blob: a6bf842cbe164e00031dfc9b7e9158d08bdeb166 [file] [log] [blame]
Christoph Hellwiga497ee32019-04-30 14:42:40 -04001// SPDX-License-Identifier: GPL-2.0-or-later
Paolo Valenteaee69d72017-04-19 08:29:02 -06002/*
3 * Budget Fair Queueing (BFQ) I/O scheduler.
4 *
5 * Based on ideas and code from CFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12 * Arianna Avanzini <avanzini@google.com>
13 *
14 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 *
Paolo Valenteaee69d72017-04-19 08:29:02 -060016 * BFQ is a proportional-share I/O scheduler, with some extra
17 * low-latency capabilities. BFQ also supports full hierarchical
18 * scheduling through cgroups. Next paragraphs provide an introduction
19 * on BFQ inner workings. Details on BFQ benefits, usage and
20 * limitations can be found in Documentation/block/bfq-iosched.txt.
21 *
22 * BFQ is a proportional-share storage-I/O scheduling algorithm based
23 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24 * budgets, measured in number of sectors, to processes instead of
25 * time slices. The device is not granted to the in-service process
26 * for a given time slice, but until it has exhausted its assigned
27 * budget. This change from the time to the service domain enables BFQ
28 * to distribute the device throughput among processes as desired,
29 * without any distortion due to throughput fluctuations, or to device
30 * internal queueing. BFQ uses an ad hoc internal scheduler, called
31 * B-WF2Q+, to schedule processes according to their budgets. More
32 * precisely, BFQ schedules queues associated with processes. Each
33 * process/queue is assigned a user-configurable weight, and B-WF2Q+
34 * guarantees that each queue receives a fraction of the throughput
35 * proportional to its weight. Thanks to the accurate policy of
36 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37 * processes issuing sequential requests (to boost the throughput),
38 * and yet guarantee a low latency to interactive and soft real-time
39 * applications.
40 *
41 * In particular, to provide these low-latency guarantees, BFQ
42 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020043 * applications: interactive and soft real-time. In more detail, BFQ
44 * behaves this way if the low_latency parameter is set (default
45 * configuration). This feature enables BFQ to provide applications in
46 * these classes with a very low latency.
47 *
48 * To implement this feature, BFQ constantly tries to detect whether
49 * the I/O requests in a bfq_queue come from an interactive or a soft
50 * real-time application. For brevity, in these cases, the queue is
51 * said to be interactive or soft real-time. In both cases, BFQ
52 * privileges the service of the queue, over that of non-interactive
53 * and non-soft-real-time queues. This privileging is performed,
54 * mainly, by raising the weight of the queue. So, for brevity, we
55 * call just weight-raising periods the time periods during which a
56 * queue is privileged, because deemed interactive or soft real-time.
57 *
58 * The detection of soft real-time queues/applications is described in
59 * detail in the comments on the function
60 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61 * interactive queue works as follows: a queue is deemed interactive
62 * if it is constantly non empty only for a limited time interval,
63 * after which it does become empty. The queue may be deemed
64 * interactive again (for a limited time), if it restarts being
65 * constantly non empty, provided that this happens only after the
66 * queue has remained empty for a given minimum idle time.
67 *
68 * By default, BFQ computes automatically the above maximum time
69 * interval, i.e., the time interval after which a constantly
70 * non-empty queue stops being deemed interactive. Since a queue is
71 * weight-raised while it is deemed interactive, this maximum time
72 * interval happens to coincide with the (maximum) duration of the
73 * weight-raising for interactive queues.
74 *
75 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060076 * preserving both a low latency and a high throughput on NCQ-capable,
77 * rotational or flash-based devices, and to get the job done quickly
78 * for applications consisting in many I/O-bound processes.
79 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020080 * NOTE: if the main or only goal, with a given device, is to achieve
81 * the maximum-possible throughput at all times, then do switch off
82 * all low-latency heuristics for that device, by setting low_latency
83 * to 0.
84 *
Paolo Valente4029eef2018-05-31 16:45:05 +020085 * BFQ is described in [1], where also a reference to the initial,
86 * more theoretical paper on BFQ can be found. The interested reader
87 * can find in the latter paper full details on the main algorithm, as
88 * well as formulas of the guarantees and formal proofs of all the
89 * properties. With respect to the version of BFQ presented in these
90 * papers, this implementation adds a few more heuristics, such as the
91 * ones that guarantee a low latency to interactive and soft real-time
92 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -060093 *
94 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96 * with O(log N) complexity derives from the one introduced with EEVDF
97 * in [3].
98 *
99 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100 * Scheduler", Proceedings of the First Workshop on Mobile System
101 * Technologies (MST-2015), May 2015.
102 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103 *
104 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106 * Oct 1997.
107 *
108 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109 *
110 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111 * First: A Flexible and Accurate Mechanism for Proportional Share
112 * Resource Allocation", technical report.
113 *
114 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115 */
116#include <linux/module.h>
117#include <linux/slab.h>
118#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200119#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600120#include <linux/elevator.h>
121#include <linux/ktime.h>
122#include <linux/rbtree.h>
123#include <linux/ioprio.h>
124#include <linux/sbitmap.h>
125#include <linux/delay.h>
126
127#include "blk.h"
128#include "blk-mq.h"
129#include "blk-mq-tag.h"
130#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600131#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200132#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600133
134#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600135void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600136{ \
137 __set_bit(BFQQF_##name, &(bfqq)->flags); \
138} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600139void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600140{ \
141 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
142} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600143int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600144{ \
145 return test_bit(BFQQF_##name, &(bfqq)->flags); \
146}
147
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200148BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149BFQ_BFQQ_FNS(busy);
150BFQ_BFQQ_FNS(wait_request);
151BFQ_BFQQ_FNS(non_blocking_wait_rq);
152BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200153BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600154BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600155BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200156BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200157BFQ_BFQQ_FNS(coop);
158BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200159BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600160#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600161
Paolo Valenteaee69d72017-04-19 08:29:02 -0600162/* Expiration time of sync (0) and async (1) requests, in ns. */
163static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
164
165/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
166static const int bfq_back_max = 16 * 1024;
167
168/* Penalty of a backwards seek, in number of sectors. */
169static const int bfq_back_penalty = 2;
170
171/* Idling period duration, in ns. */
172static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
173
174/* Minimum number of assigned budgets for which stats are safe to compute. */
175static const int bfq_stats_min_budgets = 194;
176
177/* Default maximum budget values, in sectors and number of requests. */
178static const int bfq_default_max_budget = 16 * 1024;
179
Paolo Valentec074170e2017-04-12 18:23:11 +0200180/*
Paolo Valented5801082018-08-16 18:51:17 +0200181 * When a sync request is dispatched, the queue that contains that
182 * request, and all the ancestor entities of that queue, are charged
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200183 * with the number of sectors of the request. In contrast, if the
Paolo Valented5801082018-08-16 18:51:17 +0200184 * request is async, then the queue and its ancestor entities are
185 * charged with the number of sectors of the request, multiplied by
186 * the factor below. This throttles the bandwidth for async I/O,
187 * w.r.t. to sync I/O, and it is done to counter the tendency of async
188 * writes to steal I/O throughput to reads.
189 *
190 * The current value of this parameter is the result of a tuning with
191 * several hardware and software configurations. We tried to find the
192 * lowest value for which writes do not cause noticeable problems to
193 * reads. In fact, the lower this parameter, the stabler I/O control,
194 * in the following respect. The lower this parameter is, the less
195 * the bandwidth enjoyed by a group decreases
196 * - when the group does writes, w.r.t. to when it does reads;
197 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200198 */
Paolo Valented5801082018-08-16 18:51:17 +0200199static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200200
Paolo Valenteaee69d72017-04-19 08:29:02 -0600201/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600202const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600203
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100204/*
205 * Time limit for merging (see comments in bfq_setup_cooperator). Set
206 * to the slowest value that, in our tests, proved to be effective in
207 * removing false positives, while not causing true positives to miss
208 * queue merging.
209 *
210 * As can be deduced from the low time limit below, queue merging, if
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200211 * successful, happens at the very beginning of the I/O of the involved
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100212 * cooperating processes, as a consequence of the arrival of the very
213 * first requests from each cooperator. After that, there is very
214 * little chance to find cooperators.
215 */
216static const unsigned long bfq_merge_time_limit = HZ/10;
217
Paolo Valenteaee69d72017-04-19 08:29:02 -0600218static struct kmem_cache *bfq_pool;
219
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200220/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600221#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
222
223/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100224#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600225#define BFQ_HW_QUEUE_SAMPLES 32
226
227#define BFQQ_SEEK_THR (sector_t)(8 * 100)
228#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100229#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
230 (get_sdist(last_pos, rq) > \
231 BFQQ_SEEK_THR && \
232 (!blk_queue_nonrot(bfqd->queue) || \
233 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600234#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100235#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valente7074f072019-03-12 09:59:31 +0100236/*
237 * Sync random I/O is likely to be confused with soft real-time I/O,
238 * because it is characterized by limited throughput and apparently
239 * isochronous arrival pattern. To avoid false positives, queues
240 * containing only random (seeky) I/O are prevented from being tagged
241 * as soft real-time.
242 */
243#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history & -1)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600244
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200245/* Min number of samples required to perform peak-rate update */
246#define BFQ_RATE_MIN_SAMPLES 32
247/* Min observation time interval required to perform a peak-rate update (ns) */
248#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
249/* Target observation time interval for a peak-rate update (ns) */
250#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600251
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200252/*
253 * Shift used for peak-rate fixed precision calculations.
254 * With
255 * - the current shift: 16 positions
256 * - the current type used to store rate: u32
257 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
258 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
259 * the range of rates that can be stored is
260 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
261 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
262 * [15, 65G] sectors/sec
263 * Which, assuming a sector size of 512B, corresponds to a range of
264 * [7.5K, 33T] B/sec
265 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600266#define BFQ_RATE_SHIFT 16
267
Paolo Valente44e44a12017-04-12 18:23:12 +0200268/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200269 * When configured for computing the duration of the weight-raising
270 * for interactive queues automatically (see the comments at the
271 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200272 * duration = (ref_rate / r) * ref_wr_duration,
273 * where r is the peak rate of the device, and ref_rate and
274 * ref_wr_duration are two reference parameters. In particular,
275 * ref_rate is the peak rate of the reference storage device (see
276 * below), and ref_wr_duration is about the maximum time needed, with
277 * BFQ and while reading two files in parallel, to load typical large
278 * applications on the reference device (see the comments on
279 * max_service_from_wr below, for more details on how ref_wr_duration
280 * is obtained). In practice, the slower/faster the device at hand
281 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200282 * reference device. Accordingly, the longer/shorter BFQ grants
283 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200284 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200285 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
286 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200287 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200288 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
289 * are the reference values for a rotational device, whereas
290 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
291 * non-rotational device. The reference rates are not the actual peak
292 * rates of the devices used as a reference, but slightly lower
293 * values. The reason for using slightly lower values is that the
294 * peak-rate estimator tends to yield slightly lower values than the
295 * actual peak rate (it can yield the actual peak rate only if there
296 * is only one process doing I/O, and the process does sequential
297 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200298 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200299 * The reference peak rates are measured in sectors/usec, left-shifted
300 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200301 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200302static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200303/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200304 * To improve readability, a conversion function is used to initialize
305 * the following array, which entails that the array can be
306 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200307 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200308static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200309
Paolo Valente8a8747d2018-01-13 12:05:18 +0100310/*
311 * BFQ uses the above-detailed, time-based weight-raising mechanism to
312 * privilege interactive tasks. This mechanism is vulnerable to the
313 * following false positives: I/O-bound applications that will go on
314 * doing I/O for much longer than the duration of weight
315 * raising. These applications have basically no benefit from being
316 * weight-raised at the beginning of their I/O. On the opposite end,
317 * while being weight-raised, these applications
318 * a) unjustly steal throughput to applications that may actually need
319 * low latency;
320 * b) make BFQ uselessly perform device idling; device idling results
321 * in loss of device throughput with most flash-based storage, and may
322 * increase latencies when used purposelessly.
323 *
324 * BFQ tries to reduce these problems, by adopting the following
325 * countermeasure. To introduce this countermeasure, we need first to
326 * finish explaining how the duration of weight-raising for
327 * interactive tasks is computed.
328 *
329 * For a bfq_queue deemed as interactive, the duration of weight
330 * raising is dynamically adjusted, as a function of the estimated
331 * peak rate of the device, so as to be equal to the time needed to
332 * execute the 'largest' interactive task we benchmarked so far. By
333 * largest task, we mean the task for which each involved process has
334 * to do more I/O than for any of the other tasks we benchmarked. This
335 * reference interactive task is the start-up of LibreOffice Writer,
336 * and in this task each process/bfq_queue needs to have at most ~110K
337 * sectors transferred.
338 *
339 * This last piece of information enables BFQ to reduce the actual
340 * duration of weight-raising for at least one class of I/O-bound
341 * applications: those doing sequential or quasi-sequential I/O. An
342 * example is file copy. In fact, once started, the main I/O-bound
343 * processes of these applications usually consume the above 110K
344 * sectors in much less time than the processes of an application that
345 * is starting, because these I/O-bound processes will greedily devote
346 * almost all their CPU cycles only to their target,
347 * throughput-friendly I/O operations. This is even more true if BFQ
348 * happens to be underestimating the device peak rate, and thus
349 * overestimating the duration of weight raising. But, according to
350 * our measurements, once transferred 110K sectors, these processes
351 * have no right to be weight-raised any longer.
352 *
353 * Basing on the last consideration, BFQ ends weight-raising for a
354 * bfq_queue if the latter happens to have received an amount of
355 * service at least equal to the following constant. The constant is
356 * set to slightly more than 110K, to have a minimum safety margin.
357 *
358 * This early ending of weight-raising reduces the amount of time
359 * during which interactive false positives cause the two problems
360 * described at the beginning of these comments.
361 */
362static const unsigned long max_service_from_wr = 120000;
363
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700364#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600365#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
366
Paolo Valenteea25da42017-04-19 08:48:24 -0600367struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
368{
369 return bic->bfqq[is_sync];
370}
371
372void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
373{
374 bic->bfqq[is_sync] = bfqq;
375}
376
377struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
378{
379 return bic->icq.q->elevator->elevator_data;
380}
381
Paolo Valenteaee69d72017-04-19 08:29:02 -0600382/**
383 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
384 * @icq: the iocontext queue.
385 */
386static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
387{
388 /* bic->icq is the first member, %NULL will convert to %NULL */
389 return container_of(icq, struct bfq_io_cq, icq);
390}
391
392/**
393 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
394 * @bfqd: the lookup key.
395 * @ioc: the io_context of the process doing I/O.
396 * @q: the request queue.
397 */
398static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
399 struct io_context *ioc,
400 struct request_queue *q)
401{
402 if (ioc) {
403 unsigned long flags;
404 struct bfq_io_cq *icq;
405
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700406 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600407 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700408 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600409
410 return icq;
411 }
412
413 return NULL;
414}
415
416/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200417 * Scheduler run of queue, if there are requests pending and no one in the
418 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600419 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600420void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600421{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200422 if (bfqd->queued != 0) {
423 bfq_log(bfqd, "schedule dispatch");
424 blk_mq_run_hw_queues(bfqd->queue, true);
425 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600426}
427
Paolo Valenteaee69d72017-04-19 08:29:02 -0600428#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
429#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
430
431#define bfq_sample_valid(samples) ((samples) > 80)
432
433/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600434 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200435 * We choose the request that is closer to the head right now. Distance
Paolo Valenteaee69d72017-04-19 08:29:02 -0600436 * behind the head is penalized and only allowed to a certain extent.
437 */
438static struct request *bfq_choose_req(struct bfq_data *bfqd,
439 struct request *rq1,
440 struct request *rq2,
441 sector_t last)
442{
443 sector_t s1, s2, d1 = 0, d2 = 0;
444 unsigned long back_max;
445#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
446#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
447 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
448
449 if (!rq1 || rq1 == rq2)
450 return rq2;
451 if (!rq2)
452 return rq1;
453
454 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
455 return rq1;
456 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
457 return rq2;
458 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
459 return rq1;
460 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
461 return rq2;
462
463 s1 = blk_rq_pos(rq1);
464 s2 = blk_rq_pos(rq2);
465
466 /*
467 * By definition, 1KiB is 2 sectors.
468 */
469 back_max = bfqd->bfq_back_max * 2;
470
471 /*
472 * Strict one way elevator _except_ in the case where we allow
473 * short backward seeks which are biased as twice the cost of a
474 * similar forward seek.
475 */
476 if (s1 >= last)
477 d1 = s1 - last;
478 else if (s1 + back_max >= last)
479 d1 = (last - s1) * bfqd->bfq_back_penalty;
480 else
481 wrap |= BFQ_RQ1_WRAP;
482
483 if (s2 >= last)
484 d2 = s2 - last;
485 else if (s2 + back_max >= last)
486 d2 = (last - s2) * bfqd->bfq_back_penalty;
487 else
488 wrap |= BFQ_RQ2_WRAP;
489
490 /* Found required data */
491
492 /*
493 * By doing switch() on the bit mask "wrap" we avoid having to
494 * check two variables for all permutations: --> faster!
495 */
496 switch (wrap) {
497 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
498 if (d1 < d2)
499 return rq1;
500 else if (d2 < d1)
501 return rq2;
502
503 if (s1 >= s2)
504 return rq1;
505 else
506 return rq2;
507
508 case BFQ_RQ2_WRAP:
509 return rq1;
510 case BFQ_RQ1_WRAP:
511 return rq2;
512 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
513 default:
514 /*
515 * Since both rqs are wrapped,
516 * start with the one that's further behind head
517 * (--> only *one* back seek required),
518 * since back seek takes more time than forward.
519 */
520 if (s1 <= s2)
521 return rq1;
522 else
523 return rq2;
524 }
525}
526
Paolo Valentea52a69e2018-01-13 12:05:17 +0100527/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100528 * Async I/O can easily starve sync I/O (both sync reads and sync
529 * writes), by consuming all tags. Similarly, storms of sync writes,
530 * such as those that sync(2) may trigger, can starve sync reads.
531 * Limit depths of async I/O and sync writes so as to counter both
532 * problems.
533 */
534static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
535{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100536 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537
538 if (op_is_sync(op) && !op_is_write(op))
539 return;
540
Paolo Valentea52a69e2018-01-13 12:05:17 +0100541 data->shallow_depth =
542 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
543
544 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
545 __func__, bfqd->wr_busy_queues, op_is_sync(op),
546 data->shallow_depth);
547}
548
Arianna Avanzini36eca892017-04-12 18:23:16 +0200549static struct bfq_queue *
550bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
551 sector_t sector, struct rb_node **ret_parent,
552 struct rb_node ***rb_link)
553{
554 struct rb_node **p, *parent;
555 struct bfq_queue *bfqq = NULL;
556
557 parent = NULL;
558 p = &root->rb_node;
559 while (*p) {
560 struct rb_node **n;
561
562 parent = *p;
563 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
564
565 /*
566 * Sort strictly based on sector. Smallest to the left,
567 * largest to the right.
568 */
569 if (sector > blk_rq_pos(bfqq->next_rq))
570 n = &(*p)->rb_right;
571 else if (sector < blk_rq_pos(bfqq->next_rq))
572 n = &(*p)->rb_left;
573 else
574 break;
575 p = n;
576 bfqq = NULL;
577 }
578
579 *ret_parent = parent;
580 if (rb_link)
581 *rb_link = p;
582
583 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
584 (unsigned long long)sector,
585 bfqq ? bfqq->pid : 0);
586
587 return bfqq;
588}
589
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100590static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
591{
592 return bfqq->service_from_backlogged > 0 &&
593 time_is_before_jiffies(bfqq->first_IO_time +
594 bfq_merge_time_limit);
595}
596
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100597/*
598 * The following function is not marked as __cold because it is
599 * actually cold, but for the same performance goal described in the
600 * comments on the likely() at the beginning of
601 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
602 * execution time for the case where this function is not invoked, we
603 * had to add an unlikely() in each involved if().
604 */
605void __cold
606bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200607{
608 struct rb_node **p, *parent;
609 struct bfq_queue *__bfqq;
610
611 if (bfqq->pos_root) {
612 rb_erase(&bfqq->pos_node, bfqq->pos_root);
613 bfqq->pos_root = NULL;
614 }
615
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100616 /*
617 * bfqq cannot be merged any longer (see comments in
618 * bfq_setup_cooperator): no point in adding bfqq into the
619 * position tree.
620 */
621 if (bfq_too_late_for_merging(bfqq))
622 return;
623
Arianna Avanzini36eca892017-04-12 18:23:16 +0200624 if (bfq_class_idle(bfqq))
625 return;
626 if (!bfqq->next_rq)
627 return;
628
629 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
630 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
631 blk_rq_pos(bfqq->next_rq), &parent, &p);
632 if (!__bfqq) {
633 rb_link_node(&bfqq->pos_node, parent, p);
634 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
635 } else
636 bfqq->pos_root = NULL;
637}
638
Paolo Valenteaee69d72017-04-19 08:29:02 -0600639/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100640 * The following function returns false either if every active queue
641 * must receive the same share of the throughput (symmetric scenario),
642 * or, as a special case, if bfqq must receive a share of the
643 * throughput lower than or equal to the share that every other active
644 * queue must receive. If bfqq does sync I/O, then these are the only
645 * two cases where bfqq happens to be guaranteed its share of the
646 * throughput even if I/O dispatching is not plugged when bfqq remains
647 * temporarily empty (for more details, see the comments in the
648 * function bfq_better_to_idle()). For this reason, the return value
649 * of this function is used to check whether I/O-dispatch plugging can
650 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200651 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100652 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200653 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100654 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200655 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100656 * weight,
657 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200658 * number of children.
659 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200660 * Unfortunately, keeping the necessary state for evaluating exactly
661 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100662 * and time consuming. Therefore this function evaluates, instead,
663 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200664 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200665 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100666 * 2) all active queues belong to the same I/O-priority class,
667 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200668 * In particular, the last condition is always true if hierarchical
669 * support or the cgroups interface are not enabled, thus no state
670 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200671 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100672static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
673 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200674{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100675 bool smallest_weight = bfqq &&
676 bfqq->weight_counter &&
677 bfqq->weight_counter ==
678 container_of(
679 rb_first_cached(&bfqd->queue_weights_tree),
680 struct bfq_weight_counter,
681 weights_node);
682
Paolo Valente73d58112019-01-29 12:06:29 +0100683 /*
684 * For queue weights to differ, queue_weights_tree must contain
685 * at least two nodes.
686 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100687 bool varied_queue_weights = !smallest_weight &&
688 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
689 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
690 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100691
692 bool multiple_classes_busy =
693 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
694 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
695 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
696
Paolo Valentefb53ac62019-03-12 09:59:28 +0100697 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300698#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100699 || bfqd->num_groups_with_pending_reqs > 0
700#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100701 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200702}
703
704/*
705 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200706 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200707 * increment the existing counter.
708 *
709 * Note that weight-counter trees contain few nodes in mostly symmetric
710 * scenarios. For example, if all queues have the same weight, then the
711 * weight-counter tree for the queues may contain at most one node.
712 * This holds even if low_latency is on, because weight-raised queues
713 * are not inserted in the tree.
714 * In most scenarios, the rate at which nodes are created/destroyed
715 * should be low too.
716 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200717void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100718 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200719{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200720 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100721 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
722 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200723
724 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200725 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200726 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200727 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200728 * non-weight-raised, and hence change its weight, and
729 * backlogged; in this respect, each of the two events
730 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200731 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200732 * second event. This second invocation is actually useless,
733 * and we handle this fact by exiting immediately. More
734 * efficient or clearer solutions might possibly be adopted.
735 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200736 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200737 return;
738
739 while (*new) {
740 struct bfq_weight_counter *__counter = container_of(*new,
741 struct bfq_weight_counter,
742 weights_node);
743 parent = *new;
744
745 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200746 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200747 goto inc_counter;
748 }
749 if (entity->weight < __counter->weight)
750 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100751 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200752 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100753 leftmost = false;
754 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200755 }
756
Federico Motta2d29c9f2018-10-12 11:55:57 +0200757 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
758 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200759
760 /*
761 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200762 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100763 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100764 * causes the scenario to be deemed wrongly symmetric in case
765 * bfqq's weight would have been the only weight making the
766 * scenario asymmetric. On the bright side, no unbalance will
767 * however occur when bfqq becomes inactive again (the
768 * invocation of this function is triggered by an activation
769 * of queue). In fact, bfq_weights_tree_remove does nothing
770 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200771 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200772 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200773 return;
774
Federico Motta2d29c9f2018-10-12 11:55:57 +0200775 bfqq->weight_counter->weight = entity->weight;
776 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100777 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
778 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200779
780inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200781 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100782 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200783}
784
785/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200786 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200787 * counter reaches 0, remove the counter from the tree.
788 * See the comments to the function bfq_weights_tree_add() for considerations
789 * about overhead.
790 */
Paolo Valente04715592018-06-25 21:55:34 +0200791void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200792 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100793 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200794{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200795 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200796 return;
797
Federico Motta2d29c9f2018-10-12 11:55:57 +0200798 bfqq->weight_counter->num_active--;
799 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200800 goto reset_entity_pointer;
801
Paolo Valentefb53ac62019-03-12 09:59:28 +0100802 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200803 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200804
805reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200806 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100807 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200808}
809
810/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200811 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
812 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200813 */
814void bfq_weights_tree_remove(struct bfq_data *bfqd,
815 struct bfq_queue *bfqq)
816{
817 struct bfq_entity *entity = bfqq->entity.parent;
818
Paolo Valente04715592018-06-25 21:55:34 +0200819 for_each_entity(entity) {
820 struct bfq_sched_data *sd = entity->my_sched_data;
821
822 if (sd->next_in_service || sd->in_service_entity) {
823 /*
824 * entity is still active, because either
825 * next_in_service or in_service_entity is not
826 * NULL (see the comments on the definition of
827 * next_in_service for details on why
828 * in_service_entity must be checked too).
829 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200830 * As a consequence, its parent entities are
831 * active as well, and thus this loop must
832 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200833 */
834 break;
835 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100836
837 /*
838 * The decrement of num_groups_with_pending_reqs is
839 * not performed immediately upon the deactivation of
840 * entity, but it is delayed to when it also happens
841 * that the first leaf descendant bfqq of entity gets
842 * all its pending requests completed. The following
843 * instructions perform this delayed decrement, if
844 * needed. See the comments on
845 * num_groups_with_pending_reqs for details.
846 */
847 if (entity->in_groups_with_pending_reqs) {
848 entity->in_groups_with_pending_reqs = false;
849 bfqd->num_groups_with_pending_reqs--;
850 }
Paolo Valente04715592018-06-25 21:55:34 +0200851 }
Paolo Valente9dee8b32019-01-29 12:06:34 +0100852
853 /*
854 * Next function is invoked last, because it causes bfqq to be
855 * freed if the following holds: bfqq is not in service and
856 * has no dispatched request. DO NOT use bfqq after the next
857 * function invocation.
858 */
859 __bfq_weights_tree_remove(bfqd, bfqq,
860 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +0200861}
862
863/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600864 * Return expired entry, or NULL to just start from scratch in rbtree.
865 */
866static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
867 struct request *last)
868{
869 struct request *rq;
870
871 if (bfq_bfqq_fifo_expire(bfqq))
872 return NULL;
873
874 bfq_mark_bfqq_fifo_expire(bfqq);
875
876 rq = rq_entry_fifo(bfqq->fifo.next);
877
878 if (rq == last || ktime_get_ns() < rq->fifo_time)
879 return NULL;
880
881 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
882 return rq;
883}
884
885static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
886 struct bfq_queue *bfqq,
887 struct request *last)
888{
889 struct rb_node *rbnext = rb_next(&last->rb_node);
890 struct rb_node *rbprev = rb_prev(&last->rb_node);
891 struct request *next, *prev = NULL;
892
893 /* Follow expired path, else get first next available. */
894 next = bfq_check_fifo(bfqq, last);
895 if (next)
896 return next;
897
898 if (rbprev)
899 prev = rb_entry_rq(rbprev);
900
901 if (rbnext)
902 next = rb_entry_rq(rbnext);
903 else {
904 rbnext = rb_first(&bfqq->sort_list);
905 if (rbnext && rbnext != &last->rb_node)
906 next = rb_entry_rq(rbnext);
907 }
908
909 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
910}
911
Paolo Valentec074170e2017-04-12 18:23:11 +0200912/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600913static unsigned long bfq_serv_to_charge(struct request *rq,
914 struct bfq_queue *bfqq)
915{
Paolo Valente02a6d782019-01-29 12:06:37 +0100916 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +0100917 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +0200918 return blk_rq_sectors(rq);
919
Paolo Valented5801082018-08-16 18:51:17 +0200920 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600921}
922
923/**
924 * bfq_updated_next_req - update the queue after a new next_rq selection.
925 * @bfqd: the device data the queue belongs to.
926 * @bfqq: the queue to update.
927 *
928 * If the first request of a queue changes we make sure that the queue
929 * has enough budget to serve at least its first request (if the
930 * request has grown). We do this because if the queue has not enough
931 * budget for its first request, it has to go through two dispatch
932 * rounds to actually get it dispatched.
933 */
934static void bfq_updated_next_req(struct bfq_data *bfqd,
935 struct bfq_queue *bfqq)
936{
937 struct bfq_entity *entity = &bfqq->entity;
938 struct request *next_rq = bfqq->next_rq;
939 unsigned long new_budget;
940
941 if (!next_rq)
942 return;
943
944 if (bfqq == bfqd->in_service_queue)
945 /*
946 * In order not to break guarantees, budgets cannot be
947 * changed after an entity has been selected.
948 */
949 return;
950
Paolo Valentef3218ad2019-01-29 12:06:27 +0100951 new_budget = max_t(unsigned long,
952 max_t(unsigned long, bfqq->max_budget,
953 bfq_serv_to_charge(next_rq, bfqq)),
954 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600955 if (entity->budget != new_budget) {
956 entity->budget = new_budget;
957 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
958 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200959 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600960 }
961}
962
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200963static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
964{
965 u64 dur;
966
967 if (bfqd->bfq_wr_max_time > 0)
968 return bfqd->bfq_wr_max_time;
969
Paolo Valentee24f1c22018-05-31 16:45:06 +0200970 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200971 do_div(dur, bfqd->peak_rate);
972
973 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200974 * Limit duration between 3 and 25 seconds. The upper limit
975 * has been conservatively set after the following worst case:
976 * on a QEMU/KVM virtual machine
977 * - running in a slow PC
978 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
979 * - serving a heavy I/O workload, such as the sequential reading
980 * of several files
981 * mplayer took 23 seconds to start, if constantly weight-raised.
982 *
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200983 * As for higher values than that accommodating the above bad
Davide Sapienzad450542e2018-05-31 16:45:07 +0200984 * scenario, tests show that higher values would often yield
985 * the opposite of the desired result, i.e., would worsen
986 * responsiveness by allowing non-interactive applications to
987 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200988 *
989 * On the other end, lower values than 3 seconds make it
990 * difficult for most interactive tasks to complete their jobs
991 * before weight-raising finishes.
992 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200993 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200994}
995
996/* switch back from soft real-time to interactive weight raising */
997static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
998 struct bfq_data *bfqd)
999{
1000 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1001 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1002 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1003}
1004
Arianna Avanzini36eca892017-04-12 18:23:16 +02001005static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001006bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1007 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001008{
Paolo Valente13c931b2017-06-27 12:30:47 -06001009 unsigned int old_wr_coeff = bfqq->wr_coeff;
1010 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1011
Paolo Valented5be3fe2017-08-04 07:35:10 +02001012 if (bic->saved_has_short_ttime)
1013 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001014 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001015 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001016
1017 if (bic->saved_IO_bound)
1018 bfq_mark_bfqq_IO_bound(bfqq);
1019 else
1020 bfq_clear_bfqq_IO_bound(bfqq);
1021
Francesco Pollicinofffca082019-03-12 09:59:34 +01001022 bfqq->entity.new_weight = bic->saved_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001023 bfqq->ttime = bic->saved_ttime;
1024 bfqq->wr_coeff = bic->saved_wr_coeff;
1025 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1026 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1027 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1028
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001029 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001030 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001031 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001032 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1033 !bfq_bfqq_in_large_burst(bfqq) &&
1034 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1035 bfq_wr_duration(bfqd))) {
1036 switch_back_to_interactive_wr(bfqq, bfqd);
1037 } else {
1038 bfqq->wr_coeff = 1;
1039 bfq_log_bfqq(bfqq->bfqd, bfqq,
1040 "resume state: switching off wr");
1041 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001042 }
1043
1044 /* make sure weight will be updated, however we got here */
1045 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001046
1047 if (likely(!busy))
1048 return;
1049
1050 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1051 bfqd->wr_busy_queues++;
1052 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1053 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001054}
1055
1056static int bfqq_process_refs(struct bfq_queue *bfqq)
1057{
Paolo Valente9dee8b32019-01-29 12:06:34 +01001058 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1059 (bfqq->weight_counter != NULL);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001060}
1061
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001062/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1063static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1064{
1065 struct bfq_queue *item;
1066 struct hlist_node *n;
1067
1068 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1069 hlist_del_init(&item->burst_list_node);
Paolo Valente84a74682019-03-12 09:59:32 +01001070
1071 /*
1072 * Start the creation of a new burst list only if there is no
1073 * active queue. See comments on the conditional invocation of
1074 * bfq_handle_burst().
1075 */
1076 if (bfq_tot_busy_queues(bfqd) == 0) {
1077 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1078 bfqd->burst_size = 1;
1079 } else
1080 bfqd->burst_size = 0;
1081
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001082 bfqd->burst_parent_entity = bfqq->entity.parent;
1083}
1084
1085/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1086static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1087{
1088 /* Increment burst size to take into account also bfqq */
1089 bfqd->burst_size++;
1090
1091 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1092 struct bfq_queue *pos, *bfqq_item;
1093 struct hlist_node *n;
1094
1095 /*
1096 * Enough queues have been activated shortly after each
1097 * other to consider this burst as large.
1098 */
1099 bfqd->large_burst = true;
1100
1101 /*
1102 * We can now mark all queues in the burst list as
1103 * belonging to a large burst.
1104 */
1105 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1106 burst_list_node)
1107 bfq_mark_bfqq_in_large_burst(bfqq_item);
1108 bfq_mark_bfqq_in_large_burst(bfqq);
1109
1110 /*
1111 * From now on, and until the current burst finishes, any
1112 * new queue being activated shortly after the last queue
1113 * was inserted in the burst can be immediately marked as
1114 * belonging to a large burst. So the burst list is not
1115 * needed any more. Remove it.
1116 */
1117 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1118 burst_list_node)
1119 hlist_del_init(&pos->burst_list_node);
1120 } else /*
1121 * Burst not yet large: add bfqq to the burst list. Do
1122 * not increment the ref counter for bfqq, because bfqq
1123 * is removed from the burst list before freeing bfqq
1124 * in put_queue.
1125 */
1126 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1127}
1128
1129/*
1130 * If many queues belonging to the same group happen to be created
1131 * shortly after each other, then the processes associated with these
1132 * queues have typically a common goal. In particular, bursts of queue
1133 * creations are usually caused by services or applications that spawn
1134 * many parallel threads/processes. Examples are systemd during boot,
1135 * or git grep. To help these processes get their job done as soon as
1136 * possible, it is usually better to not grant either weight-raising
Paolo Valente84a74682019-03-12 09:59:32 +01001137 * or device idling to their queues, unless these queues must be
1138 * protected from the I/O flowing through other active queues.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001139 *
1140 * In this comment we describe, firstly, the reasons why this fact
1141 * holds, and, secondly, the next function, which implements the main
1142 * steps needed to properly mark these queues so that they can then be
1143 * treated in a different way.
1144 *
1145 * The above services or applications benefit mostly from a high
1146 * throughput: the quicker the requests of the activated queues are
1147 * cumulatively served, the sooner the target job of these queues gets
1148 * completed. As a consequence, weight-raising any of these queues,
1149 * which also implies idling the device for it, is almost always
Paolo Valente84a74682019-03-12 09:59:32 +01001150 * counterproductive, unless there are other active queues to isolate
1151 * these new queues from. If there no other active queues, then
1152 * weight-raising these new queues just lowers throughput in most
1153 * cases.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001154 *
1155 * On the other hand, a burst of queue creations may be caused also by
1156 * the start of an application that does not consist of a lot of
1157 * parallel I/O-bound threads. In fact, with a complex application,
1158 * several short processes may need to be executed to start-up the
1159 * application. In this respect, to start an application as quickly as
1160 * possible, the best thing to do is in any case to privilege the I/O
1161 * related to the application with respect to all other
1162 * I/O. Therefore, the best strategy to start as quickly as possible
1163 * an application that causes a burst of queue creations is to
1164 * weight-raise all the queues created during the burst. This is the
1165 * exact opposite of the best strategy for the other type of bursts.
1166 *
1167 * In the end, to take the best action for each of the two cases, the
1168 * two types of bursts need to be distinguished. Fortunately, this
1169 * seems relatively easy, by looking at the sizes of the bursts. In
1170 * particular, we found a threshold such that only bursts with a
1171 * larger size than that threshold are apparently caused by
1172 * services or commands such as systemd or git grep. For brevity,
1173 * hereafter we call just 'large' these bursts. BFQ *does not*
1174 * weight-raise queues whose creation occurs in a large burst. In
1175 * addition, for each of these queues BFQ performs or does not perform
1176 * idling depending on which choice boosts the throughput more. The
1177 * exact choice depends on the device and request pattern at
1178 * hand.
1179 *
1180 * Unfortunately, false positives may occur while an interactive task
1181 * is starting (e.g., an application is being started). The
1182 * consequence is that the queues associated with the task do not
1183 * enjoy weight raising as expected. Fortunately these false positives
1184 * are very rare. They typically occur if some service happens to
1185 * start doing I/O exactly when the interactive task starts.
1186 *
Paolo Valente84a74682019-03-12 09:59:32 +01001187 * Turning back to the next function, it is invoked only if there are
1188 * no active queues (apart from active queues that would belong to the
1189 * same, possible burst bfqq would belong to), and it implements all
1190 * the steps needed to detect the occurrence of a large burst and to
1191 * properly mark all the queues belonging to it (so that they can then
1192 * be treated in a different way). This goal is achieved by
1193 * maintaining a "burst list" that holds, temporarily, the queues that
1194 * belong to the burst in progress. The list is then used to mark
1195 * these queues as belonging to a large burst if the burst does become
1196 * large. The main steps are the following.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001197 *
1198 * . when the very first queue is created, the queue is inserted into the
1199 * list (as it could be the first queue in a possible burst)
1200 *
1201 * . if the current burst has not yet become large, and a queue Q that does
1202 * not yet belong to the burst is activated shortly after the last time
1203 * at which a new queue entered the burst list, then the function appends
1204 * Q to the burst list
1205 *
1206 * . if, as a consequence of the previous step, the burst size reaches
1207 * the large-burst threshold, then
1208 *
1209 * . all the queues in the burst list are marked as belonging to a
1210 * large burst
1211 *
1212 * . the burst list is deleted; in fact, the burst list already served
1213 * its purpose (keeping temporarily track of the queues in a burst,
1214 * so as to be able to mark them as belonging to a large burst in the
1215 * previous sub-step), and now is not needed any more
1216 *
1217 * . the device enters a large-burst mode
1218 *
1219 * . if a queue Q that does not belong to the burst is created while
1220 * the device is in large-burst mode and shortly after the last time
1221 * at which a queue either entered the burst list or was marked as
1222 * belonging to the current large burst, then Q is immediately marked
1223 * as belonging to a large burst.
1224 *
1225 * . if a queue Q that does not belong to the burst is created a while
1226 * later, i.e., not shortly after, than the last time at which a queue
1227 * either entered the burst list or was marked as belonging to the
1228 * current large burst, then the current burst is deemed as finished and:
1229 *
1230 * . the large-burst mode is reset if set
1231 *
1232 * . the burst list is emptied
1233 *
1234 * . Q is inserted in the burst list, as Q may be the first queue
1235 * in a possible new burst (then the burst list contains just Q
1236 * after this step).
1237 */
1238static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1239{
1240 /*
1241 * If bfqq is already in the burst list or is part of a large
1242 * burst, or finally has just been split, then there is
1243 * nothing else to do.
1244 */
1245 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1246 bfq_bfqq_in_large_burst(bfqq) ||
1247 time_is_after_eq_jiffies(bfqq->split_time +
1248 msecs_to_jiffies(10)))
1249 return;
1250
1251 /*
1252 * If bfqq's creation happens late enough, or bfqq belongs to
1253 * a different group than the burst group, then the current
1254 * burst is finished, and related data structures must be
1255 * reset.
1256 *
1257 * In this respect, consider the special case where bfqq is
1258 * the very first queue created after BFQ is selected for this
1259 * device. In this case, last_ins_in_burst and
1260 * burst_parent_entity are not yet significant when we get
1261 * here. But it is easy to verify that, whether or not the
1262 * following condition is true, bfqq will end up being
1263 * inserted into the burst list. In particular the list will
1264 * happen to contain only bfqq. And this is exactly what has
1265 * to happen, as bfqq may be the first queue of the first
1266 * burst.
1267 */
1268 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1269 bfqd->bfq_burst_interval) ||
1270 bfqq->entity.parent != bfqd->burst_parent_entity) {
1271 bfqd->large_burst = false;
1272 bfq_reset_burst_list(bfqd, bfqq);
1273 goto end;
1274 }
1275
1276 /*
1277 * If we get here, then bfqq is being activated shortly after the
1278 * last queue. So, if the current burst is also large, we can mark
1279 * bfqq as belonging to this large burst immediately.
1280 */
1281 if (bfqd->large_burst) {
1282 bfq_mark_bfqq_in_large_burst(bfqq);
1283 goto end;
1284 }
1285
1286 /*
1287 * If we get here, then a large-burst state has not yet been
1288 * reached, but bfqq is being activated shortly after the last
1289 * queue. Then we add bfqq to the burst.
1290 */
1291 bfq_add_to_burst(bfqd, bfqq);
1292end:
1293 /*
1294 * At this point, bfqq either has been added to the current
1295 * burst or has caused the current burst to terminate and a
1296 * possible new burst to start. In particular, in the second
1297 * case, bfqq has become the first queue in the possible new
1298 * burst. In both cases last_ins_in_burst needs to be moved
1299 * forward.
1300 */
1301 bfqd->last_ins_in_burst = jiffies;
1302}
1303
Paolo Valenteaee69d72017-04-19 08:29:02 -06001304static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1305{
1306 struct bfq_entity *entity = &bfqq->entity;
1307
1308 return entity->budget - entity->service;
1309}
1310
1311/*
1312 * If enough samples have been computed, return the current max budget
1313 * stored in bfqd, which is dynamically updated according to the
1314 * estimated disk peak rate; otherwise return the default max budget
1315 */
1316static int bfq_max_budget(struct bfq_data *bfqd)
1317{
1318 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1319 return bfq_default_max_budget;
1320 else
1321 return bfqd->bfq_max_budget;
1322}
1323
1324/*
1325 * Return min budget, which is a fraction of the current or default
1326 * max budget (trying with 1/32)
1327 */
1328static int bfq_min_budget(struct bfq_data *bfqd)
1329{
1330 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1331 return bfq_default_max_budget / 32;
1332 else
1333 return bfqd->bfq_max_budget / 32;
1334}
1335
Paolo Valenteaee69d72017-04-19 08:29:02 -06001336/*
1337 * The next function, invoked after the input queue bfqq switches from
1338 * idle to busy, updates the budget of bfqq. The function also tells
1339 * whether the in-service queue should be expired, by returning
1340 * true. The purpose of expiring the in-service queue is to give bfqq
1341 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001342 * for preempting the in-service queue is to achieve one of the two
1343 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001344 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001345 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1346 * expired because it has remained idle. In particular, bfqq may have
1347 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001348 *
1349 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1350 * and did not make it to issue a new request before its last
1351 * request was served;
1352 *
1353 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1354 * a new request before the expiration of the idling-time.
1355 *
1356 * Even if bfqq has expired for one of the above reasons, the process
1357 * associated with the queue may be however issuing requests greedily,
1358 * and thus be sensitive to the bandwidth it receives (bfqq may have
1359 * remained idle for other reasons: CPU high load, bfqq not enjoying
1360 * idling, I/O throttling somewhere in the path from the process to
1361 * the I/O scheduler, ...). But if, after every expiration for one of
1362 * the above two reasons, bfqq has to wait for the service of at least
1363 * one full budget of another queue before being served again, then
1364 * bfqq is likely to get a much lower bandwidth or resource time than
1365 * its reserved ones. To address this issue, two countermeasures need
1366 * to be taken.
1367 *
1368 * First, the budget and the timestamps of bfqq need to be updated in
1369 * a special way on bfqq reactivation: they need to be updated as if
1370 * bfqq did not remain idle and did not expire. In fact, if they are
1371 * computed as if bfqq expired and remained idle until reactivation,
1372 * then the process associated with bfqq is treated as if, instead of
1373 * being greedy, it stopped issuing requests when bfqq remained idle,
1374 * and restarts issuing requests only on this reactivation. In other
1375 * words, the scheduler does not help the process recover the "service
1376 * hole" between bfqq expiration and reactivation. As a consequence,
1377 * the process receives a lower bandwidth than its reserved one. In
1378 * contrast, to recover this hole, the budget must be updated as if
1379 * bfqq was not expired at all before this reactivation, i.e., it must
1380 * be set to the value of the remaining budget when bfqq was
1381 * expired. Along the same line, timestamps need to be assigned the
1382 * value they had the last time bfqq was selected for service, i.e.,
1383 * before last expiration. Thus timestamps need to be back-shifted
1384 * with respect to their normal computation (see [1] for more details
1385 * on this tricky aspect).
1386 *
1387 * Secondly, to allow the process to recover the hole, the in-service
1388 * queue must be expired too, to give bfqq the chance to preempt it
1389 * immediately. In fact, if bfqq has to wait for a full budget of the
1390 * in-service queue to be completed, then it may become impossible to
1391 * let the process recover the hole, even if the back-shifted
1392 * timestamps of bfqq are lower than those of the in-service queue. If
1393 * this happens for most or all of the holes, then the process may not
1394 * receive its reserved bandwidth. In this respect, it is worth noting
1395 * that, being the service of outstanding requests unpreemptible, a
1396 * little fraction of the holes may however be unrecoverable, thereby
1397 * causing a little loss of bandwidth.
1398 *
1399 * The last important point is detecting whether bfqq does need this
1400 * bandwidth recovery. In this respect, the next function deems the
1401 * process associated with bfqq greedy, and thus allows it to recover
1402 * the hole, if: 1) the process is waiting for the arrival of a new
1403 * request (which implies that bfqq expired for one of the above two
1404 * reasons), and 2) such a request has arrived soon. The first
1405 * condition is controlled through the flag non_blocking_wait_rq,
1406 * while the second through the flag arrived_in_time. If both
1407 * conditions hold, then the function computes the budget in the
1408 * above-described special way, and signals that the in-service queue
1409 * should be expired. Timestamp back-shifting is done later in
1410 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001411 *
1412 * 2. Reduce latency. Even if timestamps are not backshifted to let
1413 * the process associated with bfqq recover a service hole, bfqq may
1414 * however happen to have, after being (re)activated, a lower finish
1415 * timestamp than the in-service queue. That is, the next budget of
1416 * bfqq may have to be completed before the one of the in-service
1417 * queue. If this is the case, then preempting the in-service queue
1418 * allows this goal to be achieved, apart from the unpreemptible,
1419 * outstanding requests mentioned above.
1420 *
1421 * Unfortunately, regardless of which of the above two goals one wants
1422 * to achieve, service trees need first to be updated to know whether
1423 * the in-service queue must be preempted. To have service trees
1424 * correctly updated, the in-service queue must be expired and
1425 * rescheduled, and bfqq must be scheduled too. This is one of the
1426 * most costly operations (in future versions, the scheduling
1427 * mechanism may be re-designed in such a way to make it possible to
1428 * know whether preemption is needed without needing to update service
1429 * trees). In addition, queue preemptions almost always cause random
1430 * I/O, and thus loss of throughput. Because of these facts, the next
1431 * function adopts the following simple scheme to avoid both costly
1432 * operations and too frequent preemptions: it requests the expiration
1433 * of the in-service queue (unconditionally) only for queues that need
1434 * to recover a hole, or that either are weight-raised or deserve to
1435 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001436 */
1437static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1438 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001439 bool arrived_in_time,
1440 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001441{
1442 struct bfq_entity *entity = &bfqq->entity;
1443
Paolo Valente218cb892019-01-29 12:06:26 +01001444 /*
1445 * In the next compound condition, we check also whether there
1446 * is some budget left, because otherwise there is no point in
1447 * trying to go on serving bfqq with this same budget: bfqq
1448 * would be expired immediately after being selected for
1449 * service. This would only cause useless overhead.
1450 */
1451 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1452 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001453 /*
1454 * We do not clear the flag non_blocking_wait_rq here, as
1455 * the latter is used in bfq_activate_bfqq to signal
1456 * that timestamps need to be back-shifted (and is
1457 * cleared right after).
1458 */
1459
1460 /*
1461 * In next assignment we rely on that either
1462 * entity->service or entity->budget are not updated
1463 * on expiration if bfqq is empty (see
1464 * __bfq_bfqq_recalc_budget). Thus both quantities
1465 * remain unchanged after such an expiration, and the
1466 * following statement therefore assigns to
1467 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001468 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001469 */
1470 entity->budget = min_t(unsigned long,
1471 bfq_bfqq_budget_left(bfqq),
1472 bfqq->max_budget);
1473
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001474 /*
1475 * At this point, we have used entity->service to get
1476 * the budget left (needed for updating
1477 * entity->budget). Thus we finally can, and have to,
1478 * reset entity->service. The latter must be reset
1479 * because bfqq would otherwise be charged again for
1480 * the service it has received during its previous
1481 * service slot(s).
1482 */
1483 entity->service = 0;
1484
Paolo Valenteaee69d72017-04-19 08:29:02 -06001485 return true;
1486 }
1487
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001488 /*
1489 * We can finally complete expiration, by setting service to 0.
1490 */
1491 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001492 entity->budget = max_t(unsigned long, bfqq->max_budget,
1493 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1494 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001495 return wr_or_deserves_wr;
1496}
1497
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001498/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001499 * Return the farthest past time instant according to jiffies
1500 * macros.
1501 */
1502static unsigned long bfq_smallest_from_now(void)
1503{
1504 return jiffies - MAX_JIFFY_OFFSET;
1505}
1506
Paolo Valente44e44a12017-04-12 18:23:12 +02001507static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1508 struct bfq_queue *bfqq,
1509 unsigned int old_wr_coeff,
1510 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001511 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001512 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001513 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001514{
1515 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1516 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001517 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001518 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001519 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1520 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1521 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001522 /*
1523 * No interactive weight raising in progress
1524 * here: assign minus infinity to
1525 * wr_start_at_switch_to_srt, to make sure
1526 * that, at the end of the soft-real-time
1527 * weight raising periods that is starting
1528 * now, no interactive weight-raising period
1529 * may be wrongly considered as still in
1530 * progress (and thus actually started by
1531 * mistake).
1532 */
1533 bfqq->wr_start_at_switch_to_srt =
1534 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001535 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1536 BFQ_SOFTRT_WEIGHT_FACTOR;
1537 bfqq->wr_cur_max_time =
1538 bfqd->bfq_wr_rt_max_time;
1539 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001540
1541 /*
1542 * If needed, further reduce budget to make sure it is
1543 * close to bfqq's backlog, so as to reduce the
1544 * scheduling-error component due to a too large
1545 * budget. Do not care about throughput consequences,
1546 * but only about latency. Finally, do not assign a
1547 * too small budget either, to avoid increasing
1548 * latency by causing too frequent expirations.
1549 */
1550 bfqq->entity.budget = min_t(unsigned long,
1551 bfqq->entity.budget,
1552 2 * bfq_min_budget(bfqd));
1553 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001554 if (interactive) { /* update wr coeff and duration */
1555 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1556 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001557 } else if (in_burst)
1558 bfqq->wr_coeff = 1;
1559 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001560 /*
1561 * The application is now or still meeting the
1562 * requirements for being deemed soft rt. We
1563 * can then correctly and safely (re)charge
1564 * the weight-raising duration for the
1565 * application with the weight-raising
1566 * duration for soft rt applications.
1567 *
1568 * In particular, doing this recharge now, i.e.,
1569 * before the weight-raising period for the
1570 * application finishes, reduces the probability
1571 * of the following negative scenario:
1572 * 1) the weight of a soft rt application is
1573 * raised at startup (as for any newly
1574 * created application),
1575 * 2) since the application is not interactive,
1576 * at a certain time weight-raising is
1577 * stopped for the application,
1578 * 3) at that time the application happens to
1579 * still have pending requests, and hence
1580 * is destined to not have a chance to be
1581 * deemed soft rt before these requests are
1582 * completed (see the comments to the
1583 * function bfq_bfqq_softrt_next_start()
1584 * for details on soft rt detection),
1585 * 4) these pending requests experience a high
1586 * latency because the application is not
1587 * weight-raised while they are pending.
1588 */
1589 if (bfqq->wr_cur_max_time !=
1590 bfqd->bfq_wr_rt_max_time) {
1591 bfqq->wr_start_at_switch_to_srt =
1592 bfqq->last_wr_start_finish;
1593
1594 bfqq->wr_cur_max_time =
1595 bfqd->bfq_wr_rt_max_time;
1596 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1597 BFQ_SOFTRT_WEIGHT_FACTOR;
1598 }
1599 bfqq->last_wr_start_finish = jiffies;
1600 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001601 }
1602}
1603
1604static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1605 struct bfq_queue *bfqq)
1606{
1607 return bfqq->dispatched == 0 &&
1608 time_is_before_jiffies(
1609 bfqq->budget_timeout +
1610 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001611}
1612
1613static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1614 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001615 int old_wr_coeff,
1616 struct request *rq,
1617 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001618{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001619 bool soft_rt, in_burst, wr_or_deserves_wr,
1620 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001621 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001622 /*
1623 * See the comments on
1624 * bfq_bfqq_update_budg_for_activation for
1625 * details on the usage of the next variable.
1626 */
1627 arrived_in_time = ktime_get_ns() <=
1628 bfqq->ttime.last_end_request +
1629 bfqd->bfq_slice_idle * 3;
1630
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001631
Paolo Valenteaee69d72017-04-19 08:29:02 -06001632 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001633 * bfqq deserves to be weight-raised if:
1634 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001635 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001636 * - it has been idle for enough time or is soft real-time,
1637 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001638 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001639 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001640 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Paolo Valente7074f072019-03-12 09:59:31 +01001641 !BFQQ_TOTALLY_SEEKY(bfqq) &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001642 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001643 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1644 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001645 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001646 wr_or_deserves_wr = bfqd->low_latency &&
1647 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001648 (bfq_bfqq_sync(bfqq) &&
1649 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001650
1651 /*
1652 * Using the last flag, update budget and check whether bfqq
1653 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001654 */
1655 bfqq_wants_to_preempt =
1656 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001657 arrived_in_time,
1658 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001659
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001660 /*
1661 * If bfqq happened to be activated in a burst, but has been
1662 * idle for much more than an interactive queue, then we
1663 * assume that, in the overall I/O initiated in the burst, the
1664 * I/O associated with bfqq is finished. So bfqq does not need
1665 * to be treated as a queue belonging to a burst
1666 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1667 * if set, and remove bfqq from the burst list if it's
1668 * there. We do not decrement burst_size, because the fact
1669 * that bfqq does not need to belong to the burst list any
1670 * more does not invalidate the fact that bfqq was created in
1671 * a burst.
1672 */
1673 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1674 idle_for_long_time &&
1675 time_is_before_jiffies(
1676 bfqq->budget_timeout +
1677 msecs_to_jiffies(10000))) {
1678 hlist_del_init(&bfqq->burst_list_node);
1679 bfq_clear_bfqq_in_large_burst(bfqq);
1680 }
1681
1682 bfq_clear_bfqq_just_created(bfqq);
1683
1684
Paolo Valenteaee69d72017-04-19 08:29:02 -06001685 if (!bfq_bfqq_IO_bound(bfqq)) {
1686 if (arrived_in_time) {
1687 bfqq->requests_within_timer++;
1688 if (bfqq->requests_within_timer >=
1689 bfqd->bfq_requests_within_timer)
1690 bfq_mark_bfqq_IO_bound(bfqq);
1691 } else
1692 bfqq->requests_within_timer = 0;
1693 }
1694
Paolo Valente44e44a12017-04-12 18:23:12 +02001695 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001696 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1697 /* wraparound */
1698 bfqq->split_time =
1699 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001700
Arianna Avanzini36eca892017-04-12 18:23:16 +02001701 if (time_is_before_jiffies(bfqq->split_time +
1702 bfqd->bfq_wr_min_idle_time)) {
1703 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1704 old_wr_coeff,
1705 wr_or_deserves_wr,
1706 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001707 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001708 soft_rt);
1709
1710 if (old_wr_coeff != bfqq->wr_coeff)
1711 bfqq->entity.prio_changed = 1;
1712 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001713 }
1714
Paolo Valente77b7dce2017-04-12 18:23:13 +02001715 bfqq->last_idle_bklogged = jiffies;
1716 bfqq->service_from_backlogged = 0;
1717 bfq_clear_bfqq_softrt_update(bfqq);
1718
Paolo Valenteaee69d72017-04-19 08:29:02 -06001719 bfq_add_bfqq_busy(bfqd, bfqq);
1720
1721 /*
1722 * Expire in-service queue only if preemption may be needed
1723 * for guarantees. In this respect, the function
1724 * next_queue_may_preempt just checks a simple, necessary
1725 * condition, and not a sufficient condition based on
1726 * timestamps. In fact, for the latter condition to be
1727 * evaluated, timestamps would need first to be updated, and
1728 * this operation is quite costly (see the comments on the
1729 * function bfq_bfqq_update_budg_for_activation).
1730 */
1731 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001732 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001733 next_queue_may_preempt(bfqd))
1734 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1735 false, BFQQE_PREEMPTED);
1736}
1737
1738static void bfq_add_request(struct request *rq)
1739{
1740 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1741 struct bfq_data *bfqd = bfqq->bfqd;
1742 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001743 unsigned int old_wr_coeff = bfqq->wr_coeff;
1744 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001745
1746 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1747 bfqq->queued[rq_is_sync(rq)]++;
1748 bfqd->queued++;
1749
Paolo Valente2341d6622019-03-12 09:59:29 +01001750 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1751 /*
1752 * Periodically reset inject limit, to make sure that
1753 * the latter eventually drops in case workload
1754 * changes, see step (3) in the comments on
1755 * bfq_update_inject_limit().
1756 */
1757 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1758 msecs_to_jiffies(1000))) {
1759 /* invalidate baseline total service time */
1760 bfqq->last_serv_time_ns = 0;
1761
1762 /*
1763 * Reset pointer in case we are waiting for
1764 * some request completion.
1765 */
1766 bfqd->waited_rq = NULL;
1767
1768 /*
1769 * If bfqq has a short think time, then start
1770 * by setting the inject limit to 0
1771 * prudentially, because the service time of
1772 * an injected I/O request may be higher than
1773 * the think time of bfqq, and therefore, if
1774 * one request was injected when bfqq remains
1775 * empty, this injected request might delay
1776 * the service of the next I/O request for
1777 * bfqq significantly. In case bfqq can
1778 * actually tolerate some injection, then the
1779 * adaptive update will however raise the
1780 * limit soon. This lucky circumstance holds
1781 * exactly because bfqq has a short think
1782 * time, and thus, after remaining empty, is
1783 * likely to get new I/O enqueued---and then
1784 * completed---before being expired. This is
1785 * the very pattern that gives the
1786 * limit-update algorithm the chance to
1787 * measure the effect of injection on request
1788 * service times, and then to update the limit
1789 * accordingly.
1790 *
1791 * On the opposite end, if bfqq has a long
1792 * think time, then start directly by 1,
1793 * because:
1794 * a) on the bright side, keeping at most one
1795 * request in service in the drive is unlikely
1796 * to cause any harm to the latency of bfqq's
1797 * requests, as the service time of a single
1798 * request is likely to be lower than the
1799 * think time of bfqq;
1800 * b) on the downside, after becoming empty,
1801 * bfqq is likely to expire before getting its
1802 * next request. With this request arrival
1803 * pattern, it is very hard to sample total
1804 * service times and update the inject limit
1805 * accordingly (see comments on
1806 * bfq_update_inject_limit()). So the limit is
1807 * likely to be never, or at least seldom,
1808 * updated. As a consequence, by setting the
1809 * limit to 1, we avoid that no injection ever
1810 * occurs with bfqq. On the downside, this
1811 * proactive step further reduces chances to
1812 * actually compute the baseline total service
1813 * time. Thus it reduces chances to execute the
1814 * limit-update algorithm and possibly raise the
1815 * limit to more than 1.
1816 */
1817 if (bfq_bfqq_has_short_ttime(bfqq))
1818 bfqq->inject_limit = 0;
1819 else
1820 bfqq->inject_limit = 1;
1821 bfqq->decrease_time_jif = jiffies;
1822 }
1823
1824 /*
1825 * The following conditions must hold to setup a new
1826 * sampling of total service time, and then a new
1827 * update of the inject limit:
1828 * - bfqq is in service, because the total service
1829 * time is evaluated only for the I/O requests of
1830 * the queues in service;
1831 * - this is the right occasion to compute or to
1832 * lower the baseline total service time, because
1833 * there are actually no requests in the drive,
1834 * or
1835 * the baseline total service time is available, and
1836 * this is the right occasion to compute the other
1837 * quantity needed to update the inject limit, i.e.,
1838 * the total service time caused by the amount of
1839 * injection allowed by the current value of the
1840 * limit. It is the right occasion because injection
1841 * has actually been performed during the service
1842 * hole, and there are still in-flight requests,
1843 * which are very likely to be exactly the injected
1844 * requests, or part of them;
1845 * - the minimum interval for sampling the total
1846 * service time and updating the inject limit has
1847 * elapsed.
1848 */
1849 if (bfqq == bfqd->in_service_queue &&
1850 (bfqd->rq_in_driver == 0 ||
1851 (bfqq->last_serv_time_ns > 0 &&
1852 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
1853 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1854 msecs_to_jiffies(100))) {
1855 bfqd->last_empty_occupied_ns = ktime_get_ns();
1856 /*
1857 * Start the state machine for measuring the
1858 * total service time of rq: setting
1859 * wait_dispatch will cause bfqd->waited_rq to
1860 * be set when rq will be dispatched.
1861 */
1862 bfqd->wait_dispatch = true;
1863 bfqd->rqs_injected = false;
1864 }
1865 }
1866
Paolo Valenteaee69d72017-04-19 08:29:02 -06001867 elv_rb_add(&bfqq->sort_list, rq);
1868
1869 /*
1870 * Check if this request is a better next-serve candidate.
1871 */
1872 prev = bfqq->next_rq;
1873 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1874 bfqq->next_rq = next_rq;
1875
Arianna Avanzini36eca892017-04-12 18:23:16 +02001876 /*
1877 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001878 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02001879 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001880 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02001881 bfq_pos_tree_add_move(bfqd, bfqq);
1882
Paolo Valenteaee69d72017-04-19 08:29:02 -06001883 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001884 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1885 rq, &interactive);
1886 else {
1887 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1888 time_is_before_jiffies(
1889 bfqq->last_wr_start_finish +
1890 bfqd->bfq_wr_min_inter_arr_async)) {
1891 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1892 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1893
Paolo Valentecfd69712017-04-12 18:23:15 +02001894 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001895 bfqq->entity.prio_changed = 1;
1896 }
1897 if (prev != bfqq->next_rq)
1898 bfq_updated_next_req(bfqd, bfqq);
1899 }
1900
1901 /*
1902 * Assign jiffies to last_wr_start_finish in the following
1903 * cases:
1904 *
1905 * . if bfqq is not going to be weight-raised, because, for
1906 * non weight-raised queues, last_wr_start_finish stores the
1907 * arrival time of the last request; as of now, this piece
1908 * of information is used only for deciding whether to
1909 * weight-raise async queues
1910 *
1911 * . if bfqq is not weight-raised, because, if bfqq is now
1912 * switching to weight-raised, then last_wr_start_finish
1913 * stores the time when weight-raising starts
1914 *
1915 * . if bfqq is interactive, because, regardless of whether
1916 * bfqq is currently weight-raised, the weight-raising
1917 * period must start or restart (this case is considered
1918 * separately because it is not detected by the above
1919 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001920 *
1921 * last_wr_start_finish has to be updated also if bfqq is soft
1922 * real-time, because the weight-raising period is constantly
1923 * restarted on idle-to-busy transitions for these queues, but
1924 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1925 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001926 */
1927 if (bfqd->low_latency &&
1928 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1929 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001930}
1931
1932static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1933 struct bio *bio,
1934 struct request_queue *q)
1935{
1936 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1937
1938
1939 if (bfqq)
1940 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1941
1942 return NULL;
1943}
1944
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001945static sector_t get_sdist(sector_t last_pos, struct request *rq)
1946{
1947 if (last_pos)
1948 return abs(blk_rq_pos(rq) - last_pos);
1949
1950 return 0;
1951}
1952
Paolo Valenteaee69d72017-04-19 08:29:02 -06001953#if 0 /* Still not clear if we can do without next two functions */
1954static void bfq_activate_request(struct request_queue *q, struct request *rq)
1955{
1956 struct bfq_data *bfqd = q->elevator->elevator_data;
1957
1958 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001959}
1960
1961static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1962{
1963 struct bfq_data *bfqd = q->elevator->elevator_data;
1964
1965 bfqd->rq_in_driver--;
1966}
1967#endif
1968
1969static void bfq_remove_request(struct request_queue *q,
1970 struct request *rq)
1971{
1972 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1973 struct bfq_data *bfqd = bfqq->bfqd;
1974 const int sync = rq_is_sync(rq);
1975
1976 if (bfqq->next_rq == rq) {
1977 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1978 bfq_updated_next_req(bfqd, bfqq);
1979 }
1980
1981 if (rq->queuelist.prev != &rq->queuelist)
1982 list_del_init(&rq->queuelist);
1983 bfqq->queued[sync]--;
1984 bfqd->queued--;
1985 elv_rb_del(&bfqq->sort_list, rq);
1986
1987 elv_rqhash_del(q, rq);
1988 if (q->last_merge == rq)
1989 q->last_merge = NULL;
1990
1991 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1992 bfqq->next_rq = NULL;
1993
1994 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001995 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001996 /*
1997 * bfqq emptied. In normal operation, when
1998 * bfqq is empty, bfqq->entity.service and
1999 * bfqq->entity.budget must contain,
2000 * respectively, the service received and the
2001 * budget used last time bfqq emptied. These
2002 * facts do not hold in this case, as at least
2003 * this last removal occurred while bfqq is
2004 * not in service. To avoid inconsistencies,
2005 * reset both bfqq->entity.service and
2006 * bfqq->entity.budget, if bfqq has still a
2007 * process that may issue I/O requests to it.
2008 */
2009 bfqq->entity.budget = bfqq->entity.service = 0;
2010 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002011
2012 /*
2013 * Remove queue from request-position tree as it is empty.
2014 */
2015 if (bfqq->pos_root) {
2016 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2017 bfqq->pos_root = NULL;
2018 }
Paolo Valente05e90282017-12-20 12:38:31 +01002019 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002020 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2021 if (unlikely(!bfqd->nonrot_with_queueing))
2022 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002023 }
2024
2025 if (rq->cmd_flags & REQ_META)
2026 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002027
Paolo Valenteaee69d72017-04-19 08:29:02 -06002028}
2029
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002030static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2031 unsigned int nr_segs)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002032{
2033 struct request_queue *q = hctx->queue;
2034 struct bfq_data *bfqd = q->elevator->elevator_data;
2035 struct request *free = NULL;
2036 /*
2037 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2038 * store its return value for later use, to avoid nesting
2039 * queue_lock inside the bfqd->lock. We assume that the bic
2040 * returned by bfq_bic_lookup does not go away before
2041 * bfqd->lock is taken.
2042 */
2043 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2044 bool ret;
2045
2046 spin_lock_irq(&bfqd->lock);
2047
2048 if (bic)
2049 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2050 else
2051 bfqd->bio_bfqq = NULL;
2052 bfqd->bio_bic = bic;
2053
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002054 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002055
2056 if (free)
2057 blk_mq_free_request(free);
2058 spin_unlock_irq(&bfqd->lock);
2059
2060 return ret;
2061}
2062
2063static int bfq_request_merge(struct request_queue *q, struct request **req,
2064 struct bio *bio)
2065{
2066 struct bfq_data *bfqd = q->elevator->elevator_data;
2067 struct request *__rq;
2068
2069 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2070 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2071 *req = __rq;
2072 return ELEVATOR_FRONT_MERGE;
2073 }
2074
2075 return ELEVATOR_NO_MERGE;
2076}
2077
Paolo Valente18e5a572018-05-04 19:17:01 +02002078static struct bfq_queue *bfq_init_rq(struct request *rq);
2079
Paolo Valenteaee69d72017-04-19 08:29:02 -06002080static void bfq_request_merged(struct request_queue *q, struct request *req,
2081 enum elv_merge type)
2082{
2083 if (type == ELEVATOR_FRONT_MERGE &&
2084 rb_prev(&req->rb_node) &&
2085 blk_rq_pos(req) <
2086 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2087 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002088 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002089 struct bfq_data *bfqd = bfqq->bfqd;
2090 struct request *prev, *next_rq;
2091
2092 /* Reposition request in its sort_list */
2093 elv_rb_del(&bfqq->sort_list, req);
2094 elv_rb_add(&bfqq->sort_list, req);
2095
2096 /* Choose next request to be served for bfqq */
2097 prev = bfqq->next_rq;
2098 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2099 bfqd->last_position);
2100 bfqq->next_rq = next_rq;
2101 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002102 * If next_rq changes, update both the queue's budget to
2103 * fit the new request and the queue's position in its
2104 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002105 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002106 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002107 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002108 /*
2109 * See comments on bfq_pos_tree_add_move() for
2110 * the unlikely().
2111 */
2112 if (unlikely(!bfqd->nonrot_with_queueing))
2113 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002114 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002115 }
2116}
2117
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002118/*
2119 * This function is called to notify the scheduler that the requests
2120 * rq and 'next' have been merged, with 'next' going away. BFQ
2121 * exploits this hook to address the following issue: if 'next' has a
2122 * fifo_time lower that rq, then the fifo_time of rq must be set to
2123 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002124 *
2125 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2126 * on that rq is picked from the hash table q->elevator->hash, which,
2127 * in its turn, is filled only with I/O requests present in
2128 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2129 * the function that fills this hash table (elv_rqhash_add) is called
2130 * only by bfq_insert_request.
2131 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002132static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2133 struct request *next)
2134{
Paolo Valente18e5a572018-05-04 19:17:01 +02002135 struct bfq_queue *bfqq = bfq_init_rq(rq),
2136 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002137
Paolo Valenteaee69d72017-04-19 08:29:02 -06002138 /*
2139 * If next and rq belong to the same bfq_queue and next is older
2140 * than rq, then reposition rq in the fifo (by substituting next
2141 * with rq). Otherwise, if next and rq belong to different
2142 * bfq_queues, never reposition rq: in fact, we would have to
2143 * reposition it with respect to next's position in its own fifo,
2144 * which would most certainly be too expensive with respect to
2145 * the benefits.
2146 */
2147 if (bfqq == next_bfqq &&
2148 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2149 next->fifo_time < rq->fifo_time) {
2150 list_del_init(&rq->queuelist);
2151 list_replace_init(&next->queuelist, &rq->queuelist);
2152 rq->fifo_time = next->fifo_time;
2153 }
2154
2155 if (bfqq->next_rq == next)
2156 bfqq->next_rq = rq;
2157
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002158 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002159}
2160
Paolo Valente44e44a12017-04-12 18:23:12 +02002161/* Must be called with bfqq != NULL */
2162static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2163{
Paolo Valentecfd69712017-04-12 18:23:15 +02002164 if (bfq_bfqq_busy(bfqq))
2165 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002166 bfqq->wr_coeff = 1;
2167 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002168 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002169 /*
2170 * Trigger a weight change on the next invocation of
2171 * __bfq_entity_update_weight_prio.
2172 */
2173 bfqq->entity.prio_changed = 1;
2174}
2175
Paolo Valenteea25da42017-04-19 08:48:24 -06002176void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2177 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002178{
2179 int i, j;
2180
2181 for (i = 0; i < 2; i++)
2182 for (j = 0; j < IOPRIO_BE_NR; j++)
2183 if (bfqg->async_bfqq[i][j])
2184 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2185 if (bfqg->async_idle_bfqq)
2186 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2187}
2188
2189static void bfq_end_wr(struct bfq_data *bfqd)
2190{
2191 struct bfq_queue *bfqq;
2192
2193 spin_lock_irq(&bfqd->lock);
2194
2195 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2196 bfq_bfqq_end_wr(bfqq);
2197 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2198 bfq_bfqq_end_wr(bfqq);
2199 bfq_end_wr_async(bfqd);
2200
2201 spin_unlock_irq(&bfqd->lock);
2202}
2203
Arianna Avanzini36eca892017-04-12 18:23:16 +02002204static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2205{
2206 if (request)
2207 return blk_rq_pos(io_struct);
2208 else
2209 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2210}
2211
2212static int bfq_rq_close_to_sector(void *io_struct, bool request,
2213 sector_t sector)
2214{
2215 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2216 BFQQ_CLOSE_THR;
2217}
2218
2219static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2220 struct bfq_queue *bfqq,
2221 sector_t sector)
2222{
2223 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2224 struct rb_node *parent, *node;
2225 struct bfq_queue *__bfqq;
2226
2227 if (RB_EMPTY_ROOT(root))
2228 return NULL;
2229
2230 /*
2231 * First, if we find a request starting at the end of the last
2232 * request, choose it.
2233 */
2234 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2235 if (__bfqq)
2236 return __bfqq;
2237
2238 /*
2239 * If the exact sector wasn't found, the parent of the NULL leaf
2240 * will contain the closest sector (rq_pos_tree sorted by
2241 * next_request position).
2242 */
2243 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2244 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2245 return __bfqq;
2246
2247 if (blk_rq_pos(__bfqq->next_rq) < sector)
2248 node = rb_next(&__bfqq->pos_node);
2249 else
2250 node = rb_prev(&__bfqq->pos_node);
2251 if (!node)
2252 return NULL;
2253
2254 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2255 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2256 return __bfqq;
2257
2258 return NULL;
2259}
2260
2261static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2262 struct bfq_queue *cur_bfqq,
2263 sector_t sector)
2264{
2265 struct bfq_queue *bfqq;
2266
2267 /*
2268 * We shall notice if some of the queues are cooperating,
2269 * e.g., working closely on the same area of the device. In
2270 * that case, we can group them together and: 1) don't waste
2271 * time idling, and 2) serve the union of their requests in
2272 * the best possible order for throughput.
2273 */
2274 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2275 if (!bfqq || bfqq == cur_bfqq)
2276 return NULL;
2277
2278 return bfqq;
2279}
2280
2281static struct bfq_queue *
2282bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2283{
2284 int process_refs, new_process_refs;
2285 struct bfq_queue *__bfqq;
2286
2287 /*
2288 * If there are no process references on the new_bfqq, then it is
2289 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2290 * may have dropped their last reference (not just their last process
2291 * reference).
2292 */
2293 if (!bfqq_process_refs(new_bfqq))
2294 return NULL;
2295
2296 /* Avoid a circular list and skip interim queue merges. */
2297 while ((__bfqq = new_bfqq->new_bfqq)) {
2298 if (__bfqq == bfqq)
2299 return NULL;
2300 new_bfqq = __bfqq;
2301 }
2302
2303 process_refs = bfqq_process_refs(bfqq);
2304 new_process_refs = bfqq_process_refs(new_bfqq);
2305 /*
2306 * If the process for the bfqq has gone away, there is no
2307 * sense in merging the queues.
2308 */
2309 if (process_refs == 0 || new_process_refs == 0)
2310 return NULL;
2311
2312 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2313 new_bfqq->pid);
2314
2315 /*
2316 * Merging is just a redirection: the requests of the process
2317 * owning one of the two queues are redirected to the other queue.
2318 * The latter queue, in its turn, is set as shared if this is the
2319 * first time that the requests of some process are redirected to
2320 * it.
2321 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002322 * We redirect bfqq to new_bfqq and not the opposite, because
2323 * we are in the context of the process owning bfqq, thus we
2324 * have the io_cq of this process. So we can immediately
2325 * configure this io_cq to redirect the requests of the
2326 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2327 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002328 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002329 * Anyway, even in case new_bfqq coincides with the in-service
2330 * queue, redirecting requests the in-service queue is the
2331 * best option, as we feed the in-service queue with new
2332 * requests close to the last request served and, by doing so,
2333 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002334 */
2335 bfqq->new_bfqq = new_bfqq;
2336 new_bfqq->ref += process_refs;
2337 return new_bfqq;
2338}
2339
2340static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2341 struct bfq_queue *new_bfqq)
2342{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002343 if (bfq_too_late_for_merging(new_bfqq))
2344 return false;
2345
Arianna Avanzini36eca892017-04-12 18:23:16 +02002346 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2347 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2348 return false;
2349
2350 /*
2351 * If either of the queues has already been detected as seeky,
2352 * then merging it with the other queue is unlikely to lead to
2353 * sequential I/O.
2354 */
2355 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2356 return false;
2357
2358 /*
2359 * Interleaved I/O is known to be done by (some) applications
2360 * only for reads, so it does not make sense to merge async
2361 * queues.
2362 */
2363 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2364 return false;
2365
2366 return true;
2367}
2368
2369/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002370 * Attempt to schedule a merge of bfqq with the currently in-service
2371 * queue or with a close queue among the scheduled queues. Return
2372 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2373 * structure otherwise.
2374 *
2375 * The OOM queue is not allowed to participate to cooperation: in fact, since
2376 * the requests temporarily redirected to the OOM queue could be redirected
2377 * again to dedicated queues at any time, the state needed to correctly
2378 * handle merging with the OOM queue would be quite complex and expensive
2379 * to maintain. Besides, in such a critical condition as an out of memory,
2380 * the benefits of queue merging may be little relevant, or even negligible.
2381 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002382 * WARNING: queue merging may impair fairness among non-weight raised
2383 * queues, for at least two reasons: 1) the original weight of a
2384 * merged queue may change during the merged state, 2) even being the
2385 * weight the same, a merged queue may be bloated with many more
2386 * requests than the ones produced by its originally-associated
2387 * process.
2388 */
2389static struct bfq_queue *
2390bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2391 void *io_struct, bool request)
2392{
2393 struct bfq_queue *in_service_bfqq, *new_bfqq;
2394
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002395 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002396 * Do not perform queue merging if the device is non
2397 * rotational and performs internal queueing. In fact, such a
2398 * device reaches a high speed through internal parallelism
2399 * and pipelining. This means that, to reach a high
2400 * throughput, it must have many requests enqueued at the same
2401 * time. But, in this configuration, the internal scheduling
2402 * algorithm of the device does exactly the job of queue
2403 * merging: it reorders requests so as to obtain as much as
2404 * possible a sequential I/O pattern. As a consequence, with
2405 * the workload generated by processes doing interleaved I/O,
2406 * the throughput reached by the device is likely to be the
2407 * same, with and without queue merging.
2408 *
2409 * Disabling merging also provides a remarkable benefit in
2410 * terms of throughput. Merging tends to make many workloads
2411 * artificially more uneven, because of shared queues
2412 * remaining non empty for incomparably more time than
2413 * non-merged queues. This may accentuate workload
2414 * asymmetries. For example, if one of the queues in a set of
2415 * merged queues has a higher weight than a normal queue, then
2416 * the shared queue may inherit such a high weight and, by
2417 * staying almost always active, may force BFQ to perform I/O
2418 * plugging most of the time. This evidently makes it harder
2419 * for BFQ to let the device reach a high throughput.
2420 *
2421 * Finally, the likely() macro below is not used because one
2422 * of the two branches is more likely than the other, but to
2423 * have the code path after the following if() executed as
2424 * fast as possible for the case of a non rotational device
2425 * with queueing. We want it because this is the fastest kind
2426 * of device. On the opposite end, the likely() may lengthen
2427 * the execution time of BFQ for the case of slower devices
2428 * (rotational or at least without queueing). But in this case
2429 * the execution time of BFQ matters very little, if not at
2430 * all.
2431 */
2432 if (likely(bfqd->nonrot_with_queueing))
2433 return NULL;
2434
2435 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002436 * Prevent bfqq from being merged if it has been created too
2437 * long ago. The idea is that true cooperating processes, and
2438 * thus their associated bfq_queues, are supposed to be
2439 * created shortly after each other. This is the case, e.g.,
2440 * for KVM/QEMU and dump I/O threads. Basing on this
2441 * assumption, the following filtering greatly reduces the
2442 * probability that two non-cooperating processes, which just
2443 * happen to do close I/O for some short time interval, have
2444 * their queues merged by mistake.
2445 */
2446 if (bfq_too_late_for_merging(bfqq))
2447 return NULL;
2448
Arianna Avanzini36eca892017-04-12 18:23:16 +02002449 if (bfqq->new_bfqq)
2450 return bfqq->new_bfqq;
2451
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002452 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002453 return NULL;
2454
2455 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002456 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002457 return NULL;
2458
2459 in_service_bfqq = bfqd->in_service_queue;
2460
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002461 if (in_service_bfqq && in_service_bfqq != bfqq &&
2462 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002463 bfq_rq_close_to_sector(io_struct, request,
2464 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002465 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2466 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2467 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2468 if (new_bfqq)
2469 return new_bfqq;
2470 }
2471 /*
2472 * Check whether there is a cooperator among currently scheduled
2473 * queues. The only thing we need is that the bio/request is not
2474 * NULL, as we need it to establish whether a cooperator exists.
2475 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002476 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2477 bfq_io_struct_pos(io_struct, request));
2478
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002479 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002480 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2481 return bfq_setup_merge(bfqq, new_bfqq);
2482
2483 return NULL;
2484}
2485
2486static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2487{
2488 struct bfq_io_cq *bic = bfqq->bic;
2489
2490 /*
2491 * If !bfqq->bic, the queue is already shared or its requests
2492 * have already been redirected to a shared queue; both idle window
2493 * and weight raising state have already been saved. Do nothing.
2494 */
2495 if (!bic)
2496 return;
2497
Francesco Pollicinofffca082019-03-12 09:59:34 +01002498 bic->saved_weight = bfqq->entity.orig_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002499 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002500 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002501 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002502 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2503 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002504 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002505 !bfq_bfqq_in_large_burst(bfqq) &&
2506 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002507 /*
2508 * bfqq being merged right after being created: bfqq
2509 * would have deserved interactive weight raising, but
2510 * did not make it to be set in a weight-raised state,
2511 * because of this early merge. Store directly the
2512 * weight-raising state that would have been assigned
2513 * to bfqq, so that to avoid that bfqq unjustly fails
2514 * to enjoy weight raising if split soon.
2515 */
2516 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2517 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2518 bic->saved_last_wr_start_finish = jiffies;
2519 } else {
2520 bic->saved_wr_coeff = bfqq->wr_coeff;
2521 bic->saved_wr_start_at_switch_to_srt =
2522 bfqq->wr_start_at_switch_to_srt;
2523 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2524 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2525 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002526}
2527
Arianna Avanzini36eca892017-04-12 18:23:16 +02002528static void
2529bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2530 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2531{
2532 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2533 (unsigned long)new_bfqq->pid);
2534 /* Save weight raising and idle window of the merged queues */
2535 bfq_bfqq_save_state(bfqq);
2536 bfq_bfqq_save_state(new_bfqq);
2537 if (bfq_bfqq_IO_bound(bfqq))
2538 bfq_mark_bfqq_IO_bound(new_bfqq);
2539 bfq_clear_bfqq_IO_bound(bfqq);
2540
2541 /*
2542 * If bfqq is weight-raised, then let new_bfqq inherit
2543 * weight-raising. To reduce false positives, neglect the case
2544 * where bfqq has just been created, but has not yet made it
2545 * to be weight-raised (which may happen because EQM may merge
2546 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002547 * time for bfqq). Handling this case would however be very
2548 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002549 */
2550 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2551 new_bfqq->wr_coeff = bfqq->wr_coeff;
2552 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2553 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2554 new_bfqq->wr_start_at_switch_to_srt =
2555 bfqq->wr_start_at_switch_to_srt;
2556 if (bfq_bfqq_busy(new_bfqq))
2557 bfqd->wr_busy_queues++;
2558 new_bfqq->entity.prio_changed = 1;
2559 }
2560
2561 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2562 bfqq->wr_coeff = 1;
2563 bfqq->entity.prio_changed = 1;
2564 if (bfq_bfqq_busy(bfqq))
2565 bfqd->wr_busy_queues--;
2566 }
2567
2568 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2569 bfqd->wr_busy_queues);
2570
2571 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002572 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2573 */
2574 bic_set_bfqq(bic, new_bfqq, 1);
2575 bfq_mark_bfqq_coop(new_bfqq);
2576 /*
2577 * new_bfqq now belongs to at least two bics (it is a shared queue):
2578 * set new_bfqq->bic to NULL. bfqq either:
2579 * - does not belong to any bic any more, and hence bfqq->bic must
2580 * be set to NULL, or
2581 * - is a queue whose owning bics have already been redirected to a
2582 * different queue, hence the queue is destined to not belong to
2583 * any bic soon and bfqq->bic is already NULL (therefore the next
2584 * assignment causes no harm).
2585 */
2586 new_bfqq->bic = NULL;
Francesco Pollicino1e664132019-03-12 09:59:33 +01002587 /*
2588 * If the queue is shared, the pid is the pid of one of the associated
2589 * processes. Which pid depends on the exact sequence of merge events
2590 * the queue underwent. So printing such a pid is useless and confusing
2591 * because it reports a random pid between those of the associated
2592 * processes.
2593 * We mark such a queue with a pid -1, and then print SHARED instead of
2594 * a pid in logging messages.
2595 */
2596 new_bfqq->pid = -1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002597 bfqq->bic = NULL;
2598 /* release process reference to bfqq */
2599 bfq_put_queue(bfqq);
2600}
2601
Paolo Valenteaee69d72017-04-19 08:29:02 -06002602static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2603 struct bio *bio)
2604{
2605 struct bfq_data *bfqd = q->elevator->elevator_data;
2606 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002607 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002608
2609 /*
2610 * Disallow merge of a sync bio into an async request.
2611 */
2612 if (is_sync && !rq_is_sync(rq))
2613 return false;
2614
2615 /*
2616 * Lookup the bfqq that this bio will be queued with. Allow
2617 * merge only if rq is queued there.
2618 */
2619 if (!bfqq)
2620 return false;
2621
Arianna Avanzini36eca892017-04-12 18:23:16 +02002622 /*
2623 * We take advantage of this function to perform an early merge
2624 * of the queues of possible cooperating processes.
2625 */
2626 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2627 if (new_bfqq) {
2628 /*
2629 * bic still points to bfqq, then it has not yet been
2630 * redirected to some other bfq_queue, and a queue
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02002631 * merge between bfqq and new_bfqq can be safely
2632 * fulfilled, i.e., bic can be redirected to new_bfqq
Arianna Avanzini36eca892017-04-12 18:23:16 +02002633 * and bfqq can be put.
2634 */
2635 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2636 new_bfqq);
2637 /*
2638 * If we get here, bio will be queued into new_queue,
2639 * so use new_bfqq to decide whether bio and rq can be
2640 * merged.
2641 */
2642 bfqq = new_bfqq;
2643
2644 /*
2645 * Change also bqfd->bio_bfqq, as
2646 * bfqd->bio_bic now points to new_bfqq, and
2647 * this function may be invoked again (and then may
2648 * use again bqfd->bio_bfqq).
2649 */
2650 bfqd->bio_bfqq = bfqq;
2651 }
2652
Paolo Valenteaee69d72017-04-19 08:29:02 -06002653 return bfqq == RQ_BFQQ(rq);
2654}
2655
Paolo Valente44e44a12017-04-12 18:23:12 +02002656/*
2657 * Set the maximum time for the in-service queue to consume its
2658 * budget. This prevents seeky processes from lowering the throughput.
2659 * In practice, a time-slice service scheme is used with seeky
2660 * processes.
2661 */
2662static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2663 struct bfq_queue *bfqq)
2664{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002665 unsigned int timeout_coeff;
2666
2667 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2668 timeout_coeff = 1;
2669 else
2670 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2671
Paolo Valente44e44a12017-04-12 18:23:12 +02002672 bfqd->last_budget_start = ktime_get();
2673
2674 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002675 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002676}
2677
Paolo Valenteaee69d72017-04-19 08:29:02 -06002678static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2679 struct bfq_queue *bfqq)
2680{
2681 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002682 bfq_clear_bfqq_fifo_expire(bfqq);
2683
2684 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2685
Paolo Valente77b7dce2017-04-12 18:23:13 +02002686 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2687 bfqq->wr_coeff > 1 &&
2688 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2689 time_is_before_jiffies(bfqq->budget_timeout)) {
2690 /*
2691 * For soft real-time queues, move the start
2692 * of the weight-raising period forward by the
2693 * time the queue has not received any
2694 * service. Otherwise, a relatively long
2695 * service delay is likely to cause the
2696 * weight-raising period of the queue to end,
2697 * because of the short duration of the
2698 * weight-raising period of a soft real-time
2699 * queue. It is worth noting that this move
2700 * is not so dangerous for the other queues,
2701 * because soft real-time queues are not
2702 * greedy.
2703 *
2704 * To not add a further variable, we use the
2705 * overloaded field budget_timeout to
2706 * determine for how long the queue has not
2707 * received service, i.e., how much time has
2708 * elapsed since the queue expired. However,
2709 * this is a little imprecise, because
2710 * budget_timeout is set to jiffies if bfqq
2711 * not only expires, but also remains with no
2712 * request.
2713 */
2714 if (time_after(bfqq->budget_timeout,
2715 bfqq->last_wr_start_finish))
2716 bfqq->last_wr_start_finish +=
2717 jiffies - bfqq->budget_timeout;
2718 else
2719 bfqq->last_wr_start_finish = jiffies;
2720 }
2721
Paolo Valente44e44a12017-04-12 18:23:12 +02002722 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002723 bfq_log_bfqq(bfqd, bfqq,
2724 "set_in_service_queue, cur-budget = %d",
2725 bfqq->entity.budget);
2726 }
2727
2728 bfqd->in_service_queue = bfqq;
2729}
2730
2731/*
2732 * Get and set a new queue for service.
2733 */
2734static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2735{
2736 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2737
2738 __bfq_set_in_service_queue(bfqd, bfqq);
2739 return bfqq;
2740}
2741
Paolo Valenteaee69d72017-04-19 08:29:02 -06002742static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2743{
2744 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002745 u32 sl;
2746
Paolo Valenteaee69d72017-04-19 08:29:02 -06002747 bfq_mark_bfqq_wait_request(bfqq);
2748
2749 /*
2750 * We don't want to idle for seeks, but we do want to allow
2751 * fair distribution of slice time for a process doing back-to-back
2752 * seeks. So allow a little bit of time for him to submit a new rq.
2753 */
2754 sl = bfqd->bfq_slice_idle;
2755 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002756 * Unless the queue is being weight-raised or the scenario is
2757 * asymmetric, grant only minimum idle time if the queue
2758 * is seeky. A long idling is preserved for a weight-raised
2759 * queue, or, more in general, in an asymmetric scenario,
2760 * because a long idling is needed for guaranteeing to a queue
2761 * its reserved share of the throughput (in particular, it is
2762 * needed if the queue has a higher weight than some other
2763 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002764 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002765 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01002766 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002767 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01002768 else if (bfqq->wr_coeff > 1)
2769 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002770
2771 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01002772 bfqd->last_idling_start_jiffies = jiffies;
2773
Paolo Valenteaee69d72017-04-19 08:29:02 -06002774 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2775 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002776 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002777}
2778
2779/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002780 * In autotuning mode, max_budget is dynamically recomputed as the
2781 * amount of sectors transferred in timeout at the estimated peak
2782 * rate. This enables BFQ to utilize a full timeslice with a full
2783 * budget, even if the in-service queue is served at peak rate. And
2784 * this maximises throughput with sequential workloads.
2785 */
2786static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2787{
2788 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2789 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2790}
2791
Paolo Valente44e44a12017-04-12 18:23:12 +02002792/*
2793 * Update parameters related to throughput and responsiveness, as a
2794 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002795 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002796 */
2797static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2798{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002799 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002800 bfqd->bfq_max_budget =
2801 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002802 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002803 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002804}
2805
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002806static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2807 struct request *rq)
2808{
2809 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2810 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2811 bfqd->peak_rate_samples = 1;
2812 bfqd->sequential_samples = 0;
2813 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2814 blk_rq_sectors(rq);
2815 } else /* no new rq dispatched, just reset the number of samples */
2816 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2817
2818 bfq_log(bfqd,
2819 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2820 bfqd->peak_rate_samples, bfqd->sequential_samples,
2821 bfqd->tot_sectors_dispatched);
2822}
2823
2824static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2825{
2826 u32 rate, weight, divisor;
2827
2828 /*
2829 * For the convergence property to hold (see comments on
2830 * bfq_update_peak_rate()) and for the assessment to be
2831 * reliable, a minimum number of samples must be present, and
2832 * a minimum amount of time must have elapsed. If not so, do
2833 * not compute new rate. Just reset parameters, to get ready
2834 * for a new evaluation attempt.
2835 */
2836 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2837 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2838 goto reset_computation;
2839
2840 /*
2841 * If a new request completion has occurred after last
2842 * dispatch, then, to approximate the rate at which requests
2843 * have been served by the device, it is more precise to
2844 * extend the observation interval to the last completion.
2845 */
2846 bfqd->delta_from_first =
2847 max_t(u64, bfqd->delta_from_first,
2848 bfqd->last_completion - bfqd->first_dispatch);
2849
2850 /*
2851 * Rate computed in sects/usec, and not sects/nsec, for
2852 * precision issues.
2853 */
2854 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2855 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2856
2857 /*
2858 * Peak rate not updated if:
2859 * - the percentage of sequential dispatches is below 3/4 of the
2860 * total, and rate is below the current estimated peak rate
2861 * - rate is unreasonably high (> 20M sectors/sec)
2862 */
2863 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2864 rate <= bfqd->peak_rate) ||
2865 rate > 20<<BFQ_RATE_SHIFT)
2866 goto reset_computation;
2867
2868 /*
2869 * We have to update the peak rate, at last! To this purpose,
2870 * we use a low-pass filter. We compute the smoothing constant
2871 * of the filter as a function of the 'weight' of the new
2872 * measured rate.
2873 *
2874 * As can be seen in next formulas, we define this weight as a
2875 * quantity proportional to how sequential the workload is,
2876 * and to how long the observation time interval is.
2877 *
2878 * The weight runs from 0 to 8. The maximum value of the
2879 * weight, 8, yields the minimum value for the smoothing
2880 * constant. At this minimum value for the smoothing constant,
2881 * the measured rate contributes for half of the next value of
2882 * the estimated peak rate.
2883 *
2884 * So, the first step is to compute the weight as a function
2885 * of how sequential the workload is. Note that the weight
2886 * cannot reach 9, because bfqd->sequential_samples cannot
2887 * become equal to bfqd->peak_rate_samples, which, in its
2888 * turn, holds true because bfqd->sequential_samples is not
2889 * incremented for the first sample.
2890 */
2891 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2892
2893 /*
2894 * Second step: further refine the weight as a function of the
2895 * duration of the observation interval.
2896 */
2897 weight = min_t(u32, 8,
2898 div_u64(weight * bfqd->delta_from_first,
2899 BFQ_RATE_REF_INTERVAL));
2900
2901 /*
2902 * Divisor ranging from 10, for minimum weight, to 2, for
2903 * maximum weight.
2904 */
2905 divisor = 10 - weight;
2906
2907 /*
2908 * Finally, update peak rate:
2909 *
2910 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2911 */
2912 bfqd->peak_rate *= divisor-1;
2913 bfqd->peak_rate /= divisor;
2914 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2915
2916 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002917
2918 /*
2919 * For a very slow device, bfqd->peak_rate can reach 0 (see
2920 * the minimum representable values reported in the comments
2921 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2922 * divisions by zero where bfqd->peak_rate is used as a
2923 * divisor.
2924 */
2925 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2926
Paolo Valente44e44a12017-04-12 18:23:12 +02002927 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002928
2929reset_computation:
2930 bfq_reset_rate_computation(bfqd, rq);
2931}
2932
2933/*
2934 * Update the read/write peak rate (the main quantity used for
2935 * auto-tuning, see update_thr_responsiveness_params()).
2936 *
2937 * It is not trivial to estimate the peak rate (correctly): because of
2938 * the presence of sw and hw queues between the scheduler and the
2939 * device components that finally serve I/O requests, it is hard to
2940 * say exactly when a given dispatched request is served inside the
2941 * device, and for how long. As a consequence, it is hard to know
2942 * precisely at what rate a given set of requests is actually served
2943 * by the device.
2944 *
2945 * On the opposite end, the dispatch time of any request is trivially
2946 * available, and, from this piece of information, the "dispatch rate"
2947 * of requests can be immediately computed. So, the idea in the next
2948 * function is to use what is known, namely request dispatch times
2949 * (plus, when useful, request completion times), to estimate what is
2950 * unknown, namely in-device request service rate.
2951 *
2952 * The main issue is that, because of the above facts, the rate at
2953 * which a certain set of requests is dispatched over a certain time
2954 * interval can vary greatly with respect to the rate at which the
2955 * same requests are then served. But, since the size of any
2956 * intermediate queue is limited, and the service scheme is lossless
2957 * (no request is silently dropped), the following obvious convergence
2958 * property holds: the number of requests dispatched MUST become
2959 * closer and closer to the number of requests completed as the
2960 * observation interval grows. This is the key property used in
2961 * the next function to estimate the peak service rate as a function
2962 * of the observed dispatch rate. The function assumes to be invoked
2963 * on every request dispatch.
2964 */
2965static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2966{
2967 u64 now_ns = ktime_get_ns();
2968
2969 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2970 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2971 bfqd->peak_rate_samples);
2972 bfq_reset_rate_computation(bfqd, rq);
2973 goto update_last_values; /* will add one sample */
2974 }
2975
2976 /*
2977 * Device idle for very long: the observation interval lasting
2978 * up to this dispatch cannot be a valid observation interval
2979 * for computing a new peak rate (similarly to the late-
2980 * completion event in bfq_completed_request()). Go to
2981 * update_rate_and_reset to have the following three steps
2982 * taken:
2983 * - close the observation interval at the last (previous)
2984 * request dispatch or completion
2985 * - compute rate, if possible, for that observation interval
2986 * - start a new observation interval with this dispatch
2987 */
2988 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2989 bfqd->rq_in_driver == 0)
2990 goto update_rate_and_reset;
2991
2992 /* Update sampling information */
2993 bfqd->peak_rate_samples++;
2994
2995 if ((bfqd->rq_in_driver > 0 ||
2996 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01002997 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002998 bfqd->sequential_samples++;
2999
3000 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3001
3002 /* Reset max observed rq size every 32 dispatches */
3003 if (likely(bfqd->peak_rate_samples % 32))
3004 bfqd->last_rq_max_size =
3005 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3006 else
3007 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3008
3009 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3010
3011 /* Target observation interval not yet reached, go on sampling */
3012 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3013 goto update_last_values;
3014
3015update_rate_and_reset:
3016 bfq_update_rate_reset(bfqd, rq);
3017update_last_values:
3018 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01003019 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3020 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003021 bfqd->last_dispatch = now_ns;
3022}
3023
3024/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003025 * Remove request from internal lists.
3026 */
3027static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3028{
3029 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3030
3031 /*
3032 * For consistency, the next instruction should have been
3033 * executed after removing the request from the queue and
3034 * dispatching it. We execute instead this instruction before
3035 * bfq_remove_request() (and hence introduce a temporary
3036 * inconsistency), for efficiency. In fact, should this
3037 * dispatch occur for a non in-service bfqq, this anticipated
3038 * increment prevents two counters related to bfqq->dispatched
3039 * from risking to be, first, uselessly decremented, and then
3040 * incremented again when the (new) value of bfqq->dispatched
3041 * happens to be taken into account.
3042 */
3043 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003044 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003045
3046 bfq_remove_request(q, rq);
3047}
3048
Paolo Valenteeed47d12019-04-10 10:38:33 +02003049static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003050{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003051 /*
3052 * If this bfqq is shared between multiple processes, check
3053 * to make sure that those processes are still issuing I/Os
3054 * within the mean seek distance. If not, it may be time to
3055 * break the queues apart again.
3056 */
3057 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3058 bfq_mark_bfqq_split_coop(bfqq);
3059
Paolo Valente44e44a12017-04-12 18:23:12 +02003060 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
3061 if (bfqq->dispatched == 0)
3062 /*
3063 * Overloading budget_timeout field to store
3064 * the time at which the queue remains with no
3065 * backlog and no outstanding request; used by
3066 * the weight-raising mechanism.
3067 */
3068 bfqq->budget_timeout = jiffies;
3069
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003070 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003071 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003072 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003073 /*
3074 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003075 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003076 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003077 if (unlikely(!bfqd->nonrot_with_queueing))
3078 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003079 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003080
3081 /*
3082 * All in-service entities must have been properly deactivated
3083 * or requeued before executing the next function, which
Paolo Valenteeed47d12019-04-10 10:38:33 +02003084 * resets all in-service entities as no more in service. This
3085 * may cause bfqq to be freed. If this happens, the next
3086 * function returns true.
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003087 */
Paolo Valenteeed47d12019-04-10 10:38:33 +02003088 return __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003089}
3090
3091/**
3092 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3093 * @bfqd: device data.
3094 * @bfqq: queue to update.
3095 * @reason: reason for expiration.
3096 *
3097 * Handle the feedback on @bfqq budget at queue expiration.
3098 * See the body for detailed comments.
3099 */
3100static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3101 struct bfq_queue *bfqq,
3102 enum bfqq_expiration reason)
3103{
3104 struct request *next_rq;
3105 int budget, min_budget;
3106
Paolo Valenteaee69d72017-04-19 08:29:02 -06003107 min_budget = bfq_min_budget(bfqd);
3108
Paolo Valente44e44a12017-04-12 18:23:12 +02003109 if (bfqq->wr_coeff == 1)
3110 budget = bfqq->max_budget;
3111 else /*
3112 * Use a constant, low budget for weight-raised queues,
3113 * to help achieve a low latency. Keep it slightly higher
3114 * than the minimum possible budget, to cause a little
3115 * bit fewer expirations.
3116 */
3117 budget = 2 * min_budget;
3118
Paolo Valenteaee69d72017-04-19 08:29:02 -06003119 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3120 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3121 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3122 budget, bfq_min_budget(bfqd));
3123 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3124 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3125
Paolo Valente44e44a12017-04-12 18:23:12 +02003126 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003127 switch (reason) {
3128 /*
3129 * Caveat: in all the following cases we trade latency
3130 * for throughput.
3131 */
3132 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003133 /*
3134 * This is the only case where we may reduce
3135 * the budget: if there is no request of the
3136 * process still waiting for completion, then
3137 * we assume (tentatively) that the timer has
3138 * expired because the batch of requests of
3139 * the process could have been served with a
3140 * smaller budget. Hence, betting that
3141 * process will behave in the same way when it
3142 * becomes backlogged again, we reduce its
3143 * next budget. As long as we guess right,
3144 * this budget cut reduces the latency
3145 * experienced by the process.
3146 *
3147 * However, if there are still outstanding
3148 * requests, then the process may have not yet
3149 * issued its next request just because it is
3150 * still waiting for the completion of some of
3151 * the still outstanding ones. So in this
3152 * subcase we do not reduce its budget, on the
3153 * contrary we increase it to possibly boost
3154 * the throughput, as discussed in the
3155 * comments to the BUDGET_TIMEOUT case.
3156 */
3157 if (bfqq->dispatched > 0) /* still outstanding reqs */
3158 budget = min(budget * 2, bfqd->bfq_max_budget);
3159 else {
3160 if (budget > 5 * min_budget)
3161 budget -= 4 * min_budget;
3162 else
3163 budget = min_budget;
3164 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003165 break;
3166 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003167 /*
3168 * We double the budget here because it gives
3169 * the chance to boost the throughput if this
3170 * is not a seeky process (and has bumped into
3171 * this timeout because of, e.g., ZBR).
3172 */
3173 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003174 break;
3175 case BFQQE_BUDGET_EXHAUSTED:
3176 /*
3177 * The process still has backlog, and did not
3178 * let either the budget timeout or the disk
3179 * idling timeout expire. Hence it is not
3180 * seeky, has a short thinktime and may be
3181 * happy with a higher budget too. So
3182 * definitely increase the budget of this good
3183 * candidate to boost the disk throughput.
3184 */
Paolo Valente54b60452017-04-12 18:23:09 +02003185 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003186 break;
3187 case BFQQE_NO_MORE_REQUESTS:
3188 /*
3189 * For queues that expire for this reason, it
3190 * is particularly important to keep the
3191 * budget close to the actual service they
3192 * need. Doing so reduces the timestamp
3193 * misalignment problem described in the
3194 * comments in the body of
3195 * __bfq_activate_entity. In fact, suppose
3196 * that a queue systematically expires for
3197 * BFQQE_NO_MORE_REQUESTS and presents a
3198 * new request in time to enjoy timestamp
3199 * back-shifting. The larger the budget of the
3200 * queue is with respect to the service the
3201 * queue actually requests in each service
3202 * slot, the more times the queue can be
3203 * reactivated with the same virtual finish
3204 * time. It follows that, even if this finish
3205 * time is pushed to the system virtual time
3206 * to reduce the consequent timestamp
3207 * misalignment, the queue unjustly enjoys for
3208 * many re-activations a lower finish time
3209 * than all newly activated queues.
3210 *
3211 * The service needed by bfqq is measured
3212 * quite precisely by bfqq->entity.service.
3213 * Since bfqq does not enjoy device idling,
3214 * bfqq->entity.service is equal to the number
3215 * of sectors that the process associated with
3216 * bfqq requested to read/write before waiting
3217 * for request completions, or blocking for
3218 * other reasons.
3219 */
3220 budget = max_t(int, bfqq->entity.service, min_budget);
3221 break;
3222 default:
3223 return;
3224 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003225 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003226 /*
3227 * Async queues get always the maximum possible
3228 * budget, as for them we do not care about latency
3229 * (in addition, their ability to dispatch is limited
3230 * by the charging factor).
3231 */
3232 budget = bfqd->bfq_max_budget;
3233 }
3234
3235 bfqq->max_budget = budget;
3236
3237 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3238 !bfqd->bfq_user_max_budget)
3239 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3240
3241 /*
3242 * If there is still backlog, then assign a new budget, making
3243 * sure that it is large enough for the next request. Since
3244 * the finish time of bfqq must be kept in sync with the
3245 * budget, be sure to call __bfq_bfqq_expire() *after* this
3246 * update.
3247 *
3248 * If there is no backlog, then no need to update the budget;
3249 * it will be updated on the arrival of a new request.
3250 */
3251 next_rq = bfqq->next_rq;
3252 if (next_rq)
3253 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3254 bfq_serv_to_charge(next_rq, bfqq));
3255
3256 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3257 next_rq ? blk_rq_sectors(next_rq) : 0,
3258 bfqq->entity.budget);
3259}
3260
Paolo Valenteaee69d72017-04-19 08:29:02 -06003261/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003262 * Return true if the process associated with bfqq is "slow". The slow
3263 * flag is used, in addition to the budget timeout, to reduce the
3264 * amount of service provided to seeky processes, and thus reduce
3265 * their chances to lower the throughput. More details in the comments
3266 * on the function bfq_bfqq_expire().
3267 *
3268 * An important observation is in order: as discussed in the comments
3269 * on the function bfq_update_peak_rate(), with devices with internal
3270 * queues, it is hard if ever possible to know when and for how long
3271 * an I/O request is processed by the device (apart from the trivial
3272 * I/O pattern where a new request is dispatched only after the
3273 * previous one has been completed). This makes it hard to evaluate
3274 * the real rate at which the I/O requests of each bfq_queue are
3275 * served. In fact, for an I/O scheduler like BFQ, serving a
3276 * bfq_queue means just dispatching its requests during its service
3277 * slot (i.e., until the budget of the queue is exhausted, or the
3278 * queue remains idle, or, finally, a timeout fires). But, during the
3279 * service slot of a bfq_queue, around 100 ms at most, the device may
3280 * be even still processing requests of bfq_queues served in previous
3281 * service slots. On the opposite end, the requests of the in-service
3282 * bfq_queue may be completed after the service slot of the queue
3283 * finishes.
3284 *
3285 * Anyway, unless more sophisticated solutions are used
3286 * (where possible), the sum of the sizes of the requests dispatched
3287 * during the service slot of a bfq_queue is probably the only
3288 * approximation available for the service received by the bfq_queue
3289 * during its service slot. And this sum is the quantity used in this
3290 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003291 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003292static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3293 bool compensate, enum bfqq_expiration reason,
3294 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003295{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003296 ktime_t delta_ktime;
3297 u32 delta_usecs;
3298 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003299
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003300 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003301 return false;
3302
3303 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003304 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003305 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003306 delta_ktime = ktime_get();
3307 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3308 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003309
3310 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003311 if (delta_usecs < 1000) {
3312 if (blk_queue_nonrot(bfqd->queue))
3313 /*
3314 * give same worst-case guarantees as idling
3315 * for seeky
3316 */
3317 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3318 else /* charge at least one seek */
3319 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003320
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003321 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003322 }
3323
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003324 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003325
3326 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003327 * Use only long (> 20ms) intervals to filter out excessive
3328 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003329 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003330 if (delta_usecs > 20000) {
3331 /*
3332 * Caveat for rotational devices: processes doing I/O
3333 * in the slower disk zones tend to be slow(er) even
3334 * if not seeky. In this respect, the estimated peak
3335 * rate is likely to be an average over the disk
3336 * surface. Accordingly, to not be too harsh with
3337 * unlucky processes, a process is deemed slow only if
3338 * its rate has been lower than half of the estimated
3339 * peak rate.
3340 */
3341 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3342 }
3343
3344 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3345
3346 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003347}
3348
3349/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003350 * To be deemed as soft real-time, an application must meet two
3351 * requirements. First, the application must not require an average
3352 * bandwidth higher than the approximate bandwidth required to playback or
3353 * record a compressed high-definition video.
3354 * The next function is invoked on the completion of the last request of a
3355 * batch, to compute the next-start time instant, soft_rt_next_start, such
3356 * that, if the next request of the application does not arrive before
3357 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3358 *
3359 * The second requirement is that the request pattern of the application is
3360 * isochronous, i.e., that, after issuing a request or a batch of requests,
3361 * the application stops issuing new requests until all its pending requests
3362 * have been completed. After that, the application may issue a new batch,
3363 * and so on.
3364 * For this reason the next function is invoked to compute
3365 * soft_rt_next_start only for applications that meet this requirement,
3366 * whereas soft_rt_next_start is set to infinity for applications that do
3367 * not.
3368 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003369 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3370 * happen to meet, occasionally or systematically, both the above
3371 * bandwidth and isochrony requirements. This may happen at least in
3372 * the following circumstances. First, if the CPU load is high. The
3373 * application may stop issuing requests while the CPUs are busy
3374 * serving other processes, then restart, then stop again for a while,
3375 * and so on. The other circumstances are related to the storage
3376 * device: the storage device is highly loaded or reaches a low-enough
3377 * throughput with the I/O of the application (e.g., because the I/O
3378 * is random and/or the device is slow). In all these cases, the
3379 * I/O of the application may be simply slowed down enough to meet
3380 * the bandwidth and isochrony requirements. To reduce the probability
3381 * that greedy applications are deemed as soft real-time in these
3382 * corner cases, a further rule is used in the computation of
3383 * soft_rt_next_start: the return value of this function is forced to
3384 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003385 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003386 * (a) Current time plus: (1) the maximum time for which the arrival
3387 * of a request is waited for when a sync queue becomes idle,
3388 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3389 * postpone for a moment the reason for adding a few extra
3390 * jiffies; we get back to it after next item (b). Lower-bounding
3391 * the return value of this function with the current time plus
3392 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3393 * because the latter issue their next request as soon as possible
3394 * after the last one has been completed. In contrast, a soft
3395 * real-time application spends some time processing data, after a
3396 * batch of its requests has been completed.
3397 *
3398 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3399 * above, greedy applications may happen to meet both the
3400 * bandwidth and isochrony requirements under heavy CPU or
3401 * storage-device load. In more detail, in these scenarios, these
3402 * applications happen, only for limited time periods, to do I/O
3403 * slowly enough to meet all the requirements described so far,
3404 * including the filtering in above item (a). These slow-speed
3405 * time intervals are usually interspersed between other time
3406 * intervals during which these applications do I/O at a very high
3407 * speed. Fortunately, exactly because of the high speed of the
3408 * I/O in the high-speed intervals, the values returned by this
3409 * function happen to be so high, near the end of any such
3410 * high-speed interval, to be likely to fall *after* the end of
3411 * the low-speed time interval that follows. These high values are
3412 * stored in bfqq->soft_rt_next_start after each invocation of
3413 * this function. As a consequence, if the last value of
3414 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3415 * next value that this function may return, then, from the very
3416 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3417 * likely to be constantly kept so high that any I/O request
3418 * issued during the low-speed interval is considered as arriving
3419 * to soon for the application to be deemed as soft
3420 * real-time. Then, in the high-speed interval that follows, the
3421 * application will not be deemed as soft real-time, just because
3422 * it will do I/O at a high speed. And so on.
3423 *
3424 * Getting back to the filtering in item (a), in the following two
3425 * cases this filtering might be easily passed by a greedy
3426 * application, if the reference quantity was just
3427 * bfqd->bfq_slice_idle:
3428 * 1) HZ is so low that the duration of a jiffy is comparable to or
3429 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3430 * devices with HZ=100. The time granularity may be so coarse
3431 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3432 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003433 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3434 * for a while, then suddenly 'jump' by several units to recover the lost
3435 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003436 * To address this issue, in the filtering in (a) we do not use as a
3437 * reference time interval just bfqd->bfq_slice_idle, but
3438 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3439 * minimum number of jiffies for which the filter seems to be quite
3440 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003441 */
3442static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3443 struct bfq_queue *bfqq)
3444{
Paolo Valentea34b0242017-12-15 07:23:12 +01003445 return max3(bfqq->soft_rt_next_start,
3446 bfqq->last_idle_bklogged +
3447 HZ * bfqq->service_from_backlogged /
3448 bfqd->bfq_wr_max_softrt_rate,
3449 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003450}
3451
Paolo Valenteaee69d72017-04-19 08:29:02 -06003452/**
3453 * bfq_bfqq_expire - expire a queue.
3454 * @bfqd: device owning the queue.
3455 * @bfqq: the queue to expire.
3456 * @compensate: if true, compensate for the time spent idling.
3457 * @reason: the reason causing the expiration.
3458 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003459 * If the process associated with bfqq does slow I/O (e.g., because it
3460 * issues random requests), we charge bfqq with the time it has been
3461 * in service instead of the service it has received (see
3462 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3463 * a consequence, bfqq will typically get higher timestamps upon
3464 * reactivation, and hence it will be rescheduled as if it had
3465 * received more service than what it has actually received. In the
3466 * end, bfqq receives less service in proportion to how slowly its
3467 * associated process consumes its budgets (and hence how seriously it
3468 * tends to lower the throughput). In addition, this time-charging
3469 * strategy guarantees time fairness among slow processes. In
3470 * contrast, if the process associated with bfqq is not slow, we
3471 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003472 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003473 * Charging time to the first type of queues and the exact service to
3474 * the other has the effect of using the WF2Q+ policy to schedule the
3475 * former on a timeslice basis, without violating service domain
3476 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003477 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003478void bfq_bfqq_expire(struct bfq_data *bfqd,
3479 struct bfq_queue *bfqq,
3480 bool compensate,
3481 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003482{
3483 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003484 unsigned long delta = 0;
3485 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003486
3487 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003488 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003489 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003490 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003491
3492 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003493 * As above explained, charge slow (typically seeky) and
3494 * timed-out queues with the time and not the service
3495 * received, to favor sequential workloads.
3496 *
3497 * Processes doing I/O in the slower disk zones will tend to
3498 * be slow(er) even if not seeky. Therefore, since the
3499 * estimated peak rate is actually an average over the disk
3500 * surface, these processes may timeout just for bad luck. To
3501 * avoid punishing them, do not charge time to processes that
3502 * succeeded in consuming at least 2/3 of their budget. This
3503 * allows BFQ to preserve enough elasticity to still perform
3504 * bandwidth, and not time, distribution with little unlucky
3505 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003506 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003507 if (bfqq->wr_coeff == 1 &&
3508 (slow ||
3509 (reason == BFQQE_BUDGET_TIMEOUT &&
3510 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003511 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003512
3513 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003514 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003515 bfq_clear_bfqq_IO_bound(bfqq);
3516
Paolo Valente44e44a12017-04-12 18:23:12 +02003517 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3518 bfqq->last_wr_start_finish = jiffies;
3519
Paolo Valente77b7dce2017-04-12 18:23:13 +02003520 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3521 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3522 /*
3523 * If we get here, and there are no outstanding
3524 * requests, then the request pattern is isochronous
3525 * (see the comments on the function
3526 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003527 * soft_rt_next_start. And we do it, unless bfqq is in
3528 * interactive weight raising. We do not do it in the
3529 * latter subcase, for the following reason. bfqq may
3530 * be conveying the I/O needed to load a soft
3531 * real-time application. Such an application will
3532 * actually exhibit a soft real-time I/O pattern after
3533 * it finally starts doing its job. But, if
3534 * soft_rt_next_start is computed here for an
3535 * interactive bfqq, and bfqq had received a lot of
3536 * service before remaining with no outstanding
3537 * request (likely to happen on a fast device), then
3538 * soft_rt_next_start would be assigned such a high
3539 * value that, for a very long time, bfqq would be
3540 * prevented from being possibly considered as soft
3541 * real time.
3542 *
3543 * If, instead, the queue still has outstanding
3544 * requests, then we have to wait for the completion
3545 * of all the outstanding requests to discover whether
3546 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003547 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003548 if (bfqq->dispatched == 0 &&
3549 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003550 bfqq->soft_rt_next_start =
3551 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003552 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003553 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003554 * Schedule an update of soft_rt_next_start to when
3555 * the task may be discovered to be isochronous.
3556 */
3557 bfq_mark_bfqq_softrt_update(bfqq);
3558 }
3559 }
3560
Paolo Valenteaee69d72017-04-19 08:29:02 -06003561 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003562 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3563 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003564
3565 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01003566 * bfqq expired, so no total service time needs to be computed
3567 * any longer: reset state machine for measuring total service
3568 * times.
3569 */
3570 bfqd->rqs_injected = bfqd->wait_dispatch = false;
3571 bfqd->waited_rq = NULL;
3572
3573 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003574 * Increase, decrease or leave budget unchanged according to
3575 * reason.
3576 */
3577 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
Paolo Valenteeed47d12019-04-10 10:38:33 +02003578 if (__bfq_bfqq_expire(bfqd, bfqq))
3579 /* bfqq is gone, no more actions on it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003580 return;
3581
Paolo Valenteaee69d72017-04-19 08:29:02 -06003582 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003583 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003584 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003585 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003586 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003587 /*
3588 * Not setting service to 0, because, if the next rq
3589 * arrives in time, the queue will go on receiving
3590 * service with this same budget (as if it never expired)
3591 */
3592 } else
3593 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003594
3595 /*
3596 * Reset the received-service counter for every parent entity.
3597 * Differently from what happens with bfqq->entity.service,
3598 * the resetting of this counter never needs to be postponed
3599 * for parent entities. In fact, in case bfqq may have a
3600 * chance to go on being served using the last, partially
3601 * consumed budget, bfqq->entity.service needs to be kept,
3602 * because if bfqq then actually goes on being served using
3603 * the same budget, the last value of bfqq->entity.service is
3604 * needed to properly decrement bfqq->entity.budget by the
3605 * portion already consumed. In contrast, it is not necessary
3606 * to keep entity->service for parent entities too, because
3607 * the bubble up of the new value of bfqq->entity.budget will
3608 * make sure that the budgets of parent entities are correct,
3609 * even in case bfqq and thus parent entities go on receiving
3610 * service with the same budget.
3611 */
3612 entity = entity->parent;
3613 for_each_entity(entity)
3614 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003615}
3616
3617/*
3618 * Budget timeout is not implemented through a dedicated timer, but
3619 * just checked on request arrivals and completions, as well as on
3620 * idle timer expirations.
3621 */
3622static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3623{
Paolo Valente44e44a12017-04-12 18:23:12 +02003624 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003625}
3626
3627/*
3628 * If we expire a queue that is actively waiting (i.e., with the
3629 * device idled) for the arrival of a new request, then we may incur
3630 * the timestamp misalignment problem described in the body of the
3631 * function __bfq_activate_entity. Hence we return true only if this
3632 * condition does not hold, or if the queue is slow enough to deserve
3633 * only to be kicked off for preserving a high throughput.
3634 */
3635static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3636{
3637 bfq_log_bfqq(bfqq->bfqd, bfqq,
3638 "may_budget_timeout: wait_request %d left %d timeout %d",
3639 bfq_bfqq_wait_request(bfqq),
3640 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3641 bfq_bfqq_budget_timeout(bfqq));
3642
3643 return (!bfq_bfqq_wait_request(bfqq) ||
3644 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3645 &&
3646 bfq_bfqq_budget_timeout(bfqq);
3647}
3648
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003649static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
3650 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003651{
Paolo Valenteedaf9422017-08-04 07:35:11 +02003652 bool rot_without_queueing =
3653 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3654 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003655 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02003656
Paolo Valenteedaf9422017-08-04 07:35:11 +02003657 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3658 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3659
Paolo Valented5be3fe2017-08-04 07:35:10 +02003660 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003661 * The next variable takes into account the cases where idling
3662 * boosts the throughput.
3663 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003664 * The value of the variable is computed considering, first, that
3665 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003666 * (a) the device is not NCQ-capable and rotational, or
3667 * (b) regardless of the presence of NCQ, the device is rotational and
3668 * the request pattern for bfqq is I/O-bound and sequential, or
3669 * (c) regardless of whether it is rotational, the device is
3670 * not NCQ-capable and the request pattern for bfqq is
3671 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003672 *
3673 * Secondly, and in contrast to the above item (b), idling an
3674 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003675 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003676 * the throughput in proportion to how fast the device
3677 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003678 * above conditions (a), (b) or (c) is true, and, in
3679 * particular, happens to be false if bfqd is an NCQ-capable
3680 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003681 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003682 idling_boosts_thr = rot_without_queueing ||
3683 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3684 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003685
3686 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003687 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02003688 * idling_boosts_thr, unless a special case holds. In this
3689 * special case, described below, idling may cause problems to
3690 * weight-raised queues.
3691 *
3692 * When the request pool is saturated (e.g., in the presence
3693 * of write hogs), if the processes associated with
3694 * non-weight-raised queues ask for requests at a lower rate,
3695 * then processes associated with weight-raised queues have a
3696 * higher probability to get a request from the pool
3697 * immediately (or at least soon) when they need one. Thus
3698 * they have a higher probability to actually get a fraction
3699 * of the device throughput proportional to their high
3700 * weight. This is especially true with NCQ-capable drives,
3701 * which enqueue several requests in advance, and further
3702 * reorder internally-queued requests.
3703 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003704 * For this reason, we force to false the return value if
3705 * there are weight-raised busy queues. In this case, and if
3706 * bfqq is not weight-raised, this guarantees that the device
3707 * is not idled for bfqq (if, instead, bfqq is weight-raised,
3708 * then idling will be guaranteed by another variable, see
3709 * below). Combined with the timestamping rules of BFQ (see
3710 * [1] for details), this behavior causes bfqq, and hence any
3711 * sync non-weight-raised queue, to get a lower number of
3712 * requests served, and thus to ask for a lower number of
3713 * requests from the request pool, before the busy
3714 * weight-raised queues get served again. This often mitigates
3715 * starvation problems in the presence of heavy write
3716 * workloads and NCQ, thereby guaranteeing a higher
3717 * application and system responsiveness in these hostile
3718 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02003719 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003720 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02003721 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003722}
Paolo Valentecfd69712017-04-12 18:23:15 +02003723
Paolo Valente530c4cb2019-01-29 12:06:32 +01003724/*
Paolo Valentefb53ac62019-03-12 09:59:28 +01003725 * There is a case where idling does not have to be performed for
3726 * throughput concerns, but to preserve the throughput share of
3727 * the process associated with bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003728 *
3729 * To introduce this case, we can note that allowing the drive
3730 * to enqueue more than one request at a time, and hence
3731 * delegating de facto final scheduling decisions to the
3732 * drive's internal scheduler, entails loss of control on the
3733 * actual request service order. In particular, the critical
3734 * situation is when requests from different processes happen
3735 * to be present, at the same time, in the internal queue(s)
3736 * of the drive. In such a situation, the drive, by deciding
3737 * the service order of the internally-queued requests, does
3738 * determine also the actual throughput distribution among
3739 * these processes. But the drive typically has no notion or
3740 * concern about per-process throughput distribution, and
3741 * makes its decisions only on a per-request basis. Therefore,
3742 * the service distribution enforced by the drive's internal
Paolo Valentefb53ac62019-03-12 09:59:28 +01003743 * scheduler is likely to coincide with the desired throughput
3744 * distribution only in a completely symmetric, or favorably
3745 * skewed scenario where:
3746 * (i-a) each of these processes must get the same throughput as
3747 * the others,
3748 * (i-b) in case (i-a) does not hold, it holds that the process
3749 * associated with bfqq must receive a lower or equal
3750 * throughput than any of the other processes;
3751 * (ii) the I/O of each process has the same properties, in
3752 * terms of locality (sequential or random), direction
3753 * (reads or writes), request sizes, greediness
3754 * (from I/O-bound to sporadic), and so on;
3755
3756 * In fact, in such a scenario, the drive tends to treat the requests
3757 * of each process in about the same way as the requests of the
3758 * others, and thus to provide each of these processes with about the
3759 * same throughput. This is exactly the desired throughput
3760 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3761 * even more convenient distribution for (the process associated with)
3762 * bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003763 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003764 * In contrast, in any asymmetric or unfavorable scenario, device
3765 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3766 * that bfqq receives its assigned fraction of the device throughput
3767 * (see [1] for details).
3768 *
3769 * The problem is that idling may significantly reduce throughput with
3770 * certain combinations of types of I/O and devices. An important
3771 * example is sync random I/O on flash storage with command
3772 * queueing. So, unless bfqq falls in cases where idling also boosts
3773 * throughput, it is important to check conditions (i-a), i(-b) and
3774 * (ii) accurately, so as to avoid idling when not strictly needed for
3775 * service guarantees.
3776 *
3777 * Unfortunately, it is extremely difficult to thoroughly check
3778 * condition (ii). And, in case there are active groups, it becomes
3779 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3780 * if there are active groups, then, for conditions (i-a) or (i-b) to
3781 * become false 'indirectly', it is enough that an active group
3782 * contains more active processes or sub-groups than some other active
3783 * group. More precisely, for conditions (i-a) or (i-b) to become
3784 * false because of such a group, it is not even necessary that the
3785 * group is (still) active: it is sufficient that, even if the group
3786 * has become inactive, some of its descendant processes still have
3787 * some request already dispatched but still waiting for
3788 * completion. In fact, requests have still to be guaranteed their
3789 * share of the throughput even after being dispatched. In this
3790 * respect, it is easy to show that, if a group frequently becomes
3791 * inactive while still having in-flight requests, and if, when this
3792 * happens, the group is not considered in the calculation of whether
3793 * the scenario is asymmetric, then the group may fail to be
3794 * guaranteed its fair share of the throughput (basically because
3795 * idling may not be performed for the descendant processes of the
3796 * group, but it had to be). We address this issue with the following
3797 * bi-modal behavior, implemented in the function
3798 * bfq_asymmetric_scenario().
Paolo Valente530c4cb2019-01-29 12:06:32 +01003799 *
3800 * If there are groups with requests waiting for completion
3801 * (as commented above, some of these groups may even be
3802 * already inactive), then the scenario is tagged as
3803 * asymmetric, conservatively, without checking any of the
Paolo Valentefb53ac62019-03-12 09:59:28 +01003804 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003805 * This behavior matches also the fact that groups are created
3806 * exactly if controlling I/O is a primary concern (to
3807 * preserve bandwidth and latency guarantees).
3808 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003809 * On the opposite end, if there are no groups with requests waiting
3810 * for completion, then only conditions (i-a) and (i-b) are actually
3811 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3812 * idling is not performed, regardless of whether condition (ii)
3813 * holds. In other words, only if conditions (i-a) and (i-b) do not
3814 * hold, then idling is allowed, and the device tends to be prevented
3815 * from queueing many requests, possibly of several processes. Since
3816 * there are no groups with requests waiting for completion, then, to
3817 * control conditions (i-a) and (i-b) it is enough to check just
3818 * whether all the queues with requests waiting for completion also
3819 * have the same weight.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003820 *
3821 * Not checking condition (ii) evidently exposes bfqq to the
3822 * risk of getting less throughput than its fair share.
3823 * However, for queues with the same weight, a further
3824 * mechanism, preemption, mitigates or even eliminates this
3825 * problem. And it does so without consequences on overall
3826 * throughput. This mechanism and its benefits are explained
3827 * in the next three paragraphs.
3828 *
3829 * Even if a queue, say Q, is expired when it remains idle, Q
3830 * can still preempt the new in-service queue if the next
3831 * request of Q arrives soon (see the comments on
3832 * bfq_bfqq_update_budg_for_activation). If all queues and
3833 * groups have the same weight, this form of preemption,
3834 * combined with the hole-recovery heuristic described in the
3835 * comments on function bfq_bfqq_update_budg_for_activation,
3836 * are enough to preserve a correct bandwidth distribution in
3837 * the mid term, even without idling. In fact, even if not
3838 * idling allows the internal queues of the device to contain
3839 * many requests, and thus to reorder requests, we can rather
3840 * safely assume that the internal scheduler still preserves a
3841 * minimum of mid-term fairness.
3842 *
3843 * More precisely, this preemption-based, idleless approach
3844 * provides fairness in terms of IOPS, and not sectors per
3845 * second. This can be seen with a simple example. Suppose
3846 * that there are two queues with the same weight, but that
3847 * the first queue receives requests of 8 sectors, while the
3848 * second queue receives requests of 1024 sectors. In
3849 * addition, suppose that each of the two queues contains at
3850 * most one request at a time, which implies that each queue
3851 * always remains idle after it is served. Finally, after
3852 * remaining idle, each queue receives very quickly a new
3853 * request. It follows that the two queues are served
3854 * alternatively, preempting each other if needed. This
3855 * implies that, although both queues have the same weight,
3856 * the queue with large requests receives a service that is
3857 * 1024/8 times as high as the service received by the other
3858 * queue.
3859 *
3860 * The motivation for using preemption instead of idling (for
3861 * queues with the same weight) is that, by not idling,
3862 * service guarantees are preserved (completely or at least in
3863 * part) without minimally sacrificing throughput. And, if
3864 * there is no active group, then the primary expectation for
3865 * this device is probably a high throughput.
3866 *
3867 * We are now left only with explaining the additional
3868 * compound condition that is checked below for deciding
3869 * whether the scenario is asymmetric. To explain this
3870 * compound condition, we need to add that the function
Paolo Valentefb53ac62019-03-12 09:59:28 +01003871 * bfq_asymmetric_scenario checks the weights of only
Paolo Valente530c4cb2019-01-29 12:06:32 +01003872 * non-weight-raised queues, for efficiency reasons (see
3873 * comments on bfq_weights_tree_add()). Then the fact that
3874 * bfqq is weight-raised is checked explicitly here. More
3875 * precisely, the compound condition below takes into account
3876 * also the fact that, even if bfqq is being weight-raised,
3877 * the scenario is still symmetric if all queues with requests
3878 * waiting for completion happen to be
3879 * weight-raised. Actually, we should be even more precise
3880 * here, and differentiate between interactive weight raising
3881 * and soft real-time weight raising.
3882 *
3883 * As a side note, it is worth considering that the above
3884 * device-idling countermeasures may however fail in the
3885 * following unlucky scenario: if idling is (correctly)
3886 * disabled in a time period during which all symmetry
3887 * sub-conditions hold, and hence the device is allowed to
3888 * enqueue many requests, but at some later point in time some
3889 * sub-condition stops to hold, then it may become impossible
3890 * to let requests be served in the desired order until all
3891 * the requests already queued in the device have been served.
3892 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003893static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3894 struct bfq_queue *bfqq)
3895{
Paolo Valente530c4cb2019-01-29 12:06:32 +01003896 return (bfqq->wr_coeff > 1 &&
3897 bfqd->wr_busy_queues <
3898 bfq_tot_busy_queues(bfqd)) ||
Paolo Valentefb53ac62019-03-12 09:59:28 +01003899 bfq_asymmetric_scenario(bfqd, bfqq);
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003900}
3901
3902/*
3903 * For a queue that becomes empty, device idling is allowed only if
3904 * this function returns true for that queue. As a consequence, since
3905 * device idling plays a critical role for both throughput boosting
3906 * and service guarantees, the return value of this function plays a
3907 * critical role as well.
3908 *
3909 * In a nutshell, this function returns true only if idling is
3910 * beneficial for throughput or, even if detrimental for throughput,
3911 * idling is however necessary to preserve service guarantees (low
3912 * latency, desired throughput distribution, ...). In particular, on
3913 * NCQ-capable devices, this function tries to return false, so as to
3914 * help keep the drives' internal queues full, whenever this helps the
3915 * device boost the throughput without causing any service-guarantee
3916 * issue.
3917 *
3918 * Most of the issues taken into account to get the return value of
3919 * this function are not trivial. We discuss these issues in the two
3920 * functions providing the main pieces of information needed by this
3921 * function.
3922 */
3923static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3924{
3925 struct bfq_data *bfqd = bfqq->bfqd;
3926 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
3927
3928 if (unlikely(bfqd->strict_guarantees))
3929 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003930
3931 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003932 * Idling is performed only if slice_idle > 0. In addition, we
3933 * do not idle if
3934 * (a) bfqq is async
3935 * (b) bfqq is in the idle io prio class: in this case we do
3936 * not idle because we want to minimize the bandwidth that
3937 * queues in this class can steal to higher-priority queues
3938 */
3939 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3940 bfq_class_idle(bfqq))
3941 return false;
3942
3943 idling_boosts_thr_with_no_issue =
3944 idling_boosts_thr_without_issues(bfqd, bfqq);
3945
3946 idling_needed_for_service_guar =
3947 idling_needed_for_service_guarantees(bfqd, bfqq);
3948
3949 /*
3950 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02003951 * return value of the function, which is true only if idling
3952 * either boosts the throughput (without issues), or is
3953 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003954 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003955 return idling_boosts_thr_with_no_issue ||
3956 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003957}
3958
3959/*
Paolo Valente277a4a92018-06-25 21:55:37 +02003960 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06003961 * returns true, then:
3962 * 1) the queue must remain in service and cannot be expired, and
3963 * 2) the device must be idled to wait for the possible arrival of a new
3964 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02003965 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06003966 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02003967 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06003968 * returns true.
3969 */
3970static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3971{
Paolo Valente277a4a92018-06-25 21:55:37 +02003972 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003973}
3974
Paolo Valente2341d6622019-03-12 09:59:29 +01003975/*
3976 * This function chooses the queue from which to pick the next extra
3977 * I/O request to inject, if it finds a compatible queue. See the
3978 * comments on bfq_update_inject_limit() for details on the injection
3979 * mechanism, and for the definitions of the quantities mentioned
3980 * below.
3981 */
3982static struct bfq_queue *
3983bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02003984{
Paolo Valente2341d6622019-03-12 09:59:29 +01003985 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
3986 unsigned int limit = in_serv_bfqq->inject_limit;
3987 /*
3988 * If
3989 * - bfqq is not weight-raised and therefore does not carry
3990 * time-critical I/O,
3991 * or
3992 * - regardless of whether bfqq is weight-raised, bfqq has
3993 * however a long think time, during which it can absorb the
3994 * effect of an appropriate number of extra I/O requests
3995 * from other queues (see bfq_update_inject_limit for
3996 * details on the computation of this number);
3997 * then injection can be performed without restrictions.
3998 */
3999 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4000 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02004001
4002 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004003 * If
4004 * - the baseline total service time could not be sampled yet,
4005 * so the inject limit happens to be still 0, and
4006 * - a lot of time has elapsed since the plugging of I/O
4007 * dispatching started, so drive speed is being wasted
4008 * significantly;
4009 * then temporarily raise inject limit to one request.
4010 */
4011 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4012 bfq_bfqq_wait_request(in_serv_bfqq) &&
4013 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4014 bfqd->bfq_slice_idle)
4015 )
4016 limit = 1;
4017
4018 if (bfqd->rq_in_driver >= limit)
4019 return NULL;
4020
4021 /*
4022 * Linear search of the source queue for injection; but, with
4023 * a high probability, very few steps are needed to find a
4024 * candidate queue, i.e., a queue with enough budget left for
4025 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02004026 * - BFQ dynamically updates the budget of every queue so as
4027 * to accommodate the expected backlog of the queue;
4028 * - if a queue gets all its requests dispatched as injected
4029 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004030 * (and re-added only if it gets new requests, but then it
4031 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004032 */
4033 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4034 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004035 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004036 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004037 bfq_bfqq_budget_left(bfqq)) {
4038 /*
4039 * Allow for only one large in-flight request
4040 * on non-rotational devices, for the
4041 * following reason. On non-rotationl drives,
4042 * large requests take much longer than
4043 * smaller requests to be served. In addition,
4044 * the drive prefers to serve large requests
4045 * w.r.t. to small ones, if it can choose. So,
4046 * having more than one large requests queued
4047 * in the drive may easily make the next first
4048 * request of the in-service queue wait for so
4049 * long to break bfqq's service guarantees. On
4050 * the bright side, large requests let the
4051 * drive reach a very high throughput, even if
4052 * there is only one in-flight large request
4053 * at a time.
4054 */
4055 if (blk_queue_nonrot(bfqd->queue) &&
4056 blk_rq_sectors(bfqq->next_rq) >=
4057 BFQQ_SECT_THR_NONROT)
4058 limit = min_t(unsigned int, 1, limit);
4059 else
4060 limit = in_serv_bfqq->inject_limit;
4061
4062 if (bfqd->rq_in_driver < limit) {
4063 bfqd->rqs_injected = true;
4064 return bfqq;
4065 }
4066 }
Paolo Valented0edc242018-09-14 16:23:08 +02004067
4068 return NULL;
4069}
4070
Paolo Valenteaee69d72017-04-19 08:29:02 -06004071/*
4072 * Select a queue for service. If we have a current queue in service,
4073 * check whether to continue servicing it, or retrieve and set a new one.
4074 */
4075static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4076{
4077 struct bfq_queue *bfqq;
4078 struct request *next_rq;
4079 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4080
4081 bfqq = bfqd->in_service_queue;
4082 if (!bfqq)
4083 goto new_queue;
4084
4085 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4086
Paolo Valente4420b092018-06-25 21:55:35 +02004087 /*
4088 * Do not expire bfqq for budget timeout if bfqq may be about
4089 * to enjoy device idling. The reason why, in this case, we
4090 * prevent bfqq from expiring is the same as in the comments
4091 * on the case where bfq_bfqq_must_idle() returns true, in
4092 * bfq_completed_request().
4093 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004094 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004095 !bfq_bfqq_must_idle(bfqq))
4096 goto expire;
4097
4098check_queue:
4099 /*
4100 * This loop is rarely executed more than once. Even when it
4101 * happens, it is much more convenient to re-execute this loop
4102 * than to return NULL and trigger a new dispatch to get a
4103 * request served.
4104 */
4105 next_rq = bfqq->next_rq;
4106 /*
4107 * If bfqq has requests queued and it has enough budget left to
4108 * serve them, keep the queue, otherwise expire it.
4109 */
4110 if (next_rq) {
4111 if (bfq_serv_to_charge(next_rq, bfqq) >
4112 bfq_bfqq_budget_left(bfqq)) {
4113 /*
4114 * Expire the queue for budget exhaustion,
4115 * which makes sure that the next budget is
4116 * enough to serve the next request, even if
4117 * it comes from the fifo expired path.
4118 */
4119 reason = BFQQE_BUDGET_EXHAUSTED;
4120 goto expire;
4121 } else {
4122 /*
4123 * The idle timer may be pending because we may
4124 * not disable disk idling even when a new request
4125 * arrives.
4126 */
4127 if (bfq_bfqq_wait_request(bfqq)) {
4128 /*
4129 * If we get here: 1) at least a new request
4130 * has arrived but we have not disabled the
4131 * timer because the request was too small,
4132 * 2) then the block layer has unplugged
4133 * the device, causing the dispatch to be
4134 * invoked.
4135 *
4136 * Since the device is unplugged, now the
4137 * requests are probably large enough to
4138 * provide a reasonable throughput.
4139 * So we disable idling.
4140 */
4141 bfq_clear_bfqq_wait_request(bfqq);
4142 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4143 }
4144 goto keep_queue;
4145 }
4146 }
4147
4148 /*
4149 * No requests pending. However, if the in-service queue is idling
4150 * for a new request, or has requests waiting for a completion and
4151 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004152 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004153 * Yet, inject service from other queues if it boosts
4154 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004155 */
4156 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004157 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004158 struct bfq_queue *async_bfqq =
4159 bfqq->bic && bfqq->bic->bfqq[0] &&
4160 bfq_bfqq_busy(bfqq->bic->bfqq[0]) ?
4161 bfqq->bic->bfqq[0] : NULL;
4162
4163 /*
4164 * If the process associated with bfqq has also async
4165 * I/O pending, then inject it
4166 * unconditionally. Injecting I/O from the same
4167 * process can cause no harm to the process. On the
4168 * contrary, it can only increase bandwidth and reduce
4169 * latency for the process.
4170 */
4171 if (async_bfqq &&
4172 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4173 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4174 bfq_bfqq_budget_left(async_bfqq))
4175 bfqq = bfqq->bic->bfqq[0];
4176 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4177 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4178 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004179 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4180 else
4181 bfqq = NULL;
4182
Paolo Valenteaee69d72017-04-19 08:29:02 -06004183 goto keep_queue;
4184 }
4185
4186 reason = BFQQE_NO_MORE_REQUESTS;
4187expire:
4188 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4189new_queue:
4190 bfqq = bfq_set_in_service_queue(bfqd);
4191 if (bfqq) {
4192 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4193 goto check_queue;
4194 }
4195keep_queue:
4196 if (bfqq)
4197 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4198 else
4199 bfq_log(bfqd, "select_queue: no queue returned");
4200
4201 return bfqq;
4202}
4203
Paolo Valente44e44a12017-04-12 18:23:12 +02004204static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4205{
4206 struct bfq_entity *entity = &bfqq->entity;
4207
4208 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4209 bfq_log_bfqq(bfqd, bfqq,
4210 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4211 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4212 jiffies_to_msecs(bfqq->wr_cur_max_time),
4213 bfqq->wr_coeff,
4214 bfqq->entity.weight, bfqq->entity.orig_weight);
4215
4216 if (entity->prio_changed)
4217 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4218
4219 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004220 * If the queue was activated in a burst, or too much
4221 * time has elapsed from the beginning of this
4222 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004223 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004224 if (bfq_bfqq_in_large_burst(bfqq))
4225 bfq_bfqq_end_wr(bfqq);
4226 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4227 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004228 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4229 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004230 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02004231 bfq_bfqq_end_wr(bfqq);
4232 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004233 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004234 bfqq->entity.prio_changed = 1;
4235 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004236 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004237 if (bfqq->wr_coeff > 1 &&
4238 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4239 bfqq->service_from_wr > max_service_from_wr) {
4240 /* see comments on max_service_from_wr */
4241 bfq_bfqq_end_wr(bfqq);
4242 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004243 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004244 /*
4245 * To improve latency (for this or other queues), immediately
4246 * update weight both if it must be raised and if it must be
4247 * lowered. Since, entity may be on some active tree here, and
4248 * might have a pending change of its ioprio class, invoke
4249 * next function with the last parameter unset (see the
4250 * comments on the function).
4251 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004252 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004253 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4254 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004255}
4256
Paolo Valenteaee69d72017-04-19 08:29:02 -06004257/*
4258 * Dispatch next request from bfqq.
4259 */
4260static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4261 struct bfq_queue *bfqq)
4262{
4263 struct request *rq = bfqq->next_rq;
4264 unsigned long service_to_charge;
4265
4266 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4267
4268 bfq_bfqq_served(bfqq, service_to_charge);
4269
Paolo Valente2341d6622019-03-12 09:59:29 +01004270 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4271 bfqd->wait_dispatch = false;
4272 bfqd->waited_rq = rq;
4273 }
4274
Paolo Valenteaee69d72017-04-19 08:29:02 -06004275 bfq_dispatch_remove(bfqd->queue, rq);
4276
Paolo Valente2341d6622019-03-12 09:59:29 +01004277 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004278 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004279
Paolo Valente44e44a12017-04-12 18:23:12 +02004280 /*
4281 * If weight raising has to terminate for bfqq, then next
4282 * function causes an immediate update of bfqq's weight,
4283 * without waiting for next activation. As a consequence, on
4284 * expiration, bfqq will be timestamped as if has never been
4285 * weight-raised during this service slot, even if it has
4286 * received part or even most of the service as a
4287 * weight-raised queue. This inflates bfqq's timestamps, which
4288 * is beneficial, as bfqq is then more willing to leave the
4289 * device immediately to possible other weight-raised queues.
4290 */
4291 bfq_update_wr_data(bfqd, bfqq);
4292
Paolo Valenteaee69d72017-04-19 08:29:02 -06004293 /*
4294 * Expire bfqq, pretending that its budget expired, if bfqq
4295 * belongs to CLASS_IDLE and other queues are waiting for
4296 * service.
4297 */
Paolo Valente73d58112019-01-29 12:06:29 +01004298 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004299 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004300
Paolo Valenteaee69d72017-04-19 08:29:02 -06004301 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02004302
4303return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06004304 return rq;
4305}
4306
4307static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4308{
4309 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4310
4311 /*
4312 * Avoiding lock: a race on bfqd->busy_queues should cause at
4313 * most a call to dispatch for nothing
4314 */
4315 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01004316 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004317}
4318
4319static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4320{
4321 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4322 struct request *rq = NULL;
4323 struct bfq_queue *bfqq = NULL;
4324
4325 if (!list_empty(&bfqd->dispatch)) {
4326 rq = list_first_entry(&bfqd->dispatch, struct request,
4327 queuelist);
4328 list_del_init(&rq->queuelist);
4329
4330 bfqq = RQ_BFQQ(rq);
4331
4332 if (bfqq) {
4333 /*
4334 * Increment counters here, because this
4335 * dispatch does not follow the standard
4336 * dispatch flow (where counters are
4337 * incremented)
4338 */
4339 bfqq->dispatched++;
4340
4341 goto inc_in_driver_start_rq;
4342 }
4343
4344 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004345 * We exploit the bfq_finish_requeue_request hook to
4346 * decrement rq_in_driver, but
4347 * bfq_finish_requeue_request will not be invoked on
4348 * this request. So, to avoid unbalance, just start
4349 * this request, without incrementing rq_in_driver. As
4350 * a negative consequence, rq_in_driver is deceptively
4351 * lower than it should be while this request is in
4352 * service. This may cause bfq_schedule_dispatch to be
4353 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004354 *
4355 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004356 * bfq_finish_requeue_request hook, if defined, is
4357 * probably invoked also on this request. So, by
4358 * exploiting this hook, we could 1) increment
4359 * rq_in_driver here, and 2) decrement it in
4360 * bfq_finish_requeue_request. Such a solution would
4361 * let the value of the counter be always accurate,
4362 * but it would entail using an extra interface
4363 * function. This cost seems higher than the benefit,
4364 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004365 * requests very low.
4366 */
4367 goto start_rq;
4368 }
4369
Paolo Valente73d58112019-01-29 12:06:29 +01004370 bfq_log(bfqd, "dispatch requests: %d busy queues",
4371 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004372
Paolo Valente73d58112019-01-29 12:06:29 +01004373 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004374 goto exit;
4375
4376 /*
4377 * Force device to serve one request at a time if
4378 * strict_guarantees is true. Forcing this service scheme is
4379 * currently the ONLY way to guarantee that the request
4380 * service order enforced by the scheduler is respected by a
4381 * queueing device. Otherwise the device is free even to make
4382 * some unlucky request wait for as long as the device
4383 * wishes.
4384 *
4385 * Of course, serving one request at at time may cause loss of
4386 * throughput.
4387 */
4388 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4389 goto exit;
4390
4391 bfqq = bfq_select_queue(bfqd);
4392 if (!bfqq)
4393 goto exit;
4394
4395 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4396
4397 if (rq) {
4398inc_in_driver_start_rq:
4399 bfqd->rq_in_driver++;
4400start_rq:
4401 rq->rq_flags |= RQF_STARTED;
4402 }
4403exit:
4404 return rq;
4405}
4406
Paolo Valente9b25bd02017-12-04 11:42:05 +01004407#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4408static void bfq_update_dispatch_stats(struct request_queue *q,
4409 struct request *rq,
4410 struct bfq_queue *in_serv_queue,
4411 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004412{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004413 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004414
Paolo Valente24bfd192017-11-13 07:34:09 +01004415 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004416 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004417
4418 /*
4419 * rq and bfqq are guaranteed to exist until this function
4420 * ends, for the following reasons. First, rq can be
4421 * dispatched to the device, and then can be completed and
4422 * freed, only after this function ends. Second, rq cannot be
4423 * merged (and thus freed because of a merge) any longer,
4424 * because it has already started. Thus rq cannot be freed
4425 * before this function ends, and, since rq has a reference to
4426 * bfqq, the same guarantee holds for bfqq too.
4427 *
4428 * In addition, the following queue lock guarantees that
4429 * bfqq_group(bfqq) exists as well.
4430 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004431 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004432 if (idle_timer_disabled)
4433 /*
4434 * Since the idle timer has been disabled,
4435 * in_serv_queue contained some request when
4436 * __bfq_dispatch_request was invoked above, which
4437 * implies that rq was picked exactly from
4438 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4439 * therefore guaranteed to exist because of the above
4440 * arguments.
4441 */
4442 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4443 if (bfqq) {
4444 struct bfq_group *bfqg = bfqq_group(bfqq);
4445
4446 bfqg_stats_update_avg_queue_size(bfqg);
4447 bfqg_stats_set_start_empty_time(bfqg);
4448 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4449 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004450 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004451}
4452#else
4453static inline void bfq_update_dispatch_stats(struct request_queue *q,
4454 struct request *rq,
4455 struct bfq_queue *in_serv_queue,
4456 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01004457#endif
4458
Paolo Valente9b25bd02017-12-04 11:42:05 +01004459static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4460{
4461 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4462 struct request *rq;
4463 struct bfq_queue *in_serv_queue;
4464 bool waiting_rq, idle_timer_disabled;
4465
4466 spin_lock_irq(&bfqd->lock);
4467
4468 in_serv_queue = bfqd->in_service_queue;
4469 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4470
4471 rq = __bfq_dispatch_request(hctx);
4472
4473 idle_timer_disabled =
4474 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4475
4476 spin_unlock_irq(&bfqd->lock);
4477
4478 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4479 idle_timer_disabled);
4480
Paolo Valenteaee69d72017-04-19 08:29:02 -06004481 return rq;
4482}
4483
4484/*
4485 * Task holds one reference to the queue, dropped when task exits. Each rq
4486 * in-flight on this queue also holds a reference, dropped when rq is freed.
4487 *
4488 * Scheduler lock must be held here. Recall not to use bfqq after calling
4489 * this function on it.
4490 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004491void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004492{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004493#ifdef CONFIG_BFQ_GROUP_IOSCHED
4494 struct bfq_group *bfqg = bfqq_group(bfqq);
4495#endif
4496
Paolo Valenteaee69d72017-04-19 08:29:02 -06004497 if (bfqq->bfqd)
4498 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4499 bfqq, bfqq->ref);
4500
4501 bfqq->ref--;
4502 if (bfqq->ref)
4503 return;
4504
Paolo Valente99fead82017-10-09 13:11:23 +02004505 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004506 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004507 /*
4508 * Decrement also burst size after the removal, if the
4509 * process associated with bfqq is exiting, and thus
4510 * does not contribute to the burst any longer. This
4511 * decrement helps filter out false positives of large
4512 * bursts, when some short-lived process (often due to
4513 * the execution of commands by some service) happens
4514 * to start and exit while a complex application is
4515 * starting, and thus spawning several processes that
4516 * do I/O (and that *must not* be treated as a large
4517 * burst, see comments on bfq_handle_burst).
4518 *
4519 * In particular, the decrement is performed only if:
4520 * 1) bfqq is not a merged queue, because, if it is,
4521 * then this free of bfqq is not triggered by the exit
4522 * of the process bfqq is associated with, but exactly
4523 * by the fact that bfqq has just been merged.
4524 * 2) burst_size is greater than 0, to handle
4525 * unbalanced decrements. Unbalanced decrements may
4526 * happen in te following case: bfqq is inserted into
4527 * the current burst list--without incrementing
4528 * bust_size--because of a split, but the current
4529 * burst list is not the burst list bfqq belonged to
4530 * (see comments on the case of a split in
4531 * bfq_set_request).
4532 */
4533 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4534 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004535 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004536
Paolo Valenteaee69d72017-04-19 08:29:02 -06004537 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004538#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004539 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004540#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004541}
4542
Arianna Avanzini36eca892017-04-12 18:23:16 +02004543static void bfq_put_cooperator(struct bfq_queue *bfqq)
4544{
4545 struct bfq_queue *__bfqq, *next;
4546
4547 /*
4548 * If this queue was scheduled to merge with another queue, be
4549 * sure to drop the reference taken on that queue (and others in
4550 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4551 */
4552 __bfqq = bfqq->new_bfqq;
4553 while (__bfqq) {
4554 if (__bfqq == bfqq)
4555 break;
4556 next = __bfqq->new_bfqq;
4557 bfq_put_queue(__bfqq);
4558 __bfqq = next;
4559 }
4560}
4561
Paolo Valenteaee69d72017-04-19 08:29:02 -06004562static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4563{
4564 if (bfqq == bfqd->in_service_queue) {
4565 __bfq_bfqq_expire(bfqd, bfqq);
4566 bfq_schedule_dispatch(bfqd);
4567 }
4568
4569 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4570
Arianna Avanzini36eca892017-04-12 18:23:16 +02004571 bfq_put_cooperator(bfqq);
4572
Paolo Valenteaee69d72017-04-19 08:29:02 -06004573 bfq_put_queue(bfqq); /* release process reference */
4574}
4575
4576static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4577{
4578 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4579 struct bfq_data *bfqd;
4580
4581 if (bfqq)
4582 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4583
4584 if (bfqq && bfqd) {
4585 unsigned long flags;
4586
4587 spin_lock_irqsave(&bfqd->lock, flags);
4588 bfq_exit_bfqq(bfqd, bfqq);
4589 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004590 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004591 }
4592}
4593
4594static void bfq_exit_icq(struct io_cq *icq)
4595{
4596 struct bfq_io_cq *bic = icq_to_bic(icq);
4597
4598 bfq_exit_icq_bfqq(bic, true);
4599 bfq_exit_icq_bfqq(bic, false);
4600}
4601
4602/*
4603 * Update the entity prio values; note that the new values will not
4604 * be used until the next (re)activation.
4605 */
4606static void
4607bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4608{
4609 struct task_struct *tsk = current;
4610 int ioprio_class;
4611 struct bfq_data *bfqd = bfqq->bfqd;
4612
4613 if (!bfqd)
4614 return;
4615
4616 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4617 switch (ioprio_class) {
4618 default:
4619 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4620 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004621 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004622 case IOPRIO_CLASS_NONE:
4623 /*
4624 * No prio set, inherit CPU scheduling settings.
4625 */
4626 bfqq->new_ioprio = task_nice_ioprio(tsk);
4627 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4628 break;
4629 case IOPRIO_CLASS_RT:
4630 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4631 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4632 break;
4633 case IOPRIO_CLASS_BE:
4634 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4635 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4636 break;
4637 case IOPRIO_CLASS_IDLE:
4638 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4639 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004640 break;
4641 }
4642
4643 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4644 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4645 bfqq->new_ioprio);
4646 bfqq->new_ioprio = IOPRIO_BE_NR;
4647 }
4648
4649 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4650 bfqq->entity.prio_changed = 1;
4651}
4652
Paolo Valenteea25da42017-04-19 08:48:24 -06004653static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4654 struct bio *bio, bool is_sync,
4655 struct bfq_io_cq *bic);
4656
Paolo Valenteaee69d72017-04-19 08:29:02 -06004657static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4658{
4659 struct bfq_data *bfqd = bic_to_bfqd(bic);
4660 struct bfq_queue *bfqq;
4661 int ioprio = bic->icq.ioc->ioprio;
4662
4663 /*
4664 * This condition may trigger on a newly created bic, be sure to
4665 * drop the lock before returning.
4666 */
4667 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4668 return;
4669
4670 bic->ioprio = ioprio;
4671
4672 bfqq = bic_to_bfqq(bic, false);
4673 if (bfqq) {
4674 /* release process reference on this queue */
4675 bfq_put_queue(bfqq);
4676 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4677 bic_set_bfqq(bic, bfqq, false);
4678 }
4679
4680 bfqq = bic_to_bfqq(bic, true);
4681 if (bfqq)
4682 bfq_set_next_ioprio_data(bfqq, bic);
4683}
4684
4685static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4686 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4687{
4688 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4689 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004690 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004691
4692 bfqq->ref = 0;
4693 bfqq->bfqd = bfqd;
4694
4695 if (bic)
4696 bfq_set_next_ioprio_data(bfqq, bic);
4697
4698 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004699 /*
4700 * No need to mark as has_short_ttime if in
4701 * idle_class, because no device idling is performed
4702 * for queues in idle class
4703 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004704 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004705 /* tentatively mark as has_short_ttime */
4706 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004707 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004708 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004709 } else
4710 bfq_clear_bfqq_sync(bfqq);
4711
4712 /* set end request to minus infinity from now */
4713 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4714
4715 bfq_mark_bfqq_IO_bound(bfqq);
4716
4717 bfqq->pid = pid;
4718
4719 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004720 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004721 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004722
Paolo Valente44e44a12017-04-12 18:23:12 +02004723 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004724 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004725 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004726 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004727
4728 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004729 * To not forget the possibly high bandwidth consumed by a
4730 * process/queue in the recent past,
4731 * bfq_bfqq_softrt_next_start() returns a value at least equal
4732 * to the current value of bfqq->soft_rt_next_start (see
4733 * comments on bfq_bfqq_softrt_next_start). Set
4734 * soft_rt_next_start to now, to mean that bfqq has consumed
4735 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004736 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004737 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004738
Paolo Valenteaee69d72017-04-19 08:29:02 -06004739 /* first request is almost certainly seeky */
4740 bfqq->seek_history = 1;
4741}
4742
4743static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004744 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004745 int ioprio_class, int ioprio)
4746{
4747 switch (ioprio_class) {
4748 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004749 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004750 case IOPRIO_CLASS_NONE:
4751 ioprio = IOPRIO_NORM;
4752 /* fall through */
4753 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004754 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004755 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004756 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004757 default:
4758 return NULL;
4759 }
4760}
4761
4762static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4763 struct bio *bio, bool is_sync,
4764 struct bfq_io_cq *bic)
4765{
4766 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4767 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4768 struct bfq_queue **async_bfqq = NULL;
4769 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004770 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004771
4772 rcu_read_lock();
4773
Dennis Zhou0fe061b2018-12-05 12:10:26 -05004774 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004775 if (!bfqg) {
4776 bfqq = &bfqd->oom_bfqq;
4777 goto out;
4778 }
4779
Paolo Valenteaee69d72017-04-19 08:29:02 -06004780 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004781 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004782 ioprio);
4783 bfqq = *async_bfqq;
4784 if (bfqq)
4785 goto out;
4786 }
4787
4788 bfqq = kmem_cache_alloc_node(bfq_pool,
4789 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4790 bfqd->queue->node);
4791
4792 if (bfqq) {
4793 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4794 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004795 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004796 bfq_log_bfqq(bfqd, bfqq, "allocated");
4797 } else {
4798 bfqq = &bfqd->oom_bfqq;
4799 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4800 goto out;
4801 }
4802
4803 /*
4804 * Pin the queue now that it's allocated, scheduler exit will
4805 * prune it.
4806 */
4807 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004808 bfqq->ref++; /*
4809 * Extra group reference, w.r.t. sync
4810 * queue. This extra reference is removed
4811 * only if bfqq->bfqg disappears, to
4812 * guarantee that this queue is not freed
4813 * until its group goes away.
4814 */
4815 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004816 bfqq, bfqq->ref);
4817 *async_bfqq = bfqq;
4818 }
4819
4820out:
4821 bfqq->ref++; /* get a process reference to this queue */
4822 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4823 rcu_read_unlock();
4824 return bfqq;
4825}
4826
4827static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4828 struct bfq_queue *bfqq)
4829{
4830 struct bfq_ttime *ttime = &bfqq->ttime;
4831 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4832
4833 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4834
4835 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4836 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4837 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4838 ttime->ttime_samples);
4839}
4840
4841static void
4842bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4843 struct request *rq)
4844{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004845 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01004846 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valente7074f072019-03-12 09:59:31 +01004847
4848 if (bfqq->wr_coeff > 1 &&
4849 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
4850 BFQQ_TOTALLY_SEEKY(bfqq))
4851 bfq_bfqq_end_wr(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004852}
4853
Paolo Valented5be3fe2017-08-04 07:35:10 +02004854static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4855 struct bfq_queue *bfqq,
4856 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004857{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004858 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004859
Paolo Valented5be3fe2017-08-04 07:35:10 +02004860 /*
4861 * No need to update has_short_ttime if bfqq is async or in
4862 * idle io prio class, or if bfq_slice_idle is zero, because
4863 * no device idling is performed for bfqq in this case.
4864 */
4865 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4866 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004867 return;
4868
Arianna Avanzini36eca892017-04-12 18:23:16 +02004869 /* Idle window just restored, statistics are meaningless. */
4870 if (time_is_after_eq_jiffies(bfqq->split_time +
4871 bfqd->bfq_wr_min_idle_time))
4872 return;
4873
Paolo Valented5be3fe2017-08-04 07:35:10 +02004874 /* Think time is infinite if no process is linked to
4875 * bfqq. Otherwise check average think time to
4876 * decide whether to mark as has_short_ttime
4877 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004878 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004879 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4880 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4881 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004882
Paolo Valented5be3fe2017-08-04 07:35:10 +02004883 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4884 has_short_ttime);
4885
4886 if (has_short_ttime)
4887 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004888 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004889 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004890}
4891
4892/*
4893 * Called when a new fs request (rq) is added to bfqq. Check if there's
4894 * something we should do about it.
4895 */
4896static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4897 struct request *rq)
4898{
4899 struct bfq_io_cq *bic = RQ_BIC(rq);
4900
4901 if (rq->cmd_flags & REQ_META)
4902 bfqq->meta_pending++;
4903
4904 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004905 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004906 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004907
4908 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004909 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4910 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004911
4912 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4913
4914 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4915 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4916 blk_rq_sectors(rq) < 32;
4917 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4918
4919 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004920 * There is just this request queued: if
4921 * - the request is small, and
4922 * - we are idling to boost throughput, and
4923 * - the queue is not to be expired,
4924 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004925 *
4926 * In this way, if the device is being idled to wait
4927 * for a new request from the in-service queue, we
4928 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004929 * device to serve just a small request. In contrast
4930 * we wait for the block layer to decide when to
4931 * unplug the device: hopefully, new requests will be
4932 * merged to this one quickly, then the device will be
4933 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004934 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004935 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
4936 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004937 return;
4938
4939 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004940 * A large enough request arrived, or idling is being
4941 * performed to preserve service guarantees, or
4942 * finally the queue is to be expired: in all these
4943 * cases disk idling is to be stopped, so clear
4944 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004945 */
4946 bfq_clear_bfqq_wait_request(bfqq);
4947 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4948
4949 /*
4950 * The queue is not empty, because a new request just
4951 * arrived. Hence we can safely expire the queue, in
4952 * case of budget timeout, without risking that the
4953 * timestamps of the queue are not updated correctly.
4954 * See [1] for more details.
4955 */
4956 if (budget_timeout)
4957 bfq_bfqq_expire(bfqd, bfqq, false,
4958 BFQQE_BUDGET_TIMEOUT);
4959 }
4960}
4961
Paolo Valente24bfd192017-11-13 07:34:09 +01004962/* returns true if it causes the idle timer to be disabled */
4963static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004964{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004965 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4966 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004967 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004968
4969 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02004970 /*
4971 * Release the request's reference to the old bfqq
4972 * and make sure one is taken to the shared queue.
4973 */
4974 new_bfqq->allocated++;
4975 bfqq->allocated--;
4976 new_bfqq->ref++;
4977 /*
4978 * If the bic associated with the process
4979 * issuing this request still points to bfqq
4980 * (and thus has not been already redirected
4981 * to new_bfqq or even some other bfq_queue),
4982 * then complete the merge and redirect it to
4983 * new_bfqq.
4984 */
4985 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4986 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4987 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004988
4989 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004990 /*
4991 * rq is about to be enqueued into new_bfqq,
4992 * release rq reference on bfqq
4993 */
4994 bfq_put_queue(bfqq);
4995 rq->elv.priv[1] = new_bfqq;
4996 bfqq = new_bfqq;
4997 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004998
Paolo Valente24bfd192017-11-13 07:34:09 +01004999 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005000 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005001 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005002
5003 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5004 list_add_tail(&rq->queuelist, &bfqq->fifo);
5005
5006 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005007
5008 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005009}
5010
Paolo Valente9b25bd02017-12-04 11:42:05 +01005011#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
5012static void bfq_update_insert_stats(struct request_queue *q,
5013 struct bfq_queue *bfqq,
5014 bool idle_timer_disabled,
5015 unsigned int cmd_flags)
5016{
5017 if (!bfqq)
5018 return;
5019
5020 /*
5021 * bfqq still exists, because it can disappear only after
5022 * either it is merged with another queue, or the process it
5023 * is associated with exits. But both actions must be taken by
5024 * the same process currently executing this flow of
5025 * instructions.
5026 *
5027 * In addition, the following queue lock guarantees that
5028 * bfqq_group(bfqq) exists as well.
5029 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005030 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005031 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5032 if (idle_timer_disabled)
5033 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005034 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005035}
5036#else
5037static inline void bfq_update_insert_stats(struct request_queue *q,
5038 struct bfq_queue *bfqq,
5039 bool idle_timer_disabled,
5040 unsigned int cmd_flags) {}
5041#endif
5042
Paolo Valenteaee69d72017-04-19 08:29:02 -06005043static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5044 bool at_head)
5045{
5046 struct request_queue *q = hctx->queue;
5047 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02005048 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01005049 bool idle_timer_disabled = false;
5050 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005051
5052 spin_lock_irq(&bfqd->lock);
5053 if (blk_mq_sched_try_insert_merge(q, rq)) {
5054 spin_unlock_irq(&bfqd->lock);
5055 return;
5056 }
5057
5058 spin_unlock_irq(&bfqd->lock);
5059
5060 blk_mq_sched_request_inserted(rq);
5061
5062 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02005063 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005064 if (at_head || blk_rq_is_passthrough(rq)) {
5065 if (at_head)
5066 list_add(&rq->queuelist, &bfqd->dispatch);
5067 else
5068 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02005069 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01005070 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005071 /*
5072 * Update bfqq, because, if a queue merge has occurred
5073 * in __bfq_insert_request, then rq has been
5074 * redirected into a new queue.
5075 */
5076 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005077
5078 if (rq_mergeable(rq)) {
5079 elv_rqhash_add(q, rq);
5080 if (!q->last_merge)
5081 q->last_merge = rq;
5082 }
5083 }
5084
Paolo Valente24bfd192017-11-13 07:34:09 +01005085 /*
5086 * Cache cmd_flags before releasing scheduler lock, because rq
5087 * may disappear afterwards (for example, because of a request
5088 * merge).
5089 */
5090 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01005091
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005092 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005093
Paolo Valente9b25bd02017-12-04 11:42:05 +01005094 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5095 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005096}
5097
5098static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5099 struct list_head *list, bool at_head)
5100{
5101 while (!list_empty(list)) {
5102 struct request *rq;
5103
5104 rq = list_first_entry(list, struct request, queuelist);
5105 list_del_init(&rq->queuelist);
5106 bfq_insert_request(hctx, rq, at_head);
5107 }
5108}
5109
5110static void bfq_update_hw_tag(struct bfq_data *bfqd)
5111{
Paolo Valenteb3c34982019-01-29 12:06:36 +01005112 struct bfq_queue *bfqq = bfqd->in_service_queue;
5113
Paolo Valenteaee69d72017-04-19 08:29:02 -06005114 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5115 bfqd->rq_in_driver);
5116
5117 if (bfqd->hw_tag == 1)
5118 return;
5119
5120 /*
5121 * This sample is valid if the number of outstanding requests
5122 * is large enough to allow a queueing behavior. Note that the
5123 * sum is not exact, as it's not taking into account deactivated
5124 * requests.
5125 */
Paolo Valentea3c92562019-01-29 12:06:35 +01005126 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005127 return;
5128
Paolo Valenteb3c34982019-01-29 12:06:36 +01005129 /*
5130 * If active queue hasn't enough requests and can idle, bfq might not
5131 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5132 * case
5133 */
5134 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5135 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5136 BFQ_HW_QUEUE_THRESHOLD &&
5137 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5138 return;
5139
Paolo Valenteaee69d72017-04-19 08:29:02 -06005140 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5141 return;
5142
5143 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5144 bfqd->max_rq_in_driver = 0;
5145 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005146
5147 bfqd->nonrot_with_queueing =
5148 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005149}
5150
5151static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5152{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005153 u64 now_ns;
5154 u32 delta_us;
5155
Paolo Valenteaee69d72017-04-19 08:29:02 -06005156 bfq_update_hw_tag(bfqd);
5157
5158 bfqd->rq_in_driver--;
5159 bfqq->dispatched--;
5160
Paolo Valente44e44a12017-04-12 18:23:12 +02005161 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5162 /*
5163 * Set budget_timeout (which we overload to store the
5164 * time at which the queue remains with no backlog and
5165 * no outstanding request; used by the weight-raising
5166 * mechanism).
5167 */
5168 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005169
Paolo Valente04715592018-06-25 21:55:34 +02005170 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02005171 }
5172
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005173 now_ns = ktime_get_ns();
5174
5175 bfqq->ttime.last_end_request = now_ns;
5176
5177 /*
5178 * Using us instead of ns, to get a reasonable precision in
5179 * computing rate in next check.
5180 */
5181 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5182
5183 /*
5184 * If the request took rather long to complete, and, according
5185 * to the maximum request size recorded, this completion latency
5186 * implies that the request was certainly served at a very low
5187 * rate (less than 1M sectors/sec), then the whole observation
5188 * interval that lasts up to this time instant cannot be a
5189 * valid time interval for computing a new peak rate. Invoke
5190 * bfq_update_rate_reset to have the following three steps
5191 * taken:
5192 * - close the observation interval at the last (previous)
5193 * request dispatch or completion
5194 * - compute rate, if possible, for that observation interval
5195 * - reset to zero samples, which will trigger a proper
5196 * re-initialization of the observation interval on next
5197 * dispatch
5198 */
5199 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5200 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5201 1UL<<(BFQ_RATE_SHIFT - 10))
5202 bfq_update_rate_reset(bfqd, NULL);
5203 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005204
5205 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02005206 * If we are waiting to discover whether the request pattern
5207 * of the task associated with the queue is actually
5208 * isochronous, and both requisites for this condition to hold
5209 * are now satisfied, then compute soft_rt_next_start (see the
5210 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01005211 * do not compute soft_rt_next_start if bfqq is in interactive
5212 * weight raising (see the comments in bfq_bfqq_expire() for
5213 * an explanation). We schedule this delayed update when bfqq
5214 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005215 */
5216 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01005217 RB_EMPTY_ROOT(&bfqq->sort_list) &&
5218 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02005219 bfqq->soft_rt_next_start =
5220 bfq_bfqq_softrt_next_start(bfqd, bfqq);
5221
5222 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06005223 * If this is the in-service queue, check if it needs to be expired,
5224 * or if we want to idle in case it has no pending requests.
5225 */
5226 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02005227 if (bfq_bfqq_must_idle(bfqq)) {
5228 if (bfqq->dispatched == 0)
5229 bfq_arm_slice_timer(bfqd);
5230 /*
5231 * If we get here, we do not expire bfqq, even
5232 * if bfqq was in budget timeout or had no
5233 * more requests (as controlled in the next
5234 * conditional instructions). The reason for
5235 * not expiring bfqq is as follows.
5236 *
5237 * Here bfqq->dispatched > 0 holds, but
5238 * bfq_bfqq_must_idle() returned true. This
5239 * implies that, even if no request arrives
5240 * for bfqq before bfqq->dispatched reaches 0,
5241 * bfqq will, however, not be expired on the
5242 * completion event that causes bfqq->dispatch
5243 * to reach zero. In contrast, on this event,
5244 * bfqq will start enjoying device idling
5245 * (I/O-dispatch plugging).
5246 *
5247 * But, if we expired bfqq here, bfqq would
5248 * not have the chance to enjoy device idling
5249 * when bfqq->dispatched finally reaches
5250 * zero. This would expose bfqq to violation
5251 * of its reserved service guarantees.
5252 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005253 return;
5254 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5255 bfq_bfqq_expire(bfqd, bfqq, false,
5256 BFQQE_BUDGET_TIMEOUT);
5257 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5258 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02005259 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06005260 bfq_bfqq_expire(bfqd, bfqq, false,
5261 BFQQE_NO_MORE_REQUESTS);
5262 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08005263
5264 if (!bfqd->rq_in_driver)
5265 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005266}
5267
Paolo Valentea7877392018-02-07 22:19:20 +01005268static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005269{
5270 bfqq->allocated--;
5271
5272 bfq_put_queue(bfqq);
5273}
5274
Paolo Valentea7877392018-02-07 22:19:20 +01005275/*
Paolo Valente2341d6622019-03-12 09:59:29 +01005276 * The processes associated with bfqq may happen to generate their
5277 * cumulative I/O at a lower rate than the rate at which the device
5278 * could serve the same I/O. This is rather probable, e.g., if only
5279 * one process is associated with bfqq and the device is an SSD. It
5280 * results in bfqq becoming often empty while in service. In this
5281 * respect, if BFQ is allowed to switch to another queue when bfqq
5282 * remains empty, then the device goes on being fed with I/O requests,
5283 * and the throughput is not affected. In contrast, if BFQ is not
5284 * allowed to switch to another queue---because bfqq is sync and
5285 * I/O-dispatch needs to be plugged while bfqq is temporarily
5286 * empty---then, during the service of bfqq, there will be frequent
5287 * "service holes", i.e., time intervals during which bfqq gets empty
5288 * and the device can only consume the I/O already queued in its
5289 * hardware queues. During service holes, the device may even get to
5290 * remaining idle. In the end, during the service of bfqq, the device
5291 * is driven at a lower speed than the one it can reach with the kind
5292 * of I/O flowing through bfqq.
5293 *
5294 * To counter this loss of throughput, BFQ implements a "request
5295 * injection mechanism", which tries to fill the above service holes
5296 * with I/O requests taken from other queues. The hard part in this
5297 * mechanism is finding the right amount of I/O to inject, so as to
5298 * both boost throughput and not break bfqq's bandwidth and latency
5299 * guarantees. In this respect, the mechanism maintains a per-queue
5300 * inject limit, computed as below. While bfqq is empty, the injection
5301 * mechanism dispatches extra I/O requests only until the total number
5302 * of I/O requests in flight---i.e., already dispatched but not yet
5303 * completed---remains lower than this limit.
5304 *
5305 * A first definition comes in handy to introduce the algorithm by
5306 * which the inject limit is computed. We define as first request for
5307 * bfqq, an I/O request for bfqq that arrives while bfqq is in
5308 * service, and causes bfqq to switch from empty to non-empty. The
5309 * algorithm updates the limit as a function of the effect of
5310 * injection on the service times of only the first requests of
5311 * bfqq. The reason for this restriction is that these are the
5312 * requests whose service time is affected most, because they are the
5313 * first to arrive after injection possibly occurred.
5314 *
5315 * To evaluate the effect of injection, the algorithm measures the
5316 * "total service time" of first requests. We define as total service
5317 * time of an I/O request, the time that elapses since when the
5318 * request is enqueued into bfqq, to when it is completed. This
5319 * quantity allows the whole effect of injection to be measured. It is
5320 * easy to see why. Suppose that some requests of other queues are
5321 * actually injected while bfqq is empty, and that a new request R
5322 * then arrives for bfqq. If the device does start to serve all or
5323 * part of the injected requests during the service hole, then,
5324 * because of this extra service, it may delay the next invocation of
5325 * the dispatch hook of BFQ. Then, even after R gets eventually
5326 * dispatched, the device may delay the actual service of R if it is
5327 * still busy serving the extra requests, or if it decides to serve,
5328 * before R, some extra request still present in its queues. As a
5329 * conclusion, the cumulative extra delay caused by injection can be
5330 * easily evaluated by just comparing the total service time of first
5331 * requests with and without injection.
5332 *
5333 * The limit-update algorithm works as follows. On the arrival of a
5334 * first request of bfqq, the algorithm measures the total time of the
5335 * request only if one of the three cases below holds, and, for each
5336 * case, it updates the limit as described below:
5337 *
5338 * (1) If there is no in-flight request. This gives a baseline for the
5339 * total service time of the requests of bfqq. If the baseline has
5340 * not been computed yet, then, after computing it, the limit is
5341 * set to 1, to start boosting throughput, and to prepare the
5342 * ground for the next case. If the baseline has already been
5343 * computed, then it is updated, in case it results to be lower
5344 * than the previous value.
5345 *
5346 * (2) If the limit is higher than 0 and there are in-flight
5347 * requests. By comparing the total service time in this case with
5348 * the above baseline, it is possible to know at which extent the
5349 * current value of the limit is inflating the total service
5350 * time. If the inflation is below a certain threshold, then bfqq
5351 * is assumed to be suffering from no perceivable loss of its
5352 * service guarantees, and the limit is even tentatively
5353 * increased. If the inflation is above the threshold, then the
5354 * limit is decreased. Due to the lack of any hysteresis, this
5355 * logic makes the limit oscillate even in steady workload
5356 * conditions. Yet we opted for it, because it is fast in reaching
5357 * the best value for the limit, as a function of the current I/O
5358 * workload. To reduce oscillations, this step is disabled for a
5359 * short time interval after the limit happens to be decreased.
5360 *
5361 * (3) Periodically, after resetting the limit, to make sure that the
5362 * limit eventually drops in case the workload changes. This is
5363 * needed because, after the limit has gone safely up for a
5364 * certain workload, it is impossible to guess whether the
5365 * baseline total service time may have changed, without measuring
5366 * it again without injection. A more effective version of this
5367 * step might be to just sample the baseline, by interrupting
5368 * injection only once, and then to reset/lower the limit only if
5369 * the total service time with the current limit does happen to be
5370 * too large.
5371 *
5372 * More details on each step are provided in the comments on the
5373 * pieces of code that implement these steps: the branch handling the
5374 * transition from empty to non empty in bfq_add_request(), the branch
5375 * handling injection in bfq_select_queue(), and the function
5376 * bfq_choose_bfqq_for_injection(). These comments also explain some
5377 * exceptions, made by the injection mechanism in some special cases.
5378 */
5379static void bfq_update_inject_limit(struct bfq_data *bfqd,
5380 struct bfq_queue *bfqq)
5381{
5382 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5383 unsigned int old_limit = bfqq->inject_limit;
5384
5385 if (bfqq->last_serv_time_ns > 0) {
5386 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5387
5388 if (tot_time_ns >= threshold && old_limit > 0) {
5389 bfqq->inject_limit--;
5390 bfqq->decrease_time_jif = jiffies;
5391 } else if (tot_time_ns < threshold &&
5392 old_limit < bfqd->max_rq_in_driver<<1)
5393 bfqq->inject_limit++;
5394 }
5395
5396 /*
5397 * Either we still have to compute the base value for the
5398 * total service time, and there seem to be the right
5399 * conditions to do it, or we can lower the last base value
5400 * computed.
5401 */
5402 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 0) ||
5403 tot_time_ns < bfqq->last_serv_time_ns) {
5404 bfqq->last_serv_time_ns = tot_time_ns;
5405 /*
5406 * Now we certainly have a base value: make sure we
5407 * start trying injection.
5408 */
5409 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5410 }
5411
5412 /* update complete, not waiting for any request completion any longer */
5413 bfqd->waited_rq = NULL;
5414}
5415
5416/*
Paolo Valentea7877392018-02-07 22:19:20 +01005417 * Handle either a requeue or a finish for rq. The things to do are
5418 * the same in both cases: all references to rq are to be dropped. In
5419 * particular, rq is considered completed from the point of view of
5420 * the scheduler.
5421 */
5422static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005423{
Paolo Valentea7877392018-02-07 22:19:20 +01005424 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005425 struct bfq_data *bfqd;
5426
Paolo Valentea7877392018-02-07 22:19:20 +01005427 /*
5428 * Requeue and finish hooks are invoked in blk-mq without
5429 * checking whether the involved request is actually still
5430 * referenced in the scheduler. To handle this fact, the
5431 * following two checks make this function exit in case of
5432 * spurious invocations, for which there is nothing to do.
5433 *
5434 * First, check whether rq has nothing to do with an elevator.
5435 */
5436 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005437 return;
5438
Paolo Valentea7877392018-02-07 22:19:20 +01005439 /*
5440 * rq either is not associated with any icq, or is an already
5441 * requeued request that has not (yet) been re-inserted into
5442 * a bfq_queue.
5443 */
5444 if (!rq->elv.icq || !bfqq)
5445 return;
5446
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005447 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005448
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005449 if (rq->rq_flags & RQF_STARTED)
5450 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07005451 rq->start_time_ns,
5452 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005453 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005454
5455 if (likely(rq->rq_flags & RQF_STARTED)) {
5456 unsigned long flags;
5457
5458 spin_lock_irqsave(&bfqd->lock, flags);
5459
Paolo Valente2341d6622019-03-12 09:59:29 +01005460 if (rq == bfqd->waited_rq)
5461 bfq_update_inject_limit(bfqd, bfqq);
5462
Paolo Valenteaee69d72017-04-19 08:29:02 -06005463 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01005464 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005465
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005466 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005467 } else {
5468 /*
5469 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01005470 * in which case we need to remove it (this should
5471 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06005472 * defer such a check and removal, to avoid
5473 * inconsistencies in the time interval from the end
5474 * of this function to the start of the deferred work.
5475 * This situation seems to occur only in process
5476 * context, as a consequence of a merge. In the
5477 * current version of the code, this implies that the
5478 * lock is held.
5479 */
5480
Luca Miccio614822f2017-11-13 07:34:08 +01005481 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02005482 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005483 bfqg_stats_update_io_remove(bfqq_group(bfqq),
5484 rq->cmd_flags);
5485 }
Paolo Valentea7877392018-02-07 22:19:20 +01005486 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005487 }
5488
Paolo Valentea7877392018-02-07 22:19:20 +01005489 /*
5490 * Reset private fields. In case of a requeue, this allows
5491 * this function to correctly do nothing if it is spuriously
5492 * invoked again on this same request (see the check at the
5493 * beginning of the function). Probably, a better general
5494 * design would be to prevent blk-mq from invoking the requeue
5495 * or finish hooks of an elevator, for a request that is not
5496 * referred by that elevator.
5497 *
5498 * Resetting the following fields would break the
5499 * request-insertion logic if rq is re-inserted into a bfq
5500 * internal queue, without a re-preparation. Here we assume
5501 * that re-insertions of requeued requests, without
5502 * re-preparation, can happen only for pass_through or at_head
5503 * requests (which are not re-inserted into bfq internal
5504 * queues).
5505 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005506 rq->elv.priv[0] = NULL;
5507 rq->elv.priv[1] = NULL;
5508}
5509
5510/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02005511 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5512 * was the last process referring to that bfqq.
5513 */
5514static struct bfq_queue *
5515bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5516{
5517 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5518
5519 if (bfqq_process_refs(bfqq) == 1) {
5520 bfqq->pid = current->pid;
5521 bfq_clear_bfqq_coop(bfqq);
5522 bfq_clear_bfqq_split_coop(bfqq);
5523 return bfqq;
5524 }
5525
5526 bic_set_bfqq(bic, NULL, 1);
5527
5528 bfq_put_cooperator(bfqq);
5529
5530 bfq_put_queue(bfqq);
5531 return NULL;
5532}
5533
5534static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5535 struct bfq_io_cq *bic,
5536 struct bio *bio,
5537 bool split, bool is_sync,
5538 bool *new_queue)
5539{
5540 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5541
5542 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5543 return bfqq;
5544
5545 if (new_queue)
5546 *new_queue = true;
5547
5548 if (bfqq)
5549 bfq_put_queue(bfqq);
5550 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5551
5552 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005553 if (split && is_sync) {
5554 if ((bic->was_in_burst_list && bfqd->large_burst) ||
5555 bic->saved_in_large_burst)
5556 bfq_mark_bfqq_in_large_burst(bfqq);
5557 else {
5558 bfq_clear_bfqq_in_large_burst(bfqq);
5559 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02005560 /*
5561 * If bfqq was in the current
5562 * burst list before being
5563 * merged, then we have to add
5564 * it back. And we do not need
5565 * to increase burst_size, as
5566 * we did not decrement
5567 * burst_size when we removed
5568 * bfqq from the burst list as
5569 * a consequence of a merge
5570 * (see comments in
5571 * bfq_put_queue). In this
5572 * respect, it would be rather
5573 * costly to know whether the
5574 * current burst list is still
5575 * the same burst list from
5576 * which bfqq was removed on
5577 * the merge. To avoid this
5578 * cost, if bfqq was in a
5579 * burst list, then we add
5580 * bfqq to the current burst
5581 * list without any further
5582 * check. This can cause
5583 * inappropriate insertions,
5584 * but rarely enough to not
5585 * harm the detection of large
5586 * bursts significantly.
5587 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005588 hlist_add_head(&bfqq->burst_list_node,
5589 &bfqd->burst_list);
5590 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005591 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005592 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005593
5594 return bfqq;
5595}
5596
5597/*
Paolo Valente18e5a572018-05-04 19:17:01 +02005598 * Only reset private fields. The actual request preparation will be
5599 * performed by bfq_init_rq, when rq is either inserted or merged. See
5600 * comments on bfq_init_rq for the reason behind this delayed
5601 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005602 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005603static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005604{
Paolo Valente18e5a572018-05-04 19:17:01 +02005605 /*
5606 * Regardless of whether we have an icq attached, we have to
5607 * clear the scheduler pointers, as they might point to
5608 * previously allocated bic/bfqq structs.
5609 */
5610 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5611}
5612
5613/*
5614 * If needed, init rq, allocate bfq data structures associated with
5615 * rq, and increment reference counters in the destination bfq_queue
5616 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5617 * not associated with any bfq_queue.
5618 *
5619 * This function is invoked by the functions that perform rq insertion
5620 * or merging. One may have expected the above preparation operations
5621 * to be performed in bfq_prepare_request, and not delayed to when rq
5622 * is inserted or merged. The rationale behind this delayed
5623 * preparation is that, after the prepare_request hook is invoked for
5624 * rq, rq may still be transformed into a request with no icq, i.e., a
5625 * request not associated with any queue. No bfq hook is invoked to
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02005626 * signal this transformation. As a consequence, should these
Paolo Valente18e5a572018-05-04 19:17:01 +02005627 * preparation operations be performed when the prepare_request hook
5628 * is invoked, and should rq be transformed one moment later, bfq
5629 * would end up in an inconsistent state, because it would have
5630 * incremented some queue counters for an rq destined to
5631 * transformation, without any chance to correctly lower these
5632 * counters back. In contrast, no transformation can still happen for
5633 * rq after rq has been inserted or merged. So, it is safe to execute
5634 * these preparation operations when rq is finally inserted or merged.
5635 */
5636static struct bfq_queue *bfq_init_rq(struct request *rq)
5637{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005638 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02005639 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005640 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02005641 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005642 const int is_sync = rq_is_sync(rq);
5643 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005644 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06005645 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005646
Paolo Valente18e5a572018-05-04 19:17:01 +02005647 if (unlikely(!rq->elv.icq))
5648 return NULL;
5649
Jens Axboe72961c42018-04-17 17:08:52 -06005650 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02005651 * Assuming that elv.priv[1] is set only if everything is set
5652 * for this rq. This holds true, because this function is
5653 * invoked only for insertion or merging, and, after such
5654 * events, a request cannot be manipulated any longer before
5655 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06005656 */
Paolo Valente18e5a572018-05-04 19:17:01 +02005657 if (rq->elv.priv[1])
5658 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06005659
Christoph Hellwig9f210732017-06-16 18:15:24 +02005660 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005661
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01005662 bfq_check_ioprio_change(bic, bio);
5663
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005664 bfq_bic_update_cgroup(bic, bio);
5665
Arianna Avanzini36eca892017-04-12 18:23:16 +02005666 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5667 &new_queue);
5668
5669 if (likely(!new_queue)) {
5670 /* If the queue was seeky for too long, break it apart. */
5671 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5672 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005673
5674 /* Update bic before losing reference to bfqq */
5675 if (bfq_bfqq_in_large_burst(bfqq))
5676 bic->saved_in_large_burst = true;
5677
Arianna Avanzini36eca892017-04-12 18:23:16 +02005678 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005679 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005680
5681 if (!bfqq)
5682 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5683 true, is_sync,
5684 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06005685 else
5686 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005687 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005688 }
5689
5690 bfqq->allocated++;
5691 bfqq->ref++;
5692 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5693 rq, bfqq, bfqq->ref);
5694
5695 rq->elv.priv[0] = bic;
5696 rq->elv.priv[1] = bfqq;
5697
Arianna Avanzini36eca892017-04-12 18:23:16 +02005698 /*
5699 * If a bfq_queue has only one process reference, it is owned
5700 * by only this bic: we can then set bfqq->bic = bic. in
5701 * addition, if the queue has also just been split, we have to
5702 * resume its state.
5703 */
5704 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5705 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005706 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005707 /*
5708 * The queue has just been split from a shared
5709 * queue: restore the idle window and the
5710 * possible weight raising period.
5711 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005712 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5713 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005714 }
5715 }
5716
Paolo Valente84a74682019-03-12 09:59:32 +01005717 /*
5718 * Consider bfqq as possibly belonging to a burst of newly
5719 * created queues only if:
5720 * 1) A burst is actually happening (bfqd->burst_size > 0)
5721 * or
5722 * 2) There is no other active queue. In fact, if, in
5723 * contrast, there are active queues not belonging to the
5724 * possible burst bfqq may belong to, then there is no gain
5725 * in considering bfqq as belonging to a burst, and
5726 * therefore in not weight-raising bfqq. See comments on
5727 * bfq_handle_burst().
5728 *
5729 * This filtering also helps eliminating false positives,
5730 * occurring when bfqq does not belong to an actual large
5731 * burst, but some background task (e.g., a service) happens
5732 * to trigger the creation of new queues very close to when
5733 * bfqq and its possible companion queues are created. See
5734 * comments on bfq_handle_burst() for further details also on
5735 * this issue.
5736 */
5737 if (unlikely(bfq_bfqq_just_created(bfqq) &&
5738 (bfqd->burst_size > 0 ||
5739 bfq_tot_busy_queues(bfqd) == 0)))
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005740 bfq_handle_burst(bfqd, bfqq);
5741
Paolo Valente18e5a572018-05-04 19:17:01 +02005742 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005743}
5744
5745static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5746{
5747 struct bfq_data *bfqd = bfqq->bfqd;
5748 enum bfqq_expiration reason;
5749 unsigned long flags;
5750
5751 spin_lock_irqsave(&bfqd->lock, flags);
5752 bfq_clear_bfqq_wait_request(bfqq);
5753
5754 if (bfqq != bfqd->in_service_queue) {
5755 spin_unlock_irqrestore(&bfqd->lock, flags);
5756 return;
5757 }
5758
5759 if (bfq_bfqq_budget_timeout(bfqq))
5760 /*
5761 * Also here the queue can be safely expired
5762 * for budget timeout without wasting
5763 * guarantees
5764 */
5765 reason = BFQQE_BUDGET_TIMEOUT;
5766 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5767 /*
5768 * The queue may not be empty upon timer expiration,
5769 * because we may not disable the timer when the
5770 * first request of the in-service queue arrives
5771 * during disk idling.
5772 */
5773 reason = BFQQE_TOO_IDLE;
5774 else
5775 goto schedule_dispatch;
5776
5777 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5778
5779schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005780 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005781 bfq_schedule_dispatch(bfqd);
5782}
5783
5784/*
5785 * Handler of the expiration of the timer running if the in-service queue
5786 * is idling inside its time slice.
5787 */
5788static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5789{
5790 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5791 idle_slice_timer);
5792 struct bfq_queue *bfqq = bfqd->in_service_queue;
5793
5794 /*
5795 * Theoretical race here: the in-service queue can be NULL or
5796 * different from the queue that was idling if a new request
5797 * arrives for the current queue and there is a full dispatch
5798 * cycle that changes the in-service queue. This can hardly
5799 * happen, but in the worst case we just expire a queue too
5800 * early.
5801 */
5802 if (bfqq)
5803 bfq_idle_slice_timer_body(bfqq);
5804
5805 return HRTIMER_NORESTART;
5806}
5807
5808static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5809 struct bfq_queue **bfqq_ptr)
5810{
5811 struct bfq_queue *bfqq = *bfqq_ptr;
5812
5813 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5814 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005815 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5816
Paolo Valenteaee69d72017-04-19 08:29:02 -06005817 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5818 bfqq, bfqq->ref);
5819 bfq_put_queue(bfqq);
5820 *bfqq_ptr = NULL;
5821 }
5822}
5823
5824/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005825 * Release all the bfqg references to its async queues. If we are
5826 * deallocating the group these queues may still contain requests, so
5827 * we reparent them to the root cgroup (i.e., the only one that will
5828 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005829 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005830void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005831{
5832 int i, j;
5833
5834 for (i = 0; i < 2; i++)
5835 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005836 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005837
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005838 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005839}
5840
Jens Axboef0635b82018-05-09 13:27:21 -06005841/*
5842 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005843 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005844 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005845static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5846 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005847{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005848 unsigned int i, j, min_shallow = UINT_MAX;
5849
Jens Axboef0635b82018-05-09 13:27:21 -06005850 /*
5851 * In-word depths if no bfq_queue is being weight-raised:
5852 * leaving 25% of tags only for sync reads.
5853 *
5854 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005855 * (1U<<bt->sb.shift), instead of computing directly
5856 * (1U<<(bt->sb.shift - something)), to be robust against
5857 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005858 * limit 'something'.
5859 */
5860 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005861 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005862 /*
5863 * no more than 75% of tags for sync writes (25% extra tags
5864 * w.r.t. async I/O, to prevent async I/O from starving sync
5865 * writes)
5866 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005867 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005868
5869 /*
5870 * In-word depths in case some bfq_queue is being weight-
5871 * raised: leaving ~63% of tags for sync reads. This is the
5872 * highest percentage for which, in our tests, application
5873 * start-up times didn't suffer from any regression due to tag
5874 * shortage.
5875 */
5876 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005877 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005878 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005879 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005880
5881 for (i = 0; i < 2; i++)
5882 for (j = 0; j < 2; j++)
5883 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5884
5885 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005886}
5887
Jens Axboe77f1e0a2019-01-18 10:34:16 -07005888static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
Jens Axboef0635b82018-05-09 13:27:21 -06005889{
5890 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5891 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005892 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005893
Jens Axboe483b7bf2018-05-09 15:26:55 -06005894 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5895 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboe77f1e0a2019-01-18 10:34:16 -07005896}
5897
5898static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5899{
5900 bfq_depth_updated(hctx);
Jens Axboef0635b82018-05-09 13:27:21 -06005901 return 0;
5902}
5903
Paolo Valenteaee69d72017-04-19 08:29:02 -06005904static void bfq_exit_queue(struct elevator_queue *e)
5905{
5906 struct bfq_data *bfqd = e->elevator_data;
5907 struct bfq_queue *bfqq, *n;
5908
5909 hrtimer_cancel(&bfqd->idle_slice_timer);
5910
5911 spin_lock_irq(&bfqd->lock);
5912 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005913 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005914 spin_unlock_irq(&bfqd->lock);
5915
5916 hrtimer_cancel(&bfqd->idle_slice_timer);
5917
Jens Axboe8abef102018-01-09 12:20:51 -07005918#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005919 /* release oom-queue reference to root group */
5920 bfqg_and_blkg_put(bfqd->root_group);
5921
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005922 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5923#else
5924 spin_lock_irq(&bfqd->lock);
5925 bfq_put_async_queues(bfqd, bfqd->root_group);
5926 kfree(bfqd->root_group);
5927 spin_unlock_irq(&bfqd->lock);
5928#endif
5929
Paolo Valenteaee69d72017-04-19 08:29:02 -06005930 kfree(bfqd);
5931}
5932
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005933static void bfq_init_root_group(struct bfq_group *root_group,
5934 struct bfq_data *bfqd)
5935{
5936 int i;
5937
5938#ifdef CONFIG_BFQ_GROUP_IOSCHED
5939 root_group->entity.parent = NULL;
5940 root_group->my_entity = NULL;
5941 root_group->bfqd = bfqd;
5942#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005943 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005944 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5945 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5946 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5947}
5948
Paolo Valenteaee69d72017-04-19 08:29:02 -06005949static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5950{
5951 struct bfq_data *bfqd;
5952 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005953
5954 eq = elevator_alloc(q, e);
5955 if (!eq)
5956 return -ENOMEM;
5957
5958 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5959 if (!bfqd) {
5960 kobject_put(&eq->kobj);
5961 return -ENOMEM;
5962 }
5963 eq->elevator_data = bfqd;
5964
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005965 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005966 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005967 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005968
Paolo Valenteaee69d72017-04-19 08:29:02 -06005969 /*
5970 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5971 * Grab a permanent reference to it, so that the normal code flow
5972 * will not attempt to free it.
5973 */
5974 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5975 bfqd->oom_bfqq.ref++;
5976 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5977 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5978 bfqd->oom_bfqq.entity.new_weight =
5979 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005980
5981 /* oom_bfqq does not participate to bursts */
5982 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5983
Paolo Valenteaee69d72017-04-19 08:29:02 -06005984 /*
5985 * Trigger weight initialization, according to ioprio, at the
5986 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5987 * class won't be changed any more.
5988 */
5989 bfqd->oom_bfqq.entity.prio_changed = 1;
5990
5991 bfqd->queue = q;
5992
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005993 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005994
5995 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5996 HRTIMER_MODE_REL);
5997 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5998
Paolo Valentefb53ac62019-03-12 09:59:28 +01005999 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01006000 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02006001
Paolo Valenteaee69d72017-04-19 08:29:02 -06006002 INIT_LIST_HEAD(&bfqd->active_list);
6003 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006004 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006005
6006 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01006007 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006008
6009 bfqd->bfq_max_budget = bfq_default_max_budget;
6010
6011 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6012 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6013 bfqd->bfq_back_max = bfq_back_max;
6014 bfqd->bfq_back_penalty = bfq_back_penalty;
6015 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006016 bfqd->bfq_timeout = bfq_timeout;
6017
6018 bfqd->bfq_requests_within_timer = 120;
6019
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006020 bfqd->bfq_large_burst_thresh = 8;
6021 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6022
Paolo Valente44e44a12017-04-12 18:23:12 +02006023 bfqd->low_latency = true;
6024
6025 /*
6026 * Trade-off between responsiveness and fairness.
6027 */
6028 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02006029 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02006030 bfqd->bfq_wr_max_time = 0;
6031 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6032 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02006033 bfqd->bfq_wr_max_softrt_rate = 7000; /*
6034 * Approximate rate required
6035 * to playback or record a
6036 * high-definition compressed
6037 * video.
6038 */
Paolo Valentecfd69712017-04-12 18:23:15 +02006039 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02006040
6041 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02006042 * Begin by assuming, optimistically, that the device peak
6043 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02006044 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006045 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6046 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6047 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02006048
Paolo Valenteaee69d72017-04-19 08:29:02 -06006049 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006050
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006051 /*
6052 * The invocation of the next bfq_create_group_hierarchy
6053 * function is the head of a chain of function calls
6054 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6055 * blk_mq_freeze_queue) that may lead to the invocation of the
6056 * has_work hook function. For this reason,
6057 * bfq_create_group_hierarchy is invoked only after all
6058 * scheduler data has been initialized, apart from the fields
6059 * that can be initialized only after invoking
6060 * bfq_create_group_hierarchy. This, in particular, enables
6061 * has_work to correctly return false. Of course, to avoid
6062 * other inconsistencies, the blk-mq stack must then refrain
6063 * from invoking further scheduler hooks before this init
6064 * function is finished.
6065 */
6066 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6067 if (!bfqd->root_group)
6068 goto out_free;
6069 bfq_init_root_group(bfqd->root_group, bfqd);
6070 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6071
Luca Micciob5dc5d42017-10-09 16:27:21 +02006072 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006073 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006074
6075out_free:
6076 kfree(bfqd);
6077 kobject_put(&eq->kobj);
6078 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006079}
6080
6081static void bfq_slab_kill(void)
6082{
6083 kmem_cache_destroy(bfq_pool);
6084}
6085
6086static int __init bfq_slab_setup(void)
6087{
6088 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6089 if (!bfq_pool)
6090 return -ENOMEM;
6091 return 0;
6092}
6093
6094static ssize_t bfq_var_show(unsigned int var, char *page)
6095{
6096 return sprintf(page, "%u\n", var);
6097}
6098
Bart Van Assche2f791362017-08-30 11:42:09 -07006099static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006100{
6101 unsigned long new_val;
6102 int ret = kstrtoul(page, 10, &new_val);
6103
Bart Van Assche2f791362017-08-30 11:42:09 -07006104 if (ret)
6105 return ret;
6106 *var = new_val;
6107 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006108}
6109
6110#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6111static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6112{ \
6113 struct bfq_data *bfqd = e->elevator_data; \
6114 u64 __data = __VAR; \
6115 if (__CONV == 1) \
6116 __data = jiffies_to_msecs(__data); \
6117 else if (__CONV == 2) \
6118 __data = div_u64(__data, NSEC_PER_MSEC); \
6119 return bfq_var_show(__data, (page)); \
6120}
6121SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6122SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6123SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6124SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6125SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6126SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6127SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6128SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02006129SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006130#undef SHOW_FUNCTION
6131
6132#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6133static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6134{ \
6135 struct bfq_data *bfqd = e->elevator_data; \
6136 u64 __data = __VAR; \
6137 __data = div_u64(__data, NSEC_PER_USEC); \
6138 return bfq_var_show(__data, (page)); \
6139}
6140USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6141#undef USEC_SHOW_FUNCTION
6142
6143#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6144static ssize_t \
6145__FUNC(struct elevator_queue *e, const char *page, size_t count) \
6146{ \
6147 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006148 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006149 int ret; \
6150 \
6151 ret = bfq_var_store(&__data, (page)); \
6152 if (ret) \
6153 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006154 if (__data < __min) \
6155 __data = __min; \
6156 else if (__data > __max) \
6157 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006158 if (__CONV == 1) \
6159 *(__PTR) = msecs_to_jiffies(__data); \
6160 else if (__CONV == 2) \
6161 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6162 else \
6163 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08006164 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006165}
6166STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6167 INT_MAX, 2);
6168STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6169 INT_MAX, 2);
6170STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6171STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6172 INT_MAX, 0);
6173STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6174#undef STORE_FUNCTION
6175
6176#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6177static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6178{ \
6179 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006180 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006181 int ret; \
6182 \
6183 ret = bfq_var_store(&__data, (page)); \
6184 if (ret) \
6185 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006186 if (__data < __min) \
6187 __data = __min; \
6188 else if (__data > __max) \
6189 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006190 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08006191 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006192}
6193USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6194 UINT_MAX);
6195#undef USEC_STORE_FUNCTION
6196
Paolo Valenteaee69d72017-04-19 08:29:02 -06006197static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6198 const char *page, size_t count)
6199{
6200 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006201 unsigned long __data;
6202 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006203
Bart Van Assche2f791362017-08-30 11:42:09 -07006204 ret = bfq_var_store(&__data, (page));
6205 if (ret)
6206 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006207
6208 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006209 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006210 else {
6211 if (__data > INT_MAX)
6212 __data = INT_MAX;
6213 bfqd->bfq_max_budget = __data;
6214 }
6215
6216 bfqd->bfq_user_max_budget = __data;
6217
weiping zhang235f8da2017-08-25 01:11:33 +08006218 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006219}
6220
6221/*
6222 * Leaving this name to preserve name compatibility with cfq
6223 * parameters, but this timeout is used for both sync and async.
6224 */
6225static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6226 const char *page, size_t count)
6227{
6228 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006229 unsigned long __data;
6230 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006231
Bart Van Assche2f791362017-08-30 11:42:09 -07006232 ret = bfq_var_store(&__data, (page));
6233 if (ret)
6234 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006235
6236 if (__data < 1)
6237 __data = 1;
6238 else if (__data > INT_MAX)
6239 __data = INT_MAX;
6240
6241 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6242 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006243 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006244
weiping zhang235f8da2017-08-25 01:11:33 +08006245 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006246}
6247
6248static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6249 const char *page, size_t count)
6250{
6251 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006252 unsigned long __data;
6253 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006254
Bart Van Assche2f791362017-08-30 11:42:09 -07006255 ret = bfq_var_store(&__data, (page));
6256 if (ret)
6257 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006258
6259 if (__data > 1)
6260 __data = 1;
6261 if (!bfqd->strict_guarantees && __data == 1
6262 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6263 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6264
6265 bfqd->strict_guarantees = __data;
6266
weiping zhang235f8da2017-08-25 01:11:33 +08006267 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006268}
6269
Paolo Valente44e44a12017-04-12 18:23:12 +02006270static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6271 const char *page, size_t count)
6272{
6273 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006274 unsigned long __data;
6275 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006276
Bart Van Assche2f791362017-08-30 11:42:09 -07006277 ret = bfq_var_store(&__data, (page));
6278 if (ret)
6279 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02006280
6281 if (__data > 1)
6282 __data = 1;
6283 if (__data == 0 && bfqd->low_latency != 0)
6284 bfq_end_wr(bfqd);
6285 bfqd->low_latency = __data;
6286
weiping zhang235f8da2017-08-25 01:11:33 +08006287 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02006288}
6289
Paolo Valenteaee69d72017-04-19 08:29:02 -06006290#define BFQ_ATTR(name) \
6291 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6292
6293static struct elv_fs_entry bfq_attrs[] = {
6294 BFQ_ATTR(fifo_expire_sync),
6295 BFQ_ATTR(fifo_expire_async),
6296 BFQ_ATTR(back_seek_max),
6297 BFQ_ATTR(back_seek_penalty),
6298 BFQ_ATTR(slice_idle),
6299 BFQ_ATTR(slice_idle_us),
6300 BFQ_ATTR(max_budget),
6301 BFQ_ATTR(timeout_sync),
6302 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02006303 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06006304 __ATTR_NULL
6305};
6306
6307static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06006308 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01006309 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006310 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01006311 .requeue_request = bfq_finish_requeue_request,
6312 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006313 .exit_icq = bfq_exit_icq,
6314 .insert_requests = bfq_insert_requests,
6315 .dispatch_request = bfq_dispatch_request,
6316 .next_request = elv_rb_latter_request,
6317 .former_request = elv_rb_former_request,
6318 .allow_merge = bfq_allow_bio_merge,
6319 .bio_merge = bfq_bio_merge,
6320 .request_merge = bfq_request_merge,
6321 .requests_merged = bfq_requests_merged,
6322 .request_merged = bfq_request_merged,
6323 .has_work = bfq_has_work,
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006324 .depth_updated = bfq_depth_updated,
Jens Axboef0635b82018-05-09 13:27:21 -06006325 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006326 .init_sched = bfq_init_queue,
6327 .exit_sched = bfq_exit_queue,
6328 },
6329
Paolo Valenteaee69d72017-04-19 08:29:02 -06006330 .icq_size = sizeof(struct bfq_io_cq),
6331 .icq_align = __alignof__(struct bfq_io_cq),
6332 .elevator_attrs = bfq_attrs,
6333 .elevator_name = "bfq",
6334 .elevator_owner = THIS_MODULE,
6335};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01006336MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06006337
6338static int __init bfq_init(void)
6339{
6340 int ret;
6341
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006342#ifdef CONFIG_BFQ_GROUP_IOSCHED
6343 ret = blkcg_policy_register(&blkcg_policy_bfq);
6344 if (ret)
6345 return ret;
6346#endif
6347
Paolo Valenteaee69d72017-04-19 08:29:02 -06006348 ret = -ENOMEM;
6349 if (bfq_slab_setup())
6350 goto err_pol_unreg;
6351
Paolo Valente44e44a12017-04-12 18:23:12 +02006352 /*
6353 * Times to load large popular applications for the typical
6354 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02006355 * comments before the definition of the next
6356 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02006357 * estimated peak rate tends to be smaller than the actual
6358 * peak rate. The reason for this last fact is that estimates
6359 * are computed over much shorter time intervals than the long
6360 * intervals typically used for benchmarking. Why? First, to
6361 * adapt more quickly to variations. Second, because an I/O
6362 * scheduler cannot rely on a peak-rate-evaluation workload to
6363 * be run for a long time.
6364 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006365 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6366 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02006367
Paolo Valenteaee69d72017-04-19 08:29:02 -06006368 ret = elv_register(&iosched_bfq_mq);
6369 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08006370 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006371
6372 return 0;
6373
weiping zhang37dcd652017-08-19 00:37:20 +08006374slab_kill:
6375 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06006376err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006377#ifdef CONFIG_BFQ_GROUP_IOSCHED
6378 blkcg_policy_unregister(&blkcg_policy_bfq);
6379#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006380 return ret;
6381}
6382
6383static void __exit bfq_exit(void)
6384{
6385 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006386#ifdef CONFIG_BFQ_GROUP_IOSCHED
6387 blkcg_policy_unregister(&blkcg_policy_bfq);
6388#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006389 bfq_slab_kill();
6390}
6391
6392module_init(bfq_init);
6393module_exit(bfq_exit);
6394
6395MODULE_AUTHOR("Paolo Valente");
6396MODULE_LICENSE("GPL");
6397MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");