blob: 41d2d83c919b5a57cc3ecf97e67e325725226a2b [file] [log] [blame]
Christoph Hellwiga497ee32019-04-30 14:42:40 -04001// SPDX-License-Identifier: GPL-2.0-or-later
Paolo Valenteaee69d72017-04-19 08:29:02 -06002/*
3 * Budget Fair Queueing (BFQ) I/O scheduler.
4 *
5 * Based on ideas and code from CFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12 * Arianna Avanzini <avanzini@google.com>
13 *
14 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 *
Paolo Valenteaee69d72017-04-19 08:29:02 -060016 * BFQ is a proportional-share I/O scheduler, with some extra
17 * low-latency capabilities. BFQ also supports full hierarchical
18 * scheduling through cgroups. Next paragraphs provide an introduction
19 * on BFQ inner workings. Details on BFQ benefits, usage and
Mauro Carvalho Chehab898bd372019-04-18 19:45:00 -030020 * limitations can be found in Documentation/block/bfq-iosched.rst.
Paolo Valenteaee69d72017-04-19 08:29:02 -060021 *
22 * BFQ is a proportional-share storage-I/O scheduling algorithm based
23 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24 * budgets, measured in number of sectors, to processes instead of
25 * time slices. The device is not granted to the in-service process
26 * for a given time slice, but until it has exhausted its assigned
27 * budget. This change from the time to the service domain enables BFQ
28 * to distribute the device throughput among processes as desired,
29 * without any distortion due to throughput fluctuations, or to device
30 * internal queueing. BFQ uses an ad hoc internal scheduler, called
31 * B-WF2Q+, to schedule processes according to their budgets. More
32 * precisely, BFQ schedules queues associated with processes. Each
33 * process/queue is assigned a user-configurable weight, and B-WF2Q+
34 * guarantees that each queue receives a fraction of the throughput
35 * proportional to its weight. Thanks to the accurate policy of
36 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37 * processes issuing sequential requests (to boost the throughput),
38 * and yet guarantee a low latency to interactive and soft real-time
39 * applications.
40 *
41 * In particular, to provide these low-latency guarantees, BFQ
42 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020043 * applications: interactive and soft real-time. In more detail, BFQ
44 * behaves this way if the low_latency parameter is set (default
45 * configuration). This feature enables BFQ to provide applications in
46 * these classes with a very low latency.
47 *
48 * To implement this feature, BFQ constantly tries to detect whether
49 * the I/O requests in a bfq_queue come from an interactive or a soft
50 * real-time application. For brevity, in these cases, the queue is
51 * said to be interactive or soft real-time. In both cases, BFQ
52 * privileges the service of the queue, over that of non-interactive
53 * and non-soft-real-time queues. This privileging is performed,
54 * mainly, by raising the weight of the queue. So, for brevity, we
55 * call just weight-raising periods the time periods during which a
56 * queue is privileged, because deemed interactive or soft real-time.
57 *
58 * The detection of soft real-time queues/applications is described in
59 * detail in the comments on the function
60 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61 * interactive queue works as follows: a queue is deemed interactive
62 * if it is constantly non empty only for a limited time interval,
63 * after which it does become empty. The queue may be deemed
64 * interactive again (for a limited time), if it restarts being
65 * constantly non empty, provided that this happens only after the
66 * queue has remained empty for a given minimum idle time.
67 *
68 * By default, BFQ computes automatically the above maximum time
69 * interval, i.e., the time interval after which a constantly
70 * non-empty queue stops being deemed interactive. Since a queue is
71 * weight-raised while it is deemed interactive, this maximum time
72 * interval happens to coincide with the (maximum) duration of the
73 * weight-raising for interactive queues.
74 *
75 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060076 * preserving both a low latency and a high throughput on NCQ-capable,
77 * rotational or flash-based devices, and to get the job done quickly
78 * for applications consisting in many I/O-bound processes.
79 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020080 * NOTE: if the main or only goal, with a given device, is to achieve
81 * the maximum-possible throughput at all times, then do switch off
82 * all low-latency heuristics for that device, by setting low_latency
83 * to 0.
84 *
Paolo Valente4029eef2018-05-31 16:45:05 +020085 * BFQ is described in [1], where also a reference to the initial,
86 * more theoretical paper on BFQ can be found. The interested reader
87 * can find in the latter paper full details on the main algorithm, as
88 * well as formulas of the guarantees and formal proofs of all the
89 * properties. With respect to the version of BFQ presented in these
90 * papers, this implementation adds a few more heuristics, such as the
91 * ones that guarantee a low latency to interactive and soft real-time
92 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -060093 *
94 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96 * with O(log N) complexity derives from the one introduced with EEVDF
97 * in [3].
98 *
99 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100 * Scheduler", Proceedings of the First Workshop on Mobile System
101 * Technologies (MST-2015), May 2015.
102 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103 *
104 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106 * Oct 1997.
107 *
108 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109 *
110 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111 * First: A Flexible and Accurate Mechanism for Proportional Share
112 * Resource Allocation", technical report.
113 *
114 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115 */
116#include <linux/module.h>
117#include <linux/slab.h>
118#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200119#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600120#include <linux/elevator.h>
121#include <linux/ktime.h>
122#include <linux/rbtree.h>
123#include <linux/ioprio.h>
124#include <linux/sbitmap.h>
125#include <linux/delay.h>
126
127#include "blk.h"
128#include "blk-mq.h"
129#include "blk-mq-tag.h"
130#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600131#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200132#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600133
134#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600135void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600136{ \
137 __set_bit(BFQQF_##name, &(bfqq)->flags); \
138} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600139void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600140{ \
141 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
142} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600143int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600144{ \
145 return test_bit(BFQQF_##name, &(bfqq)->flags); \
146}
147
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200148BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149BFQ_BFQQ_FNS(busy);
150BFQ_BFQQ_FNS(wait_request);
151BFQ_BFQQ_FNS(non_blocking_wait_rq);
152BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200153BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600154BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600155BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200156BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200157BFQ_BFQQ_FNS(coop);
158BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200159BFQ_BFQQ_FNS(softrt_update);
Paolo Valente13a857a2019-06-25 07:12:47 +0200160BFQ_BFQQ_FNS(has_waker);
Paolo Valenteea25da42017-04-19 08:48:24 -0600161#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600162
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163/* Expiration time of sync (0) and async (1) requests, in ns. */
164static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
165
166/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
167static const int bfq_back_max = 16 * 1024;
168
169/* Penalty of a backwards seek, in number of sectors. */
170static const int bfq_back_penalty = 2;
171
172/* Idling period duration, in ns. */
173static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
174
175/* Minimum number of assigned budgets for which stats are safe to compute. */
176static const int bfq_stats_min_budgets = 194;
177
178/* Default maximum budget values, in sectors and number of requests. */
179static const int bfq_default_max_budget = 16 * 1024;
180
Paolo Valentec074170e2017-04-12 18:23:11 +0200181/*
Paolo Valented5801082018-08-16 18:51:17 +0200182 * When a sync request is dispatched, the queue that contains that
183 * request, and all the ancestor entities of that queue, are charged
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200184 * with the number of sectors of the request. In contrast, if the
Paolo Valented5801082018-08-16 18:51:17 +0200185 * request is async, then the queue and its ancestor entities are
186 * charged with the number of sectors of the request, multiplied by
187 * the factor below. This throttles the bandwidth for async I/O,
188 * w.r.t. to sync I/O, and it is done to counter the tendency of async
189 * writes to steal I/O throughput to reads.
190 *
191 * The current value of this parameter is the result of a tuning with
192 * several hardware and software configurations. We tried to find the
193 * lowest value for which writes do not cause noticeable problems to
194 * reads. In fact, the lower this parameter, the stabler I/O control,
195 * in the following respect. The lower this parameter is, the less
196 * the bandwidth enjoyed by a group decreases
197 * - when the group does writes, w.r.t. to when it does reads;
198 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200199 */
Paolo Valented5801082018-08-16 18:51:17 +0200200static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200201
Paolo Valenteaee69d72017-04-19 08:29:02 -0600202/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600203const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600204
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100205/*
206 * Time limit for merging (see comments in bfq_setup_cooperator). Set
207 * to the slowest value that, in our tests, proved to be effective in
208 * removing false positives, while not causing true positives to miss
209 * queue merging.
210 *
211 * As can be deduced from the low time limit below, queue merging, if
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200212 * successful, happens at the very beginning of the I/O of the involved
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100213 * cooperating processes, as a consequence of the arrival of the very
214 * first requests from each cooperator. After that, there is very
215 * little chance to find cooperators.
216 */
217static const unsigned long bfq_merge_time_limit = HZ/10;
218
Paolo Valenteaee69d72017-04-19 08:29:02 -0600219static struct kmem_cache *bfq_pool;
220
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200221/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600222#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
223
224/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100225#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600226#define BFQ_HW_QUEUE_SAMPLES 32
227
228#define BFQQ_SEEK_THR (sector_t)(8 * 100)
229#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100230#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
231 (get_sdist(last_pos, rq) > \
232 BFQQ_SEEK_THR && \
233 (!blk_queue_nonrot(bfqd->queue) || \
234 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600235#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100236#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valente7074f072019-03-12 09:59:31 +0100237/*
238 * Sync random I/O is likely to be confused with soft real-time I/O,
239 * because it is characterized by limited throughput and apparently
240 * isochronous arrival pattern. To avoid false positives, queues
241 * containing only random (seeky) I/O are prevented from being tagged
242 * as soft real-time.
243 */
Paolo Valentee6feaf22019-06-22 22:44:16 +0200244#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history == -1)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600245
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200246/* Min number of samples required to perform peak-rate update */
247#define BFQ_RATE_MIN_SAMPLES 32
248/* Min observation time interval required to perform a peak-rate update (ns) */
249#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
250/* Target observation time interval for a peak-rate update (ns) */
251#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600252
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200253/*
254 * Shift used for peak-rate fixed precision calculations.
255 * With
256 * - the current shift: 16 positions
257 * - the current type used to store rate: u32
258 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
259 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
260 * the range of rates that can be stored is
261 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
262 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
263 * [15, 65G] sectors/sec
264 * Which, assuming a sector size of 512B, corresponds to a range of
265 * [7.5K, 33T] B/sec
266 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600267#define BFQ_RATE_SHIFT 16
268
Paolo Valente44e44a12017-04-12 18:23:12 +0200269/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200270 * When configured for computing the duration of the weight-raising
271 * for interactive queues automatically (see the comments at the
272 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200273 * duration = (ref_rate / r) * ref_wr_duration,
274 * where r is the peak rate of the device, and ref_rate and
275 * ref_wr_duration are two reference parameters. In particular,
276 * ref_rate is the peak rate of the reference storage device (see
277 * below), and ref_wr_duration is about the maximum time needed, with
278 * BFQ and while reading two files in parallel, to load typical large
279 * applications on the reference device (see the comments on
280 * max_service_from_wr below, for more details on how ref_wr_duration
281 * is obtained). In practice, the slower/faster the device at hand
282 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200283 * reference device. Accordingly, the longer/shorter BFQ grants
284 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200285 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200286 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
287 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200288 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200289 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
290 * are the reference values for a rotational device, whereas
291 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
292 * non-rotational device. The reference rates are not the actual peak
293 * rates of the devices used as a reference, but slightly lower
294 * values. The reason for using slightly lower values is that the
295 * peak-rate estimator tends to yield slightly lower values than the
296 * actual peak rate (it can yield the actual peak rate only if there
297 * is only one process doing I/O, and the process does sequential
298 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200299 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200300 * The reference peak rates are measured in sectors/usec, left-shifted
301 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200302 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200303static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200304/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200305 * To improve readability, a conversion function is used to initialize
306 * the following array, which entails that the array can be
307 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200308 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200309static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200310
Paolo Valente8a8747d2018-01-13 12:05:18 +0100311/*
312 * BFQ uses the above-detailed, time-based weight-raising mechanism to
313 * privilege interactive tasks. This mechanism is vulnerable to the
314 * following false positives: I/O-bound applications that will go on
315 * doing I/O for much longer than the duration of weight
316 * raising. These applications have basically no benefit from being
317 * weight-raised at the beginning of their I/O. On the opposite end,
318 * while being weight-raised, these applications
319 * a) unjustly steal throughput to applications that may actually need
320 * low latency;
321 * b) make BFQ uselessly perform device idling; device idling results
322 * in loss of device throughput with most flash-based storage, and may
323 * increase latencies when used purposelessly.
324 *
325 * BFQ tries to reduce these problems, by adopting the following
326 * countermeasure. To introduce this countermeasure, we need first to
327 * finish explaining how the duration of weight-raising for
328 * interactive tasks is computed.
329 *
330 * For a bfq_queue deemed as interactive, the duration of weight
331 * raising is dynamically adjusted, as a function of the estimated
332 * peak rate of the device, so as to be equal to the time needed to
333 * execute the 'largest' interactive task we benchmarked so far. By
334 * largest task, we mean the task for which each involved process has
335 * to do more I/O than for any of the other tasks we benchmarked. This
336 * reference interactive task is the start-up of LibreOffice Writer,
337 * and in this task each process/bfq_queue needs to have at most ~110K
338 * sectors transferred.
339 *
340 * This last piece of information enables BFQ to reduce the actual
341 * duration of weight-raising for at least one class of I/O-bound
342 * applications: those doing sequential or quasi-sequential I/O. An
343 * example is file copy. In fact, once started, the main I/O-bound
344 * processes of these applications usually consume the above 110K
345 * sectors in much less time than the processes of an application that
346 * is starting, because these I/O-bound processes will greedily devote
347 * almost all their CPU cycles only to their target,
348 * throughput-friendly I/O operations. This is even more true if BFQ
349 * happens to be underestimating the device peak rate, and thus
350 * overestimating the duration of weight raising. But, according to
351 * our measurements, once transferred 110K sectors, these processes
352 * have no right to be weight-raised any longer.
353 *
354 * Basing on the last consideration, BFQ ends weight-raising for a
355 * bfq_queue if the latter happens to have received an amount of
356 * service at least equal to the following constant. The constant is
357 * set to slightly more than 110K, to have a minimum safety margin.
358 *
359 * This early ending of weight-raising reduces the amount of time
360 * during which interactive false positives cause the two problems
361 * described at the beginning of these comments.
362 */
363static const unsigned long max_service_from_wr = 120000;
364
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700365#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600366#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
367
Paolo Valenteea25da42017-04-19 08:48:24 -0600368struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
369{
370 return bic->bfqq[is_sync];
371}
372
373void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
374{
375 bic->bfqq[is_sync] = bfqq;
376}
377
378struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
379{
380 return bic->icq.q->elevator->elevator_data;
381}
382
Paolo Valenteaee69d72017-04-19 08:29:02 -0600383/**
384 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
385 * @icq: the iocontext queue.
386 */
387static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
388{
389 /* bic->icq is the first member, %NULL will convert to %NULL */
390 return container_of(icq, struct bfq_io_cq, icq);
391}
392
393/**
394 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
395 * @bfqd: the lookup key.
396 * @ioc: the io_context of the process doing I/O.
397 * @q: the request queue.
398 */
399static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
400 struct io_context *ioc,
401 struct request_queue *q)
402{
403 if (ioc) {
404 unsigned long flags;
405 struct bfq_io_cq *icq;
406
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700407 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600408 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700409 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600410
411 return icq;
412 }
413
414 return NULL;
415}
416
417/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200418 * Scheduler run of queue, if there are requests pending and no one in the
419 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600420 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600421void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600422{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200423 if (bfqd->queued != 0) {
424 bfq_log(bfqd, "schedule dispatch");
425 blk_mq_run_hw_queues(bfqd->queue, true);
426 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600427}
428
Paolo Valenteaee69d72017-04-19 08:29:02 -0600429#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
430#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
431
432#define bfq_sample_valid(samples) ((samples) > 80)
433
434/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600435 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200436 * We choose the request that is closer to the head right now. Distance
Paolo Valenteaee69d72017-04-19 08:29:02 -0600437 * behind the head is penalized and only allowed to a certain extent.
438 */
439static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 struct request *rq1,
441 struct request *rq2,
442 sector_t last)
443{
444 sector_t s1, s2, d1 = 0, d2 = 0;
445 unsigned long back_max;
446#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
447#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
448 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449
450 if (!rq1 || rq1 == rq2)
451 return rq2;
452 if (!rq2)
453 return rq1;
454
455 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 return rq1;
457 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 return rq2;
459 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 return rq1;
461 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 return rq2;
463
464 s1 = blk_rq_pos(rq1);
465 s2 = blk_rq_pos(rq2);
466
467 /*
468 * By definition, 1KiB is 2 sectors.
469 */
470 back_max = bfqd->bfq_back_max * 2;
471
472 /*
473 * Strict one way elevator _except_ in the case where we allow
474 * short backward seeks which are biased as twice the cost of a
475 * similar forward seek.
476 */
477 if (s1 >= last)
478 d1 = s1 - last;
479 else if (s1 + back_max >= last)
480 d1 = (last - s1) * bfqd->bfq_back_penalty;
481 else
482 wrap |= BFQ_RQ1_WRAP;
483
484 if (s2 >= last)
485 d2 = s2 - last;
486 else if (s2 + back_max >= last)
487 d2 = (last - s2) * bfqd->bfq_back_penalty;
488 else
489 wrap |= BFQ_RQ2_WRAP;
490
491 /* Found required data */
492
493 /*
494 * By doing switch() on the bit mask "wrap" we avoid having to
495 * check two variables for all permutations: --> faster!
496 */
497 switch (wrap) {
498 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 if (d1 < d2)
500 return rq1;
501 else if (d2 < d1)
502 return rq2;
503
504 if (s1 >= s2)
505 return rq1;
506 else
507 return rq2;
508
509 case BFQ_RQ2_WRAP:
510 return rq1;
511 case BFQ_RQ1_WRAP:
512 return rq2;
513 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 default:
515 /*
516 * Since both rqs are wrapped,
517 * start with the one that's further behind head
518 * (--> only *one* back seek required),
519 * since back seek takes more time than forward.
520 */
521 if (s1 <= s2)
522 return rq1;
523 else
524 return rq2;
525 }
526}
527
Paolo Valentea52a69e2018-01-13 12:05:17 +0100528/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100529 * Async I/O can easily starve sync I/O (both sync reads and sync
530 * writes), by consuming all tags. Similarly, storms of sync writes,
531 * such as those that sync(2) may trigger, can starve sync reads.
532 * Limit depths of async I/O and sync writes so as to counter both
533 * problems.
534 */
535static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100538
539 if (op_is_sync(op) && !op_is_write(op))
540 return;
541
Paolo Valentea52a69e2018-01-13 12:05:17 +0100542 data->shallow_depth =
543 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544
545 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 __func__, bfqd->wr_busy_queues, op_is_sync(op),
547 data->shallow_depth);
548}
549
Arianna Avanzini36eca892017-04-12 18:23:16 +0200550static struct bfq_queue *
551bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 sector_t sector, struct rb_node **ret_parent,
553 struct rb_node ***rb_link)
554{
555 struct rb_node **p, *parent;
556 struct bfq_queue *bfqq = NULL;
557
558 parent = NULL;
559 p = &root->rb_node;
560 while (*p) {
561 struct rb_node **n;
562
563 parent = *p;
564 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565
566 /*
567 * Sort strictly based on sector. Smallest to the left,
568 * largest to the right.
569 */
570 if (sector > blk_rq_pos(bfqq->next_rq))
571 n = &(*p)->rb_right;
572 else if (sector < blk_rq_pos(bfqq->next_rq))
573 n = &(*p)->rb_left;
574 else
575 break;
576 p = n;
577 bfqq = NULL;
578 }
579
580 *ret_parent = parent;
581 if (rb_link)
582 *rb_link = p;
583
584 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 (unsigned long long)sector,
586 bfqq ? bfqq->pid : 0);
587
588 return bfqq;
589}
590
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100591static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592{
593 return bfqq->service_from_backlogged > 0 &&
594 time_is_before_jiffies(bfqq->first_IO_time +
595 bfq_merge_time_limit);
596}
597
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100598/*
599 * The following function is not marked as __cold because it is
600 * actually cold, but for the same performance goal described in the
601 * comments on the likely() at the beginning of
602 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
603 * execution time for the case where this function is not invoked, we
604 * had to add an unlikely() in each involved if().
605 */
606void __cold
607bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200608{
609 struct rb_node **p, *parent;
610 struct bfq_queue *__bfqq;
611
612 if (bfqq->pos_root) {
613 rb_erase(&bfqq->pos_node, bfqq->pos_root);
614 bfqq->pos_root = NULL;
615 }
616
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100617 /*
618 * bfqq cannot be merged any longer (see comments in
619 * bfq_setup_cooperator): no point in adding bfqq into the
620 * position tree.
621 */
622 if (bfq_too_late_for_merging(bfqq))
623 return;
624
Arianna Avanzini36eca892017-04-12 18:23:16 +0200625 if (bfq_class_idle(bfqq))
626 return;
627 if (!bfqq->next_rq)
628 return;
629
630 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
631 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
632 blk_rq_pos(bfqq->next_rq), &parent, &p);
633 if (!__bfqq) {
634 rb_link_node(&bfqq->pos_node, parent, p);
635 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
636 } else
637 bfqq->pos_root = NULL;
638}
639
Paolo Valenteaee69d72017-04-19 08:29:02 -0600640/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100641 * The following function returns false either if every active queue
642 * must receive the same share of the throughput (symmetric scenario),
643 * or, as a special case, if bfqq must receive a share of the
644 * throughput lower than or equal to the share that every other active
645 * queue must receive. If bfqq does sync I/O, then these are the only
646 * two cases where bfqq happens to be guaranteed its share of the
647 * throughput even if I/O dispatching is not plugged when bfqq remains
648 * temporarily empty (for more details, see the comments in the
649 * function bfq_better_to_idle()). For this reason, the return value
650 * of this function is used to check whether I/O-dispatch plugging can
651 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200652 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100653 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200654 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100655 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200656 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100657 * weight,
658 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200659 * number of children.
660 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200661 * Unfortunately, keeping the necessary state for evaluating exactly
662 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100663 * and time consuming. Therefore this function evaluates, instead,
664 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200665 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200666 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100667 * 2) all active queues belong to the same I/O-priority class,
668 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200669 * In particular, the last condition is always true if hierarchical
670 * support or the cgroups interface are not enabled, thus no state
671 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200672 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100673static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
674 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200675{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100676 bool smallest_weight = bfqq &&
677 bfqq->weight_counter &&
678 bfqq->weight_counter ==
679 container_of(
680 rb_first_cached(&bfqd->queue_weights_tree),
681 struct bfq_weight_counter,
682 weights_node);
683
Paolo Valente73d58112019-01-29 12:06:29 +0100684 /*
685 * For queue weights to differ, queue_weights_tree must contain
686 * at least two nodes.
687 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100688 bool varied_queue_weights = !smallest_weight &&
689 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
690 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
691 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100692
693 bool multiple_classes_busy =
694 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
695 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
696 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
697
Paolo Valentefb53ac62019-03-12 09:59:28 +0100698 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300699#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100700 || bfqd->num_groups_with_pending_reqs > 0
701#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100702 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200703}
704
705/*
706 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200707 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200708 * increment the existing counter.
709 *
710 * Note that weight-counter trees contain few nodes in mostly symmetric
711 * scenarios. For example, if all queues have the same weight, then the
712 * weight-counter tree for the queues may contain at most one node.
713 * This holds even if low_latency is on, because weight-raised queues
714 * are not inserted in the tree.
715 * In most scenarios, the rate at which nodes are created/destroyed
716 * should be low too.
717 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200718void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100719 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200720{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200721 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100722 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
723 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200724
725 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200726 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200727 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200728 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200729 * non-weight-raised, and hence change its weight, and
730 * backlogged; in this respect, each of the two events
731 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200732 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200733 * second event. This second invocation is actually useless,
734 * and we handle this fact by exiting immediately. More
735 * efficient or clearer solutions might possibly be adopted.
736 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200737 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200738 return;
739
740 while (*new) {
741 struct bfq_weight_counter *__counter = container_of(*new,
742 struct bfq_weight_counter,
743 weights_node);
744 parent = *new;
745
746 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200747 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200748 goto inc_counter;
749 }
750 if (entity->weight < __counter->weight)
751 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100752 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200753 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100754 leftmost = false;
755 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200756 }
757
Federico Motta2d29c9f2018-10-12 11:55:57 +0200758 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
759 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200760
761 /*
762 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200763 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100764 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100765 * causes the scenario to be deemed wrongly symmetric in case
766 * bfqq's weight would have been the only weight making the
767 * scenario asymmetric. On the bright side, no unbalance will
768 * however occur when bfqq becomes inactive again (the
769 * invocation of this function is triggered by an activation
770 * of queue). In fact, bfq_weights_tree_remove does nothing
771 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200772 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200773 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200774 return;
775
Federico Motta2d29c9f2018-10-12 11:55:57 +0200776 bfqq->weight_counter->weight = entity->weight;
777 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100778 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
779 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200780
781inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200782 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100783 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200784}
785
786/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200787 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200788 * counter reaches 0, remove the counter from the tree.
789 * See the comments to the function bfq_weights_tree_add() for considerations
790 * about overhead.
791 */
Paolo Valente04715592018-06-25 21:55:34 +0200792void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200793 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100794 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200795{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200796 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200797 return;
798
Federico Motta2d29c9f2018-10-12 11:55:57 +0200799 bfqq->weight_counter->num_active--;
800 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200801 goto reset_entity_pointer;
802
Paolo Valentefb53ac62019-03-12 09:59:28 +0100803 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200804 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200805
806reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200807 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100808 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200809}
810
811/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200812 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
813 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200814 */
815void bfq_weights_tree_remove(struct bfq_data *bfqd,
816 struct bfq_queue *bfqq)
817{
818 struct bfq_entity *entity = bfqq->entity.parent;
819
Paolo Valente04715592018-06-25 21:55:34 +0200820 for_each_entity(entity) {
821 struct bfq_sched_data *sd = entity->my_sched_data;
822
823 if (sd->next_in_service || sd->in_service_entity) {
824 /*
825 * entity is still active, because either
826 * next_in_service or in_service_entity is not
827 * NULL (see the comments on the definition of
828 * next_in_service for details on why
829 * in_service_entity must be checked too).
830 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200831 * As a consequence, its parent entities are
832 * active as well, and thus this loop must
833 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200834 */
835 break;
836 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100837
838 /*
839 * The decrement of num_groups_with_pending_reqs is
840 * not performed immediately upon the deactivation of
841 * entity, but it is delayed to when it also happens
842 * that the first leaf descendant bfqq of entity gets
843 * all its pending requests completed. The following
844 * instructions perform this delayed decrement, if
845 * needed. See the comments on
846 * num_groups_with_pending_reqs for details.
847 */
848 if (entity->in_groups_with_pending_reqs) {
849 entity->in_groups_with_pending_reqs = false;
850 bfqd->num_groups_with_pending_reqs--;
851 }
Paolo Valente04715592018-06-25 21:55:34 +0200852 }
Paolo Valente9dee8b32019-01-29 12:06:34 +0100853
854 /*
855 * Next function is invoked last, because it causes bfqq to be
856 * freed if the following holds: bfqq is not in service and
857 * has no dispatched request. DO NOT use bfqq after the next
858 * function invocation.
859 */
860 __bfq_weights_tree_remove(bfqd, bfqq,
861 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +0200862}
863
864/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600865 * Return expired entry, or NULL to just start from scratch in rbtree.
866 */
867static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
868 struct request *last)
869{
870 struct request *rq;
871
872 if (bfq_bfqq_fifo_expire(bfqq))
873 return NULL;
874
875 bfq_mark_bfqq_fifo_expire(bfqq);
876
877 rq = rq_entry_fifo(bfqq->fifo.next);
878
879 if (rq == last || ktime_get_ns() < rq->fifo_time)
880 return NULL;
881
882 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
883 return rq;
884}
885
886static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
887 struct bfq_queue *bfqq,
888 struct request *last)
889{
890 struct rb_node *rbnext = rb_next(&last->rb_node);
891 struct rb_node *rbprev = rb_prev(&last->rb_node);
892 struct request *next, *prev = NULL;
893
894 /* Follow expired path, else get first next available. */
895 next = bfq_check_fifo(bfqq, last);
896 if (next)
897 return next;
898
899 if (rbprev)
900 prev = rb_entry_rq(rbprev);
901
902 if (rbnext)
903 next = rb_entry_rq(rbnext);
904 else {
905 rbnext = rb_first(&bfqq->sort_list);
906 if (rbnext && rbnext != &last->rb_node)
907 next = rb_entry_rq(rbnext);
908 }
909
910 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
911}
912
Paolo Valentec074170e2017-04-12 18:23:11 +0200913/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600914static unsigned long bfq_serv_to_charge(struct request *rq,
915 struct bfq_queue *bfqq)
916{
Paolo Valente02a6d782019-01-29 12:06:37 +0100917 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +0100918 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +0200919 return blk_rq_sectors(rq);
920
Paolo Valented5801082018-08-16 18:51:17 +0200921 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600922}
923
924/**
925 * bfq_updated_next_req - update the queue after a new next_rq selection.
926 * @bfqd: the device data the queue belongs to.
927 * @bfqq: the queue to update.
928 *
929 * If the first request of a queue changes we make sure that the queue
930 * has enough budget to serve at least its first request (if the
931 * request has grown). We do this because if the queue has not enough
932 * budget for its first request, it has to go through two dispatch
933 * rounds to actually get it dispatched.
934 */
935static void bfq_updated_next_req(struct bfq_data *bfqd,
936 struct bfq_queue *bfqq)
937{
938 struct bfq_entity *entity = &bfqq->entity;
939 struct request *next_rq = bfqq->next_rq;
940 unsigned long new_budget;
941
942 if (!next_rq)
943 return;
944
945 if (bfqq == bfqd->in_service_queue)
946 /*
947 * In order not to break guarantees, budgets cannot be
948 * changed after an entity has been selected.
949 */
950 return;
951
Paolo Valentef3218ad2019-01-29 12:06:27 +0100952 new_budget = max_t(unsigned long,
953 max_t(unsigned long, bfqq->max_budget,
954 bfq_serv_to_charge(next_rq, bfqq)),
955 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600956 if (entity->budget != new_budget) {
957 entity->budget = new_budget;
958 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
959 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200960 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600961 }
962}
963
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200964static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
965{
966 u64 dur;
967
968 if (bfqd->bfq_wr_max_time > 0)
969 return bfqd->bfq_wr_max_time;
970
Paolo Valentee24f1c22018-05-31 16:45:06 +0200971 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200972 do_div(dur, bfqd->peak_rate);
973
974 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200975 * Limit duration between 3 and 25 seconds. The upper limit
976 * has been conservatively set after the following worst case:
977 * on a QEMU/KVM virtual machine
978 * - running in a slow PC
979 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
980 * - serving a heavy I/O workload, such as the sequential reading
981 * of several files
982 * mplayer took 23 seconds to start, if constantly weight-raised.
983 *
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200984 * As for higher values than that accommodating the above bad
Davide Sapienzad450542e2018-05-31 16:45:07 +0200985 * scenario, tests show that higher values would often yield
986 * the opposite of the desired result, i.e., would worsen
987 * responsiveness by allowing non-interactive applications to
988 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200989 *
990 * On the other end, lower values than 3 seconds make it
991 * difficult for most interactive tasks to complete their jobs
992 * before weight-raising finishes.
993 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200994 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200995}
996
997/* switch back from soft real-time to interactive weight raising */
998static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
999 struct bfq_data *bfqd)
1000{
1001 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1002 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1003 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1004}
1005
Arianna Avanzini36eca892017-04-12 18:23:16 +02001006static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001007bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1008 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001009{
Paolo Valente13c931b2017-06-27 12:30:47 -06001010 unsigned int old_wr_coeff = bfqq->wr_coeff;
1011 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1012
Paolo Valented5be3fe2017-08-04 07:35:10 +02001013 if (bic->saved_has_short_ttime)
1014 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001015 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001016 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001017
1018 if (bic->saved_IO_bound)
1019 bfq_mark_bfqq_IO_bound(bfqq);
1020 else
1021 bfq_clear_bfqq_IO_bound(bfqq);
1022
Francesco Pollicinofffca082019-03-12 09:59:34 +01001023 bfqq->entity.new_weight = bic->saved_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001024 bfqq->ttime = bic->saved_ttime;
1025 bfqq->wr_coeff = bic->saved_wr_coeff;
1026 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1027 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1028 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1029
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001030 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001031 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001032 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001033 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1034 !bfq_bfqq_in_large_burst(bfqq) &&
1035 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1036 bfq_wr_duration(bfqd))) {
1037 switch_back_to_interactive_wr(bfqq, bfqd);
1038 } else {
1039 bfqq->wr_coeff = 1;
1040 bfq_log_bfqq(bfqq->bfqd, bfqq,
1041 "resume state: switching off wr");
1042 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001043 }
1044
1045 /* make sure weight will be updated, however we got here */
1046 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001047
1048 if (likely(!busy))
1049 return;
1050
1051 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1052 bfqd->wr_busy_queues++;
1053 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1054 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001055}
1056
1057static int bfqq_process_refs(struct bfq_queue *bfqq)
1058{
Paolo Valente9dee8b32019-01-29 12:06:34 +01001059 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1060 (bfqq->weight_counter != NULL);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001061}
1062
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001063/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1064static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1065{
1066 struct bfq_queue *item;
1067 struct hlist_node *n;
1068
1069 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1070 hlist_del_init(&item->burst_list_node);
Paolo Valente84a74682019-03-12 09:59:32 +01001071
1072 /*
1073 * Start the creation of a new burst list only if there is no
1074 * active queue. See comments on the conditional invocation of
1075 * bfq_handle_burst().
1076 */
1077 if (bfq_tot_busy_queues(bfqd) == 0) {
1078 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1079 bfqd->burst_size = 1;
1080 } else
1081 bfqd->burst_size = 0;
1082
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001083 bfqd->burst_parent_entity = bfqq->entity.parent;
1084}
1085
1086/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1087static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1088{
1089 /* Increment burst size to take into account also bfqq */
1090 bfqd->burst_size++;
1091
1092 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1093 struct bfq_queue *pos, *bfqq_item;
1094 struct hlist_node *n;
1095
1096 /*
1097 * Enough queues have been activated shortly after each
1098 * other to consider this burst as large.
1099 */
1100 bfqd->large_burst = true;
1101
1102 /*
1103 * We can now mark all queues in the burst list as
1104 * belonging to a large burst.
1105 */
1106 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1107 burst_list_node)
1108 bfq_mark_bfqq_in_large_burst(bfqq_item);
1109 bfq_mark_bfqq_in_large_burst(bfqq);
1110
1111 /*
1112 * From now on, and until the current burst finishes, any
1113 * new queue being activated shortly after the last queue
1114 * was inserted in the burst can be immediately marked as
1115 * belonging to a large burst. So the burst list is not
1116 * needed any more. Remove it.
1117 */
1118 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1119 burst_list_node)
1120 hlist_del_init(&pos->burst_list_node);
1121 } else /*
1122 * Burst not yet large: add bfqq to the burst list. Do
1123 * not increment the ref counter for bfqq, because bfqq
1124 * is removed from the burst list before freeing bfqq
1125 * in put_queue.
1126 */
1127 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1128}
1129
1130/*
1131 * If many queues belonging to the same group happen to be created
1132 * shortly after each other, then the processes associated with these
1133 * queues have typically a common goal. In particular, bursts of queue
1134 * creations are usually caused by services or applications that spawn
1135 * many parallel threads/processes. Examples are systemd during boot,
1136 * or git grep. To help these processes get their job done as soon as
1137 * possible, it is usually better to not grant either weight-raising
Paolo Valente84a74682019-03-12 09:59:32 +01001138 * or device idling to their queues, unless these queues must be
1139 * protected from the I/O flowing through other active queues.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001140 *
1141 * In this comment we describe, firstly, the reasons why this fact
1142 * holds, and, secondly, the next function, which implements the main
1143 * steps needed to properly mark these queues so that they can then be
1144 * treated in a different way.
1145 *
1146 * The above services or applications benefit mostly from a high
1147 * throughput: the quicker the requests of the activated queues are
1148 * cumulatively served, the sooner the target job of these queues gets
1149 * completed. As a consequence, weight-raising any of these queues,
1150 * which also implies idling the device for it, is almost always
Paolo Valente84a74682019-03-12 09:59:32 +01001151 * counterproductive, unless there are other active queues to isolate
1152 * these new queues from. If there no other active queues, then
1153 * weight-raising these new queues just lowers throughput in most
1154 * cases.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001155 *
1156 * On the other hand, a burst of queue creations may be caused also by
1157 * the start of an application that does not consist of a lot of
1158 * parallel I/O-bound threads. In fact, with a complex application,
1159 * several short processes may need to be executed to start-up the
1160 * application. In this respect, to start an application as quickly as
1161 * possible, the best thing to do is in any case to privilege the I/O
1162 * related to the application with respect to all other
1163 * I/O. Therefore, the best strategy to start as quickly as possible
1164 * an application that causes a burst of queue creations is to
1165 * weight-raise all the queues created during the burst. This is the
1166 * exact opposite of the best strategy for the other type of bursts.
1167 *
1168 * In the end, to take the best action for each of the two cases, the
1169 * two types of bursts need to be distinguished. Fortunately, this
1170 * seems relatively easy, by looking at the sizes of the bursts. In
1171 * particular, we found a threshold such that only bursts with a
1172 * larger size than that threshold are apparently caused by
1173 * services or commands such as systemd or git grep. For brevity,
1174 * hereafter we call just 'large' these bursts. BFQ *does not*
1175 * weight-raise queues whose creation occurs in a large burst. In
1176 * addition, for each of these queues BFQ performs or does not perform
1177 * idling depending on which choice boosts the throughput more. The
1178 * exact choice depends on the device and request pattern at
1179 * hand.
1180 *
1181 * Unfortunately, false positives may occur while an interactive task
1182 * is starting (e.g., an application is being started). The
1183 * consequence is that the queues associated with the task do not
1184 * enjoy weight raising as expected. Fortunately these false positives
1185 * are very rare. They typically occur if some service happens to
1186 * start doing I/O exactly when the interactive task starts.
1187 *
Paolo Valente84a74682019-03-12 09:59:32 +01001188 * Turning back to the next function, it is invoked only if there are
1189 * no active queues (apart from active queues that would belong to the
1190 * same, possible burst bfqq would belong to), and it implements all
1191 * the steps needed to detect the occurrence of a large burst and to
1192 * properly mark all the queues belonging to it (so that they can then
1193 * be treated in a different way). This goal is achieved by
1194 * maintaining a "burst list" that holds, temporarily, the queues that
1195 * belong to the burst in progress. The list is then used to mark
1196 * these queues as belonging to a large burst if the burst does become
1197 * large. The main steps are the following.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001198 *
1199 * . when the very first queue is created, the queue is inserted into the
1200 * list (as it could be the first queue in a possible burst)
1201 *
1202 * . if the current burst has not yet become large, and a queue Q that does
1203 * not yet belong to the burst is activated shortly after the last time
1204 * at which a new queue entered the burst list, then the function appends
1205 * Q to the burst list
1206 *
1207 * . if, as a consequence of the previous step, the burst size reaches
1208 * the large-burst threshold, then
1209 *
1210 * . all the queues in the burst list are marked as belonging to a
1211 * large burst
1212 *
1213 * . the burst list is deleted; in fact, the burst list already served
1214 * its purpose (keeping temporarily track of the queues in a burst,
1215 * so as to be able to mark them as belonging to a large burst in the
1216 * previous sub-step), and now is not needed any more
1217 *
1218 * . the device enters a large-burst mode
1219 *
1220 * . if a queue Q that does not belong to the burst is created while
1221 * the device is in large-burst mode and shortly after the last time
1222 * at which a queue either entered the burst list or was marked as
1223 * belonging to the current large burst, then Q is immediately marked
1224 * as belonging to a large burst.
1225 *
1226 * . if a queue Q that does not belong to the burst is created a while
1227 * later, i.e., not shortly after, than the last time at which a queue
1228 * either entered the burst list or was marked as belonging to the
1229 * current large burst, then the current burst is deemed as finished and:
1230 *
1231 * . the large-burst mode is reset if set
1232 *
1233 * . the burst list is emptied
1234 *
1235 * . Q is inserted in the burst list, as Q may be the first queue
1236 * in a possible new burst (then the burst list contains just Q
1237 * after this step).
1238 */
1239static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1240{
1241 /*
1242 * If bfqq is already in the burst list or is part of a large
1243 * burst, or finally has just been split, then there is
1244 * nothing else to do.
1245 */
1246 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1247 bfq_bfqq_in_large_burst(bfqq) ||
1248 time_is_after_eq_jiffies(bfqq->split_time +
1249 msecs_to_jiffies(10)))
1250 return;
1251
1252 /*
1253 * If bfqq's creation happens late enough, or bfqq belongs to
1254 * a different group than the burst group, then the current
1255 * burst is finished, and related data structures must be
1256 * reset.
1257 *
1258 * In this respect, consider the special case where bfqq is
1259 * the very first queue created after BFQ is selected for this
1260 * device. In this case, last_ins_in_burst and
1261 * burst_parent_entity are not yet significant when we get
1262 * here. But it is easy to verify that, whether or not the
1263 * following condition is true, bfqq will end up being
1264 * inserted into the burst list. In particular the list will
1265 * happen to contain only bfqq. And this is exactly what has
1266 * to happen, as bfqq may be the first queue of the first
1267 * burst.
1268 */
1269 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1270 bfqd->bfq_burst_interval) ||
1271 bfqq->entity.parent != bfqd->burst_parent_entity) {
1272 bfqd->large_burst = false;
1273 bfq_reset_burst_list(bfqd, bfqq);
1274 goto end;
1275 }
1276
1277 /*
1278 * If we get here, then bfqq is being activated shortly after the
1279 * last queue. So, if the current burst is also large, we can mark
1280 * bfqq as belonging to this large burst immediately.
1281 */
1282 if (bfqd->large_burst) {
1283 bfq_mark_bfqq_in_large_burst(bfqq);
1284 goto end;
1285 }
1286
1287 /*
1288 * If we get here, then a large-burst state has not yet been
1289 * reached, but bfqq is being activated shortly after the last
1290 * queue. Then we add bfqq to the burst.
1291 */
1292 bfq_add_to_burst(bfqd, bfqq);
1293end:
1294 /*
1295 * At this point, bfqq either has been added to the current
1296 * burst or has caused the current burst to terminate and a
1297 * possible new burst to start. In particular, in the second
1298 * case, bfqq has become the first queue in the possible new
1299 * burst. In both cases last_ins_in_burst needs to be moved
1300 * forward.
1301 */
1302 bfqd->last_ins_in_burst = jiffies;
1303}
1304
Paolo Valenteaee69d72017-04-19 08:29:02 -06001305static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1306{
1307 struct bfq_entity *entity = &bfqq->entity;
1308
1309 return entity->budget - entity->service;
1310}
1311
1312/*
1313 * If enough samples have been computed, return the current max budget
1314 * stored in bfqd, which is dynamically updated according to the
1315 * estimated disk peak rate; otherwise return the default max budget
1316 */
1317static int bfq_max_budget(struct bfq_data *bfqd)
1318{
1319 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1320 return bfq_default_max_budget;
1321 else
1322 return bfqd->bfq_max_budget;
1323}
1324
1325/*
1326 * Return min budget, which is a fraction of the current or default
1327 * max budget (trying with 1/32)
1328 */
1329static int bfq_min_budget(struct bfq_data *bfqd)
1330{
1331 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1332 return bfq_default_max_budget / 32;
1333 else
1334 return bfqd->bfq_max_budget / 32;
1335}
1336
Paolo Valenteaee69d72017-04-19 08:29:02 -06001337/*
1338 * The next function, invoked after the input queue bfqq switches from
1339 * idle to busy, updates the budget of bfqq. The function also tells
1340 * whether the in-service queue should be expired, by returning
1341 * true. The purpose of expiring the in-service queue is to give bfqq
1342 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001343 * for preempting the in-service queue is to achieve one of the two
1344 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001345 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001346 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1347 * expired because it has remained idle. In particular, bfqq may have
1348 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001349 *
1350 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1351 * and did not make it to issue a new request before its last
1352 * request was served;
1353 *
1354 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1355 * a new request before the expiration of the idling-time.
1356 *
1357 * Even if bfqq has expired for one of the above reasons, the process
1358 * associated with the queue may be however issuing requests greedily,
1359 * and thus be sensitive to the bandwidth it receives (bfqq may have
1360 * remained idle for other reasons: CPU high load, bfqq not enjoying
1361 * idling, I/O throttling somewhere in the path from the process to
1362 * the I/O scheduler, ...). But if, after every expiration for one of
1363 * the above two reasons, bfqq has to wait for the service of at least
1364 * one full budget of another queue before being served again, then
1365 * bfqq is likely to get a much lower bandwidth or resource time than
1366 * its reserved ones. To address this issue, two countermeasures need
1367 * to be taken.
1368 *
1369 * First, the budget and the timestamps of bfqq need to be updated in
1370 * a special way on bfqq reactivation: they need to be updated as if
1371 * bfqq did not remain idle and did not expire. In fact, if they are
1372 * computed as if bfqq expired and remained idle until reactivation,
1373 * then the process associated with bfqq is treated as if, instead of
1374 * being greedy, it stopped issuing requests when bfqq remained idle,
1375 * and restarts issuing requests only on this reactivation. In other
1376 * words, the scheduler does not help the process recover the "service
1377 * hole" between bfqq expiration and reactivation. As a consequence,
1378 * the process receives a lower bandwidth than its reserved one. In
1379 * contrast, to recover this hole, the budget must be updated as if
1380 * bfqq was not expired at all before this reactivation, i.e., it must
1381 * be set to the value of the remaining budget when bfqq was
1382 * expired. Along the same line, timestamps need to be assigned the
1383 * value they had the last time bfqq was selected for service, i.e.,
1384 * before last expiration. Thus timestamps need to be back-shifted
1385 * with respect to their normal computation (see [1] for more details
1386 * on this tricky aspect).
1387 *
1388 * Secondly, to allow the process to recover the hole, the in-service
1389 * queue must be expired too, to give bfqq the chance to preempt it
1390 * immediately. In fact, if bfqq has to wait for a full budget of the
1391 * in-service queue to be completed, then it may become impossible to
1392 * let the process recover the hole, even if the back-shifted
1393 * timestamps of bfqq are lower than those of the in-service queue. If
1394 * this happens for most or all of the holes, then the process may not
1395 * receive its reserved bandwidth. In this respect, it is worth noting
1396 * that, being the service of outstanding requests unpreemptible, a
1397 * little fraction of the holes may however be unrecoverable, thereby
1398 * causing a little loss of bandwidth.
1399 *
1400 * The last important point is detecting whether bfqq does need this
1401 * bandwidth recovery. In this respect, the next function deems the
1402 * process associated with bfqq greedy, and thus allows it to recover
1403 * the hole, if: 1) the process is waiting for the arrival of a new
1404 * request (which implies that bfqq expired for one of the above two
1405 * reasons), and 2) such a request has arrived soon. The first
1406 * condition is controlled through the flag non_blocking_wait_rq,
1407 * while the second through the flag arrived_in_time. If both
1408 * conditions hold, then the function computes the budget in the
1409 * above-described special way, and signals that the in-service queue
1410 * should be expired. Timestamp back-shifting is done later in
1411 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001412 *
1413 * 2. Reduce latency. Even if timestamps are not backshifted to let
1414 * the process associated with bfqq recover a service hole, bfqq may
1415 * however happen to have, after being (re)activated, a lower finish
1416 * timestamp than the in-service queue. That is, the next budget of
1417 * bfqq may have to be completed before the one of the in-service
1418 * queue. If this is the case, then preempting the in-service queue
1419 * allows this goal to be achieved, apart from the unpreemptible,
1420 * outstanding requests mentioned above.
1421 *
1422 * Unfortunately, regardless of which of the above two goals one wants
1423 * to achieve, service trees need first to be updated to know whether
1424 * the in-service queue must be preempted. To have service trees
1425 * correctly updated, the in-service queue must be expired and
1426 * rescheduled, and bfqq must be scheduled too. This is one of the
1427 * most costly operations (in future versions, the scheduling
1428 * mechanism may be re-designed in such a way to make it possible to
1429 * know whether preemption is needed without needing to update service
1430 * trees). In addition, queue preemptions almost always cause random
Paolo Valente96a291c2019-06-25 07:12:48 +02001431 * I/O, which may in turn cause loss of throughput. Finally, there may
1432 * even be no in-service queue when the next function is invoked (so,
1433 * no queue to compare timestamps with). Because of these facts, the
1434 * next function adopts the following simple scheme to avoid costly
1435 * operations, too frequent preemptions and too many dependencies on
1436 * the state of the scheduler: it requests the expiration of the
1437 * in-service queue (unconditionally) only for queues that need to
1438 * recover a hole. Then it delegates to other parts of the code the
1439 * responsibility of handling the above case 2.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001440 */
1441static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1442 struct bfq_queue *bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001443 bool arrived_in_time)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001444{
1445 struct bfq_entity *entity = &bfqq->entity;
1446
Paolo Valente218cb892019-01-29 12:06:26 +01001447 /*
1448 * In the next compound condition, we check also whether there
1449 * is some budget left, because otherwise there is no point in
1450 * trying to go on serving bfqq with this same budget: bfqq
1451 * would be expired immediately after being selected for
1452 * service. This would only cause useless overhead.
1453 */
1454 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1455 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001456 /*
1457 * We do not clear the flag non_blocking_wait_rq here, as
1458 * the latter is used in bfq_activate_bfqq to signal
1459 * that timestamps need to be back-shifted (and is
1460 * cleared right after).
1461 */
1462
1463 /*
1464 * In next assignment we rely on that either
1465 * entity->service or entity->budget are not updated
1466 * on expiration if bfqq is empty (see
1467 * __bfq_bfqq_recalc_budget). Thus both quantities
1468 * remain unchanged after such an expiration, and the
1469 * following statement therefore assigns to
1470 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001471 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001472 */
1473 entity->budget = min_t(unsigned long,
1474 bfq_bfqq_budget_left(bfqq),
1475 bfqq->max_budget);
1476
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001477 /*
1478 * At this point, we have used entity->service to get
1479 * the budget left (needed for updating
1480 * entity->budget). Thus we finally can, and have to,
1481 * reset entity->service. The latter must be reset
1482 * because bfqq would otherwise be charged again for
1483 * the service it has received during its previous
1484 * service slot(s).
1485 */
1486 entity->service = 0;
1487
Paolo Valenteaee69d72017-04-19 08:29:02 -06001488 return true;
1489 }
1490
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001491 /*
1492 * We can finally complete expiration, by setting service to 0.
1493 */
1494 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001495 entity->budget = max_t(unsigned long, bfqq->max_budget,
1496 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1497 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente96a291c2019-06-25 07:12:48 +02001498 return false;
Paolo Valente44e44a12017-04-12 18:23:12 +02001499}
1500
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001501/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001502 * Return the farthest past time instant according to jiffies
1503 * macros.
1504 */
1505static unsigned long bfq_smallest_from_now(void)
1506{
1507 return jiffies - MAX_JIFFY_OFFSET;
1508}
1509
Paolo Valente44e44a12017-04-12 18:23:12 +02001510static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1511 struct bfq_queue *bfqq,
1512 unsigned int old_wr_coeff,
1513 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001514 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001515 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001516 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001517{
1518 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1519 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001520 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001521 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001522 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1523 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1524 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001525 /*
1526 * No interactive weight raising in progress
1527 * here: assign minus infinity to
1528 * wr_start_at_switch_to_srt, to make sure
1529 * that, at the end of the soft-real-time
1530 * weight raising periods that is starting
1531 * now, no interactive weight-raising period
1532 * may be wrongly considered as still in
1533 * progress (and thus actually started by
1534 * mistake).
1535 */
1536 bfqq->wr_start_at_switch_to_srt =
1537 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001538 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1539 BFQ_SOFTRT_WEIGHT_FACTOR;
1540 bfqq->wr_cur_max_time =
1541 bfqd->bfq_wr_rt_max_time;
1542 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001543
1544 /*
1545 * If needed, further reduce budget to make sure it is
1546 * close to bfqq's backlog, so as to reduce the
1547 * scheduling-error component due to a too large
1548 * budget. Do not care about throughput consequences,
1549 * but only about latency. Finally, do not assign a
1550 * too small budget either, to avoid increasing
1551 * latency by causing too frequent expirations.
1552 */
1553 bfqq->entity.budget = min_t(unsigned long,
1554 bfqq->entity.budget,
1555 2 * bfq_min_budget(bfqd));
1556 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001557 if (interactive) { /* update wr coeff and duration */
1558 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1559 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001560 } else if (in_burst)
1561 bfqq->wr_coeff = 1;
1562 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001563 /*
1564 * The application is now or still meeting the
1565 * requirements for being deemed soft rt. We
1566 * can then correctly and safely (re)charge
1567 * the weight-raising duration for the
1568 * application with the weight-raising
1569 * duration for soft rt applications.
1570 *
1571 * In particular, doing this recharge now, i.e.,
1572 * before the weight-raising period for the
1573 * application finishes, reduces the probability
1574 * of the following negative scenario:
1575 * 1) the weight of a soft rt application is
1576 * raised at startup (as for any newly
1577 * created application),
1578 * 2) since the application is not interactive,
1579 * at a certain time weight-raising is
1580 * stopped for the application,
1581 * 3) at that time the application happens to
1582 * still have pending requests, and hence
1583 * is destined to not have a chance to be
1584 * deemed soft rt before these requests are
1585 * completed (see the comments to the
1586 * function bfq_bfqq_softrt_next_start()
1587 * for details on soft rt detection),
1588 * 4) these pending requests experience a high
1589 * latency because the application is not
1590 * weight-raised while they are pending.
1591 */
1592 if (bfqq->wr_cur_max_time !=
1593 bfqd->bfq_wr_rt_max_time) {
1594 bfqq->wr_start_at_switch_to_srt =
1595 bfqq->last_wr_start_finish;
1596
1597 bfqq->wr_cur_max_time =
1598 bfqd->bfq_wr_rt_max_time;
1599 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1600 BFQ_SOFTRT_WEIGHT_FACTOR;
1601 }
1602 bfqq->last_wr_start_finish = jiffies;
1603 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001604 }
1605}
1606
1607static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1608 struct bfq_queue *bfqq)
1609{
1610 return bfqq->dispatched == 0 &&
1611 time_is_before_jiffies(
1612 bfqq->budget_timeout +
1613 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001614}
1615
Paolo Valente96a291c2019-06-25 07:12:48 +02001616
1617/*
1618 * Return true if bfqq is in a higher priority class, or has a higher
1619 * weight than the in-service queue.
1620 */
1621static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1622 struct bfq_queue *in_serv_bfqq)
1623{
1624 int bfqq_weight, in_serv_weight;
1625
1626 if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1627 return true;
1628
1629 if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1630 bfqq_weight = bfqq->entity.weight;
1631 in_serv_weight = in_serv_bfqq->entity.weight;
1632 } else {
1633 if (bfqq->entity.parent)
1634 bfqq_weight = bfqq->entity.parent->weight;
1635 else
1636 bfqq_weight = bfqq->entity.weight;
1637 if (in_serv_bfqq->entity.parent)
1638 in_serv_weight = in_serv_bfqq->entity.parent->weight;
1639 else
1640 in_serv_weight = in_serv_bfqq->entity.weight;
1641 }
1642
1643 return bfqq_weight > in_serv_weight;
1644}
1645
Paolo Valenteaee69d72017-04-19 08:29:02 -06001646static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1647 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001648 int old_wr_coeff,
1649 struct request *rq,
1650 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001651{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001652 bool soft_rt, in_burst, wr_or_deserves_wr,
1653 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001654 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001655 /*
1656 * See the comments on
1657 * bfq_bfqq_update_budg_for_activation for
1658 * details on the usage of the next variable.
1659 */
1660 arrived_in_time = ktime_get_ns() <=
1661 bfqq->ttime.last_end_request +
1662 bfqd->bfq_slice_idle * 3;
1663
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001664
Paolo Valenteaee69d72017-04-19 08:29:02 -06001665 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001666 * bfqq deserves to be weight-raised if:
1667 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001668 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001669 * - it has been idle for enough time or is soft real-time,
1670 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001671 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001672 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001673 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Paolo Valente7074f072019-03-12 09:59:31 +01001674 !BFQQ_TOTALLY_SEEKY(bfqq) &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001675 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001676 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1677 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001678 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001679 wr_or_deserves_wr = bfqd->low_latency &&
1680 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001681 (bfq_bfqq_sync(bfqq) &&
1682 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001683
1684 /*
1685 * Using the last flag, update budget and check whether bfqq
1686 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001687 */
1688 bfqq_wants_to_preempt =
1689 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001690 arrived_in_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001691
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001692 /*
1693 * If bfqq happened to be activated in a burst, but has been
1694 * idle for much more than an interactive queue, then we
1695 * assume that, in the overall I/O initiated in the burst, the
1696 * I/O associated with bfqq is finished. So bfqq does not need
1697 * to be treated as a queue belonging to a burst
1698 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1699 * if set, and remove bfqq from the burst list if it's
1700 * there. We do not decrement burst_size, because the fact
1701 * that bfqq does not need to belong to the burst list any
1702 * more does not invalidate the fact that bfqq was created in
1703 * a burst.
1704 */
1705 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1706 idle_for_long_time &&
1707 time_is_before_jiffies(
1708 bfqq->budget_timeout +
1709 msecs_to_jiffies(10000))) {
1710 hlist_del_init(&bfqq->burst_list_node);
1711 bfq_clear_bfqq_in_large_burst(bfqq);
1712 }
1713
1714 bfq_clear_bfqq_just_created(bfqq);
1715
1716
Paolo Valenteaee69d72017-04-19 08:29:02 -06001717 if (!bfq_bfqq_IO_bound(bfqq)) {
1718 if (arrived_in_time) {
1719 bfqq->requests_within_timer++;
1720 if (bfqq->requests_within_timer >=
1721 bfqd->bfq_requests_within_timer)
1722 bfq_mark_bfqq_IO_bound(bfqq);
1723 } else
1724 bfqq->requests_within_timer = 0;
1725 }
1726
Paolo Valente44e44a12017-04-12 18:23:12 +02001727 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001728 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1729 /* wraparound */
1730 bfqq->split_time =
1731 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001732
Arianna Avanzini36eca892017-04-12 18:23:16 +02001733 if (time_is_before_jiffies(bfqq->split_time +
1734 bfqd->bfq_wr_min_idle_time)) {
1735 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1736 old_wr_coeff,
1737 wr_or_deserves_wr,
1738 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001739 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001740 soft_rt);
1741
1742 if (old_wr_coeff != bfqq->wr_coeff)
1743 bfqq->entity.prio_changed = 1;
1744 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001745 }
1746
Paolo Valente77b7dce2017-04-12 18:23:13 +02001747 bfqq->last_idle_bklogged = jiffies;
1748 bfqq->service_from_backlogged = 0;
1749 bfq_clear_bfqq_softrt_update(bfqq);
1750
Paolo Valenteaee69d72017-04-19 08:29:02 -06001751 bfq_add_bfqq_busy(bfqd, bfqq);
1752
1753 /*
1754 * Expire in-service queue only if preemption may be needed
Paolo Valente96a291c2019-06-25 07:12:48 +02001755 * for guarantees. In particular, we care only about two
1756 * cases. The first is that bfqq has to recover a service
1757 * hole, as explained in the comments on
1758 * bfq_bfqq_update_budg_for_activation(), i.e., that
1759 * bfqq_wants_to_preempt is true. However, if bfqq does not
1760 * carry time-critical I/O, then bfqq's bandwidth is less
1761 * important than that of queues that carry time-critical I/O.
1762 * So, as a further constraint, we consider this case only if
1763 * bfqq is at least as weight-raised, i.e., at least as time
1764 * critical, as the in-service queue.
1765 *
1766 * The second case is that bfqq is in a higher priority class,
1767 * or has a higher weight than the in-service queue. If this
1768 * condition does not hold, we don't care because, even if
1769 * bfqq does not start to be served immediately, the resulting
1770 * delay for bfqq's I/O is however lower or much lower than
1771 * the ideal completion time to be guaranteed to bfqq's I/O.
1772 *
1773 * In both cases, preemption is needed only if, according to
1774 * the timestamps of both bfqq and of the in-service queue,
1775 * bfqq actually is the next queue to serve. So, to reduce
1776 * useless preemptions, the return value of
1777 * next_queue_may_preempt() is considered in the next compound
1778 * condition too. Yet next_queue_may_preempt() just checks a
1779 * simple, necessary condition for bfqq to be the next queue
1780 * to serve. In fact, to evaluate a sufficient condition, the
1781 * timestamps of the in-service queue would need to be
1782 * updated, and this operation is quite costly (see the
1783 * comments on bfq_bfqq_update_budg_for_activation()).
Paolo Valenteaee69d72017-04-19 08:29:02 -06001784 */
Paolo Valente96a291c2019-06-25 07:12:48 +02001785 if (bfqd->in_service_queue &&
1786 ((bfqq_wants_to_preempt &&
1787 bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1788 bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001789 next_queue_may_preempt(bfqd))
1790 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1791 false, BFQQE_PREEMPTED);
1792}
1793
Paolo Valente766d6142019-06-25 07:12:43 +02001794static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1795 struct bfq_queue *bfqq)
1796{
1797 /* invalidate baseline total service time */
1798 bfqq->last_serv_time_ns = 0;
1799
1800 /*
1801 * Reset pointer in case we are waiting for
1802 * some request completion.
1803 */
1804 bfqd->waited_rq = NULL;
1805
1806 /*
1807 * If bfqq has a short think time, then start by setting the
1808 * inject limit to 0 prudentially, because the service time of
1809 * an injected I/O request may be higher than the think time
1810 * of bfqq, and therefore, if one request was injected when
1811 * bfqq remains empty, this injected request might delay the
1812 * service of the next I/O request for bfqq significantly. In
1813 * case bfqq can actually tolerate some injection, then the
1814 * adaptive update will however raise the limit soon. This
1815 * lucky circumstance holds exactly because bfqq has a short
1816 * think time, and thus, after remaining empty, is likely to
1817 * get new I/O enqueued---and then completed---before being
1818 * expired. This is the very pattern that gives the
1819 * limit-update algorithm the chance to measure the effect of
1820 * injection on request service times, and then to update the
1821 * limit accordingly.
1822 *
1823 * However, in the following special case, the inject limit is
1824 * left to 1 even if the think time is short: bfqq's I/O is
1825 * synchronized with that of some other queue, i.e., bfqq may
1826 * receive new I/O only after the I/O of the other queue is
1827 * completed. Keeping the inject limit to 1 allows the
1828 * blocking I/O to be served while bfqq is in service. And
1829 * this is very convenient both for bfqq and for overall
1830 * throughput, as explained in detail in the comments in
1831 * bfq_update_has_short_ttime().
1832 *
1833 * On the opposite end, if bfqq has a long think time, then
1834 * start directly by 1, because:
1835 * a) on the bright side, keeping at most one request in
1836 * service in the drive is unlikely to cause any harm to the
1837 * latency of bfqq's requests, as the service time of a single
1838 * request is likely to be lower than the think time of bfqq;
1839 * b) on the downside, after becoming empty, bfqq is likely to
1840 * expire before getting its next request. With this request
1841 * arrival pattern, it is very hard to sample total service
1842 * times and update the inject limit accordingly (see comments
1843 * on bfq_update_inject_limit()). So the limit is likely to be
1844 * never, or at least seldom, updated. As a consequence, by
1845 * setting the limit to 1, we avoid that no injection ever
1846 * occurs with bfqq. On the downside, this proactive step
1847 * further reduces chances to actually compute the baseline
1848 * total service time. Thus it reduces chances to execute the
1849 * limit-update algorithm and possibly raise the limit to more
1850 * than 1.
1851 */
1852 if (bfq_bfqq_has_short_ttime(bfqq))
1853 bfqq->inject_limit = 0;
1854 else
1855 bfqq->inject_limit = 1;
1856
1857 bfqq->decrease_time_jif = jiffies;
1858}
1859
Paolo Valenteaee69d72017-04-19 08:29:02 -06001860static void bfq_add_request(struct request *rq)
1861{
1862 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1863 struct bfq_data *bfqd = bfqq->bfqd;
1864 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001865 unsigned int old_wr_coeff = bfqq->wr_coeff;
1866 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001867
1868 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1869 bfqq->queued[rq_is_sync(rq)]++;
1870 bfqd->queued++;
1871
Paolo Valente2341d6622019-03-12 09:59:29 +01001872 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1873 /*
Paolo Valente13a857a2019-06-25 07:12:47 +02001874 * Detect whether bfqq's I/O seems synchronized with
1875 * that of some other queue, i.e., whether bfqq, after
1876 * remaining empty, happens to receive new I/O only
1877 * right after some I/O request of the other queue has
1878 * been completed. We call waker queue the other
1879 * queue, and we assume, for simplicity, that bfqq may
1880 * have at most one waker queue.
1881 *
1882 * A remarkable throughput boost can be reached by
1883 * unconditionally injecting the I/O of the waker
1884 * queue, every time a new bfq_dispatch_request
1885 * happens to be invoked while I/O is being plugged
1886 * for bfqq. In addition to boosting throughput, this
1887 * unblocks bfqq's I/O, thereby improving bandwidth
1888 * and latency for bfqq. Note that these same results
1889 * may be achieved with the general injection
1890 * mechanism, but less effectively. For details on
1891 * this aspect, see the comments on the choice of the
1892 * queue for injection in bfq_select_queue().
1893 *
1894 * Turning back to the detection of a waker queue, a
1895 * queue Q is deemed as a waker queue for bfqq if, for
1896 * two consecutive times, bfqq happens to become non
1897 * empty right after a request of Q has been
1898 * completed. In particular, on the first time, Q is
1899 * tentatively set as a candidate waker queue, while
1900 * on the second time, the flag
1901 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1902 * is a waker queue for bfqq. These detection steps
1903 * are performed only if bfqq has a long think time,
1904 * so as to make it more likely that bfqq's I/O is
1905 * actually being blocked by a synchronization. This
1906 * last filter, plus the above two-times requirement,
1907 * make false positives less likely.
1908 *
1909 * NOTE
1910 *
1911 * The sooner a waker queue is detected, the sooner
1912 * throughput can be boosted by injecting I/O from the
1913 * waker queue. Fortunately, detection is likely to be
1914 * actually fast, for the following reasons. While
1915 * blocked by synchronization, bfqq has a long think
1916 * time. This implies that bfqq's inject limit is at
1917 * least equal to 1 (see the comments in
1918 * bfq_update_inject_limit()). So, thanks to
1919 * injection, the waker queue is likely to be served
1920 * during the very first I/O-plugging time interval
1921 * for bfqq. This triggers the first step of the
1922 * detection mechanism. Thanks again to injection, the
1923 * candidate waker queue is then likely to be
1924 * confirmed no later than during the next
1925 * I/O-plugging interval for bfqq.
1926 */
Paolo Valente08d383a2019-08-07 16:17:53 +02001927 if (bfqd->last_completed_rq_bfqq &&
1928 !bfq_bfqq_has_short_ttime(bfqq) &&
Paolo Valente13a857a2019-06-25 07:12:47 +02001929 ktime_get_ns() - bfqd->last_completion <
1930 200 * NSEC_PER_USEC) {
1931 if (bfqd->last_completed_rq_bfqq != bfqq &&
Paolo Valente08d383a2019-08-07 16:17:53 +02001932 bfqd->last_completed_rq_bfqq !=
1933 bfqq->waker_bfqq) {
Paolo Valente13a857a2019-06-25 07:12:47 +02001934 /*
1935 * First synchronization detected with
1936 * a candidate waker queue, or with a
1937 * different candidate waker queue
1938 * from the current one.
1939 */
1940 bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1941
1942 /*
1943 * If the waker queue disappears, then
1944 * bfqq->waker_bfqq must be reset. To
1945 * this goal, we maintain in each
1946 * waker queue a list, woken_list, of
1947 * all the queues that reference the
1948 * waker queue through their
1949 * waker_bfqq pointer. When the waker
1950 * queue exits, the waker_bfqq pointer
1951 * of all the queues in the woken_list
1952 * is reset.
1953 *
1954 * In addition, if bfqq is already in
1955 * the woken_list of a waker queue,
1956 * then, before being inserted into
1957 * the woken_list of a new waker
1958 * queue, bfqq must be removed from
1959 * the woken_list of the old waker
1960 * queue.
1961 */
1962 if (!hlist_unhashed(&bfqq->woken_list_node))
1963 hlist_del_init(&bfqq->woken_list_node);
1964 hlist_add_head(&bfqq->woken_list_node,
1965 &bfqd->last_completed_rq_bfqq->woken_list);
1966
1967 bfq_clear_bfqq_has_waker(bfqq);
1968 } else if (bfqd->last_completed_rq_bfqq ==
1969 bfqq->waker_bfqq &&
1970 !bfq_bfqq_has_waker(bfqq)) {
1971 /*
1972 * synchronization with waker_bfqq
1973 * seen for the second time
1974 */
1975 bfq_mark_bfqq_has_waker(bfqq);
1976 }
1977 }
1978
1979 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01001980 * Periodically reset inject limit, to make sure that
1981 * the latter eventually drops in case workload
1982 * changes, see step (3) in the comments on
1983 * bfq_update_inject_limit().
1984 */
1985 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente766d6142019-06-25 07:12:43 +02001986 msecs_to_jiffies(1000)))
1987 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valente2341d6622019-03-12 09:59:29 +01001988
1989 /*
1990 * The following conditions must hold to setup a new
1991 * sampling of total service time, and then a new
1992 * update of the inject limit:
1993 * - bfqq is in service, because the total service
1994 * time is evaluated only for the I/O requests of
1995 * the queues in service;
1996 * - this is the right occasion to compute or to
1997 * lower the baseline total service time, because
1998 * there are actually no requests in the drive,
1999 * or
2000 * the baseline total service time is available, and
2001 * this is the right occasion to compute the other
2002 * quantity needed to update the inject limit, i.e.,
2003 * the total service time caused by the amount of
2004 * injection allowed by the current value of the
2005 * limit. It is the right occasion because injection
2006 * has actually been performed during the service
2007 * hole, and there are still in-flight requests,
2008 * which are very likely to be exactly the injected
2009 * requests, or part of them;
2010 * - the minimum interval for sampling the total
2011 * service time and updating the inject limit has
2012 * elapsed.
2013 */
2014 if (bfqq == bfqd->in_service_queue &&
2015 (bfqd->rq_in_driver == 0 ||
2016 (bfqq->last_serv_time_ns > 0 &&
2017 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2018 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente17c3d262019-08-22 17:20:36 +02002019 msecs_to_jiffies(10))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01002020 bfqd->last_empty_occupied_ns = ktime_get_ns();
2021 /*
2022 * Start the state machine for measuring the
2023 * total service time of rq: setting
2024 * wait_dispatch will cause bfqd->waited_rq to
2025 * be set when rq will be dispatched.
2026 */
2027 bfqd->wait_dispatch = true;
Paolo Valente23ed5702019-08-22 17:20:34 +02002028 /*
2029 * If there is no I/O in service in the drive,
2030 * then possible injection occurred before the
2031 * arrival of rq will not affect the total
2032 * service time of rq. So the injection limit
2033 * must not be updated as a function of such
2034 * total service time, unless new injection
2035 * occurs before rq is completed. To have the
2036 * injection limit updated only in the latter
2037 * case, reset rqs_injected here (rqs_injected
2038 * will be set in case injection is performed
2039 * on bfqq before rq is completed).
2040 */
2041 if (bfqd->rq_in_driver == 0)
2042 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01002043 }
2044 }
2045
Paolo Valenteaee69d72017-04-19 08:29:02 -06002046 elv_rb_add(&bfqq->sort_list, rq);
2047
2048 /*
2049 * Check if this request is a better next-serve candidate.
2050 */
2051 prev = bfqq->next_rq;
2052 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2053 bfqq->next_rq = next_rq;
2054
Arianna Avanzini36eca892017-04-12 18:23:16 +02002055 /*
2056 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002057 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02002058 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002059 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002060 bfq_pos_tree_add_move(bfqd, bfqq);
2061
Paolo Valenteaee69d72017-04-19 08:29:02 -06002062 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02002063 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2064 rq, &interactive);
2065 else {
2066 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2067 time_is_before_jiffies(
2068 bfqq->last_wr_start_finish +
2069 bfqd->bfq_wr_min_inter_arr_async)) {
2070 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2071 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2072
Paolo Valentecfd69712017-04-12 18:23:15 +02002073 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02002074 bfqq->entity.prio_changed = 1;
2075 }
2076 if (prev != bfqq->next_rq)
2077 bfq_updated_next_req(bfqd, bfqq);
2078 }
2079
2080 /*
2081 * Assign jiffies to last_wr_start_finish in the following
2082 * cases:
2083 *
2084 * . if bfqq is not going to be weight-raised, because, for
2085 * non weight-raised queues, last_wr_start_finish stores the
2086 * arrival time of the last request; as of now, this piece
2087 * of information is used only for deciding whether to
2088 * weight-raise async queues
2089 *
2090 * . if bfqq is not weight-raised, because, if bfqq is now
2091 * switching to weight-raised, then last_wr_start_finish
2092 * stores the time when weight-raising starts
2093 *
2094 * . if bfqq is interactive, because, regardless of whether
2095 * bfqq is currently weight-raised, the weight-raising
2096 * period must start or restart (this case is considered
2097 * separately because it is not detected by the above
2098 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02002099 *
2100 * last_wr_start_finish has to be updated also if bfqq is soft
2101 * real-time, because the weight-raising period is constantly
2102 * restarted on idle-to-busy transitions for these queues, but
2103 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2104 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02002105 */
2106 if (bfqd->low_latency &&
2107 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2108 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002109}
2110
2111static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2112 struct bio *bio,
2113 struct request_queue *q)
2114{
2115 struct bfq_queue *bfqq = bfqd->bio_bfqq;
2116
2117
2118 if (bfqq)
2119 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2120
2121 return NULL;
2122}
2123
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002124static sector_t get_sdist(sector_t last_pos, struct request *rq)
2125{
2126 if (last_pos)
2127 return abs(blk_rq_pos(rq) - last_pos);
2128
2129 return 0;
2130}
2131
Paolo Valenteaee69d72017-04-19 08:29:02 -06002132#if 0 /* Still not clear if we can do without next two functions */
2133static void bfq_activate_request(struct request_queue *q, struct request *rq)
2134{
2135 struct bfq_data *bfqd = q->elevator->elevator_data;
2136
2137 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002138}
2139
2140static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2141{
2142 struct bfq_data *bfqd = q->elevator->elevator_data;
2143
2144 bfqd->rq_in_driver--;
2145}
2146#endif
2147
2148static void bfq_remove_request(struct request_queue *q,
2149 struct request *rq)
2150{
2151 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2152 struct bfq_data *bfqd = bfqq->bfqd;
2153 const int sync = rq_is_sync(rq);
2154
2155 if (bfqq->next_rq == rq) {
2156 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2157 bfq_updated_next_req(bfqd, bfqq);
2158 }
2159
2160 if (rq->queuelist.prev != &rq->queuelist)
2161 list_del_init(&rq->queuelist);
2162 bfqq->queued[sync]--;
2163 bfqd->queued--;
2164 elv_rb_del(&bfqq->sort_list, rq);
2165
2166 elv_rqhash_del(q, rq);
2167 if (q->last_merge == rq)
2168 q->last_merge = NULL;
2169
2170 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2171 bfqq->next_rq = NULL;
2172
2173 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002174 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002175 /*
2176 * bfqq emptied. In normal operation, when
2177 * bfqq is empty, bfqq->entity.service and
2178 * bfqq->entity.budget must contain,
2179 * respectively, the service received and the
2180 * budget used last time bfqq emptied. These
2181 * facts do not hold in this case, as at least
2182 * this last removal occurred while bfqq is
2183 * not in service. To avoid inconsistencies,
2184 * reset both bfqq->entity.service and
2185 * bfqq->entity.budget, if bfqq has still a
2186 * process that may issue I/O requests to it.
2187 */
2188 bfqq->entity.budget = bfqq->entity.service = 0;
2189 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002190
2191 /*
2192 * Remove queue from request-position tree as it is empty.
2193 */
2194 if (bfqq->pos_root) {
2195 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2196 bfqq->pos_root = NULL;
2197 }
Paolo Valente05e90282017-12-20 12:38:31 +01002198 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002199 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2200 if (unlikely(!bfqd->nonrot_with_queueing))
2201 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002202 }
2203
2204 if (rq->cmd_flags & REQ_META)
2205 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002206
Paolo Valenteaee69d72017-04-19 08:29:02 -06002207}
2208
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002209static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2210 unsigned int nr_segs)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002211{
2212 struct request_queue *q = hctx->queue;
2213 struct bfq_data *bfqd = q->elevator->elevator_data;
2214 struct request *free = NULL;
2215 /*
2216 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2217 * store its return value for later use, to avoid nesting
2218 * queue_lock inside the bfqd->lock. We assume that the bic
2219 * returned by bfq_bic_lookup does not go away before
2220 * bfqd->lock is taken.
2221 */
2222 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2223 bool ret;
2224
2225 spin_lock_irq(&bfqd->lock);
2226
2227 if (bic)
2228 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2229 else
2230 bfqd->bio_bfqq = NULL;
2231 bfqd->bio_bic = bic;
2232
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002233 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002234
2235 if (free)
2236 blk_mq_free_request(free);
2237 spin_unlock_irq(&bfqd->lock);
2238
2239 return ret;
2240}
2241
2242static int bfq_request_merge(struct request_queue *q, struct request **req,
2243 struct bio *bio)
2244{
2245 struct bfq_data *bfqd = q->elevator->elevator_data;
2246 struct request *__rq;
2247
2248 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2249 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2250 *req = __rq;
2251 return ELEVATOR_FRONT_MERGE;
2252 }
2253
2254 return ELEVATOR_NO_MERGE;
2255}
2256
Paolo Valente18e5a572018-05-04 19:17:01 +02002257static struct bfq_queue *bfq_init_rq(struct request *rq);
2258
Paolo Valenteaee69d72017-04-19 08:29:02 -06002259static void bfq_request_merged(struct request_queue *q, struct request *req,
2260 enum elv_merge type)
2261{
2262 if (type == ELEVATOR_FRONT_MERGE &&
2263 rb_prev(&req->rb_node) &&
2264 blk_rq_pos(req) <
2265 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2266 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002267 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valentefd031772019-08-07 19:21:11 +02002268 struct bfq_data *bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002269 struct request *prev, *next_rq;
2270
Paolo Valentefd031772019-08-07 19:21:11 +02002271 if (!bfqq)
2272 return;
2273
2274 bfqd = bfqq->bfqd;
2275
Paolo Valenteaee69d72017-04-19 08:29:02 -06002276 /* Reposition request in its sort_list */
2277 elv_rb_del(&bfqq->sort_list, req);
2278 elv_rb_add(&bfqq->sort_list, req);
2279
2280 /* Choose next request to be served for bfqq */
2281 prev = bfqq->next_rq;
2282 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2283 bfqd->last_position);
2284 bfqq->next_rq = next_rq;
2285 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002286 * If next_rq changes, update both the queue's budget to
2287 * fit the new request and the queue's position in its
2288 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002289 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002290 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002291 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002292 /*
2293 * See comments on bfq_pos_tree_add_move() for
2294 * the unlikely().
2295 */
2296 if (unlikely(!bfqd->nonrot_with_queueing))
2297 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002298 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002299 }
2300}
2301
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002302/*
2303 * This function is called to notify the scheduler that the requests
2304 * rq and 'next' have been merged, with 'next' going away. BFQ
2305 * exploits this hook to address the following issue: if 'next' has a
2306 * fifo_time lower that rq, then the fifo_time of rq must be set to
2307 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002308 *
2309 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2310 * on that rq is picked from the hash table q->elevator->hash, which,
2311 * in its turn, is filled only with I/O requests present in
2312 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2313 * the function that fills this hash table (elv_rqhash_add) is called
2314 * only by bfq_insert_request.
2315 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002316static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2317 struct request *next)
2318{
Paolo Valente18e5a572018-05-04 19:17:01 +02002319 struct bfq_queue *bfqq = bfq_init_rq(rq),
2320 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002321
Paolo Valentefd031772019-08-07 19:21:11 +02002322 if (!bfqq)
2323 return;
2324
Paolo Valenteaee69d72017-04-19 08:29:02 -06002325 /*
2326 * If next and rq belong to the same bfq_queue and next is older
2327 * than rq, then reposition rq in the fifo (by substituting next
2328 * with rq). Otherwise, if next and rq belong to different
2329 * bfq_queues, never reposition rq: in fact, we would have to
2330 * reposition it with respect to next's position in its own fifo,
2331 * which would most certainly be too expensive with respect to
2332 * the benefits.
2333 */
2334 if (bfqq == next_bfqq &&
2335 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2336 next->fifo_time < rq->fifo_time) {
2337 list_del_init(&rq->queuelist);
2338 list_replace_init(&next->queuelist, &rq->queuelist);
2339 rq->fifo_time = next->fifo_time;
2340 }
2341
2342 if (bfqq->next_rq == next)
2343 bfqq->next_rq = rq;
2344
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002345 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002346}
2347
Paolo Valente44e44a12017-04-12 18:23:12 +02002348/* Must be called with bfqq != NULL */
2349static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2350{
Paolo Valentecfd69712017-04-12 18:23:15 +02002351 if (bfq_bfqq_busy(bfqq))
2352 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002353 bfqq->wr_coeff = 1;
2354 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002355 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002356 /*
2357 * Trigger a weight change on the next invocation of
2358 * __bfq_entity_update_weight_prio.
2359 */
2360 bfqq->entity.prio_changed = 1;
2361}
2362
Paolo Valenteea25da42017-04-19 08:48:24 -06002363void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2364 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002365{
2366 int i, j;
2367
2368 for (i = 0; i < 2; i++)
2369 for (j = 0; j < IOPRIO_BE_NR; j++)
2370 if (bfqg->async_bfqq[i][j])
2371 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2372 if (bfqg->async_idle_bfqq)
2373 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2374}
2375
2376static void bfq_end_wr(struct bfq_data *bfqd)
2377{
2378 struct bfq_queue *bfqq;
2379
2380 spin_lock_irq(&bfqd->lock);
2381
2382 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2383 bfq_bfqq_end_wr(bfqq);
2384 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2385 bfq_bfqq_end_wr(bfqq);
2386 bfq_end_wr_async(bfqd);
2387
2388 spin_unlock_irq(&bfqd->lock);
2389}
2390
Arianna Avanzini36eca892017-04-12 18:23:16 +02002391static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2392{
2393 if (request)
2394 return blk_rq_pos(io_struct);
2395 else
2396 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2397}
2398
2399static int bfq_rq_close_to_sector(void *io_struct, bool request,
2400 sector_t sector)
2401{
2402 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2403 BFQQ_CLOSE_THR;
2404}
2405
2406static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2407 struct bfq_queue *bfqq,
2408 sector_t sector)
2409{
2410 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2411 struct rb_node *parent, *node;
2412 struct bfq_queue *__bfqq;
2413
2414 if (RB_EMPTY_ROOT(root))
2415 return NULL;
2416
2417 /*
2418 * First, if we find a request starting at the end of the last
2419 * request, choose it.
2420 */
2421 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2422 if (__bfqq)
2423 return __bfqq;
2424
2425 /*
2426 * If the exact sector wasn't found, the parent of the NULL leaf
2427 * will contain the closest sector (rq_pos_tree sorted by
2428 * next_request position).
2429 */
2430 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2431 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2432 return __bfqq;
2433
2434 if (blk_rq_pos(__bfqq->next_rq) < sector)
2435 node = rb_next(&__bfqq->pos_node);
2436 else
2437 node = rb_prev(&__bfqq->pos_node);
2438 if (!node)
2439 return NULL;
2440
2441 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2442 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2443 return __bfqq;
2444
2445 return NULL;
2446}
2447
2448static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2449 struct bfq_queue *cur_bfqq,
2450 sector_t sector)
2451{
2452 struct bfq_queue *bfqq;
2453
2454 /*
2455 * We shall notice if some of the queues are cooperating,
2456 * e.g., working closely on the same area of the device. In
2457 * that case, we can group them together and: 1) don't waste
2458 * time idling, and 2) serve the union of their requests in
2459 * the best possible order for throughput.
2460 */
2461 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2462 if (!bfqq || bfqq == cur_bfqq)
2463 return NULL;
2464
2465 return bfqq;
2466}
2467
2468static struct bfq_queue *
2469bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2470{
2471 int process_refs, new_process_refs;
2472 struct bfq_queue *__bfqq;
2473
2474 /*
2475 * If there are no process references on the new_bfqq, then it is
2476 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2477 * may have dropped their last reference (not just their last process
2478 * reference).
2479 */
2480 if (!bfqq_process_refs(new_bfqq))
2481 return NULL;
2482
2483 /* Avoid a circular list and skip interim queue merges. */
2484 while ((__bfqq = new_bfqq->new_bfqq)) {
2485 if (__bfqq == bfqq)
2486 return NULL;
2487 new_bfqq = __bfqq;
2488 }
2489
2490 process_refs = bfqq_process_refs(bfqq);
2491 new_process_refs = bfqq_process_refs(new_bfqq);
2492 /*
2493 * If the process for the bfqq has gone away, there is no
2494 * sense in merging the queues.
2495 */
2496 if (process_refs == 0 || new_process_refs == 0)
2497 return NULL;
2498
2499 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2500 new_bfqq->pid);
2501
2502 /*
2503 * Merging is just a redirection: the requests of the process
2504 * owning one of the two queues are redirected to the other queue.
2505 * The latter queue, in its turn, is set as shared if this is the
2506 * first time that the requests of some process are redirected to
2507 * it.
2508 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002509 * We redirect bfqq to new_bfqq and not the opposite, because
2510 * we are in the context of the process owning bfqq, thus we
2511 * have the io_cq of this process. So we can immediately
2512 * configure this io_cq to redirect the requests of the
2513 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2514 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002515 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002516 * Anyway, even in case new_bfqq coincides with the in-service
2517 * queue, redirecting requests the in-service queue is the
2518 * best option, as we feed the in-service queue with new
2519 * requests close to the last request served and, by doing so,
2520 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002521 */
2522 bfqq->new_bfqq = new_bfqq;
2523 new_bfqq->ref += process_refs;
2524 return new_bfqq;
2525}
2526
2527static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2528 struct bfq_queue *new_bfqq)
2529{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002530 if (bfq_too_late_for_merging(new_bfqq))
2531 return false;
2532
Arianna Avanzini36eca892017-04-12 18:23:16 +02002533 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2534 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2535 return false;
2536
2537 /*
2538 * If either of the queues has already been detected as seeky,
2539 * then merging it with the other queue is unlikely to lead to
2540 * sequential I/O.
2541 */
2542 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2543 return false;
2544
2545 /*
2546 * Interleaved I/O is known to be done by (some) applications
2547 * only for reads, so it does not make sense to merge async
2548 * queues.
2549 */
2550 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2551 return false;
2552
2553 return true;
2554}
2555
2556/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002557 * Attempt to schedule a merge of bfqq with the currently in-service
2558 * queue or with a close queue among the scheduled queues. Return
2559 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2560 * structure otherwise.
2561 *
2562 * The OOM queue is not allowed to participate to cooperation: in fact, since
2563 * the requests temporarily redirected to the OOM queue could be redirected
2564 * again to dedicated queues at any time, the state needed to correctly
2565 * handle merging with the OOM queue would be quite complex and expensive
2566 * to maintain. Besides, in such a critical condition as an out of memory,
2567 * the benefits of queue merging may be little relevant, or even negligible.
2568 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002569 * WARNING: queue merging may impair fairness among non-weight raised
2570 * queues, for at least two reasons: 1) the original weight of a
2571 * merged queue may change during the merged state, 2) even being the
2572 * weight the same, a merged queue may be bloated with many more
2573 * requests than the ones produced by its originally-associated
2574 * process.
2575 */
2576static struct bfq_queue *
2577bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2578 void *io_struct, bool request)
2579{
2580 struct bfq_queue *in_service_bfqq, *new_bfqq;
2581
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002582 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002583 * Do not perform queue merging if the device is non
2584 * rotational and performs internal queueing. In fact, such a
2585 * device reaches a high speed through internal parallelism
2586 * and pipelining. This means that, to reach a high
2587 * throughput, it must have many requests enqueued at the same
2588 * time. But, in this configuration, the internal scheduling
2589 * algorithm of the device does exactly the job of queue
2590 * merging: it reorders requests so as to obtain as much as
2591 * possible a sequential I/O pattern. As a consequence, with
2592 * the workload generated by processes doing interleaved I/O,
2593 * the throughput reached by the device is likely to be the
2594 * same, with and without queue merging.
2595 *
2596 * Disabling merging also provides a remarkable benefit in
2597 * terms of throughput. Merging tends to make many workloads
2598 * artificially more uneven, because of shared queues
2599 * remaining non empty for incomparably more time than
2600 * non-merged queues. This may accentuate workload
2601 * asymmetries. For example, if one of the queues in a set of
2602 * merged queues has a higher weight than a normal queue, then
2603 * the shared queue may inherit such a high weight and, by
2604 * staying almost always active, may force BFQ to perform I/O
2605 * plugging most of the time. This evidently makes it harder
2606 * for BFQ to let the device reach a high throughput.
2607 *
2608 * Finally, the likely() macro below is not used because one
2609 * of the two branches is more likely than the other, but to
2610 * have the code path after the following if() executed as
2611 * fast as possible for the case of a non rotational device
2612 * with queueing. We want it because this is the fastest kind
2613 * of device. On the opposite end, the likely() may lengthen
2614 * the execution time of BFQ for the case of slower devices
2615 * (rotational or at least without queueing). But in this case
2616 * the execution time of BFQ matters very little, if not at
2617 * all.
2618 */
2619 if (likely(bfqd->nonrot_with_queueing))
2620 return NULL;
2621
2622 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002623 * Prevent bfqq from being merged if it has been created too
2624 * long ago. The idea is that true cooperating processes, and
2625 * thus their associated bfq_queues, are supposed to be
2626 * created shortly after each other. This is the case, e.g.,
2627 * for KVM/QEMU and dump I/O threads. Basing on this
2628 * assumption, the following filtering greatly reduces the
2629 * probability that two non-cooperating processes, which just
2630 * happen to do close I/O for some short time interval, have
2631 * their queues merged by mistake.
2632 */
2633 if (bfq_too_late_for_merging(bfqq))
2634 return NULL;
2635
Arianna Avanzini36eca892017-04-12 18:23:16 +02002636 if (bfqq->new_bfqq)
2637 return bfqq->new_bfqq;
2638
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002639 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002640 return NULL;
2641
2642 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002643 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002644 return NULL;
2645
2646 in_service_bfqq = bfqd->in_service_queue;
2647
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002648 if (in_service_bfqq && in_service_bfqq != bfqq &&
2649 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002650 bfq_rq_close_to_sector(io_struct, request,
2651 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002652 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2653 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2654 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2655 if (new_bfqq)
2656 return new_bfqq;
2657 }
2658 /*
2659 * Check whether there is a cooperator among currently scheduled
2660 * queues. The only thing we need is that the bio/request is not
2661 * NULL, as we need it to establish whether a cooperator exists.
2662 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002663 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2664 bfq_io_struct_pos(io_struct, request));
2665
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002666 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002667 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2668 return bfq_setup_merge(bfqq, new_bfqq);
2669
2670 return NULL;
2671}
2672
2673static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2674{
2675 struct bfq_io_cq *bic = bfqq->bic;
2676
2677 /*
2678 * If !bfqq->bic, the queue is already shared or its requests
2679 * have already been redirected to a shared queue; both idle window
2680 * and weight raising state have already been saved. Do nothing.
2681 */
2682 if (!bic)
2683 return;
2684
Francesco Pollicinofffca082019-03-12 09:59:34 +01002685 bic->saved_weight = bfqq->entity.orig_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002686 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002687 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002688 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002689 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2690 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002691 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002692 !bfq_bfqq_in_large_burst(bfqq) &&
2693 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002694 /*
2695 * bfqq being merged right after being created: bfqq
2696 * would have deserved interactive weight raising, but
2697 * did not make it to be set in a weight-raised state,
2698 * because of this early merge. Store directly the
2699 * weight-raising state that would have been assigned
2700 * to bfqq, so that to avoid that bfqq unjustly fails
2701 * to enjoy weight raising if split soon.
2702 */
2703 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
Douglas Anderson2b50f232019-06-26 12:59:19 -07002704 bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
Paolo Valente894df932017-09-21 11:04:02 +02002705 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2706 bic->saved_last_wr_start_finish = jiffies;
2707 } else {
2708 bic->saved_wr_coeff = bfqq->wr_coeff;
2709 bic->saved_wr_start_at_switch_to_srt =
2710 bfqq->wr_start_at_switch_to_srt;
2711 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2712 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2713 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002714}
2715
Arianna Avanzini36eca892017-04-12 18:23:16 +02002716static void
2717bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2718 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2719{
2720 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2721 (unsigned long)new_bfqq->pid);
2722 /* Save weight raising and idle window of the merged queues */
2723 bfq_bfqq_save_state(bfqq);
2724 bfq_bfqq_save_state(new_bfqq);
2725 if (bfq_bfqq_IO_bound(bfqq))
2726 bfq_mark_bfqq_IO_bound(new_bfqq);
2727 bfq_clear_bfqq_IO_bound(bfqq);
2728
2729 /*
2730 * If bfqq is weight-raised, then let new_bfqq inherit
2731 * weight-raising. To reduce false positives, neglect the case
2732 * where bfqq has just been created, but has not yet made it
2733 * to be weight-raised (which may happen because EQM may merge
2734 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002735 * time for bfqq). Handling this case would however be very
2736 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002737 */
2738 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2739 new_bfqq->wr_coeff = bfqq->wr_coeff;
2740 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2741 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2742 new_bfqq->wr_start_at_switch_to_srt =
2743 bfqq->wr_start_at_switch_to_srt;
2744 if (bfq_bfqq_busy(new_bfqq))
2745 bfqd->wr_busy_queues++;
2746 new_bfqq->entity.prio_changed = 1;
2747 }
2748
2749 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2750 bfqq->wr_coeff = 1;
2751 bfqq->entity.prio_changed = 1;
2752 if (bfq_bfqq_busy(bfqq))
2753 bfqd->wr_busy_queues--;
2754 }
2755
2756 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2757 bfqd->wr_busy_queues);
2758
2759 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002760 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2761 */
2762 bic_set_bfqq(bic, new_bfqq, 1);
2763 bfq_mark_bfqq_coop(new_bfqq);
2764 /*
2765 * new_bfqq now belongs to at least two bics (it is a shared queue):
2766 * set new_bfqq->bic to NULL. bfqq either:
2767 * - does not belong to any bic any more, and hence bfqq->bic must
2768 * be set to NULL, or
2769 * - is a queue whose owning bics have already been redirected to a
2770 * different queue, hence the queue is destined to not belong to
2771 * any bic soon and bfqq->bic is already NULL (therefore the next
2772 * assignment causes no harm).
2773 */
2774 new_bfqq->bic = NULL;
Francesco Pollicino1e664132019-03-12 09:59:33 +01002775 /*
2776 * If the queue is shared, the pid is the pid of one of the associated
2777 * processes. Which pid depends on the exact sequence of merge events
2778 * the queue underwent. So printing such a pid is useless and confusing
2779 * because it reports a random pid between those of the associated
2780 * processes.
2781 * We mark such a queue with a pid -1, and then print SHARED instead of
2782 * a pid in logging messages.
2783 */
2784 new_bfqq->pid = -1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02002785 bfqq->bic = NULL;
2786 /* release process reference to bfqq */
2787 bfq_put_queue(bfqq);
2788}
2789
Paolo Valenteaee69d72017-04-19 08:29:02 -06002790static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2791 struct bio *bio)
2792{
2793 struct bfq_data *bfqd = q->elevator->elevator_data;
2794 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002795 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002796
2797 /*
2798 * Disallow merge of a sync bio into an async request.
2799 */
2800 if (is_sync && !rq_is_sync(rq))
2801 return false;
2802
2803 /*
2804 * Lookup the bfqq that this bio will be queued with. Allow
2805 * merge only if rq is queued there.
2806 */
2807 if (!bfqq)
2808 return false;
2809
Arianna Avanzini36eca892017-04-12 18:23:16 +02002810 /*
2811 * We take advantage of this function to perform an early merge
2812 * of the queues of possible cooperating processes.
2813 */
2814 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2815 if (new_bfqq) {
2816 /*
2817 * bic still points to bfqq, then it has not yet been
2818 * redirected to some other bfq_queue, and a queue
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02002819 * merge between bfqq and new_bfqq can be safely
2820 * fulfilled, i.e., bic can be redirected to new_bfqq
Arianna Avanzini36eca892017-04-12 18:23:16 +02002821 * and bfqq can be put.
2822 */
2823 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2824 new_bfqq);
2825 /*
2826 * If we get here, bio will be queued into new_queue,
2827 * so use new_bfqq to decide whether bio and rq can be
2828 * merged.
2829 */
2830 bfqq = new_bfqq;
2831
2832 /*
2833 * Change also bqfd->bio_bfqq, as
2834 * bfqd->bio_bic now points to new_bfqq, and
2835 * this function may be invoked again (and then may
2836 * use again bqfd->bio_bfqq).
2837 */
2838 bfqd->bio_bfqq = bfqq;
2839 }
2840
Paolo Valenteaee69d72017-04-19 08:29:02 -06002841 return bfqq == RQ_BFQQ(rq);
2842}
2843
Paolo Valente44e44a12017-04-12 18:23:12 +02002844/*
2845 * Set the maximum time for the in-service queue to consume its
2846 * budget. This prevents seeky processes from lowering the throughput.
2847 * In practice, a time-slice service scheme is used with seeky
2848 * processes.
2849 */
2850static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2851 struct bfq_queue *bfqq)
2852{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002853 unsigned int timeout_coeff;
2854
2855 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2856 timeout_coeff = 1;
2857 else
2858 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2859
Paolo Valente44e44a12017-04-12 18:23:12 +02002860 bfqd->last_budget_start = ktime_get();
2861
2862 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002863 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002864}
2865
Paolo Valenteaee69d72017-04-19 08:29:02 -06002866static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2867 struct bfq_queue *bfqq)
2868{
2869 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002870 bfq_clear_bfqq_fifo_expire(bfqq);
2871
2872 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2873
Paolo Valente77b7dce2017-04-12 18:23:13 +02002874 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2875 bfqq->wr_coeff > 1 &&
2876 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2877 time_is_before_jiffies(bfqq->budget_timeout)) {
2878 /*
2879 * For soft real-time queues, move the start
2880 * of the weight-raising period forward by the
2881 * time the queue has not received any
2882 * service. Otherwise, a relatively long
2883 * service delay is likely to cause the
2884 * weight-raising period of the queue to end,
2885 * because of the short duration of the
2886 * weight-raising period of a soft real-time
2887 * queue. It is worth noting that this move
2888 * is not so dangerous for the other queues,
2889 * because soft real-time queues are not
2890 * greedy.
2891 *
2892 * To not add a further variable, we use the
2893 * overloaded field budget_timeout to
2894 * determine for how long the queue has not
2895 * received service, i.e., how much time has
2896 * elapsed since the queue expired. However,
2897 * this is a little imprecise, because
2898 * budget_timeout is set to jiffies if bfqq
2899 * not only expires, but also remains with no
2900 * request.
2901 */
2902 if (time_after(bfqq->budget_timeout,
2903 bfqq->last_wr_start_finish))
2904 bfqq->last_wr_start_finish +=
2905 jiffies - bfqq->budget_timeout;
2906 else
2907 bfqq->last_wr_start_finish = jiffies;
2908 }
2909
Paolo Valente44e44a12017-04-12 18:23:12 +02002910 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002911 bfq_log_bfqq(bfqd, bfqq,
2912 "set_in_service_queue, cur-budget = %d",
2913 bfqq->entity.budget);
2914 }
2915
2916 bfqd->in_service_queue = bfqq;
2917}
2918
2919/*
2920 * Get and set a new queue for service.
2921 */
2922static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2923{
2924 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2925
2926 __bfq_set_in_service_queue(bfqd, bfqq);
2927 return bfqq;
2928}
2929
Paolo Valenteaee69d72017-04-19 08:29:02 -06002930static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2931{
2932 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002933 u32 sl;
2934
Paolo Valenteaee69d72017-04-19 08:29:02 -06002935 bfq_mark_bfqq_wait_request(bfqq);
2936
2937 /*
2938 * We don't want to idle for seeks, but we do want to allow
2939 * fair distribution of slice time for a process doing back-to-back
2940 * seeks. So allow a little bit of time for him to submit a new rq.
2941 */
2942 sl = bfqd->bfq_slice_idle;
2943 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002944 * Unless the queue is being weight-raised or the scenario is
2945 * asymmetric, grant only minimum idle time if the queue
2946 * is seeky. A long idling is preserved for a weight-raised
2947 * queue, or, more in general, in an asymmetric scenario,
2948 * because a long idling is needed for guaranteeing to a queue
2949 * its reserved share of the throughput (in particular, it is
2950 * needed if the queue has a higher weight than some other
2951 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002952 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002953 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01002954 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002955 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01002956 else if (bfqq->wr_coeff > 1)
2957 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002958
2959 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01002960 bfqd->last_idling_start_jiffies = jiffies;
2961
Paolo Valenteaee69d72017-04-19 08:29:02 -06002962 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2963 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002964 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002965}
2966
2967/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002968 * In autotuning mode, max_budget is dynamically recomputed as the
2969 * amount of sectors transferred in timeout at the estimated peak
2970 * rate. This enables BFQ to utilize a full timeslice with a full
2971 * budget, even if the in-service queue is served at peak rate. And
2972 * this maximises throughput with sequential workloads.
2973 */
2974static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2975{
2976 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2977 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2978}
2979
Paolo Valente44e44a12017-04-12 18:23:12 +02002980/*
2981 * Update parameters related to throughput and responsiveness, as a
2982 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002983 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002984 */
2985static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2986{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002987 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002988 bfqd->bfq_max_budget =
2989 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002990 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002991 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002992}
2993
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002994static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2995 struct request *rq)
2996{
2997 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2998 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2999 bfqd->peak_rate_samples = 1;
3000 bfqd->sequential_samples = 0;
3001 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3002 blk_rq_sectors(rq);
3003 } else /* no new rq dispatched, just reset the number of samples */
3004 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3005
3006 bfq_log(bfqd,
3007 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
3008 bfqd->peak_rate_samples, bfqd->sequential_samples,
3009 bfqd->tot_sectors_dispatched);
3010}
3011
3012static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3013{
3014 u32 rate, weight, divisor;
3015
3016 /*
3017 * For the convergence property to hold (see comments on
3018 * bfq_update_peak_rate()) and for the assessment to be
3019 * reliable, a minimum number of samples must be present, and
3020 * a minimum amount of time must have elapsed. If not so, do
3021 * not compute new rate. Just reset parameters, to get ready
3022 * for a new evaluation attempt.
3023 */
3024 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3025 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3026 goto reset_computation;
3027
3028 /*
3029 * If a new request completion has occurred after last
3030 * dispatch, then, to approximate the rate at which requests
3031 * have been served by the device, it is more precise to
3032 * extend the observation interval to the last completion.
3033 */
3034 bfqd->delta_from_first =
3035 max_t(u64, bfqd->delta_from_first,
3036 bfqd->last_completion - bfqd->first_dispatch);
3037
3038 /*
3039 * Rate computed in sects/usec, and not sects/nsec, for
3040 * precision issues.
3041 */
3042 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3043 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3044
3045 /*
3046 * Peak rate not updated if:
3047 * - the percentage of sequential dispatches is below 3/4 of the
3048 * total, and rate is below the current estimated peak rate
3049 * - rate is unreasonably high (> 20M sectors/sec)
3050 */
3051 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3052 rate <= bfqd->peak_rate) ||
3053 rate > 20<<BFQ_RATE_SHIFT)
3054 goto reset_computation;
3055
3056 /*
3057 * We have to update the peak rate, at last! To this purpose,
3058 * we use a low-pass filter. We compute the smoothing constant
3059 * of the filter as a function of the 'weight' of the new
3060 * measured rate.
3061 *
3062 * As can be seen in next formulas, we define this weight as a
3063 * quantity proportional to how sequential the workload is,
3064 * and to how long the observation time interval is.
3065 *
3066 * The weight runs from 0 to 8. The maximum value of the
3067 * weight, 8, yields the minimum value for the smoothing
3068 * constant. At this minimum value for the smoothing constant,
3069 * the measured rate contributes for half of the next value of
3070 * the estimated peak rate.
3071 *
3072 * So, the first step is to compute the weight as a function
3073 * of how sequential the workload is. Note that the weight
3074 * cannot reach 9, because bfqd->sequential_samples cannot
3075 * become equal to bfqd->peak_rate_samples, which, in its
3076 * turn, holds true because bfqd->sequential_samples is not
3077 * incremented for the first sample.
3078 */
3079 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3080
3081 /*
3082 * Second step: further refine the weight as a function of the
3083 * duration of the observation interval.
3084 */
3085 weight = min_t(u32, 8,
3086 div_u64(weight * bfqd->delta_from_first,
3087 BFQ_RATE_REF_INTERVAL));
3088
3089 /*
3090 * Divisor ranging from 10, for minimum weight, to 2, for
3091 * maximum weight.
3092 */
3093 divisor = 10 - weight;
3094
3095 /*
3096 * Finally, update peak rate:
3097 *
3098 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
3099 */
3100 bfqd->peak_rate *= divisor-1;
3101 bfqd->peak_rate /= divisor;
3102 rate /= divisor; /* smoothing constant alpha = 1/divisor */
3103
3104 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02003105
3106 /*
3107 * For a very slow device, bfqd->peak_rate can reach 0 (see
3108 * the minimum representable values reported in the comments
3109 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3110 * divisions by zero where bfqd->peak_rate is used as a
3111 * divisor.
3112 */
3113 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3114
Paolo Valente44e44a12017-04-12 18:23:12 +02003115 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003116
3117reset_computation:
3118 bfq_reset_rate_computation(bfqd, rq);
3119}
3120
3121/*
3122 * Update the read/write peak rate (the main quantity used for
3123 * auto-tuning, see update_thr_responsiveness_params()).
3124 *
3125 * It is not trivial to estimate the peak rate (correctly): because of
3126 * the presence of sw and hw queues between the scheduler and the
3127 * device components that finally serve I/O requests, it is hard to
3128 * say exactly when a given dispatched request is served inside the
3129 * device, and for how long. As a consequence, it is hard to know
3130 * precisely at what rate a given set of requests is actually served
3131 * by the device.
3132 *
3133 * On the opposite end, the dispatch time of any request is trivially
3134 * available, and, from this piece of information, the "dispatch rate"
3135 * of requests can be immediately computed. So, the idea in the next
3136 * function is to use what is known, namely request dispatch times
3137 * (plus, when useful, request completion times), to estimate what is
3138 * unknown, namely in-device request service rate.
3139 *
3140 * The main issue is that, because of the above facts, the rate at
3141 * which a certain set of requests is dispatched over a certain time
3142 * interval can vary greatly with respect to the rate at which the
3143 * same requests are then served. But, since the size of any
3144 * intermediate queue is limited, and the service scheme is lossless
3145 * (no request is silently dropped), the following obvious convergence
3146 * property holds: the number of requests dispatched MUST become
3147 * closer and closer to the number of requests completed as the
3148 * observation interval grows. This is the key property used in
3149 * the next function to estimate the peak service rate as a function
3150 * of the observed dispatch rate. The function assumes to be invoked
3151 * on every request dispatch.
3152 */
3153static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3154{
3155 u64 now_ns = ktime_get_ns();
3156
3157 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3158 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3159 bfqd->peak_rate_samples);
3160 bfq_reset_rate_computation(bfqd, rq);
3161 goto update_last_values; /* will add one sample */
3162 }
3163
3164 /*
3165 * Device idle for very long: the observation interval lasting
3166 * up to this dispatch cannot be a valid observation interval
3167 * for computing a new peak rate (similarly to the late-
3168 * completion event in bfq_completed_request()). Go to
3169 * update_rate_and_reset to have the following three steps
3170 * taken:
3171 * - close the observation interval at the last (previous)
3172 * request dispatch or completion
3173 * - compute rate, if possible, for that observation interval
3174 * - start a new observation interval with this dispatch
3175 */
3176 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3177 bfqd->rq_in_driver == 0)
3178 goto update_rate_and_reset;
3179
3180 /* Update sampling information */
3181 bfqd->peak_rate_samples++;
3182
3183 if ((bfqd->rq_in_driver > 0 ||
3184 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01003185 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003186 bfqd->sequential_samples++;
3187
3188 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3189
3190 /* Reset max observed rq size every 32 dispatches */
3191 if (likely(bfqd->peak_rate_samples % 32))
3192 bfqd->last_rq_max_size =
3193 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3194 else
3195 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3196
3197 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3198
3199 /* Target observation interval not yet reached, go on sampling */
3200 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3201 goto update_last_values;
3202
3203update_rate_and_reset:
3204 bfq_update_rate_reset(bfqd, rq);
3205update_last_values:
3206 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01003207 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3208 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003209 bfqd->last_dispatch = now_ns;
3210}
3211
3212/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003213 * Remove request from internal lists.
3214 */
3215static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3216{
3217 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3218
3219 /*
3220 * For consistency, the next instruction should have been
3221 * executed after removing the request from the queue and
3222 * dispatching it. We execute instead this instruction before
3223 * bfq_remove_request() (and hence introduce a temporary
3224 * inconsistency), for efficiency. In fact, should this
3225 * dispatch occur for a non in-service bfqq, this anticipated
3226 * increment prevents two counters related to bfqq->dispatched
3227 * from risking to be, first, uselessly decremented, and then
3228 * incremented again when the (new) value of bfqq->dispatched
3229 * happens to be taken into account.
3230 */
3231 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003232 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003233
3234 bfq_remove_request(q, rq);
3235}
3236
Paolo Valente37261122019-06-25 07:12:49 +02003237/*
3238 * There is a case where idling does not have to be performed for
3239 * throughput concerns, but to preserve the throughput share of
3240 * the process associated with bfqq.
3241 *
3242 * To introduce this case, we can note that allowing the drive
3243 * to enqueue more than one request at a time, and hence
3244 * delegating de facto final scheduling decisions to the
3245 * drive's internal scheduler, entails loss of control on the
3246 * actual request service order. In particular, the critical
3247 * situation is when requests from different processes happen
3248 * to be present, at the same time, in the internal queue(s)
3249 * of the drive. In such a situation, the drive, by deciding
3250 * the service order of the internally-queued requests, does
3251 * determine also the actual throughput distribution among
3252 * these processes. But the drive typically has no notion or
3253 * concern about per-process throughput distribution, and
3254 * makes its decisions only on a per-request basis. Therefore,
3255 * the service distribution enforced by the drive's internal
3256 * scheduler is likely to coincide with the desired throughput
3257 * distribution only in a completely symmetric, or favorably
3258 * skewed scenario where:
3259 * (i-a) each of these processes must get the same throughput as
3260 * the others,
3261 * (i-b) in case (i-a) does not hold, it holds that the process
3262 * associated with bfqq must receive a lower or equal
3263 * throughput than any of the other processes;
3264 * (ii) the I/O of each process has the same properties, in
3265 * terms of locality (sequential or random), direction
3266 * (reads or writes), request sizes, greediness
3267 * (from I/O-bound to sporadic), and so on;
3268
3269 * In fact, in such a scenario, the drive tends to treat the requests
3270 * of each process in about the same way as the requests of the
3271 * others, and thus to provide each of these processes with about the
3272 * same throughput. This is exactly the desired throughput
3273 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3274 * even more convenient distribution for (the process associated with)
3275 * bfqq.
3276 *
3277 * In contrast, in any asymmetric or unfavorable scenario, device
3278 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3279 * that bfqq receives its assigned fraction of the device throughput
3280 * (see [1] for details).
3281 *
3282 * The problem is that idling may significantly reduce throughput with
3283 * certain combinations of types of I/O and devices. An important
3284 * example is sync random I/O on flash storage with command
3285 * queueing. So, unless bfqq falls in cases where idling also boosts
3286 * throughput, it is important to check conditions (i-a), i(-b) and
3287 * (ii) accurately, so as to avoid idling when not strictly needed for
3288 * service guarantees.
3289 *
3290 * Unfortunately, it is extremely difficult to thoroughly check
3291 * condition (ii). And, in case there are active groups, it becomes
3292 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3293 * if there are active groups, then, for conditions (i-a) or (i-b) to
3294 * become false 'indirectly', it is enough that an active group
3295 * contains more active processes or sub-groups than some other active
3296 * group. More precisely, for conditions (i-a) or (i-b) to become
3297 * false because of such a group, it is not even necessary that the
3298 * group is (still) active: it is sufficient that, even if the group
3299 * has become inactive, some of its descendant processes still have
3300 * some request already dispatched but still waiting for
3301 * completion. In fact, requests have still to be guaranteed their
3302 * share of the throughput even after being dispatched. In this
3303 * respect, it is easy to show that, if a group frequently becomes
3304 * inactive while still having in-flight requests, and if, when this
3305 * happens, the group is not considered in the calculation of whether
3306 * the scenario is asymmetric, then the group may fail to be
3307 * guaranteed its fair share of the throughput (basically because
3308 * idling may not be performed for the descendant processes of the
3309 * group, but it had to be). We address this issue with the following
3310 * bi-modal behavior, implemented in the function
3311 * bfq_asymmetric_scenario().
3312 *
3313 * If there are groups with requests waiting for completion
3314 * (as commented above, some of these groups may even be
3315 * already inactive), then the scenario is tagged as
3316 * asymmetric, conservatively, without checking any of the
3317 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3318 * This behavior matches also the fact that groups are created
3319 * exactly if controlling I/O is a primary concern (to
3320 * preserve bandwidth and latency guarantees).
3321 *
3322 * On the opposite end, if there are no groups with requests waiting
3323 * for completion, then only conditions (i-a) and (i-b) are actually
3324 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3325 * idling is not performed, regardless of whether condition (ii)
3326 * holds. In other words, only if conditions (i-a) and (i-b) do not
3327 * hold, then idling is allowed, and the device tends to be prevented
3328 * from queueing many requests, possibly of several processes. Since
3329 * there are no groups with requests waiting for completion, then, to
3330 * control conditions (i-a) and (i-b) it is enough to check just
3331 * whether all the queues with requests waiting for completion also
3332 * have the same weight.
3333 *
3334 * Not checking condition (ii) evidently exposes bfqq to the
3335 * risk of getting less throughput than its fair share.
3336 * However, for queues with the same weight, a further
3337 * mechanism, preemption, mitigates or even eliminates this
3338 * problem. And it does so without consequences on overall
3339 * throughput. This mechanism and its benefits are explained
3340 * in the next three paragraphs.
3341 *
3342 * Even if a queue, say Q, is expired when it remains idle, Q
3343 * can still preempt the new in-service queue if the next
3344 * request of Q arrives soon (see the comments on
3345 * bfq_bfqq_update_budg_for_activation). If all queues and
3346 * groups have the same weight, this form of preemption,
3347 * combined with the hole-recovery heuristic described in the
3348 * comments on function bfq_bfqq_update_budg_for_activation,
3349 * are enough to preserve a correct bandwidth distribution in
3350 * the mid term, even without idling. In fact, even if not
3351 * idling allows the internal queues of the device to contain
3352 * many requests, and thus to reorder requests, we can rather
3353 * safely assume that the internal scheduler still preserves a
3354 * minimum of mid-term fairness.
3355 *
3356 * More precisely, this preemption-based, idleless approach
3357 * provides fairness in terms of IOPS, and not sectors per
3358 * second. This can be seen with a simple example. Suppose
3359 * that there are two queues with the same weight, but that
3360 * the first queue receives requests of 8 sectors, while the
3361 * second queue receives requests of 1024 sectors. In
3362 * addition, suppose that each of the two queues contains at
3363 * most one request at a time, which implies that each queue
3364 * always remains idle after it is served. Finally, after
3365 * remaining idle, each queue receives very quickly a new
3366 * request. It follows that the two queues are served
3367 * alternatively, preempting each other if needed. This
3368 * implies that, although both queues have the same weight,
3369 * the queue with large requests receives a service that is
3370 * 1024/8 times as high as the service received by the other
3371 * queue.
3372 *
3373 * The motivation for using preemption instead of idling (for
3374 * queues with the same weight) is that, by not idling,
3375 * service guarantees are preserved (completely or at least in
3376 * part) without minimally sacrificing throughput. And, if
3377 * there is no active group, then the primary expectation for
3378 * this device is probably a high throughput.
3379 *
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003380 * We are now left only with explaining the two sub-conditions in the
3381 * additional compound condition that is checked below for deciding
3382 * whether the scenario is asymmetric. To explain the first
3383 * sub-condition, we need to add that the function
Paolo Valente37261122019-06-25 07:12:49 +02003384 * bfq_asymmetric_scenario checks the weights of only
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003385 * non-weight-raised queues, for efficiency reasons (see comments on
3386 * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3387 * is checked explicitly here. More precisely, the compound condition
3388 * below takes into account also the fact that, even if bfqq is being
3389 * weight-raised, the scenario is still symmetric if all queues with
3390 * requests waiting for completion happen to be
3391 * weight-raised. Actually, we should be even more precise here, and
3392 * differentiate between interactive weight raising and soft real-time
3393 * weight raising.
3394 *
3395 * The second sub-condition checked in the compound condition is
3396 * whether there is a fair amount of already in-flight I/O not
3397 * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3398 * following reason. The drive may decide to serve in-flight
3399 * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3400 * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3401 * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3402 * basically uncontrolled amount of I/O from other queues may be
3403 * dispatched too, possibly causing the service of bfqq's I/O to be
3404 * delayed even longer in the drive. This problem gets more and more
3405 * serious as the speed and the queue depth of the drive grow,
3406 * because, as these two quantities grow, the probability to find no
3407 * queue busy but many requests in flight grows too. By contrast,
3408 * plugging I/O dispatching minimizes the delay induced by already
3409 * in-flight I/O, and enables bfqq to recover the bandwidth it may
3410 * lose because of this delay.
Paolo Valente37261122019-06-25 07:12:49 +02003411 *
3412 * As a side note, it is worth considering that the above
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003413 * device-idling countermeasures may however fail in the following
3414 * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3415 * in a time period during which all symmetry sub-conditions hold, and
3416 * therefore the device is allowed to enqueue many requests, but at
3417 * some later point in time some sub-condition stops to hold, then it
3418 * may become impossible to make requests be served in the desired
3419 * order until all the requests already queued in the device have been
3420 * served. The last sub-condition commented above somewhat mitigates
3421 * this problem for weight-raised queues.
Paolo Valente37261122019-06-25 07:12:49 +02003422 */
3423static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3424 struct bfq_queue *bfqq)
3425{
3426 return (bfqq->wr_coeff > 1 &&
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003427 (bfqd->wr_busy_queues <
3428 bfq_tot_busy_queues(bfqd) ||
3429 bfqd->rq_in_driver >=
3430 bfqq->dispatched + 4)) ||
Paolo Valente37261122019-06-25 07:12:49 +02003431 bfq_asymmetric_scenario(bfqd, bfqq);
3432}
3433
3434static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3435 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003436{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003437 /*
3438 * If this bfqq is shared between multiple processes, check
3439 * to make sure that those processes are still issuing I/Os
3440 * within the mean seek distance. If not, it may be time to
3441 * break the queues apart again.
3442 */
3443 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3444 bfq_mark_bfqq_split_coop(bfqq);
3445
Paolo Valente37261122019-06-25 07:12:49 +02003446 /*
3447 * Consider queues with a higher finish virtual time than
3448 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3449 * true, then bfqq's bandwidth would be violated if an
3450 * uncontrolled amount of I/O from these queues were
3451 * dispatched while bfqq is waiting for its new I/O to
3452 * arrive. This is exactly what may happen if this is a forced
3453 * expiration caused by a preemption attempt, and if bfqq is
3454 * not re-scheduled. To prevent this from happening, re-queue
3455 * bfqq if it needs I/O-dispatch plugging, even if it is
3456 * empty. By doing so, bfqq is granted to be served before the
3457 * above queues (provided that bfqq is of course eligible).
3458 */
3459 if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3460 !(reason == BFQQE_PREEMPTED &&
3461 idling_needed_for_service_guarantees(bfqd, bfqq))) {
Paolo Valente44e44a12017-04-12 18:23:12 +02003462 if (bfqq->dispatched == 0)
3463 /*
3464 * Overloading budget_timeout field to store
3465 * the time at which the queue remains with no
3466 * backlog and no outstanding request; used by
3467 * the weight-raising mechanism.
3468 */
3469 bfqq->budget_timeout = jiffies;
3470
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003471 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003472 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003473 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003474 /*
3475 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003476 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003477 */
Paolo Valente37261122019-06-25 07:12:49 +02003478 if (unlikely(!bfqd->nonrot_with_queueing &&
3479 !RB_EMPTY_ROOT(&bfqq->sort_list)))
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003480 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003481 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003482
3483 /*
3484 * All in-service entities must have been properly deactivated
3485 * or requeued before executing the next function, which
Paolo Valenteeed47d12019-04-10 10:38:33 +02003486 * resets all in-service entities as no more in service. This
3487 * may cause bfqq to be freed. If this happens, the next
3488 * function returns true.
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003489 */
Paolo Valenteeed47d12019-04-10 10:38:33 +02003490 return __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003491}
3492
3493/**
3494 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3495 * @bfqd: device data.
3496 * @bfqq: queue to update.
3497 * @reason: reason for expiration.
3498 *
3499 * Handle the feedback on @bfqq budget at queue expiration.
3500 * See the body for detailed comments.
3501 */
3502static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3503 struct bfq_queue *bfqq,
3504 enum bfqq_expiration reason)
3505{
3506 struct request *next_rq;
3507 int budget, min_budget;
3508
Paolo Valenteaee69d72017-04-19 08:29:02 -06003509 min_budget = bfq_min_budget(bfqd);
3510
Paolo Valente44e44a12017-04-12 18:23:12 +02003511 if (bfqq->wr_coeff == 1)
3512 budget = bfqq->max_budget;
3513 else /*
3514 * Use a constant, low budget for weight-raised queues,
3515 * to help achieve a low latency. Keep it slightly higher
3516 * than the minimum possible budget, to cause a little
3517 * bit fewer expirations.
3518 */
3519 budget = 2 * min_budget;
3520
Paolo Valenteaee69d72017-04-19 08:29:02 -06003521 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3522 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3523 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3524 budget, bfq_min_budget(bfqd));
3525 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3526 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3527
Paolo Valente44e44a12017-04-12 18:23:12 +02003528 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003529 switch (reason) {
3530 /*
3531 * Caveat: in all the following cases we trade latency
3532 * for throughput.
3533 */
3534 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003535 /*
3536 * This is the only case where we may reduce
3537 * the budget: if there is no request of the
3538 * process still waiting for completion, then
3539 * we assume (tentatively) that the timer has
3540 * expired because the batch of requests of
3541 * the process could have been served with a
3542 * smaller budget. Hence, betting that
3543 * process will behave in the same way when it
3544 * becomes backlogged again, we reduce its
3545 * next budget. As long as we guess right,
3546 * this budget cut reduces the latency
3547 * experienced by the process.
3548 *
3549 * However, if there are still outstanding
3550 * requests, then the process may have not yet
3551 * issued its next request just because it is
3552 * still waiting for the completion of some of
3553 * the still outstanding ones. So in this
3554 * subcase we do not reduce its budget, on the
3555 * contrary we increase it to possibly boost
3556 * the throughput, as discussed in the
3557 * comments to the BUDGET_TIMEOUT case.
3558 */
3559 if (bfqq->dispatched > 0) /* still outstanding reqs */
3560 budget = min(budget * 2, bfqd->bfq_max_budget);
3561 else {
3562 if (budget > 5 * min_budget)
3563 budget -= 4 * min_budget;
3564 else
3565 budget = min_budget;
3566 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003567 break;
3568 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003569 /*
3570 * We double the budget here because it gives
3571 * the chance to boost the throughput if this
3572 * is not a seeky process (and has bumped into
3573 * this timeout because of, e.g., ZBR).
3574 */
3575 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003576 break;
3577 case BFQQE_BUDGET_EXHAUSTED:
3578 /*
3579 * The process still has backlog, and did not
3580 * let either the budget timeout or the disk
3581 * idling timeout expire. Hence it is not
3582 * seeky, has a short thinktime and may be
3583 * happy with a higher budget too. So
3584 * definitely increase the budget of this good
3585 * candidate to boost the disk throughput.
3586 */
Paolo Valente54b60452017-04-12 18:23:09 +02003587 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003588 break;
3589 case BFQQE_NO_MORE_REQUESTS:
3590 /*
3591 * For queues that expire for this reason, it
3592 * is particularly important to keep the
3593 * budget close to the actual service they
3594 * need. Doing so reduces the timestamp
3595 * misalignment problem described in the
3596 * comments in the body of
3597 * __bfq_activate_entity. In fact, suppose
3598 * that a queue systematically expires for
3599 * BFQQE_NO_MORE_REQUESTS and presents a
3600 * new request in time to enjoy timestamp
3601 * back-shifting. The larger the budget of the
3602 * queue is with respect to the service the
3603 * queue actually requests in each service
3604 * slot, the more times the queue can be
3605 * reactivated with the same virtual finish
3606 * time. It follows that, even if this finish
3607 * time is pushed to the system virtual time
3608 * to reduce the consequent timestamp
3609 * misalignment, the queue unjustly enjoys for
3610 * many re-activations a lower finish time
3611 * than all newly activated queues.
3612 *
3613 * The service needed by bfqq is measured
3614 * quite precisely by bfqq->entity.service.
3615 * Since bfqq does not enjoy device idling,
3616 * bfqq->entity.service is equal to the number
3617 * of sectors that the process associated with
3618 * bfqq requested to read/write before waiting
3619 * for request completions, or blocking for
3620 * other reasons.
3621 */
3622 budget = max_t(int, bfqq->entity.service, min_budget);
3623 break;
3624 default:
3625 return;
3626 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003627 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003628 /*
3629 * Async queues get always the maximum possible
3630 * budget, as for them we do not care about latency
3631 * (in addition, their ability to dispatch is limited
3632 * by the charging factor).
3633 */
3634 budget = bfqd->bfq_max_budget;
3635 }
3636
3637 bfqq->max_budget = budget;
3638
3639 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3640 !bfqd->bfq_user_max_budget)
3641 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3642
3643 /*
3644 * If there is still backlog, then assign a new budget, making
3645 * sure that it is large enough for the next request. Since
3646 * the finish time of bfqq must be kept in sync with the
3647 * budget, be sure to call __bfq_bfqq_expire() *after* this
3648 * update.
3649 *
3650 * If there is no backlog, then no need to update the budget;
3651 * it will be updated on the arrival of a new request.
3652 */
3653 next_rq = bfqq->next_rq;
3654 if (next_rq)
3655 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3656 bfq_serv_to_charge(next_rq, bfqq));
3657
3658 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3659 next_rq ? blk_rq_sectors(next_rq) : 0,
3660 bfqq->entity.budget);
3661}
3662
Paolo Valenteaee69d72017-04-19 08:29:02 -06003663/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003664 * Return true if the process associated with bfqq is "slow". The slow
3665 * flag is used, in addition to the budget timeout, to reduce the
3666 * amount of service provided to seeky processes, and thus reduce
3667 * their chances to lower the throughput. More details in the comments
3668 * on the function bfq_bfqq_expire().
3669 *
3670 * An important observation is in order: as discussed in the comments
3671 * on the function bfq_update_peak_rate(), with devices with internal
3672 * queues, it is hard if ever possible to know when and for how long
3673 * an I/O request is processed by the device (apart from the trivial
3674 * I/O pattern where a new request is dispatched only after the
3675 * previous one has been completed). This makes it hard to evaluate
3676 * the real rate at which the I/O requests of each bfq_queue are
3677 * served. In fact, for an I/O scheduler like BFQ, serving a
3678 * bfq_queue means just dispatching its requests during its service
3679 * slot (i.e., until the budget of the queue is exhausted, or the
3680 * queue remains idle, or, finally, a timeout fires). But, during the
3681 * service slot of a bfq_queue, around 100 ms at most, the device may
3682 * be even still processing requests of bfq_queues served in previous
3683 * service slots. On the opposite end, the requests of the in-service
3684 * bfq_queue may be completed after the service slot of the queue
3685 * finishes.
3686 *
3687 * Anyway, unless more sophisticated solutions are used
3688 * (where possible), the sum of the sizes of the requests dispatched
3689 * during the service slot of a bfq_queue is probably the only
3690 * approximation available for the service received by the bfq_queue
3691 * during its service slot. And this sum is the quantity used in this
3692 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003693 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003694static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3695 bool compensate, enum bfqq_expiration reason,
3696 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003697{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003698 ktime_t delta_ktime;
3699 u32 delta_usecs;
3700 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003701
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003702 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003703 return false;
3704
3705 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003706 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003707 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003708 delta_ktime = ktime_get();
3709 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3710 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003711
3712 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003713 if (delta_usecs < 1000) {
3714 if (blk_queue_nonrot(bfqd->queue))
3715 /*
3716 * give same worst-case guarantees as idling
3717 * for seeky
3718 */
3719 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3720 else /* charge at least one seek */
3721 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003722
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003723 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003724 }
3725
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003726 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003727
3728 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003729 * Use only long (> 20ms) intervals to filter out excessive
3730 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003731 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003732 if (delta_usecs > 20000) {
3733 /*
3734 * Caveat for rotational devices: processes doing I/O
3735 * in the slower disk zones tend to be slow(er) even
3736 * if not seeky. In this respect, the estimated peak
3737 * rate is likely to be an average over the disk
3738 * surface. Accordingly, to not be too harsh with
3739 * unlucky processes, a process is deemed slow only if
3740 * its rate has been lower than half of the estimated
3741 * peak rate.
3742 */
3743 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3744 }
3745
3746 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3747
3748 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003749}
3750
3751/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003752 * To be deemed as soft real-time, an application must meet two
3753 * requirements. First, the application must not require an average
3754 * bandwidth higher than the approximate bandwidth required to playback or
3755 * record a compressed high-definition video.
3756 * The next function is invoked on the completion of the last request of a
3757 * batch, to compute the next-start time instant, soft_rt_next_start, such
3758 * that, if the next request of the application does not arrive before
3759 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3760 *
3761 * The second requirement is that the request pattern of the application is
3762 * isochronous, i.e., that, after issuing a request or a batch of requests,
3763 * the application stops issuing new requests until all its pending requests
3764 * have been completed. After that, the application may issue a new batch,
3765 * and so on.
3766 * For this reason the next function is invoked to compute
3767 * soft_rt_next_start only for applications that meet this requirement,
3768 * whereas soft_rt_next_start is set to infinity for applications that do
3769 * not.
3770 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003771 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3772 * happen to meet, occasionally or systematically, both the above
3773 * bandwidth and isochrony requirements. This may happen at least in
3774 * the following circumstances. First, if the CPU load is high. The
3775 * application may stop issuing requests while the CPUs are busy
3776 * serving other processes, then restart, then stop again for a while,
3777 * and so on. The other circumstances are related to the storage
3778 * device: the storage device is highly loaded or reaches a low-enough
3779 * throughput with the I/O of the application (e.g., because the I/O
3780 * is random and/or the device is slow). In all these cases, the
3781 * I/O of the application may be simply slowed down enough to meet
3782 * the bandwidth and isochrony requirements. To reduce the probability
3783 * that greedy applications are deemed as soft real-time in these
3784 * corner cases, a further rule is used in the computation of
3785 * soft_rt_next_start: the return value of this function is forced to
3786 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003787 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003788 * (a) Current time plus: (1) the maximum time for which the arrival
3789 * of a request is waited for when a sync queue becomes idle,
3790 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3791 * postpone for a moment the reason for adding a few extra
3792 * jiffies; we get back to it after next item (b). Lower-bounding
3793 * the return value of this function with the current time plus
3794 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3795 * because the latter issue their next request as soon as possible
3796 * after the last one has been completed. In contrast, a soft
3797 * real-time application spends some time processing data, after a
3798 * batch of its requests has been completed.
3799 *
3800 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3801 * above, greedy applications may happen to meet both the
3802 * bandwidth and isochrony requirements under heavy CPU or
3803 * storage-device load. In more detail, in these scenarios, these
3804 * applications happen, only for limited time periods, to do I/O
3805 * slowly enough to meet all the requirements described so far,
3806 * including the filtering in above item (a). These slow-speed
3807 * time intervals are usually interspersed between other time
3808 * intervals during which these applications do I/O at a very high
3809 * speed. Fortunately, exactly because of the high speed of the
3810 * I/O in the high-speed intervals, the values returned by this
3811 * function happen to be so high, near the end of any such
3812 * high-speed interval, to be likely to fall *after* the end of
3813 * the low-speed time interval that follows. These high values are
3814 * stored in bfqq->soft_rt_next_start after each invocation of
3815 * this function. As a consequence, if the last value of
3816 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3817 * next value that this function may return, then, from the very
3818 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3819 * likely to be constantly kept so high that any I/O request
3820 * issued during the low-speed interval is considered as arriving
3821 * to soon for the application to be deemed as soft
3822 * real-time. Then, in the high-speed interval that follows, the
3823 * application will not be deemed as soft real-time, just because
3824 * it will do I/O at a high speed. And so on.
3825 *
3826 * Getting back to the filtering in item (a), in the following two
3827 * cases this filtering might be easily passed by a greedy
3828 * application, if the reference quantity was just
3829 * bfqd->bfq_slice_idle:
3830 * 1) HZ is so low that the duration of a jiffy is comparable to or
3831 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3832 * devices with HZ=100. The time granularity may be so coarse
3833 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3834 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003835 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3836 * for a while, then suddenly 'jump' by several units to recover the lost
3837 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003838 * To address this issue, in the filtering in (a) we do not use as a
3839 * reference time interval just bfqd->bfq_slice_idle, but
3840 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3841 * minimum number of jiffies for which the filter seems to be quite
3842 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003843 */
3844static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3845 struct bfq_queue *bfqq)
3846{
Paolo Valentea34b0242017-12-15 07:23:12 +01003847 return max3(bfqq->soft_rt_next_start,
3848 bfqq->last_idle_bklogged +
3849 HZ * bfqq->service_from_backlogged /
3850 bfqd->bfq_wr_max_softrt_rate,
3851 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003852}
3853
Paolo Valenteaee69d72017-04-19 08:29:02 -06003854/**
3855 * bfq_bfqq_expire - expire a queue.
3856 * @bfqd: device owning the queue.
3857 * @bfqq: the queue to expire.
3858 * @compensate: if true, compensate for the time spent idling.
3859 * @reason: the reason causing the expiration.
3860 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003861 * If the process associated with bfqq does slow I/O (e.g., because it
3862 * issues random requests), we charge bfqq with the time it has been
3863 * in service instead of the service it has received (see
3864 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3865 * a consequence, bfqq will typically get higher timestamps upon
3866 * reactivation, and hence it will be rescheduled as if it had
3867 * received more service than what it has actually received. In the
3868 * end, bfqq receives less service in proportion to how slowly its
3869 * associated process consumes its budgets (and hence how seriously it
3870 * tends to lower the throughput). In addition, this time-charging
3871 * strategy guarantees time fairness among slow processes. In
3872 * contrast, if the process associated with bfqq is not slow, we
3873 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003874 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003875 * Charging time to the first type of queues and the exact service to
3876 * the other has the effect of using the WF2Q+ policy to schedule the
3877 * former on a timeslice basis, without violating service domain
3878 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003879 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003880void bfq_bfqq_expire(struct bfq_data *bfqd,
3881 struct bfq_queue *bfqq,
3882 bool compensate,
3883 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003884{
3885 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003886 unsigned long delta = 0;
3887 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003888
3889 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003890 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003891 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003892 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003893
3894 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003895 * As above explained, charge slow (typically seeky) and
3896 * timed-out queues with the time and not the service
3897 * received, to favor sequential workloads.
3898 *
3899 * Processes doing I/O in the slower disk zones will tend to
3900 * be slow(er) even if not seeky. Therefore, since the
3901 * estimated peak rate is actually an average over the disk
3902 * surface, these processes may timeout just for bad luck. To
3903 * avoid punishing them, do not charge time to processes that
3904 * succeeded in consuming at least 2/3 of their budget. This
3905 * allows BFQ to preserve enough elasticity to still perform
3906 * bandwidth, and not time, distribution with little unlucky
3907 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003908 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003909 if (bfqq->wr_coeff == 1 &&
3910 (slow ||
3911 (reason == BFQQE_BUDGET_TIMEOUT &&
3912 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003913 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003914
3915 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003916 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003917 bfq_clear_bfqq_IO_bound(bfqq);
3918
Paolo Valente44e44a12017-04-12 18:23:12 +02003919 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3920 bfqq->last_wr_start_finish = jiffies;
3921
Paolo Valente77b7dce2017-04-12 18:23:13 +02003922 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3923 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3924 /*
3925 * If we get here, and there are no outstanding
3926 * requests, then the request pattern is isochronous
3927 * (see the comments on the function
3928 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003929 * soft_rt_next_start. And we do it, unless bfqq is in
3930 * interactive weight raising. We do not do it in the
3931 * latter subcase, for the following reason. bfqq may
3932 * be conveying the I/O needed to load a soft
3933 * real-time application. Such an application will
3934 * actually exhibit a soft real-time I/O pattern after
3935 * it finally starts doing its job. But, if
3936 * soft_rt_next_start is computed here for an
3937 * interactive bfqq, and bfqq had received a lot of
3938 * service before remaining with no outstanding
3939 * request (likely to happen on a fast device), then
3940 * soft_rt_next_start would be assigned such a high
3941 * value that, for a very long time, bfqq would be
3942 * prevented from being possibly considered as soft
3943 * real time.
3944 *
3945 * If, instead, the queue still has outstanding
3946 * requests, then we have to wait for the completion
3947 * of all the outstanding requests to discover whether
3948 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003949 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003950 if (bfqq->dispatched == 0 &&
3951 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003952 bfqq->soft_rt_next_start =
3953 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003954 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003955 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003956 * Schedule an update of soft_rt_next_start to when
3957 * the task may be discovered to be isochronous.
3958 */
3959 bfq_mark_bfqq_softrt_update(bfqq);
3960 }
3961 }
3962
Paolo Valenteaee69d72017-04-19 08:29:02 -06003963 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003964 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3965 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003966
3967 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01003968 * bfqq expired, so no total service time needs to be computed
3969 * any longer: reset state machine for measuring total service
3970 * times.
3971 */
3972 bfqd->rqs_injected = bfqd->wait_dispatch = false;
3973 bfqd->waited_rq = NULL;
3974
3975 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003976 * Increase, decrease or leave budget unchanged according to
3977 * reason.
3978 */
3979 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
Paolo Valente37261122019-06-25 07:12:49 +02003980 if (__bfq_bfqq_expire(bfqd, bfqq, reason))
Paolo Valenteeed47d12019-04-10 10:38:33 +02003981 /* bfqq is gone, no more actions on it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003982 return;
3983
Paolo Valenteaee69d72017-04-19 08:29:02 -06003984 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003985 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003986 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003987 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003988 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003989 /*
3990 * Not setting service to 0, because, if the next rq
3991 * arrives in time, the queue will go on receiving
3992 * service with this same budget (as if it never expired)
3993 */
3994 } else
3995 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003996
3997 /*
3998 * Reset the received-service counter for every parent entity.
3999 * Differently from what happens with bfqq->entity.service,
4000 * the resetting of this counter never needs to be postponed
4001 * for parent entities. In fact, in case bfqq may have a
4002 * chance to go on being served using the last, partially
4003 * consumed budget, bfqq->entity.service needs to be kept,
4004 * because if bfqq then actually goes on being served using
4005 * the same budget, the last value of bfqq->entity.service is
4006 * needed to properly decrement bfqq->entity.budget by the
4007 * portion already consumed. In contrast, it is not necessary
4008 * to keep entity->service for parent entities too, because
4009 * the bubble up of the new value of bfqq->entity.budget will
4010 * make sure that the budgets of parent entities are correct,
4011 * even in case bfqq and thus parent entities go on receiving
4012 * service with the same budget.
4013 */
4014 entity = entity->parent;
4015 for_each_entity(entity)
4016 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004017}
4018
4019/*
4020 * Budget timeout is not implemented through a dedicated timer, but
4021 * just checked on request arrivals and completions, as well as on
4022 * idle timer expirations.
4023 */
4024static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4025{
Paolo Valente44e44a12017-04-12 18:23:12 +02004026 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004027}
4028
4029/*
4030 * If we expire a queue that is actively waiting (i.e., with the
4031 * device idled) for the arrival of a new request, then we may incur
4032 * the timestamp misalignment problem described in the body of the
4033 * function __bfq_activate_entity. Hence we return true only if this
4034 * condition does not hold, or if the queue is slow enough to deserve
4035 * only to be kicked off for preserving a high throughput.
4036 */
4037static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4038{
4039 bfq_log_bfqq(bfqq->bfqd, bfqq,
4040 "may_budget_timeout: wait_request %d left %d timeout %d",
4041 bfq_bfqq_wait_request(bfqq),
4042 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
4043 bfq_bfqq_budget_timeout(bfqq));
4044
4045 return (!bfq_bfqq_wait_request(bfqq) ||
4046 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
4047 &&
4048 bfq_bfqq_budget_timeout(bfqq);
4049}
4050
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004051static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4052 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004053{
Paolo Valenteedaf9422017-08-04 07:35:11 +02004054 bool rot_without_queueing =
4055 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4056 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004057 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02004058
Paolo Valenteedaf9422017-08-04 07:35:11 +02004059 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4060 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4061
Paolo Valented5be3fe2017-08-04 07:35:10 +02004062 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02004063 * The next variable takes into account the cases where idling
4064 * boosts the throughput.
4065 *
Paolo Valentee01eff02017-04-12 18:23:19 +02004066 * The value of the variable is computed considering, first, that
4067 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02004068 * (a) the device is not NCQ-capable and rotational, or
4069 * (b) regardless of the presence of NCQ, the device is rotational and
4070 * the request pattern for bfqq is I/O-bound and sequential, or
4071 * (c) regardless of whether it is rotational, the device is
4072 * not NCQ-capable and the request pattern for bfqq is
4073 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004074 *
4075 * Secondly, and in contrast to the above item (b), idling an
4076 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02004077 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004078 * the throughput in proportion to how fast the device
4079 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02004080 * above conditions (a), (b) or (c) is true, and, in
4081 * particular, happens to be false if bfqd is an NCQ-capable
4082 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004083 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02004084 idling_boosts_thr = rot_without_queueing ||
4085 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4086 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004087
4088 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004089 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02004090 * idling_boosts_thr, unless a special case holds. In this
4091 * special case, described below, idling may cause problems to
4092 * weight-raised queues.
4093 *
4094 * When the request pool is saturated (e.g., in the presence
4095 * of write hogs), if the processes associated with
4096 * non-weight-raised queues ask for requests at a lower rate,
4097 * then processes associated with weight-raised queues have a
4098 * higher probability to get a request from the pool
4099 * immediately (or at least soon) when they need one. Thus
4100 * they have a higher probability to actually get a fraction
4101 * of the device throughput proportional to their high
4102 * weight. This is especially true with NCQ-capable drives,
4103 * which enqueue several requests in advance, and further
4104 * reorder internally-queued requests.
4105 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004106 * For this reason, we force to false the return value if
4107 * there are weight-raised busy queues. In this case, and if
4108 * bfqq is not weight-raised, this guarantees that the device
4109 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4110 * then idling will be guaranteed by another variable, see
4111 * below). Combined with the timestamping rules of BFQ (see
4112 * [1] for details), this behavior causes bfqq, and hence any
4113 * sync non-weight-raised queue, to get a lower number of
4114 * requests served, and thus to ask for a lower number of
4115 * requests from the request pool, before the busy
4116 * weight-raised queues get served again. This often mitigates
4117 * starvation problems in the presence of heavy write
4118 * workloads and NCQ, thereby guaranteeing a higher
4119 * application and system responsiveness in these hostile
4120 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02004121 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004122 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02004123 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004124}
Paolo Valentecfd69712017-04-12 18:23:15 +02004125
Paolo Valente530c4cb2019-01-29 12:06:32 +01004126/*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004127 * For a queue that becomes empty, device idling is allowed only if
4128 * this function returns true for that queue. As a consequence, since
4129 * device idling plays a critical role for both throughput boosting
4130 * and service guarantees, the return value of this function plays a
4131 * critical role as well.
4132 *
4133 * In a nutshell, this function returns true only if idling is
4134 * beneficial for throughput or, even if detrimental for throughput,
4135 * idling is however necessary to preserve service guarantees (low
4136 * latency, desired throughput distribution, ...). In particular, on
4137 * NCQ-capable devices, this function tries to return false, so as to
4138 * help keep the drives' internal queues full, whenever this helps the
4139 * device boost the throughput without causing any service-guarantee
4140 * issue.
4141 *
4142 * Most of the issues taken into account to get the return value of
4143 * this function are not trivial. We discuss these issues in the two
4144 * functions providing the main pieces of information needed by this
4145 * function.
4146 */
4147static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4148{
4149 struct bfq_data *bfqd = bfqq->bfqd;
4150 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4151
4152 if (unlikely(bfqd->strict_guarantees))
4153 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004154
4155 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004156 * Idling is performed only if slice_idle > 0. In addition, we
4157 * do not idle if
4158 * (a) bfqq is async
4159 * (b) bfqq is in the idle io prio class: in this case we do
4160 * not idle because we want to minimize the bandwidth that
4161 * queues in this class can steal to higher-priority queues
4162 */
4163 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4164 bfq_class_idle(bfqq))
4165 return false;
4166
4167 idling_boosts_thr_with_no_issue =
4168 idling_boosts_thr_without_issues(bfqd, bfqq);
4169
4170 idling_needed_for_service_guar =
4171 idling_needed_for_service_guarantees(bfqd, bfqq);
4172
4173 /*
4174 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02004175 * return value of the function, which is true only if idling
4176 * either boosts the throughput (without issues), or is
4177 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02004178 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004179 return idling_boosts_thr_with_no_issue ||
4180 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004181}
4182
4183/*
Paolo Valente277a4a92018-06-25 21:55:37 +02004184 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06004185 * returns true, then:
4186 * 1) the queue must remain in service and cannot be expired, and
4187 * 2) the device must be idled to wait for the possible arrival of a new
4188 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02004189 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06004190 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02004191 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06004192 * returns true.
4193 */
4194static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4195{
Paolo Valente277a4a92018-06-25 21:55:37 +02004196 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004197}
4198
Paolo Valente2341d6622019-03-12 09:59:29 +01004199/*
4200 * This function chooses the queue from which to pick the next extra
4201 * I/O request to inject, if it finds a compatible queue. See the
4202 * comments on bfq_update_inject_limit() for details on the injection
4203 * mechanism, and for the definitions of the quantities mentioned
4204 * below.
4205 */
4206static struct bfq_queue *
4207bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02004208{
Paolo Valente2341d6622019-03-12 09:59:29 +01004209 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4210 unsigned int limit = in_serv_bfqq->inject_limit;
4211 /*
4212 * If
4213 * - bfqq is not weight-raised and therefore does not carry
4214 * time-critical I/O,
4215 * or
4216 * - regardless of whether bfqq is weight-raised, bfqq has
4217 * however a long think time, during which it can absorb the
4218 * effect of an appropriate number of extra I/O requests
4219 * from other queues (see bfq_update_inject_limit for
4220 * details on the computation of this number);
4221 * then injection can be performed without restrictions.
4222 */
4223 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4224 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02004225
4226 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004227 * If
4228 * - the baseline total service time could not be sampled yet,
4229 * so the inject limit happens to be still 0, and
4230 * - a lot of time has elapsed since the plugging of I/O
4231 * dispatching started, so drive speed is being wasted
4232 * significantly;
4233 * then temporarily raise inject limit to one request.
4234 */
4235 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4236 bfq_bfqq_wait_request(in_serv_bfqq) &&
4237 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4238 bfqd->bfq_slice_idle)
4239 )
4240 limit = 1;
4241
4242 if (bfqd->rq_in_driver >= limit)
4243 return NULL;
4244
4245 /*
4246 * Linear search of the source queue for injection; but, with
4247 * a high probability, very few steps are needed to find a
4248 * candidate queue, i.e., a queue with enough budget left for
4249 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02004250 * - BFQ dynamically updates the budget of every queue so as
4251 * to accommodate the expected backlog of the queue;
4252 * - if a queue gets all its requests dispatched as injected
4253 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004254 * (and re-added only if it gets new requests, but then it
4255 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004256 */
4257 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4258 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004259 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004260 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004261 bfq_bfqq_budget_left(bfqq)) {
4262 /*
4263 * Allow for only one large in-flight request
4264 * on non-rotational devices, for the
4265 * following reason. On non-rotationl drives,
4266 * large requests take much longer than
4267 * smaller requests to be served. In addition,
4268 * the drive prefers to serve large requests
4269 * w.r.t. to small ones, if it can choose. So,
4270 * having more than one large requests queued
4271 * in the drive may easily make the next first
4272 * request of the in-service queue wait for so
4273 * long to break bfqq's service guarantees. On
4274 * the bright side, large requests let the
4275 * drive reach a very high throughput, even if
4276 * there is only one in-flight large request
4277 * at a time.
4278 */
4279 if (blk_queue_nonrot(bfqd->queue) &&
4280 blk_rq_sectors(bfqq->next_rq) >=
4281 BFQQ_SECT_THR_NONROT)
4282 limit = min_t(unsigned int, 1, limit);
4283 else
4284 limit = in_serv_bfqq->inject_limit;
4285
4286 if (bfqd->rq_in_driver < limit) {
4287 bfqd->rqs_injected = true;
4288 return bfqq;
4289 }
4290 }
Paolo Valented0edc242018-09-14 16:23:08 +02004291
4292 return NULL;
4293}
4294
Paolo Valenteaee69d72017-04-19 08:29:02 -06004295/*
4296 * Select a queue for service. If we have a current queue in service,
4297 * check whether to continue servicing it, or retrieve and set a new one.
4298 */
4299static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4300{
4301 struct bfq_queue *bfqq;
4302 struct request *next_rq;
4303 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4304
4305 bfqq = bfqd->in_service_queue;
4306 if (!bfqq)
4307 goto new_queue;
4308
4309 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4310
Paolo Valente4420b092018-06-25 21:55:35 +02004311 /*
4312 * Do not expire bfqq for budget timeout if bfqq may be about
4313 * to enjoy device idling. The reason why, in this case, we
4314 * prevent bfqq from expiring is the same as in the comments
4315 * on the case where bfq_bfqq_must_idle() returns true, in
4316 * bfq_completed_request().
4317 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004318 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004319 !bfq_bfqq_must_idle(bfqq))
4320 goto expire;
4321
4322check_queue:
4323 /*
4324 * This loop is rarely executed more than once. Even when it
4325 * happens, it is much more convenient to re-execute this loop
4326 * than to return NULL and trigger a new dispatch to get a
4327 * request served.
4328 */
4329 next_rq = bfqq->next_rq;
4330 /*
4331 * If bfqq has requests queued and it has enough budget left to
4332 * serve them, keep the queue, otherwise expire it.
4333 */
4334 if (next_rq) {
4335 if (bfq_serv_to_charge(next_rq, bfqq) >
4336 bfq_bfqq_budget_left(bfqq)) {
4337 /*
4338 * Expire the queue for budget exhaustion,
4339 * which makes sure that the next budget is
4340 * enough to serve the next request, even if
4341 * it comes from the fifo expired path.
4342 */
4343 reason = BFQQE_BUDGET_EXHAUSTED;
4344 goto expire;
4345 } else {
4346 /*
4347 * The idle timer may be pending because we may
4348 * not disable disk idling even when a new request
4349 * arrives.
4350 */
4351 if (bfq_bfqq_wait_request(bfqq)) {
4352 /*
4353 * If we get here: 1) at least a new request
4354 * has arrived but we have not disabled the
4355 * timer because the request was too small,
4356 * 2) then the block layer has unplugged
4357 * the device, causing the dispatch to be
4358 * invoked.
4359 *
4360 * Since the device is unplugged, now the
4361 * requests are probably large enough to
4362 * provide a reasonable throughput.
4363 * So we disable idling.
4364 */
4365 bfq_clear_bfqq_wait_request(bfqq);
4366 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4367 }
4368 goto keep_queue;
4369 }
4370 }
4371
4372 /*
4373 * No requests pending. However, if the in-service queue is idling
4374 * for a new request, or has requests waiting for a completion and
4375 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004376 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004377 * Yet, inject service from other queues if it boosts
4378 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004379 */
4380 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004381 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004382 struct bfq_queue *async_bfqq =
4383 bfqq->bic && bfqq->bic->bfqq[0] &&
Paolo Valente37261122019-06-25 07:12:49 +02004384 bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4385 bfqq->bic->bfqq[0]->next_rq ?
Paolo Valente2341d6622019-03-12 09:59:29 +01004386 bfqq->bic->bfqq[0] : NULL;
4387
4388 /*
Paolo Valente13a857a2019-06-25 07:12:47 +02004389 * The next three mutually-exclusive ifs decide
4390 * whether to try injection, and choose the queue to
4391 * pick an I/O request from.
4392 *
4393 * The first if checks whether the process associated
4394 * with bfqq has also async I/O pending. If so, it
4395 * injects such I/O unconditionally. Injecting async
4396 * I/O from the same process can cause no harm to the
4397 * process. On the contrary, it can only increase
4398 * bandwidth and reduce latency for the process.
4399 *
4400 * The second if checks whether there happens to be a
4401 * non-empty waker queue for bfqq, i.e., a queue whose
4402 * I/O needs to be completed for bfqq to receive new
4403 * I/O. This happens, e.g., if bfqq is associated with
4404 * a process that does some sync. A sync generates
4405 * extra blocking I/O, which must be completed before
4406 * the process associated with bfqq can go on with its
4407 * I/O. If the I/O of the waker queue is not served,
4408 * then bfqq remains empty, and no I/O is dispatched,
4409 * until the idle timeout fires for bfqq. This is
4410 * likely to result in lower bandwidth and higher
4411 * latencies for bfqq, and in a severe loss of total
4412 * throughput. The best action to take is therefore to
4413 * serve the waker queue as soon as possible. So do it
4414 * (without relying on the third alternative below for
4415 * eventually serving waker_bfqq's I/O; see the last
4416 * paragraph for further details). This systematic
4417 * injection of I/O from the waker queue does not
4418 * cause any delay to bfqq's I/O. On the contrary,
4419 * next bfqq's I/O is brought forward dramatically,
4420 * for it is not blocked for milliseconds.
4421 *
4422 * The third if checks whether bfqq is a queue for
4423 * which it is better to avoid injection. It is so if
4424 * bfqq delivers more throughput when served without
4425 * any further I/O from other queues in the middle, or
4426 * if the service times of bfqq's I/O requests both
4427 * count more than overall throughput, and may be
4428 * easily increased by injection (this happens if bfqq
4429 * has a short think time). If none of these
4430 * conditions holds, then a candidate queue for
4431 * injection is looked for through
4432 * bfq_choose_bfqq_for_injection(). Note that the
4433 * latter may return NULL (for example if the inject
4434 * limit for bfqq is currently 0).
4435 *
4436 * NOTE: motivation for the second alternative
4437 *
4438 * Thanks to the way the inject limit is updated in
4439 * bfq_update_has_short_ttime(), it is rather likely
4440 * that, if I/O is being plugged for bfqq and the
4441 * waker queue has pending I/O requests that are
4442 * blocking bfqq's I/O, then the third alternative
4443 * above lets the waker queue get served before the
4444 * I/O-plugging timeout fires. So one may deem the
4445 * second alternative superfluous. It is not, because
4446 * the third alternative may be way less effective in
4447 * case of a synchronization. For two main
4448 * reasons. First, throughput may be low because the
4449 * inject limit may be too low to guarantee the same
4450 * amount of injected I/O, from the waker queue or
4451 * other queues, that the second alternative
4452 * guarantees (the second alternative unconditionally
4453 * injects a pending I/O request of the waker queue
4454 * for each bfq_dispatch_request()). Second, with the
4455 * third alternative, the duration of the plugging,
4456 * i.e., the time before bfqq finally receives new I/O,
4457 * may not be minimized, because the waker queue may
4458 * happen to be served only after other queues.
Paolo Valente2341d6622019-03-12 09:59:29 +01004459 */
4460 if (async_bfqq &&
4461 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4462 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4463 bfq_bfqq_budget_left(async_bfqq))
4464 bfqq = bfqq->bic->bfqq[0];
Paolo Valente13a857a2019-06-25 07:12:47 +02004465 else if (bfq_bfqq_has_waker(bfqq) &&
4466 bfq_bfqq_busy(bfqq->waker_bfqq) &&
Paolo Valente37261122019-06-25 07:12:49 +02004467 bfqq->next_rq &&
Paolo Valente13a857a2019-06-25 07:12:47 +02004468 bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4469 bfqq->waker_bfqq) <=
4470 bfq_bfqq_budget_left(bfqq->waker_bfqq)
4471 )
4472 bfqq = bfqq->waker_bfqq;
Paolo Valente2341d6622019-03-12 09:59:29 +01004473 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4474 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4475 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004476 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4477 else
4478 bfqq = NULL;
4479
Paolo Valenteaee69d72017-04-19 08:29:02 -06004480 goto keep_queue;
4481 }
4482
4483 reason = BFQQE_NO_MORE_REQUESTS;
4484expire:
4485 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4486new_queue:
4487 bfqq = bfq_set_in_service_queue(bfqd);
4488 if (bfqq) {
4489 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4490 goto check_queue;
4491 }
4492keep_queue:
4493 if (bfqq)
4494 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4495 else
4496 bfq_log(bfqd, "select_queue: no queue returned");
4497
4498 return bfqq;
4499}
4500
Paolo Valente44e44a12017-04-12 18:23:12 +02004501static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4502{
4503 struct bfq_entity *entity = &bfqq->entity;
4504
4505 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4506 bfq_log_bfqq(bfqd, bfqq,
4507 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4508 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4509 jiffies_to_msecs(bfqq->wr_cur_max_time),
4510 bfqq->wr_coeff,
4511 bfqq->entity.weight, bfqq->entity.orig_weight);
4512
4513 if (entity->prio_changed)
4514 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4515
4516 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004517 * If the queue was activated in a burst, or too much
4518 * time has elapsed from the beginning of this
4519 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004520 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004521 if (bfq_bfqq_in_large_burst(bfqq))
4522 bfq_bfqq_end_wr(bfqq);
4523 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4524 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004525 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4526 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004527 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02004528 bfq_bfqq_end_wr(bfqq);
4529 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004530 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004531 bfqq->entity.prio_changed = 1;
4532 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004533 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004534 if (bfqq->wr_coeff > 1 &&
4535 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4536 bfqq->service_from_wr > max_service_from_wr) {
4537 /* see comments on max_service_from_wr */
4538 bfq_bfqq_end_wr(bfqq);
4539 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004540 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004541 /*
4542 * To improve latency (for this or other queues), immediately
4543 * update weight both if it must be raised and if it must be
4544 * lowered. Since, entity may be on some active tree here, and
4545 * might have a pending change of its ioprio class, invoke
4546 * next function with the last parameter unset (see the
4547 * comments on the function).
4548 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004549 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004550 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4551 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004552}
4553
Paolo Valenteaee69d72017-04-19 08:29:02 -06004554/*
4555 * Dispatch next request from bfqq.
4556 */
4557static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4558 struct bfq_queue *bfqq)
4559{
4560 struct request *rq = bfqq->next_rq;
4561 unsigned long service_to_charge;
4562
4563 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4564
4565 bfq_bfqq_served(bfqq, service_to_charge);
4566
Paolo Valente2341d6622019-03-12 09:59:29 +01004567 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4568 bfqd->wait_dispatch = false;
4569 bfqd->waited_rq = rq;
4570 }
4571
Paolo Valenteaee69d72017-04-19 08:29:02 -06004572 bfq_dispatch_remove(bfqd->queue, rq);
4573
Paolo Valente2341d6622019-03-12 09:59:29 +01004574 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004575 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004576
Paolo Valente44e44a12017-04-12 18:23:12 +02004577 /*
4578 * If weight raising has to terminate for bfqq, then next
4579 * function causes an immediate update of bfqq's weight,
4580 * without waiting for next activation. As a consequence, on
4581 * expiration, bfqq will be timestamped as if has never been
4582 * weight-raised during this service slot, even if it has
4583 * received part or even most of the service as a
4584 * weight-raised queue. This inflates bfqq's timestamps, which
4585 * is beneficial, as bfqq is then more willing to leave the
4586 * device immediately to possible other weight-raised queues.
4587 */
4588 bfq_update_wr_data(bfqd, bfqq);
4589
Paolo Valenteaee69d72017-04-19 08:29:02 -06004590 /*
4591 * Expire bfqq, pretending that its budget expired, if bfqq
4592 * belongs to CLASS_IDLE and other queues are waiting for
4593 * service.
4594 */
Paolo Valente73d58112019-01-29 12:06:29 +01004595 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004596 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004597
Paolo Valenteaee69d72017-04-19 08:29:02 -06004598 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02004599
4600return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06004601 return rq;
4602}
4603
4604static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4605{
4606 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4607
4608 /*
4609 * Avoiding lock: a race on bfqd->busy_queues should cause at
4610 * most a call to dispatch for nothing
4611 */
4612 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01004613 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004614}
4615
4616static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4617{
4618 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4619 struct request *rq = NULL;
4620 struct bfq_queue *bfqq = NULL;
4621
4622 if (!list_empty(&bfqd->dispatch)) {
4623 rq = list_first_entry(&bfqd->dispatch, struct request,
4624 queuelist);
4625 list_del_init(&rq->queuelist);
4626
4627 bfqq = RQ_BFQQ(rq);
4628
4629 if (bfqq) {
4630 /*
4631 * Increment counters here, because this
4632 * dispatch does not follow the standard
4633 * dispatch flow (where counters are
4634 * incremented)
4635 */
4636 bfqq->dispatched++;
4637
4638 goto inc_in_driver_start_rq;
4639 }
4640
4641 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004642 * We exploit the bfq_finish_requeue_request hook to
4643 * decrement rq_in_driver, but
4644 * bfq_finish_requeue_request will not be invoked on
4645 * this request. So, to avoid unbalance, just start
4646 * this request, without incrementing rq_in_driver. As
4647 * a negative consequence, rq_in_driver is deceptively
4648 * lower than it should be while this request is in
4649 * service. This may cause bfq_schedule_dispatch to be
4650 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004651 *
4652 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004653 * bfq_finish_requeue_request hook, if defined, is
4654 * probably invoked also on this request. So, by
4655 * exploiting this hook, we could 1) increment
4656 * rq_in_driver here, and 2) decrement it in
4657 * bfq_finish_requeue_request. Such a solution would
4658 * let the value of the counter be always accurate,
4659 * but it would entail using an extra interface
4660 * function. This cost seems higher than the benefit,
4661 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004662 * requests very low.
4663 */
4664 goto start_rq;
4665 }
4666
Paolo Valente73d58112019-01-29 12:06:29 +01004667 bfq_log(bfqd, "dispatch requests: %d busy queues",
4668 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004669
Paolo Valente73d58112019-01-29 12:06:29 +01004670 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004671 goto exit;
4672
4673 /*
4674 * Force device to serve one request at a time if
4675 * strict_guarantees is true. Forcing this service scheme is
4676 * currently the ONLY way to guarantee that the request
4677 * service order enforced by the scheduler is respected by a
4678 * queueing device. Otherwise the device is free even to make
4679 * some unlucky request wait for as long as the device
4680 * wishes.
4681 *
4682 * Of course, serving one request at at time may cause loss of
4683 * throughput.
4684 */
4685 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4686 goto exit;
4687
4688 bfqq = bfq_select_queue(bfqd);
4689 if (!bfqq)
4690 goto exit;
4691
4692 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4693
4694 if (rq) {
4695inc_in_driver_start_rq:
4696 bfqd->rq_in_driver++;
4697start_rq:
4698 rq->rq_flags |= RQF_STARTED;
4699 }
4700exit:
4701 return rq;
4702}
4703
Christoph Hellwig8060c472019-06-06 12:26:24 +02004704#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01004705static void bfq_update_dispatch_stats(struct request_queue *q,
4706 struct request *rq,
4707 struct bfq_queue *in_serv_queue,
4708 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004709{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004710 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004711
Paolo Valente24bfd192017-11-13 07:34:09 +01004712 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004713 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004714
4715 /*
4716 * rq and bfqq are guaranteed to exist until this function
4717 * ends, for the following reasons. First, rq can be
4718 * dispatched to the device, and then can be completed and
4719 * freed, only after this function ends. Second, rq cannot be
4720 * merged (and thus freed because of a merge) any longer,
4721 * because it has already started. Thus rq cannot be freed
4722 * before this function ends, and, since rq has a reference to
4723 * bfqq, the same guarantee holds for bfqq too.
4724 *
4725 * In addition, the following queue lock guarantees that
4726 * bfqq_group(bfqq) exists as well.
4727 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004728 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004729 if (idle_timer_disabled)
4730 /*
4731 * Since the idle timer has been disabled,
4732 * in_serv_queue contained some request when
4733 * __bfq_dispatch_request was invoked above, which
4734 * implies that rq was picked exactly from
4735 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4736 * therefore guaranteed to exist because of the above
4737 * arguments.
4738 */
4739 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4740 if (bfqq) {
4741 struct bfq_group *bfqg = bfqq_group(bfqq);
4742
4743 bfqg_stats_update_avg_queue_size(bfqg);
4744 bfqg_stats_set_start_empty_time(bfqg);
4745 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4746 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004747 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004748}
4749#else
4750static inline void bfq_update_dispatch_stats(struct request_queue *q,
4751 struct request *rq,
4752 struct bfq_queue *in_serv_queue,
4753 bool idle_timer_disabled) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02004754#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente24bfd192017-11-13 07:34:09 +01004755
Paolo Valente9b25bd02017-12-04 11:42:05 +01004756static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4757{
4758 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4759 struct request *rq;
4760 struct bfq_queue *in_serv_queue;
4761 bool waiting_rq, idle_timer_disabled;
4762
4763 spin_lock_irq(&bfqd->lock);
4764
4765 in_serv_queue = bfqd->in_service_queue;
4766 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4767
4768 rq = __bfq_dispatch_request(hctx);
4769
4770 idle_timer_disabled =
4771 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4772
4773 spin_unlock_irq(&bfqd->lock);
4774
4775 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4776 idle_timer_disabled);
4777
Paolo Valenteaee69d72017-04-19 08:29:02 -06004778 return rq;
4779}
4780
4781/*
4782 * Task holds one reference to the queue, dropped when task exits. Each rq
4783 * in-flight on this queue also holds a reference, dropped when rq is freed.
4784 *
4785 * Scheduler lock must be held here. Recall not to use bfqq after calling
4786 * this function on it.
4787 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004788void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004789{
Paolo Valente3f758e82019-08-07 16:17:54 +02004790 struct bfq_queue *item;
4791 struct hlist_node *n;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004792#ifdef CONFIG_BFQ_GROUP_IOSCHED
4793 struct bfq_group *bfqg = bfqq_group(bfqq);
4794#endif
4795
Paolo Valenteaee69d72017-04-19 08:29:02 -06004796 if (bfqq->bfqd)
4797 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4798 bfqq, bfqq->ref);
4799
4800 bfqq->ref--;
4801 if (bfqq->ref)
4802 return;
4803
Paolo Valente99fead82017-10-09 13:11:23 +02004804 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004805 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004806 /*
4807 * Decrement also burst size after the removal, if the
4808 * process associated with bfqq is exiting, and thus
4809 * does not contribute to the burst any longer. This
4810 * decrement helps filter out false positives of large
4811 * bursts, when some short-lived process (often due to
4812 * the execution of commands by some service) happens
4813 * to start and exit while a complex application is
4814 * starting, and thus spawning several processes that
4815 * do I/O (and that *must not* be treated as a large
4816 * burst, see comments on bfq_handle_burst).
4817 *
4818 * In particular, the decrement is performed only if:
4819 * 1) bfqq is not a merged queue, because, if it is,
4820 * then this free of bfqq is not triggered by the exit
4821 * of the process bfqq is associated with, but exactly
4822 * by the fact that bfqq has just been merged.
4823 * 2) burst_size is greater than 0, to handle
4824 * unbalanced decrements. Unbalanced decrements may
4825 * happen in te following case: bfqq is inserted into
4826 * the current burst list--without incrementing
4827 * bust_size--because of a split, but the current
4828 * burst list is not the burst list bfqq belonged to
4829 * (see comments on the case of a split in
4830 * bfq_set_request).
4831 */
4832 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4833 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004834 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004835
Paolo Valente3f758e82019-08-07 16:17:54 +02004836 /*
4837 * bfqq does not exist any longer, so it cannot be woken by
4838 * any other queue, and cannot wake any other queue. Then bfqq
4839 * must be removed from the woken list of its possible waker
4840 * queue, and all queues in the woken list of bfqq must stop
4841 * having a waker queue. Strictly speaking, these updates
4842 * should be performed when bfqq remains with no I/O source
4843 * attached to it, which happens before bfqq gets freed. In
4844 * particular, this happens when the last process associated
4845 * with bfqq exits or gets associated with a different
4846 * queue. However, both events lead to bfqq being freed soon,
4847 * and dangling references would come out only after bfqq gets
4848 * freed. So these updates are done here, as a simple and safe
4849 * way to handle all cases.
4850 */
4851 /* remove bfqq from woken list */
4852 if (!hlist_unhashed(&bfqq->woken_list_node))
4853 hlist_del_init(&bfqq->woken_list_node);
4854
4855 /* reset waker for all queues in woken list */
4856 hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4857 woken_list_node) {
4858 item->waker_bfqq = NULL;
4859 bfq_clear_bfqq_has_waker(item);
4860 hlist_del_init(&item->woken_list_node);
4861 }
4862
Paolo Valente08d383a2019-08-07 16:17:53 +02004863 if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4864 bfqq->bfqd->last_completed_rq_bfqq = NULL;
4865
Paolo Valenteaee69d72017-04-19 08:29:02 -06004866 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004867#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004868 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004869#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004870}
4871
Arianna Avanzini36eca892017-04-12 18:23:16 +02004872static void bfq_put_cooperator(struct bfq_queue *bfqq)
4873{
4874 struct bfq_queue *__bfqq, *next;
4875
4876 /*
4877 * If this queue was scheduled to merge with another queue, be
4878 * sure to drop the reference taken on that queue (and others in
4879 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4880 */
4881 __bfqq = bfqq->new_bfqq;
4882 while (__bfqq) {
4883 if (__bfqq == bfqq)
4884 break;
4885 next = __bfqq->new_bfqq;
4886 bfq_put_queue(__bfqq);
4887 __bfqq = next;
4888 }
4889}
4890
Paolo Valenteaee69d72017-04-19 08:29:02 -06004891static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4892{
4893 if (bfqq == bfqd->in_service_queue) {
Paolo Valente37261122019-06-25 07:12:49 +02004894 __bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004895 bfq_schedule_dispatch(bfqd);
4896 }
4897
4898 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4899
Arianna Avanzini36eca892017-04-12 18:23:16 +02004900 bfq_put_cooperator(bfqq);
4901
Paolo Valenteaee69d72017-04-19 08:29:02 -06004902 bfq_put_queue(bfqq); /* release process reference */
4903}
4904
4905static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4906{
4907 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4908 struct bfq_data *bfqd;
4909
4910 if (bfqq)
4911 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4912
4913 if (bfqq && bfqd) {
4914 unsigned long flags;
4915
4916 spin_lock_irqsave(&bfqd->lock, flags);
Douglas Andersondbc31172019-06-27 21:44:09 -07004917 bfqq->bic = NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004918 bfq_exit_bfqq(bfqd, bfqq);
4919 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004920 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004921 }
4922}
4923
4924static void bfq_exit_icq(struct io_cq *icq)
4925{
4926 struct bfq_io_cq *bic = icq_to_bic(icq);
4927
4928 bfq_exit_icq_bfqq(bic, true);
4929 bfq_exit_icq_bfqq(bic, false);
4930}
4931
4932/*
4933 * Update the entity prio values; note that the new values will not
4934 * be used until the next (re)activation.
4935 */
4936static void
4937bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4938{
4939 struct task_struct *tsk = current;
4940 int ioprio_class;
4941 struct bfq_data *bfqd = bfqq->bfqd;
4942
4943 if (!bfqd)
4944 return;
4945
4946 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4947 switch (ioprio_class) {
4948 default:
4949 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4950 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004951 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004952 case IOPRIO_CLASS_NONE:
4953 /*
4954 * No prio set, inherit CPU scheduling settings.
4955 */
4956 bfqq->new_ioprio = task_nice_ioprio(tsk);
4957 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4958 break;
4959 case IOPRIO_CLASS_RT:
4960 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4961 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4962 break;
4963 case IOPRIO_CLASS_BE:
4964 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4965 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4966 break;
4967 case IOPRIO_CLASS_IDLE:
4968 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4969 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004970 break;
4971 }
4972
4973 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4974 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4975 bfqq->new_ioprio);
4976 bfqq->new_ioprio = IOPRIO_BE_NR;
4977 }
4978
4979 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4980 bfqq->entity.prio_changed = 1;
4981}
4982
Paolo Valenteea25da42017-04-19 08:48:24 -06004983static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4984 struct bio *bio, bool is_sync,
4985 struct bfq_io_cq *bic);
4986
Paolo Valenteaee69d72017-04-19 08:29:02 -06004987static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4988{
4989 struct bfq_data *bfqd = bic_to_bfqd(bic);
4990 struct bfq_queue *bfqq;
4991 int ioprio = bic->icq.ioc->ioprio;
4992
4993 /*
4994 * This condition may trigger on a newly created bic, be sure to
4995 * drop the lock before returning.
4996 */
4997 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4998 return;
4999
5000 bic->ioprio = ioprio;
5001
5002 bfqq = bic_to_bfqq(bic, false);
5003 if (bfqq) {
5004 /* release process reference on this queue */
5005 bfq_put_queue(bfqq);
5006 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5007 bic_set_bfqq(bic, bfqq, false);
5008 }
5009
5010 bfqq = bic_to_bfqq(bic, true);
5011 if (bfqq)
5012 bfq_set_next_ioprio_data(bfqq, bic);
5013}
5014
5015static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5016 struct bfq_io_cq *bic, pid_t pid, int is_sync)
5017{
5018 RB_CLEAR_NODE(&bfqq->entity.rb_node);
5019 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005020 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valente13a857a2019-06-25 07:12:47 +02005021 INIT_HLIST_NODE(&bfqq->woken_list_node);
5022 INIT_HLIST_HEAD(&bfqq->woken_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005023
5024 bfqq->ref = 0;
5025 bfqq->bfqd = bfqd;
5026
5027 if (bic)
5028 bfq_set_next_ioprio_data(bfqq, bic);
5029
5030 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02005031 /*
5032 * No need to mark as has_short_ttime if in
5033 * idle_class, because no device idling is performed
5034 * for queues in idle class
5035 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005036 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02005037 /* tentatively mark as has_short_ttime */
5038 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005039 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005040 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005041 } else
5042 bfq_clear_bfqq_sync(bfqq);
5043
5044 /* set end request to minus infinity from now */
5045 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5046
5047 bfq_mark_bfqq_IO_bound(bfqq);
5048
5049 bfqq->pid = pid;
5050
5051 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02005052 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005053 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005054
Paolo Valente44e44a12017-04-12 18:23:12 +02005055 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005056 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005057 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02005058 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02005059
5060 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01005061 * To not forget the possibly high bandwidth consumed by a
5062 * process/queue in the recent past,
5063 * bfq_bfqq_softrt_next_start() returns a value at least equal
5064 * to the current value of bfqq->soft_rt_next_start (see
5065 * comments on bfq_bfqq_softrt_next_start). Set
5066 * soft_rt_next_start to now, to mean that bfqq has consumed
5067 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005068 */
Paolo Valentea34b0242017-12-15 07:23:12 +01005069 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02005070
Paolo Valenteaee69d72017-04-19 08:29:02 -06005071 /* first request is almost certainly seeky */
5072 bfqq->seek_history = 1;
5073}
5074
5075static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005076 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005077 int ioprio_class, int ioprio)
5078{
5079 switch (ioprio_class) {
5080 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005081 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005082 case IOPRIO_CLASS_NONE:
5083 ioprio = IOPRIO_NORM;
5084 /* fall through */
5085 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005086 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005087 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005088 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005089 default:
5090 return NULL;
5091 }
5092}
5093
5094static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5095 struct bio *bio, bool is_sync,
5096 struct bfq_io_cq *bic)
5097{
5098 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5099 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5100 struct bfq_queue **async_bfqq = NULL;
5101 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005102 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005103
5104 rcu_read_lock();
5105
Dennis Zhou0fe061b2018-12-05 12:10:26 -05005106 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005107 if (!bfqg) {
5108 bfqq = &bfqd->oom_bfqq;
5109 goto out;
5110 }
5111
Paolo Valenteaee69d72017-04-19 08:29:02 -06005112 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005113 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005114 ioprio);
5115 bfqq = *async_bfqq;
5116 if (bfqq)
5117 goto out;
5118 }
5119
5120 bfqq = kmem_cache_alloc_node(bfq_pool,
5121 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5122 bfqd->queue->node);
5123
5124 if (bfqq) {
5125 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5126 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005127 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005128 bfq_log_bfqq(bfqd, bfqq, "allocated");
5129 } else {
5130 bfqq = &bfqd->oom_bfqq;
5131 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5132 goto out;
5133 }
5134
5135 /*
5136 * Pin the queue now that it's allocated, scheduler exit will
5137 * prune it.
5138 */
5139 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005140 bfqq->ref++; /*
5141 * Extra group reference, w.r.t. sync
5142 * queue. This extra reference is removed
5143 * only if bfqq->bfqg disappears, to
5144 * guarantee that this queue is not freed
5145 * until its group goes away.
5146 */
5147 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06005148 bfqq, bfqq->ref);
5149 *async_bfqq = bfqq;
5150 }
5151
5152out:
5153 bfqq->ref++; /* get a process reference to this queue */
5154 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5155 rcu_read_unlock();
5156 return bfqq;
5157}
5158
5159static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5160 struct bfq_queue *bfqq)
5161{
5162 struct bfq_ttime *ttime = &bfqq->ttime;
5163 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5164
5165 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5166
5167 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5168 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
5169 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5170 ttime->ttime_samples);
5171}
5172
5173static void
5174bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5175 struct request *rq)
5176{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005177 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01005178 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valente7074f072019-03-12 09:59:31 +01005179
5180 if (bfqq->wr_coeff > 1 &&
5181 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5182 BFQQ_TOTALLY_SEEKY(bfqq))
5183 bfq_bfqq_end_wr(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005184}
5185
Paolo Valented5be3fe2017-08-04 07:35:10 +02005186static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5187 struct bfq_queue *bfqq,
5188 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005189{
Paolo Valente766d6142019-06-25 07:12:43 +02005190 bool has_short_ttime = true, state_changed;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005191
Paolo Valented5be3fe2017-08-04 07:35:10 +02005192 /*
5193 * No need to update has_short_ttime if bfqq is async or in
5194 * idle io prio class, or if bfq_slice_idle is zero, because
5195 * no device idling is performed for bfqq in this case.
5196 */
5197 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5198 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005199 return;
5200
Arianna Avanzini36eca892017-04-12 18:23:16 +02005201 /* Idle window just restored, statistics are meaningless. */
5202 if (time_is_after_eq_jiffies(bfqq->split_time +
5203 bfqd->bfq_wr_min_idle_time))
5204 return;
5205
Paolo Valented5be3fe2017-08-04 07:35:10 +02005206 /* Think time is infinite if no process is linked to
5207 * bfqq. Otherwise check average think time to
5208 * decide whether to mark as has_short_ttime
5209 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005210 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02005211 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5212 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5213 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005214
Paolo Valente766d6142019-06-25 07:12:43 +02005215 state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02005216
5217 if (has_short_ttime)
5218 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005219 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02005220 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valente766d6142019-06-25 07:12:43 +02005221
5222 /*
5223 * Until the base value for the total service time gets
5224 * finally computed for bfqq, the inject limit does depend on
5225 * the think-time state (short|long). In particular, the limit
5226 * is 0 or 1 if the think time is deemed, respectively, as
5227 * short or long (details in the comments in
5228 * bfq_update_inject_limit()). Accordingly, the next
5229 * instructions reset the inject limit if the think-time state
5230 * has changed and the above base value is still to be
5231 * computed.
5232 *
5233 * However, the reset is performed only if more than 100 ms
5234 * have elapsed since the last update of the inject limit, or
5235 * (inclusive) if the change is from short to long think
5236 * time. The reason for this waiting is as follows.
5237 *
5238 * bfqq may have a long think time because of a
5239 * synchronization with some other queue, i.e., because the
5240 * I/O of some other queue may need to be completed for bfqq
Paolo Valente13a857a2019-06-25 07:12:47 +02005241 * to receive new I/O. Details in the comments on the choice
5242 * of the queue for injection in bfq_select_queue().
Paolo Valente766d6142019-06-25 07:12:43 +02005243 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005244 * As stressed in those comments, if such a synchronization is
5245 * actually in place, then, without injection on bfqq, the
5246 * blocking I/O cannot happen to served while bfqq is in
5247 * service. As a consequence, if bfqq is granted
5248 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5249 * is dispatched, until the idle timeout fires. This is likely
5250 * to result in lower bandwidth and higher latencies for bfqq,
5251 * and in a severe loss of total throughput.
Paolo Valente766d6142019-06-25 07:12:43 +02005252 *
5253 * On the opposite end, a non-zero inject limit may allow the
5254 * I/O that blocks bfqq to be executed soon, and therefore
Paolo Valente13a857a2019-06-25 07:12:47 +02005255 * bfqq to receive new I/O soon.
5256 *
5257 * But, if the blocking gets actually eliminated, then the
5258 * next think-time sample for bfqq may be very low. This in
5259 * turn may cause bfqq's think time to be deemed
5260 * short. Without the 100 ms barrier, this new state change
5261 * would cause the body of the next if to be executed
Paolo Valente766d6142019-06-25 07:12:43 +02005262 * immediately. But this would set to 0 the inject
5263 * limit. Without injection, the blocking I/O would cause the
5264 * think time of bfqq to become long again, and therefore the
5265 * inject limit to be raised again, and so on. The only effect
5266 * of such a steady oscillation between the two think-time
5267 * states would be to prevent effective injection on bfqq.
5268 *
5269 * In contrast, if the inject limit is not reset during such a
5270 * long time interval as 100 ms, then the number of short
5271 * think time samples can grow significantly before the reset
Paolo Valente13a857a2019-06-25 07:12:47 +02005272 * is performed. As a consequence, the think time state can
5273 * become stable before the reset. Therefore there will be no
5274 * state change when the 100 ms elapse, and no reset of the
5275 * inject limit. The inject limit remains steadily equal to 1
5276 * both during and after the 100 ms. So injection can be
Paolo Valente766d6142019-06-25 07:12:43 +02005277 * performed at all times, and throughput gets boosted.
5278 *
5279 * An inject limit equal to 1 is however in conflict, in
5280 * general, with the fact that the think time of bfqq is
5281 * short, because injection may be likely to delay bfqq's I/O
5282 * (as explained in the comments in
5283 * bfq_update_inject_limit()). But this does not happen in
5284 * this special case, because bfqq's low think time is due to
5285 * an effective handling of a synchronization, through
5286 * injection. In this special case, bfqq's I/O does not get
5287 * delayed by injection; on the contrary, bfqq's I/O is
5288 * brought forward, because it is not blocked for
5289 * milliseconds.
5290 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005291 * In addition, serving the blocking I/O much sooner, and much
5292 * more frequently than once per I/O-plugging timeout, makes
5293 * it much quicker to detect a waker queue (the concept of
5294 * waker queue is defined in the comments in
5295 * bfq_add_request()). This makes it possible to start sooner
5296 * to boost throughput more effectively, by injecting the I/O
5297 * of the waker queue unconditionally on every
5298 * bfq_dispatch_request().
5299 *
5300 * One last, important benefit of not resetting the inject
5301 * limit before 100 ms is that, during this time interval, the
5302 * base value for the total service time is likely to get
5303 * finally computed for bfqq, freeing the inject limit from
5304 * its relation with the think time.
Paolo Valente766d6142019-06-25 07:12:43 +02005305 */
5306 if (state_changed && bfqq->last_serv_time_ns == 0 &&
5307 (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5308 msecs_to_jiffies(100)) ||
5309 !has_short_ttime))
5310 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005311}
5312
5313/*
5314 * Called when a new fs request (rq) is added to bfqq. Check if there's
5315 * something we should do about it.
5316 */
5317static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5318 struct request *rq)
5319{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005320 if (rq->cmd_flags & REQ_META)
5321 bfqq->meta_pending++;
5322
Paolo Valenteaee69d72017-04-19 08:29:02 -06005323 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5324
5325 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5326 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5327 blk_rq_sectors(rq) < 32;
5328 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5329
5330 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005331 * There is just this request queued: if
5332 * - the request is small, and
5333 * - we are idling to boost throughput, and
5334 * - the queue is not to be expired,
5335 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005336 *
5337 * In this way, if the device is being idled to wait
5338 * for a new request from the in-service queue, we
5339 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005340 * device to serve just a small request. In contrast
5341 * we wait for the block layer to decide when to
5342 * unplug the device: hopefully, new requests will be
5343 * merged to this one quickly, then the device will be
5344 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005345 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005346 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5347 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005348 return;
5349
5350 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005351 * A large enough request arrived, or idling is being
5352 * performed to preserve service guarantees, or
5353 * finally the queue is to be expired: in all these
5354 * cases disk idling is to be stopped, so clear
5355 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005356 */
5357 bfq_clear_bfqq_wait_request(bfqq);
5358 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5359
5360 /*
5361 * The queue is not empty, because a new request just
5362 * arrived. Hence we can safely expire the queue, in
5363 * case of budget timeout, without risking that the
5364 * timestamps of the queue are not updated correctly.
5365 * See [1] for more details.
5366 */
5367 if (budget_timeout)
5368 bfq_bfqq_expire(bfqd, bfqq, false,
5369 BFQQE_BUDGET_TIMEOUT);
5370 }
5371}
5372
Paolo Valente24bfd192017-11-13 07:34:09 +01005373/* returns true if it causes the idle timer to be disabled */
5374static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005375{
Arianna Avanzini36eca892017-04-12 18:23:16 +02005376 struct bfq_queue *bfqq = RQ_BFQQ(rq),
5377 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01005378 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005379
5380 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005381 /*
5382 * Release the request's reference to the old bfqq
5383 * and make sure one is taken to the shared queue.
5384 */
5385 new_bfqq->allocated++;
5386 bfqq->allocated--;
5387 new_bfqq->ref++;
5388 /*
5389 * If the bic associated with the process
5390 * issuing this request still points to bfqq
5391 * (and thus has not been already redirected
5392 * to new_bfqq or even some other bfq_queue),
5393 * then complete the merge and redirect it to
5394 * new_bfqq.
5395 */
5396 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5397 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5398 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02005399
5400 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005401 /*
5402 * rq is about to be enqueued into new_bfqq,
5403 * release rq reference on bfqq
5404 */
5405 bfq_put_queue(bfqq);
5406 rq->elv.priv[1] = new_bfqq;
5407 bfqq = new_bfqq;
5408 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005409
Paolo Valentea3f9bce2019-06-25 07:12:46 +02005410 bfq_update_io_thinktime(bfqd, bfqq);
5411 bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5412 bfq_update_io_seektime(bfqd, bfqq, rq);
5413
Paolo Valente24bfd192017-11-13 07:34:09 +01005414 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005415 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005416 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005417
5418 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5419 list_add_tail(&rq->queuelist, &bfqq->fifo);
5420
5421 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005422
5423 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005424}
5425
Christoph Hellwig8060c472019-06-06 12:26:24 +02005426#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01005427static void bfq_update_insert_stats(struct request_queue *q,
5428 struct bfq_queue *bfqq,
5429 bool idle_timer_disabled,
5430 unsigned int cmd_flags)
5431{
5432 if (!bfqq)
5433 return;
5434
5435 /*
5436 * bfqq still exists, because it can disappear only after
5437 * either it is merged with another queue, or the process it
5438 * is associated with exits. But both actions must be taken by
5439 * the same process currently executing this flow of
5440 * instructions.
5441 *
5442 * In addition, the following queue lock guarantees that
5443 * bfqq_group(bfqq) exists as well.
5444 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005445 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005446 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5447 if (idle_timer_disabled)
5448 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005449 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005450}
5451#else
5452static inline void bfq_update_insert_stats(struct request_queue *q,
5453 struct bfq_queue *bfqq,
5454 bool idle_timer_disabled,
5455 unsigned int cmd_flags) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02005456#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente9b25bd02017-12-04 11:42:05 +01005457
Paolo Valenteaee69d72017-04-19 08:29:02 -06005458static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5459 bool at_head)
5460{
5461 struct request_queue *q = hctx->queue;
5462 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02005463 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01005464 bool idle_timer_disabled = false;
5465 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005466
Tejun Heofd41e602019-11-07 11:18:00 -08005467#ifdef CONFIG_BFQ_GROUP_IOSCHED
5468 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5469 bfqg_stats_update_legacy_io(q, rq);
5470#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005471 spin_lock_irq(&bfqd->lock);
5472 if (blk_mq_sched_try_insert_merge(q, rq)) {
5473 spin_unlock_irq(&bfqd->lock);
5474 return;
5475 }
5476
5477 spin_unlock_irq(&bfqd->lock);
5478
5479 blk_mq_sched_request_inserted(rq);
5480
5481 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02005482 bfqq = bfq_init_rq(rq);
Paolo Valentefd031772019-08-07 19:21:11 +02005483 if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06005484 if (at_head)
5485 list_add(&rq->queuelist, &bfqd->dispatch);
5486 else
5487 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valentefd031772019-08-07 19:21:11 +02005488 } else {
Paolo Valente24bfd192017-11-13 07:34:09 +01005489 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005490 /*
5491 * Update bfqq, because, if a queue merge has occurred
5492 * in __bfq_insert_request, then rq has been
5493 * redirected into a new queue.
5494 */
5495 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005496
5497 if (rq_mergeable(rq)) {
5498 elv_rqhash_add(q, rq);
5499 if (!q->last_merge)
5500 q->last_merge = rq;
5501 }
5502 }
5503
Paolo Valente24bfd192017-11-13 07:34:09 +01005504 /*
5505 * Cache cmd_flags before releasing scheduler lock, because rq
5506 * may disappear afterwards (for example, because of a request
5507 * merge).
5508 */
5509 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01005510
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005511 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005512
Paolo Valente9b25bd02017-12-04 11:42:05 +01005513 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5514 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005515}
5516
5517static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5518 struct list_head *list, bool at_head)
5519{
5520 while (!list_empty(list)) {
5521 struct request *rq;
5522
5523 rq = list_first_entry(list, struct request, queuelist);
5524 list_del_init(&rq->queuelist);
5525 bfq_insert_request(hctx, rq, at_head);
5526 }
5527}
5528
5529static void bfq_update_hw_tag(struct bfq_data *bfqd)
5530{
Paolo Valenteb3c34982019-01-29 12:06:36 +01005531 struct bfq_queue *bfqq = bfqd->in_service_queue;
5532
Paolo Valenteaee69d72017-04-19 08:29:02 -06005533 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5534 bfqd->rq_in_driver);
5535
5536 if (bfqd->hw_tag == 1)
5537 return;
5538
5539 /*
5540 * This sample is valid if the number of outstanding requests
5541 * is large enough to allow a queueing behavior. Note that the
5542 * sum is not exact, as it's not taking into account deactivated
5543 * requests.
5544 */
Paolo Valentea3c92562019-01-29 12:06:35 +01005545 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005546 return;
5547
Paolo Valenteb3c34982019-01-29 12:06:36 +01005548 /*
5549 * If active queue hasn't enough requests and can idle, bfq might not
5550 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5551 * case
5552 */
5553 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5554 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5555 BFQ_HW_QUEUE_THRESHOLD &&
5556 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5557 return;
5558
Paolo Valenteaee69d72017-04-19 08:29:02 -06005559 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5560 return;
5561
5562 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5563 bfqd->max_rq_in_driver = 0;
5564 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005565
5566 bfqd->nonrot_with_queueing =
5567 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005568}
5569
5570static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5571{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005572 u64 now_ns;
5573 u32 delta_us;
5574
Paolo Valenteaee69d72017-04-19 08:29:02 -06005575 bfq_update_hw_tag(bfqd);
5576
5577 bfqd->rq_in_driver--;
5578 bfqq->dispatched--;
5579
Paolo Valente44e44a12017-04-12 18:23:12 +02005580 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5581 /*
5582 * Set budget_timeout (which we overload to store the
5583 * time at which the queue remains with no backlog and
5584 * no outstanding request; used by the weight-raising
5585 * mechanism).
5586 */
5587 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005588
Paolo Valente04715592018-06-25 21:55:34 +02005589 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02005590 }
5591
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005592 now_ns = ktime_get_ns();
5593
5594 bfqq->ttime.last_end_request = now_ns;
5595
5596 /*
5597 * Using us instead of ns, to get a reasonable precision in
5598 * computing rate in next check.
5599 */
5600 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5601
5602 /*
5603 * If the request took rather long to complete, and, according
5604 * to the maximum request size recorded, this completion latency
5605 * implies that the request was certainly served at a very low
5606 * rate (less than 1M sectors/sec), then the whole observation
5607 * interval that lasts up to this time instant cannot be a
5608 * valid time interval for computing a new peak rate. Invoke
5609 * bfq_update_rate_reset to have the following three steps
5610 * taken:
5611 * - close the observation interval at the last (previous)
5612 * request dispatch or completion
5613 * - compute rate, if possible, for that observation interval
5614 * - reset to zero samples, which will trigger a proper
5615 * re-initialization of the observation interval on next
5616 * dispatch
5617 */
5618 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5619 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5620 1UL<<(BFQ_RATE_SHIFT - 10))
5621 bfq_update_rate_reset(bfqd, NULL);
5622 bfqd->last_completion = now_ns;
Paolo Valente13a857a2019-06-25 07:12:47 +02005623 bfqd->last_completed_rq_bfqq = bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005624
5625 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02005626 * If we are waiting to discover whether the request pattern
5627 * of the task associated with the queue is actually
5628 * isochronous, and both requisites for this condition to hold
5629 * are now satisfied, then compute soft_rt_next_start (see the
5630 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01005631 * do not compute soft_rt_next_start if bfqq is in interactive
5632 * weight raising (see the comments in bfq_bfqq_expire() for
5633 * an explanation). We schedule this delayed update when bfqq
5634 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005635 */
5636 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01005637 RB_EMPTY_ROOT(&bfqq->sort_list) &&
5638 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02005639 bfqq->soft_rt_next_start =
5640 bfq_bfqq_softrt_next_start(bfqd, bfqq);
5641
5642 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06005643 * If this is the in-service queue, check if it needs to be expired,
5644 * or if we want to idle in case it has no pending requests.
5645 */
5646 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02005647 if (bfq_bfqq_must_idle(bfqq)) {
5648 if (bfqq->dispatched == 0)
5649 bfq_arm_slice_timer(bfqd);
5650 /*
5651 * If we get here, we do not expire bfqq, even
5652 * if bfqq was in budget timeout or had no
5653 * more requests (as controlled in the next
5654 * conditional instructions). The reason for
5655 * not expiring bfqq is as follows.
5656 *
5657 * Here bfqq->dispatched > 0 holds, but
5658 * bfq_bfqq_must_idle() returned true. This
5659 * implies that, even if no request arrives
5660 * for bfqq before bfqq->dispatched reaches 0,
5661 * bfqq will, however, not be expired on the
5662 * completion event that causes bfqq->dispatch
5663 * to reach zero. In contrast, on this event,
5664 * bfqq will start enjoying device idling
5665 * (I/O-dispatch plugging).
5666 *
5667 * But, if we expired bfqq here, bfqq would
5668 * not have the chance to enjoy device idling
5669 * when bfqq->dispatched finally reaches
5670 * zero. This would expose bfqq to violation
5671 * of its reserved service guarantees.
5672 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005673 return;
5674 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5675 bfq_bfqq_expire(bfqd, bfqq, false,
5676 BFQQE_BUDGET_TIMEOUT);
5677 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5678 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02005679 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06005680 bfq_bfqq_expire(bfqd, bfqq, false,
5681 BFQQE_NO_MORE_REQUESTS);
5682 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08005683
5684 if (!bfqd->rq_in_driver)
5685 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005686}
5687
Paolo Valentea7877392018-02-07 22:19:20 +01005688static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005689{
5690 bfqq->allocated--;
5691
5692 bfq_put_queue(bfqq);
5693}
5694
Paolo Valentea7877392018-02-07 22:19:20 +01005695/*
Paolo Valente2341d6622019-03-12 09:59:29 +01005696 * The processes associated with bfqq may happen to generate their
5697 * cumulative I/O at a lower rate than the rate at which the device
5698 * could serve the same I/O. This is rather probable, e.g., if only
5699 * one process is associated with bfqq and the device is an SSD. It
5700 * results in bfqq becoming often empty while in service. In this
5701 * respect, if BFQ is allowed to switch to another queue when bfqq
5702 * remains empty, then the device goes on being fed with I/O requests,
5703 * and the throughput is not affected. In contrast, if BFQ is not
5704 * allowed to switch to another queue---because bfqq is sync and
5705 * I/O-dispatch needs to be plugged while bfqq is temporarily
5706 * empty---then, during the service of bfqq, there will be frequent
5707 * "service holes", i.e., time intervals during which bfqq gets empty
5708 * and the device can only consume the I/O already queued in its
5709 * hardware queues. During service holes, the device may even get to
5710 * remaining idle. In the end, during the service of bfqq, the device
5711 * is driven at a lower speed than the one it can reach with the kind
5712 * of I/O flowing through bfqq.
5713 *
5714 * To counter this loss of throughput, BFQ implements a "request
5715 * injection mechanism", which tries to fill the above service holes
5716 * with I/O requests taken from other queues. The hard part in this
5717 * mechanism is finding the right amount of I/O to inject, so as to
5718 * both boost throughput and not break bfqq's bandwidth and latency
5719 * guarantees. In this respect, the mechanism maintains a per-queue
5720 * inject limit, computed as below. While bfqq is empty, the injection
5721 * mechanism dispatches extra I/O requests only until the total number
5722 * of I/O requests in flight---i.e., already dispatched but not yet
5723 * completed---remains lower than this limit.
5724 *
5725 * A first definition comes in handy to introduce the algorithm by
5726 * which the inject limit is computed. We define as first request for
5727 * bfqq, an I/O request for bfqq that arrives while bfqq is in
5728 * service, and causes bfqq to switch from empty to non-empty. The
5729 * algorithm updates the limit as a function of the effect of
5730 * injection on the service times of only the first requests of
5731 * bfqq. The reason for this restriction is that these are the
5732 * requests whose service time is affected most, because they are the
5733 * first to arrive after injection possibly occurred.
5734 *
5735 * To evaluate the effect of injection, the algorithm measures the
5736 * "total service time" of first requests. We define as total service
5737 * time of an I/O request, the time that elapses since when the
5738 * request is enqueued into bfqq, to when it is completed. This
5739 * quantity allows the whole effect of injection to be measured. It is
5740 * easy to see why. Suppose that some requests of other queues are
5741 * actually injected while bfqq is empty, and that a new request R
5742 * then arrives for bfqq. If the device does start to serve all or
5743 * part of the injected requests during the service hole, then,
5744 * because of this extra service, it may delay the next invocation of
5745 * the dispatch hook of BFQ. Then, even after R gets eventually
5746 * dispatched, the device may delay the actual service of R if it is
5747 * still busy serving the extra requests, or if it decides to serve,
5748 * before R, some extra request still present in its queues. As a
5749 * conclusion, the cumulative extra delay caused by injection can be
5750 * easily evaluated by just comparing the total service time of first
5751 * requests with and without injection.
5752 *
5753 * The limit-update algorithm works as follows. On the arrival of a
5754 * first request of bfqq, the algorithm measures the total time of the
5755 * request only if one of the three cases below holds, and, for each
5756 * case, it updates the limit as described below:
5757 *
5758 * (1) If there is no in-flight request. This gives a baseline for the
5759 * total service time of the requests of bfqq. If the baseline has
5760 * not been computed yet, then, after computing it, the limit is
5761 * set to 1, to start boosting throughput, and to prepare the
5762 * ground for the next case. If the baseline has already been
5763 * computed, then it is updated, in case it results to be lower
5764 * than the previous value.
5765 *
5766 * (2) If the limit is higher than 0 and there are in-flight
5767 * requests. By comparing the total service time in this case with
5768 * the above baseline, it is possible to know at which extent the
5769 * current value of the limit is inflating the total service
5770 * time. If the inflation is below a certain threshold, then bfqq
5771 * is assumed to be suffering from no perceivable loss of its
5772 * service guarantees, and the limit is even tentatively
5773 * increased. If the inflation is above the threshold, then the
5774 * limit is decreased. Due to the lack of any hysteresis, this
5775 * logic makes the limit oscillate even in steady workload
5776 * conditions. Yet we opted for it, because it is fast in reaching
5777 * the best value for the limit, as a function of the current I/O
5778 * workload. To reduce oscillations, this step is disabled for a
5779 * short time interval after the limit happens to be decreased.
5780 *
5781 * (3) Periodically, after resetting the limit, to make sure that the
5782 * limit eventually drops in case the workload changes. This is
5783 * needed because, after the limit has gone safely up for a
5784 * certain workload, it is impossible to guess whether the
5785 * baseline total service time may have changed, without measuring
5786 * it again without injection. A more effective version of this
5787 * step might be to just sample the baseline, by interrupting
5788 * injection only once, and then to reset/lower the limit only if
5789 * the total service time with the current limit does happen to be
5790 * too large.
5791 *
5792 * More details on each step are provided in the comments on the
5793 * pieces of code that implement these steps: the branch handling the
5794 * transition from empty to non empty in bfq_add_request(), the branch
5795 * handling injection in bfq_select_queue(), and the function
5796 * bfq_choose_bfqq_for_injection(). These comments also explain some
5797 * exceptions, made by the injection mechanism in some special cases.
5798 */
5799static void bfq_update_inject_limit(struct bfq_data *bfqd,
5800 struct bfq_queue *bfqq)
5801{
5802 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5803 unsigned int old_limit = bfqq->inject_limit;
5804
Paolo Valente23ed5702019-08-22 17:20:34 +02005805 if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
Paolo Valente2341d6622019-03-12 09:59:29 +01005806 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5807
5808 if (tot_time_ns >= threshold && old_limit > 0) {
5809 bfqq->inject_limit--;
5810 bfqq->decrease_time_jif = jiffies;
5811 } else if (tot_time_ns < threshold &&
Paolo Valentec1e0a182019-08-22 17:20:35 +02005812 old_limit <= bfqd->max_rq_in_driver)
Paolo Valente2341d6622019-03-12 09:59:29 +01005813 bfqq->inject_limit++;
5814 }
5815
5816 /*
5817 * Either we still have to compute the base value for the
5818 * total service time, and there seem to be the right
5819 * conditions to do it, or we can lower the last base value
5820 * computed.
Paolo Valentedb599f92019-06-25 07:12:44 +02005821 *
5822 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5823 * request in flight, because this function is in the code
5824 * path that handles the completion of a request of bfqq, and,
5825 * in particular, this function is executed before
5826 * bfqd->rq_in_driver is decremented in such a code path.
Paolo Valente2341d6622019-03-12 09:59:29 +01005827 */
Paolo Valentedb599f92019-06-25 07:12:44 +02005828 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
Paolo Valente2341d6622019-03-12 09:59:29 +01005829 tot_time_ns < bfqq->last_serv_time_ns) {
Paolo Valente58494c92019-08-22 17:20:37 +02005830 if (bfqq->last_serv_time_ns == 0) {
5831 /*
5832 * Now we certainly have a base value: make sure we
5833 * start trying injection.
5834 */
5835 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5836 }
Paolo Valente2341d6622019-03-12 09:59:29 +01005837 bfqq->last_serv_time_ns = tot_time_ns;
Paolo Valente24792ad2019-06-25 07:12:45 +02005838 } else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5839 /*
5840 * No I/O injected and no request still in service in
5841 * the drive: these are the exact conditions for
5842 * computing the base value of the total service time
5843 * for bfqq. So let's update this value, because it is
5844 * rather variable. For example, it varies if the size
5845 * or the spatial locality of the I/O requests in bfqq
5846 * change.
5847 */
5848 bfqq->last_serv_time_ns = tot_time_ns;
5849
Paolo Valente2341d6622019-03-12 09:59:29 +01005850
5851 /* update complete, not waiting for any request completion any longer */
5852 bfqd->waited_rq = NULL;
Paolo Valente23ed5702019-08-22 17:20:34 +02005853 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01005854}
5855
5856/*
Paolo Valentea7877392018-02-07 22:19:20 +01005857 * Handle either a requeue or a finish for rq. The things to do are
5858 * the same in both cases: all references to rq are to be dropped. In
5859 * particular, rq is considered completed from the point of view of
5860 * the scheduler.
5861 */
5862static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005863{
Paolo Valentea7877392018-02-07 22:19:20 +01005864 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005865 struct bfq_data *bfqd;
5866
Paolo Valentea7877392018-02-07 22:19:20 +01005867 /*
5868 * Requeue and finish hooks are invoked in blk-mq without
5869 * checking whether the involved request is actually still
5870 * referenced in the scheduler. To handle this fact, the
5871 * following two checks make this function exit in case of
5872 * spurious invocations, for which there is nothing to do.
5873 *
5874 * First, check whether rq has nothing to do with an elevator.
5875 */
5876 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005877 return;
5878
Paolo Valentea7877392018-02-07 22:19:20 +01005879 /*
5880 * rq either is not associated with any icq, or is an already
5881 * requeued request that has not (yet) been re-inserted into
5882 * a bfq_queue.
5883 */
5884 if (!rq->elv.icq || !bfqq)
5885 return;
5886
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005887 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005888
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005889 if (rq->rq_flags & RQF_STARTED)
5890 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07005891 rq->start_time_ns,
5892 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005893 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005894
5895 if (likely(rq->rq_flags & RQF_STARTED)) {
5896 unsigned long flags;
5897
5898 spin_lock_irqsave(&bfqd->lock, flags);
5899
Paolo Valente2341d6622019-03-12 09:59:29 +01005900 if (rq == bfqd->waited_rq)
5901 bfq_update_inject_limit(bfqd, bfqq);
5902
Paolo Valenteaee69d72017-04-19 08:29:02 -06005903 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01005904 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005905
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005906 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005907 } else {
5908 /*
5909 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01005910 * in which case we need to remove it (this should
5911 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06005912 * defer such a check and removal, to avoid
5913 * inconsistencies in the time interval from the end
5914 * of this function to the start of the deferred work.
5915 * This situation seems to occur only in process
5916 * context, as a consequence of a merge. In the
5917 * current version of the code, this implies that the
5918 * lock is held.
5919 */
5920
Luca Miccio614822f2017-11-13 07:34:08 +01005921 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02005922 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005923 bfqg_stats_update_io_remove(bfqq_group(bfqq),
5924 rq->cmd_flags);
5925 }
Paolo Valentea7877392018-02-07 22:19:20 +01005926 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005927 }
5928
Paolo Valentea7877392018-02-07 22:19:20 +01005929 /*
5930 * Reset private fields. In case of a requeue, this allows
5931 * this function to correctly do nothing if it is spuriously
5932 * invoked again on this same request (see the check at the
5933 * beginning of the function). Probably, a better general
5934 * design would be to prevent blk-mq from invoking the requeue
5935 * or finish hooks of an elevator, for a request that is not
5936 * referred by that elevator.
5937 *
5938 * Resetting the following fields would break the
5939 * request-insertion logic if rq is re-inserted into a bfq
5940 * internal queue, without a re-preparation. Here we assume
5941 * that re-insertions of requeued requests, without
5942 * re-preparation, can happen only for pass_through or at_head
5943 * requests (which are not re-inserted into bfq internal
5944 * queues).
5945 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005946 rq->elv.priv[0] = NULL;
5947 rq->elv.priv[1] = NULL;
5948}
5949
5950/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02005951 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5952 * was the last process referring to that bfqq.
5953 */
5954static struct bfq_queue *
5955bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5956{
5957 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5958
5959 if (bfqq_process_refs(bfqq) == 1) {
5960 bfqq->pid = current->pid;
5961 bfq_clear_bfqq_coop(bfqq);
5962 bfq_clear_bfqq_split_coop(bfqq);
5963 return bfqq;
5964 }
5965
5966 bic_set_bfqq(bic, NULL, 1);
5967
5968 bfq_put_cooperator(bfqq);
5969
5970 bfq_put_queue(bfqq);
5971 return NULL;
5972}
5973
5974static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5975 struct bfq_io_cq *bic,
5976 struct bio *bio,
5977 bool split, bool is_sync,
5978 bool *new_queue)
5979{
5980 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5981
5982 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5983 return bfqq;
5984
5985 if (new_queue)
5986 *new_queue = true;
5987
5988 if (bfqq)
5989 bfq_put_queue(bfqq);
5990 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5991
5992 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005993 if (split && is_sync) {
5994 if ((bic->was_in_burst_list && bfqd->large_burst) ||
5995 bic->saved_in_large_burst)
5996 bfq_mark_bfqq_in_large_burst(bfqq);
5997 else {
5998 bfq_clear_bfqq_in_large_burst(bfqq);
5999 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02006000 /*
6001 * If bfqq was in the current
6002 * burst list before being
6003 * merged, then we have to add
6004 * it back. And we do not need
6005 * to increase burst_size, as
6006 * we did not decrement
6007 * burst_size when we removed
6008 * bfqq from the burst list as
6009 * a consequence of a merge
6010 * (see comments in
6011 * bfq_put_queue). In this
6012 * respect, it would be rather
6013 * costly to know whether the
6014 * current burst list is still
6015 * the same burst list from
6016 * which bfqq was removed on
6017 * the merge. To avoid this
6018 * cost, if bfqq was in a
6019 * burst list, then we add
6020 * bfqq to the current burst
6021 * list without any further
6022 * check. This can cause
6023 * inappropriate insertions,
6024 * but rarely enough to not
6025 * harm the detection of large
6026 * bursts significantly.
6027 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006028 hlist_add_head(&bfqq->burst_list_node,
6029 &bfqd->burst_list);
6030 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006031 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006032 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006033
6034 return bfqq;
6035}
6036
6037/*
Paolo Valente18e5a572018-05-04 19:17:01 +02006038 * Only reset private fields. The actual request preparation will be
6039 * performed by bfq_init_rq, when rq is either inserted or merged. See
6040 * comments on bfq_init_rq for the reason behind this delayed
6041 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06006042 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006043static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006044{
Paolo Valente18e5a572018-05-04 19:17:01 +02006045 /*
6046 * Regardless of whether we have an icq attached, we have to
6047 * clear the scheduler pointers, as they might point to
6048 * previously allocated bic/bfqq structs.
6049 */
6050 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6051}
6052
6053/*
6054 * If needed, init rq, allocate bfq data structures associated with
6055 * rq, and increment reference counters in the destination bfq_queue
6056 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6057 * not associated with any bfq_queue.
6058 *
6059 * This function is invoked by the functions that perform rq insertion
6060 * or merging. One may have expected the above preparation operations
6061 * to be performed in bfq_prepare_request, and not delayed to when rq
6062 * is inserted or merged. The rationale behind this delayed
6063 * preparation is that, after the prepare_request hook is invoked for
6064 * rq, rq may still be transformed into a request with no icq, i.e., a
6065 * request not associated with any queue. No bfq hook is invoked to
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02006066 * signal this transformation. As a consequence, should these
Paolo Valente18e5a572018-05-04 19:17:01 +02006067 * preparation operations be performed when the prepare_request hook
6068 * is invoked, and should rq be transformed one moment later, bfq
6069 * would end up in an inconsistent state, because it would have
6070 * incremented some queue counters for an rq destined to
6071 * transformation, without any chance to correctly lower these
6072 * counters back. In contrast, no transformation can still happen for
6073 * rq after rq has been inserted or merged. So, it is safe to execute
6074 * these preparation operations when rq is finally inserted or merged.
6075 */
6076static struct bfq_queue *bfq_init_rq(struct request *rq)
6077{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006078 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02006079 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006080 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02006081 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006082 const int is_sync = rq_is_sync(rq);
6083 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006084 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06006085 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006086
Paolo Valente18e5a572018-05-04 19:17:01 +02006087 if (unlikely(!rq->elv.icq))
6088 return NULL;
6089
Jens Axboe72961c42018-04-17 17:08:52 -06006090 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02006091 * Assuming that elv.priv[1] is set only if everything is set
6092 * for this rq. This holds true, because this function is
6093 * invoked only for insertion or merging, and, after such
6094 * events, a request cannot be manipulated any longer before
6095 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06006096 */
Paolo Valente18e5a572018-05-04 19:17:01 +02006097 if (rq->elv.priv[1])
6098 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06006099
Christoph Hellwig9f210732017-06-16 18:15:24 +02006100 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006101
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01006102 bfq_check_ioprio_change(bic, bio);
6103
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006104 bfq_bic_update_cgroup(bic, bio);
6105
Arianna Avanzini36eca892017-04-12 18:23:16 +02006106 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6107 &new_queue);
6108
6109 if (likely(!new_queue)) {
6110 /* If the queue was seeky for too long, break it apart. */
6111 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6112 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006113
6114 /* Update bic before losing reference to bfqq */
6115 if (bfq_bfqq_in_large_burst(bfqq))
6116 bic->saved_in_large_burst = true;
6117
Arianna Avanzini36eca892017-04-12 18:23:16 +02006118 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006119 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006120
6121 if (!bfqq)
6122 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6123 true, is_sync,
6124 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06006125 else
6126 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006127 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06006128 }
6129
6130 bfqq->allocated++;
6131 bfqq->ref++;
6132 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6133 rq, bfqq, bfqq->ref);
6134
6135 rq->elv.priv[0] = bic;
6136 rq->elv.priv[1] = bfqq;
6137
Arianna Avanzini36eca892017-04-12 18:23:16 +02006138 /*
6139 * If a bfq_queue has only one process reference, it is owned
6140 * by only this bic: we can then set bfqq->bic = bic. in
6141 * addition, if the queue has also just been split, we have to
6142 * resume its state.
6143 */
6144 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6145 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006146 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02006147 /*
6148 * The queue has just been split from a shared
6149 * queue: restore the idle window and the
6150 * possible weight raising period.
6151 */
Paolo Valente13c931b2017-06-27 12:30:47 -06006152 bfq_bfqq_resume_state(bfqq, bfqd, bic,
6153 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006154 }
6155 }
6156
Paolo Valente84a74682019-03-12 09:59:32 +01006157 /*
6158 * Consider bfqq as possibly belonging to a burst of newly
6159 * created queues only if:
6160 * 1) A burst is actually happening (bfqd->burst_size > 0)
6161 * or
6162 * 2) There is no other active queue. In fact, if, in
6163 * contrast, there are active queues not belonging to the
6164 * possible burst bfqq may belong to, then there is no gain
6165 * in considering bfqq as belonging to a burst, and
6166 * therefore in not weight-raising bfqq. See comments on
6167 * bfq_handle_burst().
6168 *
6169 * This filtering also helps eliminating false positives,
6170 * occurring when bfqq does not belong to an actual large
6171 * burst, but some background task (e.g., a service) happens
6172 * to trigger the creation of new queues very close to when
6173 * bfqq and its possible companion queues are created. See
6174 * comments on bfq_handle_burst() for further details also on
6175 * this issue.
6176 */
6177 if (unlikely(bfq_bfqq_just_created(bfqq) &&
6178 (bfqd->burst_size > 0 ||
6179 bfq_tot_busy_queues(bfqd) == 0)))
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006180 bfq_handle_burst(bfqd, bfqq);
6181
Paolo Valente18e5a572018-05-04 19:17:01 +02006182 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006183}
6184
6185static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
6186{
6187 struct bfq_data *bfqd = bfqq->bfqd;
6188 enum bfqq_expiration reason;
6189 unsigned long flags;
6190
6191 spin_lock_irqsave(&bfqd->lock, flags);
6192 bfq_clear_bfqq_wait_request(bfqq);
6193
6194 if (bfqq != bfqd->in_service_queue) {
6195 spin_unlock_irqrestore(&bfqd->lock, flags);
6196 return;
6197 }
6198
6199 if (bfq_bfqq_budget_timeout(bfqq))
6200 /*
6201 * Also here the queue can be safely expired
6202 * for budget timeout without wasting
6203 * guarantees
6204 */
6205 reason = BFQQE_BUDGET_TIMEOUT;
6206 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6207 /*
6208 * The queue may not be empty upon timer expiration,
6209 * because we may not disable the timer when the
6210 * first request of the in-service queue arrives
6211 * during disk idling.
6212 */
6213 reason = BFQQE_TOO_IDLE;
6214 else
6215 goto schedule_dispatch;
6216
6217 bfq_bfqq_expire(bfqd, bfqq, true, reason);
6218
6219schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006220 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006221 bfq_schedule_dispatch(bfqd);
6222}
6223
6224/*
6225 * Handler of the expiration of the timer running if the in-service queue
6226 * is idling inside its time slice.
6227 */
6228static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6229{
6230 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6231 idle_slice_timer);
6232 struct bfq_queue *bfqq = bfqd->in_service_queue;
6233
6234 /*
6235 * Theoretical race here: the in-service queue can be NULL or
6236 * different from the queue that was idling if a new request
6237 * arrives for the current queue and there is a full dispatch
6238 * cycle that changes the in-service queue. This can hardly
6239 * happen, but in the worst case we just expire a queue too
6240 * early.
6241 */
6242 if (bfqq)
6243 bfq_idle_slice_timer_body(bfqq);
6244
6245 return HRTIMER_NORESTART;
6246}
6247
6248static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6249 struct bfq_queue **bfqq_ptr)
6250{
6251 struct bfq_queue *bfqq = *bfqq_ptr;
6252
6253 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6254 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006255 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6256
Paolo Valenteaee69d72017-04-19 08:29:02 -06006257 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6258 bfqq, bfqq->ref);
6259 bfq_put_queue(bfqq);
6260 *bfqq_ptr = NULL;
6261 }
6262}
6263
6264/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006265 * Release all the bfqg references to its async queues. If we are
6266 * deallocating the group these queues may still contain requests, so
6267 * we reparent them to the root cgroup (i.e., the only one that will
6268 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06006269 */
Paolo Valenteea25da42017-04-19 08:48:24 -06006270void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006271{
6272 int i, j;
6273
6274 for (i = 0; i < 2; i++)
6275 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006276 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006277
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006278 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006279}
6280
Jens Axboef0635b82018-05-09 13:27:21 -06006281/*
6282 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06006283 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06006284 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06006285static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6286 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06006287{
Jens Axboe483b7bf2018-05-09 15:26:55 -06006288 unsigned int i, j, min_shallow = UINT_MAX;
6289
Jens Axboef0635b82018-05-09 13:27:21 -06006290 /*
6291 * In-word depths if no bfq_queue is being weight-raised:
6292 * leaving 25% of tags only for sync reads.
6293 *
6294 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006295 * (1U<<bt->sb.shift), instead of computing directly
6296 * (1U<<(bt->sb.shift - something)), to be robust against
6297 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06006298 * limit 'something'.
6299 */
6300 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006301 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006302 /*
6303 * no more than 75% of tags for sync writes (25% extra tags
6304 * w.r.t. async I/O, to prevent async I/O from starving sync
6305 * writes)
6306 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006307 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006308
6309 /*
6310 * In-word depths in case some bfq_queue is being weight-
6311 * raised: leaving ~63% of tags for sync reads. This is the
6312 * highest percentage for which, in our tests, application
6313 * start-up times didn't suffer from any regression due to tag
6314 * shortage.
6315 */
6316 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006317 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006318 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006319 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06006320
6321 for (i = 0; i < 2; i++)
6322 for (j = 0; j < 2; j++)
6323 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6324
6325 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06006326}
6327
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006328static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
Jens Axboef0635b82018-05-09 13:27:21 -06006329{
6330 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6331 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06006332 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06006333
Jens Axboe483b7bf2018-05-09 15:26:55 -06006334 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
6335 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006336}
6337
6338static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6339{
6340 bfq_depth_updated(hctx);
Jens Axboef0635b82018-05-09 13:27:21 -06006341 return 0;
6342}
6343
Paolo Valenteaee69d72017-04-19 08:29:02 -06006344static void bfq_exit_queue(struct elevator_queue *e)
6345{
6346 struct bfq_data *bfqd = e->elevator_data;
6347 struct bfq_queue *bfqq, *n;
6348
6349 hrtimer_cancel(&bfqd->idle_slice_timer);
6350
6351 spin_lock_irq(&bfqd->lock);
6352 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006353 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006354 spin_unlock_irq(&bfqd->lock);
6355
6356 hrtimer_cancel(&bfqd->idle_slice_timer);
6357
Jens Axboe8abef102018-01-09 12:20:51 -07006358#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01006359 /* release oom-queue reference to root group */
6360 bfqg_and_blkg_put(bfqd->root_group);
6361
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006362 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6363#else
6364 spin_lock_irq(&bfqd->lock);
6365 bfq_put_async_queues(bfqd, bfqd->root_group);
6366 kfree(bfqd->root_group);
6367 spin_unlock_irq(&bfqd->lock);
6368#endif
6369
Paolo Valenteaee69d72017-04-19 08:29:02 -06006370 kfree(bfqd);
6371}
6372
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006373static void bfq_init_root_group(struct bfq_group *root_group,
6374 struct bfq_data *bfqd)
6375{
6376 int i;
6377
6378#ifdef CONFIG_BFQ_GROUP_IOSCHED
6379 root_group->entity.parent = NULL;
6380 root_group->my_entity = NULL;
6381 root_group->bfqd = bfqd;
6382#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02006383 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006384 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6385 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6386 root_group->sched_data.bfq_class_idle_last_service = jiffies;
6387}
6388
Paolo Valenteaee69d72017-04-19 08:29:02 -06006389static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6390{
6391 struct bfq_data *bfqd;
6392 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006393
6394 eq = elevator_alloc(q, e);
6395 if (!eq)
6396 return -ENOMEM;
6397
6398 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6399 if (!bfqd) {
6400 kobject_put(&eq->kobj);
6401 return -ENOMEM;
6402 }
6403 eq->elevator_data = bfqd;
6404
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006405 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006406 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006407 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006408
Paolo Valenteaee69d72017-04-19 08:29:02 -06006409 /*
6410 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6411 * Grab a permanent reference to it, so that the normal code flow
6412 * will not attempt to free it.
6413 */
6414 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6415 bfqd->oom_bfqq.ref++;
6416 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6417 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6418 bfqd->oom_bfqq.entity.new_weight =
6419 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006420
6421 /* oom_bfqq does not participate to bursts */
6422 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6423
Paolo Valenteaee69d72017-04-19 08:29:02 -06006424 /*
6425 * Trigger weight initialization, according to ioprio, at the
6426 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6427 * class won't be changed any more.
6428 */
6429 bfqd->oom_bfqq.entity.prio_changed = 1;
6430
6431 bfqd->queue = q;
6432
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006433 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006434
6435 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6436 HRTIMER_MODE_REL);
6437 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6438
Paolo Valentefb53ac62019-03-12 09:59:28 +01006439 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01006440 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02006441
Paolo Valenteaee69d72017-04-19 08:29:02 -06006442 INIT_LIST_HEAD(&bfqd->active_list);
6443 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006444 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006445
6446 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01006447 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006448
6449 bfqd->bfq_max_budget = bfq_default_max_budget;
6450
6451 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6452 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6453 bfqd->bfq_back_max = bfq_back_max;
6454 bfqd->bfq_back_penalty = bfq_back_penalty;
6455 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006456 bfqd->bfq_timeout = bfq_timeout;
6457
6458 bfqd->bfq_requests_within_timer = 120;
6459
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006460 bfqd->bfq_large_burst_thresh = 8;
6461 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6462
Paolo Valente44e44a12017-04-12 18:23:12 +02006463 bfqd->low_latency = true;
6464
6465 /*
6466 * Trade-off between responsiveness and fairness.
6467 */
6468 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02006469 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02006470 bfqd->bfq_wr_max_time = 0;
6471 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6472 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02006473 bfqd->bfq_wr_max_softrt_rate = 7000; /*
6474 * Approximate rate required
6475 * to playback or record a
6476 * high-definition compressed
6477 * video.
6478 */
Paolo Valentecfd69712017-04-12 18:23:15 +02006479 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02006480
6481 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02006482 * Begin by assuming, optimistically, that the device peak
6483 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02006484 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006485 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6486 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6487 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02006488
Paolo Valenteaee69d72017-04-19 08:29:02 -06006489 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006490
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006491 /*
6492 * The invocation of the next bfq_create_group_hierarchy
6493 * function is the head of a chain of function calls
6494 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6495 * blk_mq_freeze_queue) that may lead to the invocation of the
6496 * has_work hook function. For this reason,
6497 * bfq_create_group_hierarchy is invoked only after all
6498 * scheduler data has been initialized, apart from the fields
6499 * that can be initialized only after invoking
6500 * bfq_create_group_hierarchy. This, in particular, enables
6501 * has_work to correctly return false. Of course, to avoid
6502 * other inconsistencies, the blk-mq stack must then refrain
6503 * from invoking further scheduler hooks before this init
6504 * function is finished.
6505 */
6506 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6507 if (!bfqd->root_group)
6508 goto out_free;
6509 bfq_init_root_group(bfqd->root_group, bfqd);
6510 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6511
Luca Micciob5dc5d42017-10-09 16:27:21 +02006512 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006513 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006514
6515out_free:
6516 kfree(bfqd);
6517 kobject_put(&eq->kobj);
6518 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006519}
6520
6521static void bfq_slab_kill(void)
6522{
6523 kmem_cache_destroy(bfq_pool);
6524}
6525
6526static int __init bfq_slab_setup(void)
6527{
6528 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6529 if (!bfq_pool)
6530 return -ENOMEM;
6531 return 0;
6532}
6533
6534static ssize_t bfq_var_show(unsigned int var, char *page)
6535{
6536 return sprintf(page, "%u\n", var);
6537}
6538
Bart Van Assche2f791362017-08-30 11:42:09 -07006539static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006540{
6541 unsigned long new_val;
6542 int ret = kstrtoul(page, 10, &new_val);
6543
Bart Van Assche2f791362017-08-30 11:42:09 -07006544 if (ret)
6545 return ret;
6546 *var = new_val;
6547 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006548}
6549
6550#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6551static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6552{ \
6553 struct bfq_data *bfqd = e->elevator_data; \
6554 u64 __data = __VAR; \
6555 if (__CONV == 1) \
6556 __data = jiffies_to_msecs(__data); \
6557 else if (__CONV == 2) \
6558 __data = div_u64(__data, NSEC_PER_MSEC); \
6559 return bfq_var_show(__data, (page)); \
6560}
6561SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6562SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6563SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6564SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6565SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6566SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6567SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6568SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02006569SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006570#undef SHOW_FUNCTION
6571
6572#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6573static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6574{ \
6575 struct bfq_data *bfqd = e->elevator_data; \
6576 u64 __data = __VAR; \
6577 __data = div_u64(__data, NSEC_PER_USEC); \
6578 return bfq_var_show(__data, (page)); \
6579}
6580USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6581#undef USEC_SHOW_FUNCTION
6582
6583#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6584static ssize_t \
6585__FUNC(struct elevator_queue *e, const char *page, size_t count) \
6586{ \
6587 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006588 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006589 int ret; \
6590 \
6591 ret = bfq_var_store(&__data, (page)); \
6592 if (ret) \
6593 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006594 if (__data < __min) \
6595 __data = __min; \
6596 else if (__data > __max) \
6597 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006598 if (__CONV == 1) \
6599 *(__PTR) = msecs_to_jiffies(__data); \
6600 else if (__CONV == 2) \
6601 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6602 else \
6603 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08006604 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006605}
6606STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6607 INT_MAX, 2);
6608STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6609 INT_MAX, 2);
6610STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6611STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6612 INT_MAX, 0);
6613STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6614#undef STORE_FUNCTION
6615
6616#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6617static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6618{ \
6619 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006620 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006621 int ret; \
6622 \
6623 ret = bfq_var_store(&__data, (page)); \
6624 if (ret) \
6625 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006626 if (__data < __min) \
6627 __data = __min; \
6628 else if (__data > __max) \
6629 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006630 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08006631 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006632}
6633USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6634 UINT_MAX);
6635#undef USEC_STORE_FUNCTION
6636
Paolo Valenteaee69d72017-04-19 08:29:02 -06006637static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6638 const char *page, size_t count)
6639{
6640 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006641 unsigned long __data;
6642 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006643
Bart Van Assche2f791362017-08-30 11:42:09 -07006644 ret = bfq_var_store(&__data, (page));
6645 if (ret)
6646 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006647
6648 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006649 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006650 else {
6651 if (__data > INT_MAX)
6652 __data = INT_MAX;
6653 bfqd->bfq_max_budget = __data;
6654 }
6655
6656 bfqd->bfq_user_max_budget = __data;
6657
weiping zhang235f8da2017-08-25 01:11:33 +08006658 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006659}
6660
6661/*
6662 * Leaving this name to preserve name compatibility with cfq
6663 * parameters, but this timeout is used for both sync and async.
6664 */
6665static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6666 const char *page, size_t count)
6667{
6668 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006669 unsigned long __data;
6670 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006671
Bart Van Assche2f791362017-08-30 11:42:09 -07006672 ret = bfq_var_store(&__data, (page));
6673 if (ret)
6674 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006675
6676 if (__data < 1)
6677 __data = 1;
6678 else if (__data > INT_MAX)
6679 __data = INT_MAX;
6680
6681 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6682 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006683 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006684
weiping zhang235f8da2017-08-25 01:11:33 +08006685 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006686}
6687
6688static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6689 const char *page, size_t count)
6690{
6691 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006692 unsigned long __data;
6693 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006694
Bart Van Assche2f791362017-08-30 11:42:09 -07006695 ret = bfq_var_store(&__data, (page));
6696 if (ret)
6697 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006698
6699 if (__data > 1)
6700 __data = 1;
6701 if (!bfqd->strict_guarantees && __data == 1
6702 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6703 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6704
6705 bfqd->strict_guarantees = __data;
6706
weiping zhang235f8da2017-08-25 01:11:33 +08006707 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006708}
6709
Paolo Valente44e44a12017-04-12 18:23:12 +02006710static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6711 const char *page, size_t count)
6712{
6713 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006714 unsigned long __data;
6715 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006716
Bart Van Assche2f791362017-08-30 11:42:09 -07006717 ret = bfq_var_store(&__data, (page));
6718 if (ret)
6719 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02006720
6721 if (__data > 1)
6722 __data = 1;
6723 if (__data == 0 && bfqd->low_latency != 0)
6724 bfq_end_wr(bfqd);
6725 bfqd->low_latency = __data;
6726
weiping zhang235f8da2017-08-25 01:11:33 +08006727 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02006728}
6729
Paolo Valenteaee69d72017-04-19 08:29:02 -06006730#define BFQ_ATTR(name) \
6731 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6732
6733static struct elv_fs_entry bfq_attrs[] = {
6734 BFQ_ATTR(fifo_expire_sync),
6735 BFQ_ATTR(fifo_expire_async),
6736 BFQ_ATTR(back_seek_max),
6737 BFQ_ATTR(back_seek_penalty),
6738 BFQ_ATTR(slice_idle),
6739 BFQ_ATTR(slice_idle_us),
6740 BFQ_ATTR(max_budget),
6741 BFQ_ATTR(timeout_sync),
6742 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02006743 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06006744 __ATTR_NULL
6745};
6746
6747static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06006748 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01006749 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006750 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01006751 .requeue_request = bfq_finish_requeue_request,
6752 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006753 .exit_icq = bfq_exit_icq,
6754 .insert_requests = bfq_insert_requests,
6755 .dispatch_request = bfq_dispatch_request,
6756 .next_request = elv_rb_latter_request,
6757 .former_request = elv_rb_former_request,
6758 .allow_merge = bfq_allow_bio_merge,
6759 .bio_merge = bfq_bio_merge,
6760 .request_merge = bfq_request_merge,
6761 .requests_merged = bfq_requests_merged,
6762 .request_merged = bfq_request_merged,
6763 .has_work = bfq_has_work,
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006764 .depth_updated = bfq_depth_updated,
Jens Axboef0635b82018-05-09 13:27:21 -06006765 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006766 .init_sched = bfq_init_queue,
6767 .exit_sched = bfq_exit_queue,
6768 },
6769
Paolo Valenteaee69d72017-04-19 08:29:02 -06006770 .icq_size = sizeof(struct bfq_io_cq),
6771 .icq_align = __alignof__(struct bfq_io_cq),
6772 .elevator_attrs = bfq_attrs,
6773 .elevator_name = "bfq",
6774 .elevator_owner = THIS_MODULE,
6775};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01006776MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06006777
6778static int __init bfq_init(void)
6779{
6780 int ret;
6781
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006782#ifdef CONFIG_BFQ_GROUP_IOSCHED
6783 ret = blkcg_policy_register(&blkcg_policy_bfq);
6784 if (ret)
6785 return ret;
6786#endif
6787
Paolo Valenteaee69d72017-04-19 08:29:02 -06006788 ret = -ENOMEM;
6789 if (bfq_slab_setup())
6790 goto err_pol_unreg;
6791
Paolo Valente44e44a12017-04-12 18:23:12 +02006792 /*
6793 * Times to load large popular applications for the typical
6794 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02006795 * comments before the definition of the next
6796 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02006797 * estimated peak rate tends to be smaller than the actual
6798 * peak rate. The reason for this last fact is that estimates
6799 * are computed over much shorter time intervals than the long
6800 * intervals typically used for benchmarking. Why? First, to
6801 * adapt more quickly to variations. Second, because an I/O
6802 * scheduler cannot rely on a peak-rate-evaluation workload to
6803 * be run for a long time.
6804 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006805 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6806 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02006807
Paolo Valenteaee69d72017-04-19 08:29:02 -06006808 ret = elv_register(&iosched_bfq_mq);
6809 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08006810 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006811
6812 return 0;
6813
weiping zhang37dcd652017-08-19 00:37:20 +08006814slab_kill:
6815 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06006816err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006817#ifdef CONFIG_BFQ_GROUP_IOSCHED
6818 blkcg_policy_unregister(&blkcg_policy_bfq);
6819#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006820 return ret;
6821}
6822
6823static void __exit bfq_exit(void)
6824{
6825 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006826#ifdef CONFIG_BFQ_GROUP_IOSCHED
6827 blkcg_policy_unregister(&blkcg_policy_bfq);
6828#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006829 bfq_slab_kill();
6830}
6831
6832module_init(bfq_init);
6833module_exit(bfq_exit);
6834
6835MODULE_AUTHOR("Paolo Valente");
6836MODULE_LICENSE("GPL");
6837MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");