blob: 57aacea1cbdfa1d846a2fad6726f37502fe0cb41 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02009#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010010#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020011
Peter Zijlstra391e43d2011-11-15 17:14:39 +010012#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010013#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080014#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020015
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040016struct rq;
Daniel Lezcano442bf3a2014-09-04 11:32:09 -040017struct cpuidle_state;
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040018
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040019/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
Kirill Tkhaicca26e82014-08-20 13:47:42 +040021#define TASK_ON_RQ_MIGRATING 2
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040022
Peter Zijlstra029632f2011-10-25 10:00:11 +020023extern __read_mostly int scheduler_running;
24
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040025extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
Peter Zijlstra029632f2011-10-25 10:00:11 +020031/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020032 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
Li Zefancc1f4b12013-03-05 16:06:09 +080036/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
Peter Zijlstra029632f2011-10-25 10:00:11 +020061#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64/*
Dario Faggioli332ac172013-11-07 14:43:45 +010065 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
71/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020072 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020073 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020074
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
Dario Faggiolid50dde52013-11-07 14:43:36 +010080static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
Peter Zijlstra029632f2011-10-25 10:00:11 +020085static inline int rt_policy(int policy)
86{
Dario Faggiolid50dde52013-11-07 14:43:36 +010087 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020088}
89
Dario Faggioliaab03e02013-11-28 11:14:43 +010090static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
Peter Zijlstra029632f2011-10-25 10:00:11 +020095static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
Dario Faggioliaab03e02013-11-28 11:14:43 +0100100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
Dario Faggioli332ac172013-11-07 14:43:45 +0100105static inline bool dl_time_before(u64 a, u64 b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
Peter Zijlstra029632f2011-10-25 10:00:11 +0200119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
Juri Lellia5e7be32014-09-19 10:22:39 +0100134
135void __dl_clear_params(struct task_struct *p);
136
Dario Faggioli332ac172013-11-07 14:43:45 +0100137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
Peter Zijlstra17248132013-12-17 12:44:49 +0100169 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
Peter Zijlstra029632f2011-10-25 10:00:11 +0200179extern struct mutex sched_domains_mutex;
180
181#ifdef CONFIG_CGROUP_SCHED
182
183#include <linux/cgroup.h>
184
185struct cfs_rq;
186struct rt_rq;
187
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200188extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200189
190struct cfs_bandwidth {
191#ifdef CONFIG_CFS_BANDWIDTH
192 raw_spinlock_t lock;
193 ktime_t period;
194 u64 quota, runtime;
Zhihui Zhang9c58c792014-09-20 21:24:36 -0400195 s64 hierarchical_quota;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200196 u64 runtime_expires;
197
198 int idle, timer_active;
199 struct hrtimer period_timer, slack_timer;
200 struct list_head throttled_cfs_rq;
201
202 /* statistics */
203 int nr_periods, nr_throttled;
204 u64 throttled_time;
205#endif
206};
207
208/* task group related information */
209struct task_group {
210 struct cgroup_subsys_state css;
211
212#ifdef CONFIG_FAIR_GROUP_SCHED
213 /* schedulable entities of this group on each cpu */
214 struct sched_entity **se;
215 /* runqueue "owned" by this group on each cpu */
216 struct cfs_rq **cfs_rq;
217 unsigned long shares;
218
Alex Shifa6bdde2013-06-20 10:18:46 +0800219#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800220 atomic_long_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200221 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200222#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800223#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200224
225#ifdef CONFIG_RT_GROUP_SCHED
226 struct sched_rt_entity **rt_se;
227 struct rt_rq **rt_rq;
228
229 struct rt_bandwidth rt_bandwidth;
230#endif
231
232 struct rcu_head rcu;
233 struct list_head list;
234
235 struct task_group *parent;
236 struct list_head siblings;
237 struct list_head children;
238
239#ifdef CONFIG_SCHED_AUTOGROUP
240 struct autogroup *autogroup;
241#endif
242
243 struct cfs_bandwidth cfs_bandwidth;
244};
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
248
249/*
250 * A weight of 0 or 1 can cause arithmetics problems.
251 * A weight of a cfs_rq is the sum of weights of which entities
252 * are queued on this cfs_rq, so a weight of a entity should not be
253 * too large, so as the shares value of a task group.
254 * (The default weight is 1024 - so there's no practical
255 * limitation from this.)
256 */
257#define MIN_SHARES (1UL << 1)
258#define MAX_SHARES (1UL << 18)
259#endif
260
Peter Zijlstra029632f2011-10-25 10:00:11 +0200261typedef int (*tg_visitor)(struct task_group *, void *);
262
263extern int walk_tg_tree_from(struct task_group *from,
264 tg_visitor down, tg_visitor up, void *data);
265
266/*
267 * Iterate the full tree, calling @down when first entering a node and @up when
268 * leaving it for the final time.
269 *
270 * Caller must hold rcu_lock or sufficient equivalent.
271 */
272static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
273{
274 return walk_tg_tree_from(&root_task_group, down, up, data);
275}
276
277extern int tg_nop(struct task_group *tg, void *data);
278
279extern void free_fair_sched_group(struct task_group *tg);
280extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
281extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
282extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
283 struct sched_entity *se, int cpu,
284 struct sched_entity *parent);
285extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
286extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
287
288extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
Roman Gushchin09dc4ab2014-05-19 15:10:09 +0400289extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200290extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
291
292extern void free_rt_sched_group(struct task_group *tg);
293extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
294extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
295 struct sched_rt_entity *rt_se, int cpu,
296 struct sched_rt_entity *parent);
297
Li Zefan25cc7da2013-03-05 16:07:33 +0800298extern struct task_group *sched_create_group(struct task_group *parent);
299extern void sched_online_group(struct task_group *tg,
300 struct task_group *parent);
301extern void sched_destroy_group(struct task_group *tg);
302extern void sched_offline_group(struct task_group *tg);
303
304extern void sched_move_task(struct task_struct *tsk);
305
306#ifdef CONFIG_FAIR_GROUP_SCHED
307extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
308#endif
309
Peter Zijlstra029632f2011-10-25 10:00:11 +0200310#else /* CONFIG_CGROUP_SCHED */
311
312struct cfs_bandwidth { };
313
314#endif /* CONFIG_CGROUP_SCHED */
315
316/* CFS-related fields in a runqueue */
317struct cfs_rq {
318 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200319 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200320
321 u64 exec_clock;
322 u64 min_vruntime;
323#ifndef CONFIG_64BIT
324 u64 min_vruntime_copy;
325#endif
326
327 struct rb_root tasks_timeline;
328 struct rb_node *rb_leftmost;
329
Peter Zijlstra029632f2011-10-25 10:00:11 +0200330 /*
331 * 'curr' points to currently running entity on this cfs_rq.
332 * It is set to NULL otherwise (i.e when none are currently running).
333 */
334 struct sched_entity *curr, *next, *last, *skip;
335
336#ifdef CONFIG_SCHED_DEBUG
337 unsigned int nr_spread_over;
338#endif
339
Paul Turner2dac7542012-10-04 13:18:30 +0200340#ifdef CONFIG_SMP
341 /*
342 * CFS Load tracking
343 * Under CFS, load is tracked on a per-entity basis and aggregated up.
344 * This allows for the description of both thread and group usage (in
345 * the FAIR_GROUP_SCHED case).
346 */
Alex Shi72a4cf22013-06-20 10:18:53 +0800347 unsigned long runnable_load_avg, blocked_load_avg;
Alex Shi25099402013-06-20 10:18:55 +0800348 atomic64_t decay_counter;
Paul Turner9ee474f2012-10-04 13:18:30 +0200349 u64 last_decay;
Alex Shi25099402013-06-20 10:18:55 +0800350 atomic_long_t removed_load;
Alex Shi141965c2013-06-26 13:05:39 +0800351
Paul Turnerc566e8e2012-10-04 13:18:30 +0200352#ifdef CONFIG_FAIR_GROUP_SCHED
Alex Shi141965c2013-06-26 13:05:39 +0800353 /* Required to track per-cpu representation of a task_group */
Paul Turnerbb17f652012-10-04 13:18:31 +0200354 u32 tg_runnable_contrib;
Alex Shibf5b9862013-06-20 10:18:54 +0800355 unsigned long tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200356
357 /*
358 * h_load = weight * f(tg)
359 *
360 * Where f(tg) is the recursive weight fraction assigned to
361 * this group.
362 */
363 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400364 u64 last_h_load_update;
365 struct sched_entity *h_load_next;
366#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200367#endif /* CONFIG_SMP */
368
Peter Zijlstra029632f2011-10-25 10:00:11 +0200369#ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 int on_list;
381 struct list_head leaf_cfs_rq_list;
382 struct task_group *tg; /* group that "owns" this runqueue */
383
Peter Zijlstra029632f2011-10-25 10:00:11 +0200384#ifdef CONFIG_CFS_BANDWIDTH
385 int runtime_enabled;
386 u64 runtime_expires;
387 s64 runtime_remaining;
388
Paul Turnerf1b17282012-10-04 13:18:31 +0200389 u64 throttled_clock, throttled_clock_task;
390 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200391 int throttled, throttle_count;
392 struct list_head throttled_list;
393#endif /* CONFIG_CFS_BANDWIDTH */
394#endif /* CONFIG_FAIR_GROUP_SCHED */
395};
396
397static inline int rt_bandwidth_enabled(void)
398{
399 return sysctl_sched_rt_runtime >= 0;
400}
401
402/* Real-Time classes' related field in a runqueue: */
403struct rt_rq {
404 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200405 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200406#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
407 struct {
408 int curr; /* highest queued rt task prio */
409#ifdef CONFIG_SMP
410 int next; /* next highest */
411#endif
412 } highest_prio;
413#endif
414#ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 unsigned long rt_nr_total;
417 int overloaded;
418 struct plist_head pushable_tasks;
419#endif
Kirill Tkhaif4ebcbc2014-03-15 02:15:00 +0400420 int rt_queued;
421
Peter Zijlstra029632f2011-10-25 10:00:11 +0200422 int rt_throttled;
423 u64 rt_time;
424 u64 rt_runtime;
425 /* Nests inside the rq lock: */
426 raw_spinlock_t rt_runtime_lock;
427
428#ifdef CONFIG_RT_GROUP_SCHED
429 unsigned long rt_nr_boosted;
430
431 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200432 struct task_group *tg;
433#endif
434};
435
Dario Faggioliaab03e02013-11-28 11:14:43 +0100436/* Deadline class' related fields in a runqueue */
437struct dl_rq {
438 /* runqueue is an rbtree, ordered by deadline */
439 struct rb_root rb_root;
440 struct rb_node *rb_leftmost;
441
442 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100443
444#ifdef CONFIG_SMP
445 /*
446 * Deadline values of the currently executing and the
447 * earliest ready task on this rq. Caching these facilitates
448 * the decision wether or not a ready but not running task
449 * should migrate somewhere else.
450 */
451 struct {
452 u64 curr;
453 u64 next;
454 } earliest_dl;
455
456 unsigned long dl_nr_migratory;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100457 int overloaded;
458
459 /*
460 * Tasks on this rq that can be pushed away. They are kept in
461 * an rb-tree, ordered by tasks' deadlines, with caching
462 * of the leftmost (earliest deadline) element.
463 */
464 struct rb_root pushable_dl_tasks_root;
465 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100466#else
467 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100468#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100469};
470
Peter Zijlstra029632f2011-10-25 10:00:11 +0200471#ifdef CONFIG_SMP
472
473/*
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
480 */
481struct root_domain {
482 atomic_t refcount;
483 atomic_t rto_count;
484 struct rcu_head rcu;
485 cpumask_var_t span;
486 cpumask_var_t online;
487
Tim Chen4486edd2014-06-23 12:16:49 -0700488 /* Indicate more than one runnable task for any CPU */
489 bool overload;
490
Peter Zijlstra029632f2011-10-25 10:00:11 +0200491 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100492 * The bit corresponding to a CPU gets set here if such CPU has more
493 * than one runnable -deadline task (as it is below for RT tasks).
494 */
495 cpumask_var_t dlo_mask;
496 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100497 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100498 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100499
500 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 struct cpupri cpupri;
506};
507
508extern struct root_domain def_root_domain;
509
510#endif /* CONFIG_SMP */
511
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519struct rq {
520 /* runqueue lock: */
521 raw_spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200527 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100528#ifdef CONFIG_NUMA_BALANCING
529 unsigned int nr_numa_running;
530 unsigned int nr_preferred_running;
531#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200535#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200536 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800537 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200539#ifdef CONFIG_NO_HZ_FULL
540 unsigned long last_sched_tick;
541#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200542 int skip_clock_update;
543
544 /* capture load from *all* tasks on this cpu: */
545 struct load_weight load;
546 unsigned long nr_load_updates;
547 u64 nr_switches;
548
549 struct cfs_rq cfs;
550 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100551 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200552
553#ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list;
Dietmar Eggemannf5f97392014-02-26 11:19:33 +0000556
557 struct sched_avg avg;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200558#endif /* CONFIG_FAIR_GROUP_SCHED */
559
Peter Zijlstra029632f2011-10-25 10:00:11 +0200560 /*
561 * This is part of a global counter where only the total sum
562 * over all CPUs matters. A task can increase this counter on
563 * one CPU and if it got migrated afterwards it may decrease
564 * it on another CPU. Always updated under the runqueue lock:
565 */
566 unsigned long nr_uninterruptible;
567
568 struct task_struct *curr, *idle, *stop;
569 unsigned long next_balance;
570 struct mm_struct *prev_mm;
571
572 u64 clock;
573 u64 clock_task;
574
575 atomic_t nr_iowait;
576
577#ifdef CONFIG_SMP
578 struct root_domain *rd;
579 struct sched_domain *sd;
580
Nicolas Pitreced549f2014-05-26 18:19:38 -0400581 unsigned long cpu_capacity;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200582
583 unsigned char idle_balance;
584 /* For active balancing */
585 int post_schedule;
586 int active_balance;
587 int push_cpu;
588 struct cpu_stop_work active_balance_work;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
Peter Zijlstra367456c2012-02-20 21:49:09 +0100593 struct list_head cfs_tasks;
594
Peter Zijlstra029632f2011-10-25 10:00:11 +0200595 u64 rt_avg;
596 u64 age_stamp;
597 u64 idle_stamp;
598 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700599
600 /* This is used to determine avg_idle's max value */
601 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200602#endif
603
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 u64 prev_irq_time;
606#endif
607#ifdef CONFIG_PARAVIRT
608 u64 prev_steal_time;
609#endif
610#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
611 u64 prev_steal_time_rq;
612#endif
613
614 /* calc_load related fields */
615 unsigned long calc_load_update;
616 long calc_load_active;
617
618#ifdef CONFIG_SCHED_HRTICK
619#ifdef CONFIG_SMP
620 int hrtick_csd_pending;
621 struct call_single_data hrtick_csd;
622#endif
623 struct hrtimer hrtick_timer;
624#endif
625
626#ifdef CONFIG_SCHEDSTATS
627 /* latency stats */
628 struct sched_info rq_sched_info;
629 unsigned long long rq_cpu_time;
630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
631
632 /* sys_sched_yield() stats */
633 unsigned int yld_count;
634
635 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200636 unsigned int sched_count;
637 unsigned int sched_goidle;
638
639 /* try_to_wake_up() stats */
640 unsigned int ttwu_count;
641 unsigned int ttwu_local;
642#endif
643
644#ifdef CONFIG_SMP
645 struct llist_head wake_list;
646#endif
Daniel Lezcano442bf3a2014-09-04 11:32:09 -0400647
648#ifdef CONFIG_CPU_IDLE
649 /* Must be inspected within a rcu lock section */
650 struct cpuidle_state *idle_state;
651#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200652};
653
654static inline int cpu_of(struct rq *rq)
655{
656#ifdef CONFIG_SMP
657 return rq->cpu;
658#else
659 return 0;
660#endif
661}
662
Pranith Kumar8b06c552014-08-13 13:28:12 -0400663DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200664
Peter Zijlstra518cd622011-12-07 15:07:31 +0100665#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500666#define this_rq() this_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100667#define task_rq(p) cpu_rq(task_cpu(p))
668#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
Christoph Lameter4a32fea2014-08-17 12:30:27 -0500669#define raw_rq() raw_cpu_ptr(&runqueues)
Peter Zijlstra518cd622011-12-07 15:07:31 +0100670
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200671static inline u64 rq_clock(struct rq *rq)
672{
673 return rq->clock;
674}
675
676static inline u64 rq_clock_task(struct rq *rq)
677{
678 return rq->clock_task;
679}
680
Rik van Riel9942f792014-10-17 03:29:49 -0400681#ifdef CONFIG_NUMA
Rik van Riele3fe70b2014-10-17 03:29:50 -0400682enum numa_topology_type {
683 NUMA_DIRECT,
684 NUMA_GLUELESS_MESH,
685 NUMA_BACKPLANE,
686};
687extern enum numa_topology_type sched_numa_topology_type;
Rik van Riel9942f792014-10-17 03:29:49 -0400688extern int sched_max_numa_distance;
689extern bool find_numa_distance(int distance);
690#endif
691
Mel Gormanf809ca92013-10-07 11:28:57 +0100692#ifdef CONFIG_NUMA_BALANCING
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100693extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100694extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100695extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100696#endif /* CONFIG_NUMA_BALANCING */
697
Peter Zijlstra518cd622011-12-07 15:07:31 +0100698#ifdef CONFIG_SMP
699
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700700extern void sched_ttwu_pending(void);
701
Peter Zijlstra029632f2011-10-25 10:00:11 +0200702#define rcu_dereference_check_sched_domain(p) \
703 rcu_dereference_check((p), \
704 lockdep_is_held(&sched_domains_mutex))
705
706/*
707 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
708 * See detach_destroy_domains: synchronize_sched for details.
709 *
710 * The domain tree of any CPU may only be accessed from within
711 * preempt-disabled sections.
712 */
713#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100714 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
715 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200716
Suresh Siddha77e81362011-11-17 11:08:23 -0800717#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
718
Peter Zijlstra518cd622011-12-07 15:07:31 +0100719/**
720 * highest_flag_domain - Return highest sched_domain containing flag.
721 * @cpu: The cpu whose highest level of sched domain is to
722 * be returned.
723 * @flag: The flag to check for the highest sched_domain
724 * for the given cpu.
725 *
726 * Returns the highest sched_domain of a cpu which contains the given flag.
727 */
728static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
729{
730 struct sched_domain *sd, *hsd = NULL;
731
732 for_each_domain(cpu, sd) {
733 if (!(sd->flags & flag))
734 break;
735 hsd = sd;
736 }
737
738 return hsd;
739}
740
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100741static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
742{
743 struct sched_domain *sd;
744
745 for_each_domain(cpu, sd) {
746 if (sd->flags & flag)
747 break;
748 }
749
750 return sd;
751}
752
Peter Zijlstra518cd622011-12-07 15:07:31 +0100753DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800754DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100755DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100756DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530757DECLARE_PER_CPU(struct sched_domain *, sd_busy);
758DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100759
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400760struct sched_group_capacity {
Li Zefan5e6521e2013-03-05 16:06:23 +0800761 atomic_t ref;
762 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400763 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
764 * for a single CPU.
Li Zefan5e6521e2013-03-05 16:06:23 +0800765 */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400766 unsigned int capacity, capacity_orig;
Li Zefan5e6521e2013-03-05 16:06:23 +0800767 unsigned long next_update;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400768 int imbalance; /* XXX unrelated to capacity but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800769 /*
770 * Number of busy cpus in this group.
771 */
772 atomic_t nr_busy_cpus;
773
774 unsigned long cpumask[0]; /* iteration mask */
775};
776
777struct sched_group {
778 struct sched_group *next; /* Must be a circular list */
779 atomic_t ref;
780
781 unsigned int group_weight;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400782 struct sched_group_capacity *sgc;
Li Zefan5e6521e2013-03-05 16:06:23 +0800783
784 /*
785 * The CPUs this group covers.
786 *
787 * NOTE: this field is variable length. (Allocated dynamically
788 * by attaching extra space to the end of the structure,
789 * depending on how many CPUs the kernel has booted up with)
790 */
791 unsigned long cpumask[0];
792};
793
794static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
795{
796 return to_cpumask(sg->cpumask);
797}
798
799/*
800 * cpumask masking which cpus in the group are allowed to iterate up the domain
801 * tree.
802 */
803static inline struct cpumask *sched_group_mask(struct sched_group *sg)
804{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400805 return to_cpumask(sg->sgc->cpumask);
Li Zefan5e6521e2013-03-05 16:06:23 +0800806}
807
808/**
809 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
810 * @group: The group whose first cpu is to be returned.
811 */
812static inline unsigned int group_first_cpu(struct sched_group *group)
813{
814 return cpumask_first(sched_group_cpus(group));
815}
816
Peter Zijlstrac1174872012-05-31 14:47:33 +0200817extern int group_balance_cpu(struct sched_group *sg);
818
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700819#else
820
821static inline void sched_ttwu_pending(void) { }
822
Peter Zijlstra518cd622011-12-07 15:07:31 +0100823#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200824
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100825#include "stats.h"
826#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200827
828#ifdef CONFIG_CGROUP_SCHED
829
830/*
831 * Return the group to which this tasks belongs.
832 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400833 * We cannot use task_css() and friends because the cgroup subsystem
834 * changes that value before the cgroup_subsys::attach() method is called,
835 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200836 *
837 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
838 * core changes this before calling sched_move_task().
839 *
840 * Instead we use a 'copy' which is updated from sched_move_task() while
841 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200842 */
843static inline struct task_group *task_group(struct task_struct *p)
844{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200845 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200846}
847
848/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
849static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
850{
851#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
852 struct task_group *tg = task_group(p);
853#endif
854
855#ifdef CONFIG_FAIR_GROUP_SCHED
856 p->se.cfs_rq = tg->cfs_rq[cpu];
857 p->se.parent = tg->se[cpu];
858#endif
859
860#ifdef CONFIG_RT_GROUP_SCHED
861 p->rt.rt_rq = tg->rt_rq[cpu];
862 p->rt.parent = tg->rt_se[cpu];
863#endif
864}
865
866#else /* CONFIG_CGROUP_SCHED */
867
868static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
869static inline struct task_group *task_group(struct task_struct *p)
870{
871 return NULL;
872}
873
874#endif /* CONFIG_CGROUP_SCHED */
875
876static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
877{
878 set_task_rq(p, cpu);
879#ifdef CONFIG_SMP
880 /*
881 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
882 * successfuly executed on another CPU. We must ensure that updates of
883 * per-task data have been completed by this moment.
884 */
885 smp_wmb();
886 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100887 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200888#endif
889}
890
891/*
892 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
893 */
894#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100895# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200896# define const_debug __read_mostly
897#else
898# define const_debug const
899#endif
900
901extern const_debug unsigned int sysctl_sched_features;
902
903#define SCHED_FEAT(name, enabled) \
904 __SCHED_FEAT_##name ,
905
906enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100907#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200908 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200909};
910
911#undef SCHED_FEAT
912
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200913#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200914#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100915static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200916{ \
Jason Baron6e76ea82014-07-02 15:52:41 +0000917 return static_key_##enabled(key); \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200918}
919
920#include "features.h"
921
922#undef SCHED_FEAT
923
Ingo Molnarc5905af2012-02-24 08:31:31 +0100924extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200925#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
926#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200927#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200928#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200929
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200930#ifdef CONFIG_NUMA_BALANCING
931#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000932#ifdef CONFIG_SCHED_DEBUG
933#define numabalancing_enabled sched_feat_numa(NUMA)
934#else
935extern bool numabalancing_enabled;
936#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200937#else
938#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000939#define numabalancing_enabled (0)
940#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200941
Peter Zijlstra029632f2011-10-25 10:00:11 +0200942static inline u64 global_rt_period(void)
943{
944 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
945}
946
947static inline u64 global_rt_runtime(void)
948{
949 if (sysctl_sched_rt_runtime < 0)
950 return RUNTIME_INF;
951
952 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
953}
954
Peter Zijlstra029632f2011-10-25 10:00:11 +0200955static inline int task_current(struct rq *rq, struct task_struct *p)
956{
957 return rq->curr == p;
958}
959
960static inline int task_running(struct rq *rq, struct task_struct *p)
961{
962#ifdef CONFIG_SMP
963 return p->on_cpu;
964#else
965 return task_current(rq, p);
966#endif
967}
968
Kirill Tkhaida0c1e62014-08-20 13:47:32 +0400969static inline int task_on_rq_queued(struct task_struct *p)
970{
971 return p->on_rq == TASK_ON_RQ_QUEUED;
972}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200973
Kirill Tkhaicca26e82014-08-20 13:47:42 +0400974static inline int task_on_rq_migrating(struct task_struct *p)
975{
976 return p->on_rq == TASK_ON_RQ_MIGRATING;
977}
978
Peter Zijlstra029632f2011-10-25 10:00:11 +0200979#ifndef prepare_arch_switch
980# define prepare_arch_switch(next) do { } while (0)
981#endif
982#ifndef finish_arch_switch
983# define finish_arch_switch(prev) do { } while (0)
984#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000985#ifndef finish_arch_post_lock_switch
986# define finish_arch_post_lock_switch() do { } while (0)
987#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200988
Peter Zijlstra029632f2011-10-25 10:00:11 +0200989static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
990{
991#ifdef CONFIG_SMP
992 /*
993 * We can optimise this out completely for !SMP, because the
994 * SMP rebalancing from interrupt is the only thing that cares
995 * here.
996 */
997 next->on_cpu = 1;
998#endif
999}
1000
1001static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1002{
1003#ifdef CONFIG_SMP
1004 /*
1005 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1006 * We must ensure this doesn't happen until the switch is completely
1007 * finished.
1008 */
1009 smp_wmb();
1010 prev->on_cpu = 0;
1011#endif
1012#ifdef CONFIG_DEBUG_SPINLOCK
1013 /* this is a valid case when another task releases the spinlock */
1014 rq->lock.owner = current;
1015#endif
1016 /*
1017 * If we are tracking spinlock dependencies then we have to
1018 * fix up the runqueue lock - which gets 'carried over' from
1019 * prev into current:
1020 */
1021 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1022
1023 raw_spin_unlock_irq(&rq->lock);
1024}
1025
Li Zefanb13095f2013-03-05 16:06:38 +08001026/*
1027 * wake flags
1028 */
1029#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1030#define WF_FORK 0x02 /* child wakeup after fork */
1031#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1032
Peter Zijlstra029632f2011-10-25 10:00:11 +02001033/*
1034 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1035 * of tasks with abnormal "nice" values across CPUs the contribution that
1036 * each task makes to its run queue's load is weighted according to its
1037 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1038 * scaled version of the new time slice allocation that they receive on time
1039 * slice expiry etc.
1040 */
1041
1042#define WEIGHT_IDLEPRIO 3
1043#define WMULT_IDLEPRIO 1431655765
1044
1045/*
1046 * Nice levels are multiplicative, with a gentle 10% change for every
1047 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1048 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1049 * that remained on nice 0.
1050 *
1051 * The "10% effect" is relative and cumulative: from _any_ nice level,
1052 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1053 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1054 * If a task goes up by ~10% and another task goes down by ~10% then
1055 * the relative distance between them is ~25%.)
1056 */
1057static const int prio_to_weight[40] = {
1058 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1059 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1060 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1061 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1062 /* 0 */ 1024, 820, 655, 526, 423,
1063 /* 5 */ 335, 272, 215, 172, 137,
1064 /* 10 */ 110, 87, 70, 56, 45,
1065 /* 15 */ 36, 29, 23, 18, 15,
1066};
1067
1068/*
1069 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1070 *
1071 * In cases where the weight does not change often, we can use the
1072 * precalculated inverse to speed up arithmetics by turning divisions
1073 * into multiplications:
1074 */
1075static const u32 prio_to_wmult[40] = {
1076 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1077 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1078 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1079 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1080 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1081 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1082 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1083 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1084};
1085
Li Zefanc82ba9f2013-03-05 16:06:55 +08001086#define ENQUEUE_WAKEUP 1
1087#define ENQUEUE_HEAD 2
1088#ifdef CONFIG_SMP
1089#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1090#else
1091#define ENQUEUE_WAKING 0
1092#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +01001093#define ENQUEUE_REPLENISH 8
Li Zefanc82ba9f2013-03-05 16:06:55 +08001094
1095#define DEQUEUE_SLEEP 1
1096
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001097#define RETRY_TASK ((void *)-1UL)
1098
Li Zefanc82ba9f2013-03-05 16:06:55 +08001099struct sched_class {
1100 const struct sched_class *next;
1101
1102 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1103 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1104 void (*yield_task) (struct rq *rq);
1105 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1106
1107 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1108
Peter Zijlstra606dba22012-02-11 06:05:00 +01001109 /*
1110 * It is the responsibility of the pick_next_task() method that will
1111 * return the next task to call put_prev_task() on the @prev task or
1112 * something equivalent.
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001113 *
1114 * May return RETRY_TASK when it finds a higher prio class has runnable
1115 * tasks.
Peter Zijlstra606dba22012-02-11 06:05:00 +01001116 */
1117 struct task_struct * (*pick_next_task) (struct rq *rq,
1118 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001119 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1120
1121#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001122 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001123 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1124
Li Zefanc82ba9f2013-03-05 16:06:55 +08001125 void (*post_schedule) (struct rq *this_rq);
1126 void (*task_waking) (struct task_struct *task);
1127 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1128
1129 void (*set_cpus_allowed)(struct task_struct *p,
1130 const struct cpumask *newmask);
1131
1132 void (*rq_online)(struct rq *rq);
1133 void (*rq_offline)(struct rq *rq);
1134#endif
1135
1136 void (*set_curr_task) (struct rq *rq);
1137 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1138 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001139 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001140
1141 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1142 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1143 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1144 int oldprio);
1145
1146 unsigned int (*get_rr_interval) (struct rq *rq,
1147 struct task_struct *task);
1148
1149#ifdef CONFIG_FAIR_GROUP_SCHED
1150 void (*task_move_group) (struct task_struct *p, int on_rq);
1151#endif
1152};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001153
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01001154static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1155{
1156 prev->sched_class->put_prev_task(rq, prev);
1157}
1158
Peter Zijlstra029632f2011-10-25 10:00:11 +02001159#define sched_class_highest (&stop_sched_class)
1160#define for_each_class(class) \
1161 for (class = sched_class_highest; class; class = class->next)
1162
1163extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001164extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001165extern const struct sched_class rt_sched_class;
1166extern const struct sched_class fair_sched_class;
1167extern const struct sched_class idle_sched_class;
1168
1169
1170#ifdef CONFIG_SMP
1171
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04001172extern void update_group_capacity(struct sched_domain *sd, int cpu);
Li Zefanb7192032013-03-07 10:00:26 +08001173
Daniel Lezcano7caff662014-01-06 12:34:38 +01001174extern void trigger_load_balance(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001175
Vincent Guittot642dbc32013-04-18 18:34:26 +02001176extern void idle_enter_fair(struct rq *this_rq);
1177extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001178
Peter Zijlstradc877342014-02-12 15:47:29 +01001179#else
1180
1181static inline void idle_enter_fair(struct rq *rq) { }
1182static inline void idle_exit_fair(struct rq *rq) { }
1183
Peter Zijlstra029632f2011-10-25 10:00:11 +02001184#endif
1185
Daniel Lezcano442bf3a2014-09-04 11:32:09 -04001186#ifdef CONFIG_CPU_IDLE
1187static inline void idle_set_state(struct rq *rq,
1188 struct cpuidle_state *idle_state)
1189{
1190 rq->idle_state = idle_state;
1191}
1192
1193static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1194{
1195 WARN_ON(!rcu_read_lock_held());
1196 return rq->idle_state;
1197}
1198#else
1199static inline void idle_set_state(struct rq *rq,
1200 struct cpuidle_state *idle_state)
1201{
1202}
1203
1204static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1205{
1206 return NULL;
1207}
1208#endif
1209
Peter Zijlstra029632f2011-10-25 10:00:11 +02001210extern void sysrq_sched_debug_show(void);
1211extern void sched_init_granularity(void);
1212extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001213
1214extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001215extern void init_sched_rt_class(void);
1216extern void init_sched_fair_class(void);
Dario Faggioli332ac172013-11-07 14:43:45 +01001217extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001218
Kirill Tkhai88751252014-06-29 00:03:57 +04001219extern void resched_curr(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001220extern void resched_cpu(int cpu);
1221
1222extern struct rt_bandwidth def_rt_bandwidth;
1223extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1224
Dario Faggioli332ac172013-11-07 14:43:45 +01001225extern struct dl_bandwidth def_dl_bandwidth;
1226extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001227extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1228
Dario Faggioli332ac172013-11-07 14:43:45 +01001229unsigned long to_ratio(u64 period, u64 runtime);
1230
Peter Zijlstra556061b2012-05-11 17:31:26 +02001231extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001232
Alex Shia75cdaa2013-06-20 10:18:47 +08001233extern void init_task_runnable_average(struct task_struct *p);
1234
Kirill Tkhai72465442014-05-09 03:00:14 +04001235static inline void add_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001236{
Kirill Tkhai72465442014-05-09 03:00:14 +04001237 unsigned prev_nr = rq->nr_running;
1238
1239 rq->nr_running = prev_nr + count;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001240
Kirill Tkhai72465442014-05-09 03:00:14 +04001241 if (prev_nr < 2 && rq->nr_running >= 2) {
Tim Chen4486edd2014-06-23 12:16:49 -07001242#ifdef CONFIG_SMP
1243 if (!rq->rd->overload)
1244 rq->rd->overload = true;
1245#endif
1246
1247#ifdef CONFIG_NO_HZ_FULL
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001248 if (tick_nohz_full_cpu(rq->cpu)) {
Frederic Weisbecker3882ec62014-03-18 22:54:04 +01001249 /*
1250 * Tick is needed if more than one task runs on a CPU.
1251 * Send the target an IPI to kick it out of nohz mode.
1252 *
1253 * We assume that IPI implies full memory barrier and the
1254 * new value of rq->nr_running is visible on reception
1255 * from the target.
1256 */
Frederic Weisbeckerfd2ac4f2014-03-18 21:12:53 +01001257 tick_nohz_full_kick_cpu(rq->cpu);
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001258 }
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001259#endif
Tim Chen4486edd2014-06-23 12:16:49 -07001260 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02001261}
1262
Kirill Tkhai72465442014-05-09 03:00:14 +04001263static inline void sub_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001264{
Kirill Tkhai72465442014-05-09 03:00:14 +04001265 rq->nr_running -= count;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001266}
1267
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001268static inline void rq_last_tick_reset(struct rq *rq)
1269{
1270#ifdef CONFIG_NO_HZ_FULL
1271 rq->last_sched_tick = jiffies;
1272#endif
1273}
1274
Peter Zijlstra029632f2011-10-25 10:00:11 +02001275extern void update_rq_clock(struct rq *rq);
1276
1277extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1278extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1279
1280extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1281
1282extern const_debug unsigned int sysctl_sched_time_avg;
1283extern const_debug unsigned int sysctl_sched_nr_migrate;
1284extern const_debug unsigned int sysctl_sched_migration_cost;
1285
1286static inline u64 sched_avg_period(void)
1287{
1288 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1289}
1290
Peter Zijlstra029632f2011-10-25 10:00:11 +02001291#ifdef CONFIG_SCHED_HRTICK
1292
1293/*
1294 * Use hrtick when:
1295 * - enabled by features
1296 * - hrtimer is actually high res
1297 */
1298static inline int hrtick_enabled(struct rq *rq)
1299{
1300 if (!sched_feat(HRTICK))
1301 return 0;
1302 if (!cpu_active(cpu_of(rq)))
1303 return 0;
1304 return hrtimer_is_hres_active(&rq->hrtick_timer);
1305}
1306
1307void hrtick_start(struct rq *rq, u64 delay);
1308
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001309#else
1310
1311static inline int hrtick_enabled(struct rq *rq)
1312{
1313 return 0;
1314}
1315
Peter Zijlstra029632f2011-10-25 10:00:11 +02001316#endif /* CONFIG_SCHED_HRTICK */
1317
1318#ifdef CONFIG_SMP
1319extern void sched_avg_update(struct rq *rq);
1320static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1321{
1322 rq->rt_avg += rt_delta;
1323 sched_avg_update(rq);
1324}
1325#else
1326static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1327static inline void sched_avg_update(struct rq *rq) { }
1328#endif
1329
1330extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1331
1332#ifdef CONFIG_SMP
1333#ifdef CONFIG_PREEMPT
1334
1335static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1336
1337/*
1338 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1339 * way at the expense of forcing extra atomic operations in all
1340 * invocations. This assures that the double_lock is acquired using the
1341 * same underlying policy as the spinlock_t on this architecture, which
1342 * reduces latency compared to the unfair variant below. However, it
1343 * also adds more overhead and therefore may reduce throughput.
1344 */
1345static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1346 __releases(this_rq->lock)
1347 __acquires(busiest->lock)
1348 __acquires(this_rq->lock)
1349{
1350 raw_spin_unlock(&this_rq->lock);
1351 double_rq_lock(this_rq, busiest);
1352
1353 return 1;
1354}
1355
1356#else
1357/*
1358 * Unfair double_lock_balance: Optimizes throughput at the expense of
1359 * latency by eliminating extra atomic operations when the locks are
1360 * already in proper order on entry. This favors lower cpu-ids and will
1361 * grant the double lock to lower cpus over higher ids under contention,
1362 * regardless of entry order into the function.
1363 */
1364static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1365 __releases(this_rq->lock)
1366 __acquires(busiest->lock)
1367 __acquires(this_rq->lock)
1368{
1369 int ret = 0;
1370
1371 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1372 if (busiest < this_rq) {
1373 raw_spin_unlock(&this_rq->lock);
1374 raw_spin_lock(&busiest->lock);
1375 raw_spin_lock_nested(&this_rq->lock,
1376 SINGLE_DEPTH_NESTING);
1377 ret = 1;
1378 } else
1379 raw_spin_lock_nested(&busiest->lock,
1380 SINGLE_DEPTH_NESTING);
1381 }
1382 return ret;
1383}
1384
1385#endif /* CONFIG_PREEMPT */
1386
1387/*
1388 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1389 */
1390static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1391{
1392 if (unlikely(!irqs_disabled())) {
1393 /* printk() doesn't work good under rq->lock */
1394 raw_spin_unlock(&this_rq->lock);
1395 BUG_ON(1);
1396 }
1397
1398 return _double_lock_balance(this_rq, busiest);
1399}
1400
1401static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1402 __releases(busiest->lock)
1403{
1404 raw_spin_unlock(&busiest->lock);
1405 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1406}
1407
Peter Zijlstra74602312013-10-10 20:17:22 +02001408static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1409{
1410 if (l1 > l2)
1411 swap(l1, l2);
1412
1413 spin_lock(l1);
1414 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1415}
1416
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001417static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1418{
1419 if (l1 > l2)
1420 swap(l1, l2);
1421
1422 spin_lock_irq(l1);
1423 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1424}
1425
Peter Zijlstra74602312013-10-10 20:17:22 +02001426static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1427{
1428 if (l1 > l2)
1429 swap(l1, l2);
1430
1431 raw_spin_lock(l1);
1432 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1433}
1434
Peter Zijlstra029632f2011-10-25 10:00:11 +02001435/*
1436 * double_rq_lock - safely lock two runqueues
1437 *
1438 * Note this does not disable interrupts like task_rq_lock,
1439 * you need to do so manually before calling.
1440 */
1441static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1442 __acquires(rq1->lock)
1443 __acquires(rq2->lock)
1444{
1445 BUG_ON(!irqs_disabled());
1446 if (rq1 == rq2) {
1447 raw_spin_lock(&rq1->lock);
1448 __acquire(rq2->lock); /* Fake it out ;) */
1449 } else {
1450 if (rq1 < rq2) {
1451 raw_spin_lock(&rq1->lock);
1452 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1453 } else {
1454 raw_spin_lock(&rq2->lock);
1455 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1456 }
1457 }
1458}
1459
1460/*
1461 * double_rq_unlock - safely unlock two runqueues
1462 *
1463 * Note this does not restore interrupts like task_rq_unlock,
1464 * you need to do so manually after calling.
1465 */
1466static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1467 __releases(rq1->lock)
1468 __releases(rq2->lock)
1469{
1470 raw_spin_unlock(&rq1->lock);
1471 if (rq1 != rq2)
1472 raw_spin_unlock(&rq2->lock);
1473 else
1474 __release(rq2->lock);
1475}
1476
1477#else /* CONFIG_SMP */
1478
1479/*
1480 * double_rq_lock - safely lock two runqueues
1481 *
1482 * Note this does not disable interrupts like task_rq_lock,
1483 * you need to do so manually before calling.
1484 */
1485static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1486 __acquires(rq1->lock)
1487 __acquires(rq2->lock)
1488{
1489 BUG_ON(!irqs_disabled());
1490 BUG_ON(rq1 != rq2);
1491 raw_spin_lock(&rq1->lock);
1492 __acquire(rq2->lock); /* Fake it out ;) */
1493}
1494
1495/*
1496 * double_rq_unlock - safely unlock two runqueues
1497 *
1498 * Note this does not restore interrupts like task_rq_unlock,
1499 * you need to do so manually after calling.
1500 */
1501static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1502 __releases(rq1->lock)
1503 __releases(rq2->lock)
1504{
1505 BUG_ON(rq1 != rq2);
1506 raw_spin_unlock(&rq1->lock);
1507 __release(rq2->lock);
1508}
1509
1510#endif
1511
1512extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1513extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1514extern void print_cfs_stats(struct seq_file *m, int cpu);
1515extern void print_rt_stats(struct seq_file *m, int cpu);
1516
1517extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1518extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001519extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001520
Ben Segall1ee14e62013-10-16 11:16:12 -07001521extern void cfs_bandwidth_usage_inc(void);
1522extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001523
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001524#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001525enum rq_nohz_flag_bits {
1526 NOHZ_TICK_STOPPED,
1527 NOHZ_BALANCE_KICK,
1528};
1529
1530#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1531#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001532
1533#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1534
1535DECLARE_PER_CPU(u64, cpu_hardirq_time);
1536DECLARE_PER_CPU(u64, cpu_softirq_time);
1537
1538#ifndef CONFIG_64BIT
1539DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1540
1541static inline void irq_time_write_begin(void)
1542{
1543 __this_cpu_inc(irq_time_seq.sequence);
1544 smp_wmb();
1545}
1546
1547static inline void irq_time_write_end(void)
1548{
1549 smp_wmb();
1550 __this_cpu_inc(irq_time_seq.sequence);
1551}
1552
1553static inline u64 irq_time_read(int cpu)
1554{
1555 u64 irq_time;
1556 unsigned seq;
1557
1558 do {
1559 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1560 irq_time = per_cpu(cpu_softirq_time, cpu) +
1561 per_cpu(cpu_hardirq_time, cpu);
1562 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1563
1564 return irq_time;
1565}
1566#else /* CONFIG_64BIT */
1567static inline void irq_time_write_begin(void)
1568{
1569}
1570
1571static inline void irq_time_write_end(void)
1572{
1573}
1574
1575static inline u64 irq_time_read(int cpu)
1576{
1577 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1578}
1579#endif /* CONFIG_64BIT */
1580#endif /* CONFIG_IRQ_TIME_ACCOUNTING */