Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Budget Fair Queueing (BFQ) I/O scheduler. |
| 3 | * |
| 4 | * Based on ideas and code from CFQ: |
| 5 | * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> |
| 6 | * |
| 7 | * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> |
| 8 | * Paolo Valente <paolo.valente@unimore.it> |
| 9 | * |
| 10 | * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> |
| 11 | * Arianna Avanzini <avanzini@google.com> |
| 12 | * |
| 13 | * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License as |
| 17 | * published by the Free Software Foundation; either version 2 of the |
| 18 | * License, or (at your option) any later version. |
| 19 | * |
| 20 | * This program is distributed in the hope that it will be useful, |
| 21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | * General Public License for more details. |
| 24 | * |
| 25 | * BFQ is a proportional-share I/O scheduler, with some extra |
| 26 | * low-latency capabilities. BFQ also supports full hierarchical |
| 27 | * scheduling through cgroups. Next paragraphs provide an introduction |
| 28 | * on BFQ inner workings. Details on BFQ benefits, usage and |
| 29 | * limitations can be found in Documentation/block/bfq-iosched.txt. |
| 30 | * |
| 31 | * BFQ is a proportional-share storage-I/O scheduling algorithm based |
| 32 | * on the slice-by-slice service scheme of CFQ. But BFQ assigns |
| 33 | * budgets, measured in number of sectors, to processes instead of |
| 34 | * time slices. The device is not granted to the in-service process |
| 35 | * for a given time slice, but until it has exhausted its assigned |
| 36 | * budget. This change from the time to the service domain enables BFQ |
| 37 | * to distribute the device throughput among processes as desired, |
| 38 | * without any distortion due to throughput fluctuations, or to device |
| 39 | * internal queueing. BFQ uses an ad hoc internal scheduler, called |
| 40 | * B-WF2Q+, to schedule processes according to their budgets. More |
| 41 | * precisely, BFQ schedules queues associated with processes. Each |
| 42 | * process/queue is assigned a user-configurable weight, and B-WF2Q+ |
| 43 | * guarantees that each queue receives a fraction of the throughput |
| 44 | * proportional to its weight. Thanks to the accurate policy of |
| 45 | * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound |
| 46 | * processes issuing sequential requests (to boost the throughput), |
| 47 | * and yet guarantee a low latency to interactive and soft real-time |
| 48 | * applications. |
| 49 | * |
| 50 | * In particular, to provide these low-latency guarantees, BFQ |
| 51 | * explicitly privileges the I/O of two classes of time-sensitive |
| 52 | * applications: interactive and soft real-time. This feature enables |
| 53 | * BFQ to provide applications in these classes with a very low |
| 54 | * latency. Finally, BFQ also features additional heuristics for |
| 55 | * preserving both a low latency and a high throughput on NCQ-capable, |
| 56 | * rotational or flash-based devices, and to get the job done quickly |
| 57 | * for applications consisting in many I/O-bound processes. |
| 58 | * |
| 59 | * BFQ is described in [1], where also a reference to the initial, more |
| 60 | * theoretical paper on BFQ can be found. The interested reader can find |
| 61 | * in the latter paper full details on the main algorithm, as well as |
| 62 | * formulas of the guarantees and formal proofs of all the properties. |
| 63 | * With respect to the version of BFQ presented in these papers, this |
| 64 | * implementation adds a few more heuristics, such as the one that |
| 65 | * guarantees a low latency to soft real-time applications, and a |
| 66 | * hierarchical extension based on H-WF2Q+. |
| 67 | * |
| 68 | * B-WF2Q+ is based on WF2Q+, which is described in [2], together with |
| 69 | * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ |
| 70 | * with O(log N) complexity derives from the one introduced with EEVDF |
| 71 | * in [3]. |
| 72 | * |
| 73 | * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O |
| 74 | * Scheduler", Proceedings of the First Workshop on Mobile System |
| 75 | * Technologies (MST-2015), May 2015. |
| 76 | * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf |
| 77 | * |
| 78 | * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing |
| 79 | * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, |
| 80 | * Oct 1997. |
| 81 | * |
| 82 | * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz |
| 83 | * |
| 84 | * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline |
| 85 | * First: A Flexible and Accurate Mechanism for Proportional Share |
| 86 | * Resource Allocation", technical report. |
| 87 | * |
| 88 | * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf |
| 89 | */ |
| 90 | #include <linux/module.h> |
| 91 | #include <linux/slab.h> |
| 92 | #include <linux/blkdev.h> |
| 93 | #include <linux/elevator.h> |
| 94 | #include <linux/ktime.h> |
| 95 | #include <linux/rbtree.h> |
| 96 | #include <linux/ioprio.h> |
| 97 | #include <linux/sbitmap.h> |
| 98 | #include <linux/delay.h> |
| 99 | |
| 100 | #include "blk.h" |
| 101 | #include "blk-mq.h" |
| 102 | #include "blk-mq-tag.h" |
| 103 | #include "blk-mq-sched.h" |
| 104 | #include <linux/blktrace_api.h> |
| 105 | #include <linux/hrtimer.h> |
| 106 | #include <linux/blk-cgroup.h> |
| 107 | |
| 108 | #define BFQ_IOPRIO_CLASSES 3 |
| 109 | #define BFQ_CL_IDLE_TIMEOUT (HZ/5) |
| 110 | |
| 111 | #define BFQ_MIN_WEIGHT 1 |
| 112 | #define BFQ_MAX_WEIGHT 1000 |
| 113 | #define BFQ_WEIGHT_CONVERSION_COEFF 10 |
| 114 | |
| 115 | #define BFQ_DEFAULT_QUEUE_IOPRIO 4 |
| 116 | |
| 117 | #define BFQ_DEFAULT_GRP_WEIGHT 10 |
| 118 | #define BFQ_DEFAULT_GRP_IOPRIO 0 |
| 119 | #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE |
| 120 | |
| 121 | struct bfq_entity; |
| 122 | |
| 123 | /** |
| 124 | * struct bfq_service_tree - per ioprio_class service tree. |
| 125 | * |
| 126 | * Each service tree represents a B-WF2Q+ scheduler on its own. Each |
| 127 | * ioprio_class has its own independent scheduler, and so its own |
| 128 | * bfq_service_tree. All the fields are protected by the queue lock |
| 129 | * of the containing bfqd. |
| 130 | */ |
| 131 | struct bfq_service_tree { |
| 132 | /* tree for active entities (i.e., those backlogged) */ |
| 133 | struct rb_root active; |
| 134 | /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/ |
| 135 | struct rb_root idle; |
| 136 | |
| 137 | /* idle entity with minimum F_i */ |
| 138 | struct bfq_entity *first_idle; |
| 139 | /* idle entity with maximum F_i */ |
| 140 | struct bfq_entity *last_idle; |
| 141 | |
| 142 | /* scheduler virtual time */ |
| 143 | u64 vtime; |
| 144 | /* scheduler weight sum; active and idle entities contribute to it */ |
| 145 | unsigned long wsum; |
| 146 | }; |
| 147 | |
| 148 | /** |
| 149 | * struct bfq_sched_data - multi-class scheduler. |
| 150 | * |
| 151 | * bfq_sched_data is the basic scheduler queue. It supports three |
| 152 | * ioprio_classes, and can be used either as a toplevel queue or as |
| 153 | * an intermediate queue on a hierarchical setup. |
| 154 | * @next_in_service points to the active entity of the sched_data |
| 155 | * service trees that will be scheduled next. |
| 156 | * |
| 157 | * The supported ioprio_classes are the same as in CFQ, in descending |
| 158 | * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. |
| 159 | * Requests from higher priority queues are served before all the |
| 160 | * requests from lower priority queues; among requests of the same |
| 161 | * queue requests are served according to B-WF2Q+. |
| 162 | * All the fields are protected by the queue lock of the containing bfqd. |
| 163 | */ |
| 164 | struct bfq_sched_data { |
| 165 | /* entity in service */ |
| 166 | struct bfq_entity *in_service_entity; |
| 167 | /* head-of-the-line entity in the scheduler */ |
| 168 | struct bfq_entity *next_in_service; |
| 169 | /* array of service trees, one per ioprio_class */ |
| 170 | struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; |
| 171 | }; |
| 172 | |
| 173 | /** |
| 174 | * struct bfq_entity - schedulable entity. |
| 175 | * |
| 176 | * A bfq_entity is used to represent a bfq_queue (leaf node in the upper |
| 177 | * level scheduler). Each entity belongs to the sched_data of the parent |
| 178 | * group hierarchy. Non-leaf entities have also their own sched_data, |
| 179 | * stored in @my_sched_data. |
| 180 | * |
| 181 | * Each entity stores independently its priority values; this would |
| 182 | * allow different weights on different devices, but this |
| 183 | * functionality is not exported to userspace by now. Priorities and |
| 184 | * weights are updated lazily, first storing the new values into the |
| 185 | * new_* fields, then setting the @prio_changed flag. As soon as |
| 186 | * there is a transition in the entity state that allows the priority |
| 187 | * update to take place the effective and the requested priority |
| 188 | * values are synchronized. |
| 189 | * |
| 190 | * The weight value is calculated from the ioprio to export the same |
| 191 | * interface as CFQ. When dealing with ``well-behaved'' queues (i.e., |
| 192 | * queues that do not spend too much time to consume their budget |
| 193 | * and have true sequential behavior, and when there are no external |
| 194 | * factors breaking anticipation) the relative weights at each level |
| 195 | * of the hierarchy should be guaranteed. All the fields are |
| 196 | * protected by the queue lock of the containing bfqd. |
| 197 | */ |
| 198 | struct bfq_entity { |
| 199 | /* service_tree member */ |
| 200 | struct rb_node rb_node; |
| 201 | |
| 202 | /* |
| 203 | * flag, true if the entity is on a tree (either the active or |
| 204 | * the idle one of its service_tree). |
| 205 | */ |
| 206 | int on_st; |
| 207 | |
| 208 | /* B-WF2Q+ start and finish timestamps [sectors/weight] */ |
| 209 | u64 start, finish; |
| 210 | |
| 211 | /* tree the entity is enqueued into; %NULL if not on a tree */ |
| 212 | struct rb_root *tree; |
| 213 | |
| 214 | /* |
| 215 | * minimum start time of the (active) subtree rooted at this |
| 216 | * entity; used for O(log N) lookups into active trees |
| 217 | */ |
| 218 | u64 min_start; |
| 219 | |
| 220 | /* amount of service received during the last service slot */ |
| 221 | int service; |
| 222 | |
| 223 | /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ |
| 224 | int budget; |
| 225 | |
| 226 | /* weight of the queue */ |
| 227 | int weight; |
| 228 | /* next weight if a change is in progress */ |
| 229 | int new_weight; |
| 230 | |
| 231 | /* original weight, used to implement weight boosting */ |
| 232 | int orig_weight; |
| 233 | |
| 234 | /* parent entity, for hierarchical scheduling */ |
| 235 | struct bfq_entity *parent; |
| 236 | |
| 237 | /* |
| 238 | * For non-leaf nodes in the hierarchy, the associated |
| 239 | * scheduler queue, %NULL on leaf nodes. |
| 240 | */ |
| 241 | struct bfq_sched_data *my_sched_data; |
| 242 | /* the scheduler queue this entity belongs to */ |
| 243 | struct bfq_sched_data *sched_data; |
| 244 | |
| 245 | /* flag, set to request a weight, ioprio or ioprio_class change */ |
| 246 | int prio_changed; |
| 247 | }; |
| 248 | |
| 249 | /** |
| 250 | * struct bfq_ttime - per process thinktime stats. |
| 251 | */ |
| 252 | struct bfq_ttime { |
| 253 | /* completion time of the last request */ |
| 254 | u64 last_end_request; |
| 255 | |
| 256 | /* total process thinktime */ |
| 257 | u64 ttime_total; |
| 258 | /* number of thinktime samples */ |
| 259 | unsigned long ttime_samples; |
| 260 | /* average process thinktime */ |
| 261 | u64 ttime_mean; |
| 262 | }; |
| 263 | |
| 264 | /** |
| 265 | * struct bfq_queue - leaf schedulable entity. |
| 266 | * |
| 267 | * A bfq_queue is a leaf request queue; it can be associated with an |
| 268 | * io_context or more, if it is async. |
| 269 | */ |
| 270 | struct bfq_queue { |
| 271 | /* reference counter */ |
| 272 | int ref; |
| 273 | /* parent bfq_data */ |
| 274 | struct bfq_data *bfqd; |
| 275 | |
| 276 | /* current ioprio and ioprio class */ |
| 277 | unsigned short ioprio, ioprio_class; |
| 278 | /* next ioprio and ioprio class if a change is in progress */ |
| 279 | unsigned short new_ioprio, new_ioprio_class; |
| 280 | |
| 281 | /* sorted list of pending requests */ |
| 282 | struct rb_root sort_list; |
| 283 | /* if fifo isn't expired, next request to serve */ |
| 284 | struct request *next_rq; |
| 285 | /* number of sync and async requests queued */ |
| 286 | int queued[2]; |
| 287 | /* number of requests currently allocated */ |
| 288 | int allocated; |
| 289 | /* number of pending metadata requests */ |
| 290 | int meta_pending; |
| 291 | /* fifo list of requests in sort_list */ |
| 292 | struct list_head fifo; |
| 293 | |
| 294 | /* entity representing this queue in the scheduler */ |
| 295 | struct bfq_entity entity; |
| 296 | |
| 297 | /* maximum budget allowed from the feedback mechanism */ |
| 298 | int max_budget; |
| 299 | /* budget expiration (in jiffies) */ |
| 300 | unsigned long budget_timeout; |
| 301 | |
| 302 | /* number of requests on the dispatch list or inside driver */ |
| 303 | int dispatched; |
| 304 | |
| 305 | /* status flags */ |
| 306 | unsigned long flags; |
| 307 | |
| 308 | /* node for active/idle bfqq list inside parent bfqd */ |
| 309 | struct list_head bfqq_list; |
| 310 | |
| 311 | /* associated @bfq_ttime struct */ |
| 312 | struct bfq_ttime ttime; |
| 313 | |
| 314 | /* bit vector: a 1 for each seeky requests in history */ |
| 315 | u32 seek_history; |
| 316 | /* position of the last request enqueued */ |
| 317 | sector_t last_request_pos; |
| 318 | |
| 319 | /* Number of consecutive pairs of request completion and |
| 320 | * arrival, such that the queue becomes idle after the |
| 321 | * completion, but the next request arrives within an idle |
| 322 | * time slice; used only if the queue's IO_bound flag has been |
| 323 | * cleared. |
| 324 | */ |
| 325 | unsigned int requests_within_timer; |
| 326 | |
| 327 | /* pid of the process owning the queue, used for logging purposes */ |
| 328 | pid_t pid; |
| 329 | }; |
| 330 | |
| 331 | /** |
| 332 | * struct bfq_io_cq - per (request_queue, io_context) structure. |
| 333 | */ |
| 334 | struct bfq_io_cq { |
| 335 | /* associated io_cq structure */ |
| 336 | struct io_cq icq; /* must be the first member */ |
| 337 | /* array of two process queues, the sync and the async */ |
| 338 | struct bfq_queue *bfqq[2]; |
| 339 | /* per (request_queue, blkcg) ioprio */ |
| 340 | int ioprio; |
| 341 | }; |
| 342 | |
| 343 | /** |
| 344 | * struct bfq_data - per-device data structure. |
| 345 | * |
| 346 | * All the fields are protected by @lock. |
| 347 | */ |
| 348 | struct bfq_data { |
| 349 | /* device request queue */ |
| 350 | struct request_queue *queue; |
| 351 | /* dispatch queue */ |
| 352 | struct list_head dispatch; |
| 353 | |
| 354 | /* root @bfq_sched_data for the device */ |
| 355 | struct bfq_sched_data sched_data; |
| 356 | |
| 357 | /* |
| 358 | * Number of bfq_queues containing requests (including the |
| 359 | * queue in service, even if it is idling). |
| 360 | */ |
| 361 | int busy_queues; |
| 362 | /* number of queued requests */ |
| 363 | int queued; |
| 364 | /* number of requests dispatched and waiting for completion */ |
| 365 | int rq_in_driver; |
| 366 | |
| 367 | /* |
| 368 | * Maximum number of requests in driver in the last |
| 369 | * @hw_tag_samples completed requests. |
| 370 | */ |
| 371 | int max_rq_in_driver; |
| 372 | /* number of samples used to calculate hw_tag */ |
| 373 | int hw_tag_samples; |
| 374 | /* flag set to one if the driver is showing a queueing behavior */ |
| 375 | int hw_tag; |
| 376 | |
| 377 | /* number of budgets assigned */ |
| 378 | int budgets_assigned; |
| 379 | |
| 380 | /* |
| 381 | * Timer set when idling (waiting) for the next request from |
| 382 | * the queue in service. |
| 383 | */ |
| 384 | struct hrtimer idle_slice_timer; |
| 385 | |
| 386 | /* bfq_queue in service */ |
| 387 | struct bfq_queue *in_service_queue; |
| 388 | /* bfq_io_cq (bic) associated with the @in_service_queue */ |
| 389 | struct bfq_io_cq *in_service_bic; |
| 390 | |
| 391 | /* on-disk position of the last served request */ |
| 392 | sector_t last_position; |
| 393 | |
| 394 | /* beginning of the last budget */ |
| 395 | ktime_t last_budget_start; |
| 396 | /* beginning of the last idle slice */ |
| 397 | ktime_t last_idling_start; |
| 398 | /* number of samples used to calculate @peak_rate */ |
| 399 | int peak_rate_samples; |
| 400 | /* |
| 401 | * Peak read/write rate, observed during the service of a |
| 402 | * budget [BFQ_RATE_SHIFT * sectors/usec]. The value is |
| 403 | * left-shifted by BFQ_RATE_SHIFT to increase precision in |
| 404 | * fixed-point calculations. |
| 405 | */ |
| 406 | u64 peak_rate; |
| 407 | /* maximum budget allotted to a bfq_queue before rescheduling */ |
| 408 | int bfq_max_budget; |
| 409 | |
| 410 | /* list of all the bfq_queues active on the device */ |
| 411 | struct list_head active_list; |
| 412 | /* list of all the bfq_queues idle on the device */ |
| 413 | struct list_head idle_list; |
| 414 | |
| 415 | /* |
| 416 | * Timeout for async/sync requests; when it fires, requests |
| 417 | * are served in fifo order. |
| 418 | */ |
| 419 | u64 bfq_fifo_expire[2]; |
| 420 | /* weight of backward seeks wrt forward ones */ |
| 421 | unsigned int bfq_back_penalty; |
| 422 | /* maximum allowed backward seek */ |
| 423 | unsigned int bfq_back_max; |
| 424 | /* maximum idling time */ |
| 425 | u32 bfq_slice_idle; |
| 426 | /* last time CLASS_IDLE was served */ |
| 427 | u64 bfq_class_idle_last_service; |
| 428 | |
| 429 | /* user-configured max budget value (0 for auto-tuning) */ |
| 430 | int bfq_user_max_budget; |
| 431 | /* |
| 432 | * Timeout for bfq_queues to consume their budget; used to |
| 433 | * prevent seeky queues from imposing long latencies to |
| 434 | * sequential or quasi-sequential ones (this also implies that |
| 435 | * seeky queues cannot receive guarantees in the service |
| 436 | * domain; after a timeout they are charged for the time they |
| 437 | * have been in service, to preserve fairness among them, but |
| 438 | * without service-domain guarantees). |
| 439 | */ |
| 440 | unsigned int bfq_timeout; |
| 441 | |
| 442 | /* |
| 443 | * Number of consecutive requests that must be issued within |
| 444 | * the idle time slice to set again idling to a queue which |
| 445 | * was marked as non-I/O-bound (see the definition of the |
| 446 | * IO_bound flag for further details). |
| 447 | */ |
| 448 | unsigned int bfq_requests_within_timer; |
| 449 | |
| 450 | /* |
| 451 | * Force device idling whenever needed to provide accurate |
| 452 | * service guarantees, without caring about throughput |
| 453 | * issues. CAVEAT: this may even increase latencies, in case |
| 454 | * of useless idling for processes that did stop doing I/O. |
| 455 | */ |
| 456 | bool strict_guarantees; |
| 457 | |
| 458 | /* fallback dummy bfqq for extreme OOM conditions */ |
| 459 | struct bfq_queue oom_bfqq; |
| 460 | |
| 461 | spinlock_t lock; |
| 462 | |
| 463 | /* |
| 464 | * bic associated with the task issuing current bio for |
| 465 | * merging. This and the next field are used as a support to |
| 466 | * be able to perform the bic lookup, needed by bio-merge |
| 467 | * functions, before the scheduler lock is taken, and thus |
| 468 | * avoid taking the request-queue lock while the scheduler |
| 469 | * lock is being held. |
| 470 | */ |
| 471 | struct bfq_io_cq *bio_bic; |
| 472 | /* bfqq associated with the task issuing current bio for merging */ |
| 473 | struct bfq_queue *bio_bfqq; |
| 474 | }; |
| 475 | |
| 476 | enum bfqq_state_flags { |
| 477 | BFQQF_busy = 0, /* has requests or is in service */ |
| 478 | BFQQF_wait_request, /* waiting for a request */ |
| 479 | BFQQF_non_blocking_wait_rq, /* |
| 480 | * waiting for a request |
| 481 | * without idling the device |
| 482 | */ |
| 483 | BFQQF_fifo_expire, /* FIFO checked in this slice */ |
| 484 | BFQQF_idle_window, /* slice idling enabled */ |
| 485 | BFQQF_sync, /* synchronous queue */ |
| 486 | BFQQF_budget_new, /* no completion with this budget */ |
| 487 | BFQQF_IO_bound, /* |
| 488 | * bfqq has timed-out at least once |
| 489 | * having consumed at most 2/10 of |
| 490 | * its budget |
| 491 | */ |
| 492 | }; |
| 493 | |
| 494 | #define BFQ_BFQQ_FNS(name) \ |
| 495 | static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ |
| 496 | { \ |
| 497 | __set_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 498 | } \ |
| 499 | static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ |
| 500 | { \ |
| 501 | __clear_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 502 | } \ |
| 503 | static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ |
| 504 | { \ |
| 505 | return test_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 506 | } |
| 507 | |
| 508 | BFQ_BFQQ_FNS(busy); |
| 509 | BFQ_BFQQ_FNS(wait_request); |
| 510 | BFQ_BFQQ_FNS(non_blocking_wait_rq); |
| 511 | BFQ_BFQQ_FNS(fifo_expire); |
| 512 | BFQ_BFQQ_FNS(idle_window); |
| 513 | BFQ_BFQQ_FNS(sync); |
| 514 | BFQ_BFQQ_FNS(budget_new); |
| 515 | BFQ_BFQQ_FNS(IO_bound); |
| 516 | #undef BFQ_BFQQ_FNS |
| 517 | |
| 518 | /* Logging facilities. */ |
| 519 | #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ |
| 520 | blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args) |
| 521 | |
| 522 | #define bfq_log(bfqd, fmt, args...) \ |
| 523 | blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) |
| 524 | |
| 525 | /* Expiration reasons. */ |
| 526 | enum bfqq_expiration { |
| 527 | BFQQE_TOO_IDLE = 0, /* |
| 528 | * queue has been idling for |
| 529 | * too long |
| 530 | */ |
| 531 | BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ |
| 532 | BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ |
| 533 | BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ |
| 534 | BFQQE_PREEMPTED /* preemption in progress */ |
| 535 | }; |
| 536 | |
| 537 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); |
| 538 | |
| 539 | static struct bfq_service_tree * |
| 540 | bfq_entity_service_tree(struct bfq_entity *entity) |
| 541 | { |
| 542 | struct bfq_sched_data *sched_data = entity->sched_data; |
| 543 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 544 | unsigned int idx = bfqq ? bfqq->ioprio_class - 1 : |
| 545 | BFQ_DEFAULT_GRP_CLASS - 1; |
| 546 | |
| 547 | return sched_data->service_tree + idx; |
| 548 | } |
| 549 | |
| 550 | static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 551 | { |
| 552 | return bic->bfqq[is_sync]; |
| 553 | } |
| 554 | |
| 555 | static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, |
| 556 | bool is_sync) |
| 557 | { |
| 558 | bic->bfqq[is_sync] = bfqq; |
| 559 | } |
| 560 | |
| 561 | static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) |
| 562 | { |
| 563 | return bic->icq.q->elevator->elevator_data; |
| 564 | } |
| 565 | |
| 566 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio); |
| 567 | static void bfq_put_queue(struct bfq_queue *bfqq); |
| 568 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 569 | struct bio *bio, bool is_sync, |
| 570 | struct bfq_io_cq *bic); |
| 571 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); |
| 572 | |
| 573 | /* |
| 574 | * Array of async queues for all the processes, one queue |
| 575 | * per ioprio value per ioprio_class. |
| 576 | */ |
| 577 | struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| 578 | /* Async queue for the idle class (ioprio is ignored) */ |
| 579 | struct bfq_queue *async_idle_bfqq; |
| 580 | |
| 581 | /* Expiration time of sync (0) and async (1) requests, in ns. */ |
| 582 | static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; |
| 583 | |
| 584 | /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ |
| 585 | static const int bfq_back_max = 16 * 1024; |
| 586 | |
| 587 | /* Penalty of a backwards seek, in number of sectors. */ |
| 588 | static const int bfq_back_penalty = 2; |
| 589 | |
| 590 | /* Idling period duration, in ns. */ |
| 591 | static u64 bfq_slice_idle = NSEC_PER_SEC / 125; |
| 592 | |
| 593 | /* Minimum number of assigned budgets for which stats are safe to compute. */ |
| 594 | static const int bfq_stats_min_budgets = 194; |
| 595 | |
| 596 | /* Default maximum budget values, in sectors and number of requests. */ |
| 597 | static const int bfq_default_max_budget = 16 * 1024; |
| 598 | |
| 599 | /* Default timeout values, in jiffies, approximating CFQ defaults. */ |
| 600 | static const int bfq_timeout = HZ / 8; |
| 601 | |
| 602 | static struct kmem_cache *bfq_pool; |
| 603 | |
| 604 | /* Below this threshold (in ms), we consider thinktime immediate. */ |
| 605 | #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) |
| 606 | |
| 607 | /* hw_tag detection: parallel requests threshold and min samples needed. */ |
| 608 | #define BFQ_HW_QUEUE_THRESHOLD 4 |
| 609 | #define BFQ_HW_QUEUE_SAMPLES 32 |
| 610 | |
| 611 | #define BFQQ_SEEK_THR (sector_t)(8 * 100) |
| 612 | #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) |
| 613 | #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) |
| 614 | #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) |
| 615 | |
| 616 | /* Budget feedback step. */ |
| 617 | #define BFQ_BUDGET_STEP 128 |
| 618 | |
| 619 | /* Min samples used for peak rate estimation (for autotuning). */ |
| 620 | #define BFQ_PEAK_RATE_SAMPLES 32 |
| 621 | |
| 622 | /* Shift used for peak rate fixed precision calculations. */ |
| 623 | #define BFQ_RATE_SHIFT 16 |
| 624 | |
| 625 | #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ |
| 626 | { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) |
| 627 | |
| 628 | #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) |
| 629 | #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) |
| 630 | |
| 631 | /** |
| 632 | * icq_to_bic - convert iocontext queue structure to bfq_io_cq. |
| 633 | * @icq: the iocontext queue. |
| 634 | */ |
| 635 | static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) |
| 636 | { |
| 637 | /* bic->icq is the first member, %NULL will convert to %NULL */ |
| 638 | return container_of(icq, struct bfq_io_cq, icq); |
| 639 | } |
| 640 | |
| 641 | /** |
| 642 | * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. |
| 643 | * @bfqd: the lookup key. |
| 644 | * @ioc: the io_context of the process doing I/O. |
| 645 | * @q: the request queue. |
| 646 | */ |
| 647 | static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, |
| 648 | struct io_context *ioc, |
| 649 | struct request_queue *q) |
| 650 | { |
| 651 | if (ioc) { |
| 652 | unsigned long flags; |
| 653 | struct bfq_io_cq *icq; |
| 654 | |
| 655 | spin_lock_irqsave(q->queue_lock, flags); |
| 656 | icq = icq_to_bic(ioc_lookup_icq(ioc, q)); |
| 657 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 658 | |
| 659 | return icq; |
| 660 | } |
| 661 | |
| 662 | return NULL; |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Next two macros are just fake loops for the moment. They will |
| 667 | * become true loops in the cgroups-enabled variant of the code. Such |
| 668 | * a variant, in its turn, will be introduced by next commit. |
| 669 | */ |
| 670 | #define for_each_entity(entity) \ |
| 671 | for (; entity ; entity = NULL) |
| 672 | |
| 673 | #define for_each_entity_safe(entity, parent) \ |
| 674 | for (parent = NULL; entity ; entity = parent) |
| 675 | |
| 676 | static int bfq_update_next_in_service(struct bfq_sched_data *sd) |
| 677 | { |
| 678 | return 0; |
| 679 | } |
| 680 | |
| 681 | static void bfq_check_next_in_service(struct bfq_sched_data *sd, |
| 682 | struct bfq_entity *entity) |
| 683 | { |
| 684 | } |
| 685 | |
| 686 | static void bfq_update_budget(struct bfq_entity *next_in_service) |
| 687 | { |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Shift for timestamp calculations. This actually limits the maximum |
| 692 | * service allowed in one timestamp delta (small shift values increase it), |
| 693 | * the maximum total weight that can be used for the queues in the system |
| 694 | * (big shift values increase it), and the period of virtual time |
| 695 | * wraparounds. |
| 696 | */ |
| 697 | #define WFQ_SERVICE_SHIFT 22 |
| 698 | |
| 699 | /** |
| 700 | * bfq_gt - compare two timestamps. |
| 701 | * @a: first ts. |
| 702 | * @b: second ts. |
| 703 | * |
| 704 | * Return @a > @b, dealing with wrapping correctly. |
| 705 | */ |
| 706 | static int bfq_gt(u64 a, u64 b) |
| 707 | { |
| 708 | return (s64)(a - b) > 0; |
| 709 | } |
| 710 | |
| 711 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) |
| 712 | { |
| 713 | struct bfq_queue *bfqq = NULL; |
| 714 | |
| 715 | if (!entity->my_sched_data) |
| 716 | bfqq = container_of(entity, struct bfq_queue, entity); |
| 717 | |
| 718 | return bfqq; |
| 719 | } |
| 720 | |
| 721 | |
| 722 | /** |
| 723 | * bfq_delta - map service into the virtual time domain. |
| 724 | * @service: amount of service. |
| 725 | * @weight: scale factor (weight of an entity or weight sum). |
| 726 | */ |
| 727 | static u64 bfq_delta(unsigned long service, unsigned long weight) |
| 728 | { |
| 729 | u64 d = (u64)service << WFQ_SERVICE_SHIFT; |
| 730 | |
| 731 | do_div(d, weight); |
| 732 | return d; |
| 733 | } |
| 734 | |
| 735 | /** |
| 736 | * bfq_calc_finish - assign the finish time to an entity. |
| 737 | * @entity: the entity to act upon. |
| 738 | * @service: the service to be charged to the entity. |
| 739 | */ |
| 740 | static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) |
| 741 | { |
| 742 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 743 | |
| 744 | entity->finish = entity->start + |
| 745 | bfq_delta(service, entity->weight); |
| 746 | |
| 747 | if (bfqq) { |
| 748 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 749 | "calc_finish: serv %lu, w %d", |
| 750 | service, entity->weight); |
| 751 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 752 | "calc_finish: start %llu, finish %llu, delta %llu", |
| 753 | entity->start, entity->finish, |
| 754 | bfq_delta(service, entity->weight)); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | /** |
| 759 | * bfq_entity_of - get an entity from a node. |
| 760 | * @node: the node field of the entity. |
| 761 | * |
| 762 | * Convert a node pointer to the relative entity. This is used only |
| 763 | * to simplify the logic of some functions and not as the generic |
| 764 | * conversion mechanism because, e.g., in the tree walking functions, |
| 765 | * the check for a %NULL value would be redundant. |
| 766 | */ |
| 767 | static struct bfq_entity *bfq_entity_of(struct rb_node *node) |
| 768 | { |
| 769 | struct bfq_entity *entity = NULL; |
| 770 | |
| 771 | if (node) |
| 772 | entity = rb_entry(node, struct bfq_entity, rb_node); |
| 773 | |
| 774 | return entity; |
| 775 | } |
| 776 | |
| 777 | /** |
| 778 | * bfq_extract - remove an entity from a tree. |
| 779 | * @root: the tree root. |
| 780 | * @entity: the entity to remove. |
| 781 | */ |
| 782 | static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) |
| 783 | { |
| 784 | entity->tree = NULL; |
| 785 | rb_erase(&entity->rb_node, root); |
| 786 | } |
| 787 | |
| 788 | /** |
| 789 | * bfq_idle_extract - extract an entity from the idle tree. |
| 790 | * @st: the service tree of the owning @entity. |
| 791 | * @entity: the entity being removed. |
| 792 | */ |
| 793 | static void bfq_idle_extract(struct bfq_service_tree *st, |
| 794 | struct bfq_entity *entity) |
| 795 | { |
| 796 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 797 | struct rb_node *next; |
| 798 | |
| 799 | if (entity == st->first_idle) { |
| 800 | next = rb_next(&entity->rb_node); |
| 801 | st->first_idle = bfq_entity_of(next); |
| 802 | } |
| 803 | |
| 804 | if (entity == st->last_idle) { |
| 805 | next = rb_prev(&entity->rb_node); |
| 806 | st->last_idle = bfq_entity_of(next); |
| 807 | } |
| 808 | |
| 809 | bfq_extract(&st->idle, entity); |
| 810 | |
| 811 | if (bfqq) |
| 812 | list_del(&bfqq->bfqq_list); |
| 813 | } |
| 814 | |
| 815 | /** |
| 816 | * bfq_insert - generic tree insertion. |
| 817 | * @root: tree root. |
| 818 | * @entity: entity to insert. |
| 819 | * |
| 820 | * This is used for the idle and the active tree, since they are both |
| 821 | * ordered by finish time. |
| 822 | */ |
| 823 | static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) |
| 824 | { |
| 825 | struct bfq_entity *entry; |
| 826 | struct rb_node **node = &root->rb_node; |
| 827 | struct rb_node *parent = NULL; |
| 828 | |
| 829 | while (*node) { |
| 830 | parent = *node; |
| 831 | entry = rb_entry(parent, struct bfq_entity, rb_node); |
| 832 | |
| 833 | if (bfq_gt(entry->finish, entity->finish)) |
| 834 | node = &parent->rb_left; |
| 835 | else |
| 836 | node = &parent->rb_right; |
| 837 | } |
| 838 | |
| 839 | rb_link_node(&entity->rb_node, parent, node); |
| 840 | rb_insert_color(&entity->rb_node, root); |
| 841 | |
| 842 | entity->tree = root; |
| 843 | } |
| 844 | |
| 845 | /** |
| 846 | * bfq_update_min - update the min_start field of a entity. |
| 847 | * @entity: the entity to update. |
| 848 | * @node: one of its children. |
| 849 | * |
| 850 | * This function is called when @entity may store an invalid value for |
| 851 | * min_start due to updates to the active tree. The function assumes |
| 852 | * that the subtree rooted at @node (which may be its left or its right |
| 853 | * child) has a valid min_start value. |
| 854 | */ |
| 855 | static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) |
| 856 | { |
| 857 | struct bfq_entity *child; |
| 858 | |
| 859 | if (node) { |
| 860 | child = rb_entry(node, struct bfq_entity, rb_node); |
| 861 | if (bfq_gt(entity->min_start, child->min_start)) |
| 862 | entity->min_start = child->min_start; |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | /** |
| 867 | * bfq_update_active_node - recalculate min_start. |
| 868 | * @node: the node to update. |
| 869 | * |
| 870 | * @node may have changed position or one of its children may have moved, |
| 871 | * this function updates its min_start value. The left and right subtrees |
| 872 | * are assumed to hold a correct min_start value. |
| 873 | */ |
| 874 | static void bfq_update_active_node(struct rb_node *node) |
| 875 | { |
| 876 | struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); |
| 877 | |
| 878 | entity->min_start = entity->start; |
| 879 | bfq_update_min(entity, node->rb_right); |
| 880 | bfq_update_min(entity, node->rb_left); |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * bfq_update_active_tree - update min_start for the whole active tree. |
| 885 | * @node: the starting node. |
| 886 | * |
| 887 | * @node must be the deepest modified node after an update. This function |
| 888 | * updates its min_start using the values held by its children, assuming |
| 889 | * that they did not change, and then updates all the nodes that may have |
| 890 | * changed in the path to the root. The only nodes that may have changed |
| 891 | * are the ones in the path or their siblings. |
| 892 | */ |
| 893 | static void bfq_update_active_tree(struct rb_node *node) |
| 894 | { |
| 895 | struct rb_node *parent; |
| 896 | |
| 897 | up: |
| 898 | bfq_update_active_node(node); |
| 899 | |
| 900 | parent = rb_parent(node); |
| 901 | if (!parent) |
| 902 | return; |
| 903 | |
| 904 | if (node == parent->rb_left && parent->rb_right) |
| 905 | bfq_update_active_node(parent->rb_right); |
| 906 | else if (parent->rb_left) |
| 907 | bfq_update_active_node(parent->rb_left); |
| 908 | |
| 909 | node = parent; |
| 910 | goto up; |
| 911 | } |
| 912 | |
| 913 | /** |
| 914 | * bfq_active_insert - insert an entity in the active tree of its |
| 915 | * group/device. |
| 916 | * @st: the service tree of the entity. |
| 917 | * @entity: the entity being inserted. |
| 918 | * |
| 919 | * The active tree is ordered by finish time, but an extra key is kept |
| 920 | * per each node, containing the minimum value for the start times of |
| 921 | * its children (and the node itself), so it's possible to search for |
| 922 | * the eligible node with the lowest finish time in logarithmic time. |
| 923 | */ |
| 924 | static void bfq_active_insert(struct bfq_service_tree *st, |
| 925 | struct bfq_entity *entity) |
| 926 | { |
| 927 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 928 | struct rb_node *node = &entity->rb_node; |
| 929 | |
| 930 | bfq_insert(&st->active, entity); |
| 931 | |
| 932 | if (node->rb_left) |
| 933 | node = node->rb_left; |
| 934 | else if (node->rb_right) |
| 935 | node = node->rb_right; |
| 936 | |
| 937 | bfq_update_active_tree(node); |
| 938 | |
| 939 | if (bfqq) |
| 940 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); |
| 941 | } |
| 942 | |
| 943 | /** |
| 944 | * bfq_ioprio_to_weight - calc a weight from an ioprio. |
| 945 | * @ioprio: the ioprio value to convert. |
| 946 | */ |
| 947 | static unsigned short bfq_ioprio_to_weight(int ioprio) |
| 948 | { |
| 949 | return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; |
| 950 | } |
| 951 | |
| 952 | /** |
| 953 | * bfq_weight_to_ioprio - calc an ioprio from a weight. |
| 954 | * @weight: the weight value to convert. |
| 955 | * |
| 956 | * To preserve as much as possible the old only-ioprio user interface, |
| 957 | * 0 is used as an escape ioprio value for weights (numerically) equal or |
| 958 | * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. |
| 959 | */ |
| 960 | static unsigned short bfq_weight_to_ioprio(int weight) |
| 961 | { |
| 962 | return max_t(int, 0, |
| 963 | IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight); |
| 964 | } |
| 965 | |
| 966 | static void bfq_get_entity(struct bfq_entity *entity) |
| 967 | { |
| 968 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 969 | |
| 970 | if (bfqq) { |
| 971 | bfqq->ref++; |
| 972 | bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", |
| 973 | bfqq, bfqq->ref); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | /** |
| 978 | * bfq_find_deepest - find the deepest node that an extraction can modify. |
| 979 | * @node: the node being removed. |
| 980 | * |
| 981 | * Do the first step of an extraction in an rb tree, looking for the |
| 982 | * node that will replace @node, and returning the deepest node that |
| 983 | * the following modifications to the tree can touch. If @node is the |
| 984 | * last node in the tree return %NULL. |
| 985 | */ |
| 986 | static struct rb_node *bfq_find_deepest(struct rb_node *node) |
| 987 | { |
| 988 | struct rb_node *deepest; |
| 989 | |
| 990 | if (!node->rb_right && !node->rb_left) |
| 991 | deepest = rb_parent(node); |
| 992 | else if (!node->rb_right) |
| 993 | deepest = node->rb_left; |
| 994 | else if (!node->rb_left) |
| 995 | deepest = node->rb_right; |
| 996 | else { |
| 997 | deepest = rb_next(node); |
| 998 | if (deepest->rb_right) |
| 999 | deepest = deepest->rb_right; |
| 1000 | else if (rb_parent(deepest) != node) |
| 1001 | deepest = rb_parent(deepest); |
| 1002 | } |
| 1003 | |
| 1004 | return deepest; |
| 1005 | } |
| 1006 | |
| 1007 | /** |
| 1008 | * bfq_active_extract - remove an entity from the active tree. |
| 1009 | * @st: the service_tree containing the tree. |
| 1010 | * @entity: the entity being removed. |
| 1011 | */ |
| 1012 | static void bfq_active_extract(struct bfq_service_tree *st, |
| 1013 | struct bfq_entity *entity) |
| 1014 | { |
| 1015 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1016 | struct rb_node *node; |
| 1017 | |
| 1018 | node = bfq_find_deepest(&entity->rb_node); |
| 1019 | bfq_extract(&st->active, entity); |
| 1020 | |
| 1021 | if (node) |
| 1022 | bfq_update_active_tree(node); |
| 1023 | |
| 1024 | if (bfqq) |
| 1025 | list_del(&bfqq->bfqq_list); |
| 1026 | } |
| 1027 | |
| 1028 | /** |
| 1029 | * bfq_idle_insert - insert an entity into the idle tree. |
| 1030 | * @st: the service tree containing the tree. |
| 1031 | * @entity: the entity to insert. |
| 1032 | */ |
| 1033 | static void bfq_idle_insert(struct bfq_service_tree *st, |
| 1034 | struct bfq_entity *entity) |
| 1035 | { |
| 1036 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1037 | struct bfq_entity *first_idle = st->first_idle; |
| 1038 | struct bfq_entity *last_idle = st->last_idle; |
| 1039 | |
| 1040 | if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) |
| 1041 | st->first_idle = entity; |
| 1042 | if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) |
| 1043 | st->last_idle = entity; |
| 1044 | |
| 1045 | bfq_insert(&st->idle, entity); |
| 1046 | |
| 1047 | if (bfqq) |
| 1048 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); |
| 1049 | } |
| 1050 | |
| 1051 | /** |
| 1052 | * bfq_forget_entity - do not consider entity any longer for scheduling |
| 1053 | * @st: the service tree. |
| 1054 | * @entity: the entity being removed. |
| 1055 | * @is_in_service: true if entity is currently the in-service entity. |
| 1056 | * |
| 1057 | * Forget everything about @entity. In addition, if entity represents |
| 1058 | * a queue, and the latter is not in service, then release the service |
| 1059 | * reference to the queue (the one taken through bfq_get_entity). In |
| 1060 | * fact, in this case, there is really no more service reference to |
| 1061 | * the queue, as the latter is also outside any service tree. If, |
| 1062 | * instead, the queue is in service, then __bfq_bfqd_reset_in_service |
| 1063 | * will take care of putting the reference when the queue finally |
| 1064 | * stops being served. |
| 1065 | */ |
| 1066 | static void bfq_forget_entity(struct bfq_service_tree *st, |
| 1067 | struct bfq_entity *entity, |
| 1068 | bool is_in_service) |
| 1069 | { |
| 1070 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1071 | |
| 1072 | entity->on_st = 0; |
| 1073 | st->wsum -= entity->weight; |
| 1074 | if (bfqq && !is_in_service) |
| 1075 | bfq_put_queue(bfqq); |
| 1076 | } |
| 1077 | |
| 1078 | /** |
| 1079 | * bfq_put_idle_entity - release the idle tree ref of an entity. |
| 1080 | * @st: service tree for the entity. |
| 1081 | * @entity: the entity being released. |
| 1082 | */ |
| 1083 | static void bfq_put_idle_entity(struct bfq_service_tree *st, |
| 1084 | struct bfq_entity *entity) |
| 1085 | { |
| 1086 | bfq_idle_extract(st, entity); |
| 1087 | bfq_forget_entity(st, entity, |
| 1088 | entity == entity->sched_data->in_service_entity); |
| 1089 | } |
| 1090 | |
| 1091 | /** |
| 1092 | * bfq_forget_idle - update the idle tree if necessary. |
| 1093 | * @st: the service tree to act upon. |
| 1094 | * |
| 1095 | * To preserve the global O(log N) complexity we only remove one entry here; |
| 1096 | * as the idle tree will not grow indefinitely this can be done safely. |
| 1097 | */ |
| 1098 | static void bfq_forget_idle(struct bfq_service_tree *st) |
| 1099 | { |
| 1100 | struct bfq_entity *first_idle = st->first_idle; |
| 1101 | struct bfq_entity *last_idle = st->last_idle; |
| 1102 | |
| 1103 | if (RB_EMPTY_ROOT(&st->active) && last_idle && |
| 1104 | !bfq_gt(last_idle->finish, st->vtime)) { |
| 1105 | /* |
| 1106 | * Forget the whole idle tree, increasing the vtime past |
| 1107 | * the last finish time of idle entities. |
| 1108 | */ |
| 1109 | st->vtime = last_idle->finish; |
| 1110 | } |
| 1111 | |
| 1112 | if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) |
| 1113 | bfq_put_idle_entity(st, first_idle); |
| 1114 | } |
| 1115 | |
| 1116 | static struct bfq_service_tree * |
| 1117 | __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, |
| 1118 | struct bfq_entity *entity) |
| 1119 | { |
| 1120 | struct bfq_service_tree *new_st = old_st; |
| 1121 | |
| 1122 | if (entity->prio_changed) { |
| 1123 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1124 | unsigned short prev_weight, new_weight; |
| 1125 | struct bfq_data *bfqd = NULL; |
| 1126 | |
| 1127 | if (bfqq) |
| 1128 | bfqd = bfqq->bfqd; |
| 1129 | |
| 1130 | old_st->wsum -= entity->weight; |
| 1131 | |
| 1132 | if (entity->new_weight != entity->orig_weight) { |
| 1133 | if (entity->new_weight < BFQ_MIN_WEIGHT || |
| 1134 | entity->new_weight > BFQ_MAX_WEIGHT) { |
| 1135 | pr_crit("update_weight_prio: new_weight %d\n", |
| 1136 | entity->new_weight); |
| 1137 | if (entity->new_weight < BFQ_MIN_WEIGHT) |
| 1138 | entity->new_weight = BFQ_MIN_WEIGHT; |
| 1139 | else |
| 1140 | entity->new_weight = BFQ_MAX_WEIGHT; |
| 1141 | } |
| 1142 | entity->orig_weight = entity->new_weight; |
| 1143 | if (bfqq) |
| 1144 | bfqq->ioprio = |
| 1145 | bfq_weight_to_ioprio(entity->orig_weight); |
| 1146 | } |
| 1147 | |
| 1148 | if (bfqq) |
| 1149 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 1150 | entity->prio_changed = 0; |
| 1151 | |
| 1152 | /* |
| 1153 | * NOTE: here we may be changing the weight too early, |
| 1154 | * this will cause unfairness. The correct approach |
| 1155 | * would have required additional complexity to defer |
| 1156 | * weight changes to the proper time instants (i.e., |
| 1157 | * when entity->finish <= old_st->vtime). |
| 1158 | */ |
| 1159 | new_st = bfq_entity_service_tree(entity); |
| 1160 | |
| 1161 | prev_weight = entity->weight; |
| 1162 | new_weight = entity->orig_weight; |
| 1163 | entity->weight = new_weight; |
| 1164 | |
| 1165 | new_st->wsum += entity->weight; |
| 1166 | |
| 1167 | if (new_st != old_st) |
| 1168 | entity->start = new_st->vtime; |
| 1169 | } |
| 1170 | |
| 1171 | return new_st; |
| 1172 | } |
| 1173 | |
| 1174 | /** |
| 1175 | * bfq_bfqq_served - update the scheduler status after selection for |
| 1176 | * service. |
| 1177 | * @bfqq: the queue being served. |
| 1178 | * @served: bytes to transfer. |
| 1179 | * |
| 1180 | * NOTE: this can be optimized, as the timestamps of upper level entities |
| 1181 | * are synchronized every time a new bfqq is selected for service. By now, |
| 1182 | * we keep it to better check consistency. |
| 1183 | */ |
| 1184 | static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) |
| 1185 | { |
| 1186 | struct bfq_entity *entity = &bfqq->entity; |
| 1187 | struct bfq_service_tree *st; |
| 1188 | |
| 1189 | for_each_entity(entity) { |
| 1190 | st = bfq_entity_service_tree(entity); |
| 1191 | |
| 1192 | entity->service += served; |
| 1193 | |
| 1194 | st->vtime += bfq_delta(served, st->wsum); |
| 1195 | bfq_forget_idle(st); |
| 1196 | } |
| 1197 | bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served); |
| 1198 | } |
| 1199 | |
| 1200 | /** |
| 1201 | * bfq_bfqq_charge_full_budget - set the service to the entity budget. |
| 1202 | * @bfqq: the queue that needs a service update. |
| 1203 | * |
| 1204 | * When it's not possible to be fair in the service domain, because |
| 1205 | * a queue is not consuming its budget fast enough (the meaning of |
| 1206 | * fast depends on the timeout parameter), we charge it a full |
| 1207 | * budget. In this way we should obtain a sort of time-domain |
| 1208 | * fairness among all the seeky/slow queues. |
| 1209 | */ |
| 1210 | static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq) |
| 1211 | { |
| 1212 | struct bfq_entity *entity = &bfqq->entity; |
| 1213 | |
| 1214 | bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget"); |
| 1215 | |
| 1216 | bfq_bfqq_served(bfqq, entity->budget - entity->service); |
| 1217 | } |
| 1218 | |
| 1219 | /** |
| 1220 | * __bfq_activate_entity - activate an entity. |
| 1221 | * @entity: the entity being activated. |
| 1222 | * @non_blocking_wait_rq: true if this entity was waiting for a request |
| 1223 | * |
| 1224 | * Called whenever an entity is activated, i.e., it is not active and one |
| 1225 | * of its children receives a new request, or has to be reactivated due to |
| 1226 | * budget exhaustion. It uses the current budget of the entity (and the |
| 1227 | * service received if @entity is active) of the queue to calculate its |
| 1228 | * timestamps. |
| 1229 | */ |
| 1230 | static void __bfq_activate_entity(struct bfq_entity *entity, |
| 1231 | bool non_blocking_wait_rq) |
| 1232 | { |
| 1233 | struct bfq_sched_data *sd = entity->sched_data; |
| 1234 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1235 | bool backshifted = false; |
| 1236 | |
| 1237 | if (entity == sd->in_service_entity) { |
| 1238 | /* |
| 1239 | * If we are requeueing the current entity we have |
| 1240 | * to take care of not charging to it service it has |
| 1241 | * not received. |
| 1242 | */ |
| 1243 | bfq_calc_finish(entity, entity->service); |
| 1244 | entity->start = entity->finish; |
| 1245 | sd->in_service_entity = NULL; |
| 1246 | } else if (entity->tree == &st->active) { |
| 1247 | /* |
| 1248 | * Requeueing an entity due to a change of some |
| 1249 | * next_in_service entity below it. We reuse the |
| 1250 | * old start time. |
| 1251 | */ |
| 1252 | bfq_active_extract(st, entity); |
| 1253 | } else { |
| 1254 | unsigned long long min_vstart; |
| 1255 | |
| 1256 | /* See comments on bfq_fqq_update_budg_for_activation */ |
| 1257 | if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { |
| 1258 | backshifted = true; |
| 1259 | min_vstart = entity->finish; |
| 1260 | } else |
| 1261 | min_vstart = st->vtime; |
| 1262 | |
| 1263 | if (entity->tree == &st->idle) { |
| 1264 | /* |
| 1265 | * Must be on the idle tree, bfq_idle_extract() will |
| 1266 | * check for that. |
| 1267 | */ |
| 1268 | bfq_idle_extract(st, entity); |
| 1269 | entity->start = bfq_gt(min_vstart, entity->finish) ? |
| 1270 | min_vstart : entity->finish; |
| 1271 | } else { |
| 1272 | /* |
| 1273 | * The finish time of the entity may be invalid, and |
| 1274 | * it is in the past for sure, otherwise the queue |
| 1275 | * would have been on the idle tree. |
| 1276 | */ |
| 1277 | entity->start = min_vstart; |
| 1278 | st->wsum += entity->weight; |
| 1279 | /* |
| 1280 | * entity is about to be inserted into a service tree, |
| 1281 | * and then set in service: get a reference to make |
| 1282 | * sure entity does not disappear until it is no |
| 1283 | * longer in service or scheduled for service. |
| 1284 | */ |
| 1285 | bfq_get_entity(entity); |
| 1286 | |
| 1287 | entity->on_st = 1; |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | st = __bfq_entity_update_weight_prio(st, entity); |
| 1292 | bfq_calc_finish(entity, entity->budget); |
| 1293 | |
| 1294 | /* |
| 1295 | * If some queues enjoy backshifting for a while, then their |
| 1296 | * (virtual) finish timestamps may happen to become lower and |
| 1297 | * lower than the system virtual time. In particular, if |
| 1298 | * these queues often happen to be idle for short time |
| 1299 | * periods, and during such time periods other queues with |
| 1300 | * higher timestamps happen to be busy, then the backshifted |
| 1301 | * timestamps of the former queues can become much lower than |
| 1302 | * the system virtual time. In fact, to serve the queues with |
| 1303 | * higher timestamps while the ones with lower timestamps are |
| 1304 | * idle, the system virtual time may be pushed-up to much |
| 1305 | * higher values than the finish timestamps of the idle |
| 1306 | * queues. As a consequence, the finish timestamps of all new |
| 1307 | * or newly activated queues may end up being much larger than |
| 1308 | * those of lucky queues with backshifted timestamps. The |
| 1309 | * latter queues may then monopolize the device for a lot of |
| 1310 | * time. This would simply break service guarantees. |
| 1311 | * |
| 1312 | * To reduce this problem, push up a little bit the |
| 1313 | * backshifted timestamps of the queue associated with this |
| 1314 | * entity (only a queue can happen to have the backshifted |
| 1315 | * flag set): just enough to let the finish timestamp of the |
| 1316 | * queue be equal to the current value of the system virtual |
| 1317 | * time. This may introduce a little unfairness among queues |
| 1318 | * with backshifted timestamps, but it does not break |
| 1319 | * worst-case fairness guarantees. |
| 1320 | */ |
| 1321 | if (backshifted && bfq_gt(st->vtime, entity->finish)) { |
| 1322 | unsigned long delta = st->vtime - entity->finish; |
| 1323 | |
| 1324 | entity->start += delta; |
| 1325 | entity->finish += delta; |
| 1326 | } |
| 1327 | |
| 1328 | bfq_active_insert(st, entity); |
| 1329 | } |
| 1330 | |
| 1331 | /** |
| 1332 | * bfq_activate_entity - activate an entity and its ancestors if necessary. |
| 1333 | * @entity: the entity to activate. |
| 1334 | * @non_blocking_wait_rq: true if this entity was waiting for a request |
| 1335 | * |
| 1336 | * Activate @entity and all the entities on the path from it to the root. |
| 1337 | */ |
| 1338 | static void bfq_activate_entity(struct bfq_entity *entity, |
| 1339 | bool non_blocking_wait_rq) |
| 1340 | { |
| 1341 | struct bfq_sched_data *sd; |
| 1342 | |
| 1343 | for_each_entity(entity) { |
| 1344 | __bfq_activate_entity(entity, non_blocking_wait_rq); |
| 1345 | |
| 1346 | sd = entity->sched_data; |
| 1347 | if (!bfq_update_next_in_service(sd)) |
| 1348 | /* |
| 1349 | * No need to propagate the activation to the |
| 1350 | * upper entities, as they will be updated when |
| 1351 | * the in-service entity is rescheduled. |
| 1352 | */ |
| 1353 | break; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /** |
| 1358 | * __bfq_deactivate_entity - deactivate an entity from its service tree. |
| 1359 | * @entity: the entity to deactivate. |
| 1360 | * @requeue: if false, the entity will not be put into the idle tree. |
| 1361 | * |
| 1362 | * Deactivate an entity, independently from its previous state. If the |
| 1363 | * entity was not on a service tree just return, otherwise if it is on |
| 1364 | * any scheduler tree, extract it from that tree, and if necessary |
| 1365 | * and if the caller did not specify @requeue, put it on the idle tree. |
| 1366 | * |
| 1367 | * Return %1 if the caller should update the entity hierarchy, i.e., |
| 1368 | * if the entity was in service or if it was the next_in_service for |
| 1369 | * its sched_data; return %0 otherwise. |
| 1370 | */ |
| 1371 | static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue) |
| 1372 | { |
| 1373 | struct bfq_sched_data *sd = entity->sched_data; |
| 1374 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1375 | int is_in_service = entity == sd->in_service_entity; |
| 1376 | int ret = 0; |
| 1377 | |
| 1378 | if (!entity->on_st) |
| 1379 | return 0; |
| 1380 | |
| 1381 | if (is_in_service) { |
| 1382 | bfq_calc_finish(entity, entity->service); |
| 1383 | sd->in_service_entity = NULL; |
| 1384 | } else if (entity->tree == &st->active) |
| 1385 | bfq_active_extract(st, entity); |
| 1386 | else if (entity->tree == &st->idle) |
| 1387 | bfq_idle_extract(st, entity); |
| 1388 | |
| 1389 | if (is_in_service || sd->next_in_service == entity) |
| 1390 | ret = bfq_update_next_in_service(sd); |
| 1391 | |
| 1392 | if (!requeue || !bfq_gt(entity->finish, st->vtime)) |
| 1393 | bfq_forget_entity(st, entity, is_in_service); |
| 1394 | else |
| 1395 | bfq_idle_insert(st, entity); |
| 1396 | |
| 1397 | return ret; |
| 1398 | } |
| 1399 | |
| 1400 | /** |
| 1401 | * bfq_deactivate_entity - deactivate an entity. |
| 1402 | * @entity: the entity to deactivate. |
| 1403 | * @requeue: true if the entity can be put on the idle tree |
| 1404 | */ |
| 1405 | static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue) |
| 1406 | { |
| 1407 | struct bfq_sched_data *sd; |
| 1408 | struct bfq_entity *parent = NULL; |
| 1409 | |
| 1410 | for_each_entity_safe(entity, parent) { |
| 1411 | sd = entity->sched_data; |
| 1412 | |
| 1413 | if (!__bfq_deactivate_entity(entity, requeue)) |
| 1414 | /* |
| 1415 | * The parent entity is still backlogged, and |
| 1416 | * we don't need to update it as it is still |
| 1417 | * in service. |
| 1418 | */ |
| 1419 | break; |
| 1420 | |
| 1421 | if (sd->next_in_service) |
| 1422 | /* |
| 1423 | * The parent entity is still backlogged and |
| 1424 | * the budgets on the path towards the root |
| 1425 | * need to be updated. |
| 1426 | */ |
| 1427 | goto update; |
| 1428 | |
| 1429 | /* |
| 1430 | * If we get here, then the parent is no more backlogged and |
| 1431 | * we want to propagate the deactivation upwards. |
| 1432 | */ |
| 1433 | requeue = 1; |
| 1434 | } |
| 1435 | |
| 1436 | return; |
| 1437 | |
| 1438 | update: |
| 1439 | entity = parent; |
| 1440 | for_each_entity(entity) { |
| 1441 | __bfq_activate_entity(entity, false); |
| 1442 | |
| 1443 | sd = entity->sched_data; |
| 1444 | if (!bfq_update_next_in_service(sd)) |
| 1445 | break; |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | /** |
| 1450 | * bfq_update_vtime - update vtime if necessary. |
| 1451 | * @st: the service tree to act upon. |
| 1452 | * |
| 1453 | * If necessary update the service tree vtime to have at least one |
| 1454 | * eligible entity, skipping to its start time. Assumes that the |
| 1455 | * active tree of the device is not empty. |
| 1456 | * |
| 1457 | * NOTE: this hierarchical implementation updates vtimes quite often, |
| 1458 | * we may end up with reactivated processes getting timestamps after a |
| 1459 | * vtime skip done because we needed a ->first_active entity on some |
| 1460 | * intermediate node. |
| 1461 | */ |
| 1462 | static void bfq_update_vtime(struct bfq_service_tree *st) |
| 1463 | { |
| 1464 | struct bfq_entity *entry; |
| 1465 | struct rb_node *node = st->active.rb_node; |
| 1466 | |
| 1467 | entry = rb_entry(node, struct bfq_entity, rb_node); |
| 1468 | if (bfq_gt(entry->min_start, st->vtime)) { |
| 1469 | st->vtime = entry->min_start; |
| 1470 | bfq_forget_idle(st); |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | /** |
| 1475 | * bfq_first_active_entity - find the eligible entity with |
| 1476 | * the smallest finish time |
| 1477 | * @st: the service tree to select from. |
| 1478 | * |
| 1479 | * This function searches the first schedulable entity, starting from the |
| 1480 | * root of the tree and going on the left every time on this side there is |
| 1481 | * a subtree with at least one eligible (start >= vtime) entity. The path on |
| 1482 | * the right is followed only if a) the left subtree contains no eligible |
| 1483 | * entities and b) no eligible entity has been found yet. |
| 1484 | */ |
| 1485 | static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st) |
| 1486 | { |
| 1487 | struct bfq_entity *entry, *first = NULL; |
| 1488 | struct rb_node *node = st->active.rb_node; |
| 1489 | |
| 1490 | while (node) { |
| 1491 | entry = rb_entry(node, struct bfq_entity, rb_node); |
| 1492 | left: |
| 1493 | if (!bfq_gt(entry->start, st->vtime)) |
| 1494 | first = entry; |
| 1495 | |
| 1496 | if (node->rb_left) { |
| 1497 | entry = rb_entry(node->rb_left, |
| 1498 | struct bfq_entity, rb_node); |
| 1499 | if (!bfq_gt(entry->min_start, st->vtime)) { |
| 1500 | node = node->rb_left; |
| 1501 | goto left; |
| 1502 | } |
| 1503 | } |
| 1504 | if (first) |
| 1505 | break; |
| 1506 | node = node->rb_right; |
| 1507 | } |
| 1508 | |
| 1509 | return first; |
| 1510 | } |
| 1511 | |
| 1512 | /** |
| 1513 | * __bfq_lookup_next_entity - return the first eligible entity in @st. |
| 1514 | * @st: the service tree. |
| 1515 | * |
| 1516 | * Update the virtual time in @st and return the first eligible entity |
| 1517 | * it contains. |
| 1518 | */ |
| 1519 | static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st, |
| 1520 | bool force) |
| 1521 | { |
| 1522 | struct bfq_entity *entity, *new_next_in_service = NULL; |
| 1523 | |
| 1524 | if (RB_EMPTY_ROOT(&st->active)) |
| 1525 | return NULL; |
| 1526 | |
| 1527 | bfq_update_vtime(st); |
| 1528 | entity = bfq_first_active_entity(st); |
| 1529 | |
| 1530 | /* |
| 1531 | * If the chosen entity does not match with the sched_data's |
| 1532 | * next_in_service and we are forcedly serving the IDLE priority |
| 1533 | * class tree, bubble up budget update. |
| 1534 | */ |
| 1535 | if (unlikely(force && entity != entity->sched_data->next_in_service)) { |
| 1536 | new_next_in_service = entity; |
| 1537 | for_each_entity(new_next_in_service) |
| 1538 | bfq_update_budget(new_next_in_service); |
| 1539 | } |
| 1540 | |
| 1541 | return entity; |
| 1542 | } |
| 1543 | |
| 1544 | /** |
| 1545 | * bfq_lookup_next_entity - return the first eligible entity in @sd. |
| 1546 | * @sd: the sched_data. |
| 1547 | * @extract: if true the returned entity will be also extracted from @sd. |
| 1548 | * |
| 1549 | * NOTE: since we cache the next_in_service entity at each level of the |
| 1550 | * hierarchy, the complexity of the lookup can be decreased with |
| 1551 | * absolutely no effort just returning the cached next_in_service value; |
| 1552 | * we prefer to do full lookups to test the consistency of the data |
| 1553 | * structures. |
| 1554 | */ |
| 1555 | static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, |
| 1556 | int extract, |
| 1557 | struct bfq_data *bfqd) |
| 1558 | { |
| 1559 | struct bfq_service_tree *st = sd->service_tree; |
| 1560 | struct bfq_entity *entity; |
| 1561 | int i = 0; |
| 1562 | |
| 1563 | /* |
| 1564 | * Choose from idle class, if needed to guarantee a minimum |
| 1565 | * bandwidth to this class. This should also mitigate |
| 1566 | * priority-inversion problems in case a low priority task is |
| 1567 | * holding file system resources. |
| 1568 | */ |
| 1569 | if (bfqd && |
| 1570 | jiffies - bfqd->bfq_class_idle_last_service > |
| 1571 | BFQ_CL_IDLE_TIMEOUT) { |
| 1572 | entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1, |
| 1573 | true); |
| 1574 | if (entity) { |
| 1575 | i = BFQ_IOPRIO_CLASSES - 1; |
| 1576 | bfqd->bfq_class_idle_last_service = jiffies; |
| 1577 | sd->next_in_service = entity; |
| 1578 | } |
| 1579 | } |
| 1580 | for (; i < BFQ_IOPRIO_CLASSES; i++) { |
| 1581 | entity = __bfq_lookup_next_entity(st + i, false); |
| 1582 | if (entity) { |
| 1583 | if (extract) { |
| 1584 | bfq_check_next_in_service(sd, entity); |
| 1585 | bfq_active_extract(st + i, entity); |
| 1586 | sd->in_service_entity = entity; |
| 1587 | sd->next_in_service = NULL; |
| 1588 | } |
| 1589 | break; |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | return entity; |
| 1594 | } |
| 1595 | |
| 1596 | static bool next_queue_may_preempt(struct bfq_data *bfqd) |
| 1597 | { |
| 1598 | struct bfq_sched_data *sd = &bfqd->sched_data; |
| 1599 | |
| 1600 | return sd->next_in_service != sd->in_service_entity; |
| 1601 | } |
| 1602 | |
| 1603 | |
| 1604 | /* |
| 1605 | * Get next queue for service. |
| 1606 | */ |
| 1607 | static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) |
| 1608 | { |
| 1609 | struct bfq_entity *entity = NULL; |
| 1610 | struct bfq_sched_data *sd; |
| 1611 | struct bfq_queue *bfqq; |
| 1612 | |
| 1613 | if (bfqd->busy_queues == 0) |
| 1614 | return NULL; |
| 1615 | |
| 1616 | sd = &bfqd->sched_data; |
| 1617 | for (; sd ; sd = entity->my_sched_data) { |
| 1618 | entity = bfq_lookup_next_entity(sd, 1, bfqd); |
| 1619 | entity->service = 0; |
| 1620 | } |
| 1621 | |
| 1622 | bfqq = bfq_entity_to_bfqq(entity); |
| 1623 | |
| 1624 | return bfqq; |
| 1625 | } |
| 1626 | |
| 1627 | static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) |
| 1628 | { |
| 1629 | struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue; |
| 1630 | struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity; |
| 1631 | |
| 1632 | if (bfqd->in_service_bic) { |
| 1633 | put_io_context(bfqd->in_service_bic->icq.ioc); |
| 1634 | bfqd->in_service_bic = NULL; |
| 1635 | } |
| 1636 | |
| 1637 | bfq_clear_bfqq_wait_request(in_serv_bfqq); |
| 1638 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| 1639 | bfqd->in_service_queue = NULL; |
| 1640 | |
| 1641 | /* |
| 1642 | * in_serv_entity is no longer in service, so, if it is in no |
| 1643 | * service tree either, then release the service reference to |
| 1644 | * the queue it represents (taken with bfq_get_entity). |
| 1645 | */ |
| 1646 | if (!in_serv_entity->on_st) |
| 1647 | bfq_put_queue(in_serv_bfqq); |
| 1648 | } |
| 1649 | |
| 1650 | static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 1651 | int requeue) |
| 1652 | { |
| 1653 | struct bfq_entity *entity = &bfqq->entity; |
| 1654 | |
| 1655 | bfq_deactivate_entity(entity, requeue); |
| 1656 | } |
| 1657 | |
| 1658 | static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 1659 | { |
| 1660 | struct bfq_entity *entity = &bfqq->entity; |
| 1661 | |
| 1662 | bfq_activate_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq)); |
| 1663 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| 1664 | } |
| 1665 | |
| 1666 | /* |
| 1667 | * Called when the bfqq no longer has requests pending, remove it from |
| 1668 | * the service tree. |
| 1669 | */ |
| 1670 | static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 1671 | int requeue) |
| 1672 | { |
| 1673 | bfq_log_bfqq(bfqd, bfqq, "del from busy"); |
| 1674 | |
| 1675 | bfq_clear_bfqq_busy(bfqq); |
| 1676 | |
| 1677 | bfqd->busy_queues--; |
| 1678 | |
| 1679 | bfq_deactivate_bfqq(bfqd, bfqq, requeue); |
| 1680 | } |
| 1681 | |
| 1682 | /* |
| 1683 | * Called when an inactive queue receives a new request. |
| 1684 | */ |
| 1685 | static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 1686 | { |
| 1687 | bfq_log_bfqq(bfqd, bfqq, "add to busy"); |
| 1688 | |
| 1689 | bfq_activate_bfqq(bfqd, bfqq); |
| 1690 | |
| 1691 | bfq_mark_bfqq_busy(bfqq); |
| 1692 | bfqd->busy_queues++; |
| 1693 | } |
| 1694 | |
| 1695 | static void bfq_init_entity(struct bfq_entity *entity) |
| 1696 | { |
| 1697 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1698 | |
| 1699 | entity->weight = entity->new_weight; |
| 1700 | entity->orig_weight = entity->new_weight; |
| 1701 | |
| 1702 | bfqq->ioprio = bfqq->new_ioprio; |
| 1703 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 1704 | |
| 1705 | entity->sched_data = &bfqq->bfqd->sched_data; |
| 1706 | } |
| 1707 | |
| 1708 | #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) |
| 1709 | #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) |
| 1710 | |
| 1711 | #define bfq_sample_valid(samples) ((samples) > 80) |
| 1712 | |
| 1713 | /* |
| 1714 | * Scheduler run of queue, if there are requests pending and no one in the |
| 1715 | * driver that will restart queueing. |
| 1716 | */ |
| 1717 | static void bfq_schedule_dispatch(struct bfq_data *bfqd) |
| 1718 | { |
| 1719 | if (bfqd->queued != 0) { |
| 1720 | bfq_log(bfqd, "schedule dispatch"); |
| 1721 | blk_mq_run_hw_queues(bfqd->queue, true); |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | * Lifted from AS - choose which of rq1 and rq2 that is best served now. |
| 1727 | * We choose the request that is closesr to the head right now. Distance |
| 1728 | * behind the head is penalized and only allowed to a certain extent. |
| 1729 | */ |
| 1730 | static struct request *bfq_choose_req(struct bfq_data *bfqd, |
| 1731 | struct request *rq1, |
| 1732 | struct request *rq2, |
| 1733 | sector_t last) |
| 1734 | { |
| 1735 | sector_t s1, s2, d1 = 0, d2 = 0; |
| 1736 | unsigned long back_max; |
| 1737 | #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ |
| 1738 | #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ |
| 1739 | unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ |
| 1740 | |
| 1741 | if (!rq1 || rq1 == rq2) |
| 1742 | return rq2; |
| 1743 | if (!rq2) |
| 1744 | return rq1; |
| 1745 | |
| 1746 | if (rq_is_sync(rq1) && !rq_is_sync(rq2)) |
| 1747 | return rq1; |
| 1748 | else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) |
| 1749 | return rq2; |
| 1750 | if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) |
| 1751 | return rq1; |
| 1752 | else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) |
| 1753 | return rq2; |
| 1754 | |
| 1755 | s1 = blk_rq_pos(rq1); |
| 1756 | s2 = blk_rq_pos(rq2); |
| 1757 | |
| 1758 | /* |
| 1759 | * By definition, 1KiB is 2 sectors. |
| 1760 | */ |
| 1761 | back_max = bfqd->bfq_back_max * 2; |
| 1762 | |
| 1763 | /* |
| 1764 | * Strict one way elevator _except_ in the case where we allow |
| 1765 | * short backward seeks which are biased as twice the cost of a |
| 1766 | * similar forward seek. |
| 1767 | */ |
| 1768 | if (s1 >= last) |
| 1769 | d1 = s1 - last; |
| 1770 | else if (s1 + back_max >= last) |
| 1771 | d1 = (last - s1) * bfqd->bfq_back_penalty; |
| 1772 | else |
| 1773 | wrap |= BFQ_RQ1_WRAP; |
| 1774 | |
| 1775 | if (s2 >= last) |
| 1776 | d2 = s2 - last; |
| 1777 | else if (s2 + back_max >= last) |
| 1778 | d2 = (last - s2) * bfqd->bfq_back_penalty; |
| 1779 | else |
| 1780 | wrap |= BFQ_RQ2_WRAP; |
| 1781 | |
| 1782 | /* Found required data */ |
| 1783 | |
| 1784 | /* |
| 1785 | * By doing switch() on the bit mask "wrap" we avoid having to |
| 1786 | * check two variables for all permutations: --> faster! |
| 1787 | */ |
| 1788 | switch (wrap) { |
| 1789 | case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ |
| 1790 | if (d1 < d2) |
| 1791 | return rq1; |
| 1792 | else if (d2 < d1) |
| 1793 | return rq2; |
| 1794 | |
| 1795 | if (s1 >= s2) |
| 1796 | return rq1; |
| 1797 | else |
| 1798 | return rq2; |
| 1799 | |
| 1800 | case BFQ_RQ2_WRAP: |
| 1801 | return rq1; |
| 1802 | case BFQ_RQ1_WRAP: |
| 1803 | return rq2; |
| 1804 | case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ |
| 1805 | default: |
| 1806 | /* |
| 1807 | * Since both rqs are wrapped, |
| 1808 | * start with the one that's further behind head |
| 1809 | * (--> only *one* back seek required), |
| 1810 | * since back seek takes more time than forward. |
| 1811 | */ |
| 1812 | if (s1 <= s2) |
| 1813 | return rq1; |
| 1814 | else |
| 1815 | return rq2; |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | /* |
| 1820 | * Return expired entry, or NULL to just start from scratch in rbtree. |
| 1821 | */ |
| 1822 | static struct request *bfq_check_fifo(struct bfq_queue *bfqq, |
| 1823 | struct request *last) |
| 1824 | { |
| 1825 | struct request *rq; |
| 1826 | |
| 1827 | if (bfq_bfqq_fifo_expire(bfqq)) |
| 1828 | return NULL; |
| 1829 | |
| 1830 | bfq_mark_bfqq_fifo_expire(bfqq); |
| 1831 | |
| 1832 | rq = rq_entry_fifo(bfqq->fifo.next); |
| 1833 | |
| 1834 | if (rq == last || ktime_get_ns() < rq->fifo_time) |
| 1835 | return NULL; |
| 1836 | |
| 1837 | bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); |
| 1838 | return rq; |
| 1839 | } |
| 1840 | |
| 1841 | static struct request *bfq_find_next_rq(struct bfq_data *bfqd, |
| 1842 | struct bfq_queue *bfqq, |
| 1843 | struct request *last) |
| 1844 | { |
| 1845 | struct rb_node *rbnext = rb_next(&last->rb_node); |
| 1846 | struct rb_node *rbprev = rb_prev(&last->rb_node); |
| 1847 | struct request *next, *prev = NULL; |
| 1848 | |
| 1849 | /* Follow expired path, else get first next available. */ |
| 1850 | next = bfq_check_fifo(bfqq, last); |
| 1851 | if (next) |
| 1852 | return next; |
| 1853 | |
| 1854 | if (rbprev) |
| 1855 | prev = rb_entry_rq(rbprev); |
| 1856 | |
| 1857 | if (rbnext) |
| 1858 | next = rb_entry_rq(rbnext); |
| 1859 | else { |
| 1860 | rbnext = rb_first(&bfqq->sort_list); |
| 1861 | if (rbnext && rbnext != &last->rb_node) |
| 1862 | next = rb_entry_rq(rbnext); |
| 1863 | } |
| 1864 | |
| 1865 | return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); |
| 1866 | } |
| 1867 | |
| 1868 | static unsigned long bfq_serv_to_charge(struct request *rq, |
| 1869 | struct bfq_queue *bfqq) |
| 1870 | { |
| 1871 | return blk_rq_sectors(rq); |
| 1872 | } |
| 1873 | |
| 1874 | /** |
| 1875 | * bfq_updated_next_req - update the queue after a new next_rq selection. |
| 1876 | * @bfqd: the device data the queue belongs to. |
| 1877 | * @bfqq: the queue to update. |
| 1878 | * |
| 1879 | * If the first request of a queue changes we make sure that the queue |
| 1880 | * has enough budget to serve at least its first request (if the |
| 1881 | * request has grown). We do this because if the queue has not enough |
| 1882 | * budget for its first request, it has to go through two dispatch |
| 1883 | * rounds to actually get it dispatched. |
| 1884 | */ |
| 1885 | static void bfq_updated_next_req(struct bfq_data *bfqd, |
| 1886 | struct bfq_queue *bfqq) |
| 1887 | { |
| 1888 | struct bfq_entity *entity = &bfqq->entity; |
| 1889 | struct request *next_rq = bfqq->next_rq; |
| 1890 | unsigned long new_budget; |
| 1891 | |
| 1892 | if (!next_rq) |
| 1893 | return; |
| 1894 | |
| 1895 | if (bfqq == bfqd->in_service_queue) |
| 1896 | /* |
| 1897 | * In order not to break guarantees, budgets cannot be |
| 1898 | * changed after an entity has been selected. |
| 1899 | */ |
| 1900 | return; |
| 1901 | |
| 1902 | new_budget = max_t(unsigned long, bfqq->max_budget, |
| 1903 | bfq_serv_to_charge(next_rq, bfqq)); |
| 1904 | if (entity->budget != new_budget) { |
| 1905 | entity->budget = new_budget; |
| 1906 | bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", |
| 1907 | new_budget); |
| 1908 | bfq_activate_bfqq(bfqd, bfqq); |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) |
| 1913 | { |
| 1914 | struct bfq_entity *entity = &bfqq->entity; |
| 1915 | |
| 1916 | return entity->budget - entity->service; |
| 1917 | } |
| 1918 | |
| 1919 | /* |
| 1920 | * If enough samples have been computed, return the current max budget |
| 1921 | * stored in bfqd, which is dynamically updated according to the |
| 1922 | * estimated disk peak rate; otherwise return the default max budget |
| 1923 | */ |
| 1924 | static int bfq_max_budget(struct bfq_data *bfqd) |
| 1925 | { |
| 1926 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 1927 | return bfq_default_max_budget; |
| 1928 | else |
| 1929 | return bfqd->bfq_max_budget; |
| 1930 | } |
| 1931 | |
| 1932 | /* |
| 1933 | * Return min budget, which is a fraction of the current or default |
| 1934 | * max budget (trying with 1/32) |
| 1935 | */ |
| 1936 | static int bfq_min_budget(struct bfq_data *bfqd) |
| 1937 | { |
| 1938 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 1939 | return bfq_default_max_budget / 32; |
| 1940 | else |
| 1941 | return bfqd->bfq_max_budget / 32; |
| 1942 | } |
| 1943 | |
| 1944 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 1945 | struct bfq_queue *bfqq, |
| 1946 | bool compensate, |
| 1947 | enum bfqq_expiration reason); |
| 1948 | |
| 1949 | /* |
| 1950 | * The next function, invoked after the input queue bfqq switches from |
| 1951 | * idle to busy, updates the budget of bfqq. The function also tells |
| 1952 | * whether the in-service queue should be expired, by returning |
| 1953 | * true. The purpose of expiring the in-service queue is to give bfqq |
| 1954 | * the chance to possibly preempt the in-service queue, and the reason |
| 1955 | * for preempting the in-service queue is to achieve the following |
| 1956 | * goal: guarantee to bfqq its reserved bandwidth even if bfqq has |
| 1957 | * expired because it has remained idle. |
| 1958 | * |
| 1959 | * In particular, bfqq may have expired for one of the following two |
| 1960 | * reasons: |
| 1961 | * |
| 1962 | * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling |
| 1963 | * and did not make it to issue a new request before its last |
| 1964 | * request was served; |
| 1965 | * |
| 1966 | * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue |
| 1967 | * a new request before the expiration of the idling-time. |
| 1968 | * |
| 1969 | * Even if bfqq has expired for one of the above reasons, the process |
| 1970 | * associated with the queue may be however issuing requests greedily, |
| 1971 | * and thus be sensitive to the bandwidth it receives (bfqq may have |
| 1972 | * remained idle for other reasons: CPU high load, bfqq not enjoying |
| 1973 | * idling, I/O throttling somewhere in the path from the process to |
| 1974 | * the I/O scheduler, ...). But if, after every expiration for one of |
| 1975 | * the above two reasons, bfqq has to wait for the service of at least |
| 1976 | * one full budget of another queue before being served again, then |
| 1977 | * bfqq is likely to get a much lower bandwidth or resource time than |
| 1978 | * its reserved ones. To address this issue, two countermeasures need |
| 1979 | * to be taken. |
| 1980 | * |
| 1981 | * First, the budget and the timestamps of bfqq need to be updated in |
| 1982 | * a special way on bfqq reactivation: they need to be updated as if |
| 1983 | * bfqq did not remain idle and did not expire. In fact, if they are |
| 1984 | * computed as if bfqq expired and remained idle until reactivation, |
| 1985 | * then the process associated with bfqq is treated as if, instead of |
| 1986 | * being greedy, it stopped issuing requests when bfqq remained idle, |
| 1987 | * and restarts issuing requests only on this reactivation. In other |
| 1988 | * words, the scheduler does not help the process recover the "service |
| 1989 | * hole" between bfqq expiration and reactivation. As a consequence, |
| 1990 | * the process receives a lower bandwidth than its reserved one. In |
| 1991 | * contrast, to recover this hole, the budget must be updated as if |
| 1992 | * bfqq was not expired at all before this reactivation, i.e., it must |
| 1993 | * be set to the value of the remaining budget when bfqq was |
| 1994 | * expired. Along the same line, timestamps need to be assigned the |
| 1995 | * value they had the last time bfqq was selected for service, i.e., |
| 1996 | * before last expiration. Thus timestamps need to be back-shifted |
| 1997 | * with respect to their normal computation (see [1] for more details |
| 1998 | * on this tricky aspect). |
| 1999 | * |
| 2000 | * Secondly, to allow the process to recover the hole, the in-service |
| 2001 | * queue must be expired too, to give bfqq the chance to preempt it |
| 2002 | * immediately. In fact, if bfqq has to wait for a full budget of the |
| 2003 | * in-service queue to be completed, then it may become impossible to |
| 2004 | * let the process recover the hole, even if the back-shifted |
| 2005 | * timestamps of bfqq are lower than those of the in-service queue. If |
| 2006 | * this happens for most or all of the holes, then the process may not |
| 2007 | * receive its reserved bandwidth. In this respect, it is worth noting |
| 2008 | * that, being the service of outstanding requests unpreemptible, a |
| 2009 | * little fraction of the holes may however be unrecoverable, thereby |
| 2010 | * causing a little loss of bandwidth. |
| 2011 | * |
| 2012 | * The last important point is detecting whether bfqq does need this |
| 2013 | * bandwidth recovery. In this respect, the next function deems the |
| 2014 | * process associated with bfqq greedy, and thus allows it to recover |
| 2015 | * the hole, if: 1) the process is waiting for the arrival of a new |
| 2016 | * request (which implies that bfqq expired for one of the above two |
| 2017 | * reasons), and 2) such a request has arrived soon. The first |
| 2018 | * condition is controlled through the flag non_blocking_wait_rq, |
| 2019 | * while the second through the flag arrived_in_time. If both |
| 2020 | * conditions hold, then the function computes the budget in the |
| 2021 | * above-described special way, and signals that the in-service queue |
| 2022 | * should be expired. Timestamp back-shifting is done later in |
| 2023 | * __bfq_activate_entity. |
| 2024 | */ |
| 2025 | static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, |
| 2026 | struct bfq_queue *bfqq, |
| 2027 | bool arrived_in_time) |
| 2028 | { |
| 2029 | struct bfq_entity *entity = &bfqq->entity; |
| 2030 | |
| 2031 | if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { |
| 2032 | /* |
| 2033 | * We do not clear the flag non_blocking_wait_rq here, as |
| 2034 | * the latter is used in bfq_activate_bfqq to signal |
| 2035 | * that timestamps need to be back-shifted (and is |
| 2036 | * cleared right after). |
| 2037 | */ |
| 2038 | |
| 2039 | /* |
| 2040 | * In next assignment we rely on that either |
| 2041 | * entity->service or entity->budget are not updated |
| 2042 | * on expiration if bfqq is empty (see |
| 2043 | * __bfq_bfqq_recalc_budget). Thus both quantities |
| 2044 | * remain unchanged after such an expiration, and the |
| 2045 | * following statement therefore assigns to |
| 2046 | * entity->budget the remaining budget on such an |
| 2047 | * expiration. For clarity, entity->service is not |
| 2048 | * updated on expiration in any case, and, in normal |
| 2049 | * operation, is reset only when bfqq is selected for |
| 2050 | * service (see bfq_get_next_queue). |
| 2051 | */ |
| 2052 | entity->budget = min_t(unsigned long, |
| 2053 | bfq_bfqq_budget_left(bfqq), |
| 2054 | bfqq->max_budget); |
| 2055 | |
| 2056 | return true; |
| 2057 | } |
| 2058 | |
| 2059 | entity->budget = max_t(unsigned long, bfqq->max_budget, |
| 2060 | bfq_serv_to_charge(bfqq->next_rq, bfqq)); |
| 2061 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| 2062 | return false; |
| 2063 | } |
| 2064 | |
| 2065 | static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, |
| 2066 | struct bfq_queue *bfqq, |
| 2067 | struct request *rq) |
| 2068 | { |
| 2069 | bool bfqq_wants_to_preempt, |
| 2070 | /* |
| 2071 | * See the comments on |
| 2072 | * bfq_bfqq_update_budg_for_activation for |
| 2073 | * details on the usage of the next variable. |
| 2074 | */ |
| 2075 | arrived_in_time = ktime_get_ns() <= |
| 2076 | bfqq->ttime.last_end_request + |
| 2077 | bfqd->bfq_slice_idle * 3; |
| 2078 | |
| 2079 | /* |
| 2080 | * Update budget and check whether bfqq may want to preempt |
| 2081 | * the in-service queue. |
| 2082 | */ |
| 2083 | bfqq_wants_to_preempt = |
| 2084 | bfq_bfqq_update_budg_for_activation(bfqd, bfqq, |
| 2085 | arrived_in_time); |
| 2086 | |
| 2087 | if (!bfq_bfqq_IO_bound(bfqq)) { |
| 2088 | if (arrived_in_time) { |
| 2089 | bfqq->requests_within_timer++; |
| 2090 | if (bfqq->requests_within_timer >= |
| 2091 | bfqd->bfq_requests_within_timer) |
| 2092 | bfq_mark_bfqq_IO_bound(bfqq); |
| 2093 | } else |
| 2094 | bfqq->requests_within_timer = 0; |
| 2095 | } |
| 2096 | |
| 2097 | bfq_add_bfqq_busy(bfqd, bfqq); |
| 2098 | |
| 2099 | /* |
| 2100 | * Expire in-service queue only if preemption may be needed |
| 2101 | * for guarantees. In this respect, the function |
| 2102 | * next_queue_may_preempt just checks a simple, necessary |
| 2103 | * condition, and not a sufficient condition based on |
| 2104 | * timestamps. In fact, for the latter condition to be |
| 2105 | * evaluated, timestamps would need first to be updated, and |
| 2106 | * this operation is quite costly (see the comments on the |
| 2107 | * function bfq_bfqq_update_budg_for_activation). |
| 2108 | */ |
| 2109 | if (bfqd->in_service_queue && bfqq_wants_to_preempt && |
| 2110 | next_queue_may_preempt(bfqd)) |
| 2111 | bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| 2112 | false, BFQQE_PREEMPTED); |
| 2113 | } |
| 2114 | |
| 2115 | static void bfq_add_request(struct request *rq) |
| 2116 | { |
| 2117 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 2118 | struct bfq_data *bfqd = bfqq->bfqd; |
| 2119 | struct request *next_rq, *prev; |
| 2120 | |
| 2121 | bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); |
| 2122 | bfqq->queued[rq_is_sync(rq)]++; |
| 2123 | bfqd->queued++; |
| 2124 | |
| 2125 | elv_rb_add(&bfqq->sort_list, rq); |
| 2126 | |
| 2127 | /* |
| 2128 | * Check if this request is a better next-serve candidate. |
| 2129 | */ |
| 2130 | prev = bfqq->next_rq; |
| 2131 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); |
| 2132 | bfqq->next_rq = next_rq; |
| 2133 | |
| 2134 | if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ |
| 2135 | bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq); |
| 2136 | else if (prev != bfqq->next_rq) |
| 2137 | bfq_updated_next_req(bfqd, bfqq); |
| 2138 | } |
| 2139 | |
| 2140 | static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, |
| 2141 | struct bio *bio, |
| 2142 | struct request_queue *q) |
| 2143 | { |
| 2144 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 2145 | |
| 2146 | |
| 2147 | if (bfqq) |
| 2148 | return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); |
| 2149 | |
| 2150 | return NULL; |
| 2151 | } |
| 2152 | |
| 2153 | #if 0 /* Still not clear if we can do without next two functions */ |
| 2154 | static void bfq_activate_request(struct request_queue *q, struct request *rq) |
| 2155 | { |
| 2156 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 2157 | |
| 2158 | bfqd->rq_in_driver++; |
| 2159 | bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 2160 | bfq_log(bfqd, "activate_request: new bfqd->last_position %llu", |
| 2161 | (unsigned long long)bfqd->last_position); |
| 2162 | } |
| 2163 | |
| 2164 | static void bfq_deactivate_request(struct request_queue *q, struct request *rq) |
| 2165 | { |
| 2166 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 2167 | |
| 2168 | bfqd->rq_in_driver--; |
| 2169 | } |
| 2170 | #endif |
| 2171 | |
| 2172 | static void bfq_remove_request(struct request_queue *q, |
| 2173 | struct request *rq) |
| 2174 | { |
| 2175 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 2176 | struct bfq_data *bfqd = bfqq->bfqd; |
| 2177 | const int sync = rq_is_sync(rq); |
| 2178 | |
| 2179 | if (bfqq->next_rq == rq) { |
| 2180 | bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); |
| 2181 | bfq_updated_next_req(bfqd, bfqq); |
| 2182 | } |
| 2183 | |
| 2184 | if (rq->queuelist.prev != &rq->queuelist) |
| 2185 | list_del_init(&rq->queuelist); |
| 2186 | bfqq->queued[sync]--; |
| 2187 | bfqd->queued--; |
| 2188 | elv_rb_del(&bfqq->sort_list, rq); |
| 2189 | |
| 2190 | elv_rqhash_del(q, rq); |
| 2191 | if (q->last_merge == rq) |
| 2192 | q->last_merge = NULL; |
| 2193 | |
| 2194 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| 2195 | bfqq->next_rq = NULL; |
| 2196 | |
| 2197 | if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { |
| 2198 | bfq_del_bfqq_busy(bfqd, bfqq, 1); |
| 2199 | /* |
| 2200 | * bfqq emptied. In normal operation, when |
| 2201 | * bfqq is empty, bfqq->entity.service and |
| 2202 | * bfqq->entity.budget must contain, |
| 2203 | * respectively, the service received and the |
| 2204 | * budget used last time bfqq emptied. These |
| 2205 | * facts do not hold in this case, as at least |
| 2206 | * this last removal occurred while bfqq is |
| 2207 | * not in service. To avoid inconsistencies, |
| 2208 | * reset both bfqq->entity.service and |
| 2209 | * bfqq->entity.budget, if bfqq has still a |
| 2210 | * process that may issue I/O requests to it. |
| 2211 | */ |
| 2212 | bfqq->entity.budget = bfqq->entity.service = 0; |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | if (rq->cmd_flags & REQ_META) |
| 2217 | bfqq->meta_pending--; |
| 2218 | } |
| 2219 | |
| 2220 | static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) |
| 2221 | { |
| 2222 | struct request_queue *q = hctx->queue; |
| 2223 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 2224 | struct request *free = NULL; |
| 2225 | /* |
| 2226 | * bfq_bic_lookup grabs the queue_lock: invoke it now and |
| 2227 | * store its return value for later use, to avoid nesting |
| 2228 | * queue_lock inside the bfqd->lock. We assume that the bic |
| 2229 | * returned by bfq_bic_lookup does not go away before |
| 2230 | * bfqd->lock is taken. |
| 2231 | */ |
| 2232 | struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); |
| 2233 | bool ret; |
| 2234 | |
| 2235 | spin_lock_irq(&bfqd->lock); |
| 2236 | |
| 2237 | if (bic) |
| 2238 | bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); |
| 2239 | else |
| 2240 | bfqd->bio_bfqq = NULL; |
| 2241 | bfqd->bio_bic = bic; |
| 2242 | |
| 2243 | ret = blk_mq_sched_try_merge(q, bio, &free); |
| 2244 | |
| 2245 | if (free) |
| 2246 | blk_mq_free_request(free); |
| 2247 | spin_unlock_irq(&bfqd->lock); |
| 2248 | |
| 2249 | return ret; |
| 2250 | } |
| 2251 | |
| 2252 | static int bfq_request_merge(struct request_queue *q, struct request **req, |
| 2253 | struct bio *bio) |
| 2254 | { |
| 2255 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 2256 | struct request *__rq; |
| 2257 | |
| 2258 | __rq = bfq_find_rq_fmerge(bfqd, bio, q); |
| 2259 | if (__rq && elv_bio_merge_ok(__rq, bio)) { |
| 2260 | *req = __rq; |
| 2261 | return ELEVATOR_FRONT_MERGE; |
| 2262 | } |
| 2263 | |
| 2264 | return ELEVATOR_NO_MERGE; |
| 2265 | } |
| 2266 | |
| 2267 | static void bfq_request_merged(struct request_queue *q, struct request *req, |
| 2268 | enum elv_merge type) |
| 2269 | { |
| 2270 | if (type == ELEVATOR_FRONT_MERGE && |
| 2271 | rb_prev(&req->rb_node) && |
| 2272 | blk_rq_pos(req) < |
| 2273 | blk_rq_pos(container_of(rb_prev(&req->rb_node), |
| 2274 | struct request, rb_node))) { |
| 2275 | struct bfq_queue *bfqq = RQ_BFQQ(req); |
| 2276 | struct bfq_data *bfqd = bfqq->bfqd; |
| 2277 | struct request *prev, *next_rq; |
| 2278 | |
| 2279 | /* Reposition request in its sort_list */ |
| 2280 | elv_rb_del(&bfqq->sort_list, req); |
| 2281 | elv_rb_add(&bfqq->sort_list, req); |
| 2282 | |
| 2283 | /* Choose next request to be served for bfqq */ |
| 2284 | prev = bfqq->next_rq; |
| 2285 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, |
| 2286 | bfqd->last_position); |
| 2287 | bfqq->next_rq = next_rq; |
| 2288 | /* |
| 2289 | * If next_rq changes, update the queue's budget to fit |
| 2290 | * the new request. |
| 2291 | */ |
| 2292 | if (prev != bfqq->next_rq) |
| 2293 | bfq_updated_next_req(bfqd, bfqq); |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | static void bfq_requests_merged(struct request_queue *q, struct request *rq, |
| 2298 | struct request *next) |
| 2299 | { |
| 2300 | struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); |
| 2301 | |
| 2302 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
| 2303 | return; |
| 2304 | spin_lock_irq(&bfqq->bfqd->lock); |
| 2305 | |
| 2306 | /* |
| 2307 | * If next and rq belong to the same bfq_queue and next is older |
| 2308 | * than rq, then reposition rq in the fifo (by substituting next |
| 2309 | * with rq). Otherwise, if next and rq belong to different |
| 2310 | * bfq_queues, never reposition rq: in fact, we would have to |
| 2311 | * reposition it with respect to next's position in its own fifo, |
| 2312 | * which would most certainly be too expensive with respect to |
| 2313 | * the benefits. |
| 2314 | */ |
| 2315 | if (bfqq == next_bfqq && |
| 2316 | !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && |
| 2317 | next->fifo_time < rq->fifo_time) { |
| 2318 | list_del_init(&rq->queuelist); |
| 2319 | list_replace_init(&next->queuelist, &rq->queuelist); |
| 2320 | rq->fifo_time = next->fifo_time; |
| 2321 | } |
| 2322 | |
| 2323 | if (bfqq->next_rq == next) |
| 2324 | bfqq->next_rq = rq; |
| 2325 | |
| 2326 | bfq_remove_request(q, next); |
| 2327 | |
| 2328 | spin_unlock_irq(&bfqq->bfqd->lock); |
| 2329 | } |
| 2330 | |
| 2331 | static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, |
| 2332 | struct bio *bio) |
| 2333 | { |
| 2334 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 2335 | bool is_sync = op_is_sync(bio->bi_opf); |
| 2336 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 2337 | |
| 2338 | /* |
| 2339 | * Disallow merge of a sync bio into an async request. |
| 2340 | */ |
| 2341 | if (is_sync && !rq_is_sync(rq)) |
| 2342 | return false; |
| 2343 | |
| 2344 | /* |
| 2345 | * Lookup the bfqq that this bio will be queued with. Allow |
| 2346 | * merge only if rq is queued there. |
| 2347 | */ |
| 2348 | if (!bfqq) |
| 2349 | return false; |
| 2350 | |
| 2351 | return bfqq == RQ_BFQQ(rq); |
| 2352 | } |
| 2353 | |
| 2354 | static void __bfq_set_in_service_queue(struct bfq_data *bfqd, |
| 2355 | struct bfq_queue *bfqq) |
| 2356 | { |
| 2357 | if (bfqq) { |
| 2358 | bfq_mark_bfqq_budget_new(bfqq); |
| 2359 | bfq_clear_bfqq_fifo_expire(bfqq); |
| 2360 | |
| 2361 | bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; |
| 2362 | |
| 2363 | bfq_log_bfqq(bfqd, bfqq, |
| 2364 | "set_in_service_queue, cur-budget = %d", |
| 2365 | bfqq->entity.budget); |
| 2366 | } |
| 2367 | |
| 2368 | bfqd->in_service_queue = bfqq; |
| 2369 | } |
| 2370 | |
| 2371 | /* |
| 2372 | * Get and set a new queue for service. |
| 2373 | */ |
| 2374 | static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) |
| 2375 | { |
| 2376 | struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); |
| 2377 | |
| 2378 | __bfq_set_in_service_queue(bfqd, bfqq); |
| 2379 | return bfqq; |
| 2380 | } |
| 2381 | |
| 2382 | /* |
| 2383 | * bfq_default_budget - return the default budget for @bfqq on @bfqd. |
| 2384 | * @bfqd: the device descriptor. |
| 2385 | * @bfqq: the queue to consider. |
| 2386 | * |
| 2387 | * We use 3/4 of the @bfqd maximum budget as the default value |
| 2388 | * for the max_budget field of the queues. This lets the feedback |
| 2389 | * mechanism to start from some middle ground, then the behavior |
| 2390 | * of the process will drive the heuristics towards high values, if |
| 2391 | * it behaves as a greedy sequential reader, or towards small values |
| 2392 | * if it shows a more intermittent behavior. |
| 2393 | */ |
| 2394 | static unsigned long bfq_default_budget(struct bfq_data *bfqd, |
| 2395 | struct bfq_queue *bfqq) |
| 2396 | { |
| 2397 | unsigned long budget; |
| 2398 | |
| 2399 | /* |
| 2400 | * When we need an estimate of the peak rate we need to avoid |
| 2401 | * to give budgets that are too short due to previous |
| 2402 | * measurements. So, in the first 10 assignments use a |
| 2403 | * ``safe'' budget value. For such first assignment the value |
| 2404 | * of bfqd->budgets_assigned happens to be lower than 194. |
| 2405 | * See __bfq_set_in_service_queue for the formula by which |
| 2406 | * this field is computed. |
| 2407 | */ |
| 2408 | if (bfqd->budgets_assigned < 194 && bfqd->bfq_user_max_budget == 0) |
| 2409 | budget = bfq_default_max_budget; |
| 2410 | else |
| 2411 | budget = bfqd->bfq_max_budget; |
| 2412 | |
| 2413 | return budget - budget / 4; |
| 2414 | } |
| 2415 | |
| 2416 | static void bfq_arm_slice_timer(struct bfq_data *bfqd) |
| 2417 | { |
| 2418 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 2419 | struct bfq_io_cq *bic; |
| 2420 | u32 sl; |
| 2421 | |
| 2422 | /* Processes have exited, don't wait. */ |
| 2423 | bic = bfqd->in_service_bic; |
| 2424 | if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0) |
| 2425 | return; |
| 2426 | |
| 2427 | bfq_mark_bfqq_wait_request(bfqq); |
| 2428 | |
| 2429 | /* |
| 2430 | * We don't want to idle for seeks, but we do want to allow |
| 2431 | * fair distribution of slice time for a process doing back-to-back |
| 2432 | * seeks. So allow a little bit of time for him to submit a new rq. |
| 2433 | */ |
| 2434 | sl = bfqd->bfq_slice_idle; |
| 2435 | /* |
| 2436 | * Grant only minimum idle time if the queue is seeky. |
| 2437 | */ |
| 2438 | if (BFQQ_SEEKY(bfqq)) |
| 2439 | sl = min_t(u64, sl, BFQ_MIN_TT); |
| 2440 | |
| 2441 | bfqd->last_idling_start = ktime_get(); |
| 2442 | hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), |
| 2443 | HRTIMER_MODE_REL); |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * Set the maximum time for the in-service queue to consume its |
| 2448 | * budget. This prevents seeky processes from lowering the disk |
| 2449 | * throughput (always guaranteed with a time slice scheme as in CFQ). |
| 2450 | */ |
| 2451 | static void bfq_set_budget_timeout(struct bfq_data *bfqd) |
| 2452 | { |
| 2453 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 2454 | unsigned int timeout_coeff = bfqq->entity.weight / |
| 2455 | bfqq->entity.orig_weight; |
| 2456 | |
| 2457 | bfqd->last_budget_start = ktime_get(); |
| 2458 | |
| 2459 | bfq_clear_bfqq_budget_new(bfqq); |
| 2460 | bfqq->budget_timeout = jiffies + |
| 2461 | bfqd->bfq_timeout * timeout_coeff; |
| 2462 | |
| 2463 | bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u", |
| 2464 | jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff)); |
| 2465 | } |
| 2466 | |
| 2467 | /* |
| 2468 | * Remove request from internal lists. |
| 2469 | */ |
| 2470 | static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) |
| 2471 | { |
| 2472 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 2473 | |
| 2474 | /* |
| 2475 | * For consistency, the next instruction should have been |
| 2476 | * executed after removing the request from the queue and |
| 2477 | * dispatching it. We execute instead this instruction before |
| 2478 | * bfq_remove_request() (and hence introduce a temporary |
| 2479 | * inconsistency), for efficiency. In fact, should this |
| 2480 | * dispatch occur for a non in-service bfqq, this anticipated |
| 2481 | * increment prevents two counters related to bfqq->dispatched |
| 2482 | * from risking to be, first, uselessly decremented, and then |
| 2483 | * incremented again when the (new) value of bfqq->dispatched |
| 2484 | * happens to be taken into account. |
| 2485 | */ |
| 2486 | bfqq->dispatched++; |
| 2487 | |
| 2488 | bfq_remove_request(q, rq); |
| 2489 | } |
| 2490 | |
| 2491 | static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2492 | { |
| 2493 | __bfq_bfqd_reset_in_service(bfqd); |
| 2494 | |
| 2495 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) |
| 2496 | bfq_del_bfqq_busy(bfqd, bfqq, 1); |
| 2497 | else |
| 2498 | bfq_activate_bfqq(bfqd, bfqq); |
| 2499 | } |
| 2500 | |
| 2501 | /** |
| 2502 | * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. |
| 2503 | * @bfqd: device data. |
| 2504 | * @bfqq: queue to update. |
| 2505 | * @reason: reason for expiration. |
| 2506 | * |
| 2507 | * Handle the feedback on @bfqq budget at queue expiration. |
| 2508 | * See the body for detailed comments. |
| 2509 | */ |
| 2510 | static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, |
| 2511 | struct bfq_queue *bfqq, |
| 2512 | enum bfqq_expiration reason) |
| 2513 | { |
| 2514 | struct request *next_rq; |
| 2515 | int budget, min_budget; |
| 2516 | |
| 2517 | budget = bfqq->max_budget; |
| 2518 | min_budget = bfq_min_budget(bfqd); |
| 2519 | |
| 2520 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", |
| 2521 | bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); |
| 2522 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", |
| 2523 | budget, bfq_min_budget(bfqd)); |
| 2524 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", |
| 2525 | bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); |
| 2526 | |
| 2527 | if (bfq_bfqq_sync(bfqq)) { |
| 2528 | switch (reason) { |
| 2529 | /* |
| 2530 | * Caveat: in all the following cases we trade latency |
| 2531 | * for throughput. |
| 2532 | */ |
| 2533 | case BFQQE_TOO_IDLE: |
| 2534 | if (budget > min_budget + BFQ_BUDGET_STEP) |
| 2535 | budget -= BFQ_BUDGET_STEP; |
| 2536 | else |
| 2537 | budget = min_budget; |
| 2538 | break; |
| 2539 | case BFQQE_BUDGET_TIMEOUT: |
| 2540 | budget = bfq_default_budget(bfqd, bfqq); |
| 2541 | break; |
| 2542 | case BFQQE_BUDGET_EXHAUSTED: |
| 2543 | /* |
| 2544 | * The process still has backlog, and did not |
| 2545 | * let either the budget timeout or the disk |
| 2546 | * idling timeout expire. Hence it is not |
| 2547 | * seeky, has a short thinktime and may be |
| 2548 | * happy with a higher budget too. So |
| 2549 | * definitely increase the budget of this good |
| 2550 | * candidate to boost the disk throughput. |
| 2551 | */ |
| 2552 | budget = min(budget + 8 * BFQ_BUDGET_STEP, |
| 2553 | bfqd->bfq_max_budget); |
| 2554 | break; |
| 2555 | case BFQQE_NO_MORE_REQUESTS: |
| 2556 | /* |
| 2557 | * For queues that expire for this reason, it |
| 2558 | * is particularly important to keep the |
| 2559 | * budget close to the actual service they |
| 2560 | * need. Doing so reduces the timestamp |
| 2561 | * misalignment problem described in the |
| 2562 | * comments in the body of |
| 2563 | * __bfq_activate_entity. In fact, suppose |
| 2564 | * that a queue systematically expires for |
| 2565 | * BFQQE_NO_MORE_REQUESTS and presents a |
| 2566 | * new request in time to enjoy timestamp |
| 2567 | * back-shifting. The larger the budget of the |
| 2568 | * queue is with respect to the service the |
| 2569 | * queue actually requests in each service |
| 2570 | * slot, the more times the queue can be |
| 2571 | * reactivated with the same virtual finish |
| 2572 | * time. It follows that, even if this finish |
| 2573 | * time is pushed to the system virtual time |
| 2574 | * to reduce the consequent timestamp |
| 2575 | * misalignment, the queue unjustly enjoys for |
| 2576 | * many re-activations a lower finish time |
| 2577 | * than all newly activated queues. |
| 2578 | * |
| 2579 | * The service needed by bfqq is measured |
| 2580 | * quite precisely by bfqq->entity.service. |
| 2581 | * Since bfqq does not enjoy device idling, |
| 2582 | * bfqq->entity.service is equal to the number |
| 2583 | * of sectors that the process associated with |
| 2584 | * bfqq requested to read/write before waiting |
| 2585 | * for request completions, or blocking for |
| 2586 | * other reasons. |
| 2587 | */ |
| 2588 | budget = max_t(int, bfqq->entity.service, min_budget); |
| 2589 | break; |
| 2590 | default: |
| 2591 | return; |
| 2592 | } |
| 2593 | } else { |
| 2594 | /* |
| 2595 | * Async queues get always the maximum possible |
| 2596 | * budget, as for them we do not care about latency |
| 2597 | * (in addition, their ability to dispatch is limited |
| 2598 | * by the charging factor). |
| 2599 | */ |
| 2600 | budget = bfqd->bfq_max_budget; |
| 2601 | } |
| 2602 | |
| 2603 | bfqq->max_budget = budget; |
| 2604 | |
| 2605 | if (bfqd->budgets_assigned >= bfq_stats_min_budgets && |
| 2606 | !bfqd->bfq_user_max_budget) |
| 2607 | bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); |
| 2608 | |
| 2609 | /* |
| 2610 | * If there is still backlog, then assign a new budget, making |
| 2611 | * sure that it is large enough for the next request. Since |
| 2612 | * the finish time of bfqq must be kept in sync with the |
| 2613 | * budget, be sure to call __bfq_bfqq_expire() *after* this |
| 2614 | * update. |
| 2615 | * |
| 2616 | * If there is no backlog, then no need to update the budget; |
| 2617 | * it will be updated on the arrival of a new request. |
| 2618 | */ |
| 2619 | next_rq = bfqq->next_rq; |
| 2620 | if (next_rq) |
| 2621 | bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, |
| 2622 | bfq_serv_to_charge(next_rq, bfqq)); |
| 2623 | |
| 2624 | bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", |
| 2625 | next_rq ? blk_rq_sectors(next_rq) : 0, |
| 2626 | bfqq->entity.budget); |
| 2627 | } |
| 2628 | |
| 2629 | static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout) |
| 2630 | { |
| 2631 | unsigned long max_budget; |
| 2632 | |
| 2633 | /* |
| 2634 | * The max_budget calculated when autotuning is equal to the |
| 2635 | * amount of sectors transferred in timeout at the estimated |
| 2636 | * peak rate. To get this value, peak_rate is, first, |
| 2637 | * multiplied by 1000, because timeout is measured in ms, |
| 2638 | * while peak_rate is measured in sectors/usecs. Then the |
| 2639 | * result of this multiplication is right-shifted by |
| 2640 | * BFQ_RATE_SHIFT, because peak_rate is equal to the value of |
| 2641 | * the peak rate left-shifted by BFQ_RATE_SHIFT. |
| 2642 | */ |
| 2643 | max_budget = (unsigned long)(peak_rate * 1000 * |
| 2644 | timeout >> BFQ_RATE_SHIFT); |
| 2645 | |
| 2646 | return max_budget; |
| 2647 | } |
| 2648 | |
| 2649 | /* |
| 2650 | * In addition to updating the peak rate, checks whether the process |
| 2651 | * is "slow", and returns 1 if so. This slow flag is used, in addition |
| 2652 | * to the budget timeout, to reduce the amount of service provided to |
| 2653 | * seeky processes, and hence reduce their chances to lower the |
| 2654 | * throughput. See the code for more details. |
| 2655 | */ |
| 2656 | static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 2657 | bool compensate) |
| 2658 | { |
| 2659 | u64 bw, usecs, expected, timeout; |
| 2660 | ktime_t delta; |
| 2661 | int update = 0; |
| 2662 | |
| 2663 | if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq)) |
| 2664 | return false; |
| 2665 | |
| 2666 | if (compensate) |
| 2667 | delta = bfqd->last_idling_start; |
| 2668 | else |
| 2669 | delta = ktime_get(); |
| 2670 | delta = ktime_sub(delta, bfqd->last_budget_start); |
| 2671 | usecs = ktime_to_us(delta); |
| 2672 | |
| 2673 | /* don't use too short time intervals */ |
| 2674 | if (usecs < 1000) |
| 2675 | return false; |
| 2676 | |
| 2677 | /* |
| 2678 | * Calculate the bandwidth for the last slice. We use a 64 bit |
| 2679 | * value to store the peak rate, in sectors per usec in fixed |
| 2680 | * point math. We do so to have enough precision in the estimate |
| 2681 | * and to avoid overflows. |
| 2682 | */ |
| 2683 | bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT; |
| 2684 | do_div(bw, (unsigned long)usecs); |
| 2685 | |
| 2686 | timeout = jiffies_to_msecs(bfqd->bfq_timeout); |
| 2687 | |
| 2688 | /* |
| 2689 | * Use only long (> 20ms) intervals to filter out spikes for |
| 2690 | * the peak rate estimation. |
| 2691 | */ |
| 2692 | if (usecs > 20000) { |
| 2693 | if (bw > bfqd->peak_rate) { |
| 2694 | bfqd->peak_rate = bw; |
| 2695 | update = 1; |
| 2696 | bfq_log(bfqd, "new peak_rate=%llu", bw); |
| 2697 | } |
| 2698 | |
| 2699 | update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1; |
| 2700 | |
| 2701 | if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES) |
| 2702 | bfqd->peak_rate_samples++; |
| 2703 | |
| 2704 | if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES && |
| 2705 | update && bfqd->bfq_user_max_budget == 0) { |
| 2706 | bfqd->bfq_max_budget = |
| 2707 | bfq_calc_max_budget(bfqd->peak_rate, |
| 2708 | timeout); |
| 2709 | bfq_log(bfqd, "new max_budget=%d", |
| 2710 | bfqd->bfq_max_budget); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | /* |
| 2715 | * A process is considered ``slow'' (i.e., seeky, so that we |
| 2716 | * cannot treat it fairly in the service domain, as it would |
| 2717 | * slow down too much the other processes) if, when a slice |
| 2718 | * ends for whatever reason, it has received service at a |
| 2719 | * rate that would not be high enough to complete the budget |
| 2720 | * before the budget timeout expiration. |
| 2721 | */ |
| 2722 | expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT; |
| 2723 | |
| 2724 | /* |
| 2725 | * Caveat: processes doing IO in the slower disk zones will |
| 2726 | * tend to be slow(er) even if not seeky. And the estimated |
| 2727 | * peak rate will actually be an average over the disk |
| 2728 | * surface. Hence, to not be too harsh with unlucky processes, |
| 2729 | * we keep a budget/3 margin of safety before declaring a |
| 2730 | * process slow. |
| 2731 | */ |
| 2732 | return expected > (4 * bfqq->entity.budget) / 3; |
| 2733 | } |
| 2734 | |
| 2735 | /* |
| 2736 | * Return the farthest past time instant according to jiffies |
| 2737 | * macros. |
| 2738 | */ |
| 2739 | static unsigned long bfq_smallest_from_now(void) |
| 2740 | { |
| 2741 | return jiffies - MAX_JIFFY_OFFSET; |
| 2742 | } |
| 2743 | |
| 2744 | /** |
| 2745 | * bfq_bfqq_expire - expire a queue. |
| 2746 | * @bfqd: device owning the queue. |
| 2747 | * @bfqq: the queue to expire. |
| 2748 | * @compensate: if true, compensate for the time spent idling. |
| 2749 | * @reason: the reason causing the expiration. |
| 2750 | * |
| 2751 | * |
| 2752 | * If the process associated with the queue is slow (i.e., seeky), or |
| 2753 | * in case of budget timeout, or, finally, if it is async, we |
| 2754 | * artificially charge it an entire budget (independently of the |
| 2755 | * actual service it received). As a consequence, the queue will get |
| 2756 | * higher timestamps than the correct ones upon reactivation, and |
| 2757 | * hence it will be rescheduled as if it had received more service |
| 2758 | * than what it actually received. In the end, this class of processes |
| 2759 | * will receive less service in proportion to how slowly they consume |
| 2760 | * their budgets (and hence how seriously they tend to lower the |
| 2761 | * throughput). |
| 2762 | * |
| 2763 | * In contrast, when a queue expires because it has been idling for |
| 2764 | * too much or because it exhausted its budget, we do not touch the |
| 2765 | * amount of service it has received. Hence when the queue will be |
| 2766 | * reactivated and its timestamps updated, the latter will be in sync |
| 2767 | * with the actual service received by the queue until expiration. |
| 2768 | * |
| 2769 | * Charging a full budget to the first type of queues and the exact |
| 2770 | * service to the others has the effect of using the WF2Q+ policy to |
| 2771 | * schedule the former on a timeslice basis, without violating the |
| 2772 | * service domain guarantees of the latter. |
| 2773 | */ |
| 2774 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 2775 | struct bfq_queue *bfqq, |
| 2776 | bool compensate, |
| 2777 | enum bfqq_expiration reason) |
| 2778 | { |
| 2779 | bool slow; |
| 2780 | int ref; |
| 2781 | |
| 2782 | /* |
| 2783 | * Update device peak rate for autotuning and check whether the |
| 2784 | * process is slow (see bfq_update_peak_rate). |
| 2785 | */ |
| 2786 | slow = bfq_update_peak_rate(bfqd, bfqq, compensate); |
| 2787 | |
| 2788 | /* |
| 2789 | * As above explained, 'punish' slow (i.e., seeky), timed-out |
| 2790 | * and async queues, to favor sequential sync workloads. |
| 2791 | */ |
| 2792 | if (slow || reason == BFQQE_BUDGET_TIMEOUT) |
| 2793 | bfq_bfqq_charge_full_budget(bfqq); |
| 2794 | |
| 2795 | if (reason == BFQQE_TOO_IDLE && |
| 2796 | bfqq->entity.service <= 2 * bfqq->entity.budget / 10) |
| 2797 | bfq_clear_bfqq_IO_bound(bfqq); |
| 2798 | |
| 2799 | bfq_log_bfqq(bfqd, bfqq, |
| 2800 | "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, |
| 2801 | slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); |
| 2802 | |
| 2803 | /* |
| 2804 | * Increase, decrease or leave budget unchanged according to |
| 2805 | * reason. |
| 2806 | */ |
| 2807 | __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); |
| 2808 | ref = bfqq->ref; |
| 2809 | __bfq_bfqq_expire(bfqd, bfqq); |
| 2810 | |
| 2811 | /* mark bfqq as waiting a request only if a bic still points to it */ |
| 2812 | if (ref > 1 && !bfq_bfqq_busy(bfqq) && |
| 2813 | reason != BFQQE_BUDGET_TIMEOUT && |
| 2814 | reason != BFQQE_BUDGET_EXHAUSTED) |
| 2815 | bfq_mark_bfqq_non_blocking_wait_rq(bfqq); |
| 2816 | } |
| 2817 | |
| 2818 | /* |
| 2819 | * Budget timeout is not implemented through a dedicated timer, but |
| 2820 | * just checked on request arrivals and completions, as well as on |
| 2821 | * idle timer expirations. |
| 2822 | */ |
| 2823 | static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) |
| 2824 | { |
| 2825 | if (bfq_bfqq_budget_new(bfqq) || |
| 2826 | time_is_after_jiffies(bfqq->budget_timeout)) |
| 2827 | return false; |
| 2828 | return true; |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * If we expire a queue that is actively waiting (i.e., with the |
| 2833 | * device idled) for the arrival of a new request, then we may incur |
| 2834 | * the timestamp misalignment problem described in the body of the |
| 2835 | * function __bfq_activate_entity. Hence we return true only if this |
| 2836 | * condition does not hold, or if the queue is slow enough to deserve |
| 2837 | * only to be kicked off for preserving a high throughput. |
| 2838 | */ |
| 2839 | static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) |
| 2840 | { |
| 2841 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 2842 | "may_budget_timeout: wait_request %d left %d timeout %d", |
| 2843 | bfq_bfqq_wait_request(bfqq), |
| 2844 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, |
| 2845 | bfq_bfqq_budget_timeout(bfqq)); |
| 2846 | |
| 2847 | return (!bfq_bfqq_wait_request(bfqq) || |
| 2848 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) |
| 2849 | && |
| 2850 | bfq_bfqq_budget_timeout(bfqq); |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | * For a queue that becomes empty, device idling is allowed only if |
| 2855 | * this function returns true for the queue. And this function returns |
| 2856 | * true only if idling is beneficial for throughput. |
| 2857 | */ |
| 2858 | static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) |
| 2859 | { |
| 2860 | struct bfq_data *bfqd = bfqq->bfqd; |
| 2861 | bool idling_boosts_thr; |
| 2862 | |
| 2863 | if (bfqd->strict_guarantees) |
| 2864 | return true; |
| 2865 | |
| 2866 | /* |
| 2867 | * The value of the next variable is computed considering that |
| 2868 | * idling is usually beneficial for the throughput if: |
| 2869 | * (a) the device is not NCQ-capable, or |
| 2870 | * (b) regardless of the presence of NCQ, the request pattern |
| 2871 | * for bfqq is I/O-bound (possible throughput losses |
| 2872 | * caused by granting idling to seeky queues are mitigated |
| 2873 | * by the fact that, in all scenarios where boosting |
| 2874 | * throughput is the best thing to do, i.e., in all |
| 2875 | * symmetric scenarios, only a minimal idle time is |
| 2876 | * allowed to seeky queues). |
| 2877 | */ |
| 2878 | idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq); |
| 2879 | |
| 2880 | /* |
| 2881 | * We have now the components we need to compute the return |
| 2882 | * value of the function, which is true only if both the |
| 2883 | * following conditions hold: |
| 2884 | * 1) bfqq is sync, because idling make sense only for sync queues; |
| 2885 | * 2) idling boosts the throughput. |
| 2886 | */ |
| 2887 | return bfq_bfqq_sync(bfqq) && idling_boosts_thr; |
| 2888 | } |
| 2889 | |
| 2890 | /* |
| 2891 | * If the in-service queue is empty but the function bfq_bfqq_may_idle |
| 2892 | * returns true, then: |
| 2893 | * 1) the queue must remain in service and cannot be expired, and |
| 2894 | * 2) the device must be idled to wait for the possible arrival of a new |
| 2895 | * request for the queue. |
| 2896 | * See the comments on the function bfq_bfqq_may_idle for the reasons |
| 2897 | * why performing device idling is the best choice to boost the throughput |
| 2898 | * and preserve service guarantees when bfq_bfqq_may_idle itself |
| 2899 | * returns true. |
| 2900 | */ |
| 2901 | static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) |
| 2902 | { |
| 2903 | struct bfq_data *bfqd = bfqq->bfqd; |
| 2904 | |
| 2905 | return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && |
| 2906 | bfq_bfqq_may_idle(bfqq); |
| 2907 | } |
| 2908 | |
| 2909 | /* |
| 2910 | * Select a queue for service. If we have a current queue in service, |
| 2911 | * check whether to continue servicing it, or retrieve and set a new one. |
| 2912 | */ |
| 2913 | static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) |
| 2914 | { |
| 2915 | struct bfq_queue *bfqq; |
| 2916 | struct request *next_rq; |
| 2917 | enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; |
| 2918 | |
| 2919 | bfqq = bfqd->in_service_queue; |
| 2920 | if (!bfqq) |
| 2921 | goto new_queue; |
| 2922 | |
| 2923 | bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); |
| 2924 | |
| 2925 | if (bfq_may_expire_for_budg_timeout(bfqq) && |
| 2926 | !bfq_bfqq_wait_request(bfqq) && |
| 2927 | !bfq_bfqq_must_idle(bfqq)) |
| 2928 | goto expire; |
| 2929 | |
| 2930 | check_queue: |
| 2931 | /* |
| 2932 | * This loop is rarely executed more than once. Even when it |
| 2933 | * happens, it is much more convenient to re-execute this loop |
| 2934 | * than to return NULL and trigger a new dispatch to get a |
| 2935 | * request served. |
| 2936 | */ |
| 2937 | next_rq = bfqq->next_rq; |
| 2938 | /* |
| 2939 | * If bfqq has requests queued and it has enough budget left to |
| 2940 | * serve them, keep the queue, otherwise expire it. |
| 2941 | */ |
| 2942 | if (next_rq) { |
| 2943 | if (bfq_serv_to_charge(next_rq, bfqq) > |
| 2944 | bfq_bfqq_budget_left(bfqq)) { |
| 2945 | /* |
| 2946 | * Expire the queue for budget exhaustion, |
| 2947 | * which makes sure that the next budget is |
| 2948 | * enough to serve the next request, even if |
| 2949 | * it comes from the fifo expired path. |
| 2950 | */ |
| 2951 | reason = BFQQE_BUDGET_EXHAUSTED; |
| 2952 | goto expire; |
| 2953 | } else { |
| 2954 | /* |
| 2955 | * The idle timer may be pending because we may |
| 2956 | * not disable disk idling even when a new request |
| 2957 | * arrives. |
| 2958 | */ |
| 2959 | if (bfq_bfqq_wait_request(bfqq)) { |
| 2960 | /* |
| 2961 | * If we get here: 1) at least a new request |
| 2962 | * has arrived but we have not disabled the |
| 2963 | * timer because the request was too small, |
| 2964 | * 2) then the block layer has unplugged |
| 2965 | * the device, causing the dispatch to be |
| 2966 | * invoked. |
| 2967 | * |
| 2968 | * Since the device is unplugged, now the |
| 2969 | * requests are probably large enough to |
| 2970 | * provide a reasonable throughput. |
| 2971 | * So we disable idling. |
| 2972 | */ |
| 2973 | bfq_clear_bfqq_wait_request(bfqq); |
| 2974 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| 2975 | } |
| 2976 | goto keep_queue; |
| 2977 | } |
| 2978 | } |
| 2979 | |
| 2980 | /* |
| 2981 | * No requests pending. However, if the in-service queue is idling |
| 2982 | * for a new request, or has requests waiting for a completion and |
| 2983 | * may idle after their completion, then keep it anyway. |
| 2984 | */ |
| 2985 | if (bfq_bfqq_wait_request(bfqq) || |
| 2986 | (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { |
| 2987 | bfqq = NULL; |
| 2988 | goto keep_queue; |
| 2989 | } |
| 2990 | |
| 2991 | reason = BFQQE_NO_MORE_REQUESTS; |
| 2992 | expire: |
| 2993 | bfq_bfqq_expire(bfqd, bfqq, false, reason); |
| 2994 | new_queue: |
| 2995 | bfqq = bfq_set_in_service_queue(bfqd); |
| 2996 | if (bfqq) { |
| 2997 | bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); |
| 2998 | goto check_queue; |
| 2999 | } |
| 3000 | keep_queue: |
| 3001 | if (bfqq) |
| 3002 | bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); |
| 3003 | else |
| 3004 | bfq_log(bfqd, "select_queue: no queue returned"); |
| 3005 | |
| 3006 | return bfqq; |
| 3007 | } |
| 3008 | |
| 3009 | /* |
| 3010 | * Dispatch next request from bfqq. |
| 3011 | */ |
| 3012 | static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, |
| 3013 | struct bfq_queue *bfqq) |
| 3014 | { |
| 3015 | struct request *rq = bfqq->next_rq; |
| 3016 | unsigned long service_to_charge; |
| 3017 | |
| 3018 | service_to_charge = bfq_serv_to_charge(rq, bfqq); |
| 3019 | |
| 3020 | bfq_bfqq_served(bfqq, service_to_charge); |
| 3021 | |
| 3022 | bfq_dispatch_remove(bfqd->queue, rq); |
| 3023 | |
| 3024 | if (!bfqd->in_service_bic) { |
| 3025 | atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); |
| 3026 | bfqd->in_service_bic = RQ_BIC(rq); |
| 3027 | } |
| 3028 | |
| 3029 | /* |
| 3030 | * Expire bfqq, pretending that its budget expired, if bfqq |
| 3031 | * belongs to CLASS_IDLE and other queues are waiting for |
| 3032 | * service. |
| 3033 | */ |
| 3034 | if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) |
| 3035 | goto expire; |
| 3036 | |
| 3037 | return rq; |
| 3038 | |
| 3039 | expire: |
| 3040 | bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); |
| 3041 | return rq; |
| 3042 | } |
| 3043 | |
| 3044 | static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) |
| 3045 | { |
| 3046 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 3047 | |
| 3048 | /* |
| 3049 | * Avoiding lock: a race on bfqd->busy_queues should cause at |
| 3050 | * most a call to dispatch for nothing |
| 3051 | */ |
| 3052 | return !list_empty_careful(&bfqd->dispatch) || |
| 3053 | bfqd->busy_queues > 0; |
| 3054 | } |
| 3055 | |
| 3056 | static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 3057 | { |
| 3058 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 3059 | struct request *rq = NULL; |
| 3060 | struct bfq_queue *bfqq = NULL; |
| 3061 | |
| 3062 | if (!list_empty(&bfqd->dispatch)) { |
| 3063 | rq = list_first_entry(&bfqd->dispatch, struct request, |
| 3064 | queuelist); |
| 3065 | list_del_init(&rq->queuelist); |
| 3066 | |
| 3067 | bfqq = RQ_BFQQ(rq); |
| 3068 | |
| 3069 | if (bfqq) { |
| 3070 | /* |
| 3071 | * Increment counters here, because this |
| 3072 | * dispatch does not follow the standard |
| 3073 | * dispatch flow (where counters are |
| 3074 | * incremented) |
| 3075 | */ |
| 3076 | bfqq->dispatched++; |
| 3077 | |
| 3078 | goto inc_in_driver_start_rq; |
| 3079 | } |
| 3080 | |
| 3081 | /* |
| 3082 | * We exploit the put_rq_private hook to decrement |
| 3083 | * rq_in_driver, but put_rq_private will not be |
| 3084 | * invoked on this request. So, to avoid unbalance, |
| 3085 | * just start this request, without incrementing |
| 3086 | * rq_in_driver. As a negative consequence, |
| 3087 | * rq_in_driver is deceptively lower than it should be |
| 3088 | * while this request is in service. This may cause |
| 3089 | * bfq_schedule_dispatch to be invoked uselessly. |
| 3090 | * |
| 3091 | * As for implementing an exact solution, the |
| 3092 | * put_request hook, if defined, is probably invoked |
| 3093 | * also on this request. So, by exploiting this hook, |
| 3094 | * we could 1) increment rq_in_driver here, and 2) |
| 3095 | * decrement it in put_request. Such a solution would |
| 3096 | * let the value of the counter be always accurate, |
| 3097 | * but it would entail using an extra interface |
| 3098 | * function. This cost seems higher than the benefit, |
| 3099 | * being the frequency of non-elevator-private |
| 3100 | * requests very low. |
| 3101 | */ |
| 3102 | goto start_rq; |
| 3103 | } |
| 3104 | |
| 3105 | bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); |
| 3106 | |
| 3107 | if (bfqd->busy_queues == 0) |
| 3108 | goto exit; |
| 3109 | |
| 3110 | /* |
| 3111 | * Force device to serve one request at a time if |
| 3112 | * strict_guarantees is true. Forcing this service scheme is |
| 3113 | * currently the ONLY way to guarantee that the request |
| 3114 | * service order enforced by the scheduler is respected by a |
| 3115 | * queueing device. Otherwise the device is free even to make |
| 3116 | * some unlucky request wait for as long as the device |
| 3117 | * wishes. |
| 3118 | * |
| 3119 | * Of course, serving one request at at time may cause loss of |
| 3120 | * throughput. |
| 3121 | */ |
| 3122 | if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) |
| 3123 | goto exit; |
| 3124 | |
| 3125 | bfqq = bfq_select_queue(bfqd); |
| 3126 | if (!bfqq) |
| 3127 | goto exit; |
| 3128 | |
| 3129 | rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); |
| 3130 | |
| 3131 | if (rq) { |
| 3132 | inc_in_driver_start_rq: |
| 3133 | bfqd->rq_in_driver++; |
| 3134 | start_rq: |
| 3135 | rq->rq_flags |= RQF_STARTED; |
| 3136 | } |
| 3137 | exit: |
| 3138 | return rq; |
| 3139 | } |
| 3140 | |
| 3141 | static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 3142 | { |
| 3143 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 3144 | struct request *rq; |
| 3145 | |
| 3146 | spin_lock_irq(&bfqd->lock); |
| 3147 | rq = __bfq_dispatch_request(hctx); |
| 3148 | spin_unlock_irq(&bfqd->lock); |
| 3149 | |
| 3150 | return rq; |
| 3151 | } |
| 3152 | |
| 3153 | /* |
| 3154 | * Task holds one reference to the queue, dropped when task exits. Each rq |
| 3155 | * in-flight on this queue also holds a reference, dropped when rq is freed. |
| 3156 | * |
| 3157 | * Scheduler lock must be held here. Recall not to use bfqq after calling |
| 3158 | * this function on it. |
| 3159 | */ |
| 3160 | static void bfq_put_queue(struct bfq_queue *bfqq) |
| 3161 | { |
| 3162 | if (bfqq->bfqd) |
| 3163 | bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", |
| 3164 | bfqq, bfqq->ref); |
| 3165 | |
| 3166 | bfqq->ref--; |
| 3167 | if (bfqq->ref) |
| 3168 | return; |
| 3169 | |
| 3170 | kmem_cache_free(bfq_pool, bfqq); |
| 3171 | } |
| 3172 | |
| 3173 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 3174 | { |
| 3175 | if (bfqq == bfqd->in_service_queue) { |
| 3176 | __bfq_bfqq_expire(bfqd, bfqq); |
| 3177 | bfq_schedule_dispatch(bfqd); |
| 3178 | } |
| 3179 | |
| 3180 | bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); |
| 3181 | |
| 3182 | bfq_put_queue(bfqq); /* release process reference */ |
| 3183 | } |
| 3184 | |
| 3185 | static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 3186 | { |
| 3187 | struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); |
| 3188 | struct bfq_data *bfqd; |
| 3189 | |
| 3190 | if (bfqq) |
| 3191 | bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ |
| 3192 | |
| 3193 | if (bfqq && bfqd) { |
| 3194 | unsigned long flags; |
| 3195 | |
| 3196 | spin_lock_irqsave(&bfqd->lock, flags); |
| 3197 | bfq_exit_bfqq(bfqd, bfqq); |
| 3198 | bic_set_bfqq(bic, NULL, is_sync); |
| 3199 | spin_unlock_irq(&bfqd->lock); |
| 3200 | } |
| 3201 | } |
| 3202 | |
| 3203 | static void bfq_exit_icq(struct io_cq *icq) |
| 3204 | { |
| 3205 | struct bfq_io_cq *bic = icq_to_bic(icq); |
| 3206 | |
| 3207 | bfq_exit_icq_bfqq(bic, true); |
| 3208 | bfq_exit_icq_bfqq(bic, false); |
| 3209 | } |
| 3210 | |
| 3211 | /* |
| 3212 | * Update the entity prio values; note that the new values will not |
| 3213 | * be used until the next (re)activation. |
| 3214 | */ |
| 3215 | static void |
| 3216 | bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) |
| 3217 | { |
| 3218 | struct task_struct *tsk = current; |
| 3219 | int ioprio_class; |
| 3220 | struct bfq_data *bfqd = bfqq->bfqd; |
| 3221 | |
| 3222 | if (!bfqd) |
| 3223 | return; |
| 3224 | |
| 3225 | ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 3226 | switch (ioprio_class) { |
| 3227 | default: |
| 3228 | dev_err(bfqq->bfqd->queue->backing_dev_info->dev, |
| 3229 | "bfq: bad prio class %d\n", ioprio_class); |
| 3230 | case IOPRIO_CLASS_NONE: |
| 3231 | /* |
| 3232 | * No prio set, inherit CPU scheduling settings. |
| 3233 | */ |
| 3234 | bfqq->new_ioprio = task_nice_ioprio(tsk); |
| 3235 | bfqq->new_ioprio_class = task_nice_ioclass(tsk); |
| 3236 | break; |
| 3237 | case IOPRIO_CLASS_RT: |
| 3238 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 3239 | bfqq->new_ioprio_class = IOPRIO_CLASS_RT; |
| 3240 | break; |
| 3241 | case IOPRIO_CLASS_BE: |
| 3242 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 3243 | bfqq->new_ioprio_class = IOPRIO_CLASS_BE; |
| 3244 | break; |
| 3245 | case IOPRIO_CLASS_IDLE: |
| 3246 | bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; |
| 3247 | bfqq->new_ioprio = 7; |
| 3248 | bfq_clear_bfqq_idle_window(bfqq); |
| 3249 | break; |
| 3250 | } |
| 3251 | |
| 3252 | if (bfqq->new_ioprio >= IOPRIO_BE_NR) { |
| 3253 | pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", |
| 3254 | bfqq->new_ioprio); |
| 3255 | bfqq->new_ioprio = IOPRIO_BE_NR; |
| 3256 | } |
| 3257 | |
| 3258 | bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); |
| 3259 | bfqq->entity.prio_changed = 1; |
| 3260 | } |
| 3261 | |
| 3262 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) |
| 3263 | { |
| 3264 | struct bfq_data *bfqd = bic_to_bfqd(bic); |
| 3265 | struct bfq_queue *bfqq; |
| 3266 | int ioprio = bic->icq.ioc->ioprio; |
| 3267 | |
| 3268 | /* |
| 3269 | * This condition may trigger on a newly created bic, be sure to |
| 3270 | * drop the lock before returning. |
| 3271 | */ |
| 3272 | if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) |
| 3273 | return; |
| 3274 | |
| 3275 | bic->ioprio = ioprio; |
| 3276 | |
| 3277 | bfqq = bic_to_bfqq(bic, false); |
| 3278 | if (bfqq) { |
| 3279 | /* release process reference on this queue */ |
| 3280 | bfq_put_queue(bfqq); |
| 3281 | bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); |
| 3282 | bic_set_bfqq(bic, bfqq, false); |
| 3283 | } |
| 3284 | |
| 3285 | bfqq = bic_to_bfqq(bic, true); |
| 3286 | if (bfqq) |
| 3287 | bfq_set_next_ioprio_data(bfqq, bic); |
| 3288 | } |
| 3289 | |
| 3290 | static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 3291 | struct bfq_io_cq *bic, pid_t pid, int is_sync) |
| 3292 | { |
| 3293 | RB_CLEAR_NODE(&bfqq->entity.rb_node); |
| 3294 | INIT_LIST_HEAD(&bfqq->fifo); |
| 3295 | |
| 3296 | bfqq->ref = 0; |
| 3297 | bfqq->bfqd = bfqd; |
| 3298 | |
| 3299 | if (bic) |
| 3300 | bfq_set_next_ioprio_data(bfqq, bic); |
| 3301 | |
| 3302 | if (is_sync) { |
| 3303 | if (!bfq_class_idle(bfqq)) |
| 3304 | bfq_mark_bfqq_idle_window(bfqq); |
| 3305 | bfq_mark_bfqq_sync(bfqq); |
| 3306 | } else |
| 3307 | bfq_clear_bfqq_sync(bfqq); |
| 3308 | |
| 3309 | /* set end request to minus infinity from now */ |
| 3310 | bfqq->ttime.last_end_request = ktime_get_ns() + 1; |
| 3311 | |
| 3312 | bfq_mark_bfqq_IO_bound(bfqq); |
| 3313 | |
| 3314 | bfqq->pid = pid; |
| 3315 | |
| 3316 | /* Tentative initial value to trade off between thr and lat */ |
| 3317 | bfqq->max_budget = bfq_default_budget(bfqd, bfqq); |
| 3318 | bfqq->budget_timeout = bfq_smallest_from_now(); |
| 3319 | bfqq->pid = pid; |
| 3320 | |
| 3321 | /* first request is almost certainly seeky */ |
| 3322 | bfqq->seek_history = 1; |
| 3323 | } |
| 3324 | |
| 3325 | static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, |
| 3326 | int ioprio_class, int ioprio) |
| 3327 | { |
| 3328 | switch (ioprio_class) { |
| 3329 | case IOPRIO_CLASS_RT: |
| 3330 | return &async_bfqq[0][ioprio]; |
| 3331 | case IOPRIO_CLASS_NONE: |
| 3332 | ioprio = IOPRIO_NORM; |
| 3333 | /* fall through */ |
| 3334 | case IOPRIO_CLASS_BE: |
| 3335 | return &async_bfqq[1][ioprio]; |
| 3336 | case IOPRIO_CLASS_IDLE: |
| 3337 | return &async_idle_bfqq; |
| 3338 | default: |
| 3339 | return NULL; |
| 3340 | } |
| 3341 | } |
| 3342 | |
| 3343 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 3344 | struct bio *bio, bool is_sync, |
| 3345 | struct bfq_io_cq *bic) |
| 3346 | { |
| 3347 | const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 3348 | const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 3349 | struct bfq_queue **async_bfqq = NULL; |
| 3350 | struct bfq_queue *bfqq; |
| 3351 | |
| 3352 | rcu_read_lock(); |
| 3353 | |
| 3354 | if (!is_sync) { |
| 3355 | async_bfqq = bfq_async_queue_prio(bfqd, ioprio_class, |
| 3356 | ioprio); |
| 3357 | bfqq = *async_bfqq; |
| 3358 | if (bfqq) |
| 3359 | goto out; |
| 3360 | } |
| 3361 | |
| 3362 | bfqq = kmem_cache_alloc_node(bfq_pool, |
| 3363 | GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, |
| 3364 | bfqd->queue->node); |
| 3365 | |
| 3366 | if (bfqq) { |
| 3367 | bfq_init_bfqq(bfqd, bfqq, bic, current->pid, |
| 3368 | is_sync); |
| 3369 | bfq_init_entity(&bfqq->entity); |
| 3370 | bfq_log_bfqq(bfqd, bfqq, "allocated"); |
| 3371 | } else { |
| 3372 | bfqq = &bfqd->oom_bfqq; |
| 3373 | bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); |
| 3374 | goto out; |
| 3375 | } |
| 3376 | |
| 3377 | /* |
| 3378 | * Pin the queue now that it's allocated, scheduler exit will |
| 3379 | * prune it. |
| 3380 | */ |
| 3381 | if (async_bfqq) { |
| 3382 | bfqq->ref++; |
| 3383 | bfq_log_bfqq(bfqd, bfqq, |
| 3384 | "get_queue, bfqq not in async: %p, %d", |
| 3385 | bfqq, bfqq->ref); |
| 3386 | *async_bfqq = bfqq; |
| 3387 | } |
| 3388 | |
| 3389 | out: |
| 3390 | bfqq->ref++; /* get a process reference to this queue */ |
| 3391 | bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); |
| 3392 | rcu_read_unlock(); |
| 3393 | return bfqq; |
| 3394 | } |
| 3395 | |
| 3396 | static void bfq_update_io_thinktime(struct bfq_data *bfqd, |
| 3397 | struct bfq_queue *bfqq) |
| 3398 | { |
| 3399 | struct bfq_ttime *ttime = &bfqq->ttime; |
| 3400 | u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; |
| 3401 | |
| 3402 | elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); |
| 3403 | |
| 3404 | ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; |
| 3405 | ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); |
| 3406 | ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, |
| 3407 | ttime->ttime_samples); |
| 3408 | } |
| 3409 | |
| 3410 | static void |
| 3411 | bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 3412 | struct request *rq) |
| 3413 | { |
| 3414 | sector_t sdist = 0; |
| 3415 | |
| 3416 | if (bfqq->last_request_pos) { |
| 3417 | if (bfqq->last_request_pos < blk_rq_pos(rq)) |
| 3418 | sdist = blk_rq_pos(rq) - bfqq->last_request_pos; |
| 3419 | else |
| 3420 | sdist = bfqq->last_request_pos - blk_rq_pos(rq); |
| 3421 | } |
| 3422 | |
| 3423 | bfqq->seek_history <<= 1; |
| 3424 | bfqq->seek_history |= sdist > BFQQ_SEEK_THR && |
| 3425 | (!blk_queue_nonrot(bfqd->queue) || |
| 3426 | blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); |
| 3427 | } |
| 3428 | |
| 3429 | /* |
| 3430 | * Disable idle window if the process thinks too long or seeks so much that |
| 3431 | * it doesn't matter. |
| 3432 | */ |
| 3433 | static void bfq_update_idle_window(struct bfq_data *bfqd, |
| 3434 | struct bfq_queue *bfqq, |
| 3435 | struct bfq_io_cq *bic) |
| 3436 | { |
| 3437 | int enable_idle; |
| 3438 | |
| 3439 | /* Don't idle for async or idle io prio class. */ |
| 3440 | if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) |
| 3441 | return; |
| 3442 | |
| 3443 | enable_idle = bfq_bfqq_idle_window(bfqq); |
| 3444 | |
| 3445 | if (atomic_read(&bic->icq.ioc->active_ref) == 0 || |
| 3446 | bfqd->bfq_slice_idle == 0 || |
| 3447 | (bfqd->hw_tag && BFQQ_SEEKY(bfqq))) |
| 3448 | enable_idle = 0; |
| 3449 | else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { |
| 3450 | if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle) |
| 3451 | enable_idle = 0; |
| 3452 | else |
| 3453 | enable_idle = 1; |
| 3454 | } |
| 3455 | bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", |
| 3456 | enable_idle); |
| 3457 | |
| 3458 | if (enable_idle) |
| 3459 | bfq_mark_bfqq_idle_window(bfqq); |
| 3460 | else |
| 3461 | bfq_clear_bfqq_idle_window(bfqq); |
| 3462 | } |
| 3463 | |
| 3464 | /* |
| 3465 | * Called when a new fs request (rq) is added to bfqq. Check if there's |
| 3466 | * something we should do about it. |
| 3467 | */ |
| 3468 | static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 3469 | struct request *rq) |
| 3470 | { |
| 3471 | struct bfq_io_cq *bic = RQ_BIC(rq); |
| 3472 | |
| 3473 | if (rq->cmd_flags & REQ_META) |
| 3474 | bfqq->meta_pending++; |
| 3475 | |
| 3476 | bfq_update_io_thinktime(bfqd, bfqq); |
| 3477 | bfq_update_io_seektime(bfqd, bfqq, rq); |
| 3478 | if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || |
| 3479 | !BFQQ_SEEKY(bfqq)) |
| 3480 | bfq_update_idle_window(bfqd, bfqq, bic); |
| 3481 | |
| 3482 | bfq_log_bfqq(bfqd, bfqq, |
| 3483 | "rq_enqueued: idle_window=%d (seeky %d)", |
| 3484 | bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); |
| 3485 | |
| 3486 | bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 3487 | |
| 3488 | if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { |
| 3489 | bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && |
| 3490 | blk_rq_sectors(rq) < 32; |
| 3491 | bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); |
| 3492 | |
| 3493 | /* |
| 3494 | * There is just this request queued: if the request |
| 3495 | * is small and the queue is not to be expired, then |
| 3496 | * just exit. |
| 3497 | * |
| 3498 | * In this way, if the device is being idled to wait |
| 3499 | * for a new request from the in-service queue, we |
| 3500 | * avoid unplugging the device and committing the |
| 3501 | * device to serve just a small request. On the |
| 3502 | * contrary, we wait for the block layer to decide |
| 3503 | * when to unplug the device: hopefully, new requests |
| 3504 | * will be merged to this one quickly, then the device |
| 3505 | * will be unplugged and larger requests will be |
| 3506 | * dispatched. |
| 3507 | */ |
| 3508 | if (small_req && !budget_timeout) |
| 3509 | return; |
| 3510 | |
| 3511 | /* |
| 3512 | * A large enough request arrived, or the queue is to |
| 3513 | * be expired: in both cases disk idling is to be |
| 3514 | * stopped, so clear wait_request flag and reset |
| 3515 | * timer. |
| 3516 | */ |
| 3517 | bfq_clear_bfqq_wait_request(bfqq); |
| 3518 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| 3519 | |
| 3520 | /* |
| 3521 | * The queue is not empty, because a new request just |
| 3522 | * arrived. Hence we can safely expire the queue, in |
| 3523 | * case of budget timeout, without risking that the |
| 3524 | * timestamps of the queue are not updated correctly. |
| 3525 | * See [1] for more details. |
| 3526 | */ |
| 3527 | if (budget_timeout) |
| 3528 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 3529 | BFQQE_BUDGET_TIMEOUT); |
| 3530 | } |
| 3531 | } |
| 3532 | |
| 3533 | static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) |
| 3534 | { |
| 3535 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 3536 | |
| 3537 | bfq_add_request(rq); |
| 3538 | |
| 3539 | rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; |
| 3540 | list_add_tail(&rq->queuelist, &bfqq->fifo); |
| 3541 | |
| 3542 | bfq_rq_enqueued(bfqd, bfqq, rq); |
| 3543 | } |
| 3544 | |
| 3545 | static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| 3546 | bool at_head) |
| 3547 | { |
| 3548 | struct request_queue *q = hctx->queue; |
| 3549 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 3550 | |
| 3551 | spin_lock_irq(&bfqd->lock); |
| 3552 | if (blk_mq_sched_try_insert_merge(q, rq)) { |
| 3553 | spin_unlock_irq(&bfqd->lock); |
| 3554 | return; |
| 3555 | } |
| 3556 | |
| 3557 | spin_unlock_irq(&bfqd->lock); |
| 3558 | |
| 3559 | blk_mq_sched_request_inserted(rq); |
| 3560 | |
| 3561 | spin_lock_irq(&bfqd->lock); |
| 3562 | if (at_head || blk_rq_is_passthrough(rq)) { |
| 3563 | if (at_head) |
| 3564 | list_add(&rq->queuelist, &bfqd->dispatch); |
| 3565 | else |
| 3566 | list_add_tail(&rq->queuelist, &bfqd->dispatch); |
| 3567 | } else { |
| 3568 | __bfq_insert_request(bfqd, rq); |
| 3569 | |
| 3570 | if (rq_mergeable(rq)) { |
| 3571 | elv_rqhash_add(q, rq); |
| 3572 | if (!q->last_merge) |
| 3573 | q->last_merge = rq; |
| 3574 | } |
| 3575 | } |
| 3576 | |
| 3577 | spin_unlock_irq(&bfqd->lock); |
| 3578 | } |
| 3579 | |
| 3580 | static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, |
| 3581 | struct list_head *list, bool at_head) |
| 3582 | { |
| 3583 | while (!list_empty(list)) { |
| 3584 | struct request *rq; |
| 3585 | |
| 3586 | rq = list_first_entry(list, struct request, queuelist); |
| 3587 | list_del_init(&rq->queuelist); |
| 3588 | bfq_insert_request(hctx, rq, at_head); |
| 3589 | } |
| 3590 | } |
| 3591 | |
| 3592 | static void bfq_update_hw_tag(struct bfq_data *bfqd) |
| 3593 | { |
| 3594 | bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, |
| 3595 | bfqd->rq_in_driver); |
| 3596 | |
| 3597 | if (bfqd->hw_tag == 1) |
| 3598 | return; |
| 3599 | |
| 3600 | /* |
| 3601 | * This sample is valid if the number of outstanding requests |
| 3602 | * is large enough to allow a queueing behavior. Note that the |
| 3603 | * sum is not exact, as it's not taking into account deactivated |
| 3604 | * requests. |
| 3605 | */ |
| 3606 | if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) |
| 3607 | return; |
| 3608 | |
| 3609 | if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) |
| 3610 | return; |
| 3611 | |
| 3612 | bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; |
| 3613 | bfqd->max_rq_in_driver = 0; |
| 3614 | bfqd->hw_tag_samples = 0; |
| 3615 | } |
| 3616 | |
| 3617 | static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) |
| 3618 | { |
| 3619 | bfq_update_hw_tag(bfqd); |
| 3620 | |
| 3621 | bfqd->rq_in_driver--; |
| 3622 | bfqq->dispatched--; |
| 3623 | |
| 3624 | bfqq->ttime.last_end_request = ktime_get_ns(); |
| 3625 | |
| 3626 | /* |
| 3627 | * If this is the in-service queue, check if it needs to be expired, |
| 3628 | * or if we want to idle in case it has no pending requests. |
| 3629 | */ |
| 3630 | if (bfqd->in_service_queue == bfqq) { |
| 3631 | if (bfq_bfqq_budget_new(bfqq)) |
| 3632 | bfq_set_budget_timeout(bfqd); |
| 3633 | |
| 3634 | if (bfq_bfqq_must_idle(bfqq)) { |
| 3635 | bfq_arm_slice_timer(bfqd); |
| 3636 | return; |
| 3637 | } else if (bfq_may_expire_for_budg_timeout(bfqq)) |
| 3638 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 3639 | BFQQE_BUDGET_TIMEOUT); |
| 3640 | else if (RB_EMPTY_ROOT(&bfqq->sort_list) && |
| 3641 | (bfqq->dispatched == 0 || |
| 3642 | !bfq_bfqq_may_idle(bfqq))) |
| 3643 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 3644 | BFQQE_NO_MORE_REQUESTS); |
| 3645 | } |
| 3646 | } |
| 3647 | |
| 3648 | static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) |
| 3649 | { |
| 3650 | bfqq->allocated--; |
| 3651 | |
| 3652 | bfq_put_queue(bfqq); |
| 3653 | } |
| 3654 | |
| 3655 | static void bfq_put_rq_private(struct request_queue *q, struct request *rq) |
| 3656 | { |
| 3657 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 3658 | struct bfq_data *bfqd = bfqq->bfqd; |
| 3659 | |
| 3660 | |
| 3661 | if (likely(rq->rq_flags & RQF_STARTED)) { |
| 3662 | unsigned long flags; |
| 3663 | |
| 3664 | spin_lock_irqsave(&bfqd->lock, flags); |
| 3665 | |
| 3666 | bfq_completed_request(bfqq, bfqd); |
| 3667 | bfq_put_rq_priv_body(bfqq); |
| 3668 | |
| 3669 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 3670 | } else { |
| 3671 | /* |
| 3672 | * Request rq may be still/already in the scheduler, |
| 3673 | * in which case we need to remove it. And we cannot |
| 3674 | * defer such a check and removal, to avoid |
| 3675 | * inconsistencies in the time interval from the end |
| 3676 | * of this function to the start of the deferred work. |
| 3677 | * This situation seems to occur only in process |
| 3678 | * context, as a consequence of a merge. In the |
| 3679 | * current version of the code, this implies that the |
| 3680 | * lock is held. |
| 3681 | */ |
| 3682 | |
| 3683 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
| 3684 | bfq_remove_request(q, rq); |
| 3685 | bfq_put_rq_priv_body(bfqq); |
| 3686 | } |
| 3687 | |
| 3688 | rq->elv.priv[0] = NULL; |
| 3689 | rq->elv.priv[1] = NULL; |
| 3690 | } |
| 3691 | |
| 3692 | /* |
| 3693 | * Allocate bfq data structures associated with this request. |
| 3694 | */ |
| 3695 | static int bfq_get_rq_private(struct request_queue *q, struct request *rq, |
| 3696 | struct bio *bio) |
| 3697 | { |
| 3698 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 3699 | struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); |
| 3700 | const int is_sync = rq_is_sync(rq); |
| 3701 | struct bfq_queue *bfqq; |
| 3702 | |
| 3703 | spin_lock_irq(&bfqd->lock); |
| 3704 | |
| 3705 | bfq_check_ioprio_change(bic, bio); |
| 3706 | |
| 3707 | if (!bic) |
| 3708 | goto queue_fail; |
| 3709 | |
| 3710 | bfqq = bic_to_bfqq(bic, is_sync); |
| 3711 | if (!bfqq || bfqq == &bfqd->oom_bfqq) { |
| 3712 | if (bfqq) |
| 3713 | bfq_put_queue(bfqq); |
| 3714 | bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); |
| 3715 | bic_set_bfqq(bic, bfqq, is_sync); |
| 3716 | } |
| 3717 | |
| 3718 | bfqq->allocated++; |
| 3719 | bfqq->ref++; |
| 3720 | bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", |
| 3721 | rq, bfqq, bfqq->ref); |
| 3722 | |
| 3723 | rq->elv.priv[0] = bic; |
| 3724 | rq->elv.priv[1] = bfqq; |
| 3725 | |
| 3726 | spin_unlock_irq(&bfqd->lock); |
| 3727 | |
| 3728 | return 0; |
| 3729 | |
| 3730 | queue_fail: |
| 3731 | spin_unlock_irq(&bfqd->lock); |
| 3732 | |
| 3733 | return 1; |
| 3734 | } |
| 3735 | |
| 3736 | static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) |
| 3737 | { |
| 3738 | struct bfq_data *bfqd = bfqq->bfqd; |
| 3739 | enum bfqq_expiration reason; |
| 3740 | unsigned long flags; |
| 3741 | |
| 3742 | spin_lock_irqsave(&bfqd->lock, flags); |
| 3743 | bfq_clear_bfqq_wait_request(bfqq); |
| 3744 | |
| 3745 | if (bfqq != bfqd->in_service_queue) { |
| 3746 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 3747 | return; |
| 3748 | } |
| 3749 | |
| 3750 | if (bfq_bfqq_budget_timeout(bfqq)) |
| 3751 | /* |
| 3752 | * Also here the queue can be safely expired |
| 3753 | * for budget timeout without wasting |
| 3754 | * guarantees |
| 3755 | */ |
| 3756 | reason = BFQQE_BUDGET_TIMEOUT; |
| 3757 | else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) |
| 3758 | /* |
| 3759 | * The queue may not be empty upon timer expiration, |
| 3760 | * because we may not disable the timer when the |
| 3761 | * first request of the in-service queue arrives |
| 3762 | * during disk idling. |
| 3763 | */ |
| 3764 | reason = BFQQE_TOO_IDLE; |
| 3765 | else |
| 3766 | goto schedule_dispatch; |
| 3767 | |
| 3768 | bfq_bfqq_expire(bfqd, bfqq, true, reason); |
| 3769 | |
| 3770 | schedule_dispatch: |
| 3771 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 3772 | bfq_schedule_dispatch(bfqd); |
| 3773 | } |
| 3774 | |
| 3775 | /* |
| 3776 | * Handler of the expiration of the timer running if the in-service queue |
| 3777 | * is idling inside its time slice. |
| 3778 | */ |
| 3779 | static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) |
| 3780 | { |
| 3781 | struct bfq_data *bfqd = container_of(timer, struct bfq_data, |
| 3782 | idle_slice_timer); |
| 3783 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 3784 | |
| 3785 | /* |
| 3786 | * Theoretical race here: the in-service queue can be NULL or |
| 3787 | * different from the queue that was idling if a new request |
| 3788 | * arrives for the current queue and there is a full dispatch |
| 3789 | * cycle that changes the in-service queue. This can hardly |
| 3790 | * happen, but in the worst case we just expire a queue too |
| 3791 | * early. |
| 3792 | */ |
| 3793 | if (bfqq) |
| 3794 | bfq_idle_slice_timer_body(bfqq); |
| 3795 | |
| 3796 | return HRTIMER_NORESTART; |
| 3797 | } |
| 3798 | |
| 3799 | static void __bfq_put_async_bfqq(struct bfq_data *bfqd, |
| 3800 | struct bfq_queue **bfqq_ptr) |
| 3801 | { |
| 3802 | struct bfq_queue *bfqq = *bfqq_ptr; |
| 3803 | |
| 3804 | bfq_log(bfqd, "put_async_bfqq: %p", bfqq); |
| 3805 | if (bfqq) { |
| 3806 | bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", |
| 3807 | bfqq, bfqq->ref); |
| 3808 | bfq_put_queue(bfqq); |
| 3809 | *bfqq_ptr = NULL; |
| 3810 | } |
| 3811 | } |
| 3812 | |
| 3813 | /* |
| 3814 | * Release the extra reference of the async queues as the device |
| 3815 | * goes away. |
| 3816 | */ |
| 3817 | static void bfq_put_async_queues(struct bfq_data *bfqd) |
| 3818 | { |
| 3819 | int i, j; |
| 3820 | |
| 3821 | for (i = 0; i < 2; i++) |
| 3822 | for (j = 0; j < IOPRIO_BE_NR; j++) |
| 3823 | __bfq_put_async_bfqq(bfqd, &async_bfqq[i][j]); |
| 3824 | |
| 3825 | __bfq_put_async_bfqq(bfqd, &async_idle_bfqq); |
| 3826 | } |
| 3827 | |
| 3828 | static void bfq_exit_queue(struct elevator_queue *e) |
| 3829 | { |
| 3830 | struct bfq_data *bfqd = e->elevator_data; |
| 3831 | struct bfq_queue *bfqq, *n; |
| 3832 | |
| 3833 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 3834 | |
| 3835 | spin_lock_irq(&bfqd->lock); |
| 3836 | list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) |
| 3837 | bfq_deactivate_bfqq(bfqd, bfqq, false); |
| 3838 | bfq_put_async_queues(bfqd); |
| 3839 | spin_unlock_irq(&bfqd->lock); |
| 3840 | |
| 3841 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 3842 | |
| 3843 | kfree(bfqd); |
| 3844 | } |
| 3845 | |
| 3846 | static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) |
| 3847 | { |
| 3848 | struct bfq_data *bfqd; |
| 3849 | struct elevator_queue *eq; |
| 3850 | int i; |
| 3851 | |
| 3852 | eq = elevator_alloc(q, e); |
| 3853 | if (!eq) |
| 3854 | return -ENOMEM; |
| 3855 | |
| 3856 | bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); |
| 3857 | if (!bfqd) { |
| 3858 | kobject_put(&eq->kobj); |
| 3859 | return -ENOMEM; |
| 3860 | } |
| 3861 | eq->elevator_data = bfqd; |
| 3862 | |
| 3863 | /* |
| 3864 | * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. |
| 3865 | * Grab a permanent reference to it, so that the normal code flow |
| 3866 | * will not attempt to free it. |
| 3867 | */ |
| 3868 | bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); |
| 3869 | bfqd->oom_bfqq.ref++; |
| 3870 | bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; |
| 3871 | bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; |
| 3872 | bfqd->oom_bfqq.entity.new_weight = |
| 3873 | bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); |
| 3874 | /* |
| 3875 | * Trigger weight initialization, according to ioprio, at the |
| 3876 | * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio |
| 3877 | * class won't be changed any more. |
| 3878 | */ |
| 3879 | bfqd->oom_bfqq.entity.prio_changed = 1; |
| 3880 | |
| 3881 | bfqd->queue = q; |
| 3882 | |
| 3883 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| 3884 | bfqd->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| 3885 | |
| 3886 | hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, |
| 3887 | HRTIMER_MODE_REL); |
| 3888 | bfqd->idle_slice_timer.function = bfq_idle_slice_timer; |
| 3889 | |
| 3890 | INIT_LIST_HEAD(&bfqd->active_list); |
| 3891 | INIT_LIST_HEAD(&bfqd->idle_list); |
| 3892 | |
| 3893 | bfqd->hw_tag = -1; |
| 3894 | |
| 3895 | bfqd->bfq_max_budget = bfq_default_max_budget; |
| 3896 | |
| 3897 | bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; |
| 3898 | bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; |
| 3899 | bfqd->bfq_back_max = bfq_back_max; |
| 3900 | bfqd->bfq_back_penalty = bfq_back_penalty; |
| 3901 | bfqd->bfq_slice_idle = bfq_slice_idle; |
| 3902 | bfqd->bfq_class_idle_last_service = 0; |
| 3903 | bfqd->bfq_timeout = bfq_timeout; |
| 3904 | |
| 3905 | bfqd->bfq_requests_within_timer = 120; |
| 3906 | |
| 3907 | spin_lock_init(&bfqd->lock); |
| 3908 | INIT_LIST_HEAD(&bfqd->dispatch); |
| 3909 | |
| 3910 | q->elevator = eq; |
| 3911 | |
| 3912 | return 0; |
| 3913 | } |
| 3914 | |
| 3915 | static void bfq_slab_kill(void) |
| 3916 | { |
| 3917 | kmem_cache_destroy(bfq_pool); |
| 3918 | } |
| 3919 | |
| 3920 | static int __init bfq_slab_setup(void) |
| 3921 | { |
| 3922 | bfq_pool = KMEM_CACHE(bfq_queue, 0); |
| 3923 | if (!bfq_pool) |
| 3924 | return -ENOMEM; |
| 3925 | return 0; |
| 3926 | } |
| 3927 | |
| 3928 | static ssize_t bfq_var_show(unsigned int var, char *page) |
| 3929 | { |
| 3930 | return sprintf(page, "%u\n", var); |
| 3931 | } |
| 3932 | |
| 3933 | static ssize_t bfq_var_store(unsigned long *var, const char *page, |
| 3934 | size_t count) |
| 3935 | { |
| 3936 | unsigned long new_val; |
| 3937 | int ret = kstrtoul(page, 10, &new_val); |
| 3938 | |
| 3939 | if (ret == 0) |
| 3940 | *var = new_val; |
| 3941 | |
| 3942 | return count; |
| 3943 | } |
| 3944 | |
| 3945 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ |
| 3946 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 3947 | { \ |
| 3948 | struct bfq_data *bfqd = e->elevator_data; \ |
| 3949 | u64 __data = __VAR; \ |
| 3950 | if (__CONV == 1) \ |
| 3951 | __data = jiffies_to_msecs(__data); \ |
| 3952 | else if (__CONV == 2) \ |
| 3953 | __data = div_u64(__data, NSEC_PER_MSEC); \ |
| 3954 | return bfq_var_show(__data, (page)); \ |
| 3955 | } |
| 3956 | SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); |
| 3957 | SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); |
| 3958 | SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); |
| 3959 | SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); |
| 3960 | SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); |
| 3961 | SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); |
| 3962 | SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); |
| 3963 | SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); |
| 3964 | #undef SHOW_FUNCTION |
| 3965 | |
| 3966 | #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ |
| 3967 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 3968 | { \ |
| 3969 | struct bfq_data *bfqd = e->elevator_data; \ |
| 3970 | u64 __data = __VAR; \ |
| 3971 | __data = div_u64(__data, NSEC_PER_USEC); \ |
| 3972 | return bfq_var_show(__data, (page)); \ |
| 3973 | } |
| 3974 | USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); |
| 3975 | #undef USEC_SHOW_FUNCTION |
| 3976 | |
| 3977 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ |
| 3978 | static ssize_t \ |
| 3979 | __FUNC(struct elevator_queue *e, const char *page, size_t count) \ |
| 3980 | { \ |
| 3981 | struct bfq_data *bfqd = e->elevator_data; \ |
| 3982 | unsigned long uninitialized_var(__data); \ |
| 3983 | int ret = bfq_var_store(&__data, (page), count); \ |
| 3984 | if (__data < (MIN)) \ |
| 3985 | __data = (MIN); \ |
| 3986 | else if (__data > (MAX)) \ |
| 3987 | __data = (MAX); \ |
| 3988 | if (__CONV == 1) \ |
| 3989 | *(__PTR) = msecs_to_jiffies(__data); \ |
| 3990 | else if (__CONV == 2) \ |
| 3991 | *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ |
| 3992 | else \ |
| 3993 | *(__PTR) = __data; \ |
| 3994 | return ret; \ |
| 3995 | } |
| 3996 | STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, |
| 3997 | INT_MAX, 2); |
| 3998 | STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, |
| 3999 | INT_MAX, 2); |
| 4000 | STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); |
| 4001 | STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, |
| 4002 | INT_MAX, 0); |
| 4003 | STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); |
| 4004 | #undef STORE_FUNCTION |
| 4005 | |
| 4006 | #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ |
| 4007 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ |
| 4008 | { \ |
| 4009 | struct bfq_data *bfqd = e->elevator_data; \ |
| 4010 | unsigned long uninitialized_var(__data); \ |
| 4011 | int ret = bfq_var_store(&__data, (page), count); \ |
| 4012 | if (__data < (MIN)) \ |
| 4013 | __data = (MIN); \ |
| 4014 | else if (__data > (MAX)) \ |
| 4015 | __data = (MAX); \ |
| 4016 | *(__PTR) = (u64)__data * NSEC_PER_USEC; \ |
| 4017 | return ret; \ |
| 4018 | } |
| 4019 | USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, |
| 4020 | UINT_MAX); |
| 4021 | #undef USEC_STORE_FUNCTION |
| 4022 | |
| 4023 | static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd) |
| 4024 | { |
| 4025 | u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout); |
| 4026 | |
| 4027 | if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES) |
| 4028 | return bfq_calc_max_budget(bfqd->peak_rate, timeout); |
| 4029 | else |
| 4030 | return bfq_default_max_budget; |
| 4031 | } |
| 4032 | |
| 4033 | static ssize_t bfq_max_budget_store(struct elevator_queue *e, |
| 4034 | const char *page, size_t count) |
| 4035 | { |
| 4036 | struct bfq_data *bfqd = e->elevator_data; |
| 4037 | unsigned long uninitialized_var(__data); |
| 4038 | int ret = bfq_var_store(&__data, (page), count); |
| 4039 | |
| 4040 | if (__data == 0) |
| 4041 | bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); |
| 4042 | else { |
| 4043 | if (__data > INT_MAX) |
| 4044 | __data = INT_MAX; |
| 4045 | bfqd->bfq_max_budget = __data; |
| 4046 | } |
| 4047 | |
| 4048 | bfqd->bfq_user_max_budget = __data; |
| 4049 | |
| 4050 | return ret; |
| 4051 | } |
| 4052 | |
| 4053 | /* |
| 4054 | * Leaving this name to preserve name compatibility with cfq |
| 4055 | * parameters, but this timeout is used for both sync and async. |
| 4056 | */ |
| 4057 | static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, |
| 4058 | const char *page, size_t count) |
| 4059 | { |
| 4060 | struct bfq_data *bfqd = e->elevator_data; |
| 4061 | unsigned long uninitialized_var(__data); |
| 4062 | int ret = bfq_var_store(&__data, (page), count); |
| 4063 | |
| 4064 | if (__data < 1) |
| 4065 | __data = 1; |
| 4066 | else if (__data > INT_MAX) |
| 4067 | __data = INT_MAX; |
| 4068 | |
| 4069 | bfqd->bfq_timeout = msecs_to_jiffies(__data); |
| 4070 | if (bfqd->bfq_user_max_budget == 0) |
| 4071 | bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); |
| 4072 | |
| 4073 | return ret; |
| 4074 | } |
| 4075 | |
| 4076 | static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, |
| 4077 | const char *page, size_t count) |
| 4078 | { |
| 4079 | struct bfq_data *bfqd = e->elevator_data; |
| 4080 | unsigned long uninitialized_var(__data); |
| 4081 | int ret = bfq_var_store(&__data, (page), count); |
| 4082 | |
| 4083 | if (__data > 1) |
| 4084 | __data = 1; |
| 4085 | if (!bfqd->strict_guarantees && __data == 1 |
| 4086 | && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) |
| 4087 | bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; |
| 4088 | |
| 4089 | bfqd->strict_guarantees = __data; |
| 4090 | |
| 4091 | return ret; |
| 4092 | } |
| 4093 | |
| 4094 | #define BFQ_ATTR(name) \ |
| 4095 | __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) |
| 4096 | |
| 4097 | static struct elv_fs_entry bfq_attrs[] = { |
| 4098 | BFQ_ATTR(fifo_expire_sync), |
| 4099 | BFQ_ATTR(fifo_expire_async), |
| 4100 | BFQ_ATTR(back_seek_max), |
| 4101 | BFQ_ATTR(back_seek_penalty), |
| 4102 | BFQ_ATTR(slice_idle), |
| 4103 | BFQ_ATTR(slice_idle_us), |
| 4104 | BFQ_ATTR(max_budget), |
| 4105 | BFQ_ATTR(timeout_sync), |
| 4106 | BFQ_ATTR(strict_guarantees), |
| 4107 | __ATTR_NULL |
| 4108 | }; |
| 4109 | |
| 4110 | static struct elevator_type iosched_bfq_mq = { |
| 4111 | .ops.mq = { |
| 4112 | .get_rq_priv = bfq_get_rq_private, |
| 4113 | .put_rq_priv = bfq_put_rq_private, |
| 4114 | .exit_icq = bfq_exit_icq, |
| 4115 | .insert_requests = bfq_insert_requests, |
| 4116 | .dispatch_request = bfq_dispatch_request, |
| 4117 | .next_request = elv_rb_latter_request, |
| 4118 | .former_request = elv_rb_former_request, |
| 4119 | .allow_merge = bfq_allow_bio_merge, |
| 4120 | .bio_merge = bfq_bio_merge, |
| 4121 | .request_merge = bfq_request_merge, |
| 4122 | .requests_merged = bfq_requests_merged, |
| 4123 | .request_merged = bfq_request_merged, |
| 4124 | .has_work = bfq_has_work, |
| 4125 | .init_sched = bfq_init_queue, |
| 4126 | .exit_sched = bfq_exit_queue, |
| 4127 | }, |
| 4128 | |
| 4129 | .uses_mq = true, |
| 4130 | .icq_size = sizeof(struct bfq_io_cq), |
| 4131 | .icq_align = __alignof__(struct bfq_io_cq), |
| 4132 | .elevator_attrs = bfq_attrs, |
| 4133 | .elevator_name = "bfq", |
| 4134 | .elevator_owner = THIS_MODULE, |
| 4135 | }; |
| 4136 | |
| 4137 | static int __init bfq_init(void) |
| 4138 | { |
| 4139 | int ret; |
| 4140 | |
| 4141 | ret = -ENOMEM; |
| 4142 | if (bfq_slab_setup()) |
| 4143 | goto err_pol_unreg; |
| 4144 | |
| 4145 | ret = elv_register(&iosched_bfq_mq); |
| 4146 | if (ret) |
| 4147 | goto err_pol_unreg; |
| 4148 | |
| 4149 | return 0; |
| 4150 | |
| 4151 | err_pol_unreg: |
| 4152 | return ret; |
| 4153 | } |
| 4154 | |
| 4155 | static void __exit bfq_exit(void) |
| 4156 | { |
| 4157 | elv_unregister(&iosched_bfq_mq); |
| 4158 | bfq_slab_kill(); |
| 4159 | } |
| 4160 | |
| 4161 | module_init(bfq_init); |
| 4162 | module_exit(bfq_exit); |
| 4163 | |
| 4164 | MODULE_AUTHOR("Paolo Valente"); |
| 4165 | MODULE_LICENSE("GPL"); |
| 4166 | MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); |