy cpus in this group.
745 */
746 atomic_t nr_busy_cpus;
747
748 unsigned long cpumask[0]; /* iteration mask */
749};
750
751struct sched_group {
752 struct sched_group *next; /* Must be a circular list */
753 atomic_t ref;
754
755 unsigned int group_weight;
756 struct sched_group_power *sgp;
757
758 /*
759 * The CPUs this group covers.
760 *
761 * NOTE: this field is variable length. (Allocated dynamically
762 * by attaching extra space to the end of the structure,
763 * depending on how many CPUs the kernel has booted up with)
764 */
765 unsigned long cpumask[0];
766};
767
768static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
769{
770 return to_cpumask(sg->cpumask);
771}
772
773/*
774 * cpumask masking which cpus in the group are allowed to iterate up the domain
775 * tree.
776 */
777static inline struct cpumask *sched_group_mask(struct sched_group *sg)
778{
779 return to_cpumask(sg->sgp->cpumask);
780}
781
782/**
783 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
784 * @group: The group whose first cpu is to be returned.
785 */
786static inline unsigned int group_first_cpu(struct sched_group *group)
787{
788 return cpumask_first(sched_group_cpus(group));
789}
790
Peter Zijlstrac1174872012-05-31 14:47:33 +0200791extern int group_balance_cpu(struct sched_group *sg);
792
Peter Zijlstra518cd622011-12-07 15:07:31 +0100793#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200794
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100795#include "stats.h"
796#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200797
798#ifdef CONFIG_CGROUP_SCHED
799
800/*
801 * Return the group to which this tasks belongs.
802 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400803 * We cannot use task_css() and friends because the cgroup subsystem
804 * changes that value before the cgroup_subsys::attach() method is called,
805 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200806 *
807 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
808 * core changes this before calling sched_move_task().
809 *
810 * Instead we use a 'copy' which is updated from sched_move_task() while
811 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200812 */
813static inline struct task_group *task_group(struct task_struct *p)
814{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200815 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200816}
817
818/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
819static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
820{
821#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
822 struct task_group *tg = task_group(p);
823#endif
824
825#ifdef CONFIG_FAIR_GROUP_SCHED
826 p->se.cfs_rq = tg->cfs_rq[cpu];
827 p->se.parent = tg->se[cpu];
828#endif
829
830#ifdef CONFIG_RT_GROUP_SCHED
831 p->rt.rt_rq = tg->rt_rq[cpu];
832 p->rt.parent = tg->rt_se[cpu];
833#endif
834}
835
836#else /* CONFIG_CGROUP_SCHED */
837
838static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
839static inline struct task_group *task_group(struct task_struct *p)
840{
841 return NULL;
842}
843
844#endif /* CONFIG_CGROUP_SCHED */
845
846static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
847{
848 set_task_rq(p, cpu);
849#ifdef CONFIG_SMP
850 /*
851 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
852 * successfuly executed on another CPU. We must ensure that updates of
853 * per-task data have been completed by this moment.
854 */
855 smp_wmb();
856 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100857 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200858#endif
859}
860
861/*
862 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
863 */
864#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100865# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200866# define const_debug __read_mostly
867#else
868# define const_debug const
869#endif
870
871extern const_debug unsigned int sysctl_sched_features;
872
873#define SCHED_FEAT(name, enabled) \
874 __SCHED_FEAT_##name ,
875
876enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100877#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200878 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200879};
880
881#undef SCHED_FEAT
882
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200883#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100884static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200885{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100886 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200887}
888
Ingo Molnarc5905af2012-02-24 08:31:31 +0100889static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200890{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100891 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200892}
893
894#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100895static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200896{ \
897 return static_branch__##enabled(key); \
898}
899
900#include "features.h"
901
902#undef SCHED_FEAT
903
Ingo Molnarc5905af2012-02-24 08:31:31 +0100904extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200905#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
906#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200907#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200908#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200909
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200910#ifdef CONFIG_NUMA_BALANCING
911#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000912#ifdef CONFIG_SCHED_DEBUG
913#define numabalancing_enabled sched_feat_numa(NUMA)
914#else
915extern bool numabalancing_enabled;
916#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200917#else
918#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000919#define numabalancing_enabled (0)
920#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200921
Peter Zijlstra029632f2011-10-25 10:00:11 +0200922static inline u64 global_rt_period(void)
923{
924 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
925}
926
927static inline u64 global_rt_runtime(void)
928{
929 if (sysctl_sched_rt_runtime < 0)
930 return RUNTIME_INF;
931
932 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
933}
934
Peter Zijlstra029632f2011-10-25 10:00:11 +0200935static inline int task_current(struct rq *rq, struct task_struct *p)
936{
937 return rq->curr == p;
938}
939
940static inline int task_running(struct rq *rq, struct task_struct *p)
941{
942#ifdef CONFIG_SMP
943 return p->on_cpu;
944#else
945 return task_current(rq, p);
946#endif
947}
948
949
950#ifndef prepare_arch_switch
951# define prepare_arch_switch(next) do { } while (0)
952#endif
953#ifndef finish_arch_switch
954# define finish_arch_switch(prev) do { } while (0)
955#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000956#ifndef finish_arch_post_lock_switch
957# define finish_arch_post_lock_switch() do { } while (0)
958#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200959
960#ifndef __ARCH_WANT_UNLOCKED_CTXSW
961static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
962{
963#ifdef CONFIG_SMP
964 /*
965 * We can optimise this out completely for !SMP, because the
966 * SMP rebalancing from interrupt is the only thing that cares
967 * here.
968 */
969 next->on_cpu = 1;
970#endif
971}
972
973static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
974{
975#ifdef CONFIG_SMP
976 /*
977 * After ->on_cpu is cleared, the task can be moved to a different CPU.
978 * We must ensure this doesn't happen until the switch is completely
979 * finished.
980 */
981 smp_wmb();
982 prev->on_cpu = 0;
983#endif
984#ifdef CONFIG_DEBUG_SPINLOCK
985 /* this is a valid case when another task releases the spinlock */
986 rq->lock.owner = current;
987#endif
988 /*
989 * If we are tracking spinlock dependencies then we have to
990 * fix up the runqueue lock - which gets 'carried over' from
991 * prev into current:
992 */
993 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
994
995 raw_spin_unlock_irq(&rq->lock);
996}
997
998#else /* __ARCH_WANT_UNLOCKED_CTXSW */
999static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1000{
1001#ifdef CONFIG_SMP
1002 /*
1003 * We can optimise this out completely for !SMP, because the
1004 * SMP rebalancing from interrupt is the only thing that cares
1005 * here.
1006 */
1007 next->on_cpu = 1;
1008#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001009 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001010}
1011
1012static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1013{
1014#ifdef CONFIG_SMP
1015 /*
1016 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1017 * We must ensure this doesn't happen until the switch is completely
1018 * finished.
1019 */
1020 smp_wmb();
1021 prev->on_cpu = 0;
1022#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001023 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +02001024}
1025#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1026
Li Zefanb13095f2013-03-05 16:06:38 +08001027/*
1028 * wake flags
1029 */
1030#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1031#define WF_FORK 0x02 /* child wakeup after fork */
1032#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1033
Peter Zijlstra029632f2011-10-25 10:00:11 +02001034/*
1035 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1036 * of tasks with abnormal "nice" values across CPUs the contribution that
1037 * each task makes to its run queue's load is weighted according to its
1038 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1039 * scaled version of the new time slice allocation that they receive on time
1040 * slice expiry etc.
1041 */
1042
1043#define WEIGHT_IDLEPRIO 3
1044#define WMULT_IDLEPRIO 1431655765
1045
1046/*
1047 * Nice levels are multiplicative, with a gentle 10% change for every
1048 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1049 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1050 * that remained on nice 0.
1051 *
1052 * The "10% effect" is relative and cumulative: from _any_ nice level,
1053 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1054 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1055 * If a task goes up by ~10% and another task goes down by ~10% then
1056 * the relative distance between them is ~25%.)
1057 */
1058static const int prio_to_weight[40] = {
1059 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1060 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1061 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1062 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1063 /* 0 */ 1024, 820, 655, 526, 423,
1064 /* 5 */ 335, 272, 215, 172, 137,
1065 /* 10 */ 110, 87, 70, 56, 45,
1066 /* 15 */ 36, 29, 23, 18, 15,
1067};
1068
1069/*
1070 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1071 *
1072 * In cases where the weight does not change often, we can use the
1073 * precalculated inverse to speed up arithmetics by turning divisions
1074 * into multiplications:
1075 */
1076static const u32 prio_to_wmult[40] = {
1077 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1078 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1079 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1080 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1081 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1082 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1083 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1084 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1085};
1086
Li Zefanc82ba9f2013-03-05 16:06:55 +08001087#define ENQUEUE_WAKEUP 1
1088#define ENQUEUE_HEAD 2
1089#ifdef CONFIG_SMP
1090#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1091#else
1092#define ENQUEUE_WAKING 0
1093#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +01001094#define ENQUEUE_REPLENISH 8
Li Zefanc82ba9f2013-03-05 16:06:55 +08001095
1096#define DEQUEUE_SLEEP 1
1097
1098struct sched_class {
1099 const struct sched_class *next;
1100
1101 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1102 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1103 void (*yield_task) (struct rq *rq);
1104 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1105
1106 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1107
Peter Zijlstra606dba22012-02-11 06:05:00 +01001108 /*
1109 * It is the responsibility of the pick_next_task() method that will
1110 * return the next task to call put_prev_task() on the @prev task or
1111 * something equivalent.
1112 */
1113 struct task_struct * (*pick_next_task) (struct rq *rq,
1114 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001115 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1116
1117#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001118 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001119 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1120
1121 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1122 void (*post_schedule) (struct rq *this_rq);
1123 void (*task_waking) (struct task_struct *task);
1124 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1125
1126 void (*set_cpus_allowed)(struct task_struct *p,
1127 const struct cpumask *newmask);
1128
1129 void (*rq_online)(struct rq *rq);
1130 void (*rq_offline)(struct rq *rq);
1131#endif
1132
1133 void (*set_curr_task) (struct rq *rq);
1134 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1135 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001136 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001137
1138 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1139 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1140 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1141 int oldprio);
1142
1143 unsigned int (*get_rr_interval) (struct rq *rq,
1144 struct task_struct *task);
1145
1146#ifdef CONFIG_FAIR_GROUP_SCHED
1147 void (*task_move_group) (struct task_struct *p, int on_rq);
1148#endif
1149};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001150
1151#define sched_class_highest (&stop_sched_class)
1152#define for_each_class(class) \
1153 for (class = sched_class_highest; class; class = class->next)
1154
1155extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001156extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001157extern const struct sched_class rt_sched_class;
1158extern const struct sched_class fair_sched_class;
1159extern const struct sched_class idle_sched_class;
1160
1161
1162#ifdef CONFIG_SMP
1163
Li Zefanb7192032013-03-07 10:00:26 +08001164extern void update_group_power(struct sched_domain *sd, int cpu);
1165
Daniel Lezcano7caff662014-01-06 12:34:38 +01001166extern void trigger_load_balance(struct rq *rq);
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01001167extern int idle_balance(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001168
Vincent Guittot642dbc32013-04-18 18:34:26 +02001169extern void idle_enter_fair(struct rq *this_rq);
1170extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001171
Peter Zijlstra029632f2011-10-25 10:00:11 +02001172#else /* CONFIG_SMP */
1173
1174static inline void idle_balance(int cpu, struct rq *rq)
1175{
1176}
1177
1178#endif
1179
1180extern void sysrq_sched_debug_show(void);
1181extern void sched_init_granularity(void);
1182extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001183
1184extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001185extern void init_sched_rt_class(void);
1186extern void init_sched_fair_class(void);
Dario Faggioli332ac172013-11-07 14:43:45 +01001187extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001188
1189extern void resched_task(struct task_struct *p);
1190extern void resched_cpu(int cpu);
1191
1192extern struct rt_bandwidth def_rt_bandwidth;
1193extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1194
Dario Faggioli332ac172013-11-07 14:43:45 +01001195extern struct dl_bandwidth def_dl_bandwidth;
1196extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001197extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1198
Dario Faggioli332ac172013-11-07 14:43:45 +01001199unsigned long to_ratio(u64 period, u64 runtime);
1200
Peter Zijlstra556061b2012-05-11 17:31:26 +02001201extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001202
Alex Shia75cdaa2013-06-20 10:18:47 +08001203extern void init_task_runnable_average(struct task_struct *p);
1204
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001205#ifdef CONFIG_PARAVIRT
1206static inline u64 steal_ticks(u64 steal)
1207{
1208 if (unlikely(steal > NSEC_PER_SEC))
1209 return div_u64(steal, TICK_NSEC);
1210
1211 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1212}
1213#endif
1214
Peter Zijlstra029632f2011-10-25 10:00:11 +02001215static inline void inc_nr_running(struct rq *rq)
1216{
1217 rq->nr_running++;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001218
1219#ifdef CONFIG_NO_HZ_FULL
1220 if (rq->nr_running == 2) {
1221 if (tick_nohz_full_cpu(rq->cpu)) {
1222 /* Order rq->nr_running write against the IPI */
1223 smp_wmb();
1224 smp_send_reschedule(rq->cpu);
1225 }
1226 }
1227#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001228}
1229
1230static inline void dec_nr_running(struct rq *rq)
1231{
1232 rq->nr_running--;
1233}
1234
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001235static inline void rq_last_tick_reset(struct rq *rq)
1236{
1237#ifdef CONFIG_NO_HZ_FULL
1238 rq->last_sched_tick = jiffies;
1239#endif
1240}
1241
Peter Zijlstra029632f2011-10-25 10:00:11 +02001242extern void update_rq_clock(struct rq *rq);
1243
1244extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1245extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1246
1247extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1248
1249extern const_debug unsigned int sysctl_sched_time_avg;
1250extern const_debug unsigned int sysctl_sched_nr_migrate;
1251extern const_debug unsigned int sysctl_sched_migration_cost;
1252
1253static inline u64 sched_avg_period(void)
1254{
1255 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1256}
1257
Peter Zijlstra029632f2011-10-25 10:00:11 +02001258#ifdef CONFIG_SCHED_HRTICK
1259
1260/*
1261 * Use hrtick when:
1262 * - enabled by features
1263 * - hrtimer is actually high res
1264 */
1265static inline int hrtick_enabled(struct rq *rq)
1266{
1267 if (!sched_feat(HRTICK))
1268 return 0;
1269 if (!cpu_active(cpu_of(rq)))
1270 return 0;
1271 return hrtimer_is_hres_active(&rq->hrtick_timer);
1272}
1273
1274void hrtick_start(struct rq *rq, u64 delay);
1275
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001276#else
1277
1278static inline int hrtick_enabled(struct rq *rq)
1279{
1280 return 0;
1281}
1282
Peter Zijlstra029632f2011-10-25 10:00:11 +02001283#endif /* CONFIG_SCHED_HRTICK */
1284
1285#ifdef CONFIG_SMP
1286extern void sched_avg_update(struct rq *rq);
1287static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1288{
1289 rq->rt_avg += rt_delta;
1290 sched_avg_update(rq);
1291}
1292#else
1293static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1294static inline void sched_avg_update(struct rq *rq) { }
1295#endif
1296
1297extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1298
1299#ifdef CONFIG_SMP
1300#ifdef CONFIG_PREEMPT
1301
1302static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1303
1304/*
1305 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1306 * way at the expense of forcing extra atomic operations in all
1307 * invocations. This assures that the double_lock is acquired using the
1308 * same underlying policy as the spinlock_t on this architecture, which
1309 * reduces latency compared to the unfair variant below. However, it
1310 * also adds more overhead and therefore may reduce throughput.
1311 */
1312static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1313 __releases(this_rq->lock)
1314 __acquires(busiest->lock)
1315 __acquires(this_rq->lock)
1316{
1317 raw_spin_unlock(&this_rq->lock);
1318 double_rq_lock(this_rq, busiest);
1319
1320 return 1;
1321}
1322
1323#else
1324/*
1325 * Unfair double_lock_balance: Optimizes throughput at the expense of
1326 * latency by eliminating extra atomic operations when the locks are
1327 * already in proper order on entry. This favors lower cpu-ids and will
1328 * grant the double lock to lower cpus over higher ids under contention,
1329 * regardless of entry order into the function.
1330 */
1331static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1332 __releases(this_rq->lock)
1333 __acquires(busiest->lock)
1334 __acquires(this_rq->lock)
1335{
1336 int ret = 0;
1337
1338 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1339 if (busiest < this_rq) {
1340 raw_spin_unlock(&this_rq->lock);
1341 raw_spin_lock(&busiest->lock);
1342 raw_spin_lock_nested(&this_rq->lock,
1343 SINGLE_DEPTH_NESTING);
1344 ret = 1;
1345 } else
1346 raw_spin_lock_nested(&busiest->lock,
1347 SINGLE_DEPTH_NESTING);
1348 }
1349 return ret;
1350}
1351
1352#endif /* CONFIG_PREEMPT */
1353
1354/*
1355 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1356 */
1357static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1358{
1359 if (unlikely(!irqs_disabled())) {
1360 /* printk() doesn't work good under rq->lock */
1361 raw_spin_unlock(&this_rq->lock);
1362 BUG_ON(1);
1363 }
1364
1365 return _double_lock_balance(this_rq, busiest);
1366}
1367
1368static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1369 __releases(busiest->lock)
1370{
1371 raw_spin_unlock(&busiest->lock);
1372 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1373}
1374
Peter Zijlstra74602312013-10-10 20:17:22 +02001375static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1376{
1377 if (l1 > l2)
1378 swap(l1, l2);
1379
1380 spin_lock(l1);
1381 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1382}
1383
1384static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1385{
1386 if (l1 > l2)
1387 swap(l1, l2);
1388
1389 raw_spin_lock(l1);
1390 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1391}
1392
Peter Zijlstra029632f2011-10-25 10:00:11 +02001393/*
1394 * double_rq_lock - safely lock two runqueues
1395 *
1396 * Note this does not disable interrupts like task_rq_lock,
1397 * you need to do so manually before calling.
1398 */
1399static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1400 __acquires(rq1->lock)
1401 __acquires(rq2->lock)
1402{
1403 BUG_ON(!irqs_disabled());
1404 if (rq1 == rq2) {
1405 raw_spin_lock(&rq1->lock);
1406 __acquire(rq2->lock); /* Fake it out ;) */
1407 } else {
1408 if (rq1 < rq2) {
1409 raw_spin_lock(&rq1->lock);
1410 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1411 } else {
1412 raw_spin_lock(&rq2->lock);
1413 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1414 }
1415 }
1416}
1417
1418/*
1419 * double_rq_unlock - safely unlock two runqueues
1420 *
1421 * Note this does not restore interrupts like task_rq_unlock,
1422 * you need to do so manually after calling.
1423 */
1424static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1425 __releases(rq1->lock)
1426 __releases(rq2->lock)
1427{
1428 raw_spin_unlock(&rq1->lock);
1429 if (rq1 != rq2)
1430 raw_spin_unlock(&rq2->lock);
1431 else
1432 __release(rq2->lock);
1433}
1434
1435#else /* CONFIG_SMP */
1436
1437/*
1438 * double_rq_lock - safely lock two runqueues
1439 *
1440 * Note this does not disable interrupts like task_rq_lock,
1441 * you need to do so manually before calling.
1442 */
1443static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1444 __acquires(rq1->lock)
1445 __acquires(rq2->lock)
1446{
1447 BUG_ON(!irqs_disabled());
1448 BUG_ON(rq1 != rq2);
1449 raw_spin_lock(&rq1->lock);
1450 __acquire(rq2->lock); /* Fake it out ;) */
1451}
1452
1453/*
1454 * double_rq_unlock - safely unlock two runqueues
1455 *
1456 * Note this does not restore interrupts like task_rq_unlock,
1457 * you need to do so manually after calling.
1458 */
1459static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1460 __releases(rq1->lock)
1461 __releases(rq2->lock)
1462{
1463 BUG_ON(rq1 != rq2);
1464 raw_spin_unlock(&rq1->lock);
1465 __release(rq2->lock);
1466}
1467
1468#endif
1469
1470extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1471extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1472extern void print_cfs_stats(struct seq_file *m, int cpu);
1473extern void print_rt_stats(struct seq_file *m, int cpu);
1474
1475extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1476extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001477extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001478
Ben Segall1ee14e62013-10-16 11:16:12 -07001479extern void cfs_bandwidth_usage_inc(void);
1480extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001481
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001482#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001483enum rq_nohz_flag_bits {
1484 NOHZ_TICK_STOPPED,
1485 NOHZ_BALANCE_KICK,
1486};
1487
1488#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1489#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001490
1491#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1492
1493DECLARE_PER_CPU(u64, cpu_hardirq_time);
1494DECLARE_PER_CPU(u64, cpu_softirq_time);
1495
1496#ifndef CONFIG_64BIT
1497DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1498
1499static inline void irq_time_write_begin(void)
1500{
1501 __this_cpu_inc(irq_time_seq.sequence);
1502 smp_wmb();
1503}
1504
1505static inline void irq_time_write_end(void)
1506{
1507 smp_wmb();
1508 __this_cpu_inc(irq_time_seq.sequence);
1509}
1510
1511static inline u64 irq_time_read(int cpu)
1512{
1513 u64 irq_time;
1514 unsigned seq;
1515
1516 do {
1517 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1518 irq_time = per_cpu(cpu_softirq_time, cpu) +
1519 per_cpu(cpu_hardirq_time, cpu);
1520 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1521
1522 return irq_time;
1523}
1524#else /* CONFIG_64BIT */
1525static inline void irq_time_write_begin(void)
1526{
1527}
1528
1529static inline void irq_time_write_end(void)
1530{
1531}
1532
1533static inline u64 irq_time_read(int cpu)
1534{
1535 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1536}
1537#endif /* CONFIG_64BIT */
1538#endif /* CONFIG_IRQ_TIME_ACCOUNTING */