blob: 74ff659e964f3261f18d073a46f0c201ba2037a5 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02005#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02008#include <linux/tick.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02009
Peter Zijlstra391e43d2011-11-15 17:14:39 +010010#include "cpupri.h"
Li Zefan60fed782013-03-29 14:36:43 +080011#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020012
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040013struct rq;
14
Peter Zijlstra029632f2011-10-25 10:00:11 +020015extern __read_mostly int scheduler_running;
16
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040017extern unsigned long calc_load_update;
18extern atomic_long_t calc_load_tasks;
19
20extern long calc_load_fold_active(struct rq *this_rq);
21extern void update_cpu_load_active(struct rq *this_rq);
22
Peter Zijlstra029632f2011-10-25 10:00:11 +020023/*
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
27 */
28#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
31
32/*
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
36 */
37#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
40
41/*
42 * Helpers for converting nanosecond timing to jiffy resolution
43 */
44#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45
Li Zefancc1f4b12013-03-05 16:06:09 +080046/*
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
52 *
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
57 */
58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59# define SCHED_LOAD_RESOLUTION 10
60# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62#else
63# define SCHED_LOAD_RESOLUTION 0
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
68#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
70
Peter Zijlstra029632f2011-10-25 10:00:11 +020071#define NICE_0_LOAD SCHED_LOAD_SCALE
72#define NICE_0_SHIFT SCHED_LOAD_SHIFT
73
74/*
75 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020076 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020077
78/*
79 * single value that denotes runtime == period, ie unlimited time.
80 */
81#define RUNTIME_INF ((u64)~0ULL)
82
83static inline int rt_policy(int policy)
84{
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
88}
89
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
95/*
96 * This is the priority-queue data structure of the RT scheduling class:
97 */
98struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
101};
102
103struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
109};
110
111extern struct mutex sched_domains_mutex;
112
113#ifdef CONFIG_CGROUP_SCHED
114
115#include <linux/cgroup.h>
116
117struct cfs_rq;
118struct rt_rq;
119
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200120extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200121
122struct cfs_bandwidth {
123#ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
129
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
133
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137#endif
138};
139
140/* task group related information */
141struct task_group {
142 struct cgroup_subsys_state css;
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
150
151 atomic_t load_weight;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200152 atomic64_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200153 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200154#endif
155
156#ifdef CONFIG_RT_GROUP_SCHED
157 struct sched_rt_entity **rt_se;
158 struct rt_rq **rt_rq;
159
160 struct rt_bandwidth rt_bandwidth;
161#endif
162
163 struct rcu_head rcu;
164 struct list_head list;
165
166 struct task_group *parent;
167 struct list_head siblings;
168 struct list_head children;
169
170#ifdef CONFIG_SCHED_AUTOGROUP
171 struct autogroup *autogroup;
172#endif
173
174 struct cfs_bandwidth cfs_bandwidth;
175};
176
177#ifdef CONFIG_FAIR_GROUP_SCHED
178#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
179
180/*
181 * A weight of 0 or 1 can cause arithmetics problems.
182 * A weight of a cfs_rq is the sum of weights of which entities
183 * are queued on this cfs_rq, so a weight of a entity should not be
184 * too large, so as the shares value of a task group.
185 * (The default weight is 1024 - so there's no practical
186 * limitation from this.)
187 */
188#define MIN_SHARES (1UL << 1)
189#define MAX_SHARES (1UL << 18)
190#endif
191
Peter Zijlstra029632f2011-10-25 10:00:11 +0200192typedef int (*tg_visitor)(struct task_group *, void *);
193
194extern int walk_tg_tree_from(struct task_group *from,
195 tg_visitor down, tg_visitor up, void *data);
196
197/*
198 * Iterate the full tree, calling @down when first entering a node and @up when
199 * leaving it for the final time.
200 *
201 * Caller must hold rcu_lock or sufficient equivalent.
202 */
203static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
204{
205 return walk_tg_tree_from(&root_task_group, down, up, data);
206}
207
208extern int tg_nop(struct task_group *tg, void *data);
209
210extern void free_fair_sched_group(struct task_group *tg);
211extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
212extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
213extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
214 struct sched_entity *se, int cpu,
215 struct sched_entity *parent);
216extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
217extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
218
219extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
220extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
221extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
222
223extern void free_rt_sched_group(struct task_group *tg);
224extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
225extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
226 struct sched_rt_entity *rt_se, int cpu,
227 struct sched_rt_entity *parent);
228
Li Zefan25cc7da2013-03-05 16:07:33 +0800229extern struct task_group *sched_create_group(struct task_group *parent);
230extern void sched_online_group(struct task_group *tg,
231 struct task_group *parent);
232extern void sched_destroy_group(struct task_group *tg);
233extern void sched_offline_group(struct task_group *tg);
234
235extern void sched_move_task(struct task_struct *tsk);
236
237#ifdef CONFIG_FAIR_GROUP_SCHED
238extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
239#endif
240
Peter Zijlstra029632f2011-10-25 10:00:11 +0200241#else /* CONFIG_CGROUP_SCHED */
242
243struct cfs_bandwidth { };
244
245#endif /* CONFIG_CGROUP_SCHED */
246
247/* CFS-related fields in a runqueue */
248struct cfs_rq {
249 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200250 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200251
252 u64 exec_clock;
253 u64 min_vruntime;
254#ifndef CONFIG_64BIT
255 u64 min_vruntime_copy;
256#endif
257
258 struct rb_root tasks_timeline;
259 struct rb_node *rb_leftmost;
260
Peter Zijlstra029632f2011-10-25 10:00:11 +0200261 /*
262 * 'curr' points to currently running entity on this cfs_rq.
263 * It is set to NULL otherwise (i.e when none are currently running).
264 */
265 struct sched_entity *curr, *next, *last, *skip;
266
267#ifdef CONFIG_SCHED_DEBUG
268 unsigned int nr_spread_over;
269#endif
270
Paul Turner2dac7542012-10-04 13:18:30 +0200271#ifdef CONFIG_SMP
Paul Turnerf4e26b12012-10-04 13:18:32 +0200272/*
273 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
274 * removed when useful for applications beyond shares distribution (e.g.
275 * load-balance).
276 */
277#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner2dac7542012-10-04 13:18:30 +0200278 /*
279 * CFS Load tracking
280 * Under CFS, load is tracked on a per-entity basis and aggregated up.
281 * This allows for the description of both thread and group usage (in
282 * the FAIR_GROUP_SCHED case).
283 */
Paul Turner9ee474f2012-10-04 13:18:30 +0200284 u64 runnable_load_avg, blocked_load_avg;
Paul Turneraff3e492012-10-04 13:18:30 +0200285 atomic64_t decay_counter, removed_load;
Paul Turner9ee474f2012-10-04 13:18:30 +0200286 u64 last_decay;
Paul Turnerf4e26b12012-10-04 13:18:32 +0200287#endif /* CONFIG_FAIR_GROUP_SCHED */
288/* These always depend on CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +0200289#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turnerbb17f652012-10-04 13:18:31 +0200290 u32 tg_runnable_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200291 u64 tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200292#endif /* CONFIG_FAIR_GROUP_SCHED */
293
294 /*
295 * h_load = weight * f(tg)
296 *
297 * Where f(tg) is the recursive weight fraction assigned to
298 * this group.
299 */
300 unsigned long h_load;
301#endif /* CONFIG_SMP */
302
Peter Zijlstra029632f2011-10-25 10:00:11 +0200303#ifdef CONFIG_FAIR_GROUP_SCHED
304 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
305
306 /*
307 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
308 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
309 * (like users, containers etc.)
310 *
311 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
312 * list is used during load balance.
313 */
314 int on_list;
315 struct list_head leaf_cfs_rq_list;
316 struct task_group *tg; /* group that "owns" this runqueue */
317
Peter Zijlstra029632f2011-10-25 10:00:11 +0200318#ifdef CONFIG_CFS_BANDWIDTH
319 int runtime_enabled;
320 u64 runtime_expires;
321 s64 runtime_remaining;
322
Paul Turnerf1b17282012-10-04 13:18:31 +0200323 u64 throttled_clock, throttled_clock_task;
324 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200325 int throttled, throttle_count;
326 struct list_head throttled_list;
327#endif /* CONFIG_CFS_BANDWIDTH */
328#endif /* CONFIG_FAIR_GROUP_SCHED */
329};
330
331static inline int rt_bandwidth_enabled(void)
332{
333 return sysctl_sched_rt_runtime >= 0;
334}
335
336/* Real-Time classes' related field in a runqueue: */
337struct rt_rq {
338 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200339 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200340#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
341 struct {
342 int curr; /* highest queued rt task prio */
343#ifdef CONFIG_SMP
344 int next; /* next highest */
345#endif
346 } highest_prio;
347#endif
348#ifdef CONFIG_SMP
349 unsigned long rt_nr_migratory;
350 unsigned long rt_nr_total;
351 int overloaded;
352 struct plist_head pushable_tasks;
353#endif
354 int rt_throttled;
355 u64 rt_time;
356 u64 rt_runtime;
357 /* Nests inside the rq lock: */
358 raw_spinlock_t rt_runtime_lock;
359
360#ifdef CONFIG_RT_GROUP_SCHED
361 unsigned long rt_nr_boosted;
362
363 struct rq *rq;
364 struct list_head leaf_rt_rq_list;
365 struct task_group *tg;
366#endif
367};
368
369#ifdef CONFIG_SMP
370
371/*
372 * We add the notion of a root-domain which will be used to define per-domain
373 * variables. Each exclusive cpuset essentially defines an island domain by
374 * fully partitioning the member cpus from any other cpuset. Whenever a new
375 * exclusive cpuset is created, we also create and attach a new root-domain
376 * object.
377 *
378 */
379struct root_domain {
380 atomic_t refcount;
381 atomic_t rto_count;
382 struct rcu_head rcu;
383 cpumask_var_t span;
384 cpumask_var_t online;
385
386 /*
387 * The "RT overload" flag: it gets set if a CPU has more than
388 * one runnable RT task.
389 */
390 cpumask_var_t rto_mask;
391 struct cpupri cpupri;
392};
393
394extern struct root_domain def_root_domain;
395
396#endif /* CONFIG_SMP */
397
398/*
399 * This is the main, per-CPU runqueue data structure.
400 *
401 * Locking rule: those places that want to lock multiple runqueues
402 * (such as the load balancing or the thread migration code), lock
403 * acquire operations must be ordered by ascending &runqueue.
404 */
405struct rq {
406 /* runqueue lock: */
407 raw_spinlock_t lock;
408
409 /*
410 * nr_running and cpu_load should be in the same cacheline because
411 * remote CPUs use both these fields when doing load calculation.
412 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200413 unsigned int nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200414 #define CPU_LOAD_IDX_MAX 5
415 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
416 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200417#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200418 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800419 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200420#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200421#ifdef CONFIG_NO_HZ_FULL
422 unsigned long last_sched_tick;
423#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200424 int skip_clock_update;
425
426 /* capture load from *all* tasks on this cpu: */
427 struct load_weight load;
428 unsigned long nr_load_updates;
429 u64 nr_switches;
430
431 struct cfs_rq cfs;
432 struct rt_rq rt;
433
434#ifdef CONFIG_FAIR_GROUP_SCHED
435 /* list of leaf cfs_rq on this cpu: */
436 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200437#ifdef CONFIG_SMP
438 unsigned long h_load_throttle;
439#endif /* CONFIG_SMP */
440#endif /* CONFIG_FAIR_GROUP_SCHED */
441
Peter Zijlstra029632f2011-10-25 10:00:11 +0200442#ifdef CONFIG_RT_GROUP_SCHED
443 struct list_head leaf_rt_rq_list;
444#endif
445
446 /*
447 * This is part of a global counter where only the total sum
448 * over all CPUs matters. A task can increase this counter on
449 * one CPU and if it got migrated afterwards it may decrease
450 * it on another CPU. Always updated under the runqueue lock:
451 */
452 unsigned long nr_uninterruptible;
453
454 struct task_struct *curr, *idle, *stop;
455 unsigned long next_balance;
456 struct mm_struct *prev_mm;
457
458 u64 clock;
459 u64 clock_task;
460
461 atomic_t nr_iowait;
462
463#ifdef CONFIG_SMP
464 struct root_domain *rd;
465 struct sched_domain *sd;
466
467 unsigned long cpu_power;
468
469 unsigned char idle_balance;
470 /* For active balancing */
471 int post_schedule;
472 int active_balance;
473 int push_cpu;
474 struct cpu_stop_work active_balance_work;
475 /* cpu of this runqueue: */
476 int cpu;
477 int online;
478
Peter Zijlstra367456c2012-02-20 21:49:09 +0100479 struct list_head cfs_tasks;
480
Peter Zijlstra029632f2011-10-25 10:00:11 +0200481 u64 rt_avg;
482 u64 age_stamp;
483 u64 idle_stamp;
484 u64 avg_idle;
485#endif
486
487#ifdef CONFIG_IRQ_TIME_ACCOUNTING
488 u64 prev_irq_time;
489#endif
490#ifdef CONFIG_PARAVIRT
491 u64 prev_steal_time;
492#endif
493#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
494 u64 prev_steal_time_rq;
495#endif
496
497 /* calc_load related fields */
498 unsigned long calc_load_update;
499 long calc_load_active;
500
501#ifdef CONFIG_SCHED_HRTICK
502#ifdef CONFIG_SMP
503 int hrtick_csd_pending;
504 struct call_single_data hrtick_csd;
505#endif
506 struct hrtimer hrtick_timer;
507#endif
508
509#ifdef CONFIG_SCHEDSTATS
510 /* latency stats */
511 struct sched_info rq_sched_info;
512 unsigned long long rq_cpu_time;
513 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
514
515 /* sys_sched_yield() stats */
516 unsigned int yld_count;
517
518 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200519 unsigned int sched_count;
520 unsigned int sched_goidle;
521
522 /* try_to_wake_up() stats */
523 unsigned int ttwu_count;
524 unsigned int ttwu_local;
525#endif
526
527#ifdef CONFIG_SMP
528 struct llist_head wake_list;
529#endif
Ben Segall18bf2802012-10-04 12:51:20 +0200530
531 struct sched_avg avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532};
533
534static inline int cpu_of(struct rq *rq)
535{
536#ifdef CONFIG_SMP
537 return rq->cpu;
538#else
539 return 0;
540#endif
541}
542
543DECLARE_PER_CPU(struct rq, runqueues);
544
Peter Zijlstra518cd622011-12-07 15:07:31 +0100545#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
546#define this_rq() (&__get_cpu_var(runqueues))
547#define task_rq(p) cpu_rq(task_cpu(p))
548#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
549#define raw_rq() (&__raw_get_cpu_var(runqueues))
550
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200551static inline u64 rq_clock(struct rq *rq)
552{
553 return rq->clock;
554}
555
556static inline u64 rq_clock_task(struct rq *rq)
557{
558 return rq->clock_task;
559}
560
Peter Zijlstra518cd622011-12-07 15:07:31 +0100561#ifdef CONFIG_SMP
562
Peter Zijlstra029632f2011-10-25 10:00:11 +0200563#define rcu_dereference_check_sched_domain(p) \
564 rcu_dereference_check((p), \
565 lockdep_is_held(&sched_domains_mutex))
566
567/*
568 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
569 * See detach_destroy_domains: synchronize_sched for details.
570 *
571 * The domain tree of any CPU may only be accessed from within
572 * preempt-disabled sections.
573 */
574#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100575 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
576 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200577
Suresh Siddha77e81362011-11-17 11:08:23 -0800578#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
579
Peter Zijlstra518cd622011-12-07 15:07:31 +0100580/**
581 * highest_flag_domain - Return highest sched_domain containing flag.
582 * @cpu: The cpu whose highest level of sched domain is to
583 * be returned.
584 * @flag: The flag to check for the highest sched_domain
585 * for the given cpu.
586 *
587 * Returns the highest sched_domain of a cpu which contains the given flag.
588 */
589static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
590{
591 struct sched_domain *sd, *hsd = NULL;
592
593 for_each_domain(cpu, sd) {
594 if (!(sd->flags & flag))
595 break;
596 hsd = sd;
597 }
598
599 return hsd;
600}
601
602DECLARE_PER_CPU(struct sched_domain *, sd_llc);
603DECLARE_PER_CPU(int, sd_llc_id);
604
Li Zefan5e6521e2013-03-05 16:06:23 +0800605struct sched_group_power {
606 atomic_t ref;
607 /*
608 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
609 * single CPU.
610 */
611 unsigned int power, power_orig;
612 unsigned long next_update;
613 /*
614 * Number of busy cpus in this group.
615 */
616 atomic_t nr_busy_cpus;
617
618 unsigned long cpumask[0]; /* iteration mask */
619};
620
621struct sched_group {
622 struct sched_group *next; /* Must be a circular list */
623 atomic_t ref;
624
625 unsigned int group_weight;
626 struct sched_group_power *sgp;
627
628 /*
629 * The CPUs this group covers.
630 *
631 * NOTE: this field is variable length. (Allocated dynamically
632 * by attaching extra space to the end of the structure,
633 * depending on how many CPUs the kernel has booted up with)
634 */
635 unsigned long cpumask[0];
636};
637
638static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
639{
640 return to_cpumask(sg->cpumask);
641}
642
643/*
644 * cpumask masking which cpus in the group are allowed to iterate up the domain
645 * tree.
646 */
647static inline struct cpumask *sched_group_mask(struct sched_group *sg)
648{
649 return to_cpumask(sg->sgp->cpumask);
650}
651
652/**
653 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
654 * @group: The group whose first cpu is to be returned.
655 */
656static inline unsigned int group_first_cpu(struct sched_group *group)
657{
658 return cpumask_first(sched_group_cpus(group));
659}
660
Peter Zijlstrac1174872012-05-31 14:47:33 +0200661extern int group_balance_cpu(struct sched_group *sg);
662
Peter Zijlstra518cd622011-12-07 15:07:31 +0100663#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200664
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100665#include "stats.h"
666#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200667
668#ifdef CONFIG_CGROUP_SCHED
669
670/*
671 * Return the group to which this tasks belongs.
672 *
Peter Zijlstra8323f262012-06-22 13:36:05 +0200673 * We cannot use task_subsys_state() and friends because the cgroup
674 * subsystem changes that value before the cgroup_subsys::attach() method
675 * is called, therefore we cannot pin it and might observe the wrong value.
676 *
677 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
678 * core changes this before calling sched_move_task().
679 *
680 * Instead we use a 'copy' which is updated from sched_move_task() while
681 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200682 */
683static inline struct task_group *task_group(struct task_struct *p)
684{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200685 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200686}
687
688/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
689static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
690{
691#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
692 struct task_group *tg = task_group(p);
693#endif
694
695#ifdef CONFIG_FAIR_GROUP_SCHED
696 p->se.cfs_rq = tg->cfs_rq[cpu];
697 p->se.parent = tg->se[cpu];
698#endif
699
700#ifdef CONFIG_RT_GROUP_SCHED
701 p->rt.rt_rq = tg->rt_rq[cpu];
702 p->rt.parent = tg->rt_se[cpu];
703#endif
704}
705
706#else /* CONFIG_CGROUP_SCHED */
707
708static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
709static inline struct task_group *task_group(struct task_struct *p)
710{
711 return NULL;
712}
713
714#endif /* CONFIG_CGROUP_SCHED */
715
716static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
717{
718 set_task_rq(p, cpu);
719#ifdef CONFIG_SMP
720 /*
721 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
722 * successfuly executed on another CPU. We must ensure that updates of
723 * per-task data have been completed by this moment.
724 */
725 smp_wmb();
726 task_thread_info(p)->cpu = cpu;
727#endif
728}
729
730/*
731 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
732 */
733#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100734# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200735# define const_debug __read_mostly
736#else
737# define const_debug const
738#endif
739
740extern const_debug unsigned int sysctl_sched_features;
741
742#define SCHED_FEAT(name, enabled) \
743 __SCHED_FEAT_##name ,
744
745enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100746#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200747 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200748};
749
750#undef SCHED_FEAT
751
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200752#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100753static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200754{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100755 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200756}
757
Ingo Molnarc5905af2012-02-24 08:31:31 +0100758static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200759{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100760 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200761}
762
763#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100764static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200765{ \
766 return static_branch__##enabled(key); \
767}
768
769#include "features.h"
770
771#undef SCHED_FEAT
772
Ingo Molnarc5905af2012-02-24 08:31:31 +0100773extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200774#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
775#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200776#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200777#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200778
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200779#ifdef CONFIG_NUMA_BALANCING
780#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000781#ifdef CONFIG_SCHED_DEBUG
782#define numabalancing_enabled sched_feat_numa(NUMA)
783#else
784extern bool numabalancing_enabled;
785#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200786#else
787#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000788#define numabalancing_enabled (0)
789#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200790
Peter Zijlstra029632f2011-10-25 10:00:11 +0200791static inline u64 global_rt_period(void)
792{
793 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
794}
795
796static inline u64 global_rt_runtime(void)
797{
798 if (sysctl_sched_rt_runtime < 0)
799 return RUNTIME_INF;
800
801 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
802}
803
804
805
806static inline int task_current(struct rq *rq, struct task_struct *p)
807{
808 return rq->curr == p;
809}
810
811static inline int task_running(struct rq *rq, struct task_struct *p)
812{
813#ifdef CONFIG_SMP
814 return p->on_cpu;
815#else
816 return task_current(rq, p);
817#endif
818}
819
820
821#ifndef prepare_arch_switch
822# define prepare_arch_switch(next) do { } while (0)
823#endif
824#ifndef finish_arch_switch
825# define finish_arch_switch(prev) do { } while (0)
826#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000827#ifndef finish_arch_post_lock_switch
828# define finish_arch_post_lock_switch() do { } while (0)
829#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200830
831#ifndef __ARCH_WANT_UNLOCKED_CTXSW
832static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
833{
834#ifdef CONFIG_SMP
835 /*
836 * We can optimise this out completely for !SMP, because the
837 * SMP rebalancing from interrupt is the only thing that cares
838 * here.
839 */
840 next->on_cpu = 1;
841#endif
842}
843
844static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
845{
846#ifdef CONFIG_SMP
847 /*
848 * After ->on_cpu is cleared, the task can be moved to a different CPU.
849 * We must ensure this doesn't happen until the switch is completely
850 * finished.
851 */
852 smp_wmb();
853 prev->on_cpu = 0;
854#endif
855#ifdef CONFIG_DEBUG_SPINLOCK
856 /* this is a valid case when another task releases the spinlock */
857 rq->lock.owner = current;
858#endif
859 /*
860 * If we are tracking spinlock dependencies then we have to
861 * fix up the runqueue lock - which gets 'carried over' from
862 * prev into current:
863 */
864 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
865
866 raw_spin_unlock_irq(&rq->lock);
867}
868
869#else /* __ARCH_WANT_UNLOCKED_CTXSW */
870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871{
872#ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->on_cpu = 1;
879#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200880 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200881}
882
883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884{
885#ifdef CONFIG_SMP
886 /*
887 * After ->on_cpu is cleared, the task can be moved to a different CPU.
888 * We must ensure this doesn't happen until the switch is completely
889 * finished.
890 */
891 smp_wmb();
892 prev->on_cpu = 0;
893#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200894 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +0200895}
896#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
897
Li Zefanb13095f2013-03-05 16:06:38 +0800898/*
899 * wake flags
900 */
901#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
902#define WF_FORK 0x02 /* child wakeup after fork */
903#define WF_MIGRATED 0x4 /* internal use, task got migrated */
904
Peter Zijlstra029632f2011-10-25 10:00:11 +0200905/*
906 * To aid in avoiding the subversion of "niceness" due to uneven distribution
907 * of tasks with abnormal "nice" values across CPUs the contribution that
908 * each task makes to its run queue's load is weighted according to its
909 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
910 * scaled version of the new time slice allocation that they receive on time
911 * slice expiry etc.
912 */
913
914#define WEIGHT_IDLEPRIO 3
915#define WMULT_IDLEPRIO 1431655765
916
917/*
918 * Nice levels are multiplicative, with a gentle 10% change for every
919 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
920 * nice 1, it will get ~10% less CPU time than another CPU-bound task
921 * that remained on nice 0.
922 *
923 * The "10% effect" is relative and cumulative: from _any_ nice level,
924 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
925 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
926 * If a task goes up by ~10% and another task goes down by ~10% then
927 * the relative distance between them is ~25%.)
928 */
929static const int prio_to_weight[40] = {
930 /* -20 */ 88761, 71755, 56483, 46273, 36291,
931 /* -15 */ 29154, 23254, 18705, 14949, 11916,
932 /* -10 */ 9548, 7620, 6100, 4904, 3906,
933 /* -5 */ 3121, 2501, 1991, 1586, 1277,
934 /* 0 */ 1024, 820, 655, 526, 423,
935 /* 5 */ 335, 272, 215, 172, 137,
936 /* 10 */ 110, 87, 70, 56, 45,
937 /* 15 */ 36, 29, 23, 18, 15,
938};
939
940/*
941 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
942 *
943 * In cases where the weight does not change often, we can use the
944 * precalculated inverse to speed up arithmetics by turning divisions
945 * into multiplications:
946 */
947static const u32 prio_to_wmult[40] = {
948 /* -20 */ 48388, 59856, 76040, 92818, 118348,
949 /* -15 */ 147320, 184698, 229616, 287308, 360437,
950 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
951 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
952 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
953 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
954 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
955 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
956};
957
Li Zefanc82ba9f2013-03-05 16:06:55 +0800958#define ENQUEUE_WAKEUP 1
959#define ENQUEUE_HEAD 2
960#ifdef CONFIG_SMP
961#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
962#else
963#define ENQUEUE_WAKING 0
964#endif
965
966#define DEQUEUE_SLEEP 1
967
968struct sched_class {
969 const struct sched_class *next;
970
971 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
972 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
973 void (*yield_task) (struct rq *rq);
974 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
975
976 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
977
978 struct task_struct * (*pick_next_task) (struct rq *rq);
979 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
980
981#ifdef CONFIG_SMP
982 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
983 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
984
985 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
986 void (*post_schedule) (struct rq *this_rq);
987 void (*task_waking) (struct task_struct *task);
988 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
989
990 void (*set_cpus_allowed)(struct task_struct *p,
991 const struct cpumask *newmask);
992
993 void (*rq_online)(struct rq *rq);
994 void (*rq_offline)(struct rq *rq);
995#endif
996
997 void (*set_curr_task) (struct rq *rq);
998 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
999 void (*task_fork) (struct task_struct *p);
1000
1001 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1002 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1003 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1004 int oldprio);
1005
1006 unsigned int (*get_rr_interval) (struct rq *rq,
1007 struct task_struct *task);
1008
1009#ifdef CONFIG_FAIR_GROUP_SCHED
1010 void (*task_move_group) (struct task_struct *p, int on_rq);
1011#endif
1012};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001013
1014#define sched_class_highest (&stop_sched_class)
1015#define for_each_class(class) \
1016 for (class = sched_class_highest; class; class = class->next)
1017
1018extern const struct sched_class stop_sched_class;
1019extern const struct sched_class rt_sched_class;
1020extern const struct sched_class fair_sched_class;
1021extern const struct sched_class idle_sched_class;
1022
1023
1024#ifdef CONFIG_SMP
1025
Li Zefanb7192032013-03-07 10:00:26 +08001026extern void update_group_power(struct sched_domain *sd, int cpu);
1027
Peter Zijlstra029632f2011-10-25 10:00:11 +02001028extern void trigger_load_balance(struct rq *rq, int cpu);
1029extern void idle_balance(int this_cpu, struct rq *this_rq);
1030
Vincent Guittot642dbc32013-04-18 18:34:26 +02001031/*
1032 * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1033 * becomes useful in lb
1034 */
1035#if defined(CONFIG_FAIR_GROUP_SCHED)
1036extern void idle_enter_fair(struct rq *this_rq);
1037extern void idle_exit_fair(struct rq *this_rq);
1038#else
1039static inline void idle_enter_fair(struct rq *this_rq) {}
1040static inline void idle_exit_fair(struct rq *this_rq) {}
1041#endif
1042
Peter Zijlstra029632f2011-10-25 10:00:11 +02001043#else /* CONFIG_SMP */
1044
1045static inline void idle_balance(int cpu, struct rq *rq)
1046{
1047}
1048
1049#endif
1050
1051extern void sysrq_sched_debug_show(void);
1052extern void sched_init_granularity(void);
1053extern void update_max_interval(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001054extern void init_sched_rt_class(void);
1055extern void init_sched_fair_class(void);
1056
1057extern void resched_task(struct task_struct *p);
1058extern void resched_cpu(int cpu);
1059
1060extern struct rt_bandwidth def_rt_bandwidth;
1061extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1062
Peter Zijlstra556061b2012-05-11 17:31:26 +02001063extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001064
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001065#ifdef CONFIG_PARAVIRT
1066static inline u64 steal_ticks(u64 steal)
1067{
1068 if (unlikely(steal > NSEC_PER_SEC))
1069 return div_u64(steal, TICK_NSEC);
1070
1071 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1072}
1073#endif
1074
Peter Zijlstra029632f2011-10-25 10:00:11 +02001075static inline void inc_nr_running(struct rq *rq)
1076{
1077 rq->nr_running++;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001078
1079#ifdef CONFIG_NO_HZ_FULL
1080 if (rq->nr_running == 2) {
1081 if (tick_nohz_full_cpu(rq->cpu)) {
1082 /* Order rq->nr_running write against the IPI */
1083 smp_wmb();
1084 smp_send_reschedule(rq->cpu);
1085 }
1086 }
1087#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001088}
1089
1090static inline void dec_nr_running(struct rq *rq)
1091{
1092 rq->nr_running--;
1093}
1094
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001095static inline void rq_last_tick_reset(struct rq *rq)
1096{
1097#ifdef CONFIG_NO_HZ_FULL
1098 rq->last_sched_tick = jiffies;
1099#endif
1100}
1101
Peter Zijlstra029632f2011-10-25 10:00:11 +02001102extern void update_rq_clock(struct rq *rq);
1103
1104extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1105extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1106
1107extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1108
1109extern const_debug unsigned int sysctl_sched_time_avg;
1110extern const_debug unsigned int sysctl_sched_nr_migrate;
1111extern const_debug unsigned int sysctl_sched_migration_cost;
1112
1113static inline u64 sched_avg_period(void)
1114{
1115 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1116}
1117
Peter Zijlstra029632f2011-10-25 10:00:11 +02001118#ifdef CONFIG_SCHED_HRTICK
1119
1120/*
1121 * Use hrtick when:
1122 * - enabled by features
1123 * - hrtimer is actually high res
1124 */
1125static inline int hrtick_enabled(struct rq *rq)
1126{
1127 if (!sched_feat(HRTICK))
1128 return 0;
1129 if (!cpu_active(cpu_of(rq)))
1130 return 0;
1131 return hrtimer_is_hres_active(&rq->hrtick_timer);
1132}
1133
1134void hrtick_start(struct rq *rq, u64 delay);
1135
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001136#else
1137
1138static inline int hrtick_enabled(struct rq *rq)
1139{
1140 return 0;
1141}
1142
Peter Zijlstra029632f2011-10-25 10:00:11 +02001143#endif /* CONFIG_SCHED_HRTICK */
1144
1145#ifdef CONFIG_SMP
1146extern void sched_avg_update(struct rq *rq);
1147static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1148{
1149 rq->rt_avg += rt_delta;
1150 sched_avg_update(rq);
1151}
1152#else
1153static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1154static inline void sched_avg_update(struct rq *rq) { }
1155#endif
1156
1157extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1158
1159#ifdef CONFIG_SMP
1160#ifdef CONFIG_PREEMPT
1161
1162static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1163
1164/*
1165 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1166 * way at the expense of forcing extra atomic operations in all
1167 * invocations. This assures that the double_lock is acquired using the
1168 * same underlying policy as the spinlock_t on this architecture, which
1169 * reduces latency compared to the unfair variant below. However, it
1170 * also adds more overhead and therefore may reduce throughput.
1171 */
1172static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1173 __releases(this_rq->lock)
1174 __acquires(busiest->lock)
1175 __acquires(this_rq->lock)
1176{
1177 raw_spin_unlock(&this_rq->lock);
1178 double_rq_lock(this_rq, busiest);
1179
1180 return 1;
1181}
1182
1183#else
1184/*
1185 * Unfair double_lock_balance: Optimizes throughput at the expense of
1186 * latency by eliminating extra atomic operations when the locks are
1187 * already in proper order on entry. This favors lower cpu-ids and will
1188 * grant the double lock to lower cpus over higher ids under contention,
1189 * regardless of entry order into the function.
1190 */
1191static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1192 __releases(this_rq->lock)
1193 __acquires(busiest->lock)
1194 __acquires(this_rq->lock)
1195{
1196 int ret = 0;
1197
1198 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1199 if (busiest < this_rq) {
1200 raw_spin_unlock(&this_rq->lock);
1201 raw_spin_lock(&busiest->lock);
1202 raw_spin_lock_nested(&this_rq->lock,
1203 SINGLE_DEPTH_NESTING);
1204 ret = 1;
1205 } else
1206 raw_spin_lock_nested(&busiest->lock,
1207 SINGLE_DEPTH_NESTING);
1208 }
1209 return ret;
1210}
1211
1212#endif /* CONFIG_PREEMPT */
1213
1214/*
1215 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1216 */
1217static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1218{
1219 if (unlikely(!irqs_disabled())) {
1220 /* printk() doesn't work good under rq->lock */
1221 raw_spin_unlock(&this_rq->lock);
1222 BUG_ON(1);
1223 }
1224
1225 return _double_lock_balance(this_rq, busiest);
1226}
1227
1228static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1229 __releases(busiest->lock)
1230{
1231 raw_spin_unlock(&busiest->lock);
1232 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1233}
1234
1235/*
1236 * double_rq_lock - safely lock two runqueues
1237 *
1238 * Note this does not disable interrupts like task_rq_lock,
1239 * you need to do so manually before calling.
1240 */
1241static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1242 __acquires(rq1->lock)
1243 __acquires(rq2->lock)
1244{
1245 BUG_ON(!irqs_disabled());
1246 if (rq1 == rq2) {
1247 raw_spin_lock(&rq1->lock);
1248 __acquire(rq2->lock); /* Fake it out ;) */
1249 } else {
1250 if (rq1 < rq2) {
1251 raw_spin_lock(&rq1->lock);
1252 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1253 } else {
1254 raw_spin_lock(&rq2->lock);
1255 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1256 }
1257 }
1258}
1259
1260/*
1261 * double_rq_unlock - safely unlock two runqueues
1262 *
1263 * Note this does not restore interrupts like task_rq_unlock,
1264 * you need to do so manually after calling.
1265 */
1266static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1267 __releases(rq1->lock)
1268 __releases(rq2->lock)
1269{
1270 raw_spin_unlock(&rq1->lock);
1271 if (rq1 != rq2)
1272 raw_spin_unlock(&rq2->lock);
1273 else
1274 __release(rq2->lock);
1275}
1276
1277#else /* CONFIG_SMP */
1278
1279/*
1280 * double_rq_lock - safely lock two runqueues
1281 *
1282 * Note this does not disable interrupts like task_rq_lock,
1283 * you need to do so manually before calling.
1284 */
1285static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1286 __acquires(rq1->lock)
1287 __acquires(rq2->lock)
1288{
1289 BUG_ON(!irqs_disabled());
1290 BUG_ON(rq1 != rq2);
1291 raw_spin_lock(&rq1->lock);
1292 __acquire(rq2->lock); /* Fake it out ;) */
1293}
1294
1295/*
1296 * double_rq_unlock - safely unlock two runqueues
1297 *
1298 * Note this does not restore interrupts like task_rq_unlock,
1299 * you need to do so manually after calling.
1300 */
1301static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1302 __releases(rq1->lock)
1303 __releases(rq2->lock)
1304{
1305 BUG_ON(rq1 != rq2);
1306 raw_spin_unlock(&rq1->lock);
1307 __release(rq2->lock);
1308}
1309
1310#endif
1311
1312extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1313extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1314extern void print_cfs_stats(struct seq_file *m, int cpu);
1315extern void print_rt_stats(struct seq_file *m, int cpu);
1316
1317extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1318extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001319
1320extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001321
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001322#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001323enum rq_nohz_flag_bits {
1324 NOHZ_TICK_STOPPED,
1325 NOHZ_BALANCE_KICK,
1326};
1327
1328#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1329#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001330
1331#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1332
1333DECLARE_PER_CPU(u64, cpu_hardirq_time);
1334DECLARE_PER_CPU(u64, cpu_softirq_time);
1335
1336#ifndef CONFIG_64BIT
1337DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1338
1339static inline void irq_time_write_begin(void)
1340{
1341 __this_cpu_inc(irq_time_seq.sequence);
1342 smp_wmb();
1343}
1344
1345static inline void irq_time_write_end(void)
1346{
1347 smp_wmb();
1348 __this_cpu_inc(irq_time_seq.sequence);
1349}
1350
1351static inline u64 irq_time_read(int cpu)
1352{
1353 u64 irq_time;
1354 unsigned seq;
1355
1356 do {
1357 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1358 irq_time = per_cpu(cpu_softirq_time, cpu) +
1359 per_cpu(cpu_hardirq_time, cpu);
1360 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1361
1362 return irq_time;
1363}
1364#else /* CONFIG_64BIT */
1365static inline void irq_time_write_begin(void)
1366{
1367}
1368
1369static inline void irq_time_write_end(void)
1370{
1371}
1372
1373static inline u64 irq_time_read(int cpu)
1374{
1375 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1376}
1377#endif /* CONFIG_64BIT */
1378#endif /* CONFIG_IRQ_TIME_ACCOUNTING */