blob: bd2373273a9e3b2b970bd9c47555586aad684e0f [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02009#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010010#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020011
Peter Zijlstra391e43d2011-11-15 17:14:39 +010012#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010013#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080014#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020015
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040016struct rq;
Daniel Lezcano442bf3a2014-09-04 11:32:09 -040017struct cpuidle_state;
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040018
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040019/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
Kirill Tkhaicca26e82014-08-20 13:47:42 +040021#define TASK_ON_RQ_MIGRATING 2
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040022
Peter Zijlstra029632f2011-10-25 10:00:11 +020023extern __read_mostly int scheduler_running;
24
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040025extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
Peter Zijlstra029632f2011-10-25 10:00:11 +020031/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020032 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
Li Zefancc1f4b12013-03-05 16:06:09 +080036/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
Peter Zijlstra029632f2011-10-25 10:00:11 +020061#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64/*
Dario Faggioli332ac172013-11-07 14:43:45 +010065 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
71/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020072 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020073 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020074
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
Dario Faggiolid50dde52013-11-07 14:43:36 +010080static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
Peter Zijlstra029632f2011-10-25 10:00:11 +020085static inline int rt_policy(int policy)
86{
Dario Faggiolid50dde52013-11-07 14:43:36 +010087 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020088}
89
Dario Faggioliaab03e02013-11-28 11:14:43 +010090static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
Peter Zijlstra029632f2011-10-25 10:00:11 +020095static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
Dario Faggioliaab03e02013-11-28 11:14:43 +0100100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
Dario Faggioli332ac172013-11-07 14:43:45 +0100105static inline bool dl_time_before(u64 a, u64 b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
Peter Zijlstra029632f2011-10-25 10:00:11 +0200119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
Juri Lellia5e7be32014-09-19 10:22:39 +0100134
135void __dl_clear_params(struct task_struct *p);
136
Dario Faggioli332ac172013-11-07 14:43:45 +0100137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
Peter Zijlstra17248132013-12-17 12:44:49 +0100169 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
Juri Lelli7f514122014-09-19 10:22:40 +0100179static inline
180void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
181{
182 dl_b->total_bw -= tsk_bw;
183}
184
185static inline
186void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
187{
188 dl_b->total_bw += tsk_bw;
189}
190
191static inline
192bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
193{
194 return dl_b->bw != -1 &&
195 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
196}
197
Peter Zijlstra029632f2011-10-25 10:00:11 +0200198extern struct mutex sched_domains_mutex;
199
200#ifdef CONFIG_CGROUP_SCHED
201
202#include <linux/cgroup.h>
203
204struct cfs_rq;
205struct rt_rq;
206
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200207extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200208
209struct cfs_bandwidth {
210#ifdef CONFIG_CFS_BANDWIDTH
211 raw_spinlock_t lock;
212 ktime_t period;
213 u64 quota, runtime;
Zhihui Zhang9c58c792014-09-20 21:24:36 -0400214 s64 hierarchical_quota;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200215 u64 runtime_expires;
216
217 int idle, timer_active;
218 struct hrtimer period_timer, slack_timer;
219 struct list_head throttled_cfs_rq;
220
221 /* statistics */
222 int nr_periods, nr_throttled;
223 u64 throttled_time;
224#endif
225};
226
227/* task group related information */
228struct task_group {
229 struct cgroup_subsys_state css;
230
231#ifdef CONFIG_FAIR_GROUP_SCHED
232 /* schedulable entities of this group on each cpu */
233 struct sched_entity **se;
234 /* runqueue "owned" by this group on each cpu */
235 struct cfs_rq **cfs_rq;
236 unsigned long shares;
237
Alex Shifa6bdde2013-06-20 10:18:46 +0800238#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800239 atomic_long_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200240 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200241#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800242#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200243
244#ifdef CONFIG_RT_GROUP_SCHED
245 struct sched_rt_entity **rt_se;
246 struct rt_rq **rt_rq;
247
248 struct rt_bandwidth rt_bandwidth;
249#endif
250
251 struct rcu_head rcu;
252 struct list_head list;
253
254 struct task_group *parent;
255 struct list_head siblings;
256 struct list_head children;
257
258#ifdef CONFIG_SCHED_AUTOGROUP
259 struct autogroup *autogroup;
260#endif
261
262 struct cfs_bandwidth cfs_bandwidth;
263};
264
265#ifdef CONFIG_FAIR_GROUP_SCHED
266#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
267
268/*
269 * A weight of 0 or 1 can cause arithmetics problems.
270 * A weight of a cfs_rq is the sum of weights of which entities
271 * are queued on this cfs_rq, so a weight of a entity should not be
272 * too large, so as the shares value of a task group.
273 * (The default weight is 1024 - so there's no practical
274 * limitation from this.)
275 */
276#define MIN_SHARES (1UL << 1)
277#define MAX_SHARES (1UL << 18)
278#endif
279
Peter Zijlstra029632f2011-10-25 10:00:11 +0200280typedef int (*tg_visitor)(struct task_group *, void *);
281
282extern int walk_tg_tree_from(struct task_group *from,
283 tg_visitor down, tg_visitor up, void *data);
284
285/*
286 * Iterate the full tree, calling @down when first entering a node and @up when
287 * leaving it for the final time.
288 *
289 * Caller must hold rcu_lock or sufficient equivalent.
290 */
291static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
292{
293 return walk_tg_tree_from(&root_task_group, down, up, data);
294}
295
296extern int tg_nop(struct task_group *tg, void *data);
297
298extern void free_fair_sched_group(struct task_group *tg);
299extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 struct sched_entity *se, int cpu,
303 struct sched_entity *parent);
304extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
306
307extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
Roman Gushchin09dc4ab2014-05-19 15:10:09 +0400308extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200309extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
310
311extern void free_rt_sched_group(struct task_group *tg);
312extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 struct sched_rt_entity *rt_se, int cpu,
315 struct sched_rt_entity *parent);
316
Li Zefan25cc7da2013-03-05 16:07:33 +0800317extern struct task_group *sched_create_group(struct task_group *parent);
318extern void sched_online_group(struct task_group *tg,
319 struct task_group *parent);
320extern void sched_destroy_group(struct task_group *tg);
321extern void sched_offline_group(struct task_group *tg);
322
323extern void sched_move_task(struct task_struct *tsk);
324
325#ifdef CONFIG_FAIR_GROUP_SCHED
326extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327#endif
328
Peter Zijlstra029632f2011-10-25 10:00:11 +0200329#else /* CONFIG_CGROUP_SCHED */
330
331struct cfs_bandwidth { };
332
333#endif /* CONFIG_CGROUP_SCHED */
334
335/* CFS-related fields in a runqueue */
336struct cfs_rq {
337 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200338 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200339
340 u64 exec_clock;
341 u64 min_vruntime;
342#ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344#endif
345
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
348
Peter Zijlstra029632f2011-10-25 10:00:11 +0200349 /*
350 * 'curr' points to currently running entity on this cfs_rq.
351 * It is set to NULL otherwise (i.e when none are currently running).
352 */
353 struct sched_entity *curr, *next, *last, *skip;
354
355#ifdef CONFIG_SCHED_DEBUG
356 unsigned int nr_spread_over;
357#endif
358
Paul Turner2dac7542012-10-04 13:18:30 +0200359#ifdef CONFIG_SMP
360 /*
361 * CFS Load tracking
362 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 * This allows for the description of both thread and group usage (in
364 * the FAIR_GROUP_SCHED case).
365 */
Alex Shi72a4cf22013-06-20 10:18:53 +0800366 unsigned long runnable_load_avg, blocked_load_avg;
Alex Shi25099402013-06-20 10:18:55 +0800367 atomic64_t decay_counter;
Paul Turner9ee474f2012-10-04 13:18:30 +0200368 u64 last_decay;
Alex Shi25099402013-06-20 10:18:55 +0800369 atomic_long_t removed_load;
Alex Shi141965c2013-06-26 13:05:39 +0800370
Paul Turnerc566e8e2012-10-04 13:18:30 +0200371#ifdef CONFIG_FAIR_GROUP_SCHED
Alex Shi141965c2013-06-26 13:05:39 +0800372 /* Required to track per-cpu representation of a task_group */
Paul Turnerbb17f652012-10-04 13:18:31 +0200373 u32 tg_runnable_contrib;
Alex Shibf5b9862013-06-20 10:18:54 +0800374 unsigned long tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200375
376 /*
377 * h_load = weight * f(tg)
378 *
379 * Where f(tg) is the recursive weight fraction assigned to
380 * this group.
381 */
382 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400383 u64 last_h_load_update;
384 struct sched_entity *h_load_next;
385#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200386#endif /* CONFIG_SMP */
387
Peter Zijlstra029632f2011-10-25 10:00:11 +0200388#ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
399 int on_list;
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
402
Peter Zijlstra029632f2011-10-25 10:00:11 +0200403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
Paul Turnerf1b17282012-10-04 13:18:31 +0200408 u64 throttled_clock, throttled_clock_task;
409 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200410 int throttled, throttle_count;
411 struct list_head throttled_list;
412#endif /* CONFIG_CFS_BANDWIDTH */
413#endif /* CONFIG_FAIR_GROUP_SCHED */
414};
415
416static inline int rt_bandwidth_enabled(void)
417{
418 return sysctl_sched_rt_runtime >= 0;
419}
420
421/* Real-Time classes' related field in a runqueue: */
422struct rt_rq {
423 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200424 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200425#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 struct {
427 int curr; /* highest queued rt task prio */
428#ifdef CONFIG_SMP
429 int next; /* next highest */
430#endif
431 } highest_prio;
432#endif
433#ifdef CONFIG_SMP
434 unsigned long rt_nr_migratory;
435 unsigned long rt_nr_total;
436 int overloaded;
437 struct plist_head pushable_tasks;
438#endif
Kirill Tkhaif4ebcbc2014-03-15 02:15:00 +0400439 int rt_queued;
440
Peter Zijlstra029632f2011-10-25 10:00:11 +0200441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 raw_spinlock_t rt_runtime_lock;
446
447#ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
449
450 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200451 struct task_group *tg;
452#endif
453};
454
Dario Faggioliaab03e02013-11-28 11:14:43 +0100455/* Deadline class' related fields in a runqueue */
456struct dl_rq {
457 /* runqueue is an rbtree, ordered by deadline */
458 struct rb_root rb_root;
459 struct rb_node *rb_leftmost;
460
461 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100462
463#ifdef CONFIG_SMP
464 /*
465 * Deadline values of the currently executing and the
466 * earliest ready task on this rq. Caching these facilitates
467 * the decision wether or not a ready but not running task
468 * should migrate somewhere else.
469 */
470 struct {
471 u64 curr;
472 u64 next;
473 } earliest_dl;
474
475 unsigned long dl_nr_migratory;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100476 int overloaded;
477
478 /*
479 * Tasks on this rq that can be pushed away. They are kept in
480 * an rb-tree, ordered by tasks' deadlines, with caching
481 * of the leftmost (earliest deadline) element.
482 */
483 struct rb_root pushable_dl_tasks_root;
484 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100485#else
486 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100487#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100488};
489
Peter Zijlstra029632f2011-10-25 10:00:11 +0200490#ifdef CONFIG_SMP
491
492/*
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
497 * object.
498 *
499 */
500struct root_domain {
501 atomic_t refcount;
502 atomic_t rto_count;
503 struct rcu_head rcu;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
Tim Chen4486edd2014-06-23 12:16:49 -0700507 /* Indicate more than one runnable task for any CPU */
508 bool overload;
509
Peter Zijlstra029632f2011-10-25 10:00:11 +0200510 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100511 * The bit corresponding to a CPU gets set here if such CPU has more
512 * than one runnable -deadline task (as it is below for RT tasks).
513 */
514 cpumask_var_t dlo_mask;
515 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100516 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100517 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100518
519 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200520 * The "RT overload" flag: it gets set if a CPU has more than
521 * one runnable RT task.
522 */
523 cpumask_var_t rto_mask;
524 struct cpupri cpupri;
525};
526
527extern struct root_domain def_root_domain;
528
529#endif /* CONFIG_SMP */
530
531/*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538struct rq {
539 /* runqueue lock: */
540 raw_spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200546 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100547#ifdef CONFIG_NUMA_BALANCING
548 unsigned int nr_numa_running;
549 unsigned int nr_preferred_running;
550#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200554#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200555 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800556 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200557#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200558#ifdef CONFIG_NO_HZ_FULL
559 unsigned long last_sched_tick;
560#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200561 int skip_clock_update;
562
563 /* capture load from *all* tasks on this cpu: */
564 struct load_weight load;
565 unsigned long nr_load_updates;
566 u64 nr_switches;
567
568 struct cfs_rq cfs;
569 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100570 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200571
572#ifdef CONFIG_FAIR_GROUP_SCHED
573 /* list of leaf cfs_rq on this cpu: */
574 struct list_head leaf_cfs_rq_list;
Dietmar Eggemannf5f97392014-02-26 11:19:33 +0000575
576 struct sched_avg avg;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200577#endif /* CONFIG_FAIR_GROUP_SCHED */
578
Peter Zijlstra029632f2011-10-25 10:00:11 +0200579 /*
580 * This is part of a global counter where only the total sum
581 * over all CPUs matters. A task can increase this counter on
582 * one CPU and if it got migrated afterwards it may decrease
583 * it on another CPU. Always updated under the runqueue lock:
584 */
585 unsigned long nr_uninterruptible;
586
587 struct task_struct *curr, *idle, *stop;
588 unsigned long next_balance;
589 struct mm_struct *prev_mm;
590
591 u64 clock;
592 u64 clock_task;
593
594 atomic_t nr_iowait;
595
596#ifdef CONFIG_SMP
597 struct root_domain *rd;
598 struct sched_domain *sd;
599
Nicolas Pitreced549f2014-05-26 18:19:38 -0400600 unsigned long cpu_capacity;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200601
602 unsigned char idle_balance;
603 /* For active balancing */
604 int post_schedule;
605 int active_balance;
606 int push_cpu;
607 struct cpu_stop_work active_balance_work;
608 /* cpu of this runqueue: */
609 int cpu;
610 int online;
611
Peter Zijlstra367456c2012-02-20 21:49:09 +0100612 struct list_head cfs_tasks;
613
Peter Zijlstra029632f2011-10-25 10:00:11 +0200614 u64 rt_avg;
615 u64 age_stamp;
616 u64 idle_stamp;
617 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700618
619 /* This is used to determine avg_idle's max value */
620 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200621#endif
622
623#ifdef CONFIG_IRQ_TIME_ACCOUNTING
624 u64 prev_irq_time;
625#endif
626#ifdef CONFIG_PARAVIRT
627 u64 prev_steal_time;
628#endif
629#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
630 u64 prev_steal_time_rq;
631#endif
632
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
636
637#ifdef CONFIG_SCHED_HRTICK
638#ifdef CONFIG_SMP
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
641#endif
642 struct hrtimer hrtick_timer;
643#endif
644
645#ifdef CONFIG_SCHEDSTATS
646 /* latency stats */
647 struct sched_info rq_sched_info;
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
650
651 /* sys_sched_yield() stats */
652 unsigned int yld_count;
653
654 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200655 unsigned int sched_count;
656 unsigned int sched_goidle;
657
658 /* try_to_wake_up() stats */
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
661#endif
662
663#ifdef CONFIG_SMP
664 struct llist_head wake_list;
665#endif
Daniel Lezcano442bf3a2014-09-04 11:32:09 -0400666
667#ifdef CONFIG_CPU_IDLE
668 /* Must be inspected within a rcu lock section */
669 struct cpuidle_state *idle_state;
670#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200671};
672
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
Pranith Kumar8b06c552014-08-13 13:28:12 -0400682DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200683
Peter Zijlstra518cd622011-12-07 15:07:31 +0100684#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500685#define this_rq() this_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100686#define task_rq(p) cpu_rq(task_cpu(p))
687#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500688#define raw_rq() raw_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100689
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100690static inline u64 __rq_clock_broken(struct rq *rq)
691{
692 return ACCESS_ONCE(rq->clock);
693}
694
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200695static inline u64 rq_clock(struct rq *rq)
696{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100697 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200698 return rq->clock;
699}
700
701static inline u64 rq_clock_task(struct rq *rq)
702{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100703 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200704 return rq->clock_task;
705}
706
Rik van Riel9942f792014-10-17 03:29:49 -0400707#ifdef CONFIG_NUMA
Rik van Riele3fe70b2014-10-17 03:29:50 -0400708enum numa_topology_type {
709 NUMA_DIRECT,
710 NUMA_GLUELESS_MESH,
711 NUMA_BACKPLANE,
712};
713extern enum numa_topology_type sched_numa_topology_type;
Rik van Riel9942f792014-10-17 03:29:49 -0400714extern int sched_max_numa_distance;
715extern bool find_numa_distance(int distance);
716#endif
717
Mel Gormanf809ca92013-10-07 11:28:57 +0100718#ifdef CONFIG_NUMA_BALANCING
Iulia Manda44dba3d2014-10-31 02:13:31 +0200719/* The regions in numa_faults array from task_struct */
720enum numa_faults_stats {
721 NUMA_MEM = 0,
722 NUMA_CPU,
723 NUMA_MEMBUF,
724 NUMA_CPUBUF
725};
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100726extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100727extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100728extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100729#endif /* CONFIG_NUMA_BALANCING */
730
Peter Zijlstra518cd622011-12-07 15:07:31 +0100731#ifdef CONFIG_SMP
732
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700733extern void sched_ttwu_pending(void);
734
Peter Zijlstra029632f2011-10-25 10:00:11 +0200735#define rcu_dereference_check_sched_domain(p) \
736 rcu_dereference_check((p), \
737 lockdep_is_held(&sched_domains_mutex))
738
739/*
740 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
741 * See detach_destroy_domains: synchronize_sched for details.
742 *
743 * The domain tree of any CPU may only be accessed from within
744 * preempt-disabled sections.
745 */
746#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100747 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
748 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200749
Suresh Siddha77e81362011-11-17 11:08:23 -0800750#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
751
Peter Zijlstra518cd622011-12-07 15:07:31 +0100752/**
753 * highest_flag_domain - Return highest sched_domain containing flag.
754 * @cpu: The cpu whose highest level of sched domain is to
755 * be returned.
756 * @flag: The flag to check for the highest sched_domain
757 * for the given cpu.
758 *
759 * Returns the highest sched_domain of a cpu which contains the given flag.
760 */
761static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
762{
763 struct sched_domain *sd, *hsd = NULL;
764
765 for_each_domain(cpu, sd) {
766 if (!(sd->flags & flag))
767 break;
768 hsd = sd;
769 }
770
771 return hsd;
772}
773
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100774static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
775{
776 struct sched_domain *sd;
777
778 for_each_domain(cpu, sd) {
779 if (sd->flags & flag)
780 break;
781 }
782
783 return sd;
784}
785
Peter Zijlstra518cd622011-12-07 15:07:31 +0100786DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800787DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100788DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100789DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530790DECLARE_PER_CPU(struct sched_domain *, sd_busy);
791DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100792
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400793struct sched_group_capacity {
Li Zefan5e6521e2013-03-05 16:06:23 +0800794 atomic_t ref;
795 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400796 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
797 * for a single CPU.
Li Zefan5e6521e2013-03-05 16:06:23 +0800798 */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400799 unsigned int capacity, capacity_orig;
Li Zefan5e6521e2013-03-05 16:06:23 +0800800 unsigned long next_update;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400801 int imbalance; /* XXX unrelated to capacity but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800802 /*
803 * Number of busy cpus in this group.
804 */
805 atomic_t nr_busy_cpus;
806
807 unsigned long cpumask[0]; /* iteration mask */
808};
809
810struct sched_group {
811 struct sched_group *next; /* Must be a circular list */
812 atomic_t ref;
813
814 unsigned int group_weight;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400815 struct sched_group_capacity *sgc;
Li Zefan5e6521e2013-03-05 16:06:23 +0800816
817 /*
818 * The CPUs this group covers.
819 *
820 * NOTE: this field is variable length. (Allocated dynamically
821 * by attaching extra space to the end of the structure,
822 * depending on how many CPUs the kernel has booted up with)
823 */
824 unsigned long cpumask[0];
825};
826
827static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
828{
829 return to_cpumask(sg->cpumask);
830}
831
832/*
833 * cpumask masking which cpus in the group are allowed to iterate up the domain
834 * tree.
835 */
836static inline struct cpumask *sched_group_mask(struct sched_group *sg)
837{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400838 return to_cpumask(sg->sgc->cpumask);
Li Zefan5e6521e2013-03-05 16:06:23 +0800839}
840
841/**
842 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
843 * @group: The group whose first cpu is to be returned.
844 */
845static inline unsigned int group_first_cpu(struct sched_group *group)
846{
847 return cpumask_first(sched_group_cpus(group));
848}
849
Peter Zijlstrac1174872012-05-31 14:47:33 +0200850extern int group_balance_cpu(struct sched_group *sg);
851
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700852#else
853
854static inline void sched_ttwu_pending(void) { }
855
Peter Zijlstra518cd622011-12-07 15:07:31 +0100856#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200857
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100858#include "stats.h"
859#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200860
861#ifdef CONFIG_CGROUP_SCHED
862
863/*
864 * Return the group to which this tasks belongs.
865 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400866 * We cannot use task_css() and friends because the cgroup subsystem
867 * changes that value before the cgroup_subsys::attach() method is called,
868 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200869 *
870 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
871 * core changes this before calling sched_move_task().
872 *
873 * Instead we use a 'copy' which is updated from sched_move_task() while
874 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200875 */
876static inline struct task_group *task_group(struct task_struct *p)
877{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200878 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200879}
880
881/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
882static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
883{
884#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
885 struct task_group *tg = task_group(p);
886#endif
887
888#ifdef CONFIG_FAIR_GROUP_SCHED
889 p->se.cfs_rq = tg->cfs_rq[cpu];
890 p->se.parent = tg->se[cpu];
891#endif
892
893#ifdef CONFIG_RT_GROUP_SCHED
894 p->rt.rt_rq = tg->rt_rq[cpu];
895 p->rt.parent = tg->rt_se[cpu];
896#endif
897}
898
899#else /* CONFIG_CGROUP_SCHED */
900
901static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
902static inline struct task_group *task_group(struct task_struct *p)
903{
904 return NULL;
905}
906
907#endif /* CONFIG_CGROUP_SCHED */
908
909static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
910{
911 set_task_rq(p, cpu);
912#ifdef CONFIG_SMP
913 /*
914 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
915 * successfuly executed on another CPU. We must ensure that updates of
916 * per-task data have been completed by this moment.
917 */
918 smp_wmb();
919 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100920 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200921#endif
922}
923
924/*
925 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
926 */
927#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100928# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200929# define const_debug __read_mostly
930#else
931# define const_debug const
932#endif
933
934extern const_debug unsigned int sysctl_sched_features;
935
936#define SCHED_FEAT(name, enabled) \
937 __SCHED_FEAT_##name ,
938
939enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100940#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200941 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200942};
943
944#undef SCHED_FEAT
945
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200946#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200947#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100948static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200949{ \
Jason Baron6e76ea82014-07-02 15:52:41 +0000950 return static_key_##enabled(key); \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200951}
952
953#include "features.h"
954
955#undef SCHED_FEAT
956
Ingo Molnarc5905af2012-02-24 08:31:31 +0100957extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200958#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
959#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200960#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200961#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200962
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200963#ifdef CONFIG_NUMA_BALANCING
964#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000965#ifdef CONFIG_SCHED_DEBUG
966#define numabalancing_enabled sched_feat_numa(NUMA)
967#else
968extern bool numabalancing_enabled;
969#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200970#else
971#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000972#define numabalancing_enabled (0)
973#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200974
Peter Zijlstra029632f2011-10-25 10:00:11 +0200975static inline u64 global_rt_period(void)
976{
977 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
978}
979
980static inline u64 global_rt_runtime(void)
981{
982 if (sysctl_sched_rt_runtime < 0)
983 return RUNTIME_INF;
984
985 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
986}
987
Peter Zijlstra029632f2011-10-25 10:00:11 +0200988static inline int task_current(struct rq *rq, struct task_struct *p)
989{
990 return rq->curr == p;
991}
992
993static inline int task_running(struct rq *rq, struct task_struct *p)
994{
995#ifdef CONFIG_SMP
996 return p->on_cpu;
997#else
998 return task_current(rq, p);
999#endif
1000}
1001
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04001002static inline int task_on_rq_queued(struct task_struct *p)
1003{
1004 return p->on_rq == TASK_ON_RQ_QUEUED;
1005}
Peter Zijlstra029632f2011-10-25 10:00:11 +02001006
Kirill Tkhaicca26e82014-08-20 13:47:42 +04001007static inline int task_on_rq_migrating(struct task_struct *p)
1008{
1009 return p->on_rq == TASK_ON_RQ_MIGRATING;
1010}
1011
Peter Zijlstra029632f2011-10-25 10:00:11 +02001012#ifndef prepare_arch_switch
1013# define prepare_arch_switch(next) do { } while (0)
1014#endif
1015#ifndef finish_arch_switch
1016# define finish_arch_switch(prev) do { } while (0)
1017#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +00001018#ifndef finish_arch_post_lock_switch
1019# define finish_arch_post_lock_switch() do { } while (0)
1020#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001021
Peter Zijlstra029632f2011-10-25 10:00:11 +02001022static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1023{
1024#ifdef CONFIG_SMP
1025 /*
1026 * We can optimise this out completely for !SMP, because the
1027 * SMP rebalancing from interrupt is the only thing that cares
1028 * here.
1029 */
1030 next->on_cpu = 1;
1031#endif
1032}
1033
1034static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1035{
1036#ifdef CONFIG_SMP
1037 /*
1038 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1039 * We must ensure this doesn't happen until the switch is completely
1040 * finished.
1041 */
1042 smp_wmb();
1043 prev->on_cpu = 0;
1044#endif
1045#ifdef CONFIG_DEBUG_SPINLOCK
1046 /* this is a valid case when another task releases the spinlock */
1047 rq->lock.owner = current;
1048#endif
1049 /*
1050 * If we are tracking spinlock dependencies then we have to
1051 * fix up the runqueue lock - which gets 'carried over' from
1052 * prev into current:
1053 */
1054 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1055
1056 raw_spin_unlock_irq(&rq->lock);
1057}
1058
Li Zefanb13095f2013-03-05 16:06:38 +08001059/*
1060 * wake flags
1061 */
1062#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1063#define WF_FORK 0x02 /* child wakeup after fork */
1064#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1065
Peter Zijlstra029632f2011-10-25 10:00:11 +02001066/*
1067 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1068 * of tasks with abnormal "nice" values across CPUs the contribution that
1069 * each task makes to its run queue's load is weighted according to its
1070 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1071 * scaled version of the new time slice allocation that they receive on time
1072 * slice expiry etc.
1073 */
1074
1075#define WEIGHT_IDLEPRIO 3
1076#define WMULT_IDLEPRIO 1431655765
1077
1078/*
1079 * Nice levels are multiplicative, with a gentle 10% change for every
1080 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1081 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1082 * that remained on nice 0.
1083 *
1084 * The "10% effect" is relative and cumulative: from _any_ nice level,
1085 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1086 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1087 * If a task goes up by ~10% and another task goes down by ~10% then
1088 * the relative distance between them is ~25%.)
1089 */
1090static const int prio_to_weight[40] = {
1091 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1092 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1093 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1094 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1095 /* 0 */ 1024, 820, 655, 526, 423,
1096 /* 5 */ 335, 272, 215, 172, 137,
1097 /* 10 */ 110, 87, 70, 56, 45,
1098 /* 15 */ 36, 29, 23, 18, 15,
1099};
1100
1101/*
1102 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1103 *
1104 * In cases where the weight does not change often, we can use the
1105 * precalculated inverse to speed up arithmetics by turning divisions
1106 * into multiplications:
1107 */
1108static const u32 prio_to_wmult[40] = {
1109 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1110 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1111 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1112 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1113 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1114 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1115 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1116 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1117};
1118
Li Zefanc82ba9f2013-03-05 16:06:55 +08001119#define ENQUEUE_WAKEUP 1
1120#define ENQUEUE_HEAD 2
1121#ifdef CONFIG_SMP
1122#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1123#else
1124#define ENQUEUE_WAKING 0
1125#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +01001126#define ENQUEUE_REPLENISH 8
Li Zefanc82ba9f2013-03-05 16:06:55 +08001127
1128#define DEQUEUE_SLEEP 1
1129
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001130#define RETRY_TASK ((void *)-1UL)
1131
Li Zefanc82ba9f2013-03-05 16:06:55 +08001132struct sched_class {
1133 const struct sched_class *next;
1134
1135 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1136 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1137 void (*yield_task) (struct rq *rq);
1138 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1139
1140 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1141
Peter Zijlstra606dba22012-02-11 06:05:00 +01001142 /*
1143 * It is the responsibility of the pick_next_task() method that will
1144 * return the next task to call put_prev_task() on the @prev task or
1145 * something equivalent.
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001146 *
1147 * May return RETRY_TASK when it finds a higher prio class has runnable
1148 * tasks.
Peter Zijlstra606dba22012-02-11 06:05:00 +01001149 */
1150 struct task_struct * (*pick_next_task) (struct rq *rq,
1151 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001152 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1153
1154#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001155 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001156 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1157
Li Zefanc82ba9f2013-03-05 16:06:55 +08001158 void (*post_schedule) (struct rq *this_rq);
1159 void (*task_waking) (struct task_struct *task);
1160 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1161
1162 void (*set_cpus_allowed)(struct task_struct *p,
1163 const struct cpumask *newmask);
1164
1165 void (*rq_online)(struct rq *rq);
1166 void (*rq_offline)(struct rq *rq);
1167#endif
1168
1169 void (*set_curr_task) (struct rq *rq);
1170 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1171 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001172 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001173
Kirill Tkhai67dfa1b2014-10-27 17:40:52 +03001174 /*
1175 * The switched_from() call is allowed to drop rq->lock, therefore we
1176 * cannot assume the switched_from/switched_to pair is serliazed by
1177 * rq->lock. They are however serialized by p->pi_lock.
1178 */
Li Zefanc82ba9f2013-03-05 16:06:55 +08001179 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1180 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1181 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1182 int oldprio);
1183
1184 unsigned int (*get_rr_interval) (struct rq *rq,
1185 struct task_struct *task);
1186
Stanislaw Gruszka6e998912014-11-12 16:58:44 +01001187 void (*update_curr) (struct rq *rq);
1188
Li Zefanc82ba9f2013-03-05 16:06:55 +08001189#ifdef CONFIG_FAIR_GROUP_SCHED
1190 void (*task_move_group) (struct task_struct *p, int on_rq);
1191#endif
1192};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001193
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01001194static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1195{
1196 prev->sched_class->put_prev_task(rq, prev);
1197}
1198
Peter Zijlstra029632f2011-10-25 10:00:11 +02001199#define sched_class_highest (&stop_sched_class)
1200#define for_each_class(class) \
1201 for (class = sched_class_highest; class; class = class->next)
1202
1203extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001204extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001205extern const struct sched_class rt_sched_class;
1206extern const struct sched_class fair_sched_class;
1207extern const struct sched_class idle_sched_class;
1208
1209
1210#ifdef CONFIG_SMP
1211
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04001212extern void update_group_capacity(struct sched_domain *sd, int cpu);
Li Zefanb7192032013-03-07 10:00:26 +08001213
Daniel Lezcano7caff662014-01-06 12:34:38 +01001214extern void trigger_load_balance(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001215
Vincent Guittot642dbc32013-04-18 18:34:26 +02001216extern void idle_enter_fair(struct rq *this_rq);
1217extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001218
Peter Zijlstradc877342014-02-12 15:47:29 +01001219#else
1220
1221static inline void idle_enter_fair(struct rq *rq) { }
1222static inline void idle_exit_fair(struct rq *rq) { }
1223
Peter Zijlstra029632f2011-10-25 10:00:11 +02001224#endif
1225
Daniel Lezcano442bf3a2014-09-04 11:32:09 -04001226#ifdef CONFIG_CPU_IDLE
1227static inline void idle_set_state(struct rq *rq,
1228 struct cpuidle_state *idle_state)
1229{
1230 rq->idle_state = idle_state;
1231}
1232
1233static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1234{
1235 WARN_ON(!rcu_read_lock_held());
1236 return rq->idle_state;
1237}
1238#else
1239static inline void idle_set_state(struct rq *rq,
1240 struct cpuidle_state *idle_state)
1241{
1242}
1243
1244static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1245{
1246 return NULL;
1247}
1248#endif
1249
Peter Zijlstra029632f2011-10-25 10:00:11 +02001250extern void sysrq_sched_debug_show(void);
1251extern void sched_init_granularity(void);
1252extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001253
1254extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001255extern void init_sched_rt_class(void);
1256extern void init_sched_fair_class(void);
Dario Faggioli332ac172013-11-07 14:43:45 +01001257extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001258
Kirill Tkhai88751252014-06-29 00:03:57 +04001259extern void resched_curr(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001260extern void resched_cpu(int cpu);
1261
1262extern struct rt_bandwidth def_rt_bandwidth;
1263extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1264
Dario Faggioli332ac172013-11-07 14:43:45 +01001265extern struct dl_bandwidth def_dl_bandwidth;
1266extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001267extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1268
Dario Faggioli332ac172013-11-07 14:43:45 +01001269unsigned long to_ratio(u64 period, u64 runtime);
1270
Peter Zijlstra556061b2012-05-11 17:31:26 +02001271extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001272
Alex Shia75cdaa2013-06-20 10:18:47 +08001273extern void init_task_runnable_average(struct task_struct *p);
1274
Kirill Tkhai72465442014-05-09 03:00:14 +04001275static inline void add_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001276{
Kirill Tkhai72465442014-05-09 03:00:14 +04001277 unsigned prev_nr = rq->nr_running;
1278
1279 rq->nr_running = prev_nr + count;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001280
Kirill Tkhai72465442014-05-09 03:00:14 +04001281 if (prev_nr < 2 && rq->nr_running >= 2) {
Tim Chen4486edd2014-06-23 12:16:49 -07001282#ifdef CONFIG_SMP
1283 if (!rq->rd->overload)
1284 rq->rd->overload = true;
1285#endif
1286
1287#ifdef CONFIG_NO_HZ_FULL
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001288 if (tick_nohz_full_cpu(rq->cpu)) {
Frederic Weisbecker3882ec62014-03-18 22:54:04 +01001289 /*
1290 * Tick is needed if more than one task runs on a CPU.
1291 * Send the target an IPI to kick it out of nohz mode.
1292 *
1293 * We assume that IPI implies full memory barrier and the
1294 * new value of rq->nr_running is visible on reception
1295 * from the target.
1296 */
Frederic Weisbeckerfd2ac4f2014-03-18 21:12:53 +01001297 tick_nohz_full_kick_cpu(rq->cpu);
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001298 }
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001299#endif
Tim Chen4486edd2014-06-23 12:16:49 -07001300 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02001301}
1302
Kirill Tkhai72465442014-05-09 03:00:14 +04001303static inline void sub_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001304{
Kirill Tkhai72465442014-05-09 03:00:14 +04001305 rq->nr_running -= count;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001306}
1307
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001308static inline void rq_last_tick_reset(struct rq *rq)
1309{
1310#ifdef CONFIG_NO_HZ_FULL
1311 rq->last_sched_tick = jiffies;
1312#endif
1313}
1314
Peter Zijlstra029632f2011-10-25 10:00:11 +02001315extern void update_rq_clock(struct rq *rq);
1316
1317extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1318extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1319
1320extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1321
1322extern const_debug unsigned int sysctl_sched_time_avg;
1323extern const_debug unsigned int sysctl_sched_nr_migrate;
1324extern const_debug unsigned int sysctl_sched_migration_cost;
1325
1326static inline u64 sched_avg_period(void)
1327{
1328 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1329}
1330
Peter Zijlstra029632f2011-10-25 10:00:11 +02001331#ifdef CONFIG_SCHED_HRTICK
1332
1333/*
1334 * Use hrtick when:
1335 * - enabled by features
1336 * - hrtimer is actually high res
1337 */
1338static inline int hrtick_enabled(struct rq *rq)
1339{
1340 if (!sched_feat(HRTICK))
1341 return 0;
1342 if (!cpu_active(cpu_of(rq)))
1343 return 0;
1344 return hrtimer_is_hres_active(&rq->hrtick_timer);
1345}
1346
1347void hrtick_start(struct rq *rq, u64 delay);
1348
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001349#else
1350
1351static inline int hrtick_enabled(struct rq *rq)
1352{
1353 return 0;
1354}
1355
Peter Zijlstra029632f2011-10-25 10:00:11 +02001356#endif /* CONFIG_SCHED_HRTICK */
1357
1358#ifdef CONFIG_SMP
1359extern void sched_avg_update(struct rq *rq);
1360static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1361{
1362 rq->rt_avg += rt_delta;
1363 sched_avg_update(rq);
1364}
1365#else
1366static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1367static inline void sched_avg_update(struct rq *rq) { }
1368#endif
1369
1370extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1371
1372#ifdef CONFIG_SMP
1373#ifdef CONFIG_PREEMPT
1374
1375static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1376
1377/*
1378 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1379 * way at the expense of forcing extra atomic operations in all
1380 * invocations. This assures that the double_lock is acquired using the
1381 * same underlying policy as the spinlock_t on this architecture, which
1382 * reduces latency compared to the unfair variant below. However, it
1383 * also adds more overhead and therefore may reduce throughput.
1384 */
1385static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1386 __releases(this_rq->lock)
1387 __acquires(busiest->lock)
1388 __acquires(this_rq->lock)
1389{
1390 raw_spin_unlock(&this_rq->lock);
1391 double_rq_lock(this_rq, busiest);
1392
1393 return 1;
1394}
1395
1396#else
1397/*
1398 * Unfair double_lock_balance: Optimizes throughput at the expense of
1399 * latency by eliminating extra atomic operations when the locks are
1400 * already in proper order on entry. This favors lower cpu-ids and will
1401 * grant the double lock to lower cpus over higher ids under contention,
1402 * regardless of entry order into the function.
1403 */
1404static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1405 __releases(this_rq->lock)
1406 __acquires(busiest->lock)
1407 __acquires(this_rq->lock)
1408{
1409 int ret = 0;
1410
1411 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1412 if (busiest < this_rq) {
1413 raw_spin_unlock(&this_rq->lock);
1414 raw_spin_lock(&busiest->lock);
1415 raw_spin_lock_nested(&this_rq->lock,
1416 SINGLE_DEPTH_NESTING);
1417 ret = 1;
1418 } else
1419 raw_spin_lock_nested(&busiest->lock,
1420 SINGLE_DEPTH_NESTING);
1421 }
1422 return ret;
1423}
1424
1425#endif /* CONFIG_PREEMPT */
1426
1427/*
1428 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1429 */
1430static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1431{
1432 if (unlikely(!irqs_disabled())) {
1433 /* printk() doesn't work good under rq->lock */
1434 raw_spin_unlock(&this_rq->lock);
1435 BUG_ON(1);
1436 }
1437
1438 return _double_lock_balance(this_rq, busiest);
1439}
1440
1441static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1442 __releases(busiest->lock)
1443{
1444 raw_spin_unlock(&busiest->lock);
1445 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1446}
1447
Peter Zijlstra74602312013-10-10 20:17:22 +02001448static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1449{
1450 if (l1 > l2)
1451 swap(l1, l2);
1452
1453 spin_lock(l1);
1454 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1455}
1456
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001457static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1458{
1459 if (l1 > l2)
1460 swap(l1, l2);
1461
1462 spin_lock_irq(l1);
1463 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1464}
1465
Peter Zijlstra74602312013-10-10 20:17:22 +02001466static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1467{
1468 if (l1 > l2)
1469 swap(l1, l2);
1470
1471 raw_spin_lock(l1);
1472 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1473}
1474
Peter Zijlstra029632f2011-10-25 10:00:11 +02001475/*
1476 * double_rq_lock - safely lock two runqueues
1477 *
1478 * Note this does not disable interrupts like task_rq_lock,
1479 * you need to do so manually before calling.
1480 */
1481static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1482 __acquires(rq1->lock)
1483 __acquires(rq2->lock)
1484{
1485 BUG_ON(!irqs_disabled());
1486 if (rq1 == rq2) {
1487 raw_spin_lock(&rq1->lock);
1488 __acquire(rq2->lock); /* Fake it out ;) */
1489 } else {
1490 if (rq1 < rq2) {
1491 raw_spin_lock(&rq1->lock);
1492 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1493 } else {
1494 raw_spin_lock(&rq2->lock);
1495 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1496 }
1497 }
1498}
1499
1500/*
1501 * double_rq_unlock - safely unlock two runqueues
1502 *
1503 * Note this does not restore interrupts like task_rq_unlock,
1504 * you need to do so manually after calling.
1505 */
1506static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1507 __releases(rq1->lock)
1508 __releases(rq2->lock)
1509{
1510 raw_spin_unlock(&rq1->lock);
1511 if (rq1 != rq2)
1512 raw_spin_unlock(&rq2->lock);
1513 else
1514 __release(rq2->lock);
1515}
1516
1517#else /* CONFIG_SMP */
1518
1519/*
1520 * double_rq_lock - safely lock two runqueues
1521 *
1522 * Note this does not disable interrupts like task_rq_lock,
1523 * you need to do so manually before calling.
1524 */
1525static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1526 __acquires(rq1->lock)
1527 __acquires(rq2->lock)
1528{
1529 BUG_ON(!irqs_disabled());
1530 BUG_ON(rq1 != rq2);
1531 raw_spin_lock(&rq1->lock);
1532 __acquire(rq2->lock); /* Fake it out ;) */
1533}
1534
1535/*
1536 * double_rq_unlock - safely unlock two runqueues
1537 *
1538 * Note this does not restore interrupts like task_rq_unlock,
1539 * you need to do so manually after calling.
1540 */
1541static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1542 __releases(rq1->lock)
1543 __releases(rq2->lock)
1544{
1545 BUG_ON(rq1 != rq2);
1546 raw_spin_unlock(&rq1->lock);
1547 __release(rq2->lock);
1548}
1549
1550#endif
1551
1552extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1553extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1554extern void print_cfs_stats(struct seq_file *m, int cpu);
1555extern void print_rt_stats(struct seq_file *m, int cpu);
Wanpeng Liacb32132014-10-31 06:39:33 +08001556extern void print_dl_stats(struct seq_file *m, int cpu);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001557
1558extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1559extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001560extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001561
Ben Segall1ee14e62013-10-16 11:16:12 -07001562extern void cfs_bandwidth_usage_inc(void);
1563extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001564
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001565#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001566enum rq_nohz_flag_bits {
1567 NOHZ_TICK_STOPPED,
1568 NOHZ_BALANCE_KICK,
1569};
1570
1571#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1572#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001573
1574#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1575
1576DECLARE_PER_CPU(u64, cpu_hardirq_time);
1577DECLARE_PER_CPU(u64, cpu_softirq_time);
1578
1579#ifndef CONFIG_64BIT
1580DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1581
1582static inline void irq_time_write_begin(void)
1583{
1584 __this_cpu_inc(irq_time_seq.sequence);
1585 smp_wmb();
1586}
1587
1588static inline void irq_time_write_end(void)
1589{
1590 smp_wmb();
1591 __this_cpu_inc(irq_time_seq.sequence);
1592}
1593
1594static inline u64 irq_time_read(int cpu)
1595{
1596 u64 irq_time;
1597 unsigned seq;
1598
1599 do {
1600 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1601 irq_time = per_cpu(cpu_softirq_time, cpu) +
1602 per_cpu(cpu_hardirq_time, cpu);
1603 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1604
1605 return irq_time;
1606}
1607#else /* CONFIG_64BIT */
1608static inline void irq_time_write_begin(void)
1609{
1610}
1611
1612static inline void irq_time_write_end(void)
1613{
1614}
1615
1616static inline u64 irq_time_read(int cpu)
1617{
1618 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1619}
1620#endif /* CONFIG_64BIT */
1621#endif /* CONFIG_IRQ_TIME_ACCOUNTING */