blob: 65c200e0ecb59d183984891fa12848daa2b37f67 [file] [log] [blame]
Christoph Hellwiga497ee32019-04-30 14:42:40 -04001// SPDX-License-Identifier: GPL-2.0-or-later
Paolo Valenteaee69d72017-04-19 08:29:02 -06002/*
3 * Budget Fair Queueing (BFQ) I/O scheduler.
4 *
5 * Based on ideas and code from CFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12 * Arianna Avanzini <avanzini@google.com>
13 *
14 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 *
Paolo Valenteaee69d72017-04-19 08:29:02 -060016 * BFQ is a proportional-share I/O scheduler, with some extra
17 * low-latency capabilities. BFQ also supports full hierarchical
18 * scheduling through cgroups. Next paragraphs provide an introduction
19 * on BFQ inner workings. Details on BFQ benefits, usage and
Mauro Carvalho Chehab898bd372019-04-18 19:45:00 -030020 * limitations can be found in Documentation/block/bfq-iosched.rst.
Paolo Valenteaee69d72017-04-19 08:29:02 -060021 *
22 * BFQ is a proportional-share storage-I/O scheduling algorithm based
23 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24 * budgets, measured in number of sectors, to processes instead of
25 * time slices. The device is not granted to the in-service process
26 * for a given time slice, but until it has exhausted its assigned
27 * budget. This change from the time to the service domain enables BFQ
28 * to distribute the device throughput among processes as desired,
29 * without any distortion due to throughput fluctuations, or to device
30 * internal queueing. BFQ uses an ad hoc internal scheduler, called
31 * B-WF2Q+, to schedule processes according to their budgets. More
32 * precisely, BFQ schedules queues associated with processes. Each
33 * process/queue is assigned a user-configurable weight, and B-WF2Q+
34 * guarantees that each queue receives a fraction of the throughput
35 * proportional to its weight. Thanks to the accurate policy of
36 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37 * processes issuing sequential requests (to boost the throughput),
38 * and yet guarantee a low latency to interactive and soft real-time
39 * applications.
40 *
41 * In particular, to provide these low-latency guarantees, BFQ
42 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020043 * applications: interactive and soft real-time. In more detail, BFQ
44 * behaves this way if the low_latency parameter is set (default
45 * configuration). This feature enables BFQ to provide applications in
46 * these classes with a very low latency.
47 *
48 * To implement this feature, BFQ constantly tries to detect whether
49 * the I/O requests in a bfq_queue come from an interactive or a soft
50 * real-time application. For brevity, in these cases, the queue is
51 * said to be interactive or soft real-time. In both cases, BFQ
52 * privileges the service of the queue, over that of non-interactive
53 * and non-soft-real-time queues. This privileging is performed,
54 * mainly, by raising the weight of the queue. So, for brevity, we
55 * call just weight-raising periods the time periods during which a
56 * queue is privileged, because deemed interactive or soft real-time.
57 *
58 * The detection of soft real-time queues/applications is described in
59 * detail in the comments on the function
60 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61 * interactive queue works as follows: a queue is deemed interactive
62 * if it is constantly non empty only for a limited time interval,
63 * after which it does become empty. The queue may be deemed
64 * interactive again (for a limited time), if it restarts being
65 * constantly non empty, provided that this happens only after the
66 * queue has remained empty for a given minimum idle time.
67 *
68 * By default, BFQ computes automatically the above maximum time
69 * interval, i.e., the time interval after which a constantly
70 * non-empty queue stops being deemed interactive. Since a queue is
71 * weight-raised while it is deemed interactive, this maximum time
72 * interval happens to coincide with the (maximum) duration of the
73 * weight-raising for interactive queues.
74 *
75 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060076 * preserving both a low latency and a high throughput on NCQ-capable,
77 * rotational or flash-based devices, and to get the job done quickly
78 * for applications consisting in many I/O-bound processes.
79 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020080 * NOTE: if the main or only goal, with a given device, is to achieve
81 * the maximum-possible throughput at all times, then do switch off
82 * all low-latency heuristics for that device, by setting low_latency
83 * to 0.
84 *
Paolo Valente4029eef2018-05-31 16:45:05 +020085 * BFQ is described in [1], where also a reference to the initial,
86 * more theoretical paper on BFQ can be found. The interested reader
87 * can find in the latter paper full details on the main algorithm, as
88 * well as formulas of the guarantees and formal proofs of all the
89 * properties. With respect to the version of BFQ presented in these
90 * papers, this implementation adds a few more heuristics, such as the
91 * ones that guarantee a low latency to interactive and soft real-time
92 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -060093 *
94 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96 * with O(log N) complexity derives from the one introduced with EEVDF
97 * in [3].
98 *
99 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100 * Scheduler", Proceedings of the First Workshop on Mobile System
101 * Technologies (MST-2015), May 2015.
102 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103 *
104 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106 * Oct 1997.
107 *
108 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109 *
110 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111 * First: A Flexible and Accurate Mechanism for Proportional Share
112 * Resource Allocation", technical report.
113 *
114 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115 */
116#include <linux/module.h>
117#include <linux/slab.h>
118#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200119#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600120#include <linux/elevator.h>
121#include <linux/ktime.h>
122#include <linux/rbtree.h>
123#include <linux/ioprio.h>
124#include <linux/sbitmap.h>
125#include <linux/delay.h>
Yufen Yud51cfc52020-05-04 14:47:55 +0200126#include <linux/backing-dev.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600127
128#include "blk.h"
129#include "blk-mq.h"
130#include "blk-mq-tag.h"
131#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600132#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200133#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600134
135#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600136void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600137{ \
138 __set_bit(BFQQF_##name, &(bfqq)->flags); \
139} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600140void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600141{ \
142 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
143} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 return test_bit(BFQQF_##name, &(bfqq)->flags); \
147}
148
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200149BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600150BFQ_BFQQ_FNS(busy);
151BFQ_BFQQ_FNS(wait_request);
152BFQ_BFQQ_FNS(non_blocking_wait_rq);
153BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200154BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600155BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600156BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200158BFQ_BFQQ_FNS(coop);
159BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200160BFQ_BFQQ_FNS(softrt_update);
Paolo Valente13a857a2019-06-25 07:12:47 +0200161BFQ_BFQQ_FNS(has_waker);
Paolo Valenteea25da42017-04-19 08:48:24 -0600162#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164/* Expiration time of sync (0) and async (1) requests, in ns. */
165static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166
167/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168static const int bfq_back_max = 16 * 1024;
169
170/* Penalty of a backwards seek, in number of sectors. */
171static const int bfq_back_penalty = 2;
172
173/* Idling period duration, in ns. */
174static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175
176/* Minimum number of assigned budgets for which stats are safe to compute. */
177static const int bfq_stats_min_budgets = 194;
178
179/* Default maximum budget values, in sectors and number of requests. */
180static const int bfq_default_max_budget = 16 * 1024;
181
Paolo Valentec074170e2017-04-12 18:23:11 +0200182/*
Paolo Valented5801082018-08-16 18:51:17 +0200183 * When a sync request is dispatched, the queue that contains that
184 * request, and all the ancestor entities of that queue, are charged
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200185 * with the number of sectors of the request. In contrast, if the
Paolo Valented5801082018-08-16 18:51:17 +0200186 * request is async, then the queue and its ancestor entities are
187 * charged with the number of sectors of the request, multiplied by
188 * the factor below. This throttles the bandwidth for async I/O,
189 * w.r.t. to sync I/O, and it is done to counter the tendency of async
190 * writes to steal I/O throughput to reads.
191 *
192 * The current value of this parameter is the result of a tuning with
193 * several hardware and software configurations. We tried to find the
194 * lowest value for which writes do not cause noticeable problems to
195 * reads. In fact, the lower this parameter, the stabler I/O control,
196 * in the following respect. The lower this parameter is, the less
197 * the bandwidth enjoyed by a group decreases
198 * - when the group does writes, w.r.t. to when it does reads;
199 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200200 */
Paolo Valented5801082018-08-16 18:51:17 +0200201static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200202
Paolo Valenteaee69d72017-04-19 08:29:02 -0600203/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600204const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600205
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100206/*
207 * Time limit for merging (see comments in bfq_setup_cooperator). Set
208 * to the slowest value that, in our tests, proved to be effective in
209 * removing false positives, while not causing true positives to miss
210 * queue merging.
211 *
212 * As can be deduced from the low time limit below, queue merging, if
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200213 * successful, happens at the very beginning of the I/O of the involved
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100214 * cooperating processes, as a consequence of the arrival of the very
215 * first requests from each cooperator. After that, there is very
216 * little chance to find cooperators.
217 */
218static const unsigned long bfq_merge_time_limit = HZ/10;
219
Paolo Valenteaee69d72017-04-19 08:29:02 -0600220static struct kmem_cache *bfq_pool;
221
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200222/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600223#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
224
225/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100226#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600227#define BFQ_HW_QUEUE_SAMPLES 32
228
229#define BFQQ_SEEK_THR (sector_t)(8 * 100)
230#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100231#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 (get_sdist(last_pos, rq) > \
233 BFQQ_SEEK_THR && \
234 (!blk_queue_nonrot(bfqd->queue) || \
235 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600236#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100237#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valente7074f072019-03-12 09:59:31 +0100238/*
239 * Sync random I/O is likely to be confused with soft real-time I/O,
240 * because it is characterized by limited throughput and apparently
241 * isochronous arrival pattern. To avoid false positives, queues
242 * containing only random (seeky) I/O are prevented from being tagged
243 * as soft real-time.
244 */
Paolo Valentee6feaf22019-06-22 22:44:16 +0200245#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history == -1)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600246
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200247/* Min number of samples required to perform peak-rate update */
248#define BFQ_RATE_MIN_SAMPLES 32
249/* Min observation time interval required to perform a peak-rate update (ns) */
250#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
251/* Target observation time interval for a peak-rate update (ns) */
252#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600253
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200254/*
255 * Shift used for peak-rate fixed precision calculations.
256 * With
257 * - the current shift: 16 positions
258 * - the current type used to store rate: u32
259 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261 * the range of rates that can be stored is
262 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264 * [15, 65G] sectors/sec
265 * Which, assuming a sector size of 512B, corresponds to a range of
266 * [7.5K, 33T] B/sec
267 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600268#define BFQ_RATE_SHIFT 16
269
Paolo Valente44e44a12017-04-12 18:23:12 +0200270/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200271 * When configured for computing the duration of the weight-raising
272 * for interactive queues automatically (see the comments at the
273 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200274 * duration = (ref_rate / r) * ref_wr_duration,
275 * where r is the peak rate of the device, and ref_rate and
276 * ref_wr_duration are two reference parameters. In particular,
277 * ref_rate is the peak rate of the reference storage device (see
278 * below), and ref_wr_duration is about the maximum time needed, with
279 * BFQ and while reading two files in parallel, to load typical large
280 * applications on the reference device (see the comments on
281 * max_service_from_wr below, for more details on how ref_wr_duration
282 * is obtained). In practice, the slower/faster the device at hand
283 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200284 * reference device. Accordingly, the longer/shorter BFQ grants
285 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200286 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200287 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200289 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200290 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291 * are the reference values for a rotational device, whereas
292 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293 * non-rotational device. The reference rates are not the actual peak
294 * rates of the devices used as a reference, but slightly lower
295 * values. The reason for using slightly lower values is that the
296 * peak-rate estimator tends to yield slightly lower values than the
297 * actual peak rate (it can yield the actual peak rate only if there
298 * is only one process doing I/O, and the process does sequential
299 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200300 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200301 * The reference peak rates are measured in sectors/usec, left-shifted
302 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200303 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200304static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200305/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200306 * To improve readability, a conversion function is used to initialize
307 * the following array, which entails that the array can be
308 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200309 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200310static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200311
Paolo Valente8a8747d2018-01-13 12:05:18 +0100312/*
313 * BFQ uses the above-detailed, time-based weight-raising mechanism to
314 * privilege interactive tasks. This mechanism is vulnerable to the
315 * following false positives: I/O-bound applications that will go on
316 * doing I/O for much longer than the duration of weight
317 * raising. These applications have basically no benefit from being
318 * weight-raised at the beginning of their I/O. On the opposite end,
319 * while being weight-raised, these applications
320 * a) unjustly steal throughput to applications that may actually need
321 * low latency;
322 * b) make BFQ uselessly perform device idling; device idling results
323 * in loss of device throughput with most flash-based storage, and may
324 * increase latencies when used purposelessly.
325 *
326 * BFQ tries to reduce these problems, by adopting the following
327 * countermeasure. To introduce this countermeasure, we need first to
328 * finish explaining how the duration of weight-raising for
329 * interactive tasks is computed.
330 *
331 * For a bfq_queue deemed as interactive, the duration of weight
332 * raising is dynamically adjusted, as a function of the estimated
333 * peak rate of the device, so as to be equal to the time needed to
334 * execute the 'largest' interactive task we benchmarked so far. By
335 * largest task, we mean the task for which each involved process has
336 * to do more I/O than for any of the other tasks we benchmarked. This
337 * reference interactive task is the start-up of LibreOffice Writer,
338 * and in this task each process/bfq_queue needs to have at most ~110K
339 * sectors transferred.
340 *
341 * This last piece of information enables BFQ to reduce the actual
342 * duration of weight-raising for at least one class of I/O-bound
343 * applications: those doing sequential or quasi-sequential I/O. An
344 * example is file copy. In fact, once started, the main I/O-bound
345 * processes of these applications usually consume the above 110K
346 * sectors in much less time than the processes of an application that
347 * is starting, because these I/O-bound processes will greedily devote
348 * almost all their CPU cycles only to their target,
349 * throughput-friendly I/O operations. This is even more true if BFQ
350 * happens to be underestimating the device peak rate, and thus
351 * overestimating the duration of weight raising. But, according to
352 * our measurements, once transferred 110K sectors, these processes
353 * have no right to be weight-raised any longer.
354 *
355 * Basing on the last consideration, BFQ ends weight-raising for a
356 * bfq_queue if the latter happens to have received an amount of
357 * service at least equal to the following constant. The constant is
358 * set to slightly more than 110K, to have a minimum safety margin.
359 *
360 * This early ending of weight-raising reduces the amount of time
361 * during which interactive false positives cause the two problems
362 * described at the beginning of these comments.
363 */
364static const unsigned long max_service_from_wr = 120000;
365
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700366#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600367#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
368
Paolo Valenteea25da42017-04-19 08:48:24 -0600369struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
370{
371 return bic->bfqq[is_sync];
372}
373
374void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
375{
376 bic->bfqq[is_sync] = bfqq;
377}
378
379struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
380{
381 return bic->icq.q->elevator->elevator_data;
382}
383
Paolo Valenteaee69d72017-04-19 08:29:02 -0600384/**
385 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
386 * @icq: the iocontext queue.
387 */
388static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
389{
390 /* bic->icq is the first member, %NULL will convert to %NULL */
391 return container_of(icq, struct bfq_io_cq, icq);
392}
393
394/**
395 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
396 * @bfqd: the lookup key.
397 * @ioc: the io_context of the process doing I/O.
398 * @q: the request queue.
399 */
400static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
401 struct io_context *ioc,
402 struct request_queue *q)
403{
404 if (ioc) {
405 unsigned long flags;
406 struct bfq_io_cq *icq;
407
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700408 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600409 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700410 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600411
412 return icq;
413 }
414
415 return NULL;
416}
417
418/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200419 * Scheduler run of queue, if there are requests pending and no one in the
420 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600421 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600422void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600423{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200424 if (bfqd->queued != 0) {
425 bfq_log(bfqd, "schedule dispatch");
426 blk_mq_run_hw_queues(bfqd->queue, true);
427 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600428}
429
Paolo Valenteaee69d72017-04-19 08:29:02 -0600430#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600431
432#define bfq_sample_valid(samples) ((samples) > 80)
433
434/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600435 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200436 * We choose the request that is closer to the head right now. Distance
Paolo Valenteaee69d72017-04-19 08:29:02 -0600437 * behind the head is penalized and only allowed to a certain extent.
438 */
439static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 struct request *rq1,
441 struct request *rq2,
442 sector_t last)
443{
444 sector_t s1, s2, d1 = 0, d2 = 0;
445 unsigned long back_max;
446#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
447#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
448 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449
450 if (!rq1 || rq1 == rq2)
451 return rq2;
452 if (!rq2)
453 return rq1;
454
455 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 return rq1;
457 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 return rq2;
459 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 return rq1;
461 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 return rq2;
463
464 s1 = blk_rq_pos(rq1);
465 s2 = blk_rq_pos(rq2);
466
467 /*
468 * By definition, 1KiB is 2 sectors.
469 */
470 back_max = bfqd->bfq_back_max * 2;
471
472 /*
473 * Strict one way elevator _except_ in the case where we allow
474 * short backward seeks which are biased as twice the cost of a
475 * similar forward seek.
476 */
477 if (s1 >= last)
478 d1 = s1 - last;
479 else if (s1 + back_max >= last)
480 d1 = (last - s1) * bfqd->bfq_back_penalty;
481 else
482 wrap |= BFQ_RQ1_WRAP;
483
484 if (s2 >= last)
485 d2 = s2 - last;
486 else if (s2 + back_max >= last)
487 d2 = (last - s2) * bfqd->bfq_back_penalty;
488 else
489 wrap |= BFQ_RQ2_WRAP;
490
491 /* Found required data */
492
493 /*
494 * By doing switch() on the bit mask "wrap" we avoid having to
495 * check two variables for all permutations: --> faster!
496 */
497 switch (wrap) {
498 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 if (d1 < d2)
500 return rq1;
501 else if (d2 < d1)
502 return rq2;
503
504 if (s1 >= s2)
505 return rq1;
506 else
507 return rq2;
508
509 case BFQ_RQ2_WRAP:
510 return rq1;
511 case BFQ_RQ1_WRAP:
512 return rq2;
513 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 default:
515 /*
516 * Since both rqs are wrapped,
517 * start with the one that's further behind head
518 * (--> only *one* back seek required),
519 * since back seek takes more time than forward.
520 */
521 if (s1 <= s2)
522 return rq1;
523 else
524 return rq2;
525 }
526}
527
Paolo Valentea52a69e2018-01-13 12:05:17 +0100528/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100529 * Async I/O can easily starve sync I/O (both sync reads and sync
530 * writes), by consuming all tags. Similarly, storms of sync writes,
531 * such as those that sync(2) may trigger, can starve sync reads.
532 * Limit depths of async I/O and sync writes so as to counter both
533 * problems.
534 */
535static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100538
539 if (op_is_sync(op) && !op_is_write(op))
540 return;
541
Paolo Valentea52a69e2018-01-13 12:05:17 +0100542 data->shallow_depth =
543 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544
545 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 __func__, bfqd->wr_busy_queues, op_is_sync(op),
547 data->shallow_depth);
548}
549
Arianna Avanzini36eca892017-04-12 18:23:16 +0200550static struct bfq_queue *
551bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 sector_t sector, struct rb_node **ret_parent,
553 struct rb_node ***rb_link)
554{
555 struct rb_node **p, *parent;
556 struct bfq_queue *bfqq = NULL;
557
558 parent = NULL;
559 p = &root->rb_node;
560 while (*p) {
561 struct rb_node **n;
562
563 parent = *p;
564 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565
566 /*
567 * Sort strictly based on sector. Smallest to the left,
568 * largest to the right.
569 */
570 if (sector > blk_rq_pos(bfqq->next_rq))
571 n = &(*p)->rb_right;
572 else if (sector < blk_rq_pos(bfqq->next_rq))
573 n = &(*p)->rb_left;
574 else
575 break;
576 p = n;
577 bfqq = NULL;
578 }
579
580 *ret_parent = parent;
581 if (rb_link)
582 *rb_link = p;
583
584 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 (unsigned long long)sector,
586 bfqq ? bfqq->pid : 0);
587
588 return bfqq;
589}
590
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100591static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592{
593 return bfqq->service_from_backlogged > 0 &&
594 time_is_before_jiffies(bfqq->first_IO_time +
595 bfq_merge_time_limit);
596}
597
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100598/*
599 * The following function is not marked as __cold because it is
600 * actually cold, but for the same performance goal described in the
601 * comments on the likely() at the beginning of
602 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
603 * execution time for the case where this function is not invoked, we
604 * had to add an unlikely() in each involved if().
605 */
606void __cold
607bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200608{
609 struct rb_node **p, *parent;
610 struct bfq_queue *__bfqq;
611
612 if (bfqq->pos_root) {
613 rb_erase(&bfqq->pos_node, bfqq->pos_root);
614 bfqq->pos_root = NULL;
615 }
616
Paolo Valente32c59e32020-02-03 11:40:55 +0100617 /* oom_bfqq does not participate in queue merging */
618 if (bfqq == &bfqd->oom_bfqq)
619 return;
620
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100621 /*
622 * bfqq cannot be merged any longer (see comments in
623 * bfq_setup_cooperator): no point in adding bfqq into the
624 * position tree.
625 */
626 if (bfq_too_late_for_merging(bfqq))
627 return;
628
Arianna Avanzini36eca892017-04-12 18:23:16 +0200629 if (bfq_class_idle(bfqq))
630 return;
631 if (!bfqq->next_rq)
632 return;
633
634 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
635 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
636 blk_rq_pos(bfqq->next_rq), &parent, &p);
637 if (!__bfqq) {
638 rb_link_node(&bfqq->pos_node, parent, p);
639 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
640 } else
641 bfqq->pos_root = NULL;
642}
643
Paolo Valenteaee69d72017-04-19 08:29:02 -0600644/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100645 * The following function returns false either if every active queue
646 * must receive the same share of the throughput (symmetric scenario),
647 * or, as a special case, if bfqq must receive a share of the
648 * throughput lower than or equal to the share that every other active
649 * queue must receive. If bfqq does sync I/O, then these are the only
650 * two cases where bfqq happens to be guaranteed its share of the
651 * throughput even if I/O dispatching is not plugged when bfqq remains
652 * temporarily empty (for more details, see the comments in the
653 * function bfq_better_to_idle()). For this reason, the return value
654 * of this function is used to check whether I/O-dispatch plugging can
655 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200656 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100657 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200658 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100659 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200660 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100661 * weight,
662 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200663 * number of children.
664 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200665 * Unfortunately, keeping the necessary state for evaluating exactly
666 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100667 * and time consuming. Therefore this function evaluates, instead,
668 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200669 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200670 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100671 * 2) all active queues belong to the same I/O-priority class,
672 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200673 * In particular, the last condition is always true if hierarchical
674 * support or the cgroups interface are not enabled, thus no state
675 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200676 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100677static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
678 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200679{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100680 bool smallest_weight = bfqq &&
681 bfqq->weight_counter &&
682 bfqq->weight_counter ==
683 container_of(
684 rb_first_cached(&bfqd->queue_weights_tree),
685 struct bfq_weight_counter,
686 weights_node);
687
Paolo Valente73d58112019-01-29 12:06:29 +0100688 /*
689 * For queue weights to differ, queue_weights_tree must contain
690 * at least two nodes.
691 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100692 bool varied_queue_weights = !smallest_weight &&
693 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
694 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
695 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100696
697 bool multiple_classes_busy =
698 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
699 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
700 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
701
Paolo Valentefb53ac62019-03-12 09:59:28 +0100702 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300703#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100704 || bfqd->num_groups_with_pending_reqs > 0
705#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100706 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200707}
708
709/*
710 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200711 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200712 * increment the existing counter.
713 *
714 * Note that weight-counter trees contain few nodes in mostly symmetric
715 * scenarios. For example, if all queues have the same weight, then the
716 * weight-counter tree for the queues may contain at most one node.
717 * This holds even if low_latency is on, because weight-raised queues
718 * are not inserted in the tree.
719 * In most scenarios, the rate at which nodes are created/destroyed
720 * should be low too.
721 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200722void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100723 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200724{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200725 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100726 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
727 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200728
729 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200730 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200731 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200732 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200733 * non-weight-raised, and hence change its weight, and
734 * backlogged; in this respect, each of the two events
735 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200736 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200737 * second event. This second invocation is actually useless,
738 * and we handle this fact by exiting immediately. More
739 * efficient or clearer solutions might possibly be adopted.
740 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200741 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200742 return;
743
744 while (*new) {
745 struct bfq_weight_counter *__counter = container_of(*new,
746 struct bfq_weight_counter,
747 weights_node);
748 parent = *new;
749
750 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200751 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200752 goto inc_counter;
753 }
754 if (entity->weight < __counter->weight)
755 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100756 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200757 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100758 leftmost = false;
759 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200760 }
761
Federico Motta2d29c9f2018-10-12 11:55:57 +0200762 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
763 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200764
765 /*
766 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200767 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100768 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100769 * causes the scenario to be deemed wrongly symmetric in case
770 * bfqq's weight would have been the only weight making the
771 * scenario asymmetric. On the bright side, no unbalance will
772 * however occur when bfqq becomes inactive again (the
773 * invocation of this function is triggered by an activation
774 * of queue). In fact, bfq_weights_tree_remove does nothing
775 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200776 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200777 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200778 return;
779
Federico Motta2d29c9f2018-10-12 11:55:57 +0200780 bfqq->weight_counter->weight = entity->weight;
781 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100782 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
783 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200784
785inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200786 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100787 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200788}
789
790/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200791 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200792 * counter reaches 0, remove the counter from the tree.
793 * See the comments to the function bfq_weights_tree_add() for considerations
794 * about overhead.
795 */
Paolo Valente04715592018-06-25 21:55:34 +0200796void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200797 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100798 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200799{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200800 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200801 return;
802
Federico Motta2d29c9f2018-10-12 11:55:57 +0200803 bfqq->weight_counter->num_active--;
804 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200805 goto reset_entity_pointer;
806
Paolo Valentefb53ac62019-03-12 09:59:28 +0100807 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200808 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200809
810reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200811 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100812 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200813}
814
815/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200816 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
817 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200818 */
819void bfq_weights_tree_remove(struct bfq_data *bfqd,
820 struct bfq_queue *bfqq)
821{
822 struct bfq_entity *entity = bfqq->entity.parent;
823
Paolo Valente04715592018-06-25 21:55:34 +0200824 for_each_entity(entity) {
825 struct bfq_sched_data *sd = entity->my_sched_data;
826
827 if (sd->next_in_service || sd->in_service_entity) {
828 /*
829 * entity is still active, because either
830 * next_in_service or in_service_entity is not
831 * NULL (see the comments on the definition of
832 * next_in_service for details on why
833 * in_service_entity must be checked too).
834 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200835 * As a consequence, its parent entities are
836 * active as well, and thus this loop must
837 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200838 */
839 break;
840 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100841
842 /*
843 * The decrement of num_groups_with_pending_reqs is
844 * not performed immediately upon the deactivation of
845 * entity, but it is delayed to when it also happens
846 * that the first leaf descendant bfqq of entity gets
847 * all its pending requests completed. The following
848 * instructions perform this delayed decrement, if
849 * needed. See the comments on
850 * num_groups_with_pending_reqs for details.
851 */
852 if (entity->in_groups_with_pending_reqs) {
853 entity->in_groups_with_pending_reqs = false;
854 bfqd->num_groups_with_pending_reqs--;
855 }
Paolo Valente04715592018-06-25 21:55:34 +0200856 }
Paolo Valente9dee8b32019-01-29 12:06:34 +0100857
858 /*
859 * Next function is invoked last, because it causes bfqq to be
860 * freed if the following holds: bfqq is not in service and
861 * has no dispatched request. DO NOT use bfqq after the next
862 * function invocation.
863 */
864 __bfq_weights_tree_remove(bfqd, bfqq,
865 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +0200866}
867
868/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600869 * Return expired entry, or NULL to just start from scratch in rbtree.
870 */
871static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
872 struct request *last)
873{
874 struct request *rq;
875
876 if (bfq_bfqq_fifo_expire(bfqq))
877 return NULL;
878
879 bfq_mark_bfqq_fifo_expire(bfqq);
880
881 rq = rq_entry_fifo(bfqq->fifo.next);
882
883 if (rq == last || ktime_get_ns() < rq->fifo_time)
884 return NULL;
885
886 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
887 return rq;
888}
889
890static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
891 struct bfq_queue *bfqq,
892 struct request *last)
893{
894 struct rb_node *rbnext = rb_next(&last->rb_node);
895 struct rb_node *rbprev = rb_prev(&last->rb_node);
896 struct request *next, *prev = NULL;
897
898 /* Follow expired path, else get first next available. */
899 next = bfq_check_fifo(bfqq, last);
900 if (next)
901 return next;
902
903 if (rbprev)
904 prev = rb_entry_rq(rbprev);
905
906 if (rbnext)
907 next = rb_entry_rq(rbnext);
908 else {
909 rbnext = rb_first(&bfqq->sort_list);
910 if (rbnext && rbnext != &last->rb_node)
911 next = rb_entry_rq(rbnext);
912 }
913
914 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
915}
916
Paolo Valentec074170e2017-04-12 18:23:11 +0200917/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600918static unsigned long bfq_serv_to_charge(struct request *rq,
919 struct bfq_queue *bfqq)
920{
Paolo Valente02a6d782019-01-29 12:06:37 +0100921 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +0100922 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +0200923 return blk_rq_sectors(rq);
924
Paolo Valented5801082018-08-16 18:51:17 +0200925 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600926}
927
928/**
929 * bfq_updated_next_req - update the queue after a new next_rq selection.
930 * @bfqd: the device data the queue belongs to.
931 * @bfqq: the queue to update.
932 *
933 * If the first request of a queue changes we make sure that the queue
934 * has enough budget to serve at least its first request (if the
935 * request has grown). We do this because if the queue has not enough
936 * budget for its first request, it has to go through two dispatch
937 * rounds to actually get it dispatched.
938 */
939static void bfq_updated_next_req(struct bfq_data *bfqd,
940 struct bfq_queue *bfqq)
941{
942 struct bfq_entity *entity = &bfqq->entity;
943 struct request *next_rq = bfqq->next_rq;
944 unsigned long new_budget;
945
946 if (!next_rq)
947 return;
948
949 if (bfqq == bfqd->in_service_queue)
950 /*
951 * In order not to break guarantees, budgets cannot be
952 * changed after an entity has been selected.
953 */
954 return;
955
Paolo Valentef3218ad2019-01-29 12:06:27 +0100956 new_budget = max_t(unsigned long,
957 max_t(unsigned long, bfqq->max_budget,
958 bfq_serv_to_charge(next_rq, bfqq)),
959 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600960 if (entity->budget != new_budget) {
961 entity->budget = new_budget;
962 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
963 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200964 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600965 }
966}
967
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200968static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
969{
970 u64 dur;
971
972 if (bfqd->bfq_wr_max_time > 0)
973 return bfqd->bfq_wr_max_time;
974
Paolo Valentee24f1c22018-05-31 16:45:06 +0200975 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200976 do_div(dur, bfqd->peak_rate);
977
978 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200979 * Limit duration between 3 and 25 seconds. The upper limit
980 * has been conservatively set after the following worst case:
981 * on a QEMU/KVM virtual machine
982 * - running in a slow PC
983 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
984 * - serving a heavy I/O workload, such as the sequential reading
985 * of several files
986 * mplayer took 23 seconds to start, if constantly weight-raised.
987 *
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200988 * As for higher values than that accommodating the above bad
Davide Sapienzad450542e2018-05-31 16:45:07 +0200989 * scenario, tests show that higher values would often yield
990 * the opposite of the desired result, i.e., would worsen
991 * responsiveness by allowing non-interactive applications to
992 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200993 *
994 * On the other end, lower values than 3 seconds make it
995 * difficult for most interactive tasks to complete their jobs
996 * before weight-raising finishes.
997 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200998 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200999}
1000
1001/* switch back from soft real-time to interactive weight raising */
1002static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1003 struct bfq_data *bfqd)
1004{
1005 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1006 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1007 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1008}
1009
Arianna Avanzini36eca892017-04-12 18:23:16 +02001010static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001011bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1012 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001013{
Paolo Valente13c931b2017-06-27 12:30:47 -06001014 unsigned int old_wr_coeff = bfqq->wr_coeff;
1015 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1016
Paolo Valented5be3fe2017-08-04 07:35:10 +02001017 if (bic->saved_has_short_ttime)
1018 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001019 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001020 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001021
1022 if (bic->saved_IO_bound)
1023 bfq_mark_bfqq_IO_bound(bfqq);
1024 else
1025 bfq_clear_bfqq_IO_bound(bfqq);
1026
Francesco Pollicinofffca082019-03-12 09:59:34 +01001027 bfqq->entity.new_weight = bic->saved_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001028 bfqq->ttime = bic->saved_ttime;
1029 bfqq->wr_coeff = bic->saved_wr_coeff;
1030 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1031 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1032 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1033
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001034 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001035 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001036 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001037 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1038 !bfq_bfqq_in_large_burst(bfqq) &&
1039 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1040 bfq_wr_duration(bfqd))) {
1041 switch_back_to_interactive_wr(bfqq, bfqd);
1042 } else {
1043 bfqq->wr_coeff = 1;
1044 bfq_log_bfqq(bfqq->bfqd, bfqq,
1045 "resume state: switching off wr");
1046 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001047 }
1048
1049 /* make sure weight will be updated, however we got here */
1050 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001051
1052 if (likely(!busy))
1053 return;
1054
1055 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1056 bfqd->wr_busy_queues++;
1057 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1058 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001059}
1060
1061static int bfqq_process_refs(struct bfq_queue *bfqq)
1062{
Paolo Valente33a16a92020-02-03 11:40:57 +01001063 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
Paolo Valente9dee8b32019-01-29 12:06:34 +01001064 (bfqq->weight_counter != NULL);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001065}
1066
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001067/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1068static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1069{
1070 struct bfq_queue *item;
1071 struct hlist_node *n;
1072
1073 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1074 hlist_del_init(&item->burst_list_node);
Paolo Valente84a74682019-03-12 09:59:32 +01001075
1076 /*
1077 * Start the creation of a new burst list only if there is no
1078 * active queue. See comments on the conditional invocation of
1079 * bfq_handle_burst().
1080 */
1081 if (bfq_tot_busy_queues(bfqd) == 0) {
1082 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1083 bfqd->burst_size = 1;
1084 } else
1085 bfqd->burst_size = 0;
1086
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001087 bfqd->burst_parent_entity = bfqq->entity.parent;
1088}
1089
1090/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1091static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1092{
1093 /* Increment burst size to take into account also bfqq */
1094 bfqd->burst_size++;
1095
1096 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1097 struct bfq_queue *pos, *bfqq_item;
1098 struct hlist_node *n;
1099
1100 /*
1101 * Enough queues have been activated shortly after each
1102 * other to consider this burst as large.
1103 */
1104 bfqd->large_burst = true;
1105
1106 /*
1107 * We can now mark all queues in the burst list as
1108 * belonging to a large burst.
1109 */
1110 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1111 burst_list_node)
1112 bfq_mark_bfqq_in_large_burst(bfqq_item);
1113 bfq_mark_bfqq_in_large_burst(bfqq);
1114
1115 /*
1116 * From now on, and until the current burst finishes, any
1117 * new queue being activated shortly after the last queue
1118 * was inserted in the burst can be immediately marked as
1119 * belonging to a large burst. So the burst list is not
1120 * needed any more. Remove it.
1121 */
1122 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1123 burst_list_node)
1124 hlist_del_init(&pos->burst_list_node);
1125 } else /*
1126 * Burst not yet large: add bfqq to the burst list. Do
1127 * not increment the ref counter for bfqq, because bfqq
1128 * is removed from the burst list before freeing bfqq
1129 * in put_queue.
1130 */
1131 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1132}
1133
1134/*
1135 * If many queues belonging to the same group happen to be created
1136 * shortly after each other, then the processes associated with these
1137 * queues have typically a common goal. In particular, bursts of queue
1138 * creations are usually caused by services or applications that spawn
1139 * many parallel threads/processes. Examples are systemd during boot,
1140 * or git grep. To help these processes get their job done as soon as
1141 * possible, it is usually better to not grant either weight-raising
Paolo Valente84a74682019-03-12 09:59:32 +01001142 * or device idling to their queues, unless these queues must be
1143 * protected from the I/O flowing through other active queues.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001144 *
1145 * In this comment we describe, firstly, the reasons why this fact
1146 * holds, and, secondly, the next function, which implements the main
1147 * steps needed to properly mark these queues so that they can then be
1148 * treated in a different way.
1149 *
1150 * The above services or applications benefit mostly from a high
1151 * throughput: the quicker the requests of the activated queues are
1152 * cumulatively served, the sooner the target job of these queues gets
1153 * completed. As a consequence, weight-raising any of these queues,
1154 * which also implies idling the device for it, is almost always
Paolo Valente84a74682019-03-12 09:59:32 +01001155 * counterproductive, unless there are other active queues to isolate
1156 * these new queues from. If there no other active queues, then
1157 * weight-raising these new queues just lowers throughput in most
1158 * cases.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001159 *
1160 * On the other hand, a burst of queue creations may be caused also by
1161 * the start of an application that does not consist of a lot of
1162 * parallel I/O-bound threads. In fact, with a complex application,
1163 * several short processes may need to be executed to start-up the
1164 * application. In this respect, to start an application as quickly as
1165 * possible, the best thing to do is in any case to privilege the I/O
1166 * related to the application with respect to all other
1167 * I/O. Therefore, the best strategy to start as quickly as possible
1168 * an application that causes a burst of queue creations is to
1169 * weight-raise all the queues created during the burst. This is the
1170 * exact opposite of the best strategy for the other type of bursts.
1171 *
1172 * In the end, to take the best action for each of the two cases, the
1173 * two types of bursts need to be distinguished. Fortunately, this
1174 * seems relatively easy, by looking at the sizes of the bursts. In
1175 * particular, we found a threshold such that only bursts with a
1176 * larger size than that threshold are apparently caused by
1177 * services or commands such as systemd or git grep. For brevity,
1178 * hereafter we call just 'large' these bursts. BFQ *does not*
1179 * weight-raise queues whose creation occurs in a large burst. In
1180 * addition, for each of these queues BFQ performs or does not perform
1181 * idling depending on which choice boosts the throughput more. The
1182 * exact choice depends on the device and request pattern at
1183 * hand.
1184 *
1185 * Unfortunately, false positives may occur while an interactive task
1186 * is starting (e.g., an application is being started). The
1187 * consequence is that the queues associated with the task do not
1188 * enjoy weight raising as expected. Fortunately these false positives
1189 * are very rare. They typically occur if some service happens to
1190 * start doing I/O exactly when the interactive task starts.
1191 *
Paolo Valente84a74682019-03-12 09:59:32 +01001192 * Turning back to the next function, it is invoked only if there are
1193 * no active queues (apart from active queues that would belong to the
1194 * same, possible burst bfqq would belong to), and it implements all
1195 * the steps needed to detect the occurrence of a large burst and to
1196 * properly mark all the queues belonging to it (so that they can then
1197 * be treated in a different way). This goal is achieved by
1198 * maintaining a "burst list" that holds, temporarily, the queues that
1199 * belong to the burst in progress. The list is then used to mark
1200 * these queues as belonging to a large burst if the burst does become
1201 * large. The main steps are the following.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001202 *
1203 * . when the very first queue is created, the queue is inserted into the
1204 * list (as it could be the first queue in a possible burst)
1205 *
1206 * . if the current burst has not yet become large, and a queue Q that does
1207 * not yet belong to the burst is activated shortly after the last time
1208 * at which a new queue entered the burst list, then the function appends
1209 * Q to the burst list
1210 *
1211 * . if, as a consequence of the previous step, the burst size reaches
1212 * the large-burst threshold, then
1213 *
1214 * . all the queues in the burst list are marked as belonging to a
1215 * large burst
1216 *
1217 * . the burst list is deleted; in fact, the burst list already served
1218 * its purpose (keeping temporarily track of the queues in a burst,
1219 * so as to be able to mark them as belonging to a large burst in the
1220 * previous sub-step), and now is not needed any more
1221 *
1222 * . the device enters a large-burst mode
1223 *
1224 * . if a queue Q that does not belong to the burst is created while
1225 * the device is in large-burst mode and shortly after the last time
1226 * at which a queue either entered the burst list or was marked as
1227 * belonging to the current large burst, then Q is immediately marked
1228 * as belonging to a large burst.
1229 *
1230 * . if a queue Q that does not belong to the burst is created a while
1231 * later, i.e., not shortly after, than the last time at which a queue
1232 * either entered the burst list or was marked as belonging to the
1233 * current large burst, then the current burst is deemed as finished and:
1234 *
1235 * . the large-burst mode is reset if set
1236 *
1237 * . the burst list is emptied
1238 *
1239 * . Q is inserted in the burst list, as Q may be the first queue
1240 * in a possible new burst (then the burst list contains just Q
1241 * after this step).
1242 */
1243static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1244{
1245 /*
1246 * If bfqq is already in the burst list or is part of a large
1247 * burst, or finally has just been split, then there is
1248 * nothing else to do.
1249 */
1250 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1251 bfq_bfqq_in_large_burst(bfqq) ||
1252 time_is_after_eq_jiffies(bfqq->split_time +
1253 msecs_to_jiffies(10)))
1254 return;
1255
1256 /*
1257 * If bfqq's creation happens late enough, or bfqq belongs to
1258 * a different group than the burst group, then the current
1259 * burst is finished, and related data structures must be
1260 * reset.
1261 *
1262 * In this respect, consider the special case where bfqq is
1263 * the very first queue created after BFQ is selected for this
1264 * device. In this case, last_ins_in_burst and
1265 * burst_parent_entity are not yet significant when we get
1266 * here. But it is easy to verify that, whether or not the
1267 * following condition is true, bfqq will end up being
1268 * inserted into the burst list. In particular the list will
1269 * happen to contain only bfqq. And this is exactly what has
1270 * to happen, as bfqq may be the first queue of the first
1271 * burst.
1272 */
1273 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1274 bfqd->bfq_burst_interval) ||
1275 bfqq->entity.parent != bfqd->burst_parent_entity) {
1276 bfqd->large_burst = false;
1277 bfq_reset_burst_list(bfqd, bfqq);
1278 goto end;
1279 }
1280
1281 /*
1282 * If we get here, then bfqq is being activated shortly after the
1283 * last queue. So, if the current burst is also large, we can mark
1284 * bfqq as belonging to this large burst immediately.
1285 */
1286 if (bfqd->large_burst) {
1287 bfq_mark_bfqq_in_large_burst(bfqq);
1288 goto end;
1289 }
1290
1291 /*
1292 * If we get here, then a large-burst state has not yet been
1293 * reached, but bfqq is being activated shortly after the last
1294 * queue. Then we add bfqq to the burst.
1295 */
1296 bfq_add_to_burst(bfqd, bfqq);
1297end:
1298 /*
1299 * At this point, bfqq either has been added to the current
1300 * burst or has caused the current burst to terminate and a
1301 * possible new burst to start. In particular, in the second
1302 * case, bfqq has become the first queue in the possible new
1303 * burst. In both cases last_ins_in_burst needs to be moved
1304 * forward.
1305 */
1306 bfqd->last_ins_in_burst = jiffies;
1307}
1308
Paolo Valenteaee69d72017-04-19 08:29:02 -06001309static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1310{
1311 struct bfq_entity *entity = &bfqq->entity;
1312
1313 return entity->budget - entity->service;
1314}
1315
1316/*
1317 * If enough samples have been computed, return the current max budget
1318 * stored in bfqd, which is dynamically updated according to the
1319 * estimated disk peak rate; otherwise return the default max budget
1320 */
1321static int bfq_max_budget(struct bfq_data *bfqd)
1322{
1323 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1324 return bfq_default_max_budget;
1325 else
1326 return bfqd->bfq_max_budget;
1327}
1328
1329/*
1330 * Return min budget, which is a fraction of the current or default
1331 * max budget (trying with 1/32)
1332 */
1333static int bfq_min_budget(struct bfq_data *bfqd)
1334{
1335 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1336 return bfq_default_max_budget / 32;
1337 else
1338 return bfqd->bfq_max_budget / 32;
1339}
1340
Paolo Valenteaee69d72017-04-19 08:29:02 -06001341/*
1342 * The next function, invoked after the input queue bfqq switches from
1343 * idle to busy, updates the budget of bfqq. The function also tells
1344 * whether the in-service queue should be expired, by returning
1345 * true. The purpose of expiring the in-service queue is to give bfqq
1346 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001347 * for preempting the in-service queue is to achieve one of the two
1348 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001349 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001350 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1351 * expired because it has remained idle. In particular, bfqq may have
1352 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001353 *
1354 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1355 * and did not make it to issue a new request before its last
1356 * request was served;
1357 *
1358 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1359 * a new request before the expiration of the idling-time.
1360 *
1361 * Even if bfqq has expired for one of the above reasons, the process
1362 * associated with the queue may be however issuing requests greedily,
1363 * and thus be sensitive to the bandwidth it receives (bfqq may have
1364 * remained idle for other reasons: CPU high load, bfqq not enjoying
1365 * idling, I/O throttling somewhere in the path from the process to
1366 * the I/O scheduler, ...). But if, after every expiration for one of
1367 * the above two reasons, bfqq has to wait for the service of at least
1368 * one full budget of another queue before being served again, then
1369 * bfqq is likely to get a much lower bandwidth or resource time than
1370 * its reserved ones. To address this issue, two countermeasures need
1371 * to be taken.
1372 *
1373 * First, the budget and the timestamps of bfqq need to be updated in
1374 * a special way on bfqq reactivation: they need to be updated as if
1375 * bfqq did not remain idle and did not expire. In fact, if they are
1376 * computed as if bfqq expired and remained idle until reactivation,
1377 * then the process associated with bfqq is treated as if, instead of
1378 * being greedy, it stopped issuing requests when bfqq remained idle,
1379 * and restarts issuing requests only on this reactivation. In other
1380 * words, the scheduler does not help the process recover the "service
1381 * hole" between bfqq expiration and reactivation. As a consequence,
1382 * the process receives a lower bandwidth than its reserved one. In
1383 * contrast, to recover this hole, the budget must be updated as if
1384 * bfqq was not expired at all before this reactivation, i.e., it must
1385 * be set to the value of the remaining budget when bfqq was
1386 * expired. Along the same line, timestamps need to be assigned the
1387 * value they had the last time bfqq was selected for service, i.e.,
1388 * before last expiration. Thus timestamps need to be back-shifted
1389 * with respect to their normal computation (see [1] for more details
1390 * on this tricky aspect).
1391 *
1392 * Secondly, to allow the process to recover the hole, the in-service
1393 * queue must be expired too, to give bfqq the chance to preempt it
1394 * immediately. In fact, if bfqq has to wait for a full budget of the
1395 * in-service queue to be completed, then it may become impossible to
1396 * let the process recover the hole, even if the back-shifted
1397 * timestamps of bfqq are lower than those of the in-service queue. If
1398 * this happens for most or all of the holes, then the process may not
1399 * receive its reserved bandwidth. In this respect, it is worth noting
1400 * that, being the service of outstanding requests unpreemptible, a
1401 * little fraction of the holes may however be unrecoverable, thereby
1402 * causing a little loss of bandwidth.
1403 *
1404 * The last important point is detecting whether bfqq does need this
1405 * bandwidth recovery. In this respect, the next function deems the
1406 * process associated with bfqq greedy, and thus allows it to recover
1407 * the hole, if: 1) the process is waiting for the arrival of a new
1408 * request (which implies that bfqq expired for one of the above two
1409 * reasons), and 2) such a request has arrived soon. The first
1410 * condition is controlled through the flag non_blocking_wait_rq,
1411 * while the second through the flag arrived_in_time. If both
1412 * conditions hold, then the function computes the budget in the
1413 * above-described special way, and signals that the in-service queue
1414 * should be expired. Timestamp back-shifting is done later in
1415 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001416 *
1417 * 2. Reduce latency. Even if timestamps are not backshifted to let
1418 * the process associated with bfqq recover a service hole, bfqq may
1419 * however happen to have, after being (re)activated, a lower finish
1420 * timestamp than the in-service queue. That is, the next budget of
1421 * bfqq may have to be completed before the one of the in-service
1422 * queue. If this is the case, then preempting the in-service queue
1423 * allows this goal to be achieved, apart from the unpreemptible,
1424 * outstanding requests mentioned above.
1425 *
1426 * Unfortunately, regardless of which of the above two goals one wants
1427 * to achieve, service trees need first to be updated to know whether
1428 * the in-service queue must be preempted. To have service trees
1429 * correctly updated, the in-service queue must be expired and
1430 * rescheduled, and bfqq must be scheduled too. This is one of the
1431 * most costly operations (in future versions, the scheduling
1432 * mechanism may be re-designed in such a way to make it possible to
1433 * know whether preemption is needed without needing to update service
1434 * trees). In addition, queue preemptions almost always cause random
Paolo Valente96a291c2019-06-25 07:12:48 +02001435 * I/O, which may in turn cause loss of throughput. Finally, there may
1436 * even be no in-service queue when the next function is invoked (so,
1437 * no queue to compare timestamps with). Because of these facts, the
1438 * next function adopts the following simple scheme to avoid costly
1439 * operations, too frequent preemptions and too many dependencies on
1440 * the state of the scheduler: it requests the expiration of the
1441 * in-service queue (unconditionally) only for queues that need to
1442 * recover a hole. Then it delegates to other parts of the code the
1443 * responsibility of handling the above case 2.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001444 */
1445static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1446 struct bfq_queue *bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001447 bool arrived_in_time)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001448{
1449 struct bfq_entity *entity = &bfqq->entity;
1450
Paolo Valente218cb892019-01-29 12:06:26 +01001451 /*
1452 * In the next compound condition, we check also whether there
1453 * is some budget left, because otherwise there is no point in
1454 * trying to go on serving bfqq with this same budget: bfqq
1455 * would be expired immediately after being selected for
1456 * service. This would only cause useless overhead.
1457 */
1458 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1459 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001460 /*
1461 * We do not clear the flag non_blocking_wait_rq here, as
1462 * the latter is used in bfq_activate_bfqq to signal
1463 * that timestamps need to be back-shifted (and is
1464 * cleared right after).
1465 */
1466
1467 /*
1468 * In next assignment we rely on that either
1469 * entity->service or entity->budget are not updated
1470 * on expiration if bfqq is empty (see
1471 * __bfq_bfqq_recalc_budget). Thus both quantities
1472 * remain unchanged after such an expiration, and the
1473 * following statement therefore assigns to
1474 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001475 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001476 */
1477 entity->budget = min_t(unsigned long,
1478 bfq_bfqq_budget_left(bfqq),
1479 bfqq->max_budget);
1480
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001481 /*
1482 * At this point, we have used entity->service to get
1483 * the budget left (needed for updating
1484 * entity->budget). Thus we finally can, and have to,
1485 * reset entity->service. The latter must be reset
1486 * because bfqq would otherwise be charged again for
1487 * the service it has received during its previous
1488 * service slot(s).
1489 */
1490 entity->service = 0;
1491
Paolo Valenteaee69d72017-04-19 08:29:02 -06001492 return true;
1493 }
1494
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001495 /*
1496 * We can finally complete expiration, by setting service to 0.
1497 */
1498 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001499 entity->budget = max_t(unsigned long, bfqq->max_budget,
1500 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1501 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente96a291c2019-06-25 07:12:48 +02001502 return false;
Paolo Valente44e44a12017-04-12 18:23:12 +02001503}
1504
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001505/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001506 * Return the farthest past time instant according to jiffies
1507 * macros.
1508 */
1509static unsigned long bfq_smallest_from_now(void)
1510{
1511 return jiffies - MAX_JIFFY_OFFSET;
1512}
1513
Paolo Valente44e44a12017-04-12 18:23:12 +02001514static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1515 struct bfq_queue *bfqq,
1516 unsigned int old_wr_coeff,
1517 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001518 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001519 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001520 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001521{
1522 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1523 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001524 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001525 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001526 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1527 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1528 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001529 /*
1530 * No interactive weight raising in progress
1531 * here: assign minus infinity to
1532 * wr_start_at_switch_to_srt, to make sure
1533 * that, at the end of the soft-real-time
1534 * weight raising periods that is starting
1535 * now, no interactive weight-raising period
1536 * may be wrongly considered as still in
1537 * progress (and thus actually started by
1538 * mistake).
1539 */
1540 bfqq->wr_start_at_switch_to_srt =
1541 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001542 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1543 BFQ_SOFTRT_WEIGHT_FACTOR;
1544 bfqq->wr_cur_max_time =
1545 bfqd->bfq_wr_rt_max_time;
1546 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001547
1548 /*
1549 * If needed, further reduce budget to make sure it is
1550 * close to bfqq's backlog, so as to reduce the
1551 * scheduling-error component due to a too large
1552 * budget. Do not care about throughput consequences,
1553 * but only about latency. Finally, do not assign a
1554 * too small budget either, to avoid increasing
1555 * latency by causing too frequent expirations.
1556 */
1557 bfqq->entity.budget = min_t(unsigned long,
1558 bfqq->entity.budget,
1559 2 * bfq_min_budget(bfqd));
1560 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001561 if (interactive) { /* update wr coeff and duration */
1562 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1563 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001564 } else if (in_burst)
1565 bfqq->wr_coeff = 1;
1566 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001567 /*
1568 * The application is now or still meeting the
1569 * requirements for being deemed soft rt. We
1570 * can then correctly and safely (re)charge
1571 * the weight-raising duration for the
1572 * application with the weight-raising
1573 * duration for soft rt applications.
1574 *
1575 * In particular, doing this recharge now, i.e.,
1576 * before the weight-raising period for the
1577 * application finishes, reduces the probability
1578 * of the following negative scenario:
1579 * 1) the weight of a soft rt application is
1580 * raised at startup (as for any newly
1581 * created application),
1582 * 2) since the application is not interactive,
1583 * at a certain time weight-raising is
1584 * stopped for the application,
1585 * 3) at that time the application happens to
1586 * still have pending requests, and hence
1587 * is destined to not have a chance to be
1588 * deemed soft rt before these requests are
1589 * completed (see the comments to the
1590 * function bfq_bfqq_softrt_next_start()
1591 * for details on soft rt detection),
1592 * 4) these pending requests experience a high
1593 * latency because the application is not
1594 * weight-raised while they are pending.
1595 */
1596 if (bfqq->wr_cur_max_time !=
1597 bfqd->bfq_wr_rt_max_time) {
1598 bfqq->wr_start_at_switch_to_srt =
1599 bfqq->last_wr_start_finish;
1600
1601 bfqq->wr_cur_max_time =
1602 bfqd->bfq_wr_rt_max_time;
1603 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1604 BFQ_SOFTRT_WEIGHT_FACTOR;
1605 }
1606 bfqq->last_wr_start_finish = jiffies;
1607 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001608 }
1609}
1610
1611static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1612 struct bfq_queue *bfqq)
1613{
1614 return bfqq->dispatched == 0 &&
1615 time_is_before_jiffies(
1616 bfqq->budget_timeout +
1617 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001618}
1619
Paolo Valente96a291c2019-06-25 07:12:48 +02001620
1621/*
1622 * Return true if bfqq is in a higher priority class, or has a higher
1623 * weight than the in-service queue.
1624 */
1625static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1626 struct bfq_queue *in_serv_bfqq)
1627{
1628 int bfqq_weight, in_serv_weight;
1629
1630 if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1631 return true;
1632
1633 if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1634 bfqq_weight = bfqq->entity.weight;
1635 in_serv_weight = in_serv_bfqq->entity.weight;
1636 } else {
1637 if (bfqq->entity.parent)
1638 bfqq_weight = bfqq->entity.parent->weight;
1639 else
1640 bfqq_weight = bfqq->entity.weight;
1641 if (in_serv_bfqq->entity.parent)
1642 in_serv_weight = in_serv_bfqq->entity.parent->weight;
1643 else
1644 in_serv_weight = in_serv_bfqq->entity.weight;
1645 }
1646
1647 return bfqq_weight > in_serv_weight;
1648}
1649
Paolo Valenteaee69d72017-04-19 08:29:02 -06001650static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1651 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001652 int old_wr_coeff,
1653 struct request *rq,
1654 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001655{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001656 bool soft_rt, in_burst, wr_or_deserves_wr,
1657 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001658 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001659 /*
1660 * See the comments on
1661 * bfq_bfqq_update_budg_for_activation for
1662 * details on the usage of the next variable.
1663 */
1664 arrived_in_time = ktime_get_ns() <=
1665 bfqq->ttime.last_end_request +
1666 bfqd->bfq_slice_idle * 3;
1667
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001668
Paolo Valenteaee69d72017-04-19 08:29:02 -06001669 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001670 * bfqq deserves to be weight-raised if:
1671 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001672 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001673 * - it has been idle for enough time or is soft real-time,
1674 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001675 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001676 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001677 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Paolo Valente7074f072019-03-12 09:59:31 +01001678 !BFQQ_TOTALLY_SEEKY(bfqq) &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001679 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001680 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1681 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001682 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001683 wr_or_deserves_wr = bfqd->low_latency &&
1684 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001685 (bfq_bfqq_sync(bfqq) &&
1686 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001687
1688 /*
1689 * Using the last flag, update budget and check whether bfqq
1690 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001691 */
1692 bfqq_wants_to_preempt =
1693 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001694 arrived_in_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001695
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001696 /*
1697 * If bfqq happened to be activated in a burst, but has been
1698 * idle for much more than an interactive queue, then we
1699 * assume that, in the overall I/O initiated in the burst, the
1700 * I/O associated with bfqq is finished. So bfqq does not need
1701 * to be treated as a queue belonging to a burst
1702 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1703 * if set, and remove bfqq from the burst list if it's
1704 * there. We do not decrement burst_size, because the fact
1705 * that bfqq does not need to belong to the burst list any
1706 * more does not invalidate the fact that bfqq was created in
1707 * a burst.
1708 */
1709 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1710 idle_for_long_time &&
1711 time_is_before_jiffies(
1712 bfqq->budget_timeout +
1713 msecs_to_jiffies(10000))) {
1714 hlist_del_init(&bfqq->burst_list_node);
1715 bfq_clear_bfqq_in_large_burst(bfqq);
1716 }
1717
1718 bfq_clear_bfqq_just_created(bfqq);
1719
1720
Paolo Valenteaee69d72017-04-19 08:29:02 -06001721 if (!bfq_bfqq_IO_bound(bfqq)) {
1722 if (arrived_in_time) {
1723 bfqq->requests_within_timer++;
1724 if (bfqq->requests_within_timer >=
1725 bfqd->bfq_requests_within_timer)
1726 bfq_mark_bfqq_IO_bound(bfqq);
1727 } else
1728 bfqq->requests_within_timer = 0;
1729 }
1730
Paolo Valente44e44a12017-04-12 18:23:12 +02001731 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001732 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1733 /* wraparound */
1734 bfqq->split_time =
1735 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001736
Arianna Avanzini36eca892017-04-12 18:23:16 +02001737 if (time_is_before_jiffies(bfqq->split_time +
1738 bfqd->bfq_wr_min_idle_time)) {
1739 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1740 old_wr_coeff,
1741 wr_or_deserves_wr,
1742 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001743 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001744 soft_rt);
1745
1746 if (old_wr_coeff != bfqq->wr_coeff)
1747 bfqq->entity.prio_changed = 1;
1748 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001749 }
1750
Paolo Valente77b7dce2017-04-12 18:23:13 +02001751 bfqq->last_idle_bklogged = jiffies;
1752 bfqq->service_from_backlogged = 0;
1753 bfq_clear_bfqq_softrt_update(bfqq);
1754
Paolo Valenteaee69d72017-04-19 08:29:02 -06001755 bfq_add_bfqq_busy(bfqd, bfqq);
1756
1757 /*
1758 * Expire in-service queue only if preemption may be needed
Paolo Valente96a291c2019-06-25 07:12:48 +02001759 * for guarantees. In particular, we care only about two
1760 * cases. The first is that bfqq has to recover a service
1761 * hole, as explained in the comments on
1762 * bfq_bfqq_update_budg_for_activation(), i.e., that
1763 * bfqq_wants_to_preempt is true. However, if bfqq does not
1764 * carry time-critical I/O, then bfqq's bandwidth is less
1765 * important than that of queues that carry time-critical I/O.
1766 * So, as a further constraint, we consider this case only if
1767 * bfqq is at least as weight-raised, i.e., at least as time
1768 * critical, as the in-service queue.
1769 *
1770 * The second case is that bfqq is in a higher priority class,
1771 * or has a higher weight than the in-service queue. If this
1772 * condition does not hold, we don't care because, even if
1773 * bfqq does not start to be served immediately, the resulting
1774 * delay for bfqq's I/O is however lower or much lower than
1775 * the ideal completion time to be guaranteed to bfqq's I/O.
1776 *
1777 * In both cases, preemption is needed only if, according to
1778 * the timestamps of both bfqq and of the in-service queue,
1779 * bfqq actually is the next queue to serve. So, to reduce
1780 * useless preemptions, the return value of
1781 * next_queue_may_preempt() is considered in the next compound
1782 * condition too. Yet next_queue_may_preempt() just checks a
1783 * simple, necessary condition for bfqq to be the next queue
1784 * to serve. In fact, to evaluate a sufficient condition, the
1785 * timestamps of the in-service queue would need to be
1786 * updated, and this operation is quite costly (see the
1787 * comments on bfq_bfqq_update_budg_for_activation()).
Paolo Valenteaee69d72017-04-19 08:29:02 -06001788 */
Paolo Valente96a291c2019-06-25 07:12:48 +02001789 if (bfqd->in_service_queue &&
1790 ((bfqq_wants_to_preempt &&
1791 bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1792 bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001793 next_queue_may_preempt(bfqd))
1794 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1795 false, BFQQE_PREEMPTED);
1796}
1797
Paolo Valente766d6142019-06-25 07:12:43 +02001798static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1799 struct bfq_queue *bfqq)
1800{
1801 /* invalidate baseline total service time */
1802 bfqq->last_serv_time_ns = 0;
1803
1804 /*
1805 * Reset pointer in case we are waiting for
1806 * some request completion.
1807 */
1808 bfqd->waited_rq = NULL;
1809
1810 /*
1811 * If bfqq has a short think time, then start by setting the
1812 * inject limit to 0 prudentially, because the service time of
1813 * an injected I/O request may be higher than the think time
1814 * of bfqq, and therefore, if one request was injected when
1815 * bfqq remains empty, this injected request might delay the
1816 * service of the next I/O request for bfqq significantly. In
1817 * case bfqq can actually tolerate some injection, then the
1818 * adaptive update will however raise the limit soon. This
1819 * lucky circumstance holds exactly because bfqq has a short
1820 * think time, and thus, after remaining empty, is likely to
1821 * get new I/O enqueued---and then completed---before being
1822 * expired. This is the very pattern that gives the
1823 * limit-update algorithm the chance to measure the effect of
1824 * injection on request service times, and then to update the
1825 * limit accordingly.
1826 *
1827 * However, in the following special case, the inject limit is
1828 * left to 1 even if the think time is short: bfqq's I/O is
1829 * synchronized with that of some other queue, i.e., bfqq may
1830 * receive new I/O only after the I/O of the other queue is
1831 * completed. Keeping the inject limit to 1 allows the
1832 * blocking I/O to be served while bfqq is in service. And
1833 * this is very convenient both for bfqq and for overall
1834 * throughput, as explained in detail in the comments in
1835 * bfq_update_has_short_ttime().
1836 *
1837 * On the opposite end, if bfqq has a long think time, then
1838 * start directly by 1, because:
1839 * a) on the bright side, keeping at most one request in
1840 * service in the drive is unlikely to cause any harm to the
1841 * latency of bfqq's requests, as the service time of a single
1842 * request is likely to be lower than the think time of bfqq;
1843 * b) on the downside, after becoming empty, bfqq is likely to
1844 * expire before getting its next request. With this request
1845 * arrival pattern, it is very hard to sample total service
1846 * times and update the inject limit accordingly (see comments
1847 * on bfq_update_inject_limit()). So the limit is likely to be
1848 * never, or at least seldom, updated. As a consequence, by
1849 * setting the limit to 1, we avoid that no injection ever
1850 * occurs with bfqq. On the downside, this proactive step
1851 * further reduces chances to actually compute the baseline
1852 * total service time. Thus it reduces chances to execute the
1853 * limit-update algorithm and possibly raise the limit to more
1854 * than 1.
1855 */
1856 if (bfq_bfqq_has_short_ttime(bfqq))
1857 bfqq->inject_limit = 0;
1858 else
1859 bfqq->inject_limit = 1;
1860
1861 bfqq->decrease_time_jif = jiffies;
1862}
1863
Paolo Valenteaee69d72017-04-19 08:29:02 -06001864static void bfq_add_request(struct request *rq)
1865{
1866 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1867 struct bfq_data *bfqd = bfqq->bfqd;
1868 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001869 unsigned int old_wr_coeff = bfqq->wr_coeff;
1870 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001871
1872 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1873 bfqq->queued[rq_is_sync(rq)]++;
1874 bfqd->queued++;
1875
Paolo Valente2341d6622019-03-12 09:59:29 +01001876 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1877 /*
Paolo Valente13a857a2019-06-25 07:12:47 +02001878 * Detect whether bfqq's I/O seems synchronized with
1879 * that of some other queue, i.e., whether bfqq, after
1880 * remaining empty, happens to receive new I/O only
1881 * right after some I/O request of the other queue has
1882 * been completed. We call waker queue the other
1883 * queue, and we assume, for simplicity, that bfqq may
1884 * have at most one waker queue.
1885 *
1886 * A remarkable throughput boost can be reached by
1887 * unconditionally injecting the I/O of the waker
1888 * queue, every time a new bfq_dispatch_request
1889 * happens to be invoked while I/O is being plugged
1890 * for bfqq. In addition to boosting throughput, this
1891 * unblocks bfqq's I/O, thereby improving bandwidth
1892 * and latency for bfqq. Note that these same results
1893 * may be achieved with the general injection
1894 * mechanism, but less effectively. For details on
1895 * this aspect, see the comments on the choice of the
1896 * queue for injection in bfq_select_queue().
1897 *
1898 * Turning back to the detection of a waker queue, a
1899 * queue Q is deemed as a waker queue for bfqq if, for
1900 * two consecutive times, bfqq happens to become non
1901 * empty right after a request of Q has been
1902 * completed. In particular, on the first time, Q is
1903 * tentatively set as a candidate waker queue, while
1904 * on the second time, the flag
1905 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1906 * is a waker queue for bfqq. These detection steps
1907 * are performed only if bfqq has a long think time,
1908 * so as to make it more likely that bfqq's I/O is
1909 * actually being blocked by a synchronization. This
1910 * last filter, plus the above two-times requirement,
1911 * make false positives less likely.
1912 *
1913 * NOTE
1914 *
1915 * The sooner a waker queue is detected, the sooner
1916 * throughput can be boosted by injecting I/O from the
1917 * waker queue. Fortunately, detection is likely to be
1918 * actually fast, for the following reasons. While
1919 * blocked by synchronization, bfqq has a long think
1920 * time. This implies that bfqq's inject limit is at
1921 * least equal to 1 (see the comments in
1922 * bfq_update_inject_limit()). So, thanks to
1923 * injection, the waker queue is likely to be served
1924 * during the very first I/O-plugging time interval
1925 * for bfqq. This triggers the first step of the
1926 * detection mechanism. Thanks again to injection, the
1927 * candidate waker queue is then likely to be
1928 * confirmed no later than during the next
1929 * I/O-plugging interval for bfqq.
1930 */
Paolo Valente08d383a2019-08-07 16:17:53 +02001931 if (bfqd->last_completed_rq_bfqq &&
1932 !bfq_bfqq_has_short_ttime(bfqq) &&
Paolo Valente13a857a2019-06-25 07:12:47 +02001933 ktime_get_ns() - bfqd->last_completion <
1934 200 * NSEC_PER_USEC) {
1935 if (bfqd->last_completed_rq_bfqq != bfqq &&
Paolo Valente08d383a2019-08-07 16:17:53 +02001936 bfqd->last_completed_rq_bfqq !=
1937 bfqq->waker_bfqq) {
Paolo Valente13a857a2019-06-25 07:12:47 +02001938 /*
1939 * First synchronization detected with
1940 * a candidate waker queue, or with a
1941 * different candidate waker queue
1942 * from the current one.
1943 */
1944 bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1945
1946 /*
1947 * If the waker queue disappears, then
1948 * bfqq->waker_bfqq must be reset. To
1949 * this goal, we maintain in each
1950 * waker queue a list, woken_list, of
1951 * all the queues that reference the
1952 * waker queue through their
1953 * waker_bfqq pointer. When the waker
1954 * queue exits, the waker_bfqq pointer
1955 * of all the queues in the woken_list
1956 * is reset.
1957 *
1958 * In addition, if bfqq is already in
1959 * the woken_list of a waker queue,
1960 * then, before being inserted into
1961 * the woken_list of a new waker
1962 * queue, bfqq must be removed from
1963 * the woken_list of the old waker
1964 * queue.
1965 */
1966 if (!hlist_unhashed(&bfqq->woken_list_node))
1967 hlist_del_init(&bfqq->woken_list_node);
1968 hlist_add_head(&bfqq->woken_list_node,
1969 &bfqd->last_completed_rq_bfqq->woken_list);
1970
1971 bfq_clear_bfqq_has_waker(bfqq);
1972 } else if (bfqd->last_completed_rq_bfqq ==
1973 bfqq->waker_bfqq &&
1974 !bfq_bfqq_has_waker(bfqq)) {
1975 /*
1976 * synchronization with waker_bfqq
1977 * seen for the second time
1978 */
1979 bfq_mark_bfqq_has_waker(bfqq);
1980 }
1981 }
1982
1983 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01001984 * Periodically reset inject limit, to make sure that
1985 * the latter eventually drops in case workload
1986 * changes, see step (3) in the comments on
1987 * bfq_update_inject_limit().
1988 */
1989 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente766d6142019-06-25 07:12:43 +02001990 msecs_to_jiffies(1000)))
1991 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valente2341d6622019-03-12 09:59:29 +01001992
1993 /*
1994 * The following conditions must hold to setup a new
1995 * sampling of total service time, and then a new
1996 * update of the inject limit:
1997 * - bfqq is in service, because the total service
1998 * time is evaluated only for the I/O requests of
1999 * the queues in service;
2000 * - this is the right occasion to compute or to
2001 * lower the baseline total service time, because
2002 * there are actually no requests in the drive,
2003 * or
2004 * the baseline total service time is available, and
2005 * this is the right occasion to compute the other
2006 * quantity needed to update the inject limit, i.e.,
2007 * the total service time caused by the amount of
2008 * injection allowed by the current value of the
2009 * limit. It is the right occasion because injection
2010 * has actually been performed during the service
2011 * hole, and there are still in-flight requests,
2012 * which are very likely to be exactly the injected
2013 * requests, or part of them;
2014 * - the minimum interval for sampling the total
2015 * service time and updating the inject limit has
2016 * elapsed.
2017 */
2018 if (bfqq == bfqd->in_service_queue &&
2019 (bfqd->rq_in_driver == 0 ||
2020 (bfqq->last_serv_time_ns > 0 &&
2021 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2022 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente17c3d262019-08-22 17:20:36 +02002023 msecs_to_jiffies(10))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01002024 bfqd->last_empty_occupied_ns = ktime_get_ns();
2025 /*
2026 * Start the state machine for measuring the
2027 * total service time of rq: setting
2028 * wait_dispatch will cause bfqd->waited_rq to
2029 * be set when rq will be dispatched.
2030 */
2031 bfqd->wait_dispatch = true;
Paolo Valente23ed5702019-08-22 17:20:34 +02002032 /*
2033 * If there is no I/O in service in the drive,
2034 * then possible injection occurred before the
2035 * arrival of rq will not affect the total
2036 * service time of rq. So the injection limit
2037 * must not be updated as a function of such
2038 * total service time, unless new injection
2039 * occurs before rq is completed. To have the
2040 * injection limit updated only in the latter
2041 * case, reset rqs_injected here (rqs_injected
2042 * will be set in case injection is performed
2043 * on bfqq before rq is completed).
2044 */
2045 if (bfqd->rq_in_driver == 0)
2046 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01002047 }
2048 }
2049
Paolo Valenteaee69d72017-04-19 08:29:02 -06002050 elv_rb_add(&bfqq->sort_list, rq);
2051
2052 /*
2053 * Check if this request is a better next-serve candidate.
2054 */
2055 prev = bfqq->next_rq;
2056 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2057 bfqq->next_rq = next_rq;
2058
Arianna Avanzini36eca892017-04-12 18:23:16 +02002059 /*
2060 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002061 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02002062 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002063 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002064 bfq_pos_tree_add_move(bfqd, bfqq);
2065
Paolo Valenteaee69d72017-04-19 08:29:02 -06002066 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02002067 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2068 rq, &interactive);
2069 else {
2070 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2071 time_is_before_jiffies(
2072 bfqq->last_wr_start_finish +
2073 bfqd->bfq_wr_min_inter_arr_async)) {
2074 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2075 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2076
Paolo Valentecfd69712017-04-12 18:23:15 +02002077 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02002078 bfqq->entity.prio_changed = 1;
2079 }
2080 if (prev != bfqq->next_rq)
2081 bfq_updated_next_req(bfqd, bfqq);
2082 }
2083
2084 /*
2085 * Assign jiffies to last_wr_start_finish in the following
2086 * cases:
2087 *
2088 * . if bfqq is not going to be weight-raised, because, for
2089 * non weight-raised queues, last_wr_start_finish stores the
2090 * arrival time of the last request; as of now, this piece
2091 * of information is used only for deciding whether to
2092 * weight-raise async queues
2093 *
2094 * . if bfqq is not weight-raised, because, if bfqq is now
2095 * switching to weight-raised, then last_wr_start_finish
2096 * stores the time when weight-raising starts
2097 *
2098 * . if bfqq is interactive, because, regardless of whether
2099 * bfqq is currently weight-raised, the weight-raising
2100 * period must start or restart (this case is considered
2101 * separately because it is not detected by the above
2102 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02002103 *
2104 * last_wr_start_finish has to be updated also if bfqq is soft
2105 * real-time, because the weight-raising period is constantly
2106 * restarted on idle-to-busy transitions for these queues, but
2107 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2108 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02002109 */
2110 if (bfqd->low_latency &&
2111 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2112 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002113}
2114
2115static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2116 struct bio *bio,
2117 struct request_queue *q)
2118{
2119 struct bfq_queue *bfqq = bfqd->bio_bfqq;
2120
2121
2122 if (bfqq)
2123 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2124
2125 return NULL;
2126}
2127
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002128static sector_t get_sdist(sector_t last_pos, struct request *rq)
2129{
2130 if (last_pos)
2131 return abs(blk_rq_pos(rq) - last_pos);
2132
2133 return 0;
2134}
2135
Paolo Valenteaee69d72017-04-19 08:29:02 -06002136#if 0 /* Still not clear if we can do without next two functions */
2137static void bfq_activate_request(struct request_queue *q, struct request *rq)
2138{
2139 struct bfq_data *bfqd = q->elevator->elevator_data;
2140
2141 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002142}
2143
2144static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2145{
2146 struct bfq_data *bfqd = q->elevator->elevator_data;
2147
2148 bfqd->rq_in_driver--;
2149}
2150#endif
2151
2152static void bfq_remove_request(struct request_queue *q,
2153 struct request *rq)
2154{
2155 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2156 struct bfq_data *bfqd = bfqq->bfqd;
2157 const int sync = rq_is_sync(rq);
2158
2159 if (bfqq->next_rq == rq) {
2160 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2161 bfq_updated_next_req(bfqd, bfqq);
2162 }
2163
2164 if (rq->queuelist.prev != &rq->queuelist)
2165 list_del_init(&rq->queuelist);
2166 bfqq->queued[sync]--;
2167 bfqd->queued--;
2168 elv_rb_del(&bfqq->sort_list, rq);
2169
2170 elv_rqhash_del(q, rq);
2171 if (q->last_merge == rq)
2172 q->last_merge = NULL;
2173
2174 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2175 bfqq->next_rq = NULL;
2176
2177 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002178 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002179 /*
2180 * bfqq emptied. In normal operation, when
2181 * bfqq is empty, bfqq->entity.service and
2182 * bfqq->entity.budget must contain,
2183 * respectively, the service received and the
2184 * budget used last time bfqq emptied. These
2185 * facts do not hold in this case, as at least
2186 * this last removal occurred while bfqq is
2187 * not in service. To avoid inconsistencies,
2188 * reset both bfqq->entity.service and
2189 * bfqq->entity.budget, if bfqq has still a
2190 * process that may issue I/O requests to it.
2191 */
2192 bfqq->entity.budget = bfqq->entity.service = 0;
2193 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002194
2195 /*
2196 * Remove queue from request-position tree as it is empty.
2197 */
2198 if (bfqq->pos_root) {
2199 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2200 bfqq->pos_root = NULL;
2201 }
Paolo Valente05e90282017-12-20 12:38:31 +01002202 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002203 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2204 if (unlikely(!bfqd->nonrot_with_queueing))
2205 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002206 }
2207
2208 if (rq->cmd_flags & REQ_META)
2209 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002210
Paolo Valenteaee69d72017-04-19 08:29:02 -06002211}
2212
Omar Sandoval54dbe2d2021-05-10 17:05:35 -07002213static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002214 unsigned int nr_segs)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002215{
Paolo Valenteaee69d72017-04-19 08:29:02 -06002216 struct bfq_data *bfqd = q->elevator->elevator_data;
2217 struct request *free = NULL;
2218 /*
2219 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2220 * store its return value for later use, to avoid nesting
2221 * queue_lock inside the bfqd->lock. We assume that the bic
2222 * returned by bfq_bic_lookup does not go away before
2223 * bfqd->lock is taken.
2224 */
2225 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2226 bool ret;
2227
2228 spin_lock_irq(&bfqd->lock);
2229
2230 if (bic)
2231 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2232 else
2233 bfqd->bio_bfqq = NULL;
2234 bfqd->bio_bic = bic;
2235
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002236 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002237
2238 if (free)
2239 blk_mq_free_request(free);
2240 spin_unlock_irq(&bfqd->lock);
2241
2242 return ret;
2243}
2244
2245static int bfq_request_merge(struct request_queue *q, struct request **req,
2246 struct bio *bio)
2247{
2248 struct bfq_data *bfqd = q->elevator->elevator_data;
2249 struct request *__rq;
2250
2251 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2252 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2253 *req = __rq;
Ming Lei87aa69a2021-07-29 11:42:26 +08002254
2255 if (blk_discard_mergable(__rq))
2256 return ELEVATOR_DISCARD_MERGE;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002257 return ELEVATOR_FRONT_MERGE;
2258 }
2259
2260 return ELEVATOR_NO_MERGE;
2261}
2262
Paolo Valente18e5a572018-05-04 19:17:01 +02002263static struct bfq_queue *bfq_init_rq(struct request *rq);
2264
Paolo Valenteaee69d72017-04-19 08:29:02 -06002265static void bfq_request_merged(struct request_queue *q, struct request *req,
2266 enum elv_merge type)
2267{
2268 if (type == ELEVATOR_FRONT_MERGE &&
2269 rb_prev(&req->rb_node) &&
2270 blk_rq_pos(req) <
2271 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2272 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002273 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valentefd031772019-08-07 19:21:11 +02002274 struct bfq_data *bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002275 struct request *prev, *next_rq;
2276
Paolo Valentefd031772019-08-07 19:21:11 +02002277 if (!bfqq)
2278 return;
2279
2280 bfqd = bfqq->bfqd;
2281
Paolo Valenteaee69d72017-04-19 08:29:02 -06002282 /* Reposition request in its sort_list */
2283 elv_rb_del(&bfqq->sort_list, req);
2284 elv_rb_add(&bfqq->sort_list, req);
2285
2286 /* Choose next request to be served for bfqq */
2287 prev = bfqq->next_rq;
2288 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2289 bfqd->last_position);
2290 bfqq->next_rq = next_rq;
2291 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002292 * If next_rq changes, update both the queue's budget to
2293 * fit the new request and the queue's position in its
2294 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002295 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002296 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002297 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002298 /*
2299 * See comments on bfq_pos_tree_add_move() for
2300 * the unlikely().
2301 */
2302 if (unlikely(!bfqd->nonrot_with_queueing))
2303 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002304 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002305 }
2306}
2307
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002308/*
2309 * This function is called to notify the scheduler that the requests
2310 * rq and 'next' have been merged, with 'next' going away. BFQ
2311 * exploits this hook to address the following issue: if 'next' has a
2312 * fifo_time lower that rq, then the fifo_time of rq must be set to
2313 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002314 *
2315 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2316 * on that rq is picked from the hash table q->elevator->hash, which,
2317 * in its turn, is filled only with I/O requests present in
2318 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2319 * the function that fills this hash table (elv_rqhash_add) is called
2320 * only by bfq_insert_request.
2321 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002322static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2323 struct request *next)
2324{
Paolo Valente18e5a572018-05-04 19:17:01 +02002325 struct bfq_queue *bfqq = bfq_init_rq(rq),
2326 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002327
Paolo Valentefd031772019-08-07 19:21:11 +02002328 if (!bfqq)
2329 return;
2330
Paolo Valenteaee69d72017-04-19 08:29:02 -06002331 /*
2332 * If next and rq belong to the same bfq_queue and next is older
2333 * than rq, then reposition rq in the fifo (by substituting next
2334 * with rq). Otherwise, if next and rq belong to different
2335 * bfq_queues, never reposition rq: in fact, we would have to
2336 * reposition it with respect to next's position in its own fifo,
2337 * which would most certainly be too expensive with respect to
2338 * the benefits.
2339 */
2340 if (bfqq == next_bfqq &&
2341 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2342 next->fifo_time < rq->fifo_time) {
2343 list_del_init(&rq->queuelist);
2344 list_replace_init(&next->queuelist, &rq->queuelist);
2345 rq->fifo_time = next->fifo_time;
2346 }
2347
2348 if (bfqq->next_rq == next)
2349 bfqq->next_rq = rq;
2350
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002351 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002352}
2353
Paolo Valente44e44a12017-04-12 18:23:12 +02002354/* Must be called with bfqq != NULL */
2355static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2356{
Paolo Valentecfd69712017-04-12 18:23:15 +02002357 if (bfq_bfqq_busy(bfqq))
2358 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002359 bfqq->wr_coeff = 1;
2360 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002361 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002362 /*
2363 * Trigger a weight change on the next invocation of
2364 * __bfq_entity_update_weight_prio.
2365 */
2366 bfqq->entity.prio_changed = 1;
2367}
2368
Paolo Valenteea25da42017-04-19 08:48:24 -06002369void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2370 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002371{
2372 int i, j;
2373
2374 for (i = 0; i < 2; i++)
2375 for (j = 0; j < IOPRIO_BE_NR; j++)
2376 if (bfqg->async_bfqq[i][j])
2377 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2378 if (bfqg->async_idle_bfqq)
2379 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2380}
2381
2382static void bfq_end_wr(struct bfq_data *bfqd)
2383{
2384 struct bfq_queue *bfqq;
2385
2386 spin_lock_irq(&bfqd->lock);
2387
2388 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2389 bfq_bfqq_end_wr(bfqq);
2390 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2391 bfq_bfqq_end_wr(bfqq);
2392 bfq_end_wr_async(bfqd);
2393
2394 spin_unlock_irq(&bfqd->lock);
2395}
2396
Arianna Avanzini36eca892017-04-12 18:23:16 +02002397static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2398{
2399 if (request)
2400 return blk_rq_pos(io_struct);
2401 else
2402 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2403}
2404
2405static int bfq_rq_close_to_sector(void *io_struct, bool request,
2406 sector_t sector)
2407{
2408 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2409 BFQQ_CLOSE_THR;
2410}
2411
2412static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2413 struct bfq_queue *bfqq,
2414 sector_t sector)
2415{
2416 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2417 struct rb_node *parent, *node;
2418 struct bfq_queue *__bfqq;
2419
2420 if (RB_EMPTY_ROOT(root))
2421 return NULL;
2422
2423 /*
2424 * First, if we find a request starting at the end of the last
2425 * request, choose it.
2426 */
2427 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2428 if (__bfqq)
2429 return __bfqq;
2430
2431 /*
2432 * If the exact sector wasn't found, the parent of the NULL leaf
2433 * will contain the closest sector (rq_pos_tree sorted by
2434 * next_request position).
2435 */
2436 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2437 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2438 return __bfqq;
2439
2440 if (blk_rq_pos(__bfqq->next_rq) < sector)
2441 node = rb_next(&__bfqq->pos_node);
2442 else
2443 node = rb_prev(&__bfqq->pos_node);
2444 if (!node)
2445 return NULL;
2446
2447 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2448 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2449 return __bfqq;
2450
2451 return NULL;
2452}
2453
2454static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2455 struct bfq_queue *cur_bfqq,
2456 sector_t sector)
2457{
2458 struct bfq_queue *bfqq;
2459
2460 /*
2461 * We shall notice if some of the queues are cooperating,
2462 * e.g., working closely on the same area of the device. In
2463 * that case, we can group them together and: 1) don't waste
2464 * time idling, and 2) serve the union of their requests in
2465 * the best possible order for throughput.
2466 */
2467 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2468 if (!bfqq || bfqq == cur_bfqq)
2469 return NULL;
2470
2471 return bfqq;
2472}
2473
2474static struct bfq_queue *
2475bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2476{
2477 int process_refs, new_process_refs;
2478 struct bfq_queue *__bfqq;
2479
2480 /*
2481 * If there are no process references on the new_bfqq, then it is
2482 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2483 * may have dropped their last reference (not just their last process
2484 * reference).
2485 */
2486 if (!bfqq_process_refs(new_bfqq))
2487 return NULL;
2488
2489 /* Avoid a circular list and skip interim queue merges. */
2490 while ((__bfqq = new_bfqq->new_bfqq)) {
2491 if (__bfqq == bfqq)
2492 return NULL;
2493 new_bfqq = __bfqq;
2494 }
2495
2496 process_refs = bfqq_process_refs(bfqq);
2497 new_process_refs = bfqq_process_refs(new_bfqq);
2498 /*
2499 * If the process for the bfqq has gone away, there is no
2500 * sense in merging the queues.
2501 */
2502 if (process_refs == 0 || new_process_refs == 0)
2503 return NULL;
2504
2505 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2506 new_bfqq->pid);
2507
2508 /*
2509 * Merging is just a redirection: the requests of the process
2510 * owning one of the two queues are redirected to the other queue.
2511 * The latter queue, in its turn, is set as shared if this is the
2512 * first time that the requests of some process are redirected to
2513 * it.
2514 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002515 * We redirect bfqq to new_bfqq and not the opposite, because
2516 * we are in the context of the process owning bfqq, thus we
2517 * have the io_cq of this process. So we can immediately
2518 * configure this io_cq to redirect the requests of the
2519 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2520 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002521 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002522 * Anyway, even in case new_bfqq coincides with the in-service
2523 * queue, redirecting requests the in-service queue is the
2524 * best option, as we feed the in-service queue with new
2525 * requests close to the last request served and, by doing so,
2526 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002527 */
2528 bfqq->new_bfqq = new_bfqq;
Paolo Valente9ae759a2021-08-02 16:13:52 +02002529 /*
2530 * The above assignment schedules the following redirections:
2531 * each time some I/O for bfqq arrives, the process that
2532 * generated that I/O is disassociated from bfqq and
2533 * associated with new_bfqq. Here we increases new_bfqq->ref
2534 * in advance, adding the number of processes that are
2535 * expected to be associated with new_bfqq as they happen to
2536 * issue I/O.
2537 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002538 new_bfqq->ref += process_refs;
2539 return new_bfqq;
2540}
2541
2542static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2543 struct bfq_queue *new_bfqq)
2544{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002545 if (bfq_too_late_for_merging(new_bfqq))
2546 return false;
2547
Arianna Avanzini36eca892017-04-12 18:23:16 +02002548 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2549 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2550 return false;
2551
2552 /*
2553 * If either of the queues has already been detected as seeky,
2554 * then merging it with the other queue is unlikely to lead to
2555 * sequential I/O.
2556 */
2557 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2558 return false;
2559
2560 /*
2561 * Interleaved I/O is known to be done by (some) applications
2562 * only for reads, so it does not make sense to merge async
2563 * queues.
2564 */
2565 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2566 return false;
2567
2568 return true;
2569}
2570
2571/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002572 * Attempt to schedule a merge of bfqq with the currently in-service
2573 * queue or with a close queue among the scheduled queues. Return
2574 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2575 * structure otherwise.
2576 *
2577 * The OOM queue is not allowed to participate to cooperation: in fact, since
2578 * the requests temporarily redirected to the OOM queue could be redirected
2579 * again to dedicated queues at any time, the state needed to correctly
2580 * handle merging with the OOM queue would be quite complex and expensive
2581 * to maintain. Besides, in such a critical condition as an out of memory,
2582 * the benefits of queue merging may be little relevant, or even negligible.
2583 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002584 * WARNING: queue merging may impair fairness among non-weight raised
2585 * queues, for at least two reasons: 1) the original weight of a
2586 * merged queue may change during the merged state, 2) even being the
2587 * weight the same, a merged queue may be bloated with many more
2588 * requests than the ones produced by its originally-associated
2589 * process.
2590 */
2591static struct bfq_queue *
2592bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2593 void *io_struct, bool request)
2594{
2595 struct bfq_queue *in_service_bfqq, *new_bfqq;
2596
Paolo Valente9ae759a2021-08-02 16:13:52 +02002597 /* if a merge has already been setup, then proceed with that first */
2598 if (bfqq->new_bfqq)
2599 return bfqq->new_bfqq;
2600
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002601 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002602 * Do not perform queue merging if the device is non
2603 * rotational and performs internal queueing. In fact, such a
2604 * device reaches a high speed through internal parallelism
2605 * and pipelining. This means that, to reach a high
2606 * throughput, it must have many requests enqueued at the same
2607 * time. But, in this configuration, the internal scheduling
2608 * algorithm of the device does exactly the job of queue
2609 * merging: it reorders requests so as to obtain as much as
2610 * possible a sequential I/O pattern. As a consequence, with
2611 * the workload generated by processes doing interleaved I/O,
2612 * the throughput reached by the device is likely to be the
2613 * same, with and without queue merging.
2614 *
2615 * Disabling merging also provides a remarkable benefit in
2616 * terms of throughput. Merging tends to make many workloads
2617 * artificially more uneven, because of shared queues
2618 * remaining non empty for incomparably more time than
2619 * non-merged queues. This may accentuate workload
2620 * asymmetries. For example, if one of the queues in a set of
2621 * merged queues has a higher weight than a normal queue, then
2622 * the shared queue may inherit such a high weight and, by
2623 * staying almost always active, may force BFQ to perform I/O
2624 * plugging most of the time. This evidently makes it harder
2625 * for BFQ to let the device reach a high throughput.
2626 *
2627 * Finally, the likely() macro below is not used because one
2628 * of the two branches is more likely than the other, but to
2629 * have the code path after the following if() executed as
2630 * fast as possible for the case of a non rotational device
2631 * with queueing. We want it because this is the fastest kind
2632 * of device. On the opposite end, the likely() may lengthen
2633 * the execution time of BFQ for the case of slower devices
2634 * (rotational or at least without queueing). But in this case
2635 * the execution time of BFQ matters very little, if not at
2636 * all.
2637 */
2638 if (likely(bfqd->nonrot_with_queueing))
2639 return NULL;
2640
2641 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002642 * Prevent bfqq from being merged if it has been created too
2643 * long ago. The idea is that true cooperating processes, and
2644 * thus their associated bfq_queues, are supposed to be
2645 * created shortly after each other. This is the case, e.g.,
2646 * for KVM/QEMU and dump I/O threads. Basing on this
2647 * assumption, the following filtering greatly reduces the
2648 * probability that two non-cooperating processes, which just
2649 * happen to do close I/O for some short time interval, have
2650 * their queues merged by mistake.
2651 */
2652 if (bfq_too_late_for_merging(bfqq))
2653 return NULL;
2654
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002655 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002656 return NULL;
2657
2658 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002659 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002660 return NULL;
2661
2662 in_service_bfqq = bfqd->in_service_queue;
2663
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002664 if (in_service_bfqq && in_service_bfqq != bfqq &&
2665 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002666 bfq_rq_close_to_sector(io_struct, request,
2667 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002668 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2669 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2670 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2671 if (new_bfqq)
2672 return new_bfqq;
2673 }
2674 /*
2675 * Check whether there is a cooperator among currently scheduled
2676 * queues. The only thing we need is that the bio/request is not
2677 * NULL, as we need it to establish whether a cooperator exists.
2678 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002679 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2680 bfq_io_struct_pos(io_struct, request));
2681
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002682 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002683 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2684 return bfq_setup_merge(bfqq, new_bfqq);
2685
2686 return NULL;
2687}
2688
2689static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2690{
2691 struct bfq_io_cq *bic = bfqq->bic;
2692
2693 /*
2694 * If !bfqq->bic, the queue is already shared or its requests
2695 * have already been redirected to a shared queue; both idle window
2696 * and weight raising state have already been saved. Do nothing.
2697 */
2698 if (!bic)
2699 return;
2700
Francesco Pollicinofffca082019-03-12 09:59:34 +01002701 bic->saved_weight = bfqq->entity.orig_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002702 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002703 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002704 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002705 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2706 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002707 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002708 !bfq_bfqq_in_large_burst(bfqq) &&
2709 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002710 /*
2711 * bfqq being merged right after being created: bfqq
2712 * would have deserved interactive weight raising, but
2713 * did not make it to be set in a weight-raised state,
2714 * because of this early merge. Store directly the
2715 * weight-raising state that would have been assigned
2716 * to bfqq, so that to avoid that bfqq unjustly fails
2717 * to enjoy weight raising if split soon.
2718 */
2719 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
Douglas Anderson2b50f232019-06-26 12:59:19 -07002720 bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
Paolo Valente894df932017-09-21 11:04:02 +02002721 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2722 bic->saved_last_wr_start_finish = jiffies;
2723 } else {
2724 bic->saved_wr_coeff = bfqq->wr_coeff;
2725 bic->saved_wr_start_at_switch_to_srt =
2726 bfqq->wr_start_at_switch_to_srt;
2727 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2728 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2729 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002730}
2731
Paolo Valente478de332019-11-14 10:33:11 +01002732void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2733{
2734 /*
2735 * To prevent bfqq's service guarantees from being violated,
2736 * bfqq may be left busy, i.e., queued for service, even if
2737 * empty (see comments in __bfq_bfqq_expire() for
2738 * details). But, if no process will send requests to bfqq any
2739 * longer, then there is no point in keeping bfqq queued for
2740 * service. In addition, keeping bfqq queued for service, but
2741 * with no process ref any longer, may have caused bfqq to be
2742 * freed when dequeued from service. But this is assumed to
2743 * never happen.
2744 */
2745 if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2746 bfqq != bfqd->in_service_queue)
2747 bfq_del_bfqq_busy(bfqd, bfqq, false);
2748
2749 bfq_put_queue(bfqq);
2750}
2751
Arianna Avanzini36eca892017-04-12 18:23:16 +02002752static void
2753bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2754 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2755{
2756 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2757 (unsigned long)new_bfqq->pid);
2758 /* Save weight raising and idle window of the merged queues */
2759 bfq_bfqq_save_state(bfqq);
2760 bfq_bfqq_save_state(new_bfqq);
2761 if (bfq_bfqq_IO_bound(bfqq))
2762 bfq_mark_bfqq_IO_bound(new_bfqq);
2763 bfq_clear_bfqq_IO_bound(bfqq);
2764
2765 /*
2766 * If bfqq is weight-raised, then let new_bfqq inherit
2767 * weight-raising. To reduce false positives, neglect the case
2768 * where bfqq has just been created, but has not yet made it
2769 * to be weight-raised (which may happen because EQM may merge
2770 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002771 * time for bfqq). Handling this case would however be very
2772 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002773 */
2774 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2775 new_bfqq->wr_coeff = bfqq->wr_coeff;
2776 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2777 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2778 new_bfqq->wr_start_at_switch_to_srt =
2779 bfqq->wr_start_at_switch_to_srt;
2780 if (bfq_bfqq_busy(new_bfqq))
2781 bfqd->wr_busy_queues++;
2782 new_bfqq->entity.prio_changed = 1;
2783 }
2784
2785 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2786 bfqq->wr_coeff = 1;
2787 bfqq->entity.prio_changed = 1;
2788 if (bfq_bfqq_busy(bfqq))
2789 bfqd->wr_busy_queues--;
2790 }
2791
2792 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2793 bfqd->wr_busy_queues);
2794
2795 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002796 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2797 */
2798 bic_set_bfqq(bic, new_bfqq, 1);
2799 bfq_mark_bfqq_coop(new_bfqq);
2800 /*
2801 * new_bfqq now belongs to at least two bics (it is a shared queue):
2802 * set new_bfqq->bic to NULL. bfqq either:
2803 * - does not belong to any bic any more, and hence bfqq->bic must
2804 * be set to NULL, or
2805 * - is a queue whose owning bics have already been redirected to a
2806 * different queue, hence the queue is destined to not belong to
2807 * any bic soon and bfqq->bic is already NULL (therefore the next
2808 * assignment causes no harm).
2809 */
2810 new_bfqq->bic = NULL;
Francesco Pollicino1e664132019-03-12 09:59:33 +01002811 /*
2812 * If the queue is shared, the pid is the pid of one of the associated
2813 * processes. Which pid depends on the exact sequence of merge events
2814 * the queue underwent. So printing such a pid is useless and confusing
2815 * because it reports a random pid between those of the associated
2816 * processes.
2817 * We mark such a queue with a pid -1, and then print SHARED instead of
2818 * a pid in logging messages.
2819 */
2820 new_bfqq->pid = -1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002821 bfqq->bic = NULL;
Paolo Valente478de332019-11-14 10:33:11 +01002822 bfq_release_process_ref(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002823}
2824
Paolo Valenteaee69d72017-04-19 08:29:02 -06002825static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2826 struct bio *bio)
2827{
2828 struct bfq_data *bfqd = q->elevator->elevator_data;
2829 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002830 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002831
2832 /*
2833 * Disallow merge of a sync bio into an async request.
2834 */
2835 if (is_sync && !rq_is_sync(rq))
2836 return false;
2837
2838 /*
2839 * Lookup the bfqq that this bio will be queued with. Allow
2840 * merge only if rq is queued there.
2841 */
2842 if (!bfqq)
2843 return false;
2844
Arianna Avanzini36eca892017-04-12 18:23:16 +02002845 /*
2846 * We take advantage of this function to perform an early merge
2847 * of the queues of possible cooperating processes.
2848 */
2849 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2850 if (new_bfqq) {
2851 /*
2852 * bic still points to bfqq, then it has not yet been
2853 * redirected to some other bfq_queue, and a queue
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02002854 * merge between bfqq and new_bfqq can be safely
2855 * fulfilled, i.e., bic can be redirected to new_bfqq
Arianna Avanzini36eca892017-04-12 18:23:16 +02002856 * and bfqq can be put.
2857 */
2858 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2859 new_bfqq);
2860 /*
2861 * If we get here, bio will be queued into new_queue,
2862 * so use new_bfqq to decide whether bio and rq can be
2863 * merged.
2864 */
2865 bfqq = new_bfqq;
2866
2867 /*
2868 * Change also bqfd->bio_bfqq, as
2869 * bfqd->bio_bic now points to new_bfqq, and
2870 * this function may be invoked again (and then may
2871 * use again bqfd->bio_bfqq).
2872 */
2873 bfqd->bio_bfqq = bfqq;
2874 }
2875
Paolo Valenteaee69d72017-04-19 08:29:02 -06002876 return bfqq == RQ_BFQQ(rq);
2877}
2878
Paolo Valente44e44a12017-04-12 18:23:12 +02002879/*
2880 * Set the maximum time for the in-service queue to consume its
2881 * budget. This prevents seeky processes from lowering the throughput.
2882 * In practice, a time-slice service scheme is used with seeky
2883 * processes.
2884 */
2885static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2886 struct bfq_queue *bfqq)
2887{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002888 unsigned int timeout_coeff;
2889
2890 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2891 timeout_coeff = 1;
2892 else
2893 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2894
Paolo Valente44e44a12017-04-12 18:23:12 +02002895 bfqd->last_budget_start = ktime_get();
2896
2897 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002898 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002899}
2900
Paolo Valenteaee69d72017-04-19 08:29:02 -06002901static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2902 struct bfq_queue *bfqq)
2903{
2904 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002905 bfq_clear_bfqq_fifo_expire(bfqq);
2906
2907 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2908
Paolo Valente77b7dce2017-04-12 18:23:13 +02002909 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2910 bfqq->wr_coeff > 1 &&
2911 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2912 time_is_before_jiffies(bfqq->budget_timeout)) {
2913 /*
2914 * For soft real-time queues, move the start
2915 * of the weight-raising period forward by the
2916 * time the queue has not received any
2917 * service. Otherwise, a relatively long
2918 * service delay is likely to cause the
2919 * weight-raising period of the queue to end,
2920 * because of the short duration of the
2921 * weight-raising period of a soft real-time
2922 * queue. It is worth noting that this move
2923 * is not so dangerous for the other queues,
2924 * because soft real-time queues are not
2925 * greedy.
2926 *
2927 * To not add a further variable, we use the
2928 * overloaded field budget_timeout to
2929 * determine for how long the queue has not
2930 * received service, i.e., how much time has
2931 * elapsed since the queue expired. However,
2932 * this is a little imprecise, because
2933 * budget_timeout is set to jiffies if bfqq
2934 * not only expires, but also remains with no
2935 * request.
2936 */
2937 if (time_after(bfqq->budget_timeout,
2938 bfqq->last_wr_start_finish))
2939 bfqq->last_wr_start_finish +=
2940 jiffies - bfqq->budget_timeout;
2941 else
2942 bfqq->last_wr_start_finish = jiffies;
2943 }
2944
Paolo Valente44e44a12017-04-12 18:23:12 +02002945 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002946 bfq_log_bfqq(bfqd, bfqq,
2947 "set_in_service_queue, cur-budget = %d",
2948 bfqq->entity.budget);
2949 }
2950
2951 bfqd->in_service_queue = bfqq;
Jan Kara89e3d1a2020-06-05 16:16:16 +02002952 bfqd->in_serv_last_pos = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002953}
2954
2955/*
2956 * Get and set a new queue for service.
2957 */
2958static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2959{
2960 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2961
2962 __bfq_set_in_service_queue(bfqd, bfqq);
2963 return bfqq;
2964}
2965
Paolo Valenteaee69d72017-04-19 08:29:02 -06002966static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2967{
2968 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002969 u32 sl;
2970
Paolo Valenteaee69d72017-04-19 08:29:02 -06002971 bfq_mark_bfqq_wait_request(bfqq);
2972
2973 /*
2974 * We don't want to idle for seeks, but we do want to allow
2975 * fair distribution of slice time for a process doing back-to-back
2976 * seeks. So allow a little bit of time for him to submit a new rq.
2977 */
2978 sl = bfqd->bfq_slice_idle;
2979 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002980 * Unless the queue is being weight-raised or the scenario is
2981 * asymmetric, grant only minimum idle time if the queue
2982 * is seeky. A long idling is preserved for a weight-raised
2983 * queue, or, more in general, in an asymmetric scenario,
2984 * because a long idling is needed for guaranteeing to a queue
2985 * its reserved share of the throughput (in particular, it is
2986 * needed if the queue has a higher weight than some other
2987 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002988 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002989 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01002990 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002991 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01002992 else if (bfqq->wr_coeff > 1)
2993 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002994
2995 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01002996 bfqd->last_idling_start_jiffies = jiffies;
2997
Paolo Valenteaee69d72017-04-19 08:29:02 -06002998 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2999 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003000 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003001}
3002
3003/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003004 * In autotuning mode, max_budget is dynamically recomputed as the
3005 * amount of sectors transferred in timeout at the estimated peak
3006 * rate. This enables BFQ to utilize a full timeslice with a full
3007 * budget, even if the in-service queue is served at peak rate. And
3008 * this maximises throughput with sequential workloads.
3009 */
3010static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3011{
3012 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3013 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3014}
3015
Paolo Valente44e44a12017-04-12 18:23:12 +02003016/*
3017 * Update parameters related to throughput and responsiveness, as a
3018 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02003019 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02003020 */
3021static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3022{
Paolo Valentee24f1c22018-05-31 16:45:06 +02003023 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02003024 bfqd->bfq_max_budget =
3025 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02003026 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02003027 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003028}
3029
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003030static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3031 struct request *rq)
3032{
3033 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3034 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3035 bfqd->peak_rate_samples = 1;
3036 bfqd->sequential_samples = 0;
3037 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3038 blk_rq_sectors(rq);
3039 } else /* no new rq dispatched, just reset the number of samples */
3040 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3041
3042 bfq_log(bfqd,
3043 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
3044 bfqd->peak_rate_samples, bfqd->sequential_samples,
3045 bfqd->tot_sectors_dispatched);
3046}
3047
3048static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3049{
3050 u32 rate, weight, divisor;
3051
3052 /*
3053 * For the convergence property to hold (see comments on
3054 * bfq_update_peak_rate()) and for the assessment to be
3055 * reliable, a minimum number of samples must be present, and
3056 * a minimum amount of time must have elapsed. If not so, do
3057 * not compute new rate. Just reset parameters, to get ready
3058 * for a new evaluation attempt.
3059 */
3060 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3061 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3062 goto reset_computation;
3063
3064 /*
3065 * If a new request completion has occurred after last
3066 * dispatch, then, to approximate the rate at which requests
3067 * have been served by the device, it is more precise to
3068 * extend the observation interval to the last completion.
3069 */
3070 bfqd->delta_from_first =
3071 max_t(u64, bfqd->delta_from_first,
3072 bfqd->last_completion - bfqd->first_dispatch);
3073
3074 /*
3075 * Rate computed in sects/usec, and not sects/nsec, for
3076 * precision issues.
3077 */
3078 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3079 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3080
3081 /*
3082 * Peak rate not updated if:
3083 * - the percentage of sequential dispatches is below 3/4 of the
3084 * total, and rate is below the current estimated peak rate
3085 * - rate is unreasonably high (> 20M sectors/sec)
3086 */
3087 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3088 rate <= bfqd->peak_rate) ||
3089 rate > 20<<BFQ_RATE_SHIFT)
3090 goto reset_computation;
3091
3092 /*
3093 * We have to update the peak rate, at last! To this purpose,
3094 * we use a low-pass filter. We compute the smoothing constant
3095 * of the filter as a function of the 'weight' of the new
3096 * measured rate.
3097 *
3098 * As can be seen in next formulas, we define this weight as a
3099 * quantity proportional to how sequential the workload is,
3100 * and to how long the observation time interval is.
3101 *
3102 * The weight runs from 0 to 8. The maximum value of the
3103 * weight, 8, yields the minimum value for the smoothing
3104 * constant. At this minimum value for the smoothing constant,
3105 * the measured rate contributes for half of the next value of
3106 * the estimated peak rate.
3107 *
3108 * So, the first step is to compute the weight as a function
3109 * of how sequential the workload is. Note that the weight
3110 * cannot reach 9, because bfqd->sequential_samples cannot
3111 * become equal to bfqd->peak_rate_samples, which, in its
3112 * turn, holds true because bfqd->sequential_samples is not
3113 * incremented for the first sample.
3114 */
3115 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3116
3117 /*
3118 * Second step: further refine the weight as a function of the
3119 * duration of the observation interval.
3120 */
3121 weight = min_t(u32, 8,
3122 div_u64(weight * bfqd->delta_from_first,
3123 BFQ_RATE_REF_INTERVAL));
3124
3125 /*
3126 * Divisor ranging from 10, for minimum weight, to 2, for
3127 * maximum weight.
3128 */
3129 divisor = 10 - weight;
3130
3131 /*
3132 * Finally, update peak rate:
3133 *
3134 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
3135 */
3136 bfqd->peak_rate *= divisor-1;
3137 bfqd->peak_rate /= divisor;
3138 rate /= divisor; /* smoothing constant alpha = 1/divisor */
3139
3140 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02003141
3142 /*
3143 * For a very slow device, bfqd->peak_rate can reach 0 (see
3144 * the minimum representable values reported in the comments
3145 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3146 * divisions by zero where bfqd->peak_rate is used as a
3147 * divisor.
3148 */
3149 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3150
Paolo Valente44e44a12017-04-12 18:23:12 +02003151 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003152
3153reset_computation:
3154 bfq_reset_rate_computation(bfqd, rq);
3155}
3156
3157/*
3158 * Update the read/write peak rate (the main quantity used for
3159 * auto-tuning, see update_thr_responsiveness_params()).
3160 *
3161 * It is not trivial to estimate the peak rate (correctly): because of
3162 * the presence of sw and hw queues between the scheduler and the
3163 * device components that finally serve I/O requests, it is hard to
3164 * say exactly when a given dispatched request is served inside the
3165 * device, and for how long. As a consequence, it is hard to know
3166 * precisely at what rate a given set of requests is actually served
3167 * by the device.
3168 *
3169 * On the opposite end, the dispatch time of any request is trivially
3170 * available, and, from this piece of information, the "dispatch rate"
3171 * of requests can be immediately computed. So, the idea in the next
3172 * function is to use what is known, namely request dispatch times
3173 * (plus, when useful, request completion times), to estimate what is
3174 * unknown, namely in-device request service rate.
3175 *
3176 * The main issue is that, because of the above facts, the rate at
3177 * which a certain set of requests is dispatched over a certain time
3178 * interval can vary greatly with respect to the rate at which the
3179 * same requests are then served. But, since the size of any
3180 * intermediate queue is limited, and the service scheme is lossless
3181 * (no request is silently dropped), the following obvious convergence
3182 * property holds: the number of requests dispatched MUST become
3183 * closer and closer to the number of requests completed as the
3184 * observation interval grows. This is the key property used in
3185 * the next function to estimate the peak service rate as a function
3186 * of the observed dispatch rate. The function assumes to be invoked
3187 * on every request dispatch.
3188 */
3189static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3190{
3191 u64 now_ns = ktime_get_ns();
3192
3193 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3194 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3195 bfqd->peak_rate_samples);
3196 bfq_reset_rate_computation(bfqd, rq);
3197 goto update_last_values; /* will add one sample */
3198 }
3199
3200 /*
3201 * Device idle for very long: the observation interval lasting
3202 * up to this dispatch cannot be a valid observation interval
3203 * for computing a new peak rate (similarly to the late-
3204 * completion event in bfq_completed_request()). Go to
3205 * update_rate_and_reset to have the following three steps
3206 * taken:
3207 * - close the observation interval at the last (previous)
3208 * request dispatch or completion
3209 * - compute rate, if possible, for that observation interval
3210 * - start a new observation interval with this dispatch
3211 */
3212 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3213 bfqd->rq_in_driver == 0)
3214 goto update_rate_and_reset;
3215
3216 /* Update sampling information */
3217 bfqd->peak_rate_samples++;
3218
3219 if ((bfqd->rq_in_driver > 0 ||
3220 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01003221 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003222 bfqd->sequential_samples++;
3223
3224 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3225
3226 /* Reset max observed rq size every 32 dispatches */
3227 if (likely(bfqd->peak_rate_samples % 32))
3228 bfqd->last_rq_max_size =
3229 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3230 else
3231 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3232
3233 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3234
3235 /* Target observation interval not yet reached, go on sampling */
3236 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3237 goto update_last_values;
3238
3239update_rate_and_reset:
3240 bfq_update_rate_reset(bfqd, rq);
3241update_last_values:
3242 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01003243 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3244 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003245 bfqd->last_dispatch = now_ns;
3246}
3247
3248/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003249 * Remove request from internal lists.
3250 */
3251static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3252{
3253 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3254
3255 /*
3256 * For consistency, the next instruction should have been
3257 * executed after removing the request from the queue and
3258 * dispatching it. We execute instead this instruction before
3259 * bfq_remove_request() (and hence introduce a temporary
3260 * inconsistency), for efficiency. In fact, should this
3261 * dispatch occur for a non in-service bfqq, this anticipated
3262 * increment prevents two counters related to bfqq->dispatched
3263 * from risking to be, first, uselessly decremented, and then
3264 * incremented again when the (new) value of bfqq->dispatched
3265 * happens to be taken into account.
3266 */
3267 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003268 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003269
3270 bfq_remove_request(q, rq);
3271}
3272
Paolo Valente37261122019-06-25 07:12:49 +02003273/*
3274 * There is a case where idling does not have to be performed for
3275 * throughput concerns, but to preserve the throughput share of
3276 * the process associated with bfqq.
3277 *
3278 * To introduce this case, we can note that allowing the drive
3279 * to enqueue more than one request at a time, and hence
3280 * delegating de facto final scheduling decisions to the
3281 * drive's internal scheduler, entails loss of control on the
3282 * actual request service order. In particular, the critical
3283 * situation is when requests from different processes happen
3284 * to be present, at the same time, in the internal queue(s)
3285 * of the drive. In such a situation, the drive, by deciding
3286 * the service order of the internally-queued requests, does
3287 * determine also the actual throughput distribution among
3288 * these processes. But the drive typically has no notion or
3289 * concern about per-process throughput distribution, and
3290 * makes its decisions only on a per-request basis. Therefore,
3291 * the service distribution enforced by the drive's internal
3292 * scheduler is likely to coincide with the desired throughput
3293 * distribution only in a completely symmetric, or favorably
3294 * skewed scenario where:
3295 * (i-a) each of these processes must get the same throughput as
3296 * the others,
3297 * (i-b) in case (i-a) does not hold, it holds that the process
3298 * associated with bfqq must receive a lower or equal
3299 * throughput than any of the other processes;
3300 * (ii) the I/O of each process has the same properties, in
3301 * terms of locality (sequential or random), direction
3302 * (reads or writes), request sizes, greediness
3303 * (from I/O-bound to sporadic), and so on;
3304
3305 * In fact, in such a scenario, the drive tends to treat the requests
3306 * of each process in about the same way as the requests of the
3307 * others, and thus to provide each of these processes with about the
3308 * same throughput. This is exactly the desired throughput
3309 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3310 * even more convenient distribution for (the process associated with)
3311 * bfqq.
3312 *
3313 * In contrast, in any asymmetric or unfavorable scenario, device
3314 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3315 * that bfqq receives its assigned fraction of the device throughput
3316 * (see [1] for details).
3317 *
3318 * The problem is that idling may significantly reduce throughput with
3319 * certain combinations of types of I/O and devices. An important
3320 * example is sync random I/O on flash storage with command
3321 * queueing. So, unless bfqq falls in cases where idling also boosts
3322 * throughput, it is important to check conditions (i-a), i(-b) and
3323 * (ii) accurately, so as to avoid idling when not strictly needed for
3324 * service guarantees.
3325 *
3326 * Unfortunately, it is extremely difficult to thoroughly check
3327 * condition (ii). And, in case there are active groups, it becomes
3328 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3329 * if there are active groups, then, for conditions (i-a) or (i-b) to
3330 * become false 'indirectly', it is enough that an active group
3331 * contains more active processes or sub-groups than some other active
3332 * group. More precisely, for conditions (i-a) or (i-b) to become
3333 * false because of such a group, it is not even necessary that the
3334 * group is (still) active: it is sufficient that, even if the group
3335 * has become inactive, some of its descendant processes still have
3336 * some request already dispatched but still waiting for
3337 * completion. In fact, requests have still to be guaranteed their
3338 * share of the throughput even after being dispatched. In this
3339 * respect, it is easy to show that, if a group frequently becomes
3340 * inactive while still having in-flight requests, and if, when this
3341 * happens, the group is not considered in the calculation of whether
3342 * the scenario is asymmetric, then the group may fail to be
3343 * guaranteed its fair share of the throughput (basically because
3344 * idling may not be performed for the descendant processes of the
3345 * group, but it had to be). We address this issue with the following
3346 * bi-modal behavior, implemented in the function
3347 * bfq_asymmetric_scenario().
3348 *
3349 * If there are groups with requests waiting for completion
3350 * (as commented above, some of these groups may even be
3351 * already inactive), then the scenario is tagged as
3352 * asymmetric, conservatively, without checking any of the
3353 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3354 * This behavior matches also the fact that groups are created
3355 * exactly if controlling I/O is a primary concern (to
3356 * preserve bandwidth and latency guarantees).
3357 *
3358 * On the opposite end, if there are no groups with requests waiting
3359 * for completion, then only conditions (i-a) and (i-b) are actually
3360 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3361 * idling is not performed, regardless of whether condition (ii)
3362 * holds. In other words, only if conditions (i-a) and (i-b) do not
3363 * hold, then idling is allowed, and the device tends to be prevented
3364 * from queueing many requests, possibly of several processes. Since
3365 * there are no groups with requests waiting for completion, then, to
3366 * control conditions (i-a) and (i-b) it is enough to check just
3367 * whether all the queues with requests waiting for completion also
3368 * have the same weight.
3369 *
3370 * Not checking condition (ii) evidently exposes bfqq to the
3371 * risk of getting less throughput than its fair share.
3372 * However, for queues with the same weight, a further
3373 * mechanism, preemption, mitigates or even eliminates this
3374 * problem. And it does so without consequences on overall
3375 * throughput. This mechanism and its benefits are explained
3376 * in the next three paragraphs.
3377 *
3378 * Even if a queue, say Q, is expired when it remains idle, Q
3379 * can still preempt the new in-service queue if the next
3380 * request of Q arrives soon (see the comments on
3381 * bfq_bfqq_update_budg_for_activation). If all queues and
3382 * groups have the same weight, this form of preemption,
3383 * combined with the hole-recovery heuristic described in the
3384 * comments on function bfq_bfqq_update_budg_for_activation,
3385 * are enough to preserve a correct bandwidth distribution in
3386 * the mid term, even without idling. In fact, even if not
3387 * idling allows the internal queues of the device to contain
3388 * many requests, and thus to reorder requests, we can rather
3389 * safely assume that the internal scheduler still preserves a
3390 * minimum of mid-term fairness.
3391 *
3392 * More precisely, this preemption-based, idleless approach
3393 * provides fairness in terms of IOPS, and not sectors per
3394 * second. This can be seen with a simple example. Suppose
3395 * that there are two queues with the same weight, but that
3396 * the first queue receives requests of 8 sectors, while the
3397 * second queue receives requests of 1024 sectors. In
3398 * addition, suppose that each of the two queues contains at
3399 * most one request at a time, which implies that each queue
3400 * always remains idle after it is served. Finally, after
3401 * remaining idle, each queue receives very quickly a new
3402 * request. It follows that the two queues are served
3403 * alternatively, preempting each other if needed. This
3404 * implies that, although both queues have the same weight,
3405 * the queue with large requests receives a service that is
3406 * 1024/8 times as high as the service received by the other
3407 * queue.
3408 *
3409 * The motivation for using preemption instead of idling (for
3410 * queues with the same weight) is that, by not idling,
3411 * service guarantees are preserved (completely or at least in
3412 * part) without minimally sacrificing throughput. And, if
3413 * there is no active group, then the primary expectation for
3414 * this device is probably a high throughput.
3415 *
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003416 * We are now left only with explaining the two sub-conditions in the
3417 * additional compound condition that is checked below for deciding
3418 * whether the scenario is asymmetric. To explain the first
3419 * sub-condition, we need to add that the function
Paolo Valente37261122019-06-25 07:12:49 +02003420 * bfq_asymmetric_scenario checks the weights of only
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003421 * non-weight-raised queues, for efficiency reasons (see comments on
3422 * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3423 * is checked explicitly here. More precisely, the compound condition
3424 * below takes into account also the fact that, even if bfqq is being
3425 * weight-raised, the scenario is still symmetric if all queues with
3426 * requests waiting for completion happen to be
3427 * weight-raised. Actually, we should be even more precise here, and
3428 * differentiate between interactive weight raising and soft real-time
3429 * weight raising.
3430 *
3431 * The second sub-condition checked in the compound condition is
3432 * whether there is a fair amount of already in-flight I/O not
3433 * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3434 * following reason. The drive may decide to serve in-flight
3435 * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3436 * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3437 * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3438 * basically uncontrolled amount of I/O from other queues may be
3439 * dispatched too, possibly causing the service of bfqq's I/O to be
3440 * delayed even longer in the drive. This problem gets more and more
3441 * serious as the speed and the queue depth of the drive grow,
3442 * because, as these two quantities grow, the probability to find no
3443 * queue busy but many requests in flight grows too. By contrast,
3444 * plugging I/O dispatching minimizes the delay induced by already
3445 * in-flight I/O, and enables bfqq to recover the bandwidth it may
3446 * lose because of this delay.
Paolo Valente37261122019-06-25 07:12:49 +02003447 *
3448 * As a side note, it is worth considering that the above
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003449 * device-idling countermeasures may however fail in the following
3450 * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3451 * in a time period during which all symmetry sub-conditions hold, and
3452 * therefore the device is allowed to enqueue many requests, but at
3453 * some later point in time some sub-condition stops to hold, then it
3454 * may become impossible to make requests be served in the desired
3455 * order until all the requests already queued in the device have been
3456 * served. The last sub-condition commented above somewhat mitigates
3457 * this problem for weight-raised queues.
Paolo Valente37261122019-06-25 07:12:49 +02003458 */
3459static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3460 struct bfq_queue *bfqq)
3461{
Paolo Valentef718b092020-02-03 11:40:54 +01003462 /* No point in idling for bfqq if it won't get requests any longer */
3463 if (unlikely(!bfqq_process_refs(bfqq)))
3464 return false;
3465
Paolo Valente37261122019-06-25 07:12:49 +02003466 return (bfqq->wr_coeff > 1 &&
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003467 (bfqd->wr_busy_queues <
3468 bfq_tot_busy_queues(bfqd) ||
3469 bfqd->rq_in_driver >=
3470 bfqq->dispatched + 4)) ||
Paolo Valente37261122019-06-25 07:12:49 +02003471 bfq_asymmetric_scenario(bfqd, bfqq);
3472}
3473
3474static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3475 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003476{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003477 /*
3478 * If this bfqq is shared between multiple processes, check
3479 * to make sure that those processes are still issuing I/Os
3480 * within the mean seek distance. If not, it may be time to
3481 * break the queues apart again.
3482 */
3483 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3484 bfq_mark_bfqq_split_coop(bfqq);
3485
Paolo Valente37261122019-06-25 07:12:49 +02003486 /*
3487 * Consider queues with a higher finish virtual time than
3488 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3489 * true, then bfqq's bandwidth would be violated if an
3490 * uncontrolled amount of I/O from these queues were
3491 * dispatched while bfqq is waiting for its new I/O to
3492 * arrive. This is exactly what may happen if this is a forced
3493 * expiration caused by a preemption attempt, and if bfqq is
3494 * not re-scheduled. To prevent this from happening, re-queue
3495 * bfqq if it needs I/O-dispatch plugging, even if it is
3496 * empty. By doing so, bfqq is granted to be served before the
3497 * above queues (provided that bfqq is of course eligible).
3498 */
3499 if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3500 !(reason == BFQQE_PREEMPTED &&
3501 idling_needed_for_service_guarantees(bfqd, bfqq))) {
Paolo Valente44e44a12017-04-12 18:23:12 +02003502 if (bfqq->dispatched == 0)
3503 /*
3504 * Overloading budget_timeout field to store
3505 * the time at which the queue remains with no
3506 * backlog and no outstanding request; used by
3507 * the weight-raising mechanism.
3508 */
3509 bfqq->budget_timeout = jiffies;
3510
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003511 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003512 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003513 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003514 /*
3515 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003516 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003517 */
Paolo Valente37261122019-06-25 07:12:49 +02003518 if (unlikely(!bfqd->nonrot_with_queueing &&
3519 !RB_EMPTY_ROOT(&bfqq->sort_list)))
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003520 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003521 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003522
3523 /*
3524 * All in-service entities must have been properly deactivated
3525 * or requeued before executing the next function, which
Paolo Valenteeed47d12019-04-10 10:38:33 +02003526 * resets all in-service entities as no more in service. This
3527 * may cause bfqq to be freed. If this happens, the next
3528 * function returns true.
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003529 */
Paolo Valenteeed47d12019-04-10 10:38:33 +02003530 return __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003531}
3532
3533/**
3534 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3535 * @bfqd: device data.
3536 * @bfqq: queue to update.
3537 * @reason: reason for expiration.
3538 *
3539 * Handle the feedback on @bfqq budget at queue expiration.
3540 * See the body for detailed comments.
3541 */
3542static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3543 struct bfq_queue *bfqq,
3544 enum bfqq_expiration reason)
3545{
3546 struct request *next_rq;
3547 int budget, min_budget;
3548
Paolo Valenteaee69d72017-04-19 08:29:02 -06003549 min_budget = bfq_min_budget(bfqd);
3550
Paolo Valente44e44a12017-04-12 18:23:12 +02003551 if (bfqq->wr_coeff == 1)
3552 budget = bfqq->max_budget;
3553 else /*
3554 * Use a constant, low budget for weight-raised queues,
3555 * to help achieve a low latency. Keep it slightly higher
3556 * than the minimum possible budget, to cause a little
3557 * bit fewer expirations.
3558 */
3559 budget = 2 * min_budget;
3560
Paolo Valenteaee69d72017-04-19 08:29:02 -06003561 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3562 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3563 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3564 budget, bfq_min_budget(bfqd));
3565 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3566 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3567
Paolo Valente44e44a12017-04-12 18:23:12 +02003568 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003569 switch (reason) {
3570 /*
3571 * Caveat: in all the following cases we trade latency
3572 * for throughput.
3573 */
3574 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003575 /*
3576 * This is the only case where we may reduce
3577 * the budget: if there is no request of the
3578 * process still waiting for completion, then
3579 * we assume (tentatively) that the timer has
3580 * expired because the batch of requests of
3581 * the process could have been served with a
3582 * smaller budget. Hence, betting that
3583 * process will behave in the same way when it
3584 * becomes backlogged again, we reduce its
3585 * next budget. As long as we guess right,
3586 * this budget cut reduces the latency
3587 * experienced by the process.
3588 *
3589 * However, if there are still outstanding
3590 * requests, then the process may have not yet
3591 * issued its next request just because it is
3592 * still waiting for the completion of some of
3593 * the still outstanding ones. So in this
3594 * subcase we do not reduce its budget, on the
3595 * contrary we increase it to possibly boost
3596 * the throughput, as discussed in the
3597 * comments to the BUDGET_TIMEOUT case.
3598 */
3599 if (bfqq->dispatched > 0) /* still outstanding reqs */
3600 budget = min(budget * 2, bfqd->bfq_max_budget);
3601 else {
3602 if (budget > 5 * min_budget)
3603 budget -= 4 * min_budget;
3604 else
3605 budget = min_budget;
3606 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003607 break;
3608 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003609 /*
3610 * We double the budget here because it gives
3611 * the chance to boost the throughput if this
3612 * is not a seeky process (and has bumped into
3613 * this timeout because of, e.g., ZBR).
3614 */
3615 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003616 break;
3617 case BFQQE_BUDGET_EXHAUSTED:
3618 /*
3619 * The process still has backlog, and did not
3620 * let either the budget timeout or the disk
3621 * idling timeout expire. Hence it is not
3622 * seeky, has a short thinktime and may be
3623 * happy with a higher budget too. So
3624 * definitely increase the budget of this good
3625 * candidate to boost the disk throughput.
3626 */
Paolo Valente54b60452017-04-12 18:23:09 +02003627 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003628 break;
3629 case BFQQE_NO_MORE_REQUESTS:
3630 /*
3631 * For queues that expire for this reason, it
3632 * is particularly important to keep the
3633 * budget close to the actual service they
3634 * need. Doing so reduces the timestamp
3635 * misalignment problem described in the
3636 * comments in the body of
3637 * __bfq_activate_entity. In fact, suppose
3638 * that a queue systematically expires for
3639 * BFQQE_NO_MORE_REQUESTS and presents a
3640 * new request in time to enjoy timestamp
3641 * back-shifting. The larger the budget of the
3642 * queue is with respect to the service the
3643 * queue actually requests in each service
3644 * slot, the more times the queue can be
3645 * reactivated with the same virtual finish
3646 * time. It follows that, even if this finish
3647 * time is pushed to the system virtual time
3648 * to reduce the consequent timestamp
3649 * misalignment, the queue unjustly enjoys for
3650 * many re-activations a lower finish time
3651 * than all newly activated queues.
3652 *
3653 * The service needed by bfqq is measured
3654 * quite precisely by bfqq->entity.service.
3655 * Since bfqq does not enjoy device idling,
3656 * bfqq->entity.service is equal to the number
3657 * of sectors that the process associated with
3658 * bfqq requested to read/write before waiting
3659 * for request completions, or blocking for
3660 * other reasons.
3661 */
3662 budget = max_t(int, bfqq->entity.service, min_budget);
3663 break;
3664 default:
3665 return;
3666 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003667 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003668 /*
3669 * Async queues get always the maximum possible
3670 * budget, as for them we do not care about latency
3671 * (in addition, their ability to dispatch is limited
3672 * by the charging factor).
3673 */
3674 budget = bfqd->bfq_max_budget;
3675 }
3676
3677 bfqq->max_budget = budget;
3678
3679 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3680 !bfqd->bfq_user_max_budget)
3681 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3682
3683 /*
3684 * If there is still backlog, then assign a new budget, making
3685 * sure that it is large enough for the next request. Since
3686 * the finish time of bfqq must be kept in sync with the
3687 * budget, be sure to call __bfq_bfqq_expire() *after* this
3688 * update.
3689 *
3690 * If there is no backlog, then no need to update the budget;
3691 * it will be updated on the arrival of a new request.
3692 */
3693 next_rq = bfqq->next_rq;
3694 if (next_rq)
3695 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3696 bfq_serv_to_charge(next_rq, bfqq));
3697
3698 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3699 next_rq ? blk_rq_sectors(next_rq) : 0,
3700 bfqq->entity.budget);
3701}
3702
Paolo Valenteaee69d72017-04-19 08:29:02 -06003703/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003704 * Return true if the process associated with bfqq is "slow". The slow
3705 * flag is used, in addition to the budget timeout, to reduce the
3706 * amount of service provided to seeky processes, and thus reduce
3707 * their chances to lower the throughput. More details in the comments
3708 * on the function bfq_bfqq_expire().
3709 *
3710 * An important observation is in order: as discussed in the comments
3711 * on the function bfq_update_peak_rate(), with devices with internal
3712 * queues, it is hard if ever possible to know when and for how long
3713 * an I/O request is processed by the device (apart from the trivial
3714 * I/O pattern where a new request is dispatched only after the
3715 * previous one has been completed). This makes it hard to evaluate
3716 * the real rate at which the I/O requests of each bfq_queue are
3717 * served. In fact, for an I/O scheduler like BFQ, serving a
3718 * bfq_queue means just dispatching its requests during its service
3719 * slot (i.e., until the budget of the queue is exhausted, or the
3720 * queue remains idle, or, finally, a timeout fires). But, during the
3721 * service slot of a bfq_queue, around 100 ms at most, the device may
3722 * be even still processing requests of bfq_queues served in previous
3723 * service slots. On the opposite end, the requests of the in-service
3724 * bfq_queue may be completed after the service slot of the queue
3725 * finishes.
3726 *
3727 * Anyway, unless more sophisticated solutions are used
3728 * (where possible), the sum of the sizes of the requests dispatched
3729 * during the service slot of a bfq_queue is probably the only
3730 * approximation available for the service received by the bfq_queue
3731 * during its service slot. And this sum is the quantity used in this
3732 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003733 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003734static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3735 bool compensate, enum bfqq_expiration reason,
3736 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003737{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003738 ktime_t delta_ktime;
3739 u32 delta_usecs;
3740 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003741
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003742 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003743 return false;
3744
3745 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003746 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003747 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003748 delta_ktime = ktime_get();
3749 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3750 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003751
3752 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003753 if (delta_usecs < 1000) {
3754 if (blk_queue_nonrot(bfqd->queue))
3755 /*
3756 * give same worst-case guarantees as idling
3757 * for seeky
3758 */
3759 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3760 else /* charge at least one seek */
3761 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003762
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003763 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003764 }
3765
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003766 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003767
3768 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003769 * Use only long (> 20ms) intervals to filter out excessive
3770 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003771 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003772 if (delta_usecs > 20000) {
3773 /*
3774 * Caveat for rotational devices: processes doing I/O
3775 * in the slower disk zones tend to be slow(er) even
3776 * if not seeky. In this respect, the estimated peak
3777 * rate is likely to be an average over the disk
3778 * surface. Accordingly, to not be too harsh with
3779 * unlucky processes, a process is deemed slow only if
3780 * its rate has been lower than half of the estimated
3781 * peak rate.
3782 */
3783 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3784 }
3785
3786 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3787
3788 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003789}
3790
3791/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003792 * To be deemed as soft real-time, an application must meet two
3793 * requirements. First, the application must not require an average
3794 * bandwidth higher than the approximate bandwidth required to playback or
3795 * record a compressed high-definition video.
3796 * The next function is invoked on the completion of the last request of a
3797 * batch, to compute the next-start time instant, soft_rt_next_start, such
3798 * that, if the next request of the application does not arrive before
3799 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3800 *
3801 * The second requirement is that the request pattern of the application is
3802 * isochronous, i.e., that, after issuing a request or a batch of requests,
3803 * the application stops issuing new requests until all its pending requests
3804 * have been completed. After that, the application may issue a new batch,
3805 * and so on.
3806 * For this reason the next function is invoked to compute
3807 * soft_rt_next_start only for applications that meet this requirement,
3808 * whereas soft_rt_next_start is set to infinity for applications that do
3809 * not.
3810 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003811 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3812 * happen to meet, occasionally or systematically, both the above
3813 * bandwidth and isochrony requirements. This may happen at least in
3814 * the following circumstances. First, if the CPU load is high. The
3815 * application may stop issuing requests while the CPUs are busy
3816 * serving other processes, then restart, then stop again for a while,
3817 * and so on. The other circumstances are related to the storage
3818 * device: the storage device is highly loaded or reaches a low-enough
3819 * throughput with the I/O of the application (e.g., because the I/O
3820 * is random and/or the device is slow). In all these cases, the
3821 * I/O of the application may be simply slowed down enough to meet
3822 * the bandwidth and isochrony requirements. To reduce the probability
3823 * that greedy applications are deemed as soft real-time in these
3824 * corner cases, a further rule is used in the computation of
3825 * soft_rt_next_start: the return value of this function is forced to
3826 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003827 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003828 * (a) Current time plus: (1) the maximum time for which the arrival
3829 * of a request is waited for when a sync queue becomes idle,
3830 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3831 * postpone for a moment the reason for adding a few extra
3832 * jiffies; we get back to it after next item (b). Lower-bounding
3833 * the return value of this function with the current time plus
3834 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3835 * because the latter issue their next request as soon as possible
3836 * after the last one has been completed. In contrast, a soft
3837 * real-time application spends some time processing data, after a
3838 * batch of its requests has been completed.
3839 *
3840 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3841 * above, greedy applications may happen to meet both the
3842 * bandwidth and isochrony requirements under heavy CPU or
3843 * storage-device load. In more detail, in these scenarios, these
3844 * applications happen, only for limited time periods, to do I/O
3845 * slowly enough to meet all the requirements described so far,
3846 * including the filtering in above item (a). These slow-speed
3847 * time intervals are usually interspersed between other time
3848 * intervals during which these applications do I/O at a very high
3849 * speed. Fortunately, exactly because of the high speed of the
3850 * I/O in the high-speed intervals, the values returned by this
3851 * function happen to be so high, near the end of any such
3852 * high-speed interval, to be likely to fall *after* the end of
3853 * the low-speed time interval that follows. These high values are
3854 * stored in bfqq->soft_rt_next_start after each invocation of
3855 * this function. As a consequence, if the last value of
3856 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3857 * next value that this function may return, then, from the very
3858 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3859 * likely to be constantly kept so high that any I/O request
3860 * issued during the low-speed interval is considered as arriving
3861 * to soon for the application to be deemed as soft
3862 * real-time. Then, in the high-speed interval that follows, the
3863 * application will not be deemed as soft real-time, just because
3864 * it will do I/O at a high speed. And so on.
3865 *
3866 * Getting back to the filtering in item (a), in the following two
3867 * cases this filtering might be easily passed by a greedy
3868 * application, if the reference quantity was just
3869 * bfqd->bfq_slice_idle:
3870 * 1) HZ is so low that the duration of a jiffy is comparable to or
3871 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3872 * devices with HZ=100. The time granularity may be so coarse
3873 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3874 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003875 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3876 * for a while, then suddenly 'jump' by several units to recover the lost
3877 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003878 * To address this issue, in the filtering in (a) we do not use as a
3879 * reference time interval just bfqd->bfq_slice_idle, but
3880 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3881 * minimum number of jiffies for which the filter seems to be quite
3882 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003883 */
3884static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3885 struct bfq_queue *bfqq)
3886{
Paolo Valentea34b0242017-12-15 07:23:12 +01003887 return max3(bfqq->soft_rt_next_start,
3888 bfqq->last_idle_bklogged +
3889 HZ * bfqq->service_from_backlogged /
3890 bfqd->bfq_wr_max_softrt_rate,
3891 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003892}
3893
Paolo Valenteaee69d72017-04-19 08:29:02 -06003894/**
3895 * bfq_bfqq_expire - expire a queue.
3896 * @bfqd: device owning the queue.
3897 * @bfqq: the queue to expire.
3898 * @compensate: if true, compensate for the time spent idling.
3899 * @reason: the reason causing the expiration.
3900 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003901 * If the process associated with bfqq does slow I/O (e.g., because it
3902 * issues random requests), we charge bfqq with the time it has been
3903 * in service instead of the service it has received (see
3904 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3905 * a consequence, bfqq will typically get higher timestamps upon
3906 * reactivation, and hence it will be rescheduled as if it had
3907 * received more service than what it has actually received. In the
3908 * end, bfqq receives less service in proportion to how slowly its
3909 * associated process consumes its budgets (and hence how seriously it
3910 * tends to lower the throughput). In addition, this time-charging
3911 * strategy guarantees time fairness among slow processes. In
3912 * contrast, if the process associated with bfqq is not slow, we
3913 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003914 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003915 * Charging time to the first type of queues and the exact service to
3916 * the other has the effect of using the WF2Q+ policy to schedule the
3917 * former on a timeslice basis, without violating service domain
3918 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003919 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003920void bfq_bfqq_expire(struct bfq_data *bfqd,
3921 struct bfq_queue *bfqq,
3922 bool compensate,
3923 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003924{
3925 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003926 unsigned long delta = 0;
3927 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003928
3929 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003930 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003931 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003932 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003933
3934 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003935 * As above explained, charge slow (typically seeky) and
3936 * timed-out queues with the time and not the service
3937 * received, to favor sequential workloads.
3938 *
3939 * Processes doing I/O in the slower disk zones will tend to
3940 * be slow(er) even if not seeky. Therefore, since the
3941 * estimated peak rate is actually an average over the disk
3942 * surface, these processes may timeout just for bad luck. To
3943 * avoid punishing them, do not charge time to processes that
3944 * succeeded in consuming at least 2/3 of their budget. This
3945 * allows BFQ to preserve enough elasticity to still perform
3946 * bandwidth, and not time, distribution with little unlucky
3947 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003948 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003949 if (bfqq->wr_coeff == 1 &&
3950 (slow ||
3951 (reason == BFQQE_BUDGET_TIMEOUT &&
3952 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003953 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003954
3955 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003956 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003957 bfq_clear_bfqq_IO_bound(bfqq);
3958
Paolo Valente44e44a12017-04-12 18:23:12 +02003959 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3960 bfqq->last_wr_start_finish = jiffies;
3961
Paolo Valente77b7dce2017-04-12 18:23:13 +02003962 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3963 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3964 /*
3965 * If we get here, and there are no outstanding
3966 * requests, then the request pattern is isochronous
3967 * (see the comments on the function
3968 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003969 * soft_rt_next_start. And we do it, unless bfqq is in
3970 * interactive weight raising. We do not do it in the
3971 * latter subcase, for the following reason. bfqq may
3972 * be conveying the I/O needed to load a soft
3973 * real-time application. Such an application will
3974 * actually exhibit a soft real-time I/O pattern after
3975 * it finally starts doing its job. But, if
3976 * soft_rt_next_start is computed here for an
3977 * interactive bfqq, and bfqq had received a lot of
3978 * service before remaining with no outstanding
3979 * request (likely to happen on a fast device), then
3980 * soft_rt_next_start would be assigned such a high
3981 * value that, for a very long time, bfqq would be
3982 * prevented from being possibly considered as soft
3983 * real time.
3984 *
3985 * If, instead, the queue still has outstanding
3986 * requests, then we have to wait for the completion
3987 * of all the outstanding requests to discover whether
3988 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003989 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003990 if (bfqq->dispatched == 0 &&
3991 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003992 bfqq->soft_rt_next_start =
3993 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003994 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003995 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003996 * Schedule an update of soft_rt_next_start to when
3997 * the task may be discovered to be isochronous.
3998 */
3999 bfq_mark_bfqq_softrt_update(bfqq);
4000 }
4001 }
4002
Paolo Valenteaee69d72017-04-19 08:29:02 -06004003 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004004 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4005 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004006
4007 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004008 * bfqq expired, so no total service time needs to be computed
4009 * any longer: reset state machine for measuring total service
4010 * times.
4011 */
4012 bfqd->rqs_injected = bfqd->wait_dispatch = false;
4013 bfqd->waited_rq = NULL;
4014
4015 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004016 * Increase, decrease or leave budget unchanged according to
4017 * reason.
4018 */
4019 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
Paolo Valente37261122019-06-25 07:12:49 +02004020 if (__bfq_bfqq_expire(bfqd, bfqq, reason))
Paolo Valenteeed47d12019-04-10 10:38:33 +02004021 /* bfqq is gone, no more actions on it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004022 return;
4023
Paolo Valenteaee69d72017-04-19 08:29:02 -06004024 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004025 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004026 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004027 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004028 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004029 /*
4030 * Not setting service to 0, because, if the next rq
4031 * arrives in time, the queue will go on receiving
4032 * service with this same budget (as if it never expired)
4033 */
4034 } else
4035 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02004036
4037 /*
4038 * Reset the received-service counter for every parent entity.
4039 * Differently from what happens with bfqq->entity.service,
4040 * the resetting of this counter never needs to be postponed
4041 * for parent entities. In fact, in case bfqq may have a
4042 * chance to go on being served using the last, partially
4043 * consumed budget, bfqq->entity.service needs to be kept,
4044 * because if bfqq then actually goes on being served using
4045 * the same budget, the last value of bfqq->entity.service is
4046 * needed to properly decrement bfqq->entity.budget by the
4047 * portion already consumed. In contrast, it is not necessary
4048 * to keep entity->service for parent entities too, because
4049 * the bubble up of the new value of bfqq->entity.budget will
4050 * make sure that the budgets of parent entities are correct,
4051 * even in case bfqq and thus parent entities go on receiving
4052 * service with the same budget.
4053 */
4054 entity = entity->parent;
4055 for_each_entity(entity)
4056 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004057}
4058
4059/*
4060 * Budget timeout is not implemented through a dedicated timer, but
4061 * just checked on request arrivals and completions, as well as on
4062 * idle timer expirations.
4063 */
4064static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4065{
Paolo Valente44e44a12017-04-12 18:23:12 +02004066 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004067}
4068
4069/*
4070 * If we expire a queue that is actively waiting (i.e., with the
4071 * device idled) for the arrival of a new request, then we may incur
4072 * the timestamp misalignment problem described in the body of the
4073 * function __bfq_activate_entity. Hence we return true only if this
4074 * condition does not hold, or if the queue is slow enough to deserve
4075 * only to be kicked off for preserving a high throughput.
4076 */
4077static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4078{
4079 bfq_log_bfqq(bfqq->bfqd, bfqq,
4080 "may_budget_timeout: wait_request %d left %d timeout %d",
4081 bfq_bfqq_wait_request(bfqq),
4082 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
4083 bfq_bfqq_budget_timeout(bfqq));
4084
4085 return (!bfq_bfqq_wait_request(bfqq) ||
4086 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
4087 &&
4088 bfq_bfqq_budget_timeout(bfqq);
4089}
4090
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004091static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4092 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004093{
Paolo Valenteedaf9422017-08-04 07:35:11 +02004094 bool rot_without_queueing =
4095 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4096 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004097 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02004098
Paolo Valentef718b092020-02-03 11:40:54 +01004099 /* No point in idling for bfqq if it won't get requests any longer */
4100 if (unlikely(!bfqq_process_refs(bfqq)))
4101 return false;
4102
Paolo Valenteedaf9422017-08-04 07:35:11 +02004103 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4104 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4105
Paolo Valented5be3fe2017-08-04 07:35:10 +02004106 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02004107 * The next variable takes into account the cases where idling
4108 * boosts the throughput.
4109 *
Paolo Valentee01eff02017-04-12 18:23:19 +02004110 * The value of the variable is computed considering, first, that
4111 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02004112 * (a) the device is not NCQ-capable and rotational, or
4113 * (b) regardless of the presence of NCQ, the device is rotational and
4114 * the request pattern for bfqq is I/O-bound and sequential, or
4115 * (c) regardless of whether it is rotational, the device is
4116 * not NCQ-capable and the request pattern for bfqq is
4117 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004118 *
4119 * Secondly, and in contrast to the above item (b), idling an
4120 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02004121 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004122 * the throughput in proportion to how fast the device
4123 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02004124 * above conditions (a), (b) or (c) is true, and, in
4125 * particular, happens to be false if bfqd is an NCQ-capable
4126 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004127 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02004128 idling_boosts_thr = rot_without_queueing ||
4129 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4130 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004131
4132 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004133 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02004134 * idling_boosts_thr, unless a special case holds. In this
4135 * special case, described below, idling may cause problems to
4136 * weight-raised queues.
4137 *
4138 * When the request pool is saturated (e.g., in the presence
4139 * of write hogs), if the processes associated with
4140 * non-weight-raised queues ask for requests at a lower rate,
4141 * then processes associated with weight-raised queues have a
4142 * higher probability to get a request from the pool
4143 * immediately (or at least soon) when they need one. Thus
4144 * they have a higher probability to actually get a fraction
4145 * of the device throughput proportional to their high
4146 * weight. This is especially true with NCQ-capable drives,
4147 * which enqueue several requests in advance, and further
4148 * reorder internally-queued requests.
4149 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004150 * For this reason, we force to false the return value if
4151 * there are weight-raised busy queues. In this case, and if
4152 * bfqq is not weight-raised, this guarantees that the device
4153 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4154 * then idling will be guaranteed by another variable, see
4155 * below). Combined with the timestamping rules of BFQ (see
4156 * [1] for details), this behavior causes bfqq, and hence any
4157 * sync non-weight-raised queue, to get a lower number of
4158 * requests served, and thus to ask for a lower number of
4159 * requests from the request pool, before the busy
4160 * weight-raised queues get served again. This often mitigates
4161 * starvation problems in the presence of heavy write
4162 * workloads and NCQ, thereby guaranteeing a higher
4163 * application and system responsiveness in these hostile
4164 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02004165 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004166 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02004167 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004168}
Paolo Valentecfd69712017-04-12 18:23:15 +02004169
Paolo Valente530c4cb2019-01-29 12:06:32 +01004170/*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004171 * For a queue that becomes empty, device idling is allowed only if
4172 * this function returns true for that queue. As a consequence, since
4173 * device idling plays a critical role for both throughput boosting
4174 * and service guarantees, the return value of this function plays a
4175 * critical role as well.
4176 *
4177 * In a nutshell, this function returns true only if idling is
4178 * beneficial for throughput or, even if detrimental for throughput,
4179 * idling is however necessary to preserve service guarantees (low
4180 * latency, desired throughput distribution, ...). In particular, on
4181 * NCQ-capable devices, this function tries to return false, so as to
4182 * help keep the drives' internal queues full, whenever this helps the
4183 * device boost the throughput without causing any service-guarantee
4184 * issue.
4185 *
4186 * Most of the issues taken into account to get the return value of
4187 * this function are not trivial. We discuss these issues in the two
4188 * functions providing the main pieces of information needed by this
4189 * function.
4190 */
4191static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4192{
4193 struct bfq_data *bfqd = bfqq->bfqd;
4194 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4195
Paolo Valentef718b092020-02-03 11:40:54 +01004196 /* No point in idling for bfqq if it won't get requests any longer */
4197 if (unlikely(!bfqq_process_refs(bfqq)))
4198 return false;
4199
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004200 if (unlikely(bfqd->strict_guarantees))
4201 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004202
4203 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004204 * Idling is performed only if slice_idle > 0. In addition, we
4205 * do not idle if
4206 * (a) bfqq is async
4207 * (b) bfqq is in the idle io prio class: in this case we do
4208 * not idle because we want to minimize the bandwidth that
4209 * queues in this class can steal to higher-priority queues
4210 */
4211 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4212 bfq_class_idle(bfqq))
4213 return false;
4214
4215 idling_boosts_thr_with_no_issue =
4216 idling_boosts_thr_without_issues(bfqd, bfqq);
4217
4218 idling_needed_for_service_guar =
4219 idling_needed_for_service_guarantees(bfqd, bfqq);
4220
4221 /*
4222 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02004223 * return value of the function, which is true only if idling
4224 * either boosts the throughput (without issues), or is
4225 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02004226 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004227 return idling_boosts_thr_with_no_issue ||
4228 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004229}
4230
4231/*
Paolo Valente277a4a92018-06-25 21:55:37 +02004232 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06004233 * returns true, then:
4234 * 1) the queue must remain in service and cannot be expired, and
4235 * 2) the device must be idled to wait for the possible arrival of a new
4236 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02004237 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06004238 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02004239 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06004240 * returns true.
4241 */
4242static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4243{
Paolo Valente277a4a92018-06-25 21:55:37 +02004244 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004245}
4246
Paolo Valente2341d6622019-03-12 09:59:29 +01004247/*
4248 * This function chooses the queue from which to pick the next extra
4249 * I/O request to inject, if it finds a compatible queue. See the
4250 * comments on bfq_update_inject_limit() for details on the injection
4251 * mechanism, and for the definitions of the quantities mentioned
4252 * below.
4253 */
4254static struct bfq_queue *
4255bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02004256{
Paolo Valente2341d6622019-03-12 09:59:29 +01004257 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4258 unsigned int limit = in_serv_bfqq->inject_limit;
4259 /*
4260 * If
4261 * - bfqq is not weight-raised and therefore does not carry
4262 * time-critical I/O,
4263 * or
4264 * - regardless of whether bfqq is weight-raised, bfqq has
4265 * however a long think time, during which it can absorb the
4266 * effect of an appropriate number of extra I/O requests
4267 * from other queues (see bfq_update_inject_limit for
4268 * details on the computation of this number);
4269 * then injection can be performed without restrictions.
4270 */
4271 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4272 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02004273
4274 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004275 * If
4276 * - the baseline total service time could not be sampled yet,
4277 * so the inject limit happens to be still 0, and
4278 * - a lot of time has elapsed since the plugging of I/O
4279 * dispatching started, so drive speed is being wasted
4280 * significantly;
4281 * then temporarily raise inject limit to one request.
4282 */
4283 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4284 bfq_bfqq_wait_request(in_serv_bfqq) &&
4285 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4286 bfqd->bfq_slice_idle)
4287 )
4288 limit = 1;
4289
4290 if (bfqd->rq_in_driver >= limit)
4291 return NULL;
4292
4293 /*
4294 * Linear search of the source queue for injection; but, with
4295 * a high probability, very few steps are needed to find a
4296 * candidate queue, i.e., a queue with enough budget left for
4297 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02004298 * - BFQ dynamically updates the budget of every queue so as
4299 * to accommodate the expected backlog of the queue;
4300 * - if a queue gets all its requests dispatched as injected
4301 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004302 * (and re-added only if it gets new requests, but then it
4303 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004304 */
4305 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4306 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004307 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004308 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004309 bfq_bfqq_budget_left(bfqq)) {
4310 /*
4311 * Allow for only one large in-flight request
4312 * on non-rotational devices, for the
4313 * following reason. On non-rotationl drives,
4314 * large requests take much longer than
4315 * smaller requests to be served. In addition,
4316 * the drive prefers to serve large requests
4317 * w.r.t. to small ones, if it can choose. So,
4318 * having more than one large requests queued
4319 * in the drive may easily make the next first
4320 * request of the in-service queue wait for so
4321 * long to break bfqq's service guarantees. On
4322 * the bright side, large requests let the
4323 * drive reach a very high throughput, even if
4324 * there is only one in-flight large request
4325 * at a time.
4326 */
4327 if (blk_queue_nonrot(bfqd->queue) &&
4328 blk_rq_sectors(bfqq->next_rq) >=
4329 BFQQ_SECT_THR_NONROT)
4330 limit = min_t(unsigned int, 1, limit);
4331 else
4332 limit = in_serv_bfqq->inject_limit;
4333
4334 if (bfqd->rq_in_driver < limit) {
4335 bfqd->rqs_injected = true;
4336 return bfqq;
4337 }
4338 }
Paolo Valented0edc242018-09-14 16:23:08 +02004339
4340 return NULL;
4341}
4342
Paolo Valenteaee69d72017-04-19 08:29:02 -06004343/*
4344 * Select a queue for service. If we have a current queue in service,
4345 * check whether to continue servicing it, or retrieve and set a new one.
4346 */
4347static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4348{
4349 struct bfq_queue *bfqq;
4350 struct request *next_rq;
4351 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4352
4353 bfqq = bfqd->in_service_queue;
4354 if (!bfqq)
4355 goto new_queue;
4356
4357 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4358
Paolo Valente4420b092018-06-25 21:55:35 +02004359 /*
4360 * Do not expire bfqq for budget timeout if bfqq may be about
4361 * to enjoy device idling. The reason why, in this case, we
4362 * prevent bfqq from expiring is the same as in the comments
4363 * on the case where bfq_bfqq_must_idle() returns true, in
4364 * bfq_completed_request().
4365 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004366 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004367 !bfq_bfqq_must_idle(bfqq))
4368 goto expire;
4369
4370check_queue:
4371 /*
4372 * This loop is rarely executed more than once. Even when it
4373 * happens, it is much more convenient to re-execute this loop
4374 * than to return NULL and trigger a new dispatch to get a
4375 * request served.
4376 */
4377 next_rq = bfqq->next_rq;
4378 /*
4379 * If bfqq has requests queued and it has enough budget left to
4380 * serve them, keep the queue, otherwise expire it.
4381 */
4382 if (next_rq) {
4383 if (bfq_serv_to_charge(next_rq, bfqq) >
4384 bfq_bfqq_budget_left(bfqq)) {
4385 /*
4386 * Expire the queue for budget exhaustion,
4387 * which makes sure that the next budget is
4388 * enough to serve the next request, even if
4389 * it comes from the fifo expired path.
4390 */
4391 reason = BFQQE_BUDGET_EXHAUSTED;
4392 goto expire;
4393 } else {
4394 /*
4395 * The idle timer may be pending because we may
4396 * not disable disk idling even when a new request
4397 * arrives.
4398 */
4399 if (bfq_bfqq_wait_request(bfqq)) {
4400 /*
4401 * If we get here: 1) at least a new request
4402 * has arrived but we have not disabled the
4403 * timer because the request was too small,
4404 * 2) then the block layer has unplugged
4405 * the device, causing the dispatch to be
4406 * invoked.
4407 *
4408 * Since the device is unplugged, now the
4409 * requests are probably large enough to
4410 * provide a reasonable throughput.
4411 * So we disable idling.
4412 */
4413 bfq_clear_bfqq_wait_request(bfqq);
4414 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4415 }
4416 goto keep_queue;
4417 }
4418 }
4419
4420 /*
4421 * No requests pending. However, if the in-service queue is idling
4422 * for a new request, or has requests waiting for a completion and
4423 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004424 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004425 * Yet, inject service from other queues if it boosts
4426 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004427 */
4428 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004429 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004430 struct bfq_queue *async_bfqq =
4431 bfqq->bic && bfqq->bic->bfqq[0] &&
Paolo Valente37261122019-06-25 07:12:49 +02004432 bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4433 bfqq->bic->bfqq[0]->next_rq ?
Paolo Valente2341d6622019-03-12 09:59:29 +01004434 bfqq->bic->bfqq[0] : NULL;
4435
4436 /*
Paolo Valente13a857a2019-06-25 07:12:47 +02004437 * The next three mutually-exclusive ifs decide
4438 * whether to try injection, and choose the queue to
4439 * pick an I/O request from.
4440 *
4441 * The first if checks whether the process associated
4442 * with bfqq has also async I/O pending. If so, it
4443 * injects such I/O unconditionally. Injecting async
4444 * I/O from the same process can cause no harm to the
4445 * process. On the contrary, it can only increase
4446 * bandwidth and reduce latency for the process.
4447 *
4448 * The second if checks whether there happens to be a
4449 * non-empty waker queue for bfqq, i.e., a queue whose
4450 * I/O needs to be completed for bfqq to receive new
4451 * I/O. This happens, e.g., if bfqq is associated with
4452 * a process that does some sync. A sync generates
4453 * extra blocking I/O, which must be completed before
4454 * the process associated with bfqq can go on with its
4455 * I/O. If the I/O of the waker queue is not served,
4456 * then bfqq remains empty, and no I/O is dispatched,
4457 * until the idle timeout fires for bfqq. This is
4458 * likely to result in lower bandwidth and higher
4459 * latencies for bfqq, and in a severe loss of total
4460 * throughput. The best action to take is therefore to
4461 * serve the waker queue as soon as possible. So do it
4462 * (without relying on the third alternative below for
4463 * eventually serving waker_bfqq's I/O; see the last
4464 * paragraph for further details). This systematic
4465 * injection of I/O from the waker queue does not
4466 * cause any delay to bfqq's I/O. On the contrary,
4467 * next bfqq's I/O is brought forward dramatically,
4468 * for it is not blocked for milliseconds.
4469 *
4470 * The third if checks whether bfqq is a queue for
4471 * which it is better to avoid injection. It is so if
4472 * bfqq delivers more throughput when served without
4473 * any further I/O from other queues in the middle, or
4474 * if the service times of bfqq's I/O requests both
4475 * count more than overall throughput, and may be
4476 * easily increased by injection (this happens if bfqq
4477 * has a short think time). If none of these
4478 * conditions holds, then a candidate queue for
4479 * injection is looked for through
4480 * bfq_choose_bfqq_for_injection(). Note that the
4481 * latter may return NULL (for example if the inject
4482 * limit for bfqq is currently 0).
4483 *
4484 * NOTE: motivation for the second alternative
4485 *
4486 * Thanks to the way the inject limit is updated in
4487 * bfq_update_has_short_ttime(), it is rather likely
4488 * that, if I/O is being plugged for bfqq and the
4489 * waker queue has pending I/O requests that are
4490 * blocking bfqq's I/O, then the third alternative
4491 * above lets the waker queue get served before the
4492 * I/O-plugging timeout fires. So one may deem the
4493 * second alternative superfluous. It is not, because
4494 * the third alternative may be way less effective in
4495 * case of a synchronization. For two main
4496 * reasons. First, throughput may be low because the
4497 * inject limit may be too low to guarantee the same
4498 * amount of injected I/O, from the waker queue or
4499 * other queues, that the second alternative
4500 * guarantees (the second alternative unconditionally
4501 * injects a pending I/O request of the waker queue
4502 * for each bfq_dispatch_request()). Second, with the
4503 * third alternative, the duration of the plugging,
4504 * i.e., the time before bfqq finally receives new I/O,
4505 * may not be minimized, because the waker queue may
4506 * happen to be served only after other queues.
Paolo Valente2341d6622019-03-12 09:59:29 +01004507 */
4508 if (async_bfqq &&
4509 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4510 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4511 bfq_bfqq_budget_left(async_bfqq))
4512 bfqq = bfqq->bic->bfqq[0];
Paolo Valente13a857a2019-06-25 07:12:47 +02004513 else if (bfq_bfqq_has_waker(bfqq) &&
4514 bfq_bfqq_busy(bfqq->waker_bfqq) &&
Paolo Valente37261122019-06-25 07:12:49 +02004515 bfqq->next_rq &&
Paolo Valente13a857a2019-06-25 07:12:47 +02004516 bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4517 bfqq->waker_bfqq) <=
4518 bfq_bfqq_budget_left(bfqq->waker_bfqq)
4519 )
4520 bfqq = bfqq->waker_bfqq;
Paolo Valente2341d6622019-03-12 09:59:29 +01004521 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4522 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4523 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004524 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4525 else
4526 bfqq = NULL;
4527
Paolo Valenteaee69d72017-04-19 08:29:02 -06004528 goto keep_queue;
4529 }
4530
4531 reason = BFQQE_NO_MORE_REQUESTS;
4532expire:
4533 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4534new_queue:
4535 bfqq = bfq_set_in_service_queue(bfqd);
4536 if (bfqq) {
4537 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4538 goto check_queue;
4539 }
4540keep_queue:
4541 if (bfqq)
4542 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4543 else
4544 bfq_log(bfqd, "select_queue: no queue returned");
4545
4546 return bfqq;
4547}
4548
Paolo Valente44e44a12017-04-12 18:23:12 +02004549static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4550{
4551 struct bfq_entity *entity = &bfqq->entity;
4552
4553 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4554 bfq_log_bfqq(bfqd, bfqq,
4555 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4556 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4557 jiffies_to_msecs(bfqq->wr_cur_max_time),
4558 bfqq->wr_coeff,
4559 bfqq->entity.weight, bfqq->entity.orig_weight);
4560
4561 if (entity->prio_changed)
4562 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4563
4564 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004565 * If the queue was activated in a burst, or too much
4566 * time has elapsed from the beginning of this
4567 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004568 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004569 if (bfq_bfqq_in_large_burst(bfqq))
4570 bfq_bfqq_end_wr(bfqq);
4571 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4572 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004573 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4574 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004575 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02004576 bfq_bfqq_end_wr(bfqq);
4577 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004578 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004579 bfqq->entity.prio_changed = 1;
4580 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004581 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004582 if (bfqq->wr_coeff > 1 &&
4583 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4584 bfqq->service_from_wr > max_service_from_wr) {
4585 /* see comments on max_service_from_wr */
4586 bfq_bfqq_end_wr(bfqq);
4587 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004588 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004589 /*
4590 * To improve latency (for this or other queues), immediately
4591 * update weight both if it must be raised and if it must be
4592 * lowered. Since, entity may be on some active tree here, and
4593 * might have a pending change of its ioprio class, invoke
4594 * next function with the last parameter unset (see the
4595 * comments on the function).
4596 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004597 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004598 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4599 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004600}
4601
Paolo Valenteaee69d72017-04-19 08:29:02 -06004602/*
4603 * Dispatch next request from bfqq.
4604 */
4605static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4606 struct bfq_queue *bfqq)
4607{
4608 struct request *rq = bfqq->next_rq;
4609 unsigned long service_to_charge;
4610
4611 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4612
4613 bfq_bfqq_served(bfqq, service_to_charge);
4614
Paolo Valente2341d6622019-03-12 09:59:29 +01004615 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4616 bfqd->wait_dispatch = false;
4617 bfqd->waited_rq = rq;
4618 }
4619
Paolo Valenteaee69d72017-04-19 08:29:02 -06004620 bfq_dispatch_remove(bfqd->queue, rq);
4621
Paolo Valente2341d6622019-03-12 09:59:29 +01004622 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004623 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004624
Paolo Valente44e44a12017-04-12 18:23:12 +02004625 /*
4626 * If weight raising has to terminate for bfqq, then next
4627 * function causes an immediate update of bfqq's weight,
4628 * without waiting for next activation. As a consequence, on
4629 * expiration, bfqq will be timestamped as if has never been
4630 * weight-raised during this service slot, even if it has
4631 * received part or even most of the service as a
4632 * weight-raised queue. This inflates bfqq's timestamps, which
4633 * is beneficial, as bfqq is then more willing to leave the
4634 * device immediately to possible other weight-raised queues.
4635 */
4636 bfq_update_wr_data(bfqd, bfqq);
4637
Paolo Valenteaee69d72017-04-19 08:29:02 -06004638 /*
4639 * Expire bfqq, pretending that its budget expired, if bfqq
4640 * belongs to CLASS_IDLE and other queues are waiting for
4641 * service.
4642 */
Paolo Valente73d58112019-01-29 12:06:29 +01004643 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004644 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004645
Paolo Valenteaee69d72017-04-19 08:29:02 -06004646 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02004647
4648return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06004649 return rq;
4650}
4651
4652static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4653{
4654 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4655
Kashyap Desaib4455472020-08-19 23:20:28 +08004656 if (!atomic_read(&hctx->elevator_queued))
4657 return false;
4658
Paolo Valenteaee69d72017-04-19 08:29:02 -06004659 /*
4660 * Avoiding lock: a race on bfqd->busy_queues should cause at
4661 * most a call to dispatch for nothing
4662 */
4663 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01004664 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004665}
4666
4667static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4668{
4669 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4670 struct request *rq = NULL;
4671 struct bfq_queue *bfqq = NULL;
4672
4673 if (!list_empty(&bfqd->dispatch)) {
4674 rq = list_first_entry(&bfqd->dispatch, struct request,
4675 queuelist);
4676 list_del_init(&rq->queuelist);
4677
4678 bfqq = RQ_BFQQ(rq);
4679
4680 if (bfqq) {
4681 /*
4682 * Increment counters here, because this
4683 * dispatch does not follow the standard
4684 * dispatch flow (where counters are
4685 * incremented)
4686 */
4687 bfqq->dispatched++;
4688
4689 goto inc_in_driver_start_rq;
4690 }
4691
4692 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004693 * We exploit the bfq_finish_requeue_request hook to
4694 * decrement rq_in_driver, but
4695 * bfq_finish_requeue_request will not be invoked on
4696 * this request. So, to avoid unbalance, just start
4697 * this request, without incrementing rq_in_driver. As
4698 * a negative consequence, rq_in_driver is deceptively
4699 * lower than it should be while this request is in
4700 * service. This may cause bfq_schedule_dispatch to be
4701 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004702 *
4703 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004704 * bfq_finish_requeue_request hook, if defined, is
4705 * probably invoked also on this request. So, by
4706 * exploiting this hook, we could 1) increment
4707 * rq_in_driver here, and 2) decrement it in
4708 * bfq_finish_requeue_request. Such a solution would
4709 * let the value of the counter be always accurate,
4710 * but it would entail using an extra interface
4711 * function. This cost seems higher than the benefit,
4712 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004713 * requests very low.
4714 */
4715 goto start_rq;
4716 }
4717
Paolo Valente73d58112019-01-29 12:06:29 +01004718 bfq_log(bfqd, "dispatch requests: %d busy queues",
4719 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004720
Paolo Valente73d58112019-01-29 12:06:29 +01004721 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004722 goto exit;
4723
4724 /*
4725 * Force device to serve one request at a time if
4726 * strict_guarantees is true. Forcing this service scheme is
4727 * currently the ONLY way to guarantee that the request
4728 * service order enforced by the scheduler is respected by a
4729 * queueing device. Otherwise the device is free even to make
4730 * some unlucky request wait for as long as the device
4731 * wishes.
4732 *
Randy Dunlapf06678a2020-07-30 18:42:27 -07004733 * Of course, serving one request at a time may cause loss of
Paolo Valenteaee69d72017-04-19 08:29:02 -06004734 * throughput.
4735 */
4736 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4737 goto exit;
4738
4739 bfqq = bfq_select_queue(bfqd);
4740 if (!bfqq)
4741 goto exit;
4742
4743 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4744
4745 if (rq) {
4746inc_in_driver_start_rq:
4747 bfqd->rq_in_driver++;
4748start_rq:
4749 rq->rq_flags |= RQF_STARTED;
4750 }
4751exit:
4752 return rq;
4753}
4754
Christoph Hellwig8060c472019-06-06 12:26:24 +02004755#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01004756static void bfq_update_dispatch_stats(struct request_queue *q,
4757 struct request *rq,
4758 struct bfq_queue *in_serv_queue,
4759 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004760{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004761 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004762
Paolo Valente24bfd192017-11-13 07:34:09 +01004763 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004764 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004765
4766 /*
4767 * rq and bfqq are guaranteed to exist until this function
4768 * ends, for the following reasons. First, rq can be
4769 * dispatched to the device, and then can be completed and
4770 * freed, only after this function ends. Second, rq cannot be
4771 * merged (and thus freed because of a merge) any longer,
4772 * because it has already started. Thus rq cannot be freed
4773 * before this function ends, and, since rq has a reference to
4774 * bfqq, the same guarantee holds for bfqq too.
4775 *
4776 * In addition, the following queue lock guarantees that
4777 * bfqq_group(bfqq) exists as well.
4778 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004779 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004780 if (idle_timer_disabled)
4781 /*
4782 * Since the idle timer has been disabled,
4783 * in_serv_queue contained some request when
4784 * __bfq_dispatch_request was invoked above, which
4785 * implies that rq was picked exactly from
4786 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4787 * therefore guaranteed to exist because of the above
4788 * arguments.
4789 */
4790 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4791 if (bfqq) {
4792 struct bfq_group *bfqg = bfqq_group(bfqq);
4793
4794 bfqg_stats_update_avg_queue_size(bfqg);
4795 bfqg_stats_set_start_empty_time(bfqg);
4796 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4797 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004798 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004799}
4800#else
4801static inline void bfq_update_dispatch_stats(struct request_queue *q,
4802 struct request *rq,
4803 struct bfq_queue *in_serv_queue,
4804 bool idle_timer_disabled) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02004805#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente24bfd192017-11-13 07:34:09 +01004806
Paolo Valente9b25bd02017-12-04 11:42:05 +01004807static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4808{
4809 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4810 struct request *rq;
4811 struct bfq_queue *in_serv_queue;
4812 bool waiting_rq, idle_timer_disabled;
4813
4814 spin_lock_irq(&bfqd->lock);
4815
4816 in_serv_queue = bfqd->in_service_queue;
4817 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4818
4819 rq = __bfq_dispatch_request(hctx);
4820
4821 idle_timer_disabled =
4822 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4823
4824 spin_unlock_irq(&bfqd->lock);
4825
4826 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4827 idle_timer_disabled);
4828
Paolo Valenteaee69d72017-04-19 08:29:02 -06004829 return rq;
4830}
4831
4832/*
4833 * Task holds one reference to the queue, dropped when task exits. Each rq
4834 * in-flight on this queue also holds a reference, dropped when rq is freed.
4835 *
4836 * Scheduler lock must be held here. Recall not to use bfqq after calling
4837 * this function on it.
4838 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004839void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004840{
Paolo Valente3f758e82019-08-07 16:17:54 +02004841 struct bfq_queue *item;
4842 struct hlist_node *n;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004843 struct bfq_group *bfqg = bfqq_group(bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004844
Paolo Valenteaee69d72017-04-19 08:29:02 -06004845 if (bfqq->bfqd)
4846 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4847 bfqq, bfqq->ref);
4848
4849 bfqq->ref--;
4850 if (bfqq->ref)
4851 return;
4852
Paolo Valente99fead82017-10-09 13:11:23 +02004853 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004854 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004855 /*
4856 * Decrement also burst size after the removal, if the
4857 * process associated with bfqq is exiting, and thus
4858 * does not contribute to the burst any longer. This
4859 * decrement helps filter out false positives of large
4860 * bursts, when some short-lived process (often due to
4861 * the execution of commands by some service) happens
4862 * to start and exit while a complex application is
4863 * starting, and thus spawning several processes that
4864 * do I/O (and that *must not* be treated as a large
4865 * burst, see comments on bfq_handle_burst).
4866 *
4867 * In particular, the decrement is performed only if:
4868 * 1) bfqq is not a merged queue, because, if it is,
4869 * then this free of bfqq is not triggered by the exit
4870 * of the process bfqq is associated with, but exactly
4871 * by the fact that bfqq has just been merged.
4872 * 2) burst_size is greater than 0, to handle
4873 * unbalanced decrements. Unbalanced decrements may
4874 * happen in te following case: bfqq is inserted into
4875 * the current burst list--without incrementing
4876 * bust_size--because of a split, but the current
4877 * burst list is not the burst list bfqq belonged to
4878 * (see comments on the case of a split in
4879 * bfq_set_request).
4880 */
4881 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4882 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004883 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004884
Paolo Valente3f758e82019-08-07 16:17:54 +02004885 /*
4886 * bfqq does not exist any longer, so it cannot be woken by
4887 * any other queue, and cannot wake any other queue. Then bfqq
4888 * must be removed from the woken list of its possible waker
4889 * queue, and all queues in the woken list of bfqq must stop
4890 * having a waker queue. Strictly speaking, these updates
4891 * should be performed when bfqq remains with no I/O source
4892 * attached to it, which happens before bfqq gets freed. In
4893 * particular, this happens when the last process associated
4894 * with bfqq exits or gets associated with a different
4895 * queue. However, both events lead to bfqq being freed soon,
4896 * and dangling references would come out only after bfqq gets
4897 * freed. So these updates are done here, as a simple and safe
4898 * way to handle all cases.
4899 */
4900 /* remove bfqq from woken list */
4901 if (!hlist_unhashed(&bfqq->woken_list_node))
4902 hlist_del_init(&bfqq->woken_list_node);
4903
4904 /* reset waker for all queues in woken list */
4905 hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4906 woken_list_node) {
4907 item->waker_bfqq = NULL;
4908 bfq_clear_bfqq_has_waker(item);
4909 hlist_del_init(&item->woken_list_node);
4910 }
4911
Paolo Valente08d383a2019-08-07 16:17:53 +02004912 if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4913 bfqq->bfqd->last_completed_rq_bfqq = NULL;
4914
Paolo Valenteaee69d72017-04-19 08:29:02 -06004915 kmem_cache_free(bfq_pool, bfqq);
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004916 bfqg_and_blkg_put(bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004917}
4918
Arianna Avanzini36eca892017-04-12 18:23:16 +02004919static void bfq_put_cooperator(struct bfq_queue *bfqq)
4920{
4921 struct bfq_queue *__bfqq, *next;
4922
4923 /*
4924 * If this queue was scheduled to merge with another queue, be
4925 * sure to drop the reference taken on that queue (and others in
4926 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4927 */
4928 __bfqq = bfqq->new_bfqq;
4929 while (__bfqq) {
4930 if (__bfqq == bfqq)
4931 break;
4932 next = __bfqq->new_bfqq;
4933 bfq_put_queue(__bfqq);
4934 __bfqq = next;
4935 }
4936}
4937
Paolo Valenteaee69d72017-04-19 08:29:02 -06004938static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4939{
4940 if (bfqq == bfqd->in_service_queue) {
Paolo Valente37261122019-06-25 07:12:49 +02004941 __bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004942 bfq_schedule_dispatch(bfqd);
4943 }
4944
4945 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4946
Arianna Avanzini36eca892017-04-12 18:23:16 +02004947 bfq_put_cooperator(bfqq);
4948
Paolo Valente478de332019-11-14 10:33:11 +01004949 bfq_release_process_ref(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004950}
4951
4952static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4953{
4954 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4955 struct bfq_data *bfqd;
4956
4957 if (bfqq)
4958 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4959
4960 if (bfqq && bfqd) {
4961 unsigned long flags;
4962
4963 spin_lock_irqsave(&bfqd->lock, flags);
Douglas Andersondbc31172019-06-27 21:44:09 -07004964 bfqq->bic = NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004965 bfq_exit_bfqq(bfqd, bfqq);
4966 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004967 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004968 }
4969}
4970
4971static void bfq_exit_icq(struct io_cq *icq)
4972{
4973 struct bfq_io_cq *bic = icq_to_bic(icq);
4974
4975 bfq_exit_icq_bfqq(bic, true);
4976 bfq_exit_icq_bfqq(bic, false);
4977}
4978
4979/*
4980 * Update the entity prio values; note that the new values will not
4981 * be used until the next (re)activation.
4982 */
4983static void
4984bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4985{
4986 struct task_struct *tsk = current;
4987 int ioprio_class;
4988 struct bfq_data *bfqd = bfqq->bfqd;
4989
4990 if (!bfqd)
4991 return;
4992
4993 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4994 switch (ioprio_class) {
4995 default:
Yufen Yud51cfc52020-05-04 14:47:55 +02004996 pr_err("bdi %s: bfq: bad prio class %d\n",
4997 bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
4998 ioprio_class);
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05004999 fallthrough;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005000 case IOPRIO_CLASS_NONE:
5001 /*
5002 * No prio set, inherit CPU scheduling settings.
5003 */
5004 bfqq->new_ioprio = task_nice_ioprio(tsk);
5005 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5006 break;
5007 case IOPRIO_CLASS_RT:
5008 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5009 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5010 break;
5011 case IOPRIO_CLASS_BE:
5012 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5013 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5014 break;
5015 case IOPRIO_CLASS_IDLE:
5016 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5017 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005018 break;
5019 }
5020
5021 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5022 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5023 bfqq->new_ioprio);
Damien Le Moal0d54bba2021-08-11 12:36:57 +09005024 bfqq->new_ioprio = IOPRIO_BE_NR - 1;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005025 }
5026
5027 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5028 bfqq->entity.prio_changed = 1;
5029}
5030
Paolo Valenteea25da42017-04-19 08:48:24 -06005031static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5032 struct bio *bio, bool is_sync,
5033 struct bfq_io_cq *bic);
5034
Paolo Valenteaee69d72017-04-19 08:29:02 -06005035static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5036{
5037 struct bfq_data *bfqd = bic_to_bfqd(bic);
5038 struct bfq_queue *bfqq;
5039 int ioprio = bic->icq.ioc->ioprio;
5040
5041 /*
5042 * This condition may trigger on a newly created bic, be sure to
5043 * drop the lock before returning.
5044 */
5045 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5046 return;
5047
5048 bic->ioprio = ioprio;
5049
5050 bfqq = bic_to_bfqq(bic, false);
5051 if (bfqq) {
Paolo Valente478de332019-11-14 10:33:11 +01005052 bfq_release_process_ref(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005053 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5054 bic_set_bfqq(bic, bfqq, false);
5055 }
5056
5057 bfqq = bic_to_bfqq(bic, true);
5058 if (bfqq)
5059 bfq_set_next_ioprio_data(bfqq, bic);
5060}
5061
5062static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5063 struct bfq_io_cq *bic, pid_t pid, int is_sync)
5064{
5065 RB_CLEAR_NODE(&bfqq->entity.rb_node);
5066 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005067 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valente13a857a2019-06-25 07:12:47 +02005068 INIT_HLIST_NODE(&bfqq->woken_list_node);
5069 INIT_HLIST_HEAD(&bfqq->woken_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005070
5071 bfqq->ref = 0;
5072 bfqq->bfqd = bfqd;
5073
5074 if (bic)
5075 bfq_set_next_ioprio_data(bfqq, bic);
5076
5077 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02005078 /*
5079 * No need to mark as has_short_ttime if in
5080 * idle_class, because no device idling is performed
5081 * for queues in idle class
5082 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005083 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02005084 /* tentatively mark as has_short_ttime */
5085 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005086 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005087 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005088 } else
5089 bfq_clear_bfqq_sync(bfqq);
5090
5091 /* set end request to minus infinity from now */
5092 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5093
5094 bfq_mark_bfqq_IO_bound(bfqq);
5095
5096 bfqq->pid = pid;
5097
5098 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02005099 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005100 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005101
Paolo Valente44e44a12017-04-12 18:23:12 +02005102 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005103 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005104 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02005105 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02005106
5107 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01005108 * To not forget the possibly high bandwidth consumed by a
5109 * process/queue in the recent past,
5110 * bfq_bfqq_softrt_next_start() returns a value at least equal
5111 * to the current value of bfqq->soft_rt_next_start (see
5112 * comments on bfq_bfqq_softrt_next_start). Set
5113 * soft_rt_next_start to now, to mean that bfqq has consumed
5114 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005115 */
Paolo Valentea34b0242017-12-15 07:23:12 +01005116 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02005117
Paolo Valenteaee69d72017-04-19 08:29:02 -06005118 /* first request is almost certainly seeky */
5119 bfqq->seek_history = 1;
5120}
5121
5122static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005123 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005124 int ioprio_class, int ioprio)
5125{
5126 switch (ioprio_class) {
5127 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005128 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005129 case IOPRIO_CLASS_NONE:
5130 ioprio = IOPRIO_NORM;
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05005131 fallthrough;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005132 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005133 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005134 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005135 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005136 default:
5137 return NULL;
5138 }
5139}
5140
5141static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5142 struct bio *bio, bool is_sync,
5143 struct bfq_io_cq *bic)
5144{
5145 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5146 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5147 struct bfq_queue **async_bfqq = NULL;
5148 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005149 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005150
5151 rcu_read_lock();
5152
Dennis Zhou0fe061b2018-12-05 12:10:26 -05005153 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005154 if (!bfqg) {
5155 bfqq = &bfqd->oom_bfqq;
5156 goto out;
5157 }
5158
Paolo Valenteaee69d72017-04-19 08:29:02 -06005159 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005160 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005161 ioprio);
5162 bfqq = *async_bfqq;
5163 if (bfqq)
5164 goto out;
5165 }
5166
5167 bfqq = kmem_cache_alloc_node(bfq_pool,
5168 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5169 bfqd->queue->node);
5170
5171 if (bfqq) {
5172 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5173 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005174 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005175 bfq_log_bfqq(bfqd, bfqq, "allocated");
5176 } else {
5177 bfqq = &bfqd->oom_bfqq;
5178 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5179 goto out;
5180 }
5181
5182 /*
5183 * Pin the queue now that it's allocated, scheduler exit will
5184 * prune it.
5185 */
5186 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005187 bfqq->ref++; /*
5188 * Extra group reference, w.r.t. sync
5189 * queue. This extra reference is removed
5190 * only if bfqq->bfqg disappears, to
5191 * guarantee that this queue is not freed
5192 * until its group goes away.
5193 */
5194 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06005195 bfqq, bfqq->ref);
5196 *async_bfqq = bfqq;
5197 }
5198
5199out:
5200 bfqq->ref++; /* get a process reference to this queue */
5201 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5202 rcu_read_unlock();
5203 return bfqq;
5204}
5205
5206static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5207 struct bfq_queue *bfqq)
5208{
5209 struct bfq_ttime *ttime = &bfqq->ttime;
5210 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5211
5212 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5213
5214 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5215 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
5216 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5217 ttime->ttime_samples);
5218}
5219
5220static void
5221bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5222 struct request *rq)
5223{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005224 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01005225 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valente7074f072019-03-12 09:59:31 +01005226
5227 if (bfqq->wr_coeff > 1 &&
5228 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5229 BFQQ_TOTALLY_SEEKY(bfqq))
5230 bfq_bfqq_end_wr(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005231}
5232
Paolo Valented5be3fe2017-08-04 07:35:10 +02005233static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5234 struct bfq_queue *bfqq,
5235 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005236{
Paolo Valente766d6142019-06-25 07:12:43 +02005237 bool has_short_ttime = true, state_changed;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005238
Paolo Valented5be3fe2017-08-04 07:35:10 +02005239 /*
5240 * No need to update has_short_ttime if bfqq is async or in
5241 * idle io prio class, or if bfq_slice_idle is zero, because
5242 * no device idling is performed for bfqq in this case.
5243 */
5244 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5245 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005246 return;
5247
Arianna Avanzini36eca892017-04-12 18:23:16 +02005248 /* Idle window just restored, statistics are meaningless. */
5249 if (time_is_after_eq_jiffies(bfqq->split_time +
5250 bfqd->bfq_wr_min_idle_time))
5251 return;
5252
Paolo Valented5be3fe2017-08-04 07:35:10 +02005253 /* Think time is infinite if no process is linked to
5254 * bfqq. Otherwise check average think time to
5255 * decide whether to mark as has_short_ttime
5256 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005257 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02005258 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5259 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5260 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005261
Paolo Valente766d6142019-06-25 07:12:43 +02005262 state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02005263
5264 if (has_short_ttime)
5265 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005266 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02005267 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valente766d6142019-06-25 07:12:43 +02005268
5269 /*
5270 * Until the base value for the total service time gets
5271 * finally computed for bfqq, the inject limit does depend on
5272 * the think-time state (short|long). In particular, the limit
5273 * is 0 or 1 if the think time is deemed, respectively, as
5274 * short or long (details in the comments in
5275 * bfq_update_inject_limit()). Accordingly, the next
5276 * instructions reset the inject limit if the think-time state
5277 * has changed and the above base value is still to be
5278 * computed.
5279 *
5280 * However, the reset is performed only if more than 100 ms
5281 * have elapsed since the last update of the inject limit, or
5282 * (inclusive) if the change is from short to long think
5283 * time. The reason for this waiting is as follows.
5284 *
5285 * bfqq may have a long think time because of a
5286 * synchronization with some other queue, i.e., because the
5287 * I/O of some other queue may need to be completed for bfqq
Paolo Valente13a857a2019-06-25 07:12:47 +02005288 * to receive new I/O. Details in the comments on the choice
5289 * of the queue for injection in bfq_select_queue().
Paolo Valente766d6142019-06-25 07:12:43 +02005290 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005291 * As stressed in those comments, if such a synchronization is
5292 * actually in place, then, without injection on bfqq, the
5293 * blocking I/O cannot happen to served while bfqq is in
5294 * service. As a consequence, if bfqq is granted
5295 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5296 * is dispatched, until the idle timeout fires. This is likely
5297 * to result in lower bandwidth and higher latencies for bfqq,
5298 * and in a severe loss of total throughput.
Paolo Valente766d6142019-06-25 07:12:43 +02005299 *
5300 * On the opposite end, a non-zero inject limit may allow the
5301 * I/O that blocks bfqq to be executed soon, and therefore
Paolo Valente13a857a2019-06-25 07:12:47 +02005302 * bfqq to receive new I/O soon.
5303 *
5304 * But, if the blocking gets actually eliminated, then the
5305 * next think-time sample for bfqq may be very low. This in
5306 * turn may cause bfqq's think time to be deemed
5307 * short. Without the 100 ms barrier, this new state change
5308 * would cause the body of the next if to be executed
Paolo Valente766d6142019-06-25 07:12:43 +02005309 * immediately. But this would set to 0 the inject
5310 * limit. Without injection, the blocking I/O would cause the
5311 * think time of bfqq to become long again, and therefore the
5312 * inject limit to be raised again, and so on. The only effect
5313 * of such a steady oscillation between the two think-time
5314 * states would be to prevent effective injection on bfqq.
5315 *
5316 * In contrast, if the inject limit is not reset during such a
5317 * long time interval as 100 ms, then the number of short
5318 * think time samples can grow significantly before the reset
Paolo Valente13a857a2019-06-25 07:12:47 +02005319 * is performed. As a consequence, the think time state can
5320 * become stable before the reset. Therefore there will be no
5321 * state change when the 100 ms elapse, and no reset of the
5322 * inject limit. The inject limit remains steadily equal to 1
5323 * both during and after the 100 ms. So injection can be
Paolo Valente766d6142019-06-25 07:12:43 +02005324 * performed at all times, and throughput gets boosted.
5325 *
5326 * An inject limit equal to 1 is however in conflict, in
5327 * general, with the fact that the think time of bfqq is
5328 * short, because injection may be likely to delay bfqq's I/O
5329 * (as explained in the comments in
5330 * bfq_update_inject_limit()). But this does not happen in
5331 * this special case, because bfqq's low think time is due to
5332 * an effective handling of a synchronization, through
5333 * injection. In this special case, bfqq's I/O does not get
5334 * delayed by injection; on the contrary, bfqq's I/O is
5335 * brought forward, because it is not blocked for
5336 * milliseconds.
5337 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005338 * In addition, serving the blocking I/O much sooner, and much
5339 * more frequently than once per I/O-plugging timeout, makes
5340 * it much quicker to detect a waker queue (the concept of
5341 * waker queue is defined in the comments in
5342 * bfq_add_request()). This makes it possible to start sooner
5343 * to boost throughput more effectively, by injecting the I/O
5344 * of the waker queue unconditionally on every
5345 * bfq_dispatch_request().
5346 *
5347 * One last, important benefit of not resetting the inject
5348 * limit before 100 ms is that, during this time interval, the
5349 * base value for the total service time is likely to get
5350 * finally computed for bfqq, freeing the inject limit from
5351 * its relation with the think time.
Paolo Valente766d6142019-06-25 07:12:43 +02005352 */
5353 if (state_changed && bfqq->last_serv_time_ns == 0 &&
5354 (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5355 msecs_to_jiffies(100)) ||
5356 !has_short_ttime))
5357 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005358}
5359
5360/*
5361 * Called when a new fs request (rq) is added to bfqq. Check if there's
5362 * something we should do about it.
5363 */
5364static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5365 struct request *rq)
5366{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005367 if (rq->cmd_flags & REQ_META)
5368 bfqq->meta_pending++;
5369
Paolo Valenteaee69d72017-04-19 08:29:02 -06005370 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5371
5372 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5373 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5374 blk_rq_sectors(rq) < 32;
5375 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5376
5377 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005378 * There is just this request queued: if
5379 * - the request is small, and
5380 * - we are idling to boost throughput, and
5381 * - the queue is not to be expired,
5382 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005383 *
5384 * In this way, if the device is being idled to wait
5385 * for a new request from the in-service queue, we
5386 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005387 * device to serve just a small request. In contrast
5388 * we wait for the block layer to decide when to
5389 * unplug the device: hopefully, new requests will be
5390 * merged to this one quickly, then the device will be
5391 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005392 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005393 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5394 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005395 return;
5396
5397 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005398 * A large enough request arrived, or idling is being
5399 * performed to preserve service guarantees, or
5400 * finally the queue is to be expired: in all these
5401 * cases disk idling is to be stopped, so clear
5402 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005403 */
5404 bfq_clear_bfqq_wait_request(bfqq);
5405 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5406
5407 /*
5408 * The queue is not empty, because a new request just
5409 * arrived. Hence we can safely expire the queue, in
5410 * case of budget timeout, without risking that the
5411 * timestamps of the queue are not updated correctly.
5412 * See [1] for more details.
5413 */
5414 if (budget_timeout)
5415 bfq_bfqq_expire(bfqd, bfqq, false,
5416 BFQQE_BUDGET_TIMEOUT);
5417 }
5418}
5419
Paolo Valente24bfd192017-11-13 07:34:09 +01005420/* returns true if it causes the idle timer to be disabled */
5421static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005422{
Arianna Avanzini36eca892017-04-12 18:23:16 +02005423 struct bfq_queue *bfqq = RQ_BFQQ(rq),
5424 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01005425 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005426
5427 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005428 /*
5429 * Release the request's reference to the old bfqq
5430 * and make sure one is taken to the shared queue.
5431 */
5432 new_bfqq->allocated++;
5433 bfqq->allocated--;
5434 new_bfqq->ref++;
5435 /*
5436 * If the bic associated with the process
5437 * issuing this request still points to bfqq
5438 * (and thus has not been already redirected
5439 * to new_bfqq or even some other bfq_queue),
5440 * then complete the merge and redirect it to
5441 * new_bfqq.
5442 */
5443 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5444 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5445 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02005446
5447 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005448 /*
5449 * rq is about to be enqueued into new_bfqq,
5450 * release rq reference on bfqq
5451 */
5452 bfq_put_queue(bfqq);
5453 rq->elv.priv[1] = new_bfqq;
5454 bfqq = new_bfqq;
5455 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005456
Paolo Valentea3f9bce2019-06-25 07:12:46 +02005457 bfq_update_io_thinktime(bfqd, bfqq);
5458 bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5459 bfq_update_io_seektime(bfqd, bfqq, rq);
5460
Paolo Valente24bfd192017-11-13 07:34:09 +01005461 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005462 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005463 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005464
5465 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5466 list_add_tail(&rq->queuelist, &bfqq->fifo);
5467
5468 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005469
5470 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005471}
5472
Christoph Hellwig8060c472019-06-06 12:26:24 +02005473#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01005474static void bfq_update_insert_stats(struct request_queue *q,
5475 struct bfq_queue *bfqq,
5476 bool idle_timer_disabled,
5477 unsigned int cmd_flags)
5478{
5479 if (!bfqq)
5480 return;
5481
5482 /*
5483 * bfqq still exists, because it can disappear only after
5484 * either it is merged with another queue, or the process it
5485 * is associated with exits. But both actions must be taken by
5486 * the same process currently executing this flow of
5487 * instructions.
5488 *
5489 * In addition, the following queue lock guarantees that
5490 * bfqq_group(bfqq) exists as well.
5491 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005492 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005493 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5494 if (idle_timer_disabled)
5495 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005496 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005497}
5498#else
5499static inline void bfq_update_insert_stats(struct request_queue *q,
5500 struct bfq_queue *bfqq,
5501 bool idle_timer_disabled,
5502 unsigned int cmd_flags) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02005503#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente9b25bd02017-12-04 11:42:05 +01005504
Paolo Valenteaee69d72017-04-19 08:29:02 -06005505static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5506 bool at_head)
5507{
5508 struct request_queue *q = hctx->queue;
5509 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02005510 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01005511 bool idle_timer_disabled = false;
5512 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005513
Tejun Heofd41e602019-11-07 11:18:00 -08005514#ifdef CONFIG_BFQ_GROUP_IOSCHED
5515 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5516 bfqg_stats_update_legacy_io(q, rq);
5517#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005518 spin_lock_irq(&bfqd->lock);
5519 if (blk_mq_sched_try_insert_merge(q, rq)) {
5520 spin_unlock_irq(&bfqd->lock);
5521 return;
5522 }
5523
5524 spin_unlock_irq(&bfqd->lock);
5525
5526 blk_mq_sched_request_inserted(rq);
5527
5528 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02005529 bfqq = bfq_init_rq(rq);
Paolo Valentefd031772019-08-07 19:21:11 +02005530 if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06005531 if (at_head)
5532 list_add(&rq->queuelist, &bfqd->dispatch);
5533 else
5534 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valentefd031772019-08-07 19:21:11 +02005535 } else {
Paolo Valente24bfd192017-11-13 07:34:09 +01005536 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005537 /*
5538 * Update bfqq, because, if a queue merge has occurred
5539 * in __bfq_insert_request, then rq has been
5540 * redirected into a new queue.
5541 */
5542 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005543
5544 if (rq_mergeable(rq)) {
5545 elv_rqhash_add(q, rq);
5546 if (!q->last_merge)
5547 q->last_merge = rq;
5548 }
5549 }
5550
Paolo Valente24bfd192017-11-13 07:34:09 +01005551 /*
5552 * Cache cmd_flags before releasing scheduler lock, because rq
5553 * may disappear afterwards (for example, because of a request
5554 * merge).
5555 */
5556 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01005557
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005558 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005559
Paolo Valente9b25bd02017-12-04 11:42:05 +01005560 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5561 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005562}
5563
5564static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5565 struct list_head *list, bool at_head)
5566{
5567 while (!list_empty(list)) {
5568 struct request *rq;
5569
5570 rq = list_first_entry(list, struct request, queuelist);
5571 list_del_init(&rq->queuelist);
5572 bfq_insert_request(hctx, rq, at_head);
Kashyap Desaib4455472020-08-19 23:20:28 +08005573 atomic_inc(&hctx->elevator_queued);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005574 }
5575}
5576
5577static void bfq_update_hw_tag(struct bfq_data *bfqd)
5578{
Paolo Valenteb3c34982019-01-29 12:06:36 +01005579 struct bfq_queue *bfqq = bfqd->in_service_queue;
5580
Paolo Valenteaee69d72017-04-19 08:29:02 -06005581 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5582 bfqd->rq_in_driver);
5583
5584 if (bfqd->hw_tag == 1)
5585 return;
5586
5587 /*
5588 * This sample is valid if the number of outstanding requests
5589 * is large enough to allow a queueing behavior. Note that the
5590 * sum is not exact, as it's not taking into account deactivated
5591 * requests.
5592 */
Paolo Valentea3c92562019-01-29 12:06:35 +01005593 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005594 return;
5595
Paolo Valenteb3c34982019-01-29 12:06:36 +01005596 /*
5597 * If active queue hasn't enough requests and can idle, bfq might not
5598 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5599 * case
5600 */
5601 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5602 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5603 BFQ_HW_QUEUE_THRESHOLD &&
5604 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5605 return;
5606
Paolo Valenteaee69d72017-04-19 08:29:02 -06005607 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5608 return;
5609
5610 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5611 bfqd->max_rq_in_driver = 0;
5612 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005613
5614 bfqd->nonrot_with_queueing =
5615 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005616}
5617
5618static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5619{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005620 u64 now_ns;
5621 u32 delta_us;
5622
Paolo Valenteaee69d72017-04-19 08:29:02 -06005623 bfq_update_hw_tag(bfqd);
5624
5625 bfqd->rq_in_driver--;
5626 bfqq->dispatched--;
5627
Paolo Valente44e44a12017-04-12 18:23:12 +02005628 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5629 /*
5630 * Set budget_timeout (which we overload to store the
5631 * time at which the queue remains with no backlog and
5632 * no outstanding request; used by the weight-raising
5633 * mechanism).
5634 */
5635 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005636
Paolo Valente04715592018-06-25 21:55:34 +02005637 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02005638 }
5639
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005640 now_ns = ktime_get_ns();
5641
5642 bfqq->ttime.last_end_request = now_ns;
5643
5644 /*
5645 * Using us instead of ns, to get a reasonable precision in
5646 * computing rate in next check.
5647 */
5648 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5649
5650 /*
5651 * If the request took rather long to complete, and, according
5652 * to the maximum request size recorded, this completion latency
5653 * implies that the request was certainly served at a very low
5654 * rate (less than 1M sectors/sec), then the whole observation
5655 * interval that lasts up to this time instant cannot be a
5656 * valid time interval for computing a new peak rate. Invoke
5657 * bfq_update_rate_reset to have the following three steps
5658 * taken:
5659 * - close the observation interval at the last (previous)
5660 * request dispatch or completion
5661 * - compute rate, if possible, for that observation interval
5662 * - reset to zero samples, which will trigger a proper
5663 * re-initialization of the observation interval on next
5664 * dispatch
5665 */
5666 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5667 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5668 1UL<<(BFQ_RATE_SHIFT - 10))
5669 bfq_update_rate_reset(bfqd, NULL);
5670 bfqd->last_completion = now_ns;
Paolo Valente13a857a2019-06-25 07:12:47 +02005671 bfqd->last_completed_rq_bfqq = bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005672
5673 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02005674 * If we are waiting to discover whether the request pattern
5675 * of the task associated with the queue is actually
5676 * isochronous, and both requisites for this condition to hold
5677 * are now satisfied, then compute soft_rt_next_start (see the
5678 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01005679 * do not compute soft_rt_next_start if bfqq is in interactive
5680 * weight raising (see the comments in bfq_bfqq_expire() for
5681 * an explanation). We schedule this delayed update when bfqq
5682 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005683 */
5684 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01005685 RB_EMPTY_ROOT(&bfqq->sort_list) &&
5686 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02005687 bfqq->soft_rt_next_start =
5688 bfq_bfqq_softrt_next_start(bfqd, bfqq);
5689
5690 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06005691 * If this is the in-service queue, check if it needs to be expired,
5692 * or if we want to idle in case it has no pending requests.
5693 */
5694 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02005695 if (bfq_bfqq_must_idle(bfqq)) {
5696 if (bfqq->dispatched == 0)
5697 bfq_arm_slice_timer(bfqd);
5698 /*
5699 * If we get here, we do not expire bfqq, even
5700 * if bfqq was in budget timeout or had no
5701 * more requests (as controlled in the next
5702 * conditional instructions). The reason for
5703 * not expiring bfqq is as follows.
5704 *
5705 * Here bfqq->dispatched > 0 holds, but
5706 * bfq_bfqq_must_idle() returned true. This
5707 * implies that, even if no request arrives
5708 * for bfqq before bfqq->dispatched reaches 0,
5709 * bfqq will, however, not be expired on the
5710 * completion event that causes bfqq->dispatch
5711 * to reach zero. In contrast, on this event,
5712 * bfqq will start enjoying device idling
5713 * (I/O-dispatch plugging).
5714 *
5715 * But, if we expired bfqq here, bfqq would
5716 * not have the chance to enjoy device idling
5717 * when bfqq->dispatched finally reaches
5718 * zero. This would expose bfqq to violation
5719 * of its reserved service guarantees.
5720 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005721 return;
5722 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5723 bfq_bfqq_expire(bfqd, bfqq, false,
5724 BFQQE_BUDGET_TIMEOUT);
5725 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5726 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02005727 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06005728 bfq_bfqq_expire(bfqd, bfqq, false,
5729 BFQQE_NO_MORE_REQUESTS);
5730 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08005731
5732 if (!bfqd->rq_in_driver)
5733 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005734}
5735
Paolo Valentea7877392018-02-07 22:19:20 +01005736static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005737{
5738 bfqq->allocated--;
5739
5740 bfq_put_queue(bfqq);
5741}
5742
Paolo Valentea7877392018-02-07 22:19:20 +01005743/*
Paolo Valente2341d6622019-03-12 09:59:29 +01005744 * The processes associated with bfqq may happen to generate their
5745 * cumulative I/O at a lower rate than the rate at which the device
5746 * could serve the same I/O. This is rather probable, e.g., if only
5747 * one process is associated with bfqq and the device is an SSD. It
5748 * results in bfqq becoming often empty while in service. In this
5749 * respect, if BFQ is allowed to switch to another queue when bfqq
5750 * remains empty, then the device goes on being fed with I/O requests,
5751 * and the throughput is not affected. In contrast, if BFQ is not
5752 * allowed to switch to another queue---because bfqq is sync and
5753 * I/O-dispatch needs to be plugged while bfqq is temporarily
5754 * empty---then, during the service of bfqq, there will be frequent
5755 * "service holes", i.e., time intervals during which bfqq gets empty
5756 * and the device can only consume the I/O already queued in its
5757 * hardware queues. During service holes, the device may even get to
5758 * remaining idle. In the end, during the service of bfqq, the device
5759 * is driven at a lower speed than the one it can reach with the kind
5760 * of I/O flowing through bfqq.
5761 *
5762 * To counter this loss of throughput, BFQ implements a "request
5763 * injection mechanism", which tries to fill the above service holes
5764 * with I/O requests taken from other queues. The hard part in this
5765 * mechanism is finding the right amount of I/O to inject, so as to
5766 * both boost throughput and not break bfqq's bandwidth and latency
5767 * guarantees. In this respect, the mechanism maintains a per-queue
5768 * inject limit, computed as below. While bfqq is empty, the injection
5769 * mechanism dispatches extra I/O requests only until the total number
5770 * of I/O requests in flight---i.e., already dispatched but not yet
5771 * completed---remains lower than this limit.
5772 *
5773 * A first definition comes in handy to introduce the algorithm by
5774 * which the inject limit is computed. We define as first request for
5775 * bfqq, an I/O request for bfqq that arrives while bfqq is in
5776 * service, and causes bfqq to switch from empty to non-empty. The
5777 * algorithm updates the limit as a function of the effect of
5778 * injection on the service times of only the first requests of
5779 * bfqq. The reason for this restriction is that these are the
5780 * requests whose service time is affected most, because they are the
5781 * first to arrive after injection possibly occurred.
5782 *
5783 * To evaluate the effect of injection, the algorithm measures the
5784 * "total service time" of first requests. We define as total service
5785 * time of an I/O request, the time that elapses since when the
5786 * request is enqueued into bfqq, to when it is completed. This
5787 * quantity allows the whole effect of injection to be measured. It is
5788 * easy to see why. Suppose that some requests of other queues are
5789 * actually injected while bfqq is empty, and that a new request R
5790 * then arrives for bfqq. If the device does start to serve all or
5791 * part of the injected requests during the service hole, then,
5792 * because of this extra service, it may delay the next invocation of
5793 * the dispatch hook of BFQ. Then, even after R gets eventually
5794 * dispatched, the device may delay the actual service of R if it is
5795 * still busy serving the extra requests, or if it decides to serve,
5796 * before R, some extra request still present in its queues. As a
5797 * conclusion, the cumulative extra delay caused by injection can be
5798 * easily evaluated by just comparing the total service time of first
5799 * requests with and without injection.
5800 *
5801 * The limit-update algorithm works as follows. On the arrival of a
5802 * first request of bfqq, the algorithm measures the total time of the
5803 * request only if one of the three cases below holds, and, for each
5804 * case, it updates the limit as described below:
5805 *
5806 * (1) If there is no in-flight request. This gives a baseline for the
5807 * total service time of the requests of bfqq. If the baseline has
5808 * not been computed yet, then, after computing it, the limit is
5809 * set to 1, to start boosting throughput, and to prepare the
5810 * ground for the next case. If the baseline has already been
5811 * computed, then it is updated, in case it results to be lower
5812 * than the previous value.
5813 *
5814 * (2) If the limit is higher than 0 and there are in-flight
5815 * requests. By comparing the total service time in this case with
5816 * the above baseline, it is possible to know at which extent the
5817 * current value of the limit is inflating the total service
5818 * time. If the inflation is below a certain threshold, then bfqq
5819 * is assumed to be suffering from no perceivable loss of its
5820 * service guarantees, and the limit is even tentatively
5821 * increased. If the inflation is above the threshold, then the
5822 * limit is decreased. Due to the lack of any hysteresis, this
5823 * logic makes the limit oscillate even in steady workload
5824 * conditions. Yet we opted for it, because it is fast in reaching
5825 * the best value for the limit, as a function of the current I/O
5826 * workload. To reduce oscillations, this step is disabled for a
5827 * short time interval after the limit happens to be decreased.
5828 *
5829 * (3) Periodically, after resetting the limit, to make sure that the
5830 * limit eventually drops in case the workload changes. This is
5831 * needed because, after the limit has gone safely up for a
5832 * certain workload, it is impossible to guess whether the
5833 * baseline total service time may have changed, without measuring
5834 * it again without injection. A more effective version of this
5835 * step might be to just sample the baseline, by interrupting
5836 * injection only once, and then to reset/lower the limit only if
5837 * the total service time with the current limit does happen to be
5838 * too large.
5839 *
5840 * More details on each step are provided in the comments on the
5841 * pieces of code that implement these steps: the branch handling the
5842 * transition from empty to non empty in bfq_add_request(), the branch
5843 * handling injection in bfq_select_queue(), and the function
5844 * bfq_choose_bfqq_for_injection(). These comments also explain some
5845 * exceptions, made by the injection mechanism in some special cases.
5846 */
5847static void bfq_update_inject_limit(struct bfq_data *bfqd,
5848 struct bfq_queue *bfqq)
5849{
5850 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5851 unsigned int old_limit = bfqq->inject_limit;
5852
Paolo Valente23ed5702019-08-22 17:20:34 +02005853 if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
Paolo Valente2341d6622019-03-12 09:59:29 +01005854 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5855
5856 if (tot_time_ns >= threshold && old_limit > 0) {
5857 bfqq->inject_limit--;
5858 bfqq->decrease_time_jif = jiffies;
5859 } else if (tot_time_ns < threshold &&
Paolo Valentec1e0a182019-08-22 17:20:35 +02005860 old_limit <= bfqd->max_rq_in_driver)
Paolo Valente2341d6622019-03-12 09:59:29 +01005861 bfqq->inject_limit++;
5862 }
5863
5864 /*
5865 * Either we still have to compute the base value for the
5866 * total service time, and there seem to be the right
5867 * conditions to do it, or we can lower the last base value
5868 * computed.
Paolo Valentedb599f92019-06-25 07:12:44 +02005869 *
5870 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5871 * request in flight, because this function is in the code
5872 * path that handles the completion of a request of bfqq, and,
5873 * in particular, this function is executed before
5874 * bfqd->rq_in_driver is decremented in such a code path.
Paolo Valente2341d6622019-03-12 09:59:29 +01005875 */
Paolo Valentedb599f92019-06-25 07:12:44 +02005876 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
Paolo Valente2341d6622019-03-12 09:59:29 +01005877 tot_time_ns < bfqq->last_serv_time_ns) {
Paolo Valente58494c92019-08-22 17:20:37 +02005878 if (bfqq->last_serv_time_ns == 0) {
5879 /*
5880 * Now we certainly have a base value: make sure we
5881 * start trying injection.
5882 */
5883 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5884 }
Paolo Valente2341d6622019-03-12 09:59:29 +01005885 bfqq->last_serv_time_ns = tot_time_ns;
Paolo Valente24792ad2019-06-25 07:12:45 +02005886 } else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5887 /*
5888 * No I/O injected and no request still in service in
5889 * the drive: these are the exact conditions for
5890 * computing the base value of the total service time
5891 * for bfqq. So let's update this value, because it is
5892 * rather variable. For example, it varies if the size
5893 * or the spatial locality of the I/O requests in bfqq
5894 * change.
5895 */
5896 bfqq->last_serv_time_ns = tot_time_ns;
5897
Paolo Valente2341d6622019-03-12 09:59:29 +01005898
5899 /* update complete, not waiting for any request completion any longer */
5900 bfqd->waited_rq = NULL;
Paolo Valente23ed5702019-08-22 17:20:34 +02005901 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01005902}
5903
5904/*
Paolo Valentea7877392018-02-07 22:19:20 +01005905 * Handle either a requeue or a finish for rq. The things to do are
5906 * the same in both cases: all references to rq are to be dropped. In
5907 * particular, rq is considered completed from the point of view of
5908 * the scheduler.
5909 */
5910static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005911{
Paolo Valentea7877392018-02-07 22:19:20 +01005912 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005913 struct bfq_data *bfqd;
5914
Paolo Valentea7877392018-02-07 22:19:20 +01005915 /*
Paolo Valentea7877392018-02-07 22:19:20 +01005916 * rq either is not associated with any icq, or is an already
5917 * requeued request that has not (yet) been re-inserted into
5918 * a bfq_queue.
5919 */
5920 if (!rq->elv.icq || !bfqq)
5921 return;
5922
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005923 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005924
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005925 if (rq->rq_flags & RQF_STARTED)
5926 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07005927 rq->start_time_ns,
5928 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005929 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005930
5931 if (likely(rq->rq_flags & RQF_STARTED)) {
5932 unsigned long flags;
5933
5934 spin_lock_irqsave(&bfqd->lock, flags);
5935
Paolo Valente2341d6622019-03-12 09:59:29 +01005936 if (rq == bfqd->waited_rq)
5937 bfq_update_inject_limit(bfqd, bfqq);
5938
Paolo Valenteaee69d72017-04-19 08:29:02 -06005939 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01005940 bfq_finish_requeue_request_body(bfqq);
Kashyap Desaib4455472020-08-19 23:20:28 +08005941 atomic_dec(&rq->mq_hctx->elevator_queued);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005942
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005943 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005944 } else {
5945 /*
5946 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01005947 * in which case we need to remove it (this should
5948 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06005949 * defer such a check and removal, to avoid
5950 * inconsistencies in the time interval from the end
5951 * of this function to the start of the deferred work.
5952 * This situation seems to occur only in process
5953 * context, as a consequence of a merge. In the
5954 * current version of the code, this implies that the
5955 * lock is held.
5956 */
5957
Luca Miccio614822f2017-11-13 07:34:08 +01005958 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02005959 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005960 bfqg_stats_update_io_remove(bfqq_group(bfqq),
5961 rq->cmd_flags);
5962 }
Paolo Valentea7877392018-02-07 22:19:20 +01005963 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005964 }
5965
Paolo Valentea7877392018-02-07 22:19:20 +01005966 /*
5967 * Reset private fields. In case of a requeue, this allows
5968 * this function to correctly do nothing if it is spuriously
5969 * invoked again on this same request (see the check at the
5970 * beginning of the function). Probably, a better general
5971 * design would be to prevent blk-mq from invoking the requeue
5972 * or finish hooks of an elevator, for a request that is not
5973 * referred by that elevator.
5974 *
5975 * Resetting the following fields would break the
5976 * request-insertion logic if rq is re-inserted into a bfq
5977 * internal queue, without a re-preparation. Here we assume
5978 * that re-insertions of requeued requests, without
5979 * re-preparation, can happen only for pass_through or at_head
5980 * requests (which are not re-inserted into bfq internal
5981 * queues).
5982 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005983 rq->elv.priv[0] = NULL;
5984 rq->elv.priv[1] = NULL;
5985}
5986
5987/*
Paolo Valentec92bdde2020-02-03 11:41:00 +01005988 * Removes the association between the current task and bfqq, assuming
5989 * that bic points to the bfq iocontext of the task.
Arianna Avanzini36eca892017-04-12 18:23:16 +02005990 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5991 * was the last process referring to that bfqq.
5992 */
5993static struct bfq_queue *
5994bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5995{
5996 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5997
5998 if (bfqq_process_refs(bfqq) == 1) {
5999 bfqq->pid = current->pid;
6000 bfq_clear_bfqq_coop(bfqq);
6001 bfq_clear_bfqq_split_coop(bfqq);
6002 return bfqq;
6003 }
6004
6005 bic_set_bfqq(bic, NULL, 1);
6006
6007 bfq_put_cooperator(bfqq);
6008
Paolo Valente478de332019-11-14 10:33:11 +01006009 bfq_release_process_ref(bfqq->bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006010 return NULL;
6011}
6012
6013static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6014 struct bfq_io_cq *bic,
6015 struct bio *bio,
6016 bool split, bool is_sync,
6017 bool *new_queue)
6018{
6019 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6020
6021 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6022 return bfqq;
6023
6024 if (new_queue)
6025 *new_queue = true;
6026
6027 if (bfqq)
6028 bfq_put_queue(bfqq);
6029 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6030
6031 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006032 if (split && is_sync) {
6033 if ((bic->was_in_burst_list && bfqd->large_burst) ||
6034 bic->saved_in_large_burst)
6035 bfq_mark_bfqq_in_large_burst(bfqq);
6036 else {
6037 bfq_clear_bfqq_in_large_burst(bfqq);
6038 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02006039 /*
6040 * If bfqq was in the current
6041 * burst list before being
6042 * merged, then we have to add
6043 * it back. And we do not need
6044 * to increase burst_size, as
6045 * we did not decrement
6046 * burst_size when we removed
6047 * bfqq from the burst list as
6048 * a consequence of a merge
6049 * (see comments in
6050 * bfq_put_queue). In this
6051 * respect, it would be rather
6052 * costly to know whether the
6053 * current burst list is still
6054 * the same burst list from
6055 * which bfqq was removed on
6056 * the merge. To avoid this
6057 * cost, if bfqq was in a
6058 * burst list, then we add
6059 * bfqq to the current burst
6060 * list without any further
6061 * check. This can cause
6062 * inappropriate insertions,
6063 * but rarely enough to not
6064 * harm the detection of large
6065 * bursts significantly.
6066 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006067 hlist_add_head(&bfqq->burst_list_node,
6068 &bfqd->burst_list);
6069 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006070 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006071 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006072
6073 return bfqq;
6074}
6075
6076/*
Paolo Valente18e5a572018-05-04 19:17:01 +02006077 * Only reset private fields. The actual request preparation will be
6078 * performed by bfq_init_rq, when rq is either inserted or merged. See
6079 * comments on bfq_init_rq for the reason behind this delayed
6080 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06006081 */
Christoph Hellwig5d9c3052020-05-29 15:53:08 +02006082static void bfq_prepare_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006083{
Paolo Valente18e5a572018-05-04 19:17:01 +02006084 /*
6085 * Regardless of whether we have an icq attached, we have to
6086 * clear the scheduler pointers, as they might point to
6087 * previously allocated bic/bfqq structs.
6088 */
6089 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6090}
6091
6092/*
6093 * If needed, init rq, allocate bfq data structures associated with
6094 * rq, and increment reference counters in the destination bfq_queue
6095 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6096 * not associated with any bfq_queue.
6097 *
6098 * This function is invoked by the functions that perform rq insertion
6099 * or merging. One may have expected the above preparation operations
6100 * to be performed in bfq_prepare_request, and not delayed to when rq
6101 * is inserted or merged. The rationale behind this delayed
6102 * preparation is that, after the prepare_request hook is invoked for
6103 * rq, rq may still be transformed into a request with no icq, i.e., a
6104 * request not associated with any queue. No bfq hook is invoked to
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02006105 * signal this transformation. As a consequence, should these
Paolo Valente18e5a572018-05-04 19:17:01 +02006106 * preparation operations be performed when the prepare_request hook
6107 * is invoked, and should rq be transformed one moment later, bfq
6108 * would end up in an inconsistent state, because it would have
6109 * incremented some queue counters for an rq destined to
6110 * transformation, without any chance to correctly lower these
6111 * counters back. In contrast, no transformation can still happen for
6112 * rq after rq has been inserted or merged. So, it is safe to execute
6113 * these preparation operations when rq is finally inserted or merged.
6114 */
6115static struct bfq_queue *bfq_init_rq(struct request *rq)
6116{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006117 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02006118 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006119 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02006120 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006121 const int is_sync = rq_is_sync(rq);
6122 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006123 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06006124 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006125
Paolo Valente18e5a572018-05-04 19:17:01 +02006126 if (unlikely(!rq->elv.icq))
6127 return NULL;
6128
Jens Axboe72961c42018-04-17 17:08:52 -06006129 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02006130 * Assuming that elv.priv[1] is set only if everything is set
6131 * for this rq. This holds true, because this function is
6132 * invoked only for insertion or merging, and, after such
6133 * events, a request cannot be manipulated any longer before
6134 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06006135 */
Paolo Valente18e5a572018-05-04 19:17:01 +02006136 if (rq->elv.priv[1])
6137 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06006138
Christoph Hellwig9f210732017-06-16 18:15:24 +02006139 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006140
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01006141 bfq_check_ioprio_change(bic, bio);
6142
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006143 bfq_bic_update_cgroup(bic, bio);
6144
Arianna Avanzini36eca892017-04-12 18:23:16 +02006145 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6146 &new_queue);
6147
6148 if (likely(!new_queue)) {
6149 /* If the queue was seeky for too long, break it apart. */
6150 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6151 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006152
6153 /* Update bic before losing reference to bfqq */
6154 if (bfq_bfqq_in_large_burst(bfqq))
6155 bic->saved_in_large_burst = true;
6156
Arianna Avanzini36eca892017-04-12 18:23:16 +02006157 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006158 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006159
6160 if (!bfqq)
6161 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6162 true, is_sync,
6163 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06006164 else
6165 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006166 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06006167 }
6168
6169 bfqq->allocated++;
6170 bfqq->ref++;
6171 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6172 rq, bfqq, bfqq->ref);
6173
6174 rq->elv.priv[0] = bic;
6175 rq->elv.priv[1] = bfqq;
6176
Arianna Avanzini36eca892017-04-12 18:23:16 +02006177 /*
6178 * If a bfq_queue has only one process reference, it is owned
6179 * by only this bic: we can then set bfqq->bic = bic. in
6180 * addition, if the queue has also just been split, we have to
6181 * resume its state.
6182 */
6183 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6184 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006185 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02006186 /*
6187 * The queue has just been split from a shared
6188 * queue: restore the idle window and the
6189 * possible weight raising period.
6190 */
Paolo Valente13c931b2017-06-27 12:30:47 -06006191 bfq_bfqq_resume_state(bfqq, bfqd, bic,
6192 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006193 }
6194 }
6195
Paolo Valente84a74682019-03-12 09:59:32 +01006196 /*
6197 * Consider bfqq as possibly belonging to a burst of newly
6198 * created queues only if:
6199 * 1) A burst is actually happening (bfqd->burst_size > 0)
6200 * or
6201 * 2) There is no other active queue. In fact, if, in
6202 * contrast, there are active queues not belonging to the
6203 * possible burst bfqq may belong to, then there is no gain
6204 * in considering bfqq as belonging to a burst, and
6205 * therefore in not weight-raising bfqq. See comments on
6206 * bfq_handle_burst().
6207 *
6208 * This filtering also helps eliminating false positives,
6209 * occurring when bfqq does not belong to an actual large
6210 * burst, but some background task (e.g., a service) happens
6211 * to trigger the creation of new queues very close to when
6212 * bfqq and its possible companion queues are created. See
6213 * comments on bfq_handle_burst() for further details also on
6214 * this issue.
6215 */
6216 if (unlikely(bfq_bfqq_just_created(bfqq) &&
6217 (bfqd->burst_size > 0 ||
6218 bfq_tot_busy_queues(bfqd) == 0)))
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006219 bfq_handle_burst(bfqd, bfqq);
6220
Paolo Valente18e5a572018-05-04 19:17:01 +02006221 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006222}
6223
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006224static void
6225bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006226{
Paolo Valenteaee69d72017-04-19 08:29:02 -06006227 enum bfqq_expiration reason;
6228 unsigned long flags;
6229
6230 spin_lock_irqsave(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006231
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006232 /*
6233 * Considering that bfqq may be in race, we should firstly check
6234 * whether bfqq is in service before doing something on it. If
6235 * the bfqq in race is not in service, it has already been expired
6236 * through __bfq_bfqq_expire func and its wait_request flags has
6237 * been cleared in __bfq_bfqd_reset_in_service func.
6238 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06006239 if (bfqq != bfqd->in_service_queue) {
6240 spin_unlock_irqrestore(&bfqd->lock, flags);
6241 return;
6242 }
6243
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006244 bfq_clear_bfqq_wait_request(bfqq);
6245
Paolo Valenteaee69d72017-04-19 08:29:02 -06006246 if (bfq_bfqq_budget_timeout(bfqq))
6247 /*
6248 * Also here the queue can be safely expired
6249 * for budget timeout without wasting
6250 * guarantees
6251 */
6252 reason = BFQQE_BUDGET_TIMEOUT;
6253 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6254 /*
6255 * The queue may not be empty upon timer expiration,
6256 * because we may not disable the timer when the
6257 * first request of the in-service queue arrives
6258 * during disk idling.
6259 */
6260 reason = BFQQE_TOO_IDLE;
6261 else
6262 goto schedule_dispatch;
6263
6264 bfq_bfqq_expire(bfqd, bfqq, true, reason);
6265
6266schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006267 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006268 bfq_schedule_dispatch(bfqd);
6269}
6270
6271/*
6272 * Handler of the expiration of the timer running if the in-service queue
6273 * is idling inside its time slice.
6274 */
6275static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6276{
6277 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6278 idle_slice_timer);
6279 struct bfq_queue *bfqq = bfqd->in_service_queue;
6280
6281 /*
6282 * Theoretical race here: the in-service queue can be NULL or
6283 * different from the queue that was idling if a new request
6284 * arrives for the current queue and there is a full dispatch
6285 * cycle that changes the in-service queue. This can hardly
6286 * happen, but in the worst case we just expire a queue too
6287 * early.
6288 */
6289 if (bfqq)
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006290 bfq_idle_slice_timer_body(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006291
6292 return HRTIMER_NORESTART;
6293}
6294
6295static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6296 struct bfq_queue **bfqq_ptr)
6297{
6298 struct bfq_queue *bfqq = *bfqq_ptr;
6299
6300 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6301 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006302 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6303
Paolo Valenteaee69d72017-04-19 08:29:02 -06006304 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6305 bfqq, bfqq->ref);
6306 bfq_put_queue(bfqq);
6307 *bfqq_ptr = NULL;
6308 }
6309}
6310
6311/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006312 * Release all the bfqg references to its async queues. If we are
6313 * deallocating the group these queues may still contain requests, so
6314 * we reparent them to the root cgroup (i.e., the only one that will
6315 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06006316 */
Paolo Valenteea25da42017-04-19 08:48:24 -06006317void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006318{
6319 int i, j;
6320
6321 for (i = 0; i < 2; i++)
6322 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006323 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006324
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006325 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006326}
6327
Jens Axboef0635b82018-05-09 13:27:21 -06006328/*
6329 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06006330 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06006331 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06006332static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6333 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06006334{
Jens Axboe483b7bf2018-05-09 15:26:55 -06006335 unsigned int i, j, min_shallow = UINT_MAX;
6336
Jens Axboef0635b82018-05-09 13:27:21 -06006337 /*
6338 * In-word depths if no bfq_queue is being weight-raised:
6339 * leaving 25% of tags only for sync reads.
6340 *
6341 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006342 * (1U<<bt->sb.shift), instead of computing directly
6343 * (1U<<(bt->sb.shift - something)), to be robust against
6344 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06006345 * limit 'something'.
6346 */
6347 /* no more than 50% of tags for async I/O */
Lin Fengd93178d2021-02-02 07:18:23 -07006348 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006349 /*
6350 * no more than 75% of tags for sync writes (25% extra tags
6351 * w.r.t. async I/O, to prevent async I/O from starving sync
6352 * writes)
6353 */
Lin Fengd93178d2021-02-02 07:18:23 -07006354 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006355
6356 /*
6357 * In-word depths in case some bfq_queue is being weight-
6358 * raised: leaving ~63% of tags for sync reads. This is the
6359 * highest percentage for which, in our tests, application
6360 * start-up times didn't suffer from any regression due to tag
6361 * shortage.
6362 */
6363 /* no more than ~18% of tags for async I/O */
Lin Fengd93178d2021-02-02 07:18:23 -07006364 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006365 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Lin Fengd93178d2021-02-02 07:18:23 -07006366 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06006367
6368 for (i = 0; i < 2; i++)
6369 for (j = 0; j < 2; j++)
6370 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6371
6372 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06006373}
6374
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006375static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
Jens Axboef0635b82018-05-09 13:27:21 -06006376{
6377 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6378 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06006379 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06006380
John Garry222a5ae2020-08-19 23:20:23 +08006381 min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6382 sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006383}
6384
6385static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6386{
6387 bfq_depth_updated(hctx);
Jens Axboef0635b82018-05-09 13:27:21 -06006388 return 0;
6389}
6390
Paolo Valenteaee69d72017-04-19 08:29:02 -06006391static void bfq_exit_queue(struct elevator_queue *e)
6392{
6393 struct bfq_data *bfqd = e->elevator_data;
6394 struct bfq_queue *bfqq, *n;
6395
6396 hrtimer_cancel(&bfqd->idle_slice_timer);
6397
6398 spin_lock_irq(&bfqd->lock);
6399 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006400 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006401 spin_unlock_irq(&bfqd->lock);
6402
6403 hrtimer_cancel(&bfqd->idle_slice_timer);
6404
Paolo Valente0d52af52018-01-09 10:27:59 +01006405 /* release oom-queue reference to root group */
6406 bfqg_and_blkg_put(bfqd->root_group);
6407
Paolo Valente4d8340d2020-02-03 11:40:58 +01006408#ifdef CONFIG_BFQ_GROUP_IOSCHED
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006409 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6410#else
6411 spin_lock_irq(&bfqd->lock);
6412 bfq_put_async_queues(bfqd, bfqd->root_group);
6413 kfree(bfqd->root_group);
6414 spin_unlock_irq(&bfqd->lock);
6415#endif
6416
Paolo Valenteaee69d72017-04-19 08:29:02 -06006417 kfree(bfqd);
6418}
6419
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006420static void bfq_init_root_group(struct bfq_group *root_group,
6421 struct bfq_data *bfqd)
6422{
6423 int i;
6424
6425#ifdef CONFIG_BFQ_GROUP_IOSCHED
6426 root_group->entity.parent = NULL;
6427 root_group->my_entity = NULL;
6428 root_group->bfqd = bfqd;
6429#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02006430 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006431 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6432 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6433 root_group->sched_data.bfq_class_idle_last_service = jiffies;
6434}
6435
Paolo Valenteaee69d72017-04-19 08:29:02 -06006436static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6437{
6438 struct bfq_data *bfqd;
6439 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006440
6441 eq = elevator_alloc(q, e);
6442 if (!eq)
6443 return -ENOMEM;
6444
6445 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6446 if (!bfqd) {
6447 kobject_put(&eq->kobj);
6448 return -ENOMEM;
6449 }
6450 eq->elevator_data = bfqd;
6451
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006452 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006453 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006454 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006455
Paolo Valenteaee69d72017-04-19 08:29:02 -06006456 /*
6457 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6458 * Grab a permanent reference to it, so that the normal code flow
6459 * will not attempt to free it.
6460 */
6461 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6462 bfqd->oom_bfqq.ref++;
6463 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6464 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6465 bfqd->oom_bfqq.entity.new_weight =
6466 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006467
6468 /* oom_bfqq does not participate to bursts */
6469 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6470
Paolo Valenteaee69d72017-04-19 08:29:02 -06006471 /*
6472 * Trigger weight initialization, according to ioprio, at the
6473 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6474 * class won't be changed any more.
6475 */
6476 bfqd->oom_bfqq.entity.prio_changed = 1;
6477
6478 bfqd->queue = q;
6479
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006480 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006481
6482 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6483 HRTIMER_MODE_REL);
6484 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6485
Paolo Valentefb53ac62019-03-12 09:59:28 +01006486 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01006487 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02006488
Paolo Valenteaee69d72017-04-19 08:29:02 -06006489 INIT_LIST_HEAD(&bfqd->active_list);
6490 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006491 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006492
6493 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01006494 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006495
6496 bfqd->bfq_max_budget = bfq_default_max_budget;
6497
6498 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6499 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6500 bfqd->bfq_back_max = bfq_back_max;
6501 bfqd->bfq_back_penalty = bfq_back_penalty;
6502 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006503 bfqd->bfq_timeout = bfq_timeout;
6504
6505 bfqd->bfq_requests_within_timer = 120;
6506
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006507 bfqd->bfq_large_burst_thresh = 8;
6508 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6509
Paolo Valente44e44a12017-04-12 18:23:12 +02006510 bfqd->low_latency = true;
6511
6512 /*
6513 * Trade-off between responsiveness and fairness.
6514 */
6515 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02006516 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02006517 bfqd->bfq_wr_max_time = 0;
6518 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6519 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02006520 bfqd->bfq_wr_max_softrt_rate = 7000; /*
6521 * Approximate rate required
6522 * to playback or record a
6523 * high-definition compressed
6524 * video.
6525 */
Paolo Valentecfd69712017-04-12 18:23:15 +02006526 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02006527
6528 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02006529 * Begin by assuming, optimistically, that the device peak
6530 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02006531 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006532 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6533 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6534 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02006535
Paolo Valenteaee69d72017-04-19 08:29:02 -06006536 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006537
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006538 /*
6539 * The invocation of the next bfq_create_group_hierarchy
6540 * function is the head of a chain of function calls
6541 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6542 * blk_mq_freeze_queue) that may lead to the invocation of the
6543 * has_work hook function. For this reason,
6544 * bfq_create_group_hierarchy is invoked only after all
6545 * scheduler data has been initialized, apart from the fields
6546 * that can be initialized only after invoking
6547 * bfq_create_group_hierarchy. This, in particular, enables
6548 * has_work to correctly return false. Of course, to avoid
6549 * other inconsistencies, the blk-mq stack must then refrain
6550 * from invoking further scheduler hooks before this init
6551 * function is finished.
6552 */
6553 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6554 if (!bfqd->root_group)
6555 goto out_free;
6556 bfq_init_root_group(bfqd->root_group, bfqd);
6557 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6558
Luca Micciob5dc5d42017-10-09 16:27:21 +02006559 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006560 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006561
6562out_free:
6563 kfree(bfqd);
6564 kobject_put(&eq->kobj);
6565 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006566}
6567
6568static void bfq_slab_kill(void)
6569{
6570 kmem_cache_destroy(bfq_pool);
6571}
6572
6573static int __init bfq_slab_setup(void)
6574{
6575 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6576 if (!bfq_pool)
6577 return -ENOMEM;
6578 return 0;
6579}
6580
6581static ssize_t bfq_var_show(unsigned int var, char *page)
6582{
6583 return sprintf(page, "%u\n", var);
6584}
6585
Bart Van Assche2f791362017-08-30 11:42:09 -07006586static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006587{
6588 unsigned long new_val;
6589 int ret = kstrtoul(page, 10, &new_val);
6590
Bart Van Assche2f791362017-08-30 11:42:09 -07006591 if (ret)
6592 return ret;
6593 *var = new_val;
6594 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006595}
6596
6597#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6598static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6599{ \
6600 struct bfq_data *bfqd = e->elevator_data; \
6601 u64 __data = __VAR; \
6602 if (__CONV == 1) \
6603 __data = jiffies_to_msecs(__data); \
6604 else if (__CONV == 2) \
6605 __data = div_u64(__data, NSEC_PER_MSEC); \
6606 return bfq_var_show(__data, (page)); \
6607}
6608SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6609SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6610SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6611SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6612SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6613SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6614SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6615SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02006616SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006617#undef SHOW_FUNCTION
6618
6619#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6620static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6621{ \
6622 struct bfq_data *bfqd = e->elevator_data; \
6623 u64 __data = __VAR; \
6624 __data = div_u64(__data, NSEC_PER_USEC); \
6625 return bfq_var_show(__data, (page)); \
6626}
6627USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6628#undef USEC_SHOW_FUNCTION
6629
6630#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6631static ssize_t \
6632__FUNC(struct elevator_queue *e, const char *page, size_t count) \
6633{ \
6634 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006635 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006636 int ret; \
6637 \
6638 ret = bfq_var_store(&__data, (page)); \
6639 if (ret) \
6640 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006641 if (__data < __min) \
6642 __data = __min; \
6643 else if (__data > __max) \
6644 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006645 if (__CONV == 1) \
6646 *(__PTR) = msecs_to_jiffies(__data); \
6647 else if (__CONV == 2) \
6648 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6649 else \
6650 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08006651 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006652}
6653STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6654 INT_MAX, 2);
6655STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6656 INT_MAX, 2);
6657STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6658STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6659 INT_MAX, 0);
6660STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6661#undef STORE_FUNCTION
6662
6663#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6664static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6665{ \
6666 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006667 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006668 int ret; \
6669 \
6670 ret = bfq_var_store(&__data, (page)); \
6671 if (ret) \
6672 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006673 if (__data < __min) \
6674 __data = __min; \
6675 else if (__data > __max) \
6676 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006677 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08006678 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006679}
6680USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6681 UINT_MAX);
6682#undef USEC_STORE_FUNCTION
6683
Paolo Valenteaee69d72017-04-19 08:29:02 -06006684static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6685 const char *page, size_t count)
6686{
6687 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006688 unsigned long __data;
6689 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006690
Bart Van Assche2f791362017-08-30 11:42:09 -07006691 ret = bfq_var_store(&__data, (page));
6692 if (ret)
6693 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006694
6695 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006696 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006697 else {
6698 if (__data > INT_MAX)
6699 __data = INT_MAX;
6700 bfqd->bfq_max_budget = __data;
6701 }
6702
6703 bfqd->bfq_user_max_budget = __data;
6704
weiping zhang235f8da2017-08-25 01:11:33 +08006705 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006706}
6707
6708/*
6709 * Leaving this name to preserve name compatibility with cfq
6710 * parameters, but this timeout is used for both sync and async.
6711 */
6712static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6713 const char *page, size_t count)
6714{
6715 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006716 unsigned long __data;
6717 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006718
Bart Van Assche2f791362017-08-30 11:42:09 -07006719 ret = bfq_var_store(&__data, (page));
6720 if (ret)
6721 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006722
6723 if (__data < 1)
6724 __data = 1;
6725 else if (__data > INT_MAX)
6726 __data = INT_MAX;
6727
6728 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6729 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006730 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006731
weiping zhang235f8da2017-08-25 01:11:33 +08006732 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006733}
6734
6735static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6736 const char *page, size_t count)
6737{
6738 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006739 unsigned long __data;
6740 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006741
Bart Van Assche2f791362017-08-30 11:42:09 -07006742 ret = bfq_var_store(&__data, (page));
6743 if (ret)
6744 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006745
6746 if (__data > 1)
6747 __data = 1;
6748 if (!bfqd->strict_guarantees && __data == 1
6749 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6750 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6751
6752 bfqd->strict_guarantees = __data;
6753
weiping zhang235f8da2017-08-25 01:11:33 +08006754 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006755}
6756
Paolo Valente44e44a12017-04-12 18:23:12 +02006757static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6758 const char *page, size_t count)
6759{
6760 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006761 unsigned long __data;
6762 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006763
Bart Van Assche2f791362017-08-30 11:42:09 -07006764 ret = bfq_var_store(&__data, (page));
6765 if (ret)
6766 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02006767
6768 if (__data > 1)
6769 __data = 1;
6770 if (__data == 0 && bfqd->low_latency != 0)
6771 bfq_end_wr(bfqd);
6772 bfqd->low_latency = __data;
6773
weiping zhang235f8da2017-08-25 01:11:33 +08006774 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02006775}
6776
Paolo Valenteaee69d72017-04-19 08:29:02 -06006777#define BFQ_ATTR(name) \
6778 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6779
6780static struct elv_fs_entry bfq_attrs[] = {
6781 BFQ_ATTR(fifo_expire_sync),
6782 BFQ_ATTR(fifo_expire_async),
6783 BFQ_ATTR(back_seek_max),
6784 BFQ_ATTR(back_seek_penalty),
6785 BFQ_ATTR(slice_idle),
6786 BFQ_ATTR(slice_idle_us),
6787 BFQ_ATTR(max_budget),
6788 BFQ_ATTR(timeout_sync),
6789 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02006790 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06006791 __ATTR_NULL
6792};
6793
6794static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06006795 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01006796 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006797 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01006798 .requeue_request = bfq_finish_requeue_request,
6799 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006800 .exit_icq = bfq_exit_icq,
6801 .insert_requests = bfq_insert_requests,
6802 .dispatch_request = bfq_dispatch_request,
6803 .next_request = elv_rb_latter_request,
6804 .former_request = elv_rb_former_request,
6805 .allow_merge = bfq_allow_bio_merge,
6806 .bio_merge = bfq_bio_merge,
6807 .request_merge = bfq_request_merge,
6808 .requests_merged = bfq_requests_merged,
6809 .request_merged = bfq_request_merged,
6810 .has_work = bfq_has_work,
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006811 .depth_updated = bfq_depth_updated,
Jens Axboef0635b82018-05-09 13:27:21 -06006812 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006813 .init_sched = bfq_init_queue,
6814 .exit_sched = bfq_exit_queue,
6815 },
6816
Paolo Valenteaee69d72017-04-19 08:29:02 -06006817 .icq_size = sizeof(struct bfq_io_cq),
6818 .icq_align = __alignof__(struct bfq_io_cq),
6819 .elevator_attrs = bfq_attrs,
6820 .elevator_name = "bfq",
6821 .elevator_owner = THIS_MODULE,
6822};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01006823MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06006824
6825static int __init bfq_init(void)
6826{
6827 int ret;
6828
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006829#ifdef CONFIG_BFQ_GROUP_IOSCHED
6830 ret = blkcg_policy_register(&blkcg_policy_bfq);
6831 if (ret)
6832 return ret;
6833#endif
6834
Paolo Valenteaee69d72017-04-19 08:29:02 -06006835 ret = -ENOMEM;
6836 if (bfq_slab_setup())
6837 goto err_pol_unreg;
6838
Paolo Valente44e44a12017-04-12 18:23:12 +02006839 /*
6840 * Times to load large popular applications for the typical
6841 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02006842 * comments before the definition of the next
6843 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02006844 * estimated peak rate tends to be smaller than the actual
6845 * peak rate. The reason for this last fact is that estimates
6846 * are computed over much shorter time intervals than the long
6847 * intervals typically used for benchmarking. Why? First, to
6848 * adapt more quickly to variations. Second, because an I/O
6849 * scheduler cannot rely on a peak-rate-evaluation workload to
6850 * be run for a long time.
6851 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006852 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6853 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02006854
Paolo Valenteaee69d72017-04-19 08:29:02 -06006855 ret = elv_register(&iosched_bfq_mq);
6856 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08006857 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006858
6859 return 0;
6860
weiping zhang37dcd652017-08-19 00:37:20 +08006861slab_kill:
6862 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06006863err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006864#ifdef CONFIG_BFQ_GROUP_IOSCHED
6865 blkcg_policy_unregister(&blkcg_policy_bfq);
6866#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006867 return ret;
6868}
6869
6870static void __exit bfq_exit(void)
6871{
6872 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006873#ifdef CONFIG_BFQ_GROUP_IOSCHED
6874 blkcg_policy_unregister(&blkcg_policy_bfq);
6875#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006876 bfq_slab_kill();
6877}
6878
6879module_init(bfq_init);
6880module_exit(bfq_exit);
6881
6882MODULE_AUTHOR("Paolo Valente");
6883MODULE_LICENSE("GPL");
6884MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");