blob: 9ea2c4f42501f0267bb27779e8d10410d44821d3 [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec074170e2017-04-12 18:23:11 +0200189/*
Paolo Valented5801082018-08-16 18:51:17 +0200190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
198 *
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200207 */
Paolo Valented5801082018-08-16 18:51:17 +0200208static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200209
Paolo Valenteaee69d72017-04-19 08:29:02 -0600210/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600211const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600212
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100213/*
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
218 *
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
224 */
225static const unsigned long bfq_merge_time_limit = HZ/10;
226
Paolo Valenteaee69d72017-04-19 08:29:02 -0600227static struct kmem_cache *bfq_pool;
228
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200229/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600230#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
231
232/* hw_tag detection: parallel requests threshold and min samples needed. */
233#define BFQ_HW_QUEUE_THRESHOLD 4
234#define BFQ_HW_QUEUE_SAMPLES 32
235
236#define BFQQ_SEEK_THR (sector_t)(8 * 100)
237#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
238#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100239#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600240
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200241/* Min number of samples required to perform peak-rate update */
242#define BFQ_RATE_MIN_SAMPLES 32
243/* Min observation time interval required to perform a peak-rate update (ns) */
244#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
245/* Target observation time interval for a peak-rate update (ns) */
246#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600247
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200248/*
249 * Shift used for peak-rate fixed precision calculations.
250 * With
251 * - the current shift: 16 positions
252 * - the current type used to store rate: u32
253 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255 * the range of rates that can be stored is
256 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258 * [15, 65G] sectors/sec
259 * Which, assuming a sector size of 512B, corresponds to a range of
260 * [7.5K, 33T] B/sec
261 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600262#define BFQ_RATE_SHIFT 16
263
Paolo Valente44e44a12017-04-12 18:23:12 +0200264/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200265 * When configured for computing the duration of the weight-raising
266 * for interactive queues automatically (see the comments at the
267 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200268 * duration = (ref_rate / r) * ref_wr_duration,
269 * where r is the peak rate of the device, and ref_rate and
270 * ref_wr_duration are two reference parameters. In particular,
271 * ref_rate is the peak rate of the reference storage device (see
272 * below), and ref_wr_duration is about the maximum time needed, with
273 * BFQ and while reading two files in parallel, to load typical large
274 * applications on the reference device (see the comments on
275 * max_service_from_wr below, for more details on how ref_wr_duration
276 * is obtained). In practice, the slower/faster the device at hand
277 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200278 * reference device. Accordingly, the longer/shorter BFQ grants
279 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200280 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200283 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200284 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285 * are the reference values for a rotational device, whereas
286 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287 * non-rotational device. The reference rates are not the actual peak
288 * rates of the devices used as a reference, but slightly lower
289 * values. The reason for using slightly lower values is that the
290 * peak-rate estimator tends to yield slightly lower values than the
291 * actual peak rate (it can yield the actual peak rate only if there
292 * is only one process doing I/O, and the process does sequential
293 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200294 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200295 * The reference peak rates are measured in sectors/usec, left-shifted
296 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200297 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200298static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200299/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200300 * To improve readability, a conversion function is used to initialize
301 * the following array, which entails that the array can be
302 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200303 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200304static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200305
Paolo Valente8a8747d2018-01-13 12:05:18 +0100306/*
307 * BFQ uses the above-detailed, time-based weight-raising mechanism to
308 * privilege interactive tasks. This mechanism is vulnerable to the
309 * following false positives: I/O-bound applications that will go on
310 * doing I/O for much longer than the duration of weight
311 * raising. These applications have basically no benefit from being
312 * weight-raised at the beginning of their I/O. On the opposite end,
313 * while being weight-raised, these applications
314 * a) unjustly steal throughput to applications that may actually need
315 * low latency;
316 * b) make BFQ uselessly perform device idling; device idling results
317 * in loss of device throughput with most flash-based storage, and may
318 * increase latencies when used purposelessly.
319 *
320 * BFQ tries to reduce these problems, by adopting the following
321 * countermeasure. To introduce this countermeasure, we need first to
322 * finish explaining how the duration of weight-raising for
323 * interactive tasks is computed.
324 *
325 * For a bfq_queue deemed as interactive, the duration of weight
326 * raising is dynamically adjusted, as a function of the estimated
327 * peak rate of the device, so as to be equal to the time needed to
328 * execute the 'largest' interactive task we benchmarked so far. By
329 * largest task, we mean the task for which each involved process has
330 * to do more I/O than for any of the other tasks we benchmarked. This
331 * reference interactive task is the start-up of LibreOffice Writer,
332 * and in this task each process/bfq_queue needs to have at most ~110K
333 * sectors transferred.
334 *
335 * This last piece of information enables BFQ to reduce the actual
336 * duration of weight-raising for at least one class of I/O-bound
337 * applications: those doing sequential or quasi-sequential I/O. An
338 * example is file copy. In fact, once started, the main I/O-bound
339 * processes of these applications usually consume the above 110K
340 * sectors in much less time than the processes of an application that
341 * is starting, because these I/O-bound processes will greedily devote
342 * almost all their CPU cycles only to their target,
343 * throughput-friendly I/O operations. This is even more true if BFQ
344 * happens to be underestimating the device peak rate, and thus
345 * overestimating the duration of weight raising. But, according to
346 * our measurements, once transferred 110K sectors, these processes
347 * have no right to be weight-raised any longer.
348 *
349 * Basing on the last consideration, BFQ ends weight-raising for a
350 * bfq_queue if the latter happens to have received an amount of
351 * service at least equal to the following constant. The constant is
352 * set to slightly more than 110K, to have a minimum safety margin.
353 *
354 * This early ending of weight-raising reduces the amount of time
355 * during which interactive false positives cause the two problems
356 * described at the beginning of these comments.
357 */
358static const unsigned long max_service_from_wr = 120000;
359
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700360#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600361#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
362
Paolo Valenteea25da42017-04-19 08:48:24 -0600363struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
364{
365 return bic->bfqq[is_sync];
366}
367
368void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
369{
370 bic->bfqq[is_sync] = bfqq;
371}
372
373struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
374{
375 return bic->icq.q->elevator->elevator_data;
376}
377
Paolo Valenteaee69d72017-04-19 08:29:02 -0600378/**
379 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380 * @icq: the iocontext queue.
381 */
382static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
383{
384 /* bic->icq is the first member, %NULL will convert to %NULL */
385 return container_of(icq, struct bfq_io_cq, icq);
386}
387
388/**
389 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390 * @bfqd: the lookup key.
391 * @ioc: the io_context of the process doing I/O.
392 * @q: the request queue.
393 */
394static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 struct io_context *ioc,
396 struct request_queue *q)
397{
398 if (ioc) {
399 unsigned long flags;
400 struct bfq_io_cq *icq;
401
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700402 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600403 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700404 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600405
406 return icq;
407 }
408
409 return NULL;
410}
411
412/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200413 * Scheduler run of queue, if there are requests pending and no one in the
414 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600415 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600416void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600417{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200418 if (bfqd->queued != 0) {
419 bfq_log(bfqd, "schedule dispatch");
420 blk_mq_run_hw_queues(bfqd->queue, true);
421 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600422}
423
Paolo Valenteaee69d72017-04-19 08:29:02 -0600424#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426
427#define bfq_sample_valid(samples) ((samples) > 80)
428
429/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600430 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431 * We choose the request that is closesr to the head right now. Distance
432 * behind the head is penalized and only allowed to a certain extent.
433 */
434static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 struct request *rq1,
436 struct request *rq2,
437 sector_t last)
438{
439 sector_t s1, s2, d1 = 0, d2 = 0;
440 unsigned long back_max;
441#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
442#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
443 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444
445 if (!rq1 || rq1 == rq2)
446 return rq2;
447 if (!rq2)
448 return rq1;
449
450 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 return rq1;
452 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 return rq2;
454 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 return rq1;
456 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 return rq2;
458
459 s1 = blk_rq_pos(rq1);
460 s2 = blk_rq_pos(rq2);
461
462 /*
463 * By definition, 1KiB is 2 sectors.
464 */
465 back_max = bfqd->bfq_back_max * 2;
466
467 /*
468 * Strict one way elevator _except_ in the case where we allow
469 * short backward seeks which are biased as twice the cost of a
470 * similar forward seek.
471 */
472 if (s1 >= last)
473 d1 = s1 - last;
474 else if (s1 + back_max >= last)
475 d1 = (last - s1) * bfqd->bfq_back_penalty;
476 else
477 wrap |= BFQ_RQ1_WRAP;
478
479 if (s2 >= last)
480 d2 = s2 - last;
481 else if (s2 + back_max >= last)
482 d2 = (last - s2) * bfqd->bfq_back_penalty;
483 else
484 wrap |= BFQ_RQ2_WRAP;
485
486 /* Found required data */
487
488 /*
489 * By doing switch() on the bit mask "wrap" we avoid having to
490 * check two variables for all permutations: --> faster!
491 */
492 switch (wrap) {
493 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 if (d1 < d2)
495 return rq1;
496 else if (d2 < d1)
497 return rq2;
498
499 if (s1 >= s2)
500 return rq1;
501 else
502 return rq2;
503
504 case BFQ_RQ2_WRAP:
505 return rq1;
506 case BFQ_RQ1_WRAP:
507 return rq2;
508 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 default:
510 /*
511 * Since both rqs are wrapped,
512 * start with the one that's further behind head
513 * (--> only *one* back seek required),
514 * since back seek takes more time than forward.
515 */
516 if (s1 <= s2)
517 return rq1;
518 else
519 return rq2;
520 }
521}
522
Paolo Valentea52a69e2018-01-13 12:05:17 +0100523/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100524 * Async I/O can easily starve sync I/O (both sync reads and sync
525 * writes), by consuming all tags. Similarly, storms of sync writes,
526 * such as those that sync(2) may trigger, can starve sync reads.
527 * Limit depths of async I/O and sync writes so as to counter both
528 * problems.
529 */
530static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100532 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100533
534 if (op_is_sync(op) && !op_is_write(op))
535 return;
536
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 data->shallow_depth =
538 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539
540 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 __func__, bfqd->wr_busy_queues, op_is_sync(op),
542 data->shallow_depth);
543}
544
Arianna Avanzini36eca892017-04-12 18:23:16 +0200545static struct bfq_queue *
546bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 sector_t sector, struct rb_node **ret_parent,
548 struct rb_node ***rb_link)
549{
550 struct rb_node **p, *parent;
551 struct bfq_queue *bfqq = NULL;
552
553 parent = NULL;
554 p = &root->rb_node;
555 while (*p) {
556 struct rb_node **n;
557
558 parent = *p;
559 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560
561 /*
562 * Sort strictly based on sector. Smallest to the left,
563 * largest to the right.
564 */
565 if (sector > blk_rq_pos(bfqq->next_rq))
566 n = &(*p)->rb_right;
567 else if (sector < blk_rq_pos(bfqq->next_rq))
568 n = &(*p)->rb_left;
569 else
570 break;
571 p = n;
572 bfqq = NULL;
573 }
574
575 *ret_parent = parent;
576 if (rb_link)
577 *rb_link = p;
578
579 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 (unsigned long long)sector,
581 bfqq ? bfqq->pid : 0);
582
583 return bfqq;
584}
585
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100586static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587{
588 return bfqq->service_from_backlogged > 0 &&
589 time_is_before_jiffies(bfqq->first_IO_time +
590 bfq_merge_time_limit);
591}
592
Paolo Valenteea25da42017-04-19 08:48:24 -0600593void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200594{
595 struct rb_node **p, *parent;
596 struct bfq_queue *__bfqq;
597
598 if (bfqq->pos_root) {
599 rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 bfqq->pos_root = NULL;
601 }
602
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100603 /*
604 * bfqq cannot be merged any longer (see comments in
605 * bfq_setup_cooperator): no point in adding bfqq into the
606 * position tree.
607 */
608 if (bfq_too_late_for_merging(bfqq))
609 return;
610
Arianna Avanzini36eca892017-04-12 18:23:16 +0200611 if (bfq_class_idle(bfqq))
612 return;
613 if (!bfqq->next_rq)
614 return;
615
616 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 blk_rq_pos(bfqq->next_rq), &parent, &p);
619 if (!__bfqq) {
620 rb_link_node(&bfqq->pos_node, parent, p);
621 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 } else
623 bfqq->pos_root = NULL;
624}
625
Paolo Valenteaee69d72017-04-19 08:29:02 -0600626/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200627 * Tell whether there are active queues with different weights or
628 * active groups.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200629 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200630static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200631{
632 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200633 * For queue weights to differ, queue_weights_tree must contain
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200634 * at least two nodes.
635 */
636 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
637 (bfqd->queue_weights_tree.rb_node->rb_left ||
638 bfqd->queue_weights_tree.rb_node->rb_right)
639#ifdef CONFIG_BFQ_GROUP_IOSCHED
640 ) ||
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100641 (bfqd->num_groups_with_pending_reqs > 0
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200642#endif
643 );
644}
645
646/*
647 * The following function returns true if every queue must receive the
648 * same share of the throughput (this condition is used when deciding
649 * whether idling may be disabled, see the comments in the function
Paolo Valente277a4a92018-06-25 21:55:37 +0200650 * bfq_better_to_idle()).
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200651 *
652 * Such a scenario occurs when:
653 * 1) all active queues have the same weight,
654 * 2) all active groups at the same level in the groups tree have the same
655 * weight,
656 * 3) all active groups at the same level in the groups tree have the same
657 * number of children.
658 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200659 * Unfortunately, keeping the necessary state for evaluating exactly
660 * the last two symmetry sub-conditions above would be quite complex
661 * and time consuming. Therefore this function evaluates, instead,
662 * only the following stronger two sub-conditions, for which it is
663 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200664 * 1) all active queues have the same weight,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200665 * 2) there are no active groups.
666 * In particular, the last condition is always true if hierarchical
667 * support or the cgroups interface are not enabled, thus no state
668 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200669 */
670static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
671{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200672 return !bfq_varied_queue_weights_or_active_groups(bfqd);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200673}
674
675/*
676 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200677 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200678 * increment the existing counter.
679 *
680 * Note that weight-counter trees contain few nodes in mostly symmetric
681 * scenarios. For example, if all queues have the same weight, then the
682 * weight-counter tree for the queues may contain at most one node.
683 * This holds even if low_latency is on, because weight-raised queues
684 * are not inserted in the tree.
685 * In most scenarios, the rate at which nodes are created/destroyed
686 * should be low too.
687 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200688void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valenteea25da42017-04-19 08:48:24 -0600689 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200690{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200691 struct bfq_entity *entity = &bfqq->entity;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200692 struct rb_node **new = &(root->rb_node), *parent = NULL;
693
694 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200695 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200696 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200697 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200698 * non-weight-raised, and hence change its weight, and
699 * backlogged; in this respect, each of the two events
700 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200701 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200702 * second event. This second invocation is actually useless,
703 * and we handle this fact by exiting immediately. More
704 * efficient or clearer solutions might possibly be adopted.
705 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200706 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200707 return;
708
709 while (*new) {
710 struct bfq_weight_counter *__counter = container_of(*new,
711 struct bfq_weight_counter,
712 weights_node);
713 parent = *new;
714
715 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200716 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200717 goto inc_counter;
718 }
719 if (entity->weight < __counter->weight)
720 new = &((*new)->rb_left);
721 else
722 new = &((*new)->rb_right);
723 }
724
Federico Motta2d29c9f2018-10-12 11:55:57 +0200725 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
726 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200727
728 /*
729 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200730 * exit. This will cause the weight of queue to not be
731 * considered in bfq_varied_queue_weights_or_active_groups,
732 * which, in its turn, causes the scenario to be deemed
733 * wrongly symmetric in case bfqq's weight would have been
734 * the only weight making the scenario asymmetric. On the
735 * bright side, no unbalance will however occur when bfqq
736 * becomes inactive again (the invocation of this function
737 * is triggered by an activation of queue). In fact,
738 * bfq_weights_tree_remove does nothing if
739 * !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200740 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200741 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200742 return;
743
Federico Motta2d29c9f2018-10-12 11:55:57 +0200744 bfqq->weight_counter->weight = entity->weight;
745 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
746 rb_insert_color(&bfqq->weight_counter->weights_node, root);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200747
748inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200749 bfqq->weight_counter->num_active++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200750}
751
752/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200753 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200754 * counter reaches 0, remove the counter from the tree.
755 * See the comments to the function bfq_weights_tree_add() for considerations
756 * about overhead.
757 */
Paolo Valente04715592018-06-25 21:55:34 +0200758void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200759 struct bfq_queue *bfqq,
Paolo Valente04715592018-06-25 21:55:34 +0200760 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200761{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200762 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200763 return;
764
Federico Motta2d29c9f2018-10-12 11:55:57 +0200765 bfqq->weight_counter->num_active--;
766 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200767 goto reset_entity_pointer;
768
Federico Motta2d29c9f2018-10-12 11:55:57 +0200769 rb_erase(&bfqq->weight_counter->weights_node, root);
770 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200771
772reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200773 bfqq->weight_counter = NULL;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200774}
775
776/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200777 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
778 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200779 */
780void bfq_weights_tree_remove(struct bfq_data *bfqd,
781 struct bfq_queue *bfqq)
782{
783 struct bfq_entity *entity = bfqq->entity.parent;
784
Federico Motta2d29c9f2018-10-12 11:55:57 +0200785 __bfq_weights_tree_remove(bfqd, bfqq,
Paolo Valente04715592018-06-25 21:55:34 +0200786 &bfqd->queue_weights_tree);
787
788 for_each_entity(entity) {
789 struct bfq_sched_data *sd = entity->my_sched_data;
790
791 if (sd->next_in_service || sd->in_service_entity) {
792 /*
793 * entity is still active, because either
794 * next_in_service or in_service_entity is not
795 * NULL (see the comments on the definition of
796 * next_in_service for details on why
797 * in_service_entity must be checked too).
798 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200799 * As a consequence, its parent entities are
800 * active as well, and thus this loop must
801 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200802 */
803 break;
804 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100805
806 /*
807 * The decrement of num_groups_with_pending_reqs is
808 * not performed immediately upon the deactivation of
809 * entity, but it is delayed to when it also happens
810 * that the first leaf descendant bfqq of entity gets
811 * all its pending requests completed. The following
812 * instructions perform this delayed decrement, if
813 * needed. See the comments on
814 * num_groups_with_pending_reqs for details.
815 */
816 if (entity->in_groups_with_pending_reqs) {
817 entity->in_groups_with_pending_reqs = false;
818 bfqd->num_groups_with_pending_reqs--;
819 }
Paolo Valente04715592018-06-25 21:55:34 +0200820 }
821}
822
823/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600824 * Return expired entry, or NULL to just start from scratch in rbtree.
825 */
826static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
827 struct request *last)
828{
829 struct request *rq;
830
831 if (bfq_bfqq_fifo_expire(bfqq))
832 return NULL;
833
834 bfq_mark_bfqq_fifo_expire(bfqq);
835
836 rq = rq_entry_fifo(bfqq->fifo.next);
837
838 if (rq == last || ktime_get_ns() < rq->fifo_time)
839 return NULL;
840
841 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
842 return rq;
843}
844
845static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
846 struct bfq_queue *bfqq,
847 struct request *last)
848{
849 struct rb_node *rbnext = rb_next(&last->rb_node);
850 struct rb_node *rbprev = rb_prev(&last->rb_node);
851 struct request *next, *prev = NULL;
852
853 /* Follow expired path, else get first next available. */
854 next = bfq_check_fifo(bfqq, last);
855 if (next)
856 return next;
857
858 if (rbprev)
859 prev = rb_entry_rq(rbprev);
860
861 if (rbnext)
862 next = rb_entry_rq(rbnext);
863 else {
864 rbnext = rb_first(&bfqq->sort_list);
865 if (rbnext && rbnext != &last->rb_node)
866 next = rb_entry_rq(rbnext);
867 }
868
869 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
870}
871
Paolo Valentec074170e2017-04-12 18:23:11 +0200872/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600873static unsigned long bfq_serv_to_charge(struct request *rq,
874 struct bfq_queue *bfqq)
875{
Paolo Valente44e44a12017-04-12 18:23:12 +0200876 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
Paolo Valentec074170e2017-04-12 18:23:11 +0200877 return blk_rq_sectors(rq);
878
Paolo Valented5801082018-08-16 18:51:17 +0200879 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600880}
881
882/**
883 * bfq_updated_next_req - update the queue after a new next_rq selection.
884 * @bfqd: the device data the queue belongs to.
885 * @bfqq: the queue to update.
886 *
887 * If the first request of a queue changes we make sure that the queue
888 * has enough budget to serve at least its first request (if the
889 * request has grown). We do this because if the queue has not enough
890 * budget for its first request, it has to go through two dispatch
891 * rounds to actually get it dispatched.
892 */
893static void bfq_updated_next_req(struct bfq_data *bfqd,
894 struct bfq_queue *bfqq)
895{
896 struct bfq_entity *entity = &bfqq->entity;
897 struct request *next_rq = bfqq->next_rq;
898 unsigned long new_budget;
899
900 if (!next_rq)
901 return;
902
903 if (bfqq == bfqd->in_service_queue)
904 /*
905 * In order not to break guarantees, budgets cannot be
906 * changed after an entity has been selected.
907 */
908 return;
909
910 new_budget = max_t(unsigned long, bfqq->max_budget,
911 bfq_serv_to_charge(next_rq, bfqq));
912 if (entity->budget != new_budget) {
913 entity->budget = new_budget;
914 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
915 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200916 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600917 }
918}
919
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200920static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
921{
922 u64 dur;
923
924 if (bfqd->bfq_wr_max_time > 0)
925 return bfqd->bfq_wr_max_time;
926
Paolo Valentee24f1c22018-05-31 16:45:06 +0200927 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200928 do_div(dur, bfqd->peak_rate);
929
930 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200931 * Limit duration between 3 and 25 seconds. The upper limit
932 * has been conservatively set after the following worst case:
933 * on a QEMU/KVM virtual machine
934 * - running in a slow PC
935 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
936 * - serving a heavy I/O workload, such as the sequential reading
937 * of several files
938 * mplayer took 23 seconds to start, if constantly weight-raised.
939 *
940 * As for higher values than that accomodating the above bad
941 * scenario, tests show that higher values would often yield
942 * the opposite of the desired result, i.e., would worsen
943 * responsiveness by allowing non-interactive applications to
944 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200945 *
946 * On the other end, lower values than 3 seconds make it
947 * difficult for most interactive tasks to complete their jobs
948 * before weight-raising finishes.
949 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200950 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200951}
952
953/* switch back from soft real-time to interactive weight raising */
954static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
955 struct bfq_data *bfqd)
956{
957 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
958 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
959 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
960}
961
Arianna Avanzini36eca892017-04-12 18:23:16 +0200962static void
Paolo Valente13c931b2017-06-27 12:30:47 -0600963bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
964 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200965{
Paolo Valente13c931b2017-06-27 12:30:47 -0600966 unsigned int old_wr_coeff = bfqq->wr_coeff;
967 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
968
Paolo Valented5be3fe2017-08-04 07:35:10 +0200969 if (bic->saved_has_short_ttime)
970 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200971 else
Paolo Valented5be3fe2017-08-04 07:35:10 +0200972 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200973
974 if (bic->saved_IO_bound)
975 bfq_mark_bfqq_IO_bound(bfqq);
976 else
977 bfq_clear_bfqq_IO_bound(bfqq);
978
979 bfqq->ttime = bic->saved_ttime;
980 bfqq->wr_coeff = bic->saved_wr_coeff;
981 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
982 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
983 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
984
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200985 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +0200986 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200987 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200988 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
989 !bfq_bfqq_in_large_burst(bfqq) &&
990 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
991 bfq_wr_duration(bfqd))) {
992 switch_back_to_interactive_wr(bfqq, bfqd);
993 } else {
994 bfqq->wr_coeff = 1;
995 bfq_log_bfqq(bfqq->bfqd, bfqq,
996 "resume state: switching off wr");
997 }
Arianna Avanzini36eca892017-04-12 18:23:16 +0200998 }
999
1000 /* make sure weight will be updated, however we got here */
1001 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001002
1003 if (likely(!busy))
1004 return;
1005
1006 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1007 bfqd->wr_busy_queues++;
1008 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1009 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001010}
1011
1012static int bfqq_process_refs(struct bfq_queue *bfqq)
1013{
1014 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1015}
1016
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001017/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1018static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1019{
1020 struct bfq_queue *item;
1021 struct hlist_node *n;
1022
1023 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1024 hlist_del_init(&item->burst_list_node);
1025 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1026 bfqd->burst_size = 1;
1027 bfqd->burst_parent_entity = bfqq->entity.parent;
1028}
1029
1030/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1031static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1032{
1033 /* Increment burst size to take into account also bfqq */
1034 bfqd->burst_size++;
1035
1036 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1037 struct bfq_queue *pos, *bfqq_item;
1038 struct hlist_node *n;
1039
1040 /*
1041 * Enough queues have been activated shortly after each
1042 * other to consider this burst as large.
1043 */
1044 bfqd->large_burst = true;
1045
1046 /*
1047 * We can now mark all queues in the burst list as
1048 * belonging to a large burst.
1049 */
1050 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1051 burst_list_node)
1052 bfq_mark_bfqq_in_large_burst(bfqq_item);
1053 bfq_mark_bfqq_in_large_burst(bfqq);
1054
1055 /*
1056 * From now on, and until the current burst finishes, any
1057 * new queue being activated shortly after the last queue
1058 * was inserted in the burst can be immediately marked as
1059 * belonging to a large burst. So the burst list is not
1060 * needed any more. Remove it.
1061 */
1062 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1063 burst_list_node)
1064 hlist_del_init(&pos->burst_list_node);
1065 } else /*
1066 * Burst not yet large: add bfqq to the burst list. Do
1067 * not increment the ref counter for bfqq, because bfqq
1068 * is removed from the burst list before freeing bfqq
1069 * in put_queue.
1070 */
1071 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1072}
1073
1074/*
1075 * If many queues belonging to the same group happen to be created
1076 * shortly after each other, then the processes associated with these
1077 * queues have typically a common goal. In particular, bursts of queue
1078 * creations are usually caused by services or applications that spawn
1079 * many parallel threads/processes. Examples are systemd during boot,
1080 * or git grep. To help these processes get their job done as soon as
1081 * possible, it is usually better to not grant either weight-raising
1082 * or device idling to their queues.
1083 *
1084 * In this comment we describe, firstly, the reasons why this fact
1085 * holds, and, secondly, the next function, which implements the main
1086 * steps needed to properly mark these queues so that they can then be
1087 * treated in a different way.
1088 *
1089 * The above services or applications benefit mostly from a high
1090 * throughput: the quicker the requests of the activated queues are
1091 * cumulatively served, the sooner the target job of these queues gets
1092 * completed. As a consequence, weight-raising any of these queues,
1093 * which also implies idling the device for it, is almost always
1094 * counterproductive. In most cases it just lowers throughput.
1095 *
1096 * On the other hand, a burst of queue creations may be caused also by
1097 * the start of an application that does not consist of a lot of
1098 * parallel I/O-bound threads. In fact, with a complex application,
1099 * several short processes may need to be executed to start-up the
1100 * application. In this respect, to start an application as quickly as
1101 * possible, the best thing to do is in any case to privilege the I/O
1102 * related to the application with respect to all other
1103 * I/O. Therefore, the best strategy to start as quickly as possible
1104 * an application that causes a burst of queue creations is to
1105 * weight-raise all the queues created during the burst. This is the
1106 * exact opposite of the best strategy for the other type of bursts.
1107 *
1108 * In the end, to take the best action for each of the two cases, the
1109 * two types of bursts need to be distinguished. Fortunately, this
1110 * seems relatively easy, by looking at the sizes of the bursts. In
1111 * particular, we found a threshold such that only bursts with a
1112 * larger size than that threshold are apparently caused by
1113 * services or commands such as systemd or git grep. For brevity,
1114 * hereafter we call just 'large' these bursts. BFQ *does not*
1115 * weight-raise queues whose creation occurs in a large burst. In
1116 * addition, for each of these queues BFQ performs or does not perform
1117 * idling depending on which choice boosts the throughput more. The
1118 * exact choice depends on the device and request pattern at
1119 * hand.
1120 *
1121 * Unfortunately, false positives may occur while an interactive task
1122 * is starting (e.g., an application is being started). The
1123 * consequence is that the queues associated with the task do not
1124 * enjoy weight raising as expected. Fortunately these false positives
1125 * are very rare. They typically occur if some service happens to
1126 * start doing I/O exactly when the interactive task starts.
1127 *
1128 * Turning back to the next function, it implements all the steps
1129 * needed to detect the occurrence of a large burst and to properly
1130 * mark all the queues belonging to it (so that they can then be
1131 * treated in a different way). This goal is achieved by maintaining a
1132 * "burst list" that holds, temporarily, the queues that belong to the
1133 * burst in progress. The list is then used to mark these queues as
1134 * belonging to a large burst if the burst does become large. The main
1135 * steps are the following.
1136 *
1137 * . when the very first queue is created, the queue is inserted into the
1138 * list (as it could be the first queue in a possible burst)
1139 *
1140 * . if the current burst has not yet become large, and a queue Q that does
1141 * not yet belong to the burst is activated shortly after the last time
1142 * at which a new queue entered the burst list, then the function appends
1143 * Q to the burst list
1144 *
1145 * . if, as a consequence of the previous step, the burst size reaches
1146 * the large-burst threshold, then
1147 *
1148 * . all the queues in the burst list are marked as belonging to a
1149 * large burst
1150 *
1151 * . the burst list is deleted; in fact, the burst list already served
1152 * its purpose (keeping temporarily track of the queues in a burst,
1153 * so as to be able to mark them as belonging to a large burst in the
1154 * previous sub-step), and now is not needed any more
1155 *
1156 * . the device enters a large-burst mode
1157 *
1158 * . if a queue Q that does not belong to the burst is created while
1159 * the device is in large-burst mode and shortly after the last time
1160 * at which a queue either entered the burst list or was marked as
1161 * belonging to the current large burst, then Q is immediately marked
1162 * as belonging to a large burst.
1163 *
1164 * . if a queue Q that does not belong to the burst is created a while
1165 * later, i.e., not shortly after, than the last time at which a queue
1166 * either entered the burst list or was marked as belonging to the
1167 * current large burst, then the current burst is deemed as finished and:
1168 *
1169 * . the large-burst mode is reset if set
1170 *
1171 * . the burst list is emptied
1172 *
1173 * . Q is inserted in the burst list, as Q may be the first queue
1174 * in a possible new burst (then the burst list contains just Q
1175 * after this step).
1176 */
1177static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1178{
1179 /*
1180 * If bfqq is already in the burst list or is part of a large
1181 * burst, or finally has just been split, then there is
1182 * nothing else to do.
1183 */
1184 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1185 bfq_bfqq_in_large_burst(bfqq) ||
1186 time_is_after_eq_jiffies(bfqq->split_time +
1187 msecs_to_jiffies(10)))
1188 return;
1189
1190 /*
1191 * If bfqq's creation happens late enough, or bfqq belongs to
1192 * a different group than the burst group, then the current
1193 * burst is finished, and related data structures must be
1194 * reset.
1195 *
1196 * In this respect, consider the special case where bfqq is
1197 * the very first queue created after BFQ is selected for this
1198 * device. In this case, last_ins_in_burst and
1199 * burst_parent_entity are not yet significant when we get
1200 * here. But it is easy to verify that, whether or not the
1201 * following condition is true, bfqq will end up being
1202 * inserted into the burst list. In particular the list will
1203 * happen to contain only bfqq. And this is exactly what has
1204 * to happen, as bfqq may be the first queue of the first
1205 * burst.
1206 */
1207 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1208 bfqd->bfq_burst_interval) ||
1209 bfqq->entity.parent != bfqd->burst_parent_entity) {
1210 bfqd->large_burst = false;
1211 bfq_reset_burst_list(bfqd, bfqq);
1212 goto end;
1213 }
1214
1215 /*
1216 * If we get here, then bfqq is being activated shortly after the
1217 * last queue. So, if the current burst is also large, we can mark
1218 * bfqq as belonging to this large burst immediately.
1219 */
1220 if (bfqd->large_burst) {
1221 bfq_mark_bfqq_in_large_burst(bfqq);
1222 goto end;
1223 }
1224
1225 /*
1226 * If we get here, then a large-burst state has not yet been
1227 * reached, but bfqq is being activated shortly after the last
1228 * queue. Then we add bfqq to the burst.
1229 */
1230 bfq_add_to_burst(bfqd, bfqq);
1231end:
1232 /*
1233 * At this point, bfqq either has been added to the current
1234 * burst or has caused the current burst to terminate and a
1235 * possible new burst to start. In particular, in the second
1236 * case, bfqq has become the first queue in the possible new
1237 * burst. In both cases last_ins_in_burst needs to be moved
1238 * forward.
1239 */
1240 bfqd->last_ins_in_burst = jiffies;
1241}
1242
Paolo Valenteaee69d72017-04-19 08:29:02 -06001243static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1244{
1245 struct bfq_entity *entity = &bfqq->entity;
1246
1247 return entity->budget - entity->service;
1248}
1249
1250/*
1251 * If enough samples have been computed, return the current max budget
1252 * stored in bfqd, which is dynamically updated according to the
1253 * estimated disk peak rate; otherwise return the default max budget
1254 */
1255static int bfq_max_budget(struct bfq_data *bfqd)
1256{
1257 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1258 return bfq_default_max_budget;
1259 else
1260 return bfqd->bfq_max_budget;
1261}
1262
1263/*
1264 * Return min budget, which is a fraction of the current or default
1265 * max budget (trying with 1/32)
1266 */
1267static int bfq_min_budget(struct bfq_data *bfqd)
1268{
1269 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1270 return bfq_default_max_budget / 32;
1271 else
1272 return bfqd->bfq_max_budget / 32;
1273}
1274
Paolo Valenteaee69d72017-04-19 08:29:02 -06001275/*
1276 * The next function, invoked after the input queue bfqq switches from
1277 * idle to busy, updates the budget of bfqq. The function also tells
1278 * whether the in-service queue should be expired, by returning
1279 * true. The purpose of expiring the in-service queue is to give bfqq
1280 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001281 * for preempting the in-service queue is to achieve one of the two
1282 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001283 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001284 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1285 * expired because it has remained idle. In particular, bfqq may have
1286 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001287 *
1288 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1289 * and did not make it to issue a new request before its last
1290 * request was served;
1291 *
1292 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1293 * a new request before the expiration of the idling-time.
1294 *
1295 * Even if bfqq has expired for one of the above reasons, the process
1296 * associated with the queue may be however issuing requests greedily,
1297 * and thus be sensitive to the bandwidth it receives (bfqq may have
1298 * remained idle for other reasons: CPU high load, bfqq not enjoying
1299 * idling, I/O throttling somewhere in the path from the process to
1300 * the I/O scheduler, ...). But if, after every expiration for one of
1301 * the above two reasons, bfqq has to wait for the service of at least
1302 * one full budget of another queue before being served again, then
1303 * bfqq is likely to get a much lower bandwidth or resource time than
1304 * its reserved ones. To address this issue, two countermeasures need
1305 * to be taken.
1306 *
1307 * First, the budget and the timestamps of bfqq need to be updated in
1308 * a special way on bfqq reactivation: they need to be updated as if
1309 * bfqq did not remain idle and did not expire. In fact, if they are
1310 * computed as if bfqq expired and remained idle until reactivation,
1311 * then the process associated with bfqq is treated as if, instead of
1312 * being greedy, it stopped issuing requests when bfqq remained idle,
1313 * and restarts issuing requests only on this reactivation. In other
1314 * words, the scheduler does not help the process recover the "service
1315 * hole" between bfqq expiration and reactivation. As a consequence,
1316 * the process receives a lower bandwidth than its reserved one. In
1317 * contrast, to recover this hole, the budget must be updated as if
1318 * bfqq was not expired at all before this reactivation, i.e., it must
1319 * be set to the value of the remaining budget when bfqq was
1320 * expired. Along the same line, timestamps need to be assigned the
1321 * value they had the last time bfqq was selected for service, i.e.,
1322 * before last expiration. Thus timestamps need to be back-shifted
1323 * with respect to their normal computation (see [1] for more details
1324 * on this tricky aspect).
1325 *
1326 * Secondly, to allow the process to recover the hole, the in-service
1327 * queue must be expired too, to give bfqq the chance to preempt it
1328 * immediately. In fact, if bfqq has to wait for a full budget of the
1329 * in-service queue to be completed, then it may become impossible to
1330 * let the process recover the hole, even if the back-shifted
1331 * timestamps of bfqq are lower than those of the in-service queue. If
1332 * this happens for most or all of the holes, then the process may not
1333 * receive its reserved bandwidth. In this respect, it is worth noting
1334 * that, being the service of outstanding requests unpreemptible, a
1335 * little fraction of the holes may however be unrecoverable, thereby
1336 * causing a little loss of bandwidth.
1337 *
1338 * The last important point is detecting whether bfqq does need this
1339 * bandwidth recovery. In this respect, the next function deems the
1340 * process associated with bfqq greedy, and thus allows it to recover
1341 * the hole, if: 1) the process is waiting for the arrival of a new
1342 * request (which implies that bfqq expired for one of the above two
1343 * reasons), and 2) such a request has arrived soon. The first
1344 * condition is controlled through the flag non_blocking_wait_rq,
1345 * while the second through the flag arrived_in_time. If both
1346 * conditions hold, then the function computes the budget in the
1347 * above-described special way, and signals that the in-service queue
1348 * should be expired. Timestamp back-shifting is done later in
1349 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001350 *
1351 * 2. Reduce latency. Even if timestamps are not backshifted to let
1352 * the process associated with bfqq recover a service hole, bfqq may
1353 * however happen to have, after being (re)activated, a lower finish
1354 * timestamp than the in-service queue. That is, the next budget of
1355 * bfqq may have to be completed before the one of the in-service
1356 * queue. If this is the case, then preempting the in-service queue
1357 * allows this goal to be achieved, apart from the unpreemptible,
1358 * outstanding requests mentioned above.
1359 *
1360 * Unfortunately, regardless of which of the above two goals one wants
1361 * to achieve, service trees need first to be updated to know whether
1362 * the in-service queue must be preempted. To have service trees
1363 * correctly updated, the in-service queue must be expired and
1364 * rescheduled, and bfqq must be scheduled too. This is one of the
1365 * most costly operations (in future versions, the scheduling
1366 * mechanism may be re-designed in such a way to make it possible to
1367 * know whether preemption is needed without needing to update service
1368 * trees). In addition, queue preemptions almost always cause random
1369 * I/O, and thus loss of throughput. Because of these facts, the next
1370 * function adopts the following simple scheme to avoid both costly
1371 * operations and too frequent preemptions: it requests the expiration
1372 * of the in-service queue (unconditionally) only for queues that need
1373 * to recover a hole, or that either are weight-raised or deserve to
1374 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001375 */
1376static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1377 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001378 bool arrived_in_time,
1379 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001380{
1381 struct bfq_entity *entity = &bfqq->entity;
1382
Paolo Valente218cb892019-01-29 12:06:26 +01001383 /*
1384 * In the next compound condition, we check also whether there
1385 * is some budget left, because otherwise there is no point in
1386 * trying to go on serving bfqq with this same budget: bfqq
1387 * would be expired immediately after being selected for
1388 * service. This would only cause useless overhead.
1389 */
1390 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1391 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001392 /*
1393 * We do not clear the flag non_blocking_wait_rq here, as
1394 * the latter is used in bfq_activate_bfqq to signal
1395 * that timestamps need to be back-shifted (and is
1396 * cleared right after).
1397 */
1398
1399 /*
1400 * In next assignment we rely on that either
1401 * entity->service or entity->budget are not updated
1402 * on expiration if bfqq is empty (see
1403 * __bfq_bfqq_recalc_budget). Thus both quantities
1404 * remain unchanged after such an expiration, and the
1405 * following statement therefore assigns to
1406 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001407 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001408 */
1409 entity->budget = min_t(unsigned long,
1410 bfq_bfqq_budget_left(bfqq),
1411 bfqq->max_budget);
1412
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001413 /*
1414 * At this point, we have used entity->service to get
1415 * the budget left (needed for updating
1416 * entity->budget). Thus we finally can, and have to,
1417 * reset entity->service. The latter must be reset
1418 * because bfqq would otherwise be charged again for
1419 * the service it has received during its previous
1420 * service slot(s).
1421 */
1422 entity->service = 0;
1423
Paolo Valenteaee69d72017-04-19 08:29:02 -06001424 return true;
1425 }
1426
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001427 /*
1428 * We can finally complete expiration, by setting service to 0.
1429 */
1430 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001431 entity->budget = max_t(unsigned long, bfqq->max_budget,
1432 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1433 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001434 return wr_or_deserves_wr;
1435}
1436
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001437/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001438 * Return the farthest past time instant according to jiffies
1439 * macros.
1440 */
1441static unsigned long bfq_smallest_from_now(void)
1442{
1443 return jiffies - MAX_JIFFY_OFFSET;
1444}
1445
Paolo Valente44e44a12017-04-12 18:23:12 +02001446static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1447 struct bfq_queue *bfqq,
1448 unsigned int old_wr_coeff,
1449 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001450 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001451 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001452 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001453{
1454 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1455 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001456 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001457 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001458 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1459 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1460 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001461 /*
1462 * No interactive weight raising in progress
1463 * here: assign minus infinity to
1464 * wr_start_at_switch_to_srt, to make sure
1465 * that, at the end of the soft-real-time
1466 * weight raising periods that is starting
1467 * now, no interactive weight-raising period
1468 * may be wrongly considered as still in
1469 * progress (and thus actually started by
1470 * mistake).
1471 */
1472 bfqq->wr_start_at_switch_to_srt =
1473 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001474 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1475 BFQ_SOFTRT_WEIGHT_FACTOR;
1476 bfqq->wr_cur_max_time =
1477 bfqd->bfq_wr_rt_max_time;
1478 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001479
1480 /*
1481 * If needed, further reduce budget to make sure it is
1482 * close to bfqq's backlog, so as to reduce the
1483 * scheduling-error component due to a too large
1484 * budget. Do not care about throughput consequences,
1485 * but only about latency. Finally, do not assign a
1486 * too small budget either, to avoid increasing
1487 * latency by causing too frequent expirations.
1488 */
1489 bfqq->entity.budget = min_t(unsigned long,
1490 bfqq->entity.budget,
1491 2 * bfq_min_budget(bfqd));
1492 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001493 if (interactive) { /* update wr coeff and duration */
1494 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1495 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001496 } else if (in_burst)
1497 bfqq->wr_coeff = 1;
1498 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001499 /*
1500 * The application is now or still meeting the
1501 * requirements for being deemed soft rt. We
1502 * can then correctly and safely (re)charge
1503 * the weight-raising duration for the
1504 * application with the weight-raising
1505 * duration for soft rt applications.
1506 *
1507 * In particular, doing this recharge now, i.e.,
1508 * before the weight-raising period for the
1509 * application finishes, reduces the probability
1510 * of the following negative scenario:
1511 * 1) the weight of a soft rt application is
1512 * raised at startup (as for any newly
1513 * created application),
1514 * 2) since the application is not interactive,
1515 * at a certain time weight-raising is
1516 * stopped for the application,
1517 * 3) at that time the application happens to
1518 * still have pending requests, and hence
1519 * is destined to not have a chance to be
1520 * deemed soft rt before these requests are
1521 * completed (see the comments to the
1522 * function bfq_bfqq_softrt_next_start()
1523 * for details on soft rt detection),
1524 * 4) these pending requests experience a high
1525 * latency because the application is not
1526 * weight-raised while they are pending.
1527 */
1528 if (bfqq->wr_cur_max_time !=
1529 bfqd->bfq_wr_rt_max_time) {
1530 bfqq->wr_start_at_switch_to_srt =
1531 bfqq->last_wr_start_finish;
1532
1533 bfqq->wr_cur_max_time =
1534 bfqd->bfq_wr_rt_max_time;
1535 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1536 BFQ_SOFTRT_WEIGHT_FACTOR;
1537 }
1538 bfqq->last_wr_start_finish = jiffies;
1539 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001540 }
1541}
1542
1543static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1544 struct bfq_queue *bfqq)
1545{
1546 return bfqq->dispatched == 0 &&
1547 time_is_before_jiffies(
1548 bfqq->budget_timeout +
1549 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001550}
1551
1552static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1553 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001554 int old_wr_coeff,
1555 struct request *rq,
1556 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001557{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001558 bool soft_rt, in_burst, wr_or_deserves_wr,
1559 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001560 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001561 /*
1562 * See the comments on
1563 * bfq_bfqq_update_budg_for_activation for
1564 * details on the usage of the next variable.
1565 */
1566 arrived_in_time = ktime_get_ns() <=
1567 bfqq->ttime.last_end_request +
1568 bfqd->bfq_slice_idle * 3;
1569
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001570
Paolo Valenteaee69d72017-04-19 08:29:02 -06001571 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001572 * bfqq deserves to be weight-raised if:
1573 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001574 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001575 * - it has been idle for enough time or is soft real-time,
1576 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001577 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001578 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001579 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001580 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001581 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1582 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001583 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001584 wr_or_deserves_wr = bfqd->low_latency &&
1585 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001586 (bfq_bfqq_sync(bfqq) &&
1587 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001588
1589 /*
1590 * Using the last flag, update budget and check whether bfqq
1591 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001592 */
1593 bfqq_wants_to_preempt =
1594 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001595 arrived_in_time,
1596 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001597
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001598 /*
1599 * If bfqq happened to be activated in a burst, but has been
1600 * idle for much more than an interactive queue, then we
1601 * assume that, in the overall I/O initiated in the burst, the
1602 * I/O associated with bfqq is finished. So bfqq does not need
1603 * to be treated as a queue belonging to a burst
1604 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1605 * if set, and remove bfqq from the burst list if it's
1606 * there. We do not decrement burst_size, because the fact
1607 * that bfqq does not need to belong to the burst list any
1608 * more does not invalidate the fact that bfqq was created in
1609 * a burst.
1610 */
1611 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1612 idle_for_long_time &&
1613 time_is_before_jiffies(
1614 bfqq->budget_timeout +
1615 msecs_to_jiffies(10000))) {
1616 hlist_del_init(&bfqq->burst_list_node);
1617 bfq_clear_bfqq_in_large_burst(bfqq);
1618 }
1619
1620 bfq_clear_bfqq_just_created(bfqq);
1621
1622
Paolo Valenteaee69d72017-04-19 08:29:02 -06001623 if (!bfq_bfqq_IO_bound(bfqq)) {
1624 if (arrived_in_time) {
1625 bfqq->requests_within_timer++;
1626 if (bfqq->requests_within_timer >=
1627 bfqd->bfq_requests_within_timer)
1628 bfq_mark_bfqq_IO_bound(bfqq);
1629 } else
1630 bfqq->requests_within_timer = 0;
1631 }
1632
Paolo Valente44e44a12017-04-12 18:23:12 +02001633 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001634 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1635 /* wraparound */
1636 bfqq->split_time =
1637 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001638
Arianna Avanzini36eca892017-04-12 18:23:16 +02001639 if (time_is_before_jiffies(bfqq->split_time +
1640 bfqd->bfq_wr_min_idle_time)) {
1641 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1642 old_wr_coeff,
1643 wr_or_deserves_wr,
1644 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001645 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001646 soft_rt);
1647
1648 if (old_wr_coeff != bfqq->wr_coeff)
1649 bfqq->entity.prio_changed = 1;
1650 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001651 }
1652
Paolo Valente77b7dce2017-04-12 18:23:13 +02001653 bfqq->last_idle_bklogged = jiffies;
1654 bfqq->service_from_backlogged = 0;
1655 bfq_clear_bfqq_softrt_update(bfqq);
1656
Paolo Valenteaee69d72017-04-19 08:29:02 -06001657 bfq_add_bfqq_busy(bfqd, bfqq);
1658
1659 /*
1660 * Expire in-service queue only if preemption may be needed
1661 * for guarantees. In this respect, the function
1662 * next_queue_may_preempt just checks a simple, necessary
1663 * condition, and not a sufficient condition based on
1664 * timestamps. In fact, for the latter condition to be
1665 * evaluated, timestamps would need first to be updated, and
1666 * this operation is quite costly (see the comments on the
1667 * function bfq_bfqq_update_budg_for_activation).
1668 */
1669 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001670 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001671 next_queue_may_preempt(bfqd))
1672 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1673 false, BFQQE_PREEMPTED);
1674}
1675
1676static void bfq_add_request(struct request *rq)
1677{
1678 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1679 struct bfq_data *bfqd = bfqq->bfqd;
1680 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001681 unsigned int old_wr_coeff = bfqq->wr_coeff;
1682 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001683
1684 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1685 bfqq->queued[rq_is_sync(rq)]++;
1686 bfqd->queued++;
1687
1688 elv_rb_add(&bfqq->sort_list, rq);
1689
1690 /*
1691 * Check if this request is a better next-serve candidate.
1692 */
1693 prev = bfqq->next_rq;
1694 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1695 bfqq->next_rq = next_rq;
1696
Arianna Avanzini36eca892017-04-12 18:23:16 +02001697 /*
1698 * Adjust priority tree position, if next_rq changes.
1699 */
1700 if (prev != bfqq->next_rq)
1701 bfq_pos_tree_add_move(bfqd, bfqq);
1702
Paolo Valenteaee69d72017-04-19 08:29:02 -06001703 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001704 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1705 rq, &interactive);
1706 else {
1707 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1708 time_is_before_jiffies(
1709 bfqq->last_wr_start_finish +
1710 bfqd->bfq_wr_min_inter_arr_async)) {
1711 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1712 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1713
Paolo Valentecfd69712017-04-12 18:23:15 +02001714 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001715 bfqq->entity.prio_changed = 1;
1716 }
1717 if (prev != bfqq->next_rq)
1718 bfq_updated_next_req(bfqd, bfqq);
1719 }
1720
1721 /*
1722 * Assign jiffies to last_wr_start_finish in the following
1723 * cases:
1724 *
1725 * . if bfqq is not going to be weight-raised, because, for
1726 * non weight-raised queues, last_wr_start_finish stores the
1727 * arrival time of the last request; as of now, this piece
1728 * of information is used only for deciding whether to
1729 * weight-raise async queues
1730 *
1731 * . if bfqq is not weight-raised, because, if bfqq is now
1732 * switching to weight-raised, then last_wr_start_finish
1733 * stores the time when weight-raising starts
1734 *
1735 * . if bfqq is interactive, because, regardless of whether
1736 * bfqq is currently weight-raised, the weight-raising
1737 * period must start or restart (this case is considered
1738 * separately because it is not detected by the above
1739 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001740 *
1741 * last_wr_start_finish has to be updated also if bfqq is soft
1742 * real-time, because the weight-raising period is constantly
1743 * restarted on idle-to-busy transitions for these queues, but
1744 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1745 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001746 */
1747 if (bfqd->low_latency &&
1748 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1749 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001750}
1751
1752static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1753 struct bio *bio,
1754 struct request_queue *q)
1755{
1756 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1757
1758
1759 if (bfqq)
1760 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1761
1762 return NULL;
1763}
1764
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001765static sector_t get_sdist(sector_t last_pos, struct request *rq)
1766{
1767 if (last_pos)
1768 return abs(blk_rq_pos(rq) - last_pos);
1769
1770 return 0;
1771}
1772
Paolo Valenteaee69d72017-04-19 08:29:02 -06001773#if 0 /* Still not clear if we can do without next two functions */
1774static void bfq_activate_request(struct request_queue *q, struct request *rq)
1775{
1776 struct bfq_data *bfqd = q->elevator->elevator_data;
1777
1778 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001779}
1780
1781static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1782{
1783 struct bfq_data *bfqd = q->elevator->elevator_data;
1784
1785 bfqd->rq_in_driver--;
1786}
1787#endif
1788
1789static void bfq_remove_request(struct request_queue *q,
1790 struct request *rq)
1791{
1792 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1793 struct bfq_data *bfqd = bfqq->bfqd;
1794 const int sync = rq_is_sync(rq);
1795
1796 if (bfqq->next_rq == rq) {
1797 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1798 bfq_updated_next_req(bfqd, bfqq);
1799 }
1800
1801 if (rq->queuelist.prev != &rq->queuelist)
1802 list_del_init(&rq->queuelist);
1803 bfqq->queued[sync]--;
1804 bfqd->queued--;
1805 elv_rb_del(&bfqq->sort_list, rq);
1806
1807 elv_rqhash_del(q, rq);
1808 if (q->last_merge == rq)
1809 q->last_merge = NULL;
1810
1811 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1812 bfqq->next_rq = NULL;
1813
1814 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001815 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001816 /*
1817 * bfqq emptied. In normal operation, when
1818 * bfqq is empty, bfqq->entity.service and
1819 * bfqq->entity.budget must contain,
1820 * respectively, the service received and the
1821 * budget used last time bfqq emptied. These
1822 * facts do not hold in this case, as at least
1823 * this last removal occurred while bfqq is
1824 * not in service. To avoid inconsistencies,
1825 * reset both bfqq->entity.service and
1826 * bfqq->entity.budget, if bfqq has still a
1827 * process that may issue I/O requests to it.
1828 */
1829 bfqq->entity.budget = bfqq->entity.service = 0;
1830 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001831
1832 /*
1833 * Remove queue from request-position tree as it is empty.
1834 */
1835 if (bfqq->pos_root) {
1836 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1837 bfqq->pos_root = NULL;
1838 }
Paolo Valente05e90282017-12-20 12:38:31 +01001839 } else {
1840 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001841 }
1842
1843 if (rq->cmd_flags & REQ_META)
1844 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001845
Paolo Valenteaee69d72017-04-19 08:29:02 -06001846}
1847
1848static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1849{
1850 struct request_queue *q = hctx->queue;
1851 struct bfq_data *bfqd = q->elevator->elevator_data;
1852 struct request *free = NULL;
1853 /*
1854 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1855 * store its return value for later use, to avoid nesting
1856 * queue_lock inside the bfqd->lock. We assume that the bic
1857 * returned by bfq_bic_lookup does not go away before
1858 * bfqd->lock is taken.
1859 */
1860 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1861 bool ret;
1862
1863 spin_lock_irq(&bfqd->lock);
1864
1865 if (bic)
1866 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1867 else
1868 bfqd->bio_bfqq = NULL;
1869 bfqd->bio_bic = bic;
1870
1871 ret = blk_mq_sched_try_merge(q, bio, &free);
1872
1873 if (free)
1874 blk_mq_free_request(free);
1875 spin_unlock_irq(&bfqd->lock);
1876
1877 return ret;
1878}
1879
1880static int bfq_request_merge(struct request_queue *q, struct request **req,
1881 struct bio *bio)
1882{
1883 struct bfq_data *bfqd = q->elevator->elevator_data;
1884 struct request *__rq;
1885
1886 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1887 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1888 *req = __rq;
1889 return ELEVATOR_FRONT_MERGE;
1890 }
1891
1892 return ELEVATOR_NO_MERGE;
1893}
1894
Paolo Valente18e5a572018-05-04 19:17:01 +02001895static struct bfq_queue *bfq_init_rq(struct request *rq);
1896
Paolo Valenteaee69d72017-04-19 08:29:02 -06001897static void bfq_request_merged(struct request_queue *q, struct request *req,
1898 enum elv_merge type)
1899{
1900 if (type == ELEVATOR_FRONT_MERGE &&
1901 rb_prev(&req->rb_node) &&
1902 blk_rq_pos(req) <
1903 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1904 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02001905 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001906 struct bfq_data *bfqd = bfqq->bfqd;
1907 struct request *prev, *next_rq;
1908
1909 /* Reposition request in its sort_list */
1910 elv_rb_del(&bfqq->sort_list, req);
1911 elv_rb_add(&bfqq->sort_list, req);
1912
1913 /* Choose next request to be served for bfqq */
1914 prev = bfqq->next_rq;
1915 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1916 bfqd->last_position);
1917 bfqq->next_rq = next_rq;
1918 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02001919 * If next_rq changes, update both the queue's budget to
1920 * fit the new request and the queue's position in its
1921 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001922 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02001923 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001924 bfq_updated_next_req(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001925 bfq_pos_tree_add_move(bfqd, bfqq);
1926 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06001927 }
1928}
1929
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001930/*
1931 * This function is called to notify the scheduler that the requests
1932 * rq and 'next' have been merged, with 'next' going away. BFQ
1933 * exploits this hook to address the following issue: if 'next' has a
1934 * fifo_time lower that rq, then the fifo_time of rq must be set to
1935 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001936 *
1937 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1938 * on that rq is picked from the hash table q->elevator->hash, which,
1939 * in its turn, is filled only with I/O requests present in
1940 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1941 * the function that fills this hash table (elv_rqhash_add) is called
1942 * only by bfq_insert_request.
1943 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001944static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1945 struct request *next)
1946{
Paolo Valente18e5a572018-05-04 19:17:01 +02001947 struct bfq_queue *bfqq = bfq_init_rq(rq),
1948 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001949
Paolo Valenteaee69d72017-04-19 08:29:02 -06001950 /*
1951 * If next and rq belong to the same bfq_queue and next is older
1952 * than rq, then reposition rq in the fifo (by substituting next
1953 * with rq). Otherwise, if next and rq belong to different
1954 * bfq_queues, never reposition rq: in fact, we would have to
1955 * reposition it with respect to next's position in its own fifo,
1956 * which would most certainly be too expensive with respect to
1957 * the benefits.
1958 */
1959 if (bfqq == next_bfqq &&
1960 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1961 next->fifo_time < rq->fifo_time) {
1962 list_del_init(&rq->queuelist);
1963 list_replace_init(&next->queuelist, &rq->queuelist);
1964 rq->fifo_time = next->fifo_time;
1965 }
1966
1967 if (bfqq->next_rq == next)
1968 bfqq->next_rq = rq;
1969
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001970 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001971}
1972
Paolo Valente44e44a12017-04-12 18:23:12 +02001973/* Must be called with bfqq != NULL */
1974static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1975{
Paolo Valentecfd69712017-04-12 18:23:15 +02001976 if (bfq_bfqq_busy(bfqq))
1977 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02001978 bfqq->wr_coeff = 1;
1979 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001980 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02001981 /*
1982 * Trigger a weight change on the next invocation of
1983 * __bfq_entity_update_weight_prio.
1984 */
1985 bfqq->entity.prio_changed = 1;
1986}
1987
Paolo Valenteea25da42017-04-19 08:48:24 -06001988void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1989 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02001990{
1991 int i, j;
1992
1993 for (i = 0; i < 2; i++)
1994 for (j = 0; j < IOPRIO_BE_NR; j++)
1995 if (bfqg->async_bfqq[i][j])
1996 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1997 if (bfqg->async_idle_bfqq)
1998 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1999}
2000
2001static void bfq_end_wr(struct bfq_data *bfqd)
2002{
2003 struct bfq_queue *bfqq;
2004
2005 spin_lock_irq(&bfqd->lock);
2006
2007 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2008 bfq_bfqq_end_wr(bfqq);
2009 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2010 bfq_bfqq_end_wr(bfqq);
2011 bfq_end_wr_async(bfqd);
2012
2013 spin_unlock_irq(&bfqd->lock);
2014}
2015
Arianna Avanzini36eca892017-04-12 18:23:16 +02002016static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2017{
2018 if (request)
2019 return blk_rq_pos(io_struct);
2020 else
2021 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2022}
2023
2024static int bfq_rq_close_to_sector(void *io_struct, bool request,
2025 sector_t sector)
2026{
2027 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2028 BFQQ_CLOSE_THR;
2029}
2030
2031static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2032 struct bfq_queue *bfqq,
2033 sector_t sector)
2034{
2035 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2036 struct rb_node *parent, *node;
2037 struct bfq_queue *__bfqq;
2038
2039 if (RB_EMPTY_ROOT(root))
2040 return NULL;
2041
2042 /*
2043 * First, if we find a request starting at the end of the last
2044 * request, choose it.
2045 */
2046 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2047 if (__bfqq)
2048 return __bfqq;
2049
2050 /*
2051 * If the exact sector wasn't found, the parent of the NULL leaf
2052 * will contain the closest sector (rq_pos_tree sorted by
2053 * next_request position).
2054 */
2055 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2056 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2057 return __bfqq;
2058
2059 if (blk_rq_pos(__bfqq->next_rq) < sector)
2060 node = rb_next(&__bfqq->pos_node);
2061 else
2062 node = rb_prev(&__bfqq->pos_node);
2063 if (!node)
2064 return NULL;
2065
2066 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2067 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2068 return __bfqq;
2069
2070 return NULL;
2071}
2072
2073static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2074 struct bfq_queue *cur_bfqq,
2075 sector_t sector)
2076{
2077 struct bfq_queue *bfqq;
2078
2079 /*
2080 * We shall notice if some of the queues are cooperating,
2081 * e.g., working closely on the same area of the device. In
2082 * that case, we can group them together and: 1) don't waste
2083 * time idling, and 2) serve the union of their requests in
2084 * the best possible order for throughput.
2085 */
2086 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2087 if (!bfqq || bfqq == cur_bfqq)
2088 return NULL;
2089
2090 return bfqq;
2091}
2092
2093static struct bfq_queue *
2094bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2095{
2096 int process_refs, new_process_refs;
2097 struct bfq_queue *__bfqq;
2098
2099 /*
2100 * If there are no process references on the new_bfqq, then it is
2101 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2102 * may have dropped their last reference (not just their last process
2103 * reference).
2104 */
2105 if (!bfqq_process_refs(new_bfqq))
2106 return NULL;
2107
2108 /* Avoid a circular list and skip interim queue merges. */
2109 while ((__bfqq = new_bfqq->new_bfqq)) {
2110 if (__bfqq == bfqq)
2111 return NULL;
2112 new_bfqq = __bfqq;
2113 }
2114
2115 process_refs = bfqq_process_refs(bfqq);
2116 new_process_refs = bfqq_process_refs(new_bfqq);
2117 /*
2118 * If the process for the bfqq has gone away, there is no
2119 * sense in merging the queues.
2120 */
2121 if (process_refs == 0 || new_process_refs == 0)
2122 return NULL;
2123
2124 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2125 new_bfqq->pid);
2126
2127 /*
2128 * Merging is just a redirection: the requests of the process
2129 * owning one of the two queues are redirected to the other queue.
2130 * The latter queue, in its turn, is set as shared if this is the
2131 * first time that the requests of some process are redirected to
2132 * it.
2133 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002134 * We redirect bfqq to new_bfqq and not the opposite, because
2135 * we are in the context of the process owning bfqq, thus we
2136 * have the io_cq of this process. So we can immediately
2137 * configure this io_cq to redirect the requests of the
2138 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2139 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002140 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002141 * Anyway, even in case new_bfqq coincides with the in-service
2142 * queue, redirecting requests the in-service queue is the
2143 * best option, as we feed the in-service queue with new
2144 * requests close to the last request served and, by doing so,
2145 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002146 */
2147 bfqq->new_bfqq = new_bfqq;
2148 new_bfqq->ref += process_refs;
2149 return new_bfqq;
2150}
2151
2152static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2153 struct bfq_queue *new_bfqq)
2154{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002155 if (bfq_too_late_for_merging(new_bfqq))
2156 return false;
2157
Arianna Avanzini36eca892017-04-12 18:23:16 +02002158 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2159 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2160 return false;
2161
2162 /*
2163 * If either of the queues has already been detected as seeky,
2164 * then merging it with the other queue is unlikely to lead to
2165 * sequential I/O.
2166 */
2167 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2168 return false;
2169
2170 /*
2171 * Interleaved I/O is known to be done by (some) applications
2172 * only for reads, so it does not make sense to merge async
2173 * queues.
2174 */
2175 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2176 return false;
2177
2178 return true;
2179}
2180
2181/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002182 * Attempt to schedule a merge of bfqq with the currently in-service
2183 * queue or with a close queue among the scheduled queues. Return
2184 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2185 * structure otherwise.
2186 *
2187 * The OOM queue is not allowed to participate to cooperation: in fact, since
2188 * the requests temporarily redirected to the OOM queue could be redirected
2189 * again to dedicated queues at any time, the state needed to correctly
2190 * handle merging with the OOM queue would be quite complex and expensive
2191 * to maintain. Besides, in such a critical condition as an out of memory,
2192 * the benefits of queue merging may be little relevant, or even negligible.
2193 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002194 * WARNING: queue merging may impair fairness among non-weight raised
2195 * queues, for at least two reasons: 1) the original weight of a
2196 * merged queue may change during the merged state, 2) even being the
2197 * weight the same, a merged queue may be bloated with many more
2198 * requests than the ones produced by its originally-associated
2199 * process.
2200 */
2201static struct bfq_queue *
2202bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2203 void *io_struct, bool request)
2204{
2205 struct bfq_queue *in_service_bfqq, *new_bfqq;
2206
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002207 /*
2208 * Prevent bfqq from being merged if it has been created too
2209 * long ago. The idea is that true cooperating processes, and
2210 * thus their associated bfq_queues, are supposed to be
2211 * created shortly after each other. This is the case, e.g.,
2212 * for KVM/QEMU and dump I/O threads. Basing on this
2213 * assumption, the following filtering greatly reduces the
2214 * probability that two non-cooperating processes, which just
2215 * happen to do close I/O for some short time interval, have
2216 * their queues merged by mistake.
2217 */
2218 if (bfq_too_late_for_merging(bfqq))
2219 return NULL;
2220
Arianna Avanzini36eca892017-04-12 18:23:16 +02002221 if (bfqq->new_bfqq)
2222 return bfqq->new_bfqq;
2223
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002224 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002225 return NULL;
2226
2227 /* If there is only one backlogged queue, don't search. */
2228 if (bfqd->busy_queues == 1)
2229 return NULL;
2230
2231 in_service_bfqq = bfqd->in_service_queue;
2232
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002233 if (in_service_bfqq && in_service_bfqq != bfqq &&
2234 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2235 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002236 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2237 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2238 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2239 if (new_bfqq)
2240 return new_bfqq;
2241 }
2242 /*
2243 * Check whether there is a cooperator among currently scheduled
2244 * queues. The only thing we need is that the bio/request is not
2245 * NULL, as we need it to establish whether a cooperator exists.
2246 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002247 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2248 bfq_io_struct_pos(io_struct, request));
2249
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002250 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002251 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2252 return bfq_setup_merge(bfqq, new_bfqq);
2253
2254 return NULL;
2255}
2256
2257static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2258{
2259 struct bfq_io_cq *bic = bfqq->bic;
2260
2261 /*
2262 * If !bfqq->bic, the queue is already shared or its requests
2263 * have already been redirected to a shared queue; both idle window
2264 * and weight raising state have already been saved. Do nothing.
2265 */
2266 if (!bic)
2267 return;
2268
2269 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002270 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002271 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002272 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2273 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002274 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002275 !bfq_bfqq_in_large_burst(bfqq) &&
2276 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002277 /*
2278 * bfqq being merged right after being created: bfqq
2279 * would have deserved interactive weight raising, but
2280 * did not make it to be set in a weight-raised state,
2281 * because of this early merge. Store directly the
2282 * weight-raising state that would have been assigned
2283 * to bfqq, so that to avoid that bfqq unjustly fails
2284 * to enjoy weight raising if split soon.
2285 */
2286 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2287 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2288 bic->saved_last_wr_start_finish = jiffies;
2289 } else {
2290 bic->saved_wr_coeff = bfqq->wr_coeff;
2291 bic->saved_wr_start_at_switch_to_srt =
2292 bfqq->wr_start_at_switch_to_srt;
2293 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2294 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2295 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002296}
2297
Arianna Avanzini36eca892017-04-12 18:23:16 +02002298static void
2299bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2300 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2301{
2302 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2303 (unsigned long)new_bfqq->pid);
2304 /* Save weight raising and idle window of the merged queues */
2305 bfq_bfqq_save_state(bfqq);
2306 bfq_bfqq_save_state(new_bfqq);
2307 if (bfq_bfqq_IO_bound(bfqq))
2308 bfq_mark_bfqq_IO_bound(new_bfqq);
2309 bfq_clear_bfqq_IO_bound(bfqq);
2310
2311 /*
2312 * If bfqq is weight-raised, then let new_bfqq inherit
2313 * weight-raising. To reduce false positives, neglect the case
2314 * where bfqq has just been created, but has not yet made it
2315 * to be weight-raised (which may happen because EQM may merge
2316 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002317 * time for bfqq). Handling this case would however be very
2318 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002319 */
2320 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2321 new_bfqq->wr_coeff = bfqq->wr_coeff;
2322 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2323 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2324 new_bfqq->wr_start_at_switch_to_srt =
2325 bfqq->wr_start_at_switch_to_srt;
2326 if (bfq_bfqq_busy(new_bfqq))
2327 bfqd->wr_busy_queues++;
2328 new_bfqq->entity.prio_changed = 1;
2329 }
2330
2331 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2332 bfqq->wr_coeff = 1;
2333 bfqq->entity.prio_changed = 1;
2334 if (bfq_bfqq_busy(bfqq))
2335 bfqd->wr_busy_queues--;
2336 }
2337
2338 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2339 bfqd->wr_busy_queues);
2340
2341 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002342 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2343 */
2344 bic_set_bfqq(bic, new_bfqq, 1);
2345 bfq_mark_bfqq_coop(new_bfqq);
2346 /*
2347 * new_bfqq now belongs to at least two bics (it is a shared queue):
2348 * set new_bfqq->bic to NULL. bfqq either:
2349 * - does not belong to any bic any more, and hence bfqq->bic must
2350 * be set to NULL, or
2351 * - is a queue whose owning bics have already been redirected to a
2352 * different queue, hence the queue is destined to not belong to
2353 * any bic soon and bfqq->bic is already NULL (therefore the next
2354 * assignment causes no harm).
2355 */
2356 new_bfqq->bic = NULL;
2357 bfqq->bic = NULL;
2358 /* release process reference to bfqq */
2359 bfq_put_queue(bfqq);
2360}
2361
Paolo Valenteaee69d72017-04-19 08:29:02 -06002362static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2363 struct bio *bio)
2364{
2365 struct bfq_data *bfqd = q->elevator->elevator_data;
2366 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002367 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002368
2369 /*
2370 * Disallow merge of a sync bio into an async request.
2371 */
2372 if (is_sync && !rq_is_sync(rq))
2373 return false;
2374
2375 /*
2376 * Lookup the bfqq that this bio will be queued with. Allow
2377 * merge only if rq is queued there.
2378 */
2379 if (!bfqq)
2380 return false;
2381
Arianna Avanzini36eca892017-04-12 18:23:16 +02002382 /*
2383 * We take advantage of this function to perform an early merge
2384 * of the queues of possible cooperating processes.
2385 */
2386 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2387 if (new_bfqq) {
2388 /*
2389 * bic still points to bfqq, then it has not yet been
2390 * redirected to some other bfq_queue, and a queue
2391 * merge beween bfqq and new_bfqq can be safely
2392 * fulfillled, i.e., bic can be redirected to new_bfqq
2393 * and bfqq can be put.
2394 */
2395 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2396 new_bfqq);
2397 /*
2398 * If we get here, bio will be queued into new_queue,
2399 * so use new_bfqq to decide whether bio and rq can be
2400 * merged.
2401 */
2402 bfqq = new_bfqq;
2403
2404 /*
2405 * Change also bqfd->bio_bfqq, as
2406 * bfqd->bio_bic now points to new_bfqq, and
2407 * this function may be invoked again (and then may
2408 * use again bqfd->bio_bfqq).
2409 */
2410 bfqd->bio_bfqq = bfqq;
2411 }
2412
Paolo Valenteaee69d72017-04-19 08:29:02 -06002413 return bfqq == RQ_BFQQ(rq);
2414}
2415
Paolo Valente44e44a12017-04-12 18:23:12 +02002416/*
2417 * Set the maximum time for the in-service queue to consume its
2418 * budget. This prevents seeky processes from lowering the throughput.
2419 * In practice, a time-slice service scheme is used with seeky
2420 * processes.
2421 */
2422static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2423 struct bfq_queue *bfqq)
2424{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002425 unsigned int timeout_coeff;
2426
2427 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2428 timeout_coeff = 1;
2429 else
2430 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2431
Paolo Valente44e44a12017-04-12 18:23:12 +02002432 bfqd->last_budget_start = ktime_get();
2433
2434 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002435 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002436}
2437
Paolo Valenteaee69d72017-04-19 08:29:02 -06002438static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2439 struct bfq_queue *bfqq)
2440{
2441 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002442 bfq_clear_bfqq_fifo_expire(bfqq);
2443
2444 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2445
Paolo Valente77b7dce2017-04-12 18:23:13 +02002446 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2447 bfqq->wr_coeff > 1 &&
2448 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2449 time_is_before_jiffies(bfqq->budget_timeout)) {
2450 /*
2451 * For soft real-time queues, move the start
2452 * of the weight-raising period forward by the
2453 * time the queue has not received any
2454 * service. Otherwise, a relatively long
2455 * service delay is likely to cause the
2456 * weight-raising period of the queue to end,
2457 * because of the short duration of the
2458 * weight-raising period of a soft real-time
2459 * queue. It is worth noting that this move
2460 * is not so dangerous for the other queues,
2461 * because soft real-time queues are not
2462 * greedy.
2463 *
2464 * To not add a further variable, we use the
2465 * overloaded field budget_timeout to
2466 * determine for how long the queue has not
2467 * received service, i.e., how much time has
2468 * elapsed since the queue expired. However,
2469 * this is a little imprecise, because
2470 * budget_timeout is set to jiffies if bfqq
2471 * not only expires, but also remains with no
2472 * request.
2473 */
2474 if (time_after(bfqq->budget_timeout,
2475 bfqq->last_wr_start_finish))
2476 bfqq->last_wr_start_finish +=
2477 jiffies - bfqq->budget_timeout;
2478 else
2479 bfqq->last_wr_start_finish = jiffies;
2480 }
2481
Paolo Valente44e44a12017-04-12 18:23:12 +02002482 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002483 bfq_log_bfqq(bfqd, bfqq,
2484 "set_in_service_queue, cur-budget = %d",
2485 bfqq->entity.budget);
2486 }
2487
2488 bfqd->in_service_queue = bfqq;
2489}
2490
2491/*
2492 * Get and set a new queue for service.
2493 */
2494static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2495{
2496 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2497
2498 __bfq_set_in_service_queue(bfqd, bfqq);
2499 return bfqq;
2500}
2501
Paolo Valenteaee69d72017-04-19 08:29:02 -06002502static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2503{
2504 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002505 u32 sl;
2506
Paolo Valenteaee69d72017-04-19 08:29:02 -06002507 bfq_mark_bfqq_wait_request(bfqq);
2508
2509 /*
2510 * We don't want to idle for seeks, but we do want to allow
2511 * fair distribution of slice time for a process doing back-to-back
2512 * seeks. So allow a little bit of time for him to submit a new rq.
2513 */
2514 sl = bfqd->bfq_slice_idle;
2515 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002516 * Unless the queue is being weight-raised or the scenario is
2517 * asymmetric, grant only minimum idle time if the queue
2518 * is seeky. A long idling is preserved for a weight-raised
2519 * queue, or, more in general, in an asymmetric scenario,
2520 * because a long idling is needed for guaranteeing to a queue
2521 * its reserved share of the throughput (in particular, it is
2522 * needed if the queue has a higher weight than some other
2523 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002524 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002525 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2526 bfq_symmetric_scenario(bfqd))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002527 sl = min_t(u64, sl, BFQ_MIN_TT);
2528
2529 bfqd->last_idling_start = ktime_get();
2530 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2531 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002532 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002533}
2534
2535/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002536 * In autotuning mode, max_budget is dynamically recomputed as the
2537 * amount of sectors transferred in timeout at the estimated peak
2538 * rate. This enables BFQ to utilize a full timeslice with a full
2539 * budget, even if the in-service queue is served at peak rate. And
2540 * this maximises throughput with sequential workloads.
2541 */
2542static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2543{
2544 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2545 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2546}
2547
Paolo Valente44e44a12017-04-12 18:23:12 +02002548/*
2549 * Update parameters related to throughput and responsiveness, as a
2550 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002551 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002552 */
2553static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2554{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002555 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002556 bfqd->bfq_max_budget =
2557 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002558 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002559 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002560}
2561
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002562static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2563 struct request *rq)
2564{
2565 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2566 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2567 bfqd->peak_rate_samples = 1;
2568 bfqd->sequential_samples = 0;
2569 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2570 blk_rq_sectors(rq);
2571 } else /* no new rq dispatched, just reset the number of samples */
2572 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2573
2574 bfq_log(bfqd,
2575 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2576 bfqd->peak_rate_samples, bfqd->sequential_samples,
2577 bfqd->tot_sectors_dispatched);
2578}
2579
2580static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2581{
2582 u32 rate, weight, divisor;
2583
2584 /*
2585 * For the convergence property to hold (see comments on
2586 * bfq_update_peak_rate()) and for the assessment to be
2587 * reliable, a minimum number of samples must be present, and
2588 * a minimum amount of time must have elapsed. If not so, do
2589 * not compute new rate. Just reset parameters, to get ready
2590 * for a new evaluation attempt.
2591 */
2592 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2593 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2594 goto reset_computation;
2595
2596 /*
2597 * If a new request completion has occurred after last
2598 * dispatch, then, to approximate the rate at which requests
2599 * have been served by the device, it is more precise to
2600 * extend the observation interval to the last completion.
2601 */
2602 bfqd->delta_from_first =
2603 max_t(u64, bfqd->delta_from_first,
2604 bfqd->last_completion - bfqd->first_dispatch);
2605
2606 /*
2607 * Rate computed in sects/usec, and not sects/nsec, for
2608 * precision issues.
2609 */
2610 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2611 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2612
2613 /*
2614 * Peak rate not updated if:
2615 * - the percentage of sequential dispatches is below 3/4 of the
2616 * total, and rate is below the current estimated peak rate
2617 * - rate is unreasonably high (> 20M sectors/sec)
2618 */
2619 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2620 rate <= bfqd->peak_rate) ||
2621 rate > 20<<BFQ_RATE_SHIFT)
2622 goto reset_computation;
2623
2624 /*
2625 * We have to update the peak rate, at last! To this purpose,
2626 * we use a low-pass filter. We compute the smoothing constant
2627 * of the filter as a function of the 'weight' of the new
2628 * measured rate.
2629 *
2630 * As can be seen in next formulas, we define this weight as a
2631 * quantity proportional to how sequential the workload is,
2632 * and to how long the observation time interval is.
2633 *
2634 * The weight runs from 0 to 8. The maximum value of the
2635 * weight, 8, yields the minimum value for the smoothing
2636 * constant. At this minimum value for the smoothing constant,
2637 * the measured rate contributes for half of the next value of
2638 * the estimated peak rate.
2639 *
2640 * So, the first step is to compute the weight as a function
2641 * of how sequential the workload is. Note that the weight
2642 * cannot reach 9, because bfqd->sequential_samples cannot
2643 * become equal to bfqd->peak_rate_samples, which, in its
2644 * turn, holds true because bfqd->sequential_samples is not
2645 * incremented for the first sample.
2646 */
2647 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2648
2649 /*
2650 * Second step: further refine the weight as a function of the
2651 * duration of the observation interval.
2652 */
2653 weight = min_t(u32, 8,
2654 div_u64(weight * bfqd->delta_from_first,
2655 BFQ_RATE_REF_INTERVAL));
2656
2657 /*
2658 * Divisor ranging from 10, for minimum weight, to 2, for
2659 * maximum weight.
2660 */
2661 divisor = 10 - weight;
2662
2663 /*
2664 * Finally, update peak rate:
2665 *
2666 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2667 */
2668 bfqd->peak_rate *= divisor-1;
2669 bfqd->peak_rate /= divisor;
2670 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2671
2672 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002673
2674 /*
2675 * For a very slow device, bfqd->peak_rate can reach 0 (see
2676 * the minimum representable values reported in the comments
2677 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2678 * divisions by zero where bfqd->peak_rate is used as a
2679 * divisor.
2680 */
2681 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2682
Paolo Valente44e44a12017-04-12 18:23:12 +02002683 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002684
2685reset_computation:
2686 bfq_reset_rate_computation(bfqd, rq);
2687}
2688
2689/*
2690 * Update the read/write peak rate (the main quantity used for
2691 * auto-tuning, see update_thr_responsiveness_params()).
2692 *
2693 * It is not trivial to estimate the peak rate (correctly): because of
2694 * the presence of sw and hw queues between the scheduler and the
2695 * device components that finally serve I/O requests, it is hard to
2696 * say exactly when a given dispatched request is served inside the
2697 * device, and for how long. As a consequence, it is hard to know
2698 * precisely at what rate a given set of requests is actually served
2699 * by the device.
2700 *
2701 * On the opposite end, the dispatch time of any request is trivially
2702 * available, and, from this piece of information, the "dispatch rate"
2703 * of requests can be immediately computed. So, the idea in the next
2704 * function is to use what is known, namely request dispatch times
2705 * (plus, when useful, request completion times), to estimate what is
2706 * unknown, namely in-device request service rate.
2707 *
2708 * The main issue is that, because of the above facts, the rate at
2709 * which a certain set of requests is dispatched over a certain time
2710 * interval can vary greatly with respect to the rate at which the
2711 * same requests are then served. But, since the size of any
2712 * intermediate queue is limited, and the service scheme is lossless
2713 * (no request is silently dropped), the following obvious convergence
2714 * property holds: the number of requests dispatched MUST become
2715 * closer and closer to the number of requests completed as the
2716 * observation interval grows. This is the key property used in
2717 * the next function to estimate the peak service rate as a function
2718 * of the observed dispatch rate. The function assumes to be invoked
2719 * on every request dispatch.
2720 */
2721static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2722{
2723 u64 now_ns = ktime_get_ns();
2724
2725 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2726 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2727 bfqd->peak_rate_samples);
2728 bfq_reset_rate_computation(bfqd, rq);
2729 goto update_last_values; /* will add one sample */
2730 }
2731
2732 /*
2733 * Device idle for very long: the observation interval lasting
2734 * up to this dispatch cannot be a valid observation interval
2735 * for computing a new peak rate (similarly to the late-
2736 * completion event in bfq_completed_request()). Go to
2737 * update_rate_and_reset to have the following three steps
2738 * taken:
2739 * - close the observation interval at the last (previous)
2740 * request dispatch or completion
2741 * - compute rate, if possible, for that observation interval
2742 * - start a new observation interval with this dispatch
2743 */
2744 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2745 bfqd->rq_in_driver == 0)
2746 goto update_rate_and_reset;
2747
2748 /* Update sampling information */
2749 bfqd->peak_rate_samples++;
2750
2751 if ((bfqd->rq_in_driver > 0 ||
2752 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2753 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2754 bfqd->sequential_samples++;
2755
2756 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2757
2758 /* Reset max observed rq size every 32 dispatches */
2759 if (likely(bfqd->peak_rate_samples % 32))
2760 bfqd->last_rq_max_size =
2761 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2762 else
2763 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2764
2765 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2766
2767 /* Target observation interval not yet reached, go on sampling */
2768 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2769 goto update_last_values;
2770
2771update_rate_and_reset:
2772 bfq_update_rate_reset(bfqd, rq);
2773update_last_values:
2774 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2775 bfqd->last_dispatch = now_ns;
2776}
2777
2778/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002779 * Remove request from internal lists.
2780 */
2781static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2782{
2783 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2784
2785 /*
2786 * For consistency, the next instruction should have been
2787 * executed after removing the request from the queue and
2788 * dispatching it. We execute instead this instruction before
2789 * bfq_remove_request() (and hence introduce a temporary
2790 * inconsistency), for efficiency. In fact, should this
2791 * dispatch occur for a non in-service bfqq, this anticipated
2792 * increment prevents two counters related to bfqq->dispatched
2793 * from risking to be, first, uselessly decremented, and then
2794 * incremented again when the (new) value of bfqq->dispatched
2795 * happens to be taken into account.
2796 */
2797 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002798 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002799
2800 bfq_remove_request(q, rq);
2801}
2802
2803static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2804{
Arianna Avanzini36eca892017-04-12 18:23:16 +02002805 /*
2806 * If this bfqq is shared between multiple processes, check
2807 * to make sure that those processes are still issuing I/Os
2808 * within the mean seek distance. If not, it may be time to
2809 * break the queues apart again.
2810 */
2811 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2812 bfq_mark_bfqq_split_coop(bfqq);
2813
Paolo Valente44e44a12017-04-12 18:23:12 +02002814 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2815 if (bfqq->dispatched == 0)
2816 /*
2817 * Overloading budget_timeout field to store
2818 * the time at which the queue remains with no
2819 * backlog and no outstanding request; used by
2820 * the weight-raising mechanism.
2821 */
2822 bfqq->budget_timeout = jiffies;
2823
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002824 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002825 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02002826 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002827 /*
2828 * Resort priority tree of potential close cooperators.
2829 */
2830 bfq_pos_tree_add_move(bfqd, bfqq);
2831 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002832
2833 /*
2834 * All in-service entities must have been properly deactivated
2835 * or requeued before executing the next function, which
2836 * resets all in-service entites as no more in service.
2837 */
2838 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002839}
2840
2841/**
2842 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2843 * @bfqd: device data.
2844 * @bfqq: queue to update.
2845 * @reason: reason for expiration.
2846 *
2847 * Handle the feedback on @bfqq budget at queue expiration.
2848 * See the body for detailed comments.
2849 */
2850static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2851 struct bfq_queue *bfqq,
2852 enum bfqq_expiration reason)
2853{
2854 struct request *next_rq;
2855 int budget, min_budget;
2856
Paolo Valenteaee69d72017-04-19 08:29:02 -06002857 min_budget = bfq_min_budget(bfqd);
2858
Paolo Valente44e44a12017-04-12 18:23:12 +02002859 if (bfqq->wr_coeff == 1)
2860 budget = bfqq->max_budget;
2861 else /*
2862 * Use a constant, low budget for weight-raised queues,
2863 * to help achieve a low latency. Keep it slightly higher
2864 * than the minimum possible budget, to cause a little
2865 * bit fewer expirations.
2866 */
2867 budget = 2 * min_budget;
2868
Paolo Valenteaee69d72017-04-19 08:29:02 -06002869 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2870 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2871 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2872 budget, bfq_min_budget(bfqd));
2873 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2874 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2875
Paolo Valente44e44a12017-04-12 18:23:12 +02002876 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002877 switch (reason) {
2878 /*
2879 * Caveat: in all the following cases we trade latency
2880 * for throughput.
2881 */
2882 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02002883 /*
2884 * This is the only case where we may reduce
2885 * the budget: if there is no request of the
2886 * process still waiting for completion, then
2887 * we assume (tentatively) that the timer has
2888 * expired because the batch of requests of
2889 * the process could have been served with a
2890 * smaller budget. Hence, betting that
2891 * process will behave in the same way when it
2892 * becomes backlogged again, we reduce its
2893 * next budget. As long as we guess right,
2894 * this budget cut reduces the latency
2895 * experienced by the process.
2896 *
2897 * However, if there are still outstanding
2898 * requests, then the process may have not yet
2899 * issued its next request just because it is
2900 * still waiting for the completion of some of
2901 * the still outstanding ones. So in this
2902 * subcase we do not reduce its budget, on the
2903 * contrary we increase it to possibly boost
2904 * the throughput, as discussed in the
2905 * comments to the BUDGET_TIMEOUT case.
2906 */
2907 if (bfqq->dispatched > 0) /* still outstanding reqs */
2908 budget = min(budget * 2, bfqd->bfq_max_budget);
2909 else {
2910 if (budget > 5 * min_budget)
2911 budget -= 4 * min_budget;
2912 else
2913 budget = min_budget;
2914 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002915 break;
2916 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02002917 /*
2918 * We double the budget here because it gives
2919 * the chance to boost the throughput if this
2920 * is not a seeky process (and has bumped into
2921 * this timeout because of, e.g., ZBR).
2922 */
2923 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002924 break;
2925 case BFQQE_BUDGET_EXHAUSTED:
2926 /*
2927 * The process still has backlog, and did not
2928 * let either the budget timeout or the disk
2929 * idling timeout expire. Hence it is not
2930 * seeky, has a short thinktime and may be
2931 * happy with a higher budget too. So
2932 * definitely increase the budget of this good
2933 * candidate to boost the disk throughput.
2934 */
Paolo Valente54b60452017-04-12 18:23:09 +02002935 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002936 break;
2937 case BFQQE_NO_MORE_REQUESTS:
2938 /*
2939 * For queues that expire for this reason, it
2940 * is particularly important to keep the
2941 * budget close to the actual service they
2942 * need. Doing so reduces the timestamp
2943 * misalignment problem described in the
2944 * comments in the body of
2945 * __bfq_activate_entity. In fact, suppose
2946 * that a queue systematically expires for
2947 * BFQQE_NO_MORE_REQUESTS and presents a
2948 * new request in time to enjoy timestamp
2949 * back-shifting. The larger the budget of the
2950 * queue is with respect to the service the
2951 * queue actually requests in each service
2952 * slot, the more times the queue can be
2953 * reactivated with the same virtual finish
2954 * time. It follows that, even if this finish
2955 * time is pushed to the system virtual time
2956 * to reduce the consequent timestamp
2957 * misalignment, the queue unjustly enjoys for
2958 * many re-activations a lower finish time
2959 * than all newly activated queues.
2960 *
2961 * The service needed by bfqq is measured
2962 * quite precisely by bfqq->entity.service.
2963 * Since bfqq does not enjoy device idling,
2964 * bfqq->entity.service is equal to the number
2965 * of sectors that the process associated with
2966 * bfqq requested to read/write before waiting
2967 * for request completions, or blocking for
2968 * other reasons.
2969 */
2970 budget = max_t(int, bfqq->entity.service, min_budget);
2971 break;
2972 default:
2973 return;
2974 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002975 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002976 /*
2977 * Async queues get always the maximum possible
2978 * budget, as for them we do not care about latency
2979 * (in addition, their ability to dispatch is limited
2980 * by the charging factor).
2981 */
2982 budget = bfqd->bfq_max_budget;
2983 }
2984
2985 bfqq->max_budget = budget;
2986
2987 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2988 !bfqd->bfq_user_max_budget)
2989 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2990
2991 /*
2992 * If there is still backlog, then assign a new budget, making
2993 * sure that it is large enough for the next request. Since
2994 * the finish time of bfqq must be kept in sync with the
2995 * budget, be sure to call __bfq_bfqq_expire() *after* this
2996 * update.
2997 *
2998 * If there is no backlog, then no need to update the budget;
2999 * it will be updated on the arrival of a new request.
3000 */
3001 next_rq = bfqq->next_rq;
3002 if (next_rq)
3003 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3004 bfq_serv_to_charge(next_rq, bfqq));
3005
3006 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3007 next_rq ? blk_rq_sectors(next_rq) : 0,
3008 bfqq->entity.budget);
3009}
3010
Paolo Valenteaee69d72017-04-19 08:29:02 -06003011/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003012 * Return true if the process associated with bfqq is "slow". The slow
3013 * flag is used, in addition to the budget timeout, to reduce the
3014 * amount of service provided to seeky processes, and thus reduce
3015 * their chances to lower the throughput. More details in the comments
3016 * on the function bfq_bfqq_expire().
3017 *
3018 * An important observation is in order: as discussed in the comments
3019 * on the function bfq_update_peak_rate(), with devices with internal
3020 * queues, it is hard if ever possible to know when and for how long
3021 * an I/O request is processed by the device (apart from the trivial
3022 * I/O pattern where a new request is dispatched only after the
3023 * previous one has been completed). This makes it hard to evaluate
3024 * the real rate at which the I/O requests of each bfq_queue are
3025 * served. In fact, for an I/O scheduler like BFQ, serving a
3026 * bfq_queue means just dispatching its requests during its service
3027 * slot (i.e., until the budget of the queue is exhausted, or the
3028 * queue remains idle, or, finally, a timeout fires). But, during the
3029 * service slot of a bfq_queue, around 100 ms at most, the device may
3030 * be even still processing requests of bfq_queues served in previous
3031 * service slots. On the opposite end, the requests of the in-service
3032 * bfq_queue may be completed after the service slot of the queue
3033 * finishes.
3034 *
3035 * Anyway, unless more sophisticated solutions are used
3036 * (where possible), the sum of the sizes of the requests dispatched
3037 * during the service slot of a bfq_queue is probably the only
3038 * approximation available for the service received by the bfq_queue
3039 * during its service slot. And this sum is the quantity used in this
3040 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003041 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003042static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3043 bool compensate, enum bfqq_expiration reason,
3044 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003045{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003046 ktime_t delta_ktime;
3047 u32 delta_usecs;
3048 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003049
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003050 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003051 return false;
3052
3053 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003054 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003055 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003056 delta_ktime = ktime_get();
3057 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3058 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003059
3060 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003061 if (delta_usecs < 1000) {
3062 if (blk_queue_nonrot(bfqd->queue))
3063 /*
3064 * give same worst-case guarantees as idling
3065 * for seeky
3066 */
3067 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3068 else /* charge at least one seek */
3069 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003070
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003071 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003072 }
3073
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003074 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003075
3076 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003077 * Use only long (> 20ms) intervals to filter out excessive
3078 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003079 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003080 if (delta_usecs > 20000) {
3081 /*
3082 * Caveat for rotational devices: processes doing I/O
3083 * in the slower disk zones tend to be slow(er) even
3084 * if not seeky. In this respect, the estimated peak
3085 * rate is likely to be an average over the disk
3086 * surface. Accordingly, to not be too harsh with
3087 * unlucky processes, a process is deemed slow only if
3088 * its rate has been lower than half of the estimated
3089 * peak rate.
3090 */
3091 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3092 }
3093
3094 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3095
3096 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003097}
3098
3099/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003100 * To be deemed as soft real-time, an application must meet two
3101 * requirements. First, the application must not require an average
3102 * bandwidth higher than the approximate bandwidth required to playback or
3103 * record a compressed high-definition video.
3104 * The next function is invoked on the completion of the last request of a
3105 * batch, to compute the next-start time instant, soft_rt_next_start, such
3106 * that, if the next request of the application does not arrive before
3107 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3108 *
3109 * The second requirement is that the request pattern of the application is
3110 * isochronous, i.e., that, after issuing a request or a batch of requests,
3111 * the application stops issuing new requests until all its pending requests
3112 * have been completed. After that, the application may issue a new batch,
3113 * and so on.
3114 * For this reason the next function is invoked to compute
3115 * soft_rt_next_start only for applications that meet this requirement,
3116 * whereas soft_rt_next_start is set to infinity for applications that do
3117 * not.
3118 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003119 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3120 * happen to meet, occasionally or systematically, both the above
3121 * bandwidth and isochrony requirements. This may happen at least in
3122 * the following circumstances. First, if the CPU load is high. The
3123 * application may stop issuing requests while the CPUs are busy
3124 * serving other processes, then restart, then stop again for a while,
3125 * and so on. The other circumstances are related to the storage
3126 * device: the storage device is highly loaded or reaches a low-enough
3127 * throughput with the I/O of the application (e.g., because the I/O
3128 * is random and/or the device is slow). In all these cases, the
3129 * I/O of the application may be simply slowed down enough to meet
3130 * the bandwidth and isochrony requirements. To reduce the probability
3131 * that greedy applications are deemed as soft real-time in these
3132 * corner cases, a further rule is used in the computation of
3133 * soft_rt_next_start: the return value of this function is forced to
3134 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003135 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003136 * (a) Current time plus: (1) the maximum time for which the arrival
3137 * of a request is waited for when a sync queue becomes idle,
3138 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3139 * postpone for a moment the reason for adding a few extra
3140 * jiffies; we get back to it after next item (b). Lower-bounding
3141 * the return value of this function with the current time plus
3142 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3143 * because the latter issue their next request as soon as possible
3144 * after the last one has been completed. In contrast, a soft
3145 * real-time application spends some time processing data, after a
3146 * batch of its requests has been completed.
3147 *
3148 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3149 * above, greedy applications may happen to meet both the
3150 * bandwidth and isochrony requirements under heavy CPU or
3151 * storage-device load. In more detail, in these scenarios, these
3152 * applications happen, only for limited time periods, to do I/O
3153 * slowly enough to meet all the requirements described so far,
3154 * including the filtering in above item (a). These slow-speed
3155 * time intervals are usually interspersed between other time
3156 * intervals during which these applications do I/O at a very high
3157 * speed. Fortunately, exactly because of the high speed of the
3158 * I/O in the high-speed intervals, the values returned by this
3159 * function happen to be so high, near the end of any such
3160 * high-speed interval, to be likely to fall *after* the end of
3161 * the low-speed time interval that follows. These high values are
3162 * stored in bfqq->soft_rt_next_start after each invocation of
3163 * this function. As a consequence, if the last value of
3164 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3165 * next value that this function may return, then, from the very
3166 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3167 * likely to be constantly kept so high that any I/O request
3168 * issued during the low-speed interval is considered as arriving
3169 * to soon for the application to be deemed as soft
3170 * real-time. Then, in the high-speed interval that follows, the
3171 * application will not be deemed as soft real-time, just because
3172 * it will do I/O at a high speed. And so on.
3173 *
3174 * Getting back to the filtering in item (a), in the following two
3175 * cases this filtering might be easily passed by a greedy
3176 * application, if the reference quantity was just
3177 * bfqd->bfq_slice_idle:
3178 * 1) HZ is so low that the duration of a jiffy is comparable to or
3179 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3180 * devices with HZ=100. The time granularity may be so coarse
3181 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3182 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003183 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3184 * for a while, then suddenly 'jump' by several units to recover the lost
3185 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003186 * To address this issue, in the filtering in (a) we do not use as a
3187 * reference time interval just bfqd->bfq_slice_idle, but
3188 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3189 * minimum number of jiffies for which the filter seems to be quite
3190 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003191 */
3192static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3193 struct bfq_queue *bfqq)
3194{
Paolo Valentea34b0242017-12-15 07:23:12 +01003195 return max3(bfqq->soft_rt_next_start,
3196 bfqq->last_idle_bklogged +
3197 HZ * bfqq->service_from_backlogged /
3198 bfqd->bfq_wr_max_softrt_rate,
3199 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003200}
3201
Paolo Valented0edc242018-09-14 16:23:08 +02003202static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3203{
3204 return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3205 blk_queue_nonrot(bfqq->bfqd->queue) &&
3206 bfqq->bfqd->hw_tag;
3207}
3208
Paolo Valenteaee69d72017-04-19 08:29:02 -06003209/**
3210 * bfq_bfqq_expire - expire a queue.
3211 * @bfqd: device owning the queue.
3212 * @bfqq: the queue to expire.
3213 * @compensate: if true, compensate for the time spent idling.
3214 * @reason: the reason causing the expiration.
3215 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003216 * If the process associated with bfqq does slow I/O (e.g., because it
3217 * issues random requests), we charge bfqq with the time it has been
3218 * in service instead of the service it has received (see
3219 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3220 * a consequence, bfqq will typically get higher timestamps upon
3221 * reactivation, and hence it will be rescheduled as if it had
3222 * received more service than what it has actually received. In the
3223 * end, bfqq receives less service in proportion to how slowly its
3224 * associated process consumes its budgets (and hence how seriously it
3225 * tends to lower the throughput). In addition, this time-charging
3226 * strategy guarantees time fairness among slow processes. In
3227 * contrast, if the process associated with bfqq is not slow, we
3228 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003229 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003230 * Charging time to the first type of queues and the exact service to
3231 * the other has the effect of using the WF2Q+ policy to schedule the
3232 * former on a timeslice basis, without violating service domain
3233 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003234 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003235void bfq_bfqq_expire(struct bfq_data *bfqd,
3236 struct bfq_queue *bfqq,
3237 bool compensate,
3238 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003239{
3240 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003241 unsigned long delta = 0;
3242 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003243 int ref;
3244
3245 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003246 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003247 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003248 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003249
3250 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003251 * As above explained, charge slow (typically seeky) and
3252 * timed-out queues with the time and not the service
3253 * received, to favor sequential workloads.
3254 *
3255 * Processes doing I/O in the slower disk zones will tend to
3256 * be slow(er) even if not seeky. Therefore, since the
3257 * estimated peak rate is actually an average over the disk
3258 * surface, these processes may timeout just for bad luck. To
3259 * avoid punishing them, do not charge time to processes that
3260 * succeeded in consuming at least 2/3 of their budget. This
3261 * allows BFQ to preserve enough elasticity to still perform
3262 * bandwidth, and not time, distribution with little unlucky
3263 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003264 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003265 if (bfqq->wr_coeff == 1 &&
3266 (slow ||
3267 (reason == BFQQE_BUDGET_TIMEOUT &&
3268 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003269 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003270
3271 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003272 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003273 bfq_clear_bfqq_IO_bound(bfqq);
3274
Paolo Valente44e44a12017-04-12 18:23:12 +02003275 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3276 bfqq->last_wr_start_finish = jiffies;
3277
Paolo Valente77b7dce2017-04-12 18:23:13 +02003278 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3279 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3280 /*
3281 * If we get here, and there are no outstanding
3282 * requests, then the request pattern is isochronous
3283 * (see the comments on the function
3284 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003285 * soft_rt_next_start. And we do it, unless bfqq is in
3286 * interactive weight raising. We do not do it in the
3287 * latter subcase, for the following reason. bfqq may
3288 * be conveying the I/O needed to load a soft
3289 * real-time application. Such an application will
3290 * actually exhibit a soft real-time I/O pattern after
3291 * it finally starts doing its job. But, if
3292 * soft_rt_next_start is computed here for an
3293 * interactive bfqq, and bfqq had received a lot of
3294 * service before remaining with no outstanding
3295 * request (likely to happen on a fast device), then
3296 * soft_rt_next_start would be assigned such a high
3297 * value that, for a very long time, bfqq would be
3298 * prevented from being possibly considered as soft
3299 * real time.
3300 *
3301 * If, instead, the queue still has outstanding
3302 * requests, then we have to wait for the completion
3303 * of all the outstanding requests to discover whether
3304 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003305 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003306 if (bfqq->dispatched == 0 &&
3307 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003308 bfqq->soft_rt_next_start =
3309 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003310 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003311 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003312 * Schedule an update of soft_rt_next_start to when
3313 * the task may be discovered to be isochronous.
3314 */
3315 bfq_mark_bfqq_softrt_update(bfqq);
3316 }
3317 }
3318
Paolo Valenteaee69d72017-04-19 08:29:02 -06003319 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003320 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3321 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003322
3323 /*
3324 * Increase, decrease or leave budget unchanged according to
3325 * reason.
3326 */
3327 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3328 ref = bfqq->ref;
3329 __bfq_bfqq_expire(bfqd, bfqq);
3330
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003331 if (ref == 1) /* bfqq is gone, no more actions on it */
3332 return;
3333
Paolo Valented0edc242018-09-14 16:23:08 +02003334 bfqq->injected_service = 0;
3335
Paolo Valenteaee69d72017-04-19 08:29:02 -06003336 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003337 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003338 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003339 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003340 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003341 /*
3342 * Not setting service to 0, because, if the next rq
3343 * arrives in time, the queue will go on receiving
3344 * service with this same budget (as if it never expired)
3345 */
3346 } else
3347 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003348
3349 /*
3350 * Reset the received-service counter for every parent entity.
3351 * Differently from what happens with bfqq->entity.service,
3352 * the resetting of this counter never needs to be postponed
3353 * for parent entities. In fact, in case bfqq may have a
3354 * chance to go on being served using the last, partially
3355 * consumed budget, bfqq->entity.service needs to be kept,
3356 * because if bfqq then actually goes on being served using
3357 * the same budget, the last value of bfqq->entity.service is
3358 * needed to properly decrement bfqq->entity.budget by the
3359 * portion already consumed. In contrast, it is not necessary
3360 * to keep entity->service for parent entities too, because
3361 * the bubble up of the new value of bfqq->entity.budget will
3362 * make sure that the budgets of parent entities are correct,
3363 * even in case bfqq and thus parent entities go on receiving
3364 * service with the same budget.
3365 */
3366 entity = entity->parent;
3367 for_each_entity(entity)
3368 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003369}
3370
3371/*
3372 * Budget timeout is not implemented through a dedicated timer, but
3373 * just checked on request arrivals and completions, as well as on
3374 * idle timer expirations.
3375 */
3376static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3377{
Paolo Valente44e44a12017-04-12 18:23:12 +02003378 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003379}
3380
3381/*
3382 * If we expire a queue that is actively waiting (i.e., with the
3383 * device idled) for the arrival of a new request, then we may incur
3384 * the timestamp misalignment problem described in the body of the
3385 * function __bfq_activate_entity. Hence we return true only if this
3386 * condition does not hold, or if the queue is slow enough to deserve
3387 * only to be kicked off for preserving a high throughput.
3388 */
3389static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3390{
3391 bfq_log_bfqq(bfqq->bfqd, bfqq,
3392 "may_budget_timeout: wait_request %d left %d timeout %d",
3393 bfq_bfqq_wait_request(bfqq),
3394 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3395 bfq_bfqq_budget_timeout(bfqq));
3396
3397 return (!bfq_bfqq_wait_request(bfqq) ||
3398 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3399 &&
3400 bfq_bfqq_budget_timeout(bfqq);
3401}
3402
3403/*
3404 * For a queue that becomes empty, device idling is allowed only if
Paolo Valente44e44a12017-04-12 18:23:12 +02003405 * this function returns true for the queue. As a consequence, since
3406 * device idling plays a critical role in both throughput boosting and
3407 * service guarantees, the return value of this function plays a
3408 * critical role in both these aspects as well.
3409 *
3410 * In a nutshell, this function returns true only if idling is
3411 * beneficial for throughput or, even if detrimental for throughput,
3412 * idling is however necessary to preserve service guarantees (low
3413 * latency, desired throughput distribution, ...). In particular, on
3414 * NCQ-capable devices, this function tries to return false, so as to
3415 * help keep the drives' internal queues full, whenever this helps the
3416 * device boost the throughput without causing any service-guarantee
3417 * issue.
3418 *
3419 * In more detail, the return value of this function is obtained by,
3420 * first, computing a number of boolean variables that take into
3421 * account throughput and service-guarantee issues, and, then,
3422 * combining these variables in a logical expression. Most of the
3423 * issues taken into account are not trivial. We discuss these issues
3424 * individually while introducing the variables.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003425 */
Paolo Valente277a4a92018-06-25 21:55:37 +02003426static bool bfq_better_to_idle(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003427{
3428 struct bfq_data *bfqd = bfqq->bfqd;
Paolo Valenteedaf9422017-08-04 07:35:11 +02003429 bool rot_without_queueing =
3430 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3431 bfqq_sequential_and_IO_bound,
3432 idling_boosts_thr, idling_boosts_thr_without_issues,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003433 idling_needed_for_service_guarantees,
Paolo Valentecfd69712017-04-12 18:23:15 +02003434 asymmetric_scenario;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003435
3436 if (bfqd->strict_guarantees)
3437 return true;
3438
3439 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003440 * Idling is performed only if slice_idle > 0. In addition, we
3441 * do not idle if
3442 * (a) bfqq is async
3443 * (b) bfqq is in the idle io prio class: in this case we do
3444 * not idle because we want to minimize the bandwidth that
3445 * queues in this class can steal to higher-priority queues
3446 */
3447 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3448 bfq_class_idle(bfqq))
3449 return false;
3450
Paolo Valenteedaf9422017-08-04 07:35:11 +02003451 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3452 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3453
Paolo Valented5be3fe2017-08-04 07:35:10 +02003454 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003455 * The next variable takes into account the cases where idling
3456 * boosts the throughput.
3457 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003458 * The value of the variable is computed considering, first, that
3459 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003460 * (a) the device is not NCQ-capable and rotational, or
3461 * (b) regardless of the presence of NCQ, the device is rotational and
3462 * the request pattern for bfqq is I/O-bound and sequential, or
3463 * (c) regardless of whether it is rotational, the device is
3464 * not NCQ-capable and the request pattern for bfqq is
3465 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003466 *
3467 * Secondly, and in contrast to the above item (b), idling an
3468 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003469 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003470 * the throughput in proportion to how fast the device
3471 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003472 * above conditions (a), (b) or (c) is true, and, in
3473 * particular, happens to be false if bfqd is an NCQ-capable
3474 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003475 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003476 idling_boosts_thr = rot_without_queueing ||
3477 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3478 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003479
3480 /*
Paolo Valentecfd69712017-04-12 18:23:15 +02003481 * The value of the next variable,
3482 * idling_boosts_thr_without_issues, is equal to that of
3483 * idling_boosts_thr, unless a special case holds. In this
3484 * special case, described below, idling may cause problems to
3485 * weight-raised queues.
3486 *
3487 * When the request pool is saturated (e.g., in the presence
3488 * of write hogs), if the processes associated with
3489 * non-weight-raised queues ask for requests at a lower rate,
3490 * then processes associated with weight-raised queues have a
3491 * higher probability to get a request from the pool
3492 * immediately (or at least soon) when they need one. Thus
3493 * they have a higher probability to actually get a fraction
3494 * of the device throughput proportional to their high
3495 * weight. This is especially true with NCQ-capable drives,
3496 * which enqueue several requests in advance, and further
3497 * reorder internally-queued requests.
3498 *
3499 * For this reason, we force to false the value of
3500 * idling_boosts_thr_without_issues if there are weight-raised
3501 * busy queues. In this case, and if bfqq is not weight-raised,
3502 * this guarantees that the device is not idled for bfqq (if,
3503 * instead, bfqq is weight-raised, then idling will be
3504 * guaranteed by another variable, see below). Combined with
3505 * the timestamping rules of BFQ (see [1] for details), this
3506 * behavior causes bfqq, and hence any sync non-weight-raised
3507 * queue, to get a lower number of requests served, and thus
3508 * to ask for a lower number of requests from the request
3509 * pool, before the busy weight-raised queues get served
3510 * again. This often mitigates starvation problems in the
3511 * presence of heavy write workloads and NCQ, thereby
3512 * guaranteeing a higher application and system responsiveness
3513 * in these hostile scenarios.
3514 */
3515 idling_boosts_thr_without_issues = idling_boosts_thr &&
3516 bfqd->wr_busy_queues == 0;
3517
3518 /*
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003519 * There is then a case where idling must be performed not
3520 * for throughput concerns, but to preserve service
3521 * guarantees.
3522 *
3523 * To introduce this case, we can note that allowing the drive
3524 * to enqueue more than one request at a time, and hence
Paolo Valente44e44a12017-04-12 18:23:12 +02003525 * delegating de facto final scheduling decisions to the
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003526 * drive's internal scheduler, entails loss of control on the
Paolo Valente44e44a12017-04-12 18:23:12 +02003527 * actual request service order. In particular, the critical
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003528 * situation is when requests from different processes happen
Paolo Valente44e44a12017-04-12 18:23:12 +02003529 * to be present, at the same time, in the internal queue(s)
3530 * of the drive. In such a situation, the drive, by deciding
3531 * the service order of the internally-queued requests, does
3532 * determine also the actual throughput distribution among
3533 * these processes. But the drive typically has no notion or
3534 * concern about per-process throughput distribution, and
3535 * makes its decisions only on a per-request basis. Therefore,
3536 * the service distribution enforced by the drive's internal
3537 * scheduler is likely to coincide with the desired
3538 * device-throughput distribution only in a completely
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003539 * symmetric scenario where:
3540 * (i) each of these processes must get the same throughput as
3541 * the others;
Federico Motta2d29c9f2018-10-12 11:55:57 +02003542 * (ii) the I/O of each process has the same properties, in
3543 * terms of locality (sequential or random), direction
3544 * (reads or writes), request sizes, greediness
3545 * (from I/O-bound to sporadic), and so on.
3546 * In fact, in such a scenario, the drive tends to treat
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003547 * the requests of each of these processes in about the same
3548 * way as the requests of the others, and thus to provide
3549 * each of these processes with about the same throughput
3550 * (which is exactly the desired throughput distribution). In
3551 * contrast, in any asymmetric scenario, device idling is
3552 * certainly needed to guarantee that bfqq receives its
3553 * assigned fraction of the device throughput (see [1] for
3554 * details).
Federico Motta2d29c9f2018-10-12 11:55:57 +02003555 * The problem is that idling may significantly reduce
3556 * throughput with certain combinations of types of I/O and
3557 * devices. An important example is sync random I/O, on flash
3558 * storage with command queueing. So, unless bfqq falls in the
3559 * above cases where idling also boosts throughput, it would
3560 * be important to check conditions (i) and (ii) accurately,
3561 * so as to avoid idling when not strictly needed for service
3562 * guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003563 *
Federico Motta2d29c9f2018-10-12 11:55:57 +02003564 * Unfortunately, it is extremely difficult to thoroughly
3565 * check condition (ii). And, in case there are active groups,
3566 * it becomes very difficult to check condition (i) too. In
3567 * fact, if there are active groups, then, for condition (i)
3568 * to become false, it is enough that an active group contains
3569 * more active processes or sub-groups than some other active
Paolo Valenteba7aeae2018-12-06 19:18:18 +01003570 * group. More precisely, for condition (i) to hold because of
3571 * such a group, it is not even necessary that the group is
3572 * (still) active: it is sufficient that, even if the group
3573 * has become inactive, some of its descendant processes still
3574 * have some request already dispatched but still waiting for
3575 * completion. In fact, requests have still to be guaranteed
3576 * their share of the throughput even after being
3577 * dispatched. In this respect, it is easy to show that, if a
3578 * group frequently becomes inactive while still having
3579 * in-flight requests, and if, when this happens, the group is
3580 * not considered in the calculation of whether the scenario
3581 * is asymmetric, then the group may fail to be guaranteed its
3582 * fair share of the throughput (basically because idling may
3583 * not be performed for the descendant processes of the group,
3584 * but it had to be). We address this issue with the
3585 * following bi-modal behavior, implemented in the function
Federico Motta2d29c9f2018-10-12 11:55:57 +02003586 * bfq_symmetric_scenario().
3587 *
Paolo Valenteba7aeae2018-12-06 19:18:18 +01003588 * If there are groups with requests waiting for completion
3589 * (as commented above, some of these groups may even be
3590 * already inactive), then the scenario is tagged as
Federico Motta2d29c9f2018-10-12 11:55:57 +02003591 * asymmetric, conservatively, without checking any of the
3592 * conditions (i) and (ii). So the device is idled for bfqq.
3593 * This behavior matches also the fact that groups are created
Paolo Valenteba7aeae2018-12-06 19:18:18 +01003594 * exactly if controlling I/O is a primary concern (to
3595 * preserve bandwidth and latency guarantees).
Federico Motta2d29c9f2018-10-12 11:55:57 +02003596 *
Paolo Valenteba7aeae2018-12-06 19:18:18 +01003597 * On the opposite end, if there are no groups with requests
3598 * waiting for completion, then only condition (i) is actually
3599 * controlled, i.e., provided that condition (i) holds, idling
3600 * is not performed, regardless of whether condition (ii)
3601 * holds. In other words, only if condition (i) does not hold,
3602 * then idling is allowed, and the device tends to be
3603 * prevented from queueing many requests, possibly of several
3604 * processes. Since there are no groups with requests waiting
3605 * for completion, then, to control condition (i) it is enough
3606 * to check just whether all the queues with requests waiting
3607 * for completion also have the same weight.
Federico Motta2d29c9f2018-10-12 11:55:57 +02003608 *
3609 * Not checking condition (ii) evidently exposes bfqq to the
3610 * risk of getting less throughput than its fair share.
3611 * However, for queues with the same weight, a further
3612 * mechanism, preemption, mitigates or even eliminates this
3613 * problem. And it does so without consequences on overall
3614 * throughput. This mechanism and its benefits are explained
3615 * in the next three paragraphs.
Paolo Valente44e44a12017-04-12 18:23:12 +02003616 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003617 * Even if a queue, say Q, is expired when it remains idle, Q
3618 * can still preempt the new in-service queue if the next
3619 * request of Q arrives soon (see the comments on
3620 * bfq_bfqq_update_budg_for_activation). If all queues and
3621 * groups have the same weight, this form of preemption,
3622 * combined with the hole-recovery heuristic described in the
3623 * comments on function bfq_bfqq_update_budg_for_activation,
3624 * are enough to preserve a correct bandwidth distribution in
3625 * the mid term, even without idling. In fact, even if not
3626 * idling allows the internal queues of the device to contain
3627 * many requests, and thus to reorder requests, we can rather
3628 * safely assume that the internal scheduler still preserves a
Federico Motta2d29c9f2018-10-12 11:55:57 +02003629 * minimum of mid-term fairness.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003630 *
3631 * More precisely, this preemption-based, idleless approach
3632 * provides fairness in terms of IOPS, and not sectors per
3633 * second. This can be seen with a simple example. Suppose
3634 * that there are two queues with the same weight, but that
3635 * the first queue receives requests of 8 sectors, while the
3636 * second queue receives requests of 1024 sectors. In
3637 * addition, suppose that each of the two queues contains at
3638 * most one request at a time, which implies that each queue
3639 * always remains idle after it is served. Finally, after
3640 * remaining idle, each queue receives very quickly a new
3641 * request. It follows that the two queues are served
3642 * alternatively, preempting each other if needed. This
3643 * implies that, although both queues have the same weight,
3644 * the queue with large requests receives a service that is
3645 * 1024/8 times as high as the service received by the other
3646 * queue.
3647 *
Federico Motta2d29c9f2018-10-12 11:55:57 +02003648 * The motivation for using preemption instead of idling (for
3649 * queues with the same weight) is that, by not idling,
3650 * service guarantees are preserved (completely or at least in
3651 * part) without minimally sacrificing throughput. And, if
3652 * there is no active group, then the primary expectation for
3653 * this device is probably a high throughput.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003654 *
Federico Motta2d29c9f2018-10-12 11:55:57 +02003655 * We are now left only with explaining the additional
3656 * compound condition that is checked below for deciding
3657 * whether the scenario is asymmetric. To explain this
3658 * compound condition, we need to add that the function
3659 * bfq_symmetric_scenario checks the weights of only
3660 * non-weight-raised queues, for efficiency reasons (see
3661 * comments on bfq_weights_tree_add()). Then the fact that
3662 * bfqq is weight-raised is checked explicitly here. More
3663 * precisely, the compound condition below takes into account
3664 * also the fact that, even if bfqq is being weight-raised,
Paolo Valenteba7aeae2018-12-06 19:18:18 +01003665 * the scenario is still symmetric if all queues with requests
3666 * waiting for completion happen to be
3667 * weight-raised. Actually, we should be even more precise
3668 * here, and differentiate between interactive weight raising
3669 * and soft real-time weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003670 *
3671 * As a side note, it is worth considering that the above
3672 * device-idling countermeasures may however fail in the
3673 * following unlucky scenario: if idling is (correctly)
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003674 * disabled in a time period during which all symmetry
3675 * sub-conditions hold, and hence the device is allowed to
Paolo Valente44e44a12017-04-12 18:23:12 +02003676 * enqueue many requests, but at some later point in time some
3677 * sub-condition stops to hold, then it may become impossible
3678 * to let requests be served in the desired order until all
3679 * the requests already queued in the device have been served.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003680 */
Paolo Valentec8765de2018-09-14 16:23:09 +02003681 asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3682 bfqd->wr_busy_queues < bfqd->busy_queues) ||
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003683 !bfq_symmetric_scenario(bfqd);
Paolo Valente44e44a12017-04-12 18:23:12 +02003684
3685 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003686 * Finally, there is a case where maximizing throughput is the
3687 * best choice even if it may cause unfairness toward
3688 * bfqq. Such a case is when bfqq became active in a burst of
3689 * queue activations. Queues that became active during a large
3690 * burst benefit only from throughput, as discussed in the
3691 * comments on bfq_handle_burst. Thus, if bfqq became active
3692 * in a burst and not idling the device maximizes throughput,
3693 * then the device must no be idled, because not idling the
3694 * device provides bfqq and all other queues in the burst with
3695 * maximum benefit. Combining this and the above case, we can
3696 * now establish when idling is actually needed to preserve
3697 * service guarantees.
3698 */
3699 idling_needed_for_service_guarantees =
3700 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3701
3702 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003703 * We have now all the components we need to compute the
3704 * return value of the function, which is true only if idling
3705 * either boosts the throughput (without issues), or is
3706 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003707 */
Paolo Valented5be3fe2017-08-04 07:35:10 +02003708 return idling_boosts_thr_without_issues ||
3709 idling_needed_for_service_guarantees;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003710}
3711
3712/*
Paolo Valente277a4a92018-06-25 21:55:37 +02003713 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06003714 * returns true, then:
3715 * 1) the queue must remain in service and cannot be expired, and
3716 * 2) the device must be idled to wait for the possible arrival of a new
3717 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02003718 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06003719 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02003720 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06003721 * returns true.
3722 */
3723static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3724{
Paolo Valente277a4a92018-06-25 21:55:37 +02003725 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003726}
3727
Paolo Valented0edc242018-09-14 16:23:08 +02003728static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3729{
3730 struct bfq_queue *bfqq;
3731
3732 /*
3733 * A linear search; but, with a high probability, very few
3734 * steps are needed to find a candidate queue, i.e., a queue
3735 * with enough budget left for its next request. In fact:
3736 * - BFQ dynamically updates the budget of every queue so as
3737 * to accommodate the expected backlog of the queue;
3738 * - if a queue gets all its requests dispatched as injected
3739 * service, then the queue is removed from the active list
3740 * (and re-added only if it gets new requests, but with
3741 * enough budget for its new backlog).
3742 */
3743 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3744 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3745 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3746 bfq_bfqq_budget_left(bfqq))
3747 return bfqq;
3748
3749 return NULL;
3750}
3751
Paolo Valenteaee69d72017-04-19 08:29:02 -06003752/*
3753 * Select a queue for service. If we have a current queue in service,
3754 * check whether to continue servicing it, or retrieve and set a new one.
3755 */
3756static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3757{
3758 struct bfq_queue *bfqq;
3759 struct request *next_rq;
3760 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3761
3762 bfqq = bfqd->in_service_queue;
3763 if (!bfqq)
3764 goto new_queue;
3765
3766 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3767
Paolo Valente4420b092018-06-25 21:55:35 +02003768 /*
3769 * Do not expire bfqq for budget timeout if bfqq may be about
3770 * to enjoy device idling. The reason why, in this case, we
3771 * prevent bfqq from expiring is the same as in the comments
3772 * on the case where bfq_bfqq_must_idle() returns true, in
3773 * bfq_completed_request().
3774 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003775 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003776 !bfq_bfqq_must_idle(bfqq))
3777 goto expire;
3778
3779check_queue:
3780 /*
3781 * This loop is rarely executed more than once. Even when it
3782 * happens, it is much more convenient to re-execute this loop
3783 * than to return NULL and trigger a new dispatch to get a
3784 * request served.
3785 */
3786 next_rq = bfqq->next_rq;
3787 /*
3788 * If bfqq has requests queued and it has enough budget left to
3789 * serve them, keep the queue, otherwise expire it.
3790 */
3791 if (next_rq) {
3792 if (bfq_serv_to_charge(next_rq, bfqq) >
3793 bfq_bfqq_budget_left(bfqq)) {
3794 /*
3795 * Expire the queue for budget exhaustion,
3796 * which makes sure that the next budget is
3797 * enough to serve the next request, even if
3798 * it comes from the fifo expired path.
3799 */
3800 reason = BFQQE_BUDGET_EXHAUSTED;
3801 goto expire;
3802 } else {
3803 /*
3804 * The idle timer may be pending because we may
3805 * not disable disk idling even when a new request
3806 * arrives.
3807 */
3808 if (bfq_bfqq_wait_request(bfqq)) {
3809 /*
3810 * If we get here: 1) at least a new request
3811 * has arrived but we have not disabled the
3812 * timer because the request was too small,
3813 * 2) then the block layer has unplugged
3814 * the device, causing the dispatch to be
3815 * invoked.
3816 *
3817 * Since the device is unplugged, now the
3818 * requests are probably large enough to
3819 * provide a reasonable throughput.
3820 * So we disable idling.
3821 */
3822 bfq_clear_bfqq_wait_request(bfqq);
3823 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3824 }
3825 goto keep_queue;
3826 }
3827 }
3828
3829 /*
3830 * No requests pending. However, if the in-service queue is idling
3831 * for a new request, or has requests waiting for a completion and
3832 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02003833 *
3834 * Yet, to boost throughput, inject service from other queues if
3835 * possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003836 */
3837 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02003838 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valented0edc242018-09-14 16:23:08 +02003839 if (bfq_bfqq_injectable(bfqq) &&
3840 bfqq->injected_service * bfqq->inject_coeff <
3841 bfqq->entity.service * 10)
3842 bfqq = bfq_choose_bfqq_for_injection(bfqd);
3843 else
3844 bfqq = NULL;
3845
Paolo Valenteaee69d72017-04-19 08:29:02 -06003846 goto keep_queue;
3847 }
3848
3849 reason = BFQQE_NO_MORE_REQUESTS;
3850expire:
3851 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3852new_queue:
3853 bfqq = bfq_set_in_service_queue(bfqd);
3854 if (bfqq) {
3855 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3856 goto check_queue;
3857 }
3858keep_queue:
3859 if (bfqq)
3860 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3861 else
3862 bfq_log(bfqd, "select_queue: no queue returned");
3863
3864 return bfqq;
3865}
3866
Paolo Valente44e44a12017-04-12 18:23:12 +02003867static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3868{
3869 struct bfq_entity *entity = &bfqq->entity;
3870
3871 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3872 bfq_log_bfqq(bfqd, bfqq,
3873 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3874 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3875 jiffies_to_msecs(bfqq->wr_cur_max_time),
3876 bfqq->wr_coeff,
3877 bfqq->entity.weight, bfqq->entity.orig_weight);
3878
3879 if (entity->prio_changed)
3880 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3881
3882 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003883 * If the queue was activated in a burst, or too much
3884 * time has elapsed from the beginning of this
3885 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003886 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003887 if (bfq_bfqq_in_large_burst(bfqq))
3888 bfq_bfqq_end_wr(bfqq);
3889 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3890 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003891 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3892 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003893 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02003894 bfq_bfqq_end_wr(bfqq);
3895 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02003896 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003897 bfqq->entity.prio_changed = 1;
3898 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003899 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01003900 if (bfqq->wr_coeff > 1 &&
3901 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3902 bfqq->service_from_wr > max_service_from_wr) {
3903 /* see comments on max_service_from_wr */
3904 bfq_bfqq_end_wr(bfqq);
3905 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003906 }
Paolo Valente431b17f2017-07-03 10:00:10 +02003907 /*
3908 * To improve latency (for this or other queues), immediately
3909 * update weight both if it must be raised and if it must be
3910 * lowered. Since, entity may be on some active tree here, and
3911 * might have a pending change of its ioprio class, invoke
3912 * next function with the last parameter unset (see the
3913 * comments on the function).
3914 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003915 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02003916 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3917 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02003918}
3919
Paolo Valenteaee69d72017-04-19 08:29:02 -06003920/*
3921 * Dispatch next request from bfqq.
3922 */
3923static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3924 struct bfq_queue *bfqq)
3925{
3926 struct request *rq = bfqq->next_rq;
3927 unsigned long service_to_charge;
3928
3929 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3930
3931 bfq_bfqq_served(bfqq, service_to_charge);
3932
3933 bfq_dispatch_remove(bfqd->queue, rq);
3934
Paolo Valented0edc242018-09-14 16:23:08 +02003935 if (bfqq != bfqd->in_service_queue) {
3936 if (likely(bfqd->in_service_queue))
3937 bfqd->in_service_queue->injected_service +=
3938 bfq_serv_to_charge(rq, bfqq);
3939
3940 goto return_rq;
3941 }
3942
Paolo Valente44e44a12017-04-12 18:23:12 +02003943 /*
3944 * If weight raising has to terminate for bfqq, then next
3945 * function causes an immediate update of bfqq's weight,
3946 * without waiting for next activation. As a consequence, on
3947 * expiration, bfqq will be timestamped as if has never been
3948 * weight-raised during this service slot, even if it has
3949 * received part or even most of the service as a
3950 * weight-raised queue. This inflates bfqq's timestamps, which
3951 * is beneficial, as bfqq is then more willing to leave the
3952 * device immediately to possible other weight-raised queues.
3953 */
3954 bfq_update_wr_data(bfqd, bfqq);
3955
Paolo Valenteaee69d72017-04-19 08:29:02 -06003956 /*
3957 * Expire bfqq, pretending that its budget expired, if bfqq
3958 * belongs to CLASS_IDLE and other queues are waiting for
3959 * service.
3960 */
Paolo Valented0edc242018-09-14 16:23:08 +02003961 if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3962 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003963
Paolo Valenteaee69d72017-04-19 08:29:02 -06003964 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02003965
3966return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06003967 return rq;
3968}
3969
3970static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3971{
3972 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3973
3974 /*
3975 * Avoiding lock: a race on bfqd->busy_queues should cause at
3976 * most a call to dispatch for nothing
3977 */
3978 return !list_empty_careful(&bfqd->dispatch) ||
3979 bfqd->busy_queues > 0;
3980}
3981
3982static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3983{
3984 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3985 struct request *rq = NULL;
3986 struct bfq_queue *bfqq = NULL;
3987
3988 if (!list_empty(&bfqd->dispatch)) {
3989 rq = list_first_entry(&bfqd->dispatch, struct request,
3990 queuelist);
3991 list_del_init(&rq->queuelist);
3992
3993 bfqq = RQ_BFQQ(rq);
3994
3995 if (bfqq) {
3996 /*
3997 * Increment counters here, because this
3998 * dispatch does not follow the standard
3999 * dispatch flow (where counters are
4000 * incremented)
4001 */
4002 bfqq->dispatched++;
4003
4004 goto inc_in_driver_start_rq;
4005 }
4006
4007 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004008 * We exploit the bfq_finish_requeue_request hook to
4009 * decrement rq_in_driver, but
4010 * bfq_finish_requeue_request will not be invoked on
4011 * this request. So, to avoid unbalance, just start
4012 * this request, without incrementing rq_in_driver. As
4013 * a negative consequence, rq_in_driver is deceptively
4014 * lower than it should be while this request is in
4015 * service. This may cause bfq_schedule_dispatch to be
4016 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004017 *
4018 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004019 * bfq_finish_requeue_request hook, if defined, is
4020 * probably invoked also on this request. So, by
4021 * exploiting this hook, we could 1) increment
4022 * rq_in_driver here, and 2) decrement it in
4023 * bfq_finish_requeue_request. Such a solution would
4024 * let the value of the counter be always accurate,
4025 * but it would entail using an extra interface
4026 * function. This cost seems higher than the benefit,
4027 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004028 * requests very low.
4029 */
4030 goto start_rq;
4031 }
4032
4033 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
4034
4035 if (bfqd->busy_queues == 0)
4036 goto exit;
4037
4038 /*
4039 * Force device to serve one request at a time if
4040 * strict_guarantees is true. Forcing this service scheme is
4041 * currently the ONLY way to guarantee that the request
4042 * service order enforced by the scheduler is respected by a
4043 * queueing device. Otherwise the device is free even to make
4044 * some unlucky request wait for as long as the device
4045 * wishes.
4046 *
4047 * Of course, serving one request at at time may cause loss of
4048 * throughput.
4049 */
4050 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4051 goto exit;
4052
4053 bfqq = bfq_select_queue(bfqd);
4054 if (!bfqq)
4055 goto exit;
4056
4057 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4058
4059 if (rq) {
4060inc_in_driver_start_rq:
4061 bfqd->rq_in_driver++;
4062start_rq:
4063 rq->rq_flags |= RQF_STARTED;
4064 }
4065exit:
4066 return rq;
4067}
4068
Paolo Valente9b25bd02017-12-04 11:42:05 +01004069#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4070static void bfq_update_dispatch_stats(struct request_queue *q,
4071 struct request *rq,
4072 struct bfq_queue *in_serv_queue,
4073 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004074{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004075 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004076
Paolo Valente24bfd192017-11-13 07:34:09 +01004077 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004078 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004079
4080 /*
4081 * rq and bfqq are guaranteed to exist until this function
4082 * ends, for the following reasons. First, rq can be
4083 * dispatched to the device, and then can be completed and
4084 * freed, only after this function ends. Second, rq cannot be
4085 * merged (and thus freed because of a merge) any longer,
4086 * because it has already started. Thus rq cannot be freed
4087 * before this function ends, and, since rq has a reference to
4088 * bfqq, the same guarantee holds for bfqq too.
4089 *
4090 * In addition, the following queue lock guarantees that
4091 * bfqq_group(bfqq) exists as well.
4092 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004093 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004094 if (idle_timer_disabled)
4095 /*
4096 * Since the idle timer has been disabled,
4097 * in_serv_queue contained some request when
4098 * __bfq_dispatch_request was invoked above, which
4099 * implies that rq was picked exactly from
4100 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4101 * therefore guaranteed to exist because of the above
4102 * arguments.
4103 */
4104 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4105 if (bfqq) {
4106 struct bfq_group *bfqg = bfqq_group(bfqq);
4107
4108 bfqg_stats_update_avg_queue_size(bfqg);
4109 bfqg_stats_set_start_empty_time(bfqg);
4110 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4111 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004112 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004113}
4114#else
4115static inline void bfq_update_dispatch_stats(struct request_queue *q,
4116 struct request *rq,
4117 struct bfq_queue *in_serv_queue,
4118 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01004119#endif
4120
Paolo Valente9b25bd02017-12-04 11:42:05 +01004121static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4122{
4123 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4124 struct request *rq;
4125 struct bfq_queue *in_serv_queue;
4126 bool waiting_rq, idle_timer_disabled;
4127
4128 spin_lock_irq(&bfqd->lock);
4129
4130 in_serv_queue = bfqd->in_service_queue;
4131 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4132
4133 rq = __bfq_dispatch_request(hctx);
4134
4135 idle_timer_disabled =
4136 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4137
4138 spin_unlock_irq(&bfqd->lock);
4139
4140 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4141 idle_timer_disabled);
4142
Paolo Valenteaee69d72017-04-19 08:29:02 -06004143 return rq;
4144}
4145
4146/*
4147 * Task holds one reference to the queue, dropped when task exits. Each rq
4148 * in-flight on this queue also holds a reference, dropped when rq is freed.
4149 *
4150 * Scheduler lock must be held here. Recall not to use bfqq after calling
4151 * this function on it.
4152 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004153void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004154{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004155#ifdef CONFIG_BFQ_GROUP_IOSCHED
4156 struct bfq_group *bfqg = bfqq_group(bfqq);
4157#endif
4158
Paolo Valenteaee69d72017-04-19 08:29:02 -06004159 if (bfqq->bfqd)
4160 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4161 bfqq, bfqq->ref);
4162
4163 bfqq->ref--;
4164 if (bfqq->ref)
4165 return;
4166
Paolo Valente99fead82017-10-09 13:11:23 +02004167 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004168 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004169 /*
4170 * Decrement also burst size after the removal, if the
4171 * process associated with bfqq is exiting, and thus
4172 * does not contribute to the burst any longer. This
4173 * decrement helps filter out false positives of large
4174 * bursts, when some short-lived process (often due to
4175 * the execution of commands by some service) happens
4176 * to start and exit while a complex application is
4177 * starting, and thus spawning several processes that
4178 * do I/O (and that *must not* be treated as a large
4179 * burst, see comments on bfq_handle_burst).
4180 *
4181 * In particular, the decrement is performed only if:
4182 * 1) bfqq is not a merged queue, because, if it is,
4183 * then this free of bfqq is not triggered by the exit
4184 * of the process bfqq is associated with, but exactly
4185 * by the fact that bfqq has just been merged.
4186 * 2) burst_size is greater than 0, to handle
4187 * unbalanced decrements. Unbalanced decrements may
4188 * happen in te following case: bfqq is inserted into
4189 * the current burst list--without incrementing
4190 * bust_size--because of a split, but the current
4191 * burst list is not the burst list bfqq belonged to
4192 * (see comments on the case of a split in
4193 * bfq_set_request).
4194 */
4195 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4196 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004197 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004198
Paolo Valenteaee69d72017-04-19 08:29:02 -06004199 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004200#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004201 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004202#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004203}
4204
Arianna Avanzini36eca892017-04-12 18:23:16 +02004205static void bfq_put_cooperator(struct bfq_queue *bfqq)
4206{
4207 struct bfq_queue *__bfqq, *next;
4208
4209 /*
4210 * If this queue was scheduled to merge with another queue, be
4211 * sure to drop the reference taken on that queue (and others in
4212 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4213 */
4214 __bfqq = bfqq->new_bfqq;
4215 while (__bfqq) {
4216 if (__bfqq == bfqq)
4217 break;
4218 next = __bfqq->new_bfqq;
4219 bfq_put_queue(__bfqq);
4220 __bfqq = next;
4221 }
4222}
4223
Paolo Valenteaee69d72017-04-19 08:29:02 -06004224static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4225{
4226 if (bfqq == bfqd->in_service_queue) {
4227 __bfq_bfqq_expire(bfqd, bfqq);
4228 bfq_schedule_dispatch(bfqd);
4229 }
4230
4231 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4232
Arianna Avanzini36eca892017-04-12 18:23:16 +02004233 bfq_put_cooperator(bfqq);
4234
Paolo Valenteaee69d72017-04-19 08:29:02 -06004235 bfq_put_queue(bfqq); /* release process reference */
4236}
4237
4238static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4239{
4240 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4241 struct bfq_data *bfqd;
4242
4243 if (bfqq)
4244 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4245
4246 if (bfqq && bfqd) {
4247 unsigned long flags;
4248
4249 spin_lock_irqsave(&bfqd->lock, flags);
4250 bfq_exit_bfqq(bfqd, bfqq);
4251 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004252 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004253 }
4254}
4255
4256static void bfq_exit_icq(struct io_cq *icq)
4257{
4258 struct bfq_io_cq *bic = icq_to_bic(icq);
4259
4260 bfq_exit_icq_bfqq(bic, true);
4261 bfq_exit_icq_bfqq(bic, false);
4262}
4263
4264/*
4265 * Update the entity prio values; note that the new values will not
4266 * be used until the next (re)activation.
4267 */
4268static void
4269bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4270{
4271 struct task_struct *tsk = current;
4272 int ioprio_class;
4273 struct bfq_data *bfqd = bfqq->bfqd;
4274
4275 if (!bfqd)
4276 return;
4277
4278 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4279 switch (ioprio_class) {
4280 default:
4281 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4282 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004283 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004284 case IOPRIO_CLASS_NONE:
4285 /*
4286 * No prio set, inherit CPU scheduling settings.
4287 */
4288 bfqq->new_ioprio = task_nice_ioprio(tsk);
4289 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4290 break;
4291 case IOPRIO_CLASS_RT:
4292 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4293 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4294 break;
4295 case IOPRIO_CLASS_BE:
4296 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4297 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4298 break;
4299 case IOPRIO_CLASS_IDLE:
4300 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4301 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004302 break;
4303 }
4304
4305 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4306 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4307 bfqq->new_ioprio);
4308 bfqq->new_ioprio = IOPRIO_BE_NR;
4309 }
4310
4311 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4312 bfqq->entity.prio_changed = 1;
4313}
4314
Paolo Valenteea25da42017-04-19 08:48:24 -06004315static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4316 struct bio *bio, bool is_sync,
4317 struct bfq_io_cq *bic);
4318
Paolo Valenteaee69d72017-04-19 08:29:02 -06004319static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4320{
4321 struct bfq_data *bfqd = bic_to_bfqd(bic);
4322 struct bfq_queue *bfqq;
4323 int ioprio = bic->icq.ioc->ioprio;
4324
4325 /*
4326 * This condition may trigger on a newly created bic, be sure to
4327 * drop the lock before returning.
4328 */
4329 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4330 return;
4331
4332 bic->ioprio = ioprio;
4333
4334 bfqq = bic_to_bfqq(bic, false);
4335 if (bfqq) {
4336 /* release process reference on this queue */
4337 bfq_put_queue(bfqq);
4338 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4339 bic_set_bfqq(bic, bfqq, false);
4340 }
4341
4342 bfqq = bic_to_bfqq(bic, true);
4343 if (bfqq)
4344 bfq_set_next_ioprio_data(bfqq, bic);
4345}
4346
4347static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4348 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4349{
4350 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4351 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004352 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004353
4354 bfqq->ref = 0;
4355 bfqq->bfqd = bfqd;
4356
4357 if (bic)
4358 bfq_set_next_ioprio_data(bfqq, bic);
4359
4360 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004361 /*
4362 * No need to mark as has_short_ttime if in
4363 * idle_class, because no device idling is performed
4364 * for queues in idle class
4365 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004366 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004367 /* tentatively mark as has_short_ttime */
4368 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004369 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004370 bfq_mark_bfqq_just_created(bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02004371 /*
4372 * Aggressively inject a lot of service: up to 90%.
4373 * This coefficient remains constant during bfqq life,
4374 * but this behavior might be changed, after enough
4375 * testing and tuning.
4376 */
4377 bfqq->inject_coeff = 1;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004378 } else
4379 bfq_clear_bfqq_sync(bfqq);
4380
4381 /* set end request to minus infinity from now */
4382 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4383
4384 bfq_mark_bfqq_IO_bound(bfqq);
4385
4386 bfqq->pid = pid;
4387
4388 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004389 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004390 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004391
Paolo Valente44e44a12017-04-12 18:23:12 +02004392 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004393 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004394 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004395 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004396
4397 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004398 * To not forget the possibly high bandwidth consumed by a
4399 * process/queue in the recent past,
4400 * bfq_bfqq_softrt_next_start() returns a value at least equal
4401 * to the current value of bfqq->soft_rt_next_start (see
4402 * comments on bfq_bfqq_softrt_next_start). Set
4403 * soft_rt_next_start to now, to mean that bfqq has consumed
4404 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004405 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004406 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004407
Paolo Valenteaee69d72017-04-19 08:29:02 -06004408 /* first request is almost certainly seeky */
4409 bfqq->seek_history = 1;
4410}
4411
4412static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004413 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004414 int ioprio_class, int ioprio)
4415{
4416 switch (ioprio_class) {
4417 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004418 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004419 case IOPRIO_CLASS_NONE:
4420 ioprio = IOPRIO_NORM;
4421 /* fall through */
4422 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004423 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004424 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004425 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004426 default:
4427 return NULL;
4428 }
4429}
4430
4431static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4432 struct bio *bio, bool is_sync,
4433 struct bfq_io_cq *bic)
4434{
4435 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4436 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4437 struct bfq_queue **async_bfqq = NULL;
4438 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004439 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004440
4441 rcu_read_lock();
4442
Dennis Zhou0fe061b2018-12-05 12:10:26 -05004443 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004444 if (!bfqg) {
4445 bfqq = &bfqd->oom_bfqq;
4446 goto out;
4447 }
4448
Paolo Valenteaee69d72017-04-19 08:29:02 -06004449 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004450 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004451 ioprio);
4452 bfqq = *async_bfqq;
4453 if (bfqq)
4454 goto out;
4455 }
4456
4457 bfqq = kmem_cache_alloc_node(bfq_pool,
4458 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4459 bfqd->queue->node);
4460
4461 if (bfqq) {
4462 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4463 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004464 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004465 bfq_log_bfqq(bfqd, bfqq, "allocated");
4466 } else {
4467 bfqq = &bfqd->oom_bfqq;
4468 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4469 goto out;
4470 }
4471
4472 /*
4473 * Pin the queue now that it's allocated, scheduler exit will
4474 * prune it.
4475 */
4476 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004477 bfqq->ref++; /*
4478 * Extra group reference, w.r.t. sync
4479 * queue. This extra reference is removed
4480 * only if bfqq->bfqg disappears, to
4481 * guarantee that this queue is not freed
4482 * until its group goes away.
4483 */
4484 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004485 bfqq, bfqq->ref);
4486 *async_bfqq = bfqq;
4487 }
4488
4489out:
4490 bfqq->ref++; /* get a process reference to this queue */
4491 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4492 rcu_read_unlock();
4493 return bfqq;
4494}
4495
4496static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4497 struct bfq_queue *bfqq)
4498{
4499 struct bfq_ttime *ttime = &bfqq->ttime;
4500 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4501
4502 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4503
4504 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4505 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4506 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4507 ttime->ttime_samples);
4508}
4509
4510static void
4511bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4512 struct request *rq)
4513{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004514 bfqq->seek_history <<= 1;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004515 bfqq->seek_history |=
4516 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004517 (!blk_queue_nonrot(bfqd->queue) ||
4518 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4519}
4520
Paolo Valented5be3fe2017-08-04 07:35:10 +02004521static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4522 struct bfq_queue *bfqq,
4523 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004524{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004525 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004526
Paolo Valented5be3fe2017-08-04 07:35:10 +02004527 /*
4528 * No need to update has_short_ttime if bfqq is async or in
4529 * idle io prio class, or if bfq_slice_idle is zero, because
4530 * no device idling is performed for bfqq in this case.
4531 */
4532 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4533 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004534 return;
4535
Arianna Avanzini36eca892017-04-12 18:23:16 +02004536 /* Idle window just restored, statistics are meaningless. */
4537 if (time_is_after_eq_jiffies(bfqq->split_time +
4538 bfqd->bfq_wr_min_idle_time))
4539 return;
4540
Paolo Valented5be3fe2017-08-04 07:35:10 +02004541 /* Think time is infinite if no process is linked to
4542 * bfqq. Otherwise check average think time to
4543 * decide whether to mark as has_short_ttime
4544 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004545 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004546 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4547 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4548 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004549
Paolo Valented5be3fe2017-08-04 07:35:10 +02004550 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4551 has_short_ttime);
4552
4553 if (has_short_ttime)
4554 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004555 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004556 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004557}
4558
4559/*
4560 * Called when a new fs request (rq) is added to bfqq. Check if there's
4561 * something we should do about it.
4562 */
4563static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4564 struct request *rq)
4565{
4566 struct bfq_io_cq *bic = RQ_BIC(rq);
4567
4568 if (rq->cmd_flags & REQ_META)
4569 bfqq->meta_pending++;
4570
4571 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004572 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004573 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004574
4575 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004576 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4577 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004578
4579 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4580
4581 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4582 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4583 blk_rq_sectors(rq) < 32;
4584 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4585
4586 /*
4587 * There is just this request queued: if the request
4588 * is small and the queue is not to be expired, then
4589 * just exit.
4590 *
4591 * In this way, if the device is being idled to wait
4592 * for a new request from the in-service queue, we
4593 * avoid unplugging the device and committing the
4594 * device to serve just a small request. On the
4595 * contrary, we wait for the block layer to decide
4596 * when to unplug the device: hopefully, new requests
4597 * will be merged to this one quickly, then the device
4598 * will be unplugged and larger requests will be
4599 * dispatched.
4600 */
4601 if (small_req && !budget_timeout)
4602 return;
4603
4604 /*
4605 * A large enough request arrived, or the queue is to
4606 * be expired: in both cases disk idling is to be
4607 * stopped, so clear wait_request flag and reset
4608 * timer.
4609 */
4610 bfq_clear_bfqq_wait_request(bfqq);
4611 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4612
4613 /*
4614 * The queue is not empty, because a new request just
4615 * arrived. Hence we can safely expire the queue, in
4616 * case of budget timeout, without risking that the
4617 * timestamps of the queue are not updated correctly.
4618 * See [1] for more details.
4619 */
4620 if (budget_timeout)
4621 bfq_bfqq_expire(bfqd, bfqq, false,
4622 BFQQE_BUDGET_TIMEOUT);
4623 }
4624}
4625
Paolo Valente24bfd192017-11-13 07:34:09 +01004626/* returns true if it causes the idle timer to be disabled */
4627static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004628{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004629 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4630 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004631 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004632
4633 if (new_bfqq) {
4634 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4635 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4636 /*
4637 * Release the request's reference to the old bfqq
4638 * and make sure one is taken to the shared queue.
4639 */
4640 new_bfqq->allocated++;
4641 bfqq->allocated--;
4642 new_bfqq->ref++;
4643 /*
4644 * If the bic associated with the process
4645 * issuing this request still points to bfqq
4646 * (and thus has not been already redirected
4647 * to new_bfqq or even some other bfq_queue),
4648 * then complete the merge and redirect it to
4649 * new_bfqq.
4650 */
4651 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4652 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4653 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004654
4655 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004656 /*
4657 * rq is about to be enqueued into new_bfqq,
4658 * release rq reference on bfqq
4659 */
4660 bfq_put_queue(bfqq);
4661 rq->elv.priv[1] = new_bfqq;
4662 bfqq = new_bfqq;
4663 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004664
Paolo Valente24bfd192017-11-13 07:34:09 +01004665 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004666 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004667 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004668
4669 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4670 list_add_tail(&rq->queuelist, &bfqq->fifo);
4671
4672 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004673
4674 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004675}
4676
Paolo Valente9b25bd02017-12-04 11:42:05 +01004677#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4678static void bfq_update_insert_stats(struct request_queue *q,
4679 struct bfq_queue *bfqq,
4680 bool idle_timer_disabled,
4681 unsigned int cmd_flags)
4682{
4683 if (!bfqq)
4684 return;
4685
4686 /*
4687 * bfqq still exists, because it can disappear only after
4688 * either it is merged with another queue, or the process it
4689 * is associated with exits. But both actions must be taken by
4690 * the same process currently executing this flow of
4691 * instructions.
4692 *
4693 * In addition, the following queue lock guarantees that
4694 * bfqq_group(bfqq) exists as well.
4695 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004696 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004697 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4698 if (idle_timer_disabled)
4699 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004700 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004701}
4702#else
4703static inline void bfq_update_insert_stats(struct request_queue *q,
4704 struct bfq_queue *bfqq,
4705 bool idle_timer_disabled,
4706 unsigned int cmd_flags) {}
4707#endif
4708
Paolo Valenteaee69d72017-04-19 08:29:02 -06004709static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4710 bool at_head)
4711{
4712 struct request_queue *q = hctx->queue;
4713 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02004714 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01004715 bool idle_timer_disabled = false;
4716 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004717
4718 spin_lock_irq(&bfqd->lock);
4719 if (blk_mq_sched_try_insert_merge(q, rq)) {
4720 spin_unlock_irq(&bfqd->lock);
4721 return;
4722 }
4723
4724 spin_unlock_irq(&bfqd->lock);
4725
4726 blk_mq_sched_request_inserted(rq);
4727
4728 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02004729 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004730 if (at_head || blk_rq_is_passthrough(rq)) {
4731 if (at_head)
4732 list_add(&rq->queuelist, &bfqd->dispatch);
4733 else
4734 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02004735 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01004736 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004737 /*
4738 * Update bfqq, because, if a queue merge has occurred
4739 * in __bfq_insert_request, then rq has been
4740 * redirected into a new queue.
4741 */
4742 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004743
4744 if (rq_mergeable(rq)) {
4745 elv_rqhash_add(q, rq);
4746 if (!q->last_merge)
4747 q->last_merge = rq;
4748 }
4749 }
4750
Paolo Valente24bfd192017-11-13 07:34:09 +01004751 /*
4752 * Cache cmd_flags before releasing scheduler lock, because rq
4753 * may disappear afterwards (for example, because of a request
4754 * merge).
4755 */
4756 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01004757
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004758 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004759
Paolo Valente9b25bd02017-12-04 11:42:05 +01004760 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4761 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004762}
4763
4764static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4765 struct list_head *list, bool at_head)
4766{
4767 while (!list_empty(list)) {
4768 struct request *rq;
4769
4770 rq = list_first_entry(list, struct request, queuelist);
4771 list_del_init(&rq->queuelist);
4772 bfq_insert_request(hctx, rq, at_head);
4773 }
4774}
4775
4776static void bfq_update_hw_tag(struct bfq_data *bfqd)
4777{
4778 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4779 bfqd->rq_in_driver);
4780
4781 if (bfqd->hw_tag == 1)
4782 return;
4783
4784 /*
4785 * This sample is valid if the number of outstanding requests
4786 * is large enough to allow a queueing behavior. Note that the
4787 * sum is not exact, as it's not taking into account deactivated
4788 * requests.
4789 */
4790 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4791 return;
4792
4793 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4794 return;
4795
4796 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4797 bfqd->max_rq_in_driver = 0;
4798 bfqd->hw_tag_samples = 0;
4799}
4800
4801static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4802{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004803 u64 now_ns;
4804 u32 delta_us;
4805
Paolo Valenteaee69d72017-04-19 08:29:02 -06004806 bfq_update_hw_tag(bfqd);
4807
4808 bfqd->rq_in_driver--;
4809 bfqq->dispatched--;
4810
Paolo Valente44e44a12017-04-12 18:23:12 +02004811 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4812 /*
4813 * Set budget_timeout (which we overload to store the
4814 * time at which the queue remains with no backlog and
4815 * no outstanding request; used by the weight-raising
4816 * mechanism).
4817 */
4818 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02004819
Paolo Valente04715592018-06-25 21:55:34 +02004820 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02004821 }
4822
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004823 now_ns = ktime_get_ns();
4824
4825 bfqq->ttime.last_end_request = now_ns;
4826
4827 /*
4828 * Using us instead of ns, to get a reasonable precision in
4829 * computing rate in next check.
4830 */
4831 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4832
4833 /*
4834 * If the request took rather long to complete, and, according
4835 * to the maximum request size recorded, this completion latency
4836 * implies that the request was certainly served at a very low
4837 * rate (less than 1M sectors/sec), then the whole observation
4838 * interval that lasts up to this time instant cannot be a
4839 * valid time interval for computing a new peak rate. Invoke
4840 * bfq_update_rate_reset to have the following three steps
4841 * taken:
4842 * - close the observation interval at the last (previous)
4843 * request dispatch or completion
4844 * - compute rate, if possible, for that observation interval
4845 * - reset to zero samples, which will trigger a proper
4846 * re-initialization of the observation interval on next
4847 * dispatch
4848 */
4849 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4850 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4851 1UL<<(BFQ_RATE_SHIFT - 10))
4852 bfq_update_rate_reset(bfqd, NULL);
4853 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004854
4855 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004856 * If we are waiting to discover whether the request pattern
4857 * of the task associated with the queue is actually
4858 * isochronous, and both requisites for this condition to hold
4859 * are now satisfied, then compute soft_rt_next_start (see the
4860 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01004861 * do not compute soft_rt_next_start if bfqq is in interactive
4862 * weight raising (see the comments in bfq_bfqq_expire() for
4863 * an explanation). We schedule this delayed update when bfqq
4864 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004865 */
4866 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01004867 RB_EMPTY_ROOT(&bfqq->sort_list) &&
4868 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02004869 bfqq->soft_rt_next_start =
4870 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4871
4872 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004873 * If this is the in-service queue, check if it needs to be expired,
4874 * or if we want to idle in case it has no pending requests.
4875 */
4876 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02004877 if (bfq_bfqq_must_idle(bfqq)) {
4878 if (bfqq->dispatched == 0)
4879 bfq_arm_slice_timer(bfqd);
4880 /*
4881 * If we get here, we do not expire bfqq, even
4882 * if bfqq was in budget timeout or had no
4883 * more requests (as controlled in the next
4884 * conditional instructions). The reason for
4885 * not expiring bfqq is as follows.
4886 *
4887 * Here bfqq->dispatched > 0 holds, but
4888 * bfq_bfqq_must_idle() returned true. This
4889 * implies that, even if no request arrives
4890 * for bfqq before bfqq->dispatched reaches 0,
4891 * bfqq will, however, not be expired on the
4892 * completion event that causes bfqq->dispatch
4893 * to reach zero. In contrast, on this event,
4894 * bfqq will start enjoying device idling
4895 * (I/O-dispatch plugging).
4896 *
4897 * But, if we expired bfqq here, bfqq would
4898 * not have the chance to enjoy device idling
4899 * when bfqq->dispatched finally reaches
4900 * zero. This would expose bfqq to violation
4901 * of its reserved service guarantees.
4902 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004903 return;
4904 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4905 bfq_bfqq_expire(bfqd, bfqq, false,
4906 BFQQE_BUDGET_TIMEOUT);
4907 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4908 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004909 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06004910 bfq_bfqq_expire(bfqd, bfqq, false,
4911 BFQQE_NO_MORE_REQUESTS);
4912 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08004913
4914 if (!bfqd->rq_in_driver)
4915 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004916}
4917
Paolo Valentea7877392018-02-07 22:19:20 +01004918static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004919{
4920 bfqq->allocated--;
4921
4922 bfq_put_queue(bfqq);
4923}
4924
Paolo Valentea7877392018-02-07 22:19:20 +01004925/*
4926 * Handle either a requeue or a finish for rq. The things to do are
4927 * the same in both cases: all references to rq are to be dropped. In
4928 * particular, rq is considered completed from the point of view of
4929 * the scheduler.
4930 */
4931static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004932{
Paolo Valentea7877392018-02-07 22:19:20 +01004933 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004934 struct bfq_data *bfqd;
4935
Paolo Valentea7877392018-02-07 22:19:20 +01004936 /*
4937 * Requeue and finish hooks are invoked in blk-mq without
4938 * checking whether the involved request is actually still
4939 * referenced in the scheduler. To handle this fact, the
4940 * following two checks make this function exit in case of
4941 * spurious invocations, for which there is nothing to do.
4942 *
4943 * First, check whether rq has nothing to do with an elevator.
4944 */
4945 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004946 return;
4947
Paolo Valentea7877392018-02-07 22:19:20 +01004948 /*
4949 * rq either is not associated with any icq, or is an already
4950 * requeued request that has not (yet) been re-inserted into
4951 * a bfq_queue.
4952 */
4953 if (!rq->elv.icq || !bfqq)
4954 return;
4955
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004956 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004957
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004958 if (rq->rq_flags & RQF_STARTED)
4959 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07004960 rq->start_time_ns,
4961 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004962 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004963
4964 if (likely(rq->rq_flags & RQF_STARTED)) {
4965 unsigned long flags;
4966
4967 spin_lock_irqsave(&bfqd->lock, flags);
4968
4969 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01004970 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004971
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004972 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004973 } else {
4974 /*
4975 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01004976 * in which case we need to remove it (this should
4977 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06004978 * defer such a check and removal, to avoid
4979 * inconsistencies in the time interval from the end
4980 * of this function to the start of the deferred work.
4981 * This situation seems to occur only in process
4982 * context, as a consequence of a merge. In the
4983 * current version of the code, this implies that the
4984 * lock is held.
4985 */
4986
Luca Miccio614822f2017-11-13 07:34:08 +01004987 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02004988 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004989 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4990 rq->cmd_flags);
4991 }
Paolo Valentea7877392018-02-07 22:19:20 +01004992 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004993 }
4994
Paolo Valentea7877392018-02-07 22:19:20 +01004995 /*
4996 * Reset private fields. In case of a requeue, this allows
4997 * this function to correctly do nothing if it is spuriously
4998 * invoked again on this same request (see the check at the
4999 * beginning of the function). Probably, a better general
5000 * design would be to prevent blk-mq from invoking the requeue
5001 * or finish hooks of an elevator, for a request that is not
5002 * referred by that elevator.
5003 *
5004 * Resetting the following fields would break the
5005 * request-insertion logic if rq is re-inserted into a bfq
5006 * internal queue, without a re-preparation. Here we assume
5007 * that re-insertions of requeued requests, without
5008 * re-preparation, can happen only for pass_through or at_head
5009 * requests (which are not re-inserted into bfq internal
5010 * queues).
5011 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005012 rq->elv.priv[0] = NULL;
5013 rq->elv.priv[1] = NULL;
5014}
5015
5016/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02005017 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5018 * was the last process referring to that bfqq.
5019 */
5020static struct bfq_queue *
5021bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5022{
5023 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5024
5025 if (bfqq_process_refs(bfqq) == 1) {
5026 bfqq->pid = current->pid;
5027 bfq_clear_bfqq_coop(bfqq);
5028 bfq_clear_bfqq_split_coop(bfqq);
5029 return bfqq;
5030 }
5031
5032 bic_set_bfqq(bic, NULL, 1);
5033
5034 bfq_put_cooperator(bfqq);
5035
5036 bfq_put_queue(bfqq);
5037 return NULL;
5038}
5039
5040static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5041 struct bfq_io_cq *bic,
5042 struct bio *bio,
5043 bool split, bool is_sync,
5044 bool *new_queue)
5045{
5046 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5047
5048 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5049 return bfqq;
5050
5051 if (new_queue)
5052 *new_queue = true;
5053
5054 if (bfqq)
5055 bfq_put_queue(bfqq);
5056 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5057
5058 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005059 if (split && is_sync) {
5060 if ((bic->was_in_burst_list && bfqd->large_burst) ||
5061 bic->saved_in_large_burst)
5062 bfq_mark_bfqq_in_large_burst(bfqq);
5063 else {
5064 bfq_clear_bfqq_in_large_burst(bfqq);
5065 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02005066 /*
5067 * If bfqq was in the current
5068 * burst list before being
5069 * merged, then we have to add
5070 * it back. And we do not need
5071 * to increase burst_size, as
5072 * we did not decrement
5073 * burst_size when we removed
5074 * bfqq from the burst list as
5075 * a consequence of a merge
5076 * (see comments in
5077 * bfq_put_queue). In this
5078 * respect, it would be rather
5079 * costly to know whether the
5080 * current burst list is still
5081 * the same burst list from
5082 * which bfqq was removed on
5083 * the merge. To avoid this
5084 * cost, if bfqq was in a
5085 * burst list, then we add
5086 * bfqq to the current burst
5087 * list without any further
5088 * check. This can cause
5089 * inappropriate insertions,
5090 * but rarely enough to not
5091 * harm the detection of large
5092 * bursts significantly.
5093 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005094 hlist_add_head(&bfqq->burst_list_node,
5095 &bfqd->burst_list);
5096 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005097 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005098 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005099
5100 return bfqq;
5101}
5102
5103/*
Paolo Valente18e5a572018-05-04 19:17:01 +02005104 * Only reset private fields. The actual request preparation will be
5105 * performed by bfq_init_rq, when rq is either inserted or merged. See
5106 * comments on bfq_init_rq for the reason behind this delayed
5107 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005108 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005109static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005110{
Paolo Valente18e5a572018-05-04 19:17:01 +02005111 /*
5112 * Regardless of whether we have an icq attached, we have to
5113 * clear the scheduler pointers, as they might point to
5114 * previously allocated bic/bfqq structs.
5115 */
5116 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5117}
5118
5119/*
5120 * If needed, init rq, allocate bfq data structures associated with
5121 * rq, and increment reference counters in the destination bfq_queue
5122 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5123 * not associated with any bfq_queue.
5124 *
5125 * This function is invoked by the functions that perform rq insertion
5126 * or merging. One may have expected the above preparation operations
5127 * to be performed in bfq_prepare_request, and not delayed to when rq
5128 * is inserted or merged. The rationale behind this delayed
5129 * preparation is that, after the prepare_request hook is invoked for
5130 * rq, rq may still be transformed into a request with no icq, i.e., a
5131 * request not associated with any queue. No bfq hook is invoked to
5132 * signal this tranformation. As a consequence, should these
5133 * preparation operations be performed when the prepare_request hook
5134 * is invoked, and should rq be transformed one moment later, bfq
5135 * would end up in an inconsistent state, because it would have
5136 * incremented some queue counters for an rq destined to
5137 * transformation, without any chance to correctly lower these
5138 * counters back. In contrast, no transformation can still happen for
5139 * rq after rq has been inserted or merged. So, it is safe to execute
5140 * these preparation operations when rq is finally inserted or merged.
5141 */
5142static struct bfq_queue *bfq_init_rq(struct request *rq)
5143{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005144 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02005145 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005146 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02005147 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005148 const int is_sync = rq_is_sync(rq);
5149 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005150 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06005151 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005152
Paolo Valente18e5a572018-05-04 19:17:01 +02005153 if (unlikely(!rq->elv.icq))
5154 return NULL;
5155
Jens Axboe72961c42018-04-17 17:08:52 -06005156 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02005157 * Assuming that elv.priv[1] is set only if everything is set
5158 * for this rq. This holds true, because this function is
5159 * invoked only for insertion or merging, and, after such
5160 * events, a request cannot be manipulated any longer before
5161 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06005162 */
Paolo Valente18e5a572018-05-04 19:17:01 +02005163 if (rq->elv.priv[1])
5164 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06005165
Christoph Hellwig9f210732017-06-16 18:15:24 +02005166 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005167
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01005168 bfq_check_ioprio_change(bic, bio);
5169
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005170 bfq_bic_update_cgroup(bic, bio);
5171
Arianna Avanzini36eca892017-04-12 18:23:16 +02005172 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5173 &new_queue);
5174
5175 if (likely(!new_queue)) {
5176 /* If the queue was seeky for too long, break it apart. */
5177 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5178 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005179
5180 /* Update bic before losing reference to bfqq */
5181 if (bfq_bfqq_in_large_burst(bfqq))
5182 bic->saved_in_large_burst = true;
5183
Arianna Avanzini36eca892017-04-12 18:23:16 +02005184 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005185 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005186
5187 if (!bfqq)
5188 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5189 true, is_sync,
5190 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06005191 else
5192 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005193 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005194 }
5195
5196 bfqq->allocated++;
5197 bfqq->ref++;
5198 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5199 rq, bfqq, bfqq->ref);
5200
5201 rq->elv.priv[0] = bic;
5202 rq->elv.priv[1] = bfqq;
5203
Arianna Avanzini36eca892017-04-12 18:23:16 +02005204 /*
5205 * If a bfq_queue has only one process reference, it is owned
5206 * by only this bic: we can then set bfqq->bic = bic. in
5207 * addition, if the queue has also just been split, we have to
5208 * resume its state.
5209 */
5210 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5211 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005212 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005213 /*
5214 * The queue has just been split from a shared
5215 * queue: restore the idle window and the
5216 * possible weight raising period.
5217 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005218 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5219 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005220 }
5221 }
5222
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005223 if (unlikely(bfq_bfqq_just_created(bfqq)))
5224 bfq_handle_burst(bfqd, bfqq);
5225
Paolo Valente18e5a572018-05-04 19:17:01 +02005226 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005227}
5228
5229static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5230{
5231 struct bfq_data *bfqd = bfqq->bfqd;
5232 enum bfqq_expiration reason;
5233 unsigned long flags;
5234
5235 spin_lock_irqsave(&bfqd->lock, flags);
5236 bfq_clear_bfqq_wait_request(bfqq);
5237
5238 if (bfqq != bfqd->in_service_queue) {
5239 spin_unlock_irqrestore(&bfqd->lock, flags);
5240 return;
5241 }
5242
5243 if (bfq_bfqq_budget_timeout(bfqq))
5244 /*
5245 * Also here the queue can be safely expired
5246 * for budget timeout without wasting
5247 * guarantees
5248 */
5249 reason = BFQQE_BUDGET_TIMEOUT;
5250 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5251 /*
5252 * The queue may not be empty upon timer expiration,
5253 * because we may not disable the timer when the
5254 * first request of the in-service queue arrives
5255 * during disk idling.
5256 */
5257 reason = BFQQE_TOO_IDLE;
5258 else
5259 goto schedule_dispatch;
5260
5261 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5262
5263schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005264 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005265 bfq_schedule_dispatch(bfqd);
5266}
5267
5268/*
5269 * Handler of the expiration of the timer running if the in-service queue
5270 * is idling inside its time slice.
5271 */
5272static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5273{
5274 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5275 idle_slice_timer);
5276 struct bfq_queue *bfqq = bfqd->in_service_queue;
5277
5278 /*
5279 * Theoretical race here: the in-service queue can be NULL or
5280 * different from the queue that was idling if a new request
5281 * arrives for the current queue and there is a full dispatch
5282 * cycle that changes the in-service queue. This can hardly
5283 * happen, but in the worst case we just expire a queue too
5284 * early.
5285 */
5286 if (bfqq)
5287 bfq_idle_slice_timer_body(bfqq);
5288
5289 return HRTIMER_NORESTART;
5290}
5291
5292static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5293 struct bfq_queue **bfqq_ptr)
5294{
5295 struct bfq_queue *bfqq = *bfqq_ptr;
5296
5297 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5298 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005299 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5300
Paolo Valenteaee69d72017-04-19 08:29:02 -06005301 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5302 bfqq, bfqq->ref);
5303 bfq_put_queue(bfqq);
5304 *bfqq_ptr = NULL;
5305 }
5306}
5307
5308/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005309 * Release all the bfqg references to its async queues. If we are
5310 * deallocating the group these queues may still contain requests, so
5311 * we reparent them to the root cgroup (i.e., the only one that will
5312 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005313 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005314void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005315{
5316 int i, j;
5317
5318 for (i = 0; i < 2; i++)
5319 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005320 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005321
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005322 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005323}
5324
Jens Axboef0635b82018-05-09 13:27:21 -06005325/*
5326 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005327 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005328 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005329static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5330 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005331{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005332 unsigned int i, j, min_shallow = UINT_MAX;
5333
Jens Axboef0635b82018-05-09 13:27:21 -06005334 /*
5335 * In-word depths if no bfq_queue is being weight-raised:
5336 * leaving 25% of tags only for sync reads.
5337 *
5338 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005339 * (1U<<bt->sb.shift), instead of computing directly
5340 * (1U<<(bt->sb.shift - something)), to be robust against
5341 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005342 * limit 'something'.
5343 */
5344 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005345 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005346 /*
5347 * no more than 75% of tags for sync writes (25% extra tags
5348 * w.r.t. async I/O, to prevent async I/O from starving sync
5349 * writes)
5350 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005351 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005352
5353 /*
5354 * In-word depths in case some bfq_queue is being weight-
5355 * raised: leaving ~63% of tags for sync reads. This is the
5356 * highest percentage for which, in our tests, application
5357 * start-up times didn't suffer from any regression due to tag
5358 * shortage.
5359 */
5360 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005361 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005362 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005363 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005364
5365 for (i = 0; i < 2; i++)
5366 for (j = 0; j < 2; j++)
5367 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5368
5369 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005370}
5371
5372static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5373{
5374 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5375 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005376 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005377
Jens Axboe483b7bf2018-05-09 15:26:55 -06005378 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5379 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005380 return 0;
5381}
5382
Paolo Valenteaee69d72017-04-19 08:29:02 -06005383static void bfq_exit_queue(struct elevator_queue *e)
5384{
5385 struct bfq_data *bfqd = e->elevator_data;
5386 struct bfq_queue *bfqq, *n;
5387
5388 hrtimer_cancel(&bfqd->idle_slice_timer);
5389
5390 spin_lock_irq(&bfqd->lock);
5391 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005392 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005393 spin_unlock_irq(&bfqd->lock);
5394
5395 hrtimer_cancel(&bfqd->idle_slice_timer);
5396
Jens Axboe8abef102018-01-09 12:20:51 -07005397#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005398 /* release oom-queue reference to root group */
5399 bfqg_and_blkg_put(bfqd->root_group);
5400
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005401 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5402#else
5403 spin_lock_irq(&bfqd->lock);
5404 bfq_put_async_queues(bfqd, bfqd->root_group);
5405 kfree(bfqd->root_group);
5406 spin_unlock_irq(&bfqd->lock);
5407#endif
5408
Paolo Valenteaee69d72017-04-19 08:29:02 -06005409 kfree(bfqd);
5410}
5411
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005412static void bfq_init_root_group(struct bfq_group *root_group,
5413 struct bfq_data *bfqd)
5414{
5415 int i;
5416
5417#ifdef CONFIG_BFQ_GROUP_IOSCHED
5418 root_group->entity.parent = NULL;
5419 root_group->my_entity = NULL;
5420 root_group->bfqd = bfqd;
5421#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005422 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005423 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5424 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5425 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5426}
5427
Paolo Valenteaee69d72017-04-19 08:29:02 -06005428static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5429{
5430 struct bfq_data *bfqd;
5431 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005432
5433 eq = elevator_alloc(q, e);
5434 if (!eq)
5435 return -ENOMEM;
5436
5437 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5438 if (!bfqd) {
5439 kobject_put(&eq->kobj);
5440 return -ENOMEM;
5441 }
5442 eq->elevator_data = bfqd;
5443
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005444 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005445 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005446 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005447
Paolo Valenteaee69d72017-04-19 08:29:02 -06005448 /*
5449 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5450 * Grab a permanent reference to it, so that the normal code flow
5451 * will not attempt to free it.
5452 */
5453 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5454 bfqd->oom_bfqq.ref++;
5455 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5456 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5457 bfqd->oom_bfqq.entity.new_weight =
5458 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005459
5460 /* oom_bfqq does not participate to bursts */
5461 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5462
Paolo Valenteaee69d72017-04-19 08:29:02 -06005463 /*
5464 * Trigger weight initialization, according to ioprio, at the
5465 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5466 * class won't be changed any more.
5467 */
5468 bfqd->oom_bfqq.entity.prio_changed = 1;
5469
5470 bfqd->queue = q;
5471
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005472 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005473
5474 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5475 HRTIMER_MODE_REL);
5476 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5477
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005478 bfqd->queue_weights_tree = RB_ROOT;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01005479 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005480
Paolo Valenteaee69d72017-04-19 08:29:02 -06005481 INIT_LIST_HEAD(&bfqd->active_list);
5482 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005483 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005484
5485 bfqd->hw_tag = -1;
5486
5487 bfqd->bfq_max_budget = bfq_default_max_budget;
5488
5489 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5490 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5491 bfqd->bfq_back_max = bfq_back_max;
5492 bfqd->bfq_back_penalty = bfq_back_penalty;
5493 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005494 bfqd->bfq_timeout = bfq_timeout;
5495
5496 bfqd->bfq_requests_within_timer = 120;
5497
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005498 bfqd->bfq_large_burst_thresh = 8;
5499 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5500
Paolo Valente44e44a12017-04-12 18:23:12 +02005501 bfqd->low_latency = true;
5502
5503 /*
5504 * Trade-off between responsiveness and fairness.
5505 */
5506 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005507 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005508 bfqd->bfq_wr_max_time = 0;
5509 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5510 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005511 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5512 * Approximate rate required
5513 * to playback or record a
5514 * high-definition compressed
5515 * video.
5516 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005517 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005518
5519 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005520 * Begin by assuming, optimistically, that the device peak
5521 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005522 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005523 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5524 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5525 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005526
Paolo Valenteaee69d72017-04-19 08:29:02 -06005527 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005528
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005529 /*
5530 * The invocation of the next bfq_create_group_hierarchy
5531 * function is the head of a chain of function calls
5532 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5533 * blk_mq_freeze_queue) that may lead to the invocation of the
5534 * has_work hook function. For this reason,
5535 * bfq_create_group_hierarchy is invoked only after all
5536 * scheduler data has been initialized, apart from the fields
5537 * that can be initialized only after invoking
5538 * bfq_create_group_hierarchy. This, in particular, enables
5539 * has_work to correctly return false. Of course, to avoid
5540 * other inconsistencies, the blk-mq stack must then refrain
5541 * from invoking further scheduler hooks before this init
5542 * function is finished.
5543 */
5544 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5545 if (!bfqd->root_group)
5546 goto out_free;
5547 bfq_init_root_group(bfqd->root_group, bfqd);
5548 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5549
Luca Micciob5dc5d42017-10-09 16:27:21 +02005550 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005551 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005552
5553out_free:
5554 kfree(bfqd);
5555 kobject_put(&eq->kobj);
5556 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005557}
5558
5559static void bfq_slab_kill(void)
5560{
5561 kmem_cache_destroy(bfq_pool);
5562}
5563
5564static int __init bfq_slab_setup(void)
5565{
5566 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5567 if (!bfq_pool)
5568 return -ENOMEM;
5569 return 0;
5570}
5571
5572static ssize_t bfq_var_show(unsigned int var, char *page)
5573{
5574 return sprintf(page, "%u\n", var);
5575}
5576
Bart Van Assche2f791362017-08-30 11:42:09 -07005577static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005578{
5579 unsigned long new_val;
5580 int ret = kstrtoul(page, 10, &new_val);
5581
Bart Van Assche2f791362017-08-30 11:42:09 -07005582 if (ret)
5583 return ret;
5584 *var = new_val;
5585 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005586}
5587
5588#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5589static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5590{ \
5591 struct bfq_data *bfqd = e->elevator_data; \
5592 u64 __data = __VAR; \
5593 if (__CONV == 1) \
5594 __data = jiffies_to_msecs(__data); \
5595 else if (__CONV == 2) \
5596 __data = div_u64(__data, NSEC_PER_MSEC); \
5597 return bfq_var_show(__data, (page)); \
5598}
5599SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5600SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5601SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5602SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5603SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5604SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5605SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5606SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02005607SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005608#undef SHOW_FUNCTION
5609
5610#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5611static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5612{ \
5613 struct bfq_data *bfqd = e->elevator_data; \
5614 u64 __data = __VAR; \
5615 __data = div_u64(__data, NSEC_PER_USEC); \
5616 return bfq_var_show(__data, (page)); \
5617}
5618USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5619#undef USEC_SHOW_FUNCTION
5620
5621#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5622static ssize_t \
5623__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5624{ \
5625 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005626 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005627 int ret; \
5628 \
5629 ret = bfq_var_store(&__data, (page)); \
5630 if (ret) \
5631 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005632 if (__data < __min) \
5633 __data = __min; \
5634 else if (__data > __max) \
5635 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005636 if (__CONV == 1) \
5637 *(__PTR) = msecs_to_jiffies(__data); \
5638 else if (__CONV == 2) \
5639 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5640 else \
5641 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08005642 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005643}
5644STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5645 INT_MAX, 2);
5646STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5647 INT_MAX, 2);
5648STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5649STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5650 INT_MAX, 0);
5651STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5652#undef STORE_FUNCTION
5653
5654#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5655static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5656{ \
5657 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005658 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005659 int ret; \
5660 \
5661 ret = bfq_var_store(&__data, (page)); \
5662 if (ret) \
5663 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005664 if (__data < __min) \
5665 __data = __min; \
5666 else if (__data > __max) \
5667 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005668 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08005669 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005670}
5671USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5672 UINT_MAX);
5673#undef USEC_STORE_FUNCTION
5674
Paolo Valenteaee69d72017-04-19 08:29:02 -06005675static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5676 const char *page, size_t count)
5677{
5678 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005679 unsigned long __data;
5680 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005681
Bart Van Assche2f791362017-08-30 11:42:09 -07005682 ret = bfq_var_store(&__data, (page));
5683 if (ret)
5684 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005685
5686 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005687 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005688 else {
5689 if (__data > INT_MAX)
5690 __data = INT_MAX;
5691 bfqd->bfq_max_budget = __data;
5692 }
5693
5694 bfqd->bfq_user_max_budget = __data;
5695
weiping zhang235f8da2017-08-25 01:11:33 +08005696 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005697}
5698
5699/*
5700 * Leaving this name to preserve name compatibility with cfq
5701 * parameters, but this timeout is used for both sync and async.
5702 */
5703static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5704 const char *page, size_t count)
5705{
5706 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005707 unsigned long __data;
5708 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005709
Bart Van Assche2f791362017-08-30 11:42:09 -07005710 ret = bfq_var_store(&__data, (page));
5711 if (ret)
5712 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005713
5714 if (__data < 1)
5715 __data = 1;
5716 else if (__data > INT_MAX)
5717 __data = INT_MAX;
5718
5719 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5720 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005721 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005722
weiping zhang235f8da2017-08-25 01:11:33 +08005723 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005724}
5725
5726static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5727 const char *page, size_t count)
5728{
5729 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005730 unsigned long __data;
5731 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005732
Bart Van Assche2f791362017-08-30 11:42:09 -07005733 ret = bfq_var_store(&__data, (page));
5734 if (ret)
5735 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005736
5737 if (__data > 1)
5738 __data = 1;
5739 if (!bfqd->strict_guarantees && __data == 1
5740 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5741 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5742
5743 bfqd->strict_guarantees = __data;
5744
weiping zhang235f8da2017-08-25 01:11:33 +08005745 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005746}
5747
Paolo Valente44e44a12017-04-12 18:23:12 +02005748static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5749 const char *page, size_t count)
5750{
5751 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005752 unsigned long __data;
5753 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005754
Bart Van Assche2f791362017-08-30 11:42:09 -07005755 ret = bfq_var_store(&__data, (page));
5756 if (ret)
5757 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02005758
5759 if (__data > 1)
5760 __data = 1;
5761 if (__data == 0 && bfqd->low_latency != 0)
5762 bfq_end_wr(bfqd);
5763 bfqd->low_latency = __data;
5764
weiping zhang235f8da2017-08-25 01:11:33 +08005765 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02005766}
5767
Paolo Valenteaee69d72017-04-19 08:29:02 -06005768#define BFQ_ATTR(name) \
5769 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5770
5771static struct elv_fs_entry bfq_attrs[] = {
5772 BFQ_ATTR(fifo_expire_sync),
5773 BFQ_ATTR(fifo_expire_async),
5774 BFQ_ATTR(back_seek_max),
5775 BFQ_ATTR(back_seek_penalty),
5776 BFQ_ATTR(slice_idle),
5777 BFQ_ATTR(slice_idle_us),
5778 BFQ_ATTR(max_budget),
5779 BFQ_ATTR(timeout_sync),
5780 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02005781 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06005782 __ATTR_NULL
5783};
5784
5785static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06005786 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01005787 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005788 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01005789 .requeue_request = bfq_finish_requeue_request,
5790 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005791 .exit_icq = bfq_exit_icq,
5792 .insert_requests = bfq_insert_requests,
5793 .dispatch_request = bfq_dispatch_request,
5794 .next_request = elv_rb_latter_request,
5795 .former_request = elv_rb_former_request,
5796 .allow_merge = bfq_allow_bio_merge,
5797 .bio_merge = bfq_bio_merge,
5798 .request_merge = bfq_request_merge,
5799 .requests_merged = bfq_requests_merged,
5800 .request_merged = bfq_request_merged,
5801 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06005802 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005803 .init_sched = bfq_init_queue,
5804 .exit_sched = bfq_exit_queue,
5805 },
5806
Paolo Valenteaee69d72017-04-19 08:29:02 -06005807 .icq_size = sizeof(struct bfq_io_cq),
5808 .icq_align = __alignof__(struct bfq_io_cq),
5809 .elevator_attrs = bfq_attrs,
5810 .elevator_name = "bfq",
5811 .elevator_owner = THIS_MODULE,
5812};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01005813MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06005814
5815static int __init bfq_init(void)
5816{
5817 int ret;
5818
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005819#ifdef CONFIG_BFQ_GROUP_IOSCHED
5820 ret = blkcg_policy_register(&blkcg_policy_bfq);
5821 if (ret)
5822 return ret;
5823#endif
5824
Paolo Valenteaee69d72017-04-19 08:29:02 -06005825 ret = -ENOMEM;
5826 if (bfq_slab_setup())
5827 goto err_pol_unreg;
5828
Paolo Valente44e44a12017-04-12 18:23:12 +02005829 /*
5830 * Times to load large popular applications for the typical
5831 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02005832 * comments before the definition of the next
5833 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02005834 * estimated peak rate tends to be smaller than the actual
5835 * peak rate. The reason for this last fact is that estimates
5836 * are computed over much shorter time intervals than the long
5837 * intervals typically used for benchmarking. Why? First, to
5838 * adapt more quickly to variations. Second, because an I/O
5839 * scheduler cannot rely on a peak-rate-evaluation workload to
5840 * be run for a long time.
5841 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005842 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5843 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02005844
Paolo Valenteaee69d72017-04-19 08:29:02 -06005845 ret = elv_register(&iosched_bfq_mq);
5846 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08005847 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005848
5849 return 0;
5850
weiping zhang37dcd652017-08-19 00:37:20 +08005851slab_kill:
5852 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005853err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005854#ifdef CONFIG_BFQ_GROUP_IOSCHED
5855 blkcg_policy_unregister(&blkcg_policy_bfq);
5856#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005857 return ret;
5858}
5859
5860static void __exit bfq_exit(void)
5861{
5862 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005863#ifdef CONFIG_BFQ_GROUP_IOSCHED
5864 blkcg_policy_unregister(&blkcg_policy_bfq);
5865#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005866 bfq_slab_kill();
5867}
5868
5869module_init(bfq_init);
5870module_exit(bfq_exit);
5871
5872MODULE_AUTHOR("Paolo Valente");
5873MODULE_LICENSE("GPL");
5874MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");