blob: c2c0d7bd502712d1bd197c3e0afaaaf21f5e2b5a [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Steven Rostedtb6366f02015-03-18 14:49:46 -04009#include <linux/irq_work.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +020010#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010011#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020012
Peter Zijlstra391e43d2011-11-15 17:14:39 +010013#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010014#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080015#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020016
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040017struct rq;
Daniel Lezcano442bf3a2014-09-04 11:32:09 -040018struct cpuidle_state;
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040019
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040020/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
Kirill Tkhaicca26e82014-08-20 13:47:42 +040022#define TASK_ON_RQ_MIGRATING 2
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040023
Peter Zijlstra029632f2011-10-25 10:00:11 +020024extern __read_mostly int scheduler_running;
25
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040026extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
29extern long calc_load_fold_active(struct rq *this_rq);
30extern void update_cpu_load_active(struct rq *this_rq);
31
Peter Zijlstra029632f2011-10-25 10:00:11 +020032/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020033 * Helpers for converting nanosecond timing to jiffy resolution
34 */
35#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36
Li Zefancc1f4b12013-03-05 16:06:09 +080037/*
38 * Increase resolution of nice-level calculations for 64-bit architectures.
39 * The extra resolution improves shares distribution and load balancing of
40 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
41 * hierarchies, especially on larger systems. This is not a user-visible change
42 * and does not change the user-interface for setting shares/weights.
43 *
44 * We increase resolution only if we have enough bits to allow this increased
45 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
46 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
47 * increased costs.
48 */
49#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
50# define SCHED_LOAD_RESOLUTION 10
51# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
52# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
53#else
54# define SCHED_LOAD_RESOLUTION 0
55# define scale_load(w) (w)
56# define scale_load_down(w) (w)
57#endif
58
59#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
60#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61
Peter Zijlstra029632f2011-10-25 10:00:11 +020062#define NICE_0_LOAD SCHED_LOAD_SCALE
63#define NICE_0_SHIFT SCHED_LOAD_SHIFT
64
65/*
Dario Faggioli332ac172013-11-07 14:43:45 +010066 * Single value that decides SCHED_DEADLINE internal math precision.
67 * 10 -> just above 1us
68 * 9 -> just above 0.5us
69 */
70#define DL_SCALE (10)
71
72/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020073 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020074 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020075
76/*
77 * single value that denotes runtime == period, ie unlimited time.
78 */
79#define RUNTIME_INF ((u64)~0ULL)
80
Dario Faggiolid50dde52013-11-07 14:43:36 +010081static inline int fair_policy(int policy)
82{
83 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
84}
85
Peter Zijlstra029632f2011-10-25 10:00:11 +020086static inline int rt_policy(int policy)
87{
Dario Faggiolid50dde52013-11-07 14:43:36 +010088 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020089}
90
Dario Faggioliaab03e02013-11-28 11:14:43 +010091static inline int dl_policy(int policy)
92{
93 return policy == SCHED_DEADLINE;
94}
95
Peter Zijlstra029632f2011-10-25 10:00:11 +020096static inline int task_has_rt_policy(struct task_struct *p)
97{
98 return rt_policy(p->policy);
99}
100
Dario Faggioliaab03e02013-11-28 11:14:43 +0100101static inline int task_has_dl_policy(struct task_struct *p)
102{
103 return dl_policy(p->policy);
104}
105
Dario Faggioli332ac172013-11-07 14:43:45 +0100106static inline bool dl_time_before(u64 a, u64 b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100107{
108 return (s64)(a - b) < 0;
109}
110
111/*
112 * Tells if entity @a should preempt entity @b.
113 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100114static inline bool
115dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100116{
117 return dl_time_before(a->deadline, b->deadline);
118}
119
Peter Zijlstra029632f2011-10-25 10:00:11 +0200120/*
121 * This is the priority-queue data structure of the RT scheduling class:
122 */
123struct rt_prio_array {
124 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
125 struct list_head queue[MAX_RT_PRIO];
126};
127
128struct rt_bandwidth {
129 /* nests inside the rq lock: */
130 raw_spinlock_t rt_runtime_lock;
131 ktime_t rt_period;
132 u64 rt_runtime;
133 struct hrtimer rt_period_timer;
134};
Juri Lellia5e7be32014-09-19 10:22:39 +0100135
136void __dl_clear_params(struct task_struct *p);
137
Dario Faggioli332ac172013-11-07 14:43:45 +0100138/*
139 * To keep the bandwidth of -deadline tasks and groups under control
140 * we need some place where:
141 * - store the maximum -deadline bandwidth of the system (the group);
142 * - cache the fraction of that bandwidth that is currently allocated.
143 *
144 * This is all done in the data structure below. It is similar to the
145 * one used for RT-throttling (rt_bandwidth), with the main difference
146 * that, since here we are only interested in admission control, we
147 * do not decrease any runtime while the group "executes", neither we
148 * need a timer to replenish it.
149 *
150 * With respect to SMP, the bandwidth is given on a per-CPU basis,
151 * meaning that:
152 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
153 * - dl_total_bw array contains, in the i-eth element, the currently
154 * allocated bandwidth on the i-eth CPU.
155 * Moreover, groups consume bandwidth on each CPU, while tasks only
156 * consume bandwidth on the CPU they're running on.
157 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
158 * that will be shown the next time the proc or cgroup controls will
159 * be red. It on its turn can be changed by writing on its own
160 * control.
161 */
162struct dl_bandwidth {
163 raw_spinlock_t dl_runtime_lock;
164 u64 dl_runtime;
165 u64 dl_period;
166};
167
168static inline int dl_bandwidth_enabled(void)
169{
Peter Zijlstra17248132013-12-17 12:44:49 +0100170 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100171}
172
173extern struct dl_bw *dl_bw_of(int i);
174
175struct dl_bw {
176 raw_spinlock_t lock;
177 u64 bw, total_bw;
178};
179
Juri Lelli7f514122014-09-19 10:22:40 +0100180static inline
181void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
182{
183 dl_b->total_bw -= tsk_bw;
184}
185
186static inline
187void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
188{
189 dl_b->total_bw += tsk_bw;
190}
191
192static inline
193bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
194{
195 return dl_b->bw != -1 &&
196 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
197}
198
Peter Zijlstra029632f2011-10-25 10:00:11 +0200199extern struct mutex sched_domains_mutex;
200
201#ifdef CONFIG_CGROUP_SCHED
202
203#include <linux/cgroup.h>
204
205struct cfs_rq;
206struct rt_rq;
207
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200208extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200209
210struct cfs_bandwidth {
211#ifdef CONFIG_CFS_BANDWIDTH
212 raw_spinlock_t lock;
213 ktime_t period;
214 u64 quota, runtime;
Zhihui Zhang9c58c792014-09-20 21:24:36 -0400215 s64 hierarchical_quota;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200216 u64 runtime_expires;
217
218 int idle, timer_active;
219 struct hrtimer period_timer, slack_timer;
220 struct list_head throttled_cfs_rq;
221
222 /* statistics */
223 int nr_periods, nr_throttled;
224 u64 throttled_time;
225#endif
226};
227
228/* task group related information */
229struct task_group {
230 struct cgroup_subsys_state css;
231
232#ifdef CONFIG_FAIR_GROUP_SCHED
233 /* schedulable entities of this group on each cpu */
234 struct sched_entity **se;
235 /* runqueue "owned" by this group on each cpu */
236 struct cfs_rq **cfs_rq;
237 unsigned long shares;
238
Alex Shifa6bdde2013-06-20 10:18:46 +0800239#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800240 atomic_long_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200241 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200242#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800243#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200244
245#ifdef CONFIG_RT_GROUP_SCHED
246 struct sched_rt_entity **rt_se;
247 struct rt_rq **rt_rq;
248
249 struct rt_bandwidth rt_bandwidth;
250#endif
251
252 struct rcu_head rcu;
253 struct list_head list;
254
255 struct task_group *parent;
256 struct list_head siblings;
257 struct list_head children;
258
259#ifdef CONFIG_SCHED_AUTOGROUP
260 struct autogroup *autogroup;
261#endif
262
263 struct cfs_bandwidth cfs_bandwidth;
264};
265
266#ifdef CONFIG_FAIR_GROUP_SCHED
267#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
268
269/*
270 * A weight of 0 or 1 can cause arithmetics problems.
271 * A weight of a cfs_rq is the sum of weights of which entities
272 * are queued on this cfs_rq, so a weight of a entity should not be
273 * too large, so as the shares value of a task group.
274 * (The default weight is 1024 - so there's no practical
275 * limitation from this.)
276 */
277#define MIN_SHARES (1UL << 1)
278#define MAX_SHARES (1UL << 18)
279#endif
280
Peter Zijlstra029632f2011-10-25 10:00:11 +0200281typedef int (*tg_visitor)(struct task_group *, void *);
282
283extern int walk_tg_tree_from(struct task_group *from,
284 tg_visitor down, tg_visitor up, void *data);
285
286/*
287 * Iterate the full tree, calling @down when first entering a node and @up when
288 * leaving it for the final time.
289 *
290 * Caller must hold rcu_lock or sufficient equivalent.
291 */
292static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
293{
294 return walk_tg_tree_from(&root_task_group, down, up, data);
295}
296
297extern int tg_nop(struct task_group *tg, void *data);
298
299extern void free_fair_sched_group(struct task_group *tg);
300extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
301extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
302extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
303 struct sched_entity *se, int cpu,
304 struct sched_entity *parent);
305extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
306extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
307
308extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
Roman Gushchin09dc4ab2014-05-19 15:10:09 +0400309extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200310extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
311
312extern void free_rt_sched_group(struct task_group *tg);
313extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
314extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
315 struct sched_rt_entity *rt_se, int cpu,
316 struct sched_rt_entity *parent);
317
Li Zefan25cc7da2013-03-05 16:07:33 +0800318extern struct task_group *sched_create_group(struct task_group *parent);
319extern void sched_online_group(struct task_group *tg,
320 struct task_group *parent);
321extern void sched_destroy_group(struct task_group *tg);
322extern void sched_offline_group(struct task_group *tg);
323
324extern void sched_move_task(struct task_struct *tsk);
325
326#ifdef CONFIG_FAIR_GROUP_SCHED
327extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
328#endif
329
Peter Zijlstra029632f2011-10-25 10:00:11 +0200330#else /* CONFIG_CGROUP_SCHED */
331
332struct cfs_bandwidth { };
333
334#endif /* CONFIG_CGROUP_SCHED */
335
336/* CFS-related fields in a runqueue */
337struct cfs_rq {
338 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200339 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200340
341 u64 exec_clock;
342 u64 min_vruntime;
343#ifndef CONFIG_64BIT
344 u64 min_vruntime_copy;
345#endif
346
347 struct rb_root tasks_timeline;
348 struct rb_node *rb_leftmost;
349
Peter Zijlstra029632f2011-10-25 10:00:11 +0200350 /*
351 * 'curr' points to currently running entity on this cfs_rq.
352 * It is set to NULL otherwise (i.e when none are currently running).
353 */
354 struct sched_entity *curr, *next, *last, *skip;
355
356#ifdef CONFIG_SCHED_DEBUG
357 unsigned int nr_spread_over;
358#endif
359
Paul Turner2dac7542012-10-04 13:18:30 +0200360#ifdef CONFIG_SMP
361 /*
362 * CFS Load tracking
363 * Under CFS, load is tracked on a per-entity basis and aggregated up.
364 * This allows for the description of both thread and group usage (in
365 * the FAIR_GROUP_SCHED case).
366 */
Alex Shi72a4cf22013-06-20 10:18:53 +0800367 unsigned long runnable_load_avg, blocked_load_avg;
Alex Shi25099402013-06-20 10:18:55 +0800368 atomic64_t decay_counter;
Paul Turner9ee474f2012-10-04 13:18:30 +0200369 u64 last_decay;
Alex Shi25099402013-06-20 10:18:55 +0800370 atomic_long_t removed_load;
Alex Shi141965c2013-06-26 13:05:39 +0800371
Paul Turnerc566e8e2012-10-04 13:18:30 +0200372#ifdef CONFIG_FAIR_GROUP_SCHED
Alex Shi141965c2013-06-26 13:05:39 +0800373 /* Required to track per-cpu representation of a task_group */
Paul Turnerbb17f652012-10-04 13:18:31 +0200374 u32 tg_runnable_contrib;
Alex Shibf5b9862013-06-20 10:18:54 +0800375 unsigned long tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200376
377 /*
378 * h_load = weight * f(tg)
379 *
380 * Where f(tg) is the recursive weight fraction assigned to
381 * this group.
382 */
383 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400384 u64 last_h_load_update;
385 struct sched_entity *h_load_next;
386#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200387#endif /* CONFIG_SMP */
388
Peter Zijlstra029632f2011-10-25 10:00:11 +0200389#ifdef CONFIG_FAIR_GROUP_SCHED
390 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
391
392 /*
393 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
394 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
395 * (like users, containers etc.)
396 *
397 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
398 * list is used during load balance.
399 */
400 int on_list;
401 struct list_head leaf_cfs_rq_list;
402 struct task_group *tg; /* group that "owns" this runqueue */
403
Peter Zijlstra029632f2011-10-25 10:00:11 +0200404#ifdef CONFIG_CFS_BANDWIDTH
405 int runtime_enabled;
406 u64 runtime_expires;
407 s64 runtime_remaining;
408
Paul Turnerf1b17282012-10-04 13:18:31 +0200409 u64 throttled_clock, throttled_clock_task;
410 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200411 int throttled, throttle_count;
412 struct list_head throttled_list;
413#endif /* CONFIG_CFS_BANDWIDTH */
414#endif /* CONFIG_FAIR_GROUP_SCHED */
415};
416
417static inline int rt_bandwidth_enabled(void)
418{
419 return sysctl_sched_rt_runtime >= 0;
420}
421
Steven Rostedtb6366f02015-03-18 14:49:46 -0400422/* RT IPI pull logic requires IRQ_WORK */
423#ifdef CONFIG_IRQ_WORK
424# define HAVE_RT_PUSH_IPI
425#endif
426
Peter Zijlstra029632f2011-10-25 10:00:11 +0200427/* Real-Time classes' related field in a runqueue: */
428struct rt_rq {
429 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200430 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200431#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
432 struct {
433 int curr; /* highest queued rt task prio */
434#ifdef CONFIG_SMP
435 int next; /* next highest */
436#endif
437 } highest_prio;
438#endif
439#ifdef CONFIG_SMP
440 unsigned long rt_nr_migratory;
441 unsigned long rt_nr_total;
442 int overloaded;
443 struct plist_head pushable_tasks;
Steven Rostedtb6366f02015-03-18 14:49:46 -0400444#ifdef HAVE_RT_PUSH_IPI
445 int push_flags;
446 int push_cpu;
447 struct irq_work push_work;
448 raw_spinlock_t push_lock;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200449#endif
Steven Rostedtb6366f02015-03-18 14:49:46 -0400450#endif /* CONFIG_SMP */
Kirill Tkhaif4ebcbc2014-03-15 02:15:00 +0400451 int rt_queued;
452
Peter Zijlstra029632f2011-10-25 10:00:11 +0200453 int rt_throttled;
454 u64 rt_time;
455 u64 rt_runtime;
456 /* Nests inside the rq lock: */
457 raw_spinlock_t rt_runtime_lock;
458
459#ifdef CONFIG_RT_GROUP_SCHED
460 unsigned long rt_nr_boosted;
461
462 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200463 struct task_group *tg;
464#endif
465};
466
Dario Faggioliaab03e02013-11-28 11:14:43 +0100467/* Deadline class' related fields in a runqueue */
468struct dl_rq {
469 /* runqueue is an rbtree, ordered by deadline */
470 struct rb_root rb_root;
471 struct rb_node *rb_leftmost;
472
473 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100474
475#ifdef CONFIG_SMP
476 /*
477 * Deadline values of the currently executing and the
478 * earliest ready task on this rq. Caching these facilitates
479 * the decision wether or not a ready but not running task
480 * should migrate somewhere else.
481 */
482 struct {
483 u64 curr;
484 u64 next;
485 } earliest_dl;
486
487 unsigned long dl_nr_migratory;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100488 int overloaded;
489
490 /*
491 * Tasks on this rq that can be pushed away. They are kept in
492 * an rb-tree, ordered by tasks' deadlines, with caching
493 * of the leftmost (earliest deadline) element.
494 */
495 struct rb_root pushable_dl_tasks_root;
496 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100497#else
498 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100499#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100500};
501
Peter Zijlstra029632f2011-10-25 10:00:11 +0200502#ifdef CONFIG_SMP
503
504/*
505 * We add the notion of a root-domain which will be used to define per-domain
506 * variables. Each exclusive cpuset essentially defines an island domain by
507 * fully partitioning the member cpus from any other cpuset. Whenever a new
508 * exclusive cpuset is created, we also create and attach a new root-domain
509 * object.
510 *
511 */
512struct root_domain {
513 atomic_t refcount;
514 atomic_t rto_count;
515 struct rcu_head rcu;
516 cpumask_var_t span;
517 cpumask_var_t online;
518
Tim Chen4486edd2014-06-23 12:16:49 -0700519 /* Indicate more than one runnable task for any CPU */
520 bool overload;
521
Peter Zijlstra029632f2011-10-25 10:00:11 +0200522 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100523 * The bit corresponding to a CPU gets set here if such CPU has more
524 * than one runnable -deadline task (as it is below for RT tasks).
525 */
526 cpumask_var_t dlo_mask;
527 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100528 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100529 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100530
531 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
535 cpumask_var_t rto_mask;
536 struct cpupri cpupri;
537};
538
539extern struct root_domain def_root_domain;
540
541#endif /* CONFIG_SMP */
542
543/*
544 * This is the main, per-CPU runqueue data structure.
545 *
546 * Locking rule: those places that want to lock multiple runqueues
547 * (such as the load balancing or the thread migration code), lock
548 * acquire operations must be ordered by ascending &runqueue.
549 */
550struct rq {
551 /* runqueue lock: */
552 raw_spinlock_t lock;
553
554 /*
555 * nr_running and cpu_load should be in the same cacheline because
556 * remote CPUs use both these fields when doing load calculation.
557 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200558 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100559#ifdef CONFIG_NUMA_BALANCING
560 unsigned int nr_numa_running;
561 unsigned int nr_preferred_running;
562#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200563 #define CPU_LOAD_IDX_MAX 5
564 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
565 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200566#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200567 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800568 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200569#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200570#ifdef CONFIG_NO_HZ_FULL
571 unsigned long last_sched_tick;
572#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200573 /* capture load from *all* tasks on this cpu: */
574 struct load_weight load;
575 unsigned long nr_load_updates;
576 u64 nr_switches;
577
578 struct cfs_rq cfs;
579 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100580 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200581
582#ifdef CONFIG_FAIR_GROUP_SCHED
583 /* list of leaf cfs_rq on this cpu: */
584 struct list_head leaf_cfs_rq_list;
Dietmar Eggemannf5f97392014-02-26 11:19:33 +0000585
586 struct sched_avg avg;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200587#endif /* CONFIG_FAIR_GROUP_SCHED */
588
Peter Zijlstra029632f2011-10-25 10:00:11 +0200589 /*
590 * This is part of a global counter where only the total sum
591 * over all CPUs matters. A task can increase this counter on
592 * one CPU and if it got migrated afterwards it may decrease
593 * it on another CPU. Always updated under the runqueue lock:
594 */
595 unsigned long nr_uninterruptible;
596
597 struct task_struct *curr, *idle, *stop;
598 unsigned long next_balance;
599 struct mm_struct *prev_mm;
600
Peter Zijlstra9edfbfe2015-01-05 11:18:11 +0100601 unsigned int clock_skip_update;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200602 u64 clock;
603 u64 clock_task;
604
605 atomic_t nr_iowait;
606
607#ifdef CONFIG_SMP
608 struct root_domain *rd;
609 struct sched_domain *sd;
610
Nicolas Pitreced549f2014-05-26 18:19:38 -0400611 unsigned long cpu_capacity;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200612
613 unsigned char idle_balance;
614 /* For active balancing */
615 int post_schedule;
616 int active_balance;
617 int push_cpu;
618 struct cpu_stop_work active_balance_work;
619 /* cpu of this runqueue: */
620 int cpu;
621 int online;
622
Peter Zijlstra367456c2012-02-20 21:49:09 +0100623 struct list_head cfs_tasks;
624
Peter Zijlstra029632f2011-10-25 10:00:11 +0200625 u64 rt_avg;
626 u64 age_stamp;
627 u64 idle_stamp;
628 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700629
630 /* This is used to determine avg_idle's max value */
631 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200632#endif
633
634#ifdef CONFIG_IRQ_TIME_ACCOUNTING
635 u64 prev_irq_time;
636#endif
637#ifdef CONFIG_PARAVIRT
638 u64 prev_steal_time;
639#endif
640#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
641 u64 prev_steal_time_rq;
642#endif
643
644 /* calc_load related fields */
645 unsigned long calc_load_update;
646 long calc_load_active;
647
648#ifdef CONFIG_SCHED_HRTICK
649#ifdef CONFIG_SMP
650 int hrtick_csd_pending;
651 struct call_single_data hrtick_csd;
652#endif
653 struct hrtimer hrtick_timer;
654#endif
655
656#ifdef CONFIG_SCHEDSTATS
657 /* latency stats */
658 struct sched_info rq_sched_info;
659 unsigned long long rq_cpu_time;
660 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
661
662 /* sys_sched_yield() stats */
663 unsigned int yld_count;
664
665 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200666 unsigned int sched_count;
667 unsigned int sched_goidle;
668
669 /* try_to_wake_up() stats */
670 unsigned int ttwu_count;
671 unsigned int ttwu_local;
672#endif
673
674#ifdef CONFIG_SMP
675 struct llist_head wake_list;
676#endif
Daniel Lezcano442bf3a2014-09-04 11:32:09 -0400677
678#ifdef CONFIG_CPU_IDLE
679 /* Must be inspected within a rcu lock section */
680 struct cpuidle_state *idle_state;
681#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200682};
683
684static inline int cpu_of(struct rq *rq)
685{
686#ifdef CONFIG_SMP
687 return rq->cpu;
688#else
689 return 0;
690#endif
691}
692
Pranith Kumar8b06c552014-08-13 13:28:12 -0400693DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200694
Peter Zijlstra518cd622011-12-07 15:07:31 +0100695#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500696#define this_rq() this_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100697#define task_rq(p) cpu_rq(task_cpu(p))
698#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500699#define raw_rq() raw_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100700
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100701static inline u64 __rq_clock_broken(struct rq *rq)
702{
703 return ACCESS_ONCE(rq->clock);
704}
705
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200706static inline u64 rq_clock(struct rq *rq)
707{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100708 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200709 return rq->clock;
710}
711
712static inline u64 rq_clock_task(struct rq *rq)
713{
Peter Zijlstracebde6d2015-01-05 11:18:10 +0100714 lockdep_assert_held(&rq->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200715 return rq->clock_task;
716}
717
Peter Zijlstra9edfbfe2015-01-05 11:18:11 +0100718#define RQCF_REQ_SKIP 0x01
719#define RQCF_ACT_SKIP 0x02
720
721static inline void rq_clock_skip_update(struct rq *rq, bool skip)
722{
723 lockdep_assert_held(&rq->lock);
724 if (skip)
725 rq->clock_skip_update |= RQCF_REQ_SKIP;
726 else
727 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
728}
729
Rik van Riel9942f792014-10-17 03:29:49 -0400730#ifdef CONFIG_NUMA
Rik van Riele3fe70b2014-10-17 03:29:50 -0400731enum numa_topology_type {
732 NUMA_DIRECT,
733 NUMA_GLUELESS_MESH,
734 NUMA_BACKPLANE,
735};
736extern enum numa_topology_type sched_numa_topology_type;
Rik van Riel9942f792014-10-17 03:29:49 -0400737extern int sched_max_numa_distance;
738extern bool find_numa_distance(int distance);
739#endif
740
Mel Gormanf809ca92013-10-07 11:28:57 +0100741#ifdef CONFIG_NUMA_BALANCING
Iulia Manda44dba3d2014-10-31 02:13:31 +0200742/* The regions in numa_faults array from task_struct */
743enum numa_faults_stats {
744 NUMA_MEM = 0,
745 NUMA_CPU,
746 NUMA_MEMBUF,
747 NUMA_CPUBUF
748};
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100749extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100750extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100751extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100752#endif /* CONFIG_NUMA_BALANCING */
753
Peter Zijlstra518cd622011-12-07 15:07:31 +0100754#ifdef CONFIG_SMP
755
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700756extern void sched_ttwu_pending(void);
757
Peter Zijlstra029632f2011-10-25 10:00:11 +0200758#define rcu_dereference_check_sched_domain(p) \
759 rcu_dereference_check((p), \
760 lockdep_is_held(&sched_domains_mutex))
761
762/*
763 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
764 * See detach_destroy_domains: synchronize_sched for details.
765 *
766 * The domain tree of any CPU may only be accessed from within
767 * preempt-disabled sections.
768 */
769#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100770 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
771 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200772
Suresh Siddha77e81362011-11-17 11:08:23 -0800773#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
774
Peter Zijlstra518cd622011-12-07 15:07:31 +0100775/**
776 * highest_flag_domain - Return highest sched_domain containing flag.
777 * @cpu: The cpu whose highest level of sched domain is to
778 * be returned.
779 * @flag: The flag to check for the highest sched_domain
780 * for the given cpu.
781 *
782 * Returns the highest sched_domain of a cpu which contains the given flag.
783 */
784static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
785{
786 struct sched_domain *sd, *hsd = NULL;
787
788 for_each_domain(cpu, sd) {
789 if (!(sd->flags & flag))
790 break;
791 hsd = sd;
792 }
793
794 return hsd;
795}
796
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100797static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
798{
799 struct sched_domain *sd;
800
801 for_each_domain(cpu, sd) {
802 if (sd->flags & flag)
803 break;
804 }
805
806 return sd;
807}
808
Peter Zijlstra518cd622011-12-07 15:07:31 +0100809DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800810DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100811DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100812DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530813DECLARE_PER_CPU(struct sched_domain *, sd_busy);
814DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100815
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400816struct sched_group_capacity {
Li Zefan5e6521e2013-03-05 16:06:23 +0800817 atomic_t ref;
818 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400819 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
820 * for a single CPU.
Li Zefan5e6521e2013-03-05 16:06:23 +0800821 */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400822 unsigned int capacity, capacity_orig;
Li Zefan5e6521e2013-03-05 16:06:23 +0800823 unsigned long next_update;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400824 int imbalance; /* XXX unrelated to capacity but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800825 /*
826 * Number of busy cpus in this group.
827 */
828 atomic_t nr_busy_cpus;
829
830 unsigned long cpumask[0]; /* iteration mask */
831};
832
833struct sched_group {
834 struct sched_group *next; /* Must be a circular list */
835 atomic_t ref;
836
837 unsigned int group_weight;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400838 struct sched_group_capacity *sgc;
Li Zefan5e6521e2013-03-05 16:06:23 +0800839
840 /*
841 * The CPUs this group covers.
842 *
843 * NOTE: this field is variable length. (Allocated dynamically
844 * by attaching extra space to the end of the structure,
845 * depending on how many CPUs the kernel has booted up with)
846 */
847 unsigned long cpumask[0];
848};
849
850static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
851{
852 return to_cpumask(sg->cpumask);
853}
854
855/*
856 * cpumask masking which cpus in the group are allowed to iterate up the domain
857 * tree.
858 */
859static inline struct cpumask *sched_group_mask(struct sched_group *sg)
860{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400861 return to_cpumask(sg->sgc->cpumask);
Li Zefan5e6521e2013-03-05 16:06:23 +0800862}
863
864/**
865 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
866 * @group: The group whose first cpu is to be returned.
867 */
868static inline unsigned int group_first_cpu(struct sched_group *group)
869{
870 return cpumask_first(sched_group_cpus(group));
871}
872
Peter Zijlstrac1174872012-05-31 14:47:33 +0200873extern int group_balance_cpu(struct sched_group *sg);
874
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700875#else
876
877static inline void sched_ttwu_pending(void) { }
878
Peter Zijlstra518cd622011-12-07 15:07:31 +0100879#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200880
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100881#include "stats.h"
882#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200883
884#ifdef CONFIG_CGROUP_SCHED
885
886/*
887 * Return the group to which this tasks belongs.
888 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400889 * We cannot use task_css() and friends because the cgroup subsystem
890 * changes that value before the cgroup_subsys::attach() method is called,
891 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200892 *
893 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
894 * core changes this before calling sched_move_task().
895 *
896 * Instead we use a 'copy' which is updated from sched_move_task() while
897 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200898 */
899static inline struct task_group *task_group(struct task_struct *p)
900{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200901 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200902}
903
904/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
905static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
906{
907#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
908 struct task_group *tg = task_group(p);
909#endif
910
911#ifdef CONFIG_FAIR_GROUP_SCHED
912 p->se.cfs_rq = tg->cfs_rq[cpu];
913 p->se.parent = tg->se[cpu];
914#endif
915
916#ifdef CONFIG_RT_GROUP_SCHED
917 p->rt.rt_rq = tg->rt_rq[cpu];
918 p->rt.parent = tg->rt_se[cpu];
919#endif
920}
921
922#else /* CONFIG_CGROUP_SCHED */
923
924static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
925static inline struct task_group *task_group(struct task_struct *p)
926{
927 return NULL;
928}
929
930#endif /* CONFIG_CGROUP_SCHED */
931
932static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
933{
934 set_task_rq(p, cpu);
935#ifdef CONFIG_SMP
936 /*
937 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
938 * successfuly executed on another CPU. We must ensure that updates of
939 * per-task data have been completed by this moment.
940 */
941 smp_wmb();
942 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100943 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200944#endif
945}
946
947/*
948 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
949 */
950#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100951# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200952# define const_debug __read_mostly
953#else
954# define const_debug const
955#endif
956
957extern const_debug unsigned int sysctl_sched_features;
958
959#define SCHED_FEAT(name, enabled) \
960 __SCHED_FEAT_##name ,
961
962enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100963#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200964 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200965};
966
967#undef SCHED_FEAT
968
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200969#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200970#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100971static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200972{ \
Jason Baron6e76ea82014-07-02 15:52:41 +0000973 return static_key_##enabled(key); \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200974}
975
976#include "features.h"
977
978#undef SCHED_FEAT
979
Ingo Molnarc5905af2012-02-24 08:31:31 +0100980extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200981#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
982#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200983#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200984#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200985
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200986#ifdef CONFIG_NUMA_BALANCING
987#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000988#ifdef CONFIG_SCHED_DEBUG
989#define numabalancing_enabled sched_feat_numa(NUMA)
990#else
991extern bool numabalancing_enabled;
992#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200993#else
994#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000995#define numabalancing_enabled (0)
996#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200997
Peter Zijlstra029632f2011-10-25 10:00:11 +0200998static inline u64 global_rt_period(void)
999{
1000 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1001}
1002
1003static inline u64 global_rt_runtime(void)
1004{
1005 if (sysctl_sched_rt_runtime < 0)
1006 return RUNTIME_INF;
1007
1008 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1009}
1010
Peter Zijlstra029632f2011-10-25 10:00:11 +02001011static inline int task_current(struct rq *rq, struct task_struct *p)
1012{
1013 return rq->curr == p;
1014}
1015
1016static inline int task_running(struct rq *rq, struct task_struct *p)
1017{
1018#ifdef CONFIG_SMP
1019 return p->on_cpu;
1020#else
1021 return task_current(rq, p);
1022#endif
1023}
1024
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04001025static inline int task_on_rq_queued(struct task_struct *p)
1026{
1027 return p->on_rq == TASK_ON_RQ_QUEUED;
1028}
Peter Zijlstra029632f2011-10-25 10:00:11 +02001029
Kirill Tkhaicca26e82014-08-20 13:47:42 +04001030static inline int task_on_rq_migrating(struct task_struct *p)
1031{
1032 return p->on_rq == TASK_ON_RQ_MIGRATING;
1033}
1034
Peter Zijlstra029632f2011-10-25 10:00:11 +02001035#ifndef prepare_arch_switch
1036# define prepare_arch_switch(next) do { } while (0)
1037#endif
1038#ifndef finish_arch_switch
1039# define finish_arch_switch(prev) do { } while (0)
1040#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +00001041#ifndef finish_arch_post_lock_switch
1042# define finish_arch_post_lock_switch() do { } while (0)
1043#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001044
Peter Zijlstra029632f2011-10-25 10:00:11 +02001045static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1046{
1047#ifdef CONFIG_SMP
1048 /*
1049 * We can optimise this out completely for !SMP, because the
1050 * SMP rebalancing from interrupt is the only thing that cares
1051 * here.
1052 */
1053 next->on_cpu = 1;
1054#endif
1055}
1056
1057static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058{
1059#ifdef CONFIG_SMP
1060 /*
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067#endif
1068#ifdef CONFIG_DEBUG_SPINLOCK
1069 /* this is a valid case when another task releases the spinlock */
1070 rq->lock.owner = current;
1071#endif
1072 /*
1073 * If we are tracking spinlock dependencies then we have to
1074 * fix up the runqueue lock - which gets 'carried over' from
1075 * prev into current:
1076 */
1077 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1078
1079 raw_spin_unlock_irq(&rq->lock);
1080}
1081
Li Zefanb13095f2013-03-05 16:06:38 +08001082/*
1083 * wake flags
1084 */
1085#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1086#define WF_FORK 0x02 /* child wakeup after fork */
1087#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1088
Peter Zijlstra029632f2011-10-25 10:00:11 +02001089/*
1090 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1091 * of tasks with abnormal "nice" values across CPUs the contribution that
1092 * each task makes to its run queue's load is weighted according to its
1093 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1094 * scaled version of the new time slice allocation that they receive on time
1095 * slice expiry etc.
1096 */
1097
1098#define WEIGHT_IDLEPRIO 3
1099#define WMULT_IDLEPRIO 1431655765
1100
1101/*
1102 * Nice levels are multiplicative, with a gentle 10% change for every
1103 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1104 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1105 * that remained on nice 0.
1106 *
1107 * The "10% effect" is relative and cumulative: from _any_ nice level,
1108 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1109 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1110 * If a task goes up by ~10% and another task goes down by ~10% then
1111 * the relative distance between them is ~25%.)
1112 */
1113static const int prio_to_weight[40] = {
1114 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1115 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1116 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1117 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1118 /* 0 */ 1024, 820, 655, 526, 423,
1119 /* 5 */ 335, 272, 215, 172, 137,
1120 /* 10 */ 110, 87, 70, 56, 45,
1121 /* 15 */ 36, 29, 23, 18, 15,
1122};
1123
1124/*
1125 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1126 *
1127 * In cases where the weight does not change often, we can use the
1128 * precalculated inverse to speed up arithmetics by turning divisions
1129 * into multiplications:
1130 */
1131static const u32 prio_to_wmult[40] = {
1132 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1133 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1134 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1135 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1136 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1137 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1138 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1139 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1140};
1141
Li Zefanc82ba9f2013-03-05 16:06:55 +08001142#define ENQUEUE_WAKEUP 1
1143#define ENQUEUE_HEAD 2
1144#ifdef CONFIG_SMP
1145#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1146#else
1147#define ENQUEUE_WAKING 0
1148#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +01001149#define ENQUEUE_REPLENISH 8
Li Zefanc82ba9f2013-03-05 16:06:55 +08001150
1151#define DEQUEUE_SLEEP 1
1152
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001153#define RETRY_TASK ((void *)-1UL)
1154
Li Zefanc82ba9f2013-03-05 16:06:55 +08001155struct sched_class {
1156 const struct sched_class *next;
1157
1158 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1159 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1160 void (*yield_task) (struct rq *rq);
1161 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1162
1163 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1164
Peter Zijlstra606dba22012-02-11 06:05:00 +01001165 /*
1166 * It is the responsibility of the pick_next_task() method that will
1167 * return the next task to call put_prev_task() on the @prev task or
1168 * something equivalent.
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001169 *
1170 * May return RETRY_TASK when it finds a higher prio class has runnable
1171 * tasks.
Peter Zijlstra606dba22012-02-11 06:05:00 +01001172 */
1173 struct task_struct * (*pick_next_task) (struct rq *rq,
1174 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001175 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1176
1177#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001178 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001179 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1180
Li Zefanc82ba9f2013-03-05 16:06:55 +08001181 void (*post_schedule) (struct rq *this_rq);
1182 void (*task_waking) (struct task_struct *task);
1183 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1184
1185 void (*set_cpus_allowed)(struct task_struct *p,
1186 const struct cpumask *newmask);
1187
1188 void (*rq_online)(struct rq *rq);
1189 void (*rq_offline)(struct rq *rq);
1190#endif
1191
1192 void (*set_curr_task) (struct rq *rq);
1193 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1194 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001195 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001196
Kirill Tkhai67dfa1b2014-10-27 17:40:52 +03001197 /*
1198 * The switched_from() call is allowed to drop rq->lock, therefore we
1199 * cannot assume the switched_from/switched_to pair is serliazed by
1200 * rq->lock. They are however serialized by p->pi_lock.
1201 */
Li Zefanc82ba9f2013-03-05 16:06:55 +08001202 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1203 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1204 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1205 int oldprio);
1206
1207 unsigned int (*get_rr_interval) (struct rq *rq,
1208 struct task_struct *task);
1209
Stanislaw Gruszka6e998912014-11-12 16:58:44 +01001210 void (*update_curr) (struct rq *rq);
1211
Li Zefanc82ba9f2013-03-05 16:06:55 +08001212#ifdef CONFIG_FAIR_GROUP_SCHED
1213 void (*task_move_group) (struct task_struct *p, int on_rq);
1214#endif
1215};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001216
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01001217static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1218{
1219 prev->sched_class->put_prev_task(rq, prev);
1220}
1221
Peter Zijlstra029632f2011-10-25 10:00:11 +02001222#define sched_class_highest (&stop_sched_class)
1223#define for_each_class(class) \
1224 for (class = sched_class_highest; class; class = class->next)
1225
1226extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001227extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001228extern const struct sched_class rt_sched_class;
1229extern const struct sched_class fair_sched_class;
1230extern const struct sched_class idle_sched_class;
1231
1232
1233#ifdef CONFIG_SMP
1234
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04001235extern void update_group_capacity(struct sched_domain *sd, int cpu);
Li Zefanb7192032013-03-07 10:00:26 +08001236
Daniel Lezcano7caff662014-01-06 12:34:38 +01001237extern void trigger_load_balance(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001238
Vincent Guittot642dbc32013-04-18 18:34:26 +02001239extern void idle_enter_fair(struct rq *this_rq);
1240extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001241
Peter Zijlstradc877342014-02-12 15:47:29 +01001242#else
1243
1244static inline void idle_enter_fair(struct rq *rq) { }
1245static inline void idle_exit_fair(struct rq *rq) { }
1246
Peter Zijlstra029632f2011-10-25 10:00:11 +02001247#endif
1248
Daniel Lezcano442bf3a2014-09-04 11:32:09 -04001249#ifdef CONFIG_CPU_IDLE
1250static inline void idle_set_state(struct rq *rq,
1251 struct cpuidle_state *idle_state)
1252{
1253 rq->idle_state = idle_state;
1254}
1255
1256static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1257{
1258 WARN_ON(!rcu_read_lock_held());
1259 return rq->idle_state;
1260}
1261#else
1262static inline void idle_set_state(struct rq *rq,
1263 struct cpuidle_state *idle_state)
1264{
1265}
1266
1267static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1268{
1269 return NULL;
1270}
1271#endif
1272
Peter Zijlstra029632f2011-10-25 10:00:11 +02001273extern void sysrq_sched_debug_show(void);
1274extern void sched_init_granularity(void);
1275extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001276
1277extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001278extern void init_sched_rt_class(void);
1279extern void init_sched_fair_class(void);
Dario Faggioli332ac172013-11-07 14:43:45 +01001280extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001281
Kirill Tkhai88751252014-06-29 00:03:57 +04001282extern void resched_curr(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001283extern void resched_cpu(int cpu);
1284
1285extern struct rt_bandwidth def_rt_bandwidth;
1286extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1287
Dario Faggioli332ac172013-11-07 14:43:45 +01001288extern struct dl_bandwidth def_dl_bandwidth;
1289extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001290extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1291
Dario Faggioli332ac172013-11-07 14:43:45 +01001292unsigned long to_ratio(u64 period, u64 runtime);
1293
Peter Zijlstra556061b2012-05-11 17:31:26 +02001294extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001295
Alex Shia75cdaa2013-06-20 10:18:47 +08001296extern void init_task_runnable_average(struct task_struct *p);
1297
Kirill Tkhai72465442014-05-09 03:00:14 +04001298static inline void add_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001299{
Kirill Tkhai72465442014-05-09 03:00:14 +04001300 unsigned prev_nr = rq->nr_running;
1301
1302 rq->nr_running = prev_nr + count;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001303
Kirill Tkhai72465442014-05-09 03:00:14 +04001304 if (prev_nr < 2 && rq->nr_running >= 2) {
Tim Chen4486edd2014-06-23 12:16:49 -07001305#ifdef CONFIG_SMP
1306 if (!rq->rd->overload)
1307 rq->rd->overload = true;
1308#endif
1309
1310#ifdef CONFIG_NO_HZ_FULL
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001311 if (tick_nohz_full_cpu(rq->cpu)) {
Frederic Weisbecker3882ec62014-03-18 22:54:04 +01001312 /*
1313 * Tick is needed if more than one task runs on a CPU.
1314 * Send the target an IPI to kick it out of nohz mode.
1315 *
1316 * We assume that IPI implies full memory barrier and the
1317 * new value of rq->nr_running is visible on reception
1318 * from the target.
1319 */
Frederic Weisbeckerfd2ac4f2014-03-18 21:12:53 +01001320 tick_nohz_full_kick_cpu(rq->cpu);
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001321 }
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001322#endif
Tim Chen4486edd2014-06-23 12:16:49 -07001323 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02001324}
1325
Kirill Tkhai72465442014-05-09 03:00:14 +04001326static inline void sub_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001327{
Kirill Tkhai72465442014-05-09 03:00:14 +04001328 rq->nr_running -= count;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001329}
1330
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001331static inline void rq_last_tick_reset(struct rq *rq)
1332{
1333#ifdef CONFIG_NO_HZ_FULL
1334 rq->last_sched_tick = jiffies;
1335#endif
1336}
1337
Peter Zijlstra029632f2011-10-25 10:00:11 +02001338extern void update_rq_clock(struct rq *rq);
1339
1340extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1341extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1342
1343extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1344
1345extern const_debug unsigned int sysctl_sched_time_avg;
1346extern const_debug unsigned int sysctl_sched_nr_migrate;
1347extern const_debug unsigned int sysctl_sched_migration_cost;
1348
1349static inline u64 sched_avg_period(void)
1350{
1351 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1352}
1353
Peter Zijlstra029632f2011-10-25 10:00:11 +02001354#ifdef CONFIG_SCHED_HRTICK
1355
1356/*
1357 * Use hrtick when:
1358 * - enabled by features
1359 * - hrtimer is actually high res
1360 */
1361static inline int hrtick_enabled(struct rq *rq)
1362{
1363 if (!sched_feat(HRTICK))
1364 return 0;
1365 if (!cpu_active(cpu_of(rq)))
1366 return 0;
1367 return hrtimer_is_hres_active(&rq->hrtick_timer);
1368}
1369
1370void hrtick_start(struct rq *rq, u64 delay);
1371
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001372#else
1373
1374static inline int hrtick_enabled(struct rq *rq)
1375{
1376 return 0;
1377}
1378
Peter Zijlstra029632f2011-10-25 10:00:11 +02001379#endif /* CONFIG_SCHED_HRTICK */
1380
1381#ifdef CONFIG_SMP
1382extern void sched_avg_update(struct rq *rq);
1383static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1384{
1385 rq->rt_avg += rt_delta;
1386 sched_avg_update(rq);
1387}
1388#else
1389static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1390static inline void sched_avg_update(struct rq *rq) { }
1391#endif
1392
1393extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1394
Peter Zijlstra3960c8c2015-02-17 13:22:25 +01001395/*
1396 * __task_rq_lock - lock the rq @p resides on.
1397 */
1398static inline struct rq *__task_rq_lock(struct task_struct *p)
1399 __acquires(rq->lock)
1400{
1401 struct rq *rq;
1402
1403 lockdep_assert_held(&p->pi_lock);
1404
1405 for (;;) {
1406 rq = task_rq(p);
1407 raw_spin_lock(&rq->lock);
1408 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1409 return rq;
1410 raw_spin_unlock(&rq->lock);
1411
1412 while (unlikely(task_on_rq_migrating(p)))
1413 cpu_relax();
1414 }
1415}
1416
1417/*
1418 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1419 */
1420static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1421 __acquires(p->pi_lock)
1422 __acquires(rq->lock)
1423{
1424 struct rq *rq;
1425
1426 for (;;) {
1427 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1428 rq = task_rq(p);
1429 raw_spin_lock(&rq->lock);
1430 /*
1431 * move_queued_task() task_rq_lock()
1432 *
1433 * ACQUIRE (rq->lock)
1434 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1435 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1436 * [S] ->cpu = new_cpu [L] task_rq()
1437 * [L] ->on_rq
1438 * RELEASE (rq->lock)
1439 *
1440 * If we observe the old cpu in task_rq_lock, the acquire of
1441 * the old rq->lock will fully serialize against the stores.
1442 *
1443 * If we observe the new cpu in task_rq_lock, the acquire will
1444 * pair with the WMB to ensure we must then also see migrating.
1445 */
1446 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1447 return rq;
1448 raw_spin_unlock(&rq->lock);
1449 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1450
1451 while (unlikely(task_on_rq_migrating(p)))
1452 cpu_relax();
1453 }
1454}
1455
1456static inline void __task_rq_unlock(struct rq *rq)
1457 __releases(rq->lock)
1458{
1459 raw_spin_unlock(&rq->lock);
1460}
1461
1462static inline void
1463task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1464 __releases(rq->lock)
1465 __releases(p->pi_lock)
1466{
1467 raw_spin_unlock(&rq->lock);
1468 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1469}
1470
Peter Zijlstra029632f2011-10-25 10:00:11 +02001471#ifdef CONFIG_SMP
1472#ifdef CONFIG_PREEMPT
1473
1474static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1475
1476/*
1477 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1478 * way at the expense of forcing extra atomic operations in all
1479 * invocations. This assures that the double_lock is acquired using the
1480 * same underlying policy as the spinlock_t on this architecture, which
1481 * reduces latency compared to the unfair variant below. However, it
1482 * also adds more overhead and therefore may reduce throughput.
1483 */
1484static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1485 __releases(this_rq->lock)
1486 __acquires(busiest->lock)
1487 __acquires(this_rq->lock)
1488{
1489 raw_spin_unlock(&this_rq->lock);
1490 double_rq_lock(this_rq, busiest);
1491
1492 return 1;
1493}
1494
1495#else
1496/*
1497 * Unfair double_lock_balance: Optimizes throughput at the expense of
1498 * latency by eliminating extra atomic operations when the locks are
1499 * already in proper order on entry. This favors lower cpu-ids and will
1500 * grant the double lock to lower cpus over higher ids under contention,
1501 * regardless of entry order into the function.
1502 */
1503static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1504 __releases(this_rq->lock)
1505 __acquires(busiest->lock)
1506 __acquires(this_rq->lock)
1507{
1508 int ret = 0;
1509
1510 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1511 if (busiest < this_rq) {
1512 raw_spin_unlock(&this_rq->lock);
1513 raw_spin_lock(&busiest->lock);
1514 raw_spin_lock_nested(&this_rq->lock,
1515 SINGLE_DEPTH_NESTING);
1516 ret = 1;
1517 } else
1518 raw_spin_lock_nested(&busiest->lock,
1519 SINGLE_DEPTH_NESTING);
1520 }
1521 return ret;
1522}
1523
1524#endif /* CONFIG_PREEMPT */
1525
1526/*
1527 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1528 */
1529static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1530{
1531 if (unlikely(!irqs_disabled())) {
1532 /* printk() doesn't work good under rq->lock */
1533 raw_spin_unlock(&this_rq->lock);
1534 BUG_ON(1);
1535 }
1536
1537 return _double_lock_balance(this_rq, busiest);
1538}
1539
1540static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1541 __releases(busiest->lock)
1542{
1543 raw_spin_unlock(&busiest->lock);
1544 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1545}
1546
Peter Zijlstra74602312013-10-10 20:17:22 +02001547static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1548{
1549 if (l1 > l2)
1550 swap(l1, l2);
1551
1552 spin_lock(l1);
1553 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1554}
1555
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001556static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1557{
1558 if (l1 > l2)
1559 swap(l1, l2);
1560
1561 spin_lock_irq(l1);
1562 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1563}
1564
Peter Zijlstra74602312013-10-10 20:17:22 +02001565static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1566{
1567 if (l1 > l2)
1568 swap(l1, l2);
1569
1570 raw_spin_lock(l1);
1571 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1572}
1573
Peter Zijlstra029632f2011-10-25 10:00:11 +02001574/*
1575 * double_rq_lock - safely lock two runqueues
1576 *
1577 * Note this does not disable interrupts like task_rq_lock,
1578 * you need to do so manually before calling.
1579 */
1580static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1581 __acquires(rq1->lock)
1582 __acquires(rq2->lock)
1583{
1584 BUG_ON(!irqs_disabled());
1585 if (rq1 == rq2) {
1586 raw_spin_lock(&rq1->lock);
1587 __acquire(rq2->lock); /* Fake it out ;) */
1588 } else {
1589 if (rq1 < rq2) {
1590 raw_spin_lock(&rq1->lock);
1591 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1592 } else {
1593 raw_spin_lock(&rq2->lock);
1594 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1595 }
1596 }
1597}
1598
1599/*
1600 * double_rq_unlock - safely unlock two runqueues
1601 *
1602 * Note this does not restore interrupts like task_rq_unlock,
1603 * you need to do so manually after calling.
1604 */
1605static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1606 __releases(rq1->lock)
1607 __releases(rq2->lock)
1608{
1609 raw_spin_unlock(&rq1->lock);
1610 if (rq1 != rq2)
1611 raw_spin_unlock(&rq2->lock);
1612 else
1613 __release(rq2->lock);
1614}
1615
1616#else /* CONFIG_SMP */
1617
1618/*
1619 * double_rq_lock - safely lock two runqueues
1620 *
1621 * Note this does not disable interrupts like task_rq_lock,
1622 * you need to do so manually before calling.
1623 */
1624static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1625 __acquires(rq1->lock)
1626 __acquires(rq2->lock)
1627{
1628 BUG_ON(!irqs_disabled());
1629 BUG_ON(rq1 != rq2);
1630 raw_spin_lock(&rq1->lock);
1631 __acquire(rq2->lock); /* Fake it out ;) */
1632}
1633
1634/*
1635 * double_rq_unlock - safely unlock two runqueues
1636 *
1637 * Note this does not restore interrupts like task_rq_unlock,
1638 * you need to do so manually after calling.
1639 */
1640static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1641 __releases(rq1->lock)
1642 __releases(rq2->lock)
1643{
1644 BUG_ON(rq1 != rq2);
1645 raw_spin_unlock(&rq1->lock);
1646 __release(rq2->lock);
1647}
1648
1649#endif
1650
1651extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1652extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1653extern void print_cfs_stats(struct seq_file *m, int cpu);
1654extern void print_rt_stats(struct seq_file *m, int cpu);
Wanpeng Liacb32132014-10-31 06:39:33 +08001655extern void print_dl_stats(struct seq_file *m, int cpu);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001656
1657extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1658extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001659extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001660
Ben Segall1ee14e62013-10-16 11:16:12 -07001661extern void cfs_bandwidth_usage_inc(void);
1662extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001663
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001664#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001665enum rq_nohz_flag_bits {
1666 NOHZ_TICK_STOPPED,
1667 NOHZ_BALANCE_KICK,
1668};
1669
1670#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1671#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001672
1673#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1674
1675DECLARE_PER_CPU(u64, cpu_hardirq_time);
1676DECLARE_PER_CPU(u64, cpu_softirq_time);
1677
1678#ifndef CONFIG_64BIT
1679DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1680
1681static inline void irq_time_write_begin(void)
1682{
1683 __this_cpu_inc(irq_time_seq.sequence);
1684 smp_wmb();
1685}
1686
1687static inline void irq_time_write_end(void)
1688{
1689 smp_wmb();
1690 __this_cpu_inc(irq_time_seq.sequence);
1691}
1692
1693static inline u64 irq_time_read(int cpu)
1694{
1695 u64 irq_time;
1696 unsigned seq;
1697
1698 do {
1699 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1700 irq_time = per_cpu(cpu_softirq_time, cpu) +
1701 per_cpu(cpu_hardirq_time, cpu);
1702 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1703
1704 return irq_time;
1705}
1706#else /* CONFIG_64BIT */
1707static inline void irq_time_write_begin(void)
1708{
1709}
1710
1711static inline void irq_time_write_end(void)
1712{
1713}
1714
1715static inline u64 irq_time_read(int cpu)
1716{
1717 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1718}
1719#endif /* CONFIG_64BIT */
1720#endif /* CONFIG_IRQ_TIME_ACCOUNTING */