Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Deadline Scheduling Class (SCHED_DEADLINE) |
| 3 | * |
| 4 | * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). |
| 5 | * |
| 6 | * Tasks that periodically executes their instances for less than their |
| 7 | * runtime won't miss any of their deadlines. |
| 8 | * Tasks that are not periodic or sporadic or that tries to execute more |
| 9 | * than their reserved bandwidth will be slowed down (and may potentially |
| 10 | * miss some of their deadlines), and won't affect any other task. |
| 11 | * |
| 12 | * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 13 | * Juri Lelli <juri.lelli@gmail.com>, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 14 | * Michael Trimarchi <michael@amarulasolutions.com>, |
| 15 | * Fabio Checconi <fchecconi@gmail.com> |
| 16 | */ |
| 17 | #include "sched.h" |
| 18 | |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 19 | #include <linux/slab.h> |
| 20 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 21 | struct dl_bandwidth def_dl_bandwidth; |
| 22 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 23 | static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) |
| 24 | { |
| 25 | return container_of(dl_se, struct task_struct, dl); |
| 26 | } |
| 27 | |
| 28 | static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) |
| 29 | { |
| 30 | return container_of(dl_rq, struct rq, dl); |
| 31 | } |
| 32 | |
| 33 | static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) |
| 34 | { |
| 35 | struct task_struct *p = dl_task_of(dl_se); |
| 36 | struct rq *rq = task_rq(p); |
| 37 | |
| 38 | return &rq->dl; |
| 39 | } |
| 40 | |
| 41 | static inline int on_dl_rq(struct sched_dl_entity *dl_se) |
| 42 | { |
| 43 | return !RB_EMPTY_NODE(&dl_se->rb_node); |
| 44 | } |
| 45 | |
| 46 | static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) |
| 47 | { |
| 48 | struct sched_dl_entity *dl_se = &p->dl; |
| 49 | |
| 50 | return dl_rq->rb_leftmost == &dl_se->rb_node; |
| 51 | } |
| 52 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 53 | void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) |
| 54 | { |
| 55 | raw_spin_lock_init(&dl_b->dl_runtime_lock); |
| 56 | dl_b->dl_period = period; |
| 57 | dl_b->dl_runtime = runtime; |
| 58 | } |
| 59 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 60 | void init_dl_bw(struct dl_bw *dl_b) |
| 61 | { |
| 62 | raw_spin_lock_init(&dl_b->lock); |
| 63 | raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 64 | if (global_rt_runtime() == RUNTIME_INF) |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 65 | dl_b->bw = -1; |
| 66 | else |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 67 | dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 68 | raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); |
| 69 | dl_b->total_bw = 0; |
| 70 | } |
| 71 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 72 | void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) |
| 73 | { |
| 74 | dl_rq->rb_root = RB_ROOT; |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 75 | |
| 76 | #ifdef CONFIG_SMP |
| 77 | /* zero means no -deadline tasks */ |
| 78 | dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; |
| 79 | |
| 80 | dl_rq->dl_nr_migratory = 0; |
| 81 | dl_rq->overloaded = 0; |
| 82 | dl_rq->pushable_dl_tasks_root = RB_ROOT; |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 83 | #else |
| 84 | init_dl_bw(&dl_rq->dl_bw); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 85 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 86 | } |
| 87 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 88 | #ifdef CONFIG_SMP |
| 89 | |
| 90 | static inline int dl_overloaded(struct rq *rq) |
| 91 | { |
| 92 | return atomic_read(&rq->rd->dlo_count); |
| 93 | } |
| 94 | |
| 95 | static inline void dl_set_overload(struct rq *rq) |
| 96 | { |
| 97 | if (!rq->online) |
| 98 | return; |
| 99 | |
| 100 | cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); |
| 101 | /* |
| 102 | * Must be visible before the overload count is |
| 103 | * set (as in sched_rt.c). |
| 104 | * |
| 105 | * Matched by the barrier in pull_dl_task(). |
| 106 | */ |
| 107 | smp_wmb(); |
| 108 | atomic_inc(&rq->rd->dlo_count); |
| 109 | } |
| 110 | |
| 111 | static inline void dl_clear_overload(struct rq *rq) |
| 112 | { |
| 113 | if (!rq->online) |
| 114 | return; |
| 115 | |
| 116 | atomic_dec(&rq->rd->dlo_count); |
| 117 | cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); |
| 118 | } |
| 119 | |
| 120 | static void update_dl_migration(struct dl_rq *dl_rq) |
| 121 | { |
Kirill Tkhai | 995b9ea | 2014-02-18 02:24:13 +0400 | [diff] [blame] | 122 | if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 123 | if (!dl_rq->overloaded) { |
| 124 | dl_set_overload(rq_of_dl_rq(dl_rq)); |
| 125 | dl_rq->overloaded = 1; |
| 126 | } |
| 127 | } else if (dl_rq->overloaded) { |
| 128 | dl_clear_overload(rq_of_dl_rq(dl_rq)); |
| 129 | dl_rq->overloaded = 0; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 134 | { |
| 135 | struct task_struct *p = dl_task_of(dl_se); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 136 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 137 | if (p->nr_cpus_allowed > 1) |
| 138 | dl_rq->dl_nr_migratory++; |
| 139 | |
| 140 | update_dl_migration(dl_rq); |
| 141 | } |
| 142 | |
| 143 | static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 144 | { |
| 145 | struct task_struct *p = dl_task_of(dl_se); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 146 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 147 | if (p->nr_cpus_allowed > 1) |
| 148 | dl_rq->dl_nr_migratory--; |
| 149 | |
| 150 | update_dl_migration(dl_rq); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * The list of pushable -deadline task is not a plist, like in |
| 155 | * sched_rt.c, it is an rb-tree with tasks ordered by deadline. |
| 156 | */ |
| 157 | static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 158 | { |
| 159 | struct dl_rq *dl_rq = &rq->dl; |
| 160 | struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; |
| 161 | struct rb_node *parent = NULL; |
| 162 | struct task_struct *entry; |
| 163 | int leftmost = 1; |
| 164 | |
| 165 | BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); |
| 166 | |
| 167 | while (*link) { |
| 168 | parent = *link; |
| 169 | entry = rb_entry(parent, struct task_struct, |
| 170 | pushable_dl_tasks); |
| 171 | if (dl_entity_preempt(&p->dl, &entry->dl)) |
| 172 | link = &parent->rb_left; |
| 173 | else { |
| 174 | link = &parent->rb_right; |
| 175 | leftmost = 0; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | if (leftmost) |
| 180 | dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; |
| 181 | |
| 182 | rb_link_node(&p->pushable_dl_tasks, parent, link); |
| 183 | rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 184 | } |
| 185 | |
| 186 | static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 187 | { |
| 188 | struct dl_rq *dl_rq = &rq->dl; |
| 189 | |
| 190 | if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) |
| 191 | return; |
| 192 | |
| 193 | if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { |
| 194 | struct rb_node *next_node; |
| 195 | |
| 196 | next_node = rb_next(&p->pushable_dl_tasks); |
| 197 | dl_rq->pushable_dl_tasks_leftmost = next_node; |
| 198 | } |
| 199 | |
| 200 | rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 201 | RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| 202 | } |
| 203 | |
| 204 | static inline int has_pushable_dl_tasks(struct rq *rq) |
| 205 | { |
| 206 | return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); |
| 207 | } |
| 208 | |
| 209 | static int push_dl_task(struct rq *rq); |
| 210 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 211 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| 212 | { |
| 213 | return dl_task(prev); |
| 214 | } |
| 215 | |
| 216 | static inline void set_post_schedule(struct rq *rq) |
| 217 | { |
| 218 | rq->post_schedule = has_pushable_dl_tasks(rq); |
| 219 | } |
| 220 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 221 | #else |
| 222 | |
| 223 | static inline |
| 224 | void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 225 | { |
| 226 | } |
| 227 | |
| 228 | static inline |
| 229 | void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 230 | { |
| 231 | } |
| 232 | |
| 233 | static inline |
| 234 | void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 235 | { |
| 236 | } |
| 237 | |
| 238 | static inline |
| 239 | void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 240 | { |
| 241 | } |
| 242 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 243 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| 244 | { |
| 245 | return false; |
| 246 | } |
| 247 | |
| 248 | static inline int pull_dl_task(struct rq *rq) |
| 249 | { |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | static inline void set_post_schedule(struct rq *rq) |
| 254 | { |
| 255 | } |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 256 | #endif /* CONFIG_SMP */ |
| 257 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 258 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 259 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 260 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 261 | int flags); |
| 262 | |
| 263 | /* |
| 264 | * We are being explicitly informed that a new instance is starting, |
| 265 | * and this means that: |
| 266 | * - the absolute deadline of the entity has to be placed at |
| 267 | * current time + relative deadline; |
| 268 | * - the runtime of the entity has to be set to the maximum value. |
| 269 | * |
| 270 | * The capability of specifying such event is useful whenever a -deadline |
| 271 | * entity wants to (try to!) synchronize its behaviour with the scheduler's |
| 272 | * one, and to (try to!) reconcile itself with its own scheduling |
| 273 | * parameters. |
| 274 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 275 | static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, |
| 276 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 277 | { |
| 278 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 279 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 280 | |
| 281 | WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); |
| 282 | |
| 283 | /* |
| 284 | * We use the regular wall clock time to set deadlines in the |
| 285 | * future; in fact, we must consider execution overheads (time |
| 286 | * spent on hardirq context, etc.). |
| 287 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 288 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 289 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 290 | dl_se->dl_new = 0; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Pure Earliest Deadline First (EDF) scheduling does not deal with the |
| 295 | * possibility of a entity lasting more than what it declared, and thus |
| 296 | * exhausting its runtime. |
| 297 | * |
| 298 | * Here we are interested in making runtime overrun possible, but we do |
| 299 | * not want a entity which is misbehaving to affect the scheduling of all |
| 300 | * other entities. |
| 301 | * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) |
| 302 | * is used, in order to confine each entity within its own bandwidth. |
| 303 | * |
| 304 | * This function deals exactly with that, and ensures that when the runtime |
| 305 | * of a entity is replenished, its deadline is also postponed. That ensures |
| 306 | * the overrunning entity can't interfere with other entity in the system and |
| 307 | * can't make them miss their deadlines. Reasons why this kind of overruns |
| 308 | * could happen are, typically, a entity voluntarily trying to overcome its |
xiaofeng.yan | 1b09d29 | 2014-07-07 05:59:04 +0000 | [diff] [blame] | 309 | * runtime, or it just underestimated it during sched_setattr(). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 310 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 311 | static void replenish_dl_entity(struct sched_dl_entity *dl_se, |
| 312 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 313 | { |
| 314 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 315 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 316 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 317 | BUG_ON(pi_se->dl_runtime <= 0); |
| 318 | |
| 319 | /* |
| 320 | * This could be the case for a !-dl task that is boosted. |
| 321 | * Just go with full inherited parameters. |
| 322 | */ |
| 323 | if (dl_se->dl_deadline == 0) { |
| 324 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 325 | dl_se->runtime = pi_se->dl_runtime; |
| 326 | } |
| 327 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 328 | /* |
| 329 | * We keep moving the deadline away until we get some |
| 330 | * available runtime for the entity. This ensures correct |
| 331 | * handling of situations where the runtime overrun is |
| 332 | * arbitrary large. |
| 333 | */ |
| 334 | while (dl_se->runtime <= 0) { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 335 | dl_se->deadline += pi_se->dl_period; |
| 336 | dl_se->runtime += pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 337 | } |
| 338 | |
| 339 | /* |
| 340 | * At this point, the deadline really should be "in |
| 341 | * the future" with respect to rq->clock. If it's |
| 342 | * not, we are, for some reason, lagging too much! |
| 343 | * Anyway, after having warn userspace abut that, |
| 344 | * we still try to keep the things running by |
| 345 | * resetting the deadline and the budget of the |
| 346 | * entity. |
| 347 | */ |
| 348 | if (dl_time_before(dl_se->deadline, rq_clock(rq))) { |
John Stultz | c224815 | 2014-06-04 16:11:41 -0700 | [diff] [blame] | 349 | printk_deferred_once("sched: DL replenish lagged to much\n"); |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 350 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 351 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 352 | } |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Here we check if --at time t-- an entity (which is probably being |
| 357 | * [re]activated or, in general, enqueued) can use its remaining runtime |
| 358 | * and its current deadline _without_ exceeding the bandwidth it is |
| 359 | * assigned (function returns true if it can't). We are in fact applying |
| 360 | * one of the CBS rules: when a task wakes up, if the residual runtime |
| 361 | * over residual deadline fits within the allocated bandwidth, then we |
| 362 | * can keep the current (absolute) deadline and residual budget without |
| 363 | * disrupting the schedulability of the system. Otherwise, we should |
| 364 | * refill the runtime and set the deadline a period in the future, |
| 365 | * because keeping the current (absolute) deadline of the task would |
Dario Faggioli | 712e5e3 | 2014-01-27 12:20:15 +0100 | [diff] [blame] | 366 | * result in breaking guarantees promised to other tasks (refer to |
| 367 | * Documentation/scheduler/sched-deadline.txt for more informations). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 368 | * |
| 369 | * This function returns true if: |
| 370 | * |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame] | 371 | * runtime / (deadline - t) > dl_runtime / dl_period , |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 372 | * |
| 373 | * IOW we can't recycle current parameters. |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame] | 374 | * |
| 375 | * Notice that the bandwidth check is done against the period. For |
| 376 | * task with deadline equal to period this is the same of using |
| 377 | * dl_deadline instead of dl_period in the equation above. |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 378 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 379 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, |
| 380 | struct sched_dl_entity *pi_se, u64 t) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 381 | { |
| 382 | u64 left, right; |
| 383 | |
| 384 | /* |
| 385 | * left and right are the two sides of the equation above, |
| 386 | * after a bit of shuffling to use multiplications instead |
| 387 | * of divisions. |
| 388 | * |
| 389 | * Note that none of the time values involved in the two |
| 390 | * multiplications are absolute: dl_deadline and dl_runtime |
| 391 | * are the relative deadline and the maximum runtime of each |
| 392 | * instance, runtime is the runtime left for the last instance |
| 393 | * and (deadline - t), since t is rq->clock, is the time left |
| 394 | * to the (absolute) deadline. Even if overflowing the u64 type |
| 395 | * is very unlikely to occur in both cases, here we scale down |
| 396 | * as we want to avoid that risk at all. Scaling down by 10 |
| 397 | * means that we reduce granularity to 1us. We are fine with it, |
| 398 | * since this is only a true/false check and, anyway, thinking |
| 399 | * of anything below microseconds resolution is actually fiction |
| 400 | * (but still we want to give the user that illusion >;). |
| 401 | */ |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 402 | left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); |
| 403 | right = ((dl_se->deadline - t) >> DL_SCALE) * |
| 404 | (pi_se->dl_runtime >> DL_SCALE); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 405 | |
| 406 | return dl_time_before(right, left); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * When a -deadline entity is queued back on the runqueue, its runtime and |
| 411 | * deadline might need updating. |
| 412 | * |
| 413 | * The policy here is that we update the deadline of the entity only if: |
| 414 | * - the current deadline is in the past, |
| 415 | * - using the remaining runtime with the current deadline would make |
| 416 | * the entity exceed its bandwidth. |
| 417 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 418 | static void update_dl_entity(struct sched_dl_entity *dl_se, |
| 419 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 420 | { |
| 421 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 422 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 423 | |
| 424 | /* |
| 425 | * The arrival of a new instance needs special treatment, i.e., |
| 426 | * the actual scheduling parameters have to be "renewed". |
| 427 | */ |
| 428 | if (dl_se->dl_new) { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 429 | setup_new_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 430 | return; |
| 431 | } |
| 432 | |
| 433 | if (dl_time_before(dl_se->deadline, rq_clock(rq)) || |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 434 | dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { |
| 435 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 436 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 437 | } |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * If the entity depleted all its runtime, and if we want it to sleep |
| 442 | * while waiting for some new execution time to become available, we |
| 443 | * set the bandwidth enforcement timer to the replenishment instant |
| 444 | * and try to activate it. |
| 445 | * |
| 446 | * Notice that it is important for the caller to know if the timer |
| 447 | * actually started or not (i.e., the replenishment instant is in |
| 448 | * the future or in the past). |
| 449 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 450 | static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 451 | { |
| 452 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 453 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 454 | ktime_t now, act; |
| 455 | ktime_t soft, hard; |
| 456 | unsigned long range; |
| 457 | s64 delta; |
| 458 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 459 | if (boosted) |
| 460 | return 0; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 461 | /* |
| 462 | * We want the timer to fire at the deadline, but considering |
| 463 | * that it is actually coming from rq->clock and not from |
| 464 | * hrtimer's time base reading. |
| 465 | */ |
| 466 | act = ns_to_ktime(dl_se->deadline); |
| 467 | now = hrtimer_cb_get_time(&dl_se->dl_timer); |
| 468 | delta = ktime_to_ns(now) - rq_clock(rq); |
| 469 | act = ktime_add_ns(act, delta); |
| 470 | |
| 471 | /* |
| 472 | * If the expiry time already passed, e.g., because the value |
| 473 | * chosen as the deadline is too small, don't even try to |
| 474 | * start the timer in the past! |
| 475 | */ |
| 476 | if (ktime_us_delta(act, now) < 0) |
| 477 | return 0; |
| 478 | |
| 479 | hrtimer_set_expires(&dl_se->dl_timer, act); |
| 480 | |
| 481 | soft = hrtimer_get_softexpires(&dl_se->dl_timer); |
| 482 | hard = hrtimer_get_expires(&dl_se->dl_timer); |
| 483 | range = ktime_to_ns(ktime_sub(hard, soft)); |
| 484 | __hrtimer_start_range_ns(&dl_se->dl_timer, soft, |
| 485 | range, HRTIMER_MODE_ABS, 0); |
| 486 | |
| 487 | return hrtimer_active(&dl_se->dl_timer); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * This is the bandwidth enforcement timer callback. If here, we know |
| 492 | * a task is not on its dl_rq, since the fact that the timer was running |
| 493 | * means the task is throttled and needs a runtime replenishment. |
| 494 | * |
| 495 | * However, what we actually do depends on the fact the task is active, |
| 496 | * (it is on its rq) or has been removed from there by a call to |
| 497 | * dequeue_task_dl(). In the former case we must issue the runtime |
| 498 | * replenishment and add the task back to the dl_rq; in the latter, we just |
| 499 | * do nothing but clearing dl_throttled, so that runtime and deadline |
| 500 | * updating (and the queueing back to dl_rq) will be done by the |
| 501 | * next call to enqueue_task_dl(). |
| 502 | */ |
| 503 | static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) |
| 504 | { |
| 505 | struct sched_dl_entity *dl_se = container_of(timer, |
| 506 | struct sched_dl_entity, |
| 507 | dl_timer); |
| 508 | struct task_struct *p = dl_task_of(dl_se); |
Kirill Tkhai | 0f397f2 | 2014-05-20 13:33:42 +0400 | [diff] [blame] | 509 | struct rq *rq; |
| 510 | again: |
| 511 | rq = task_rq(p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 512 | raw_spin_lock(&rq->lock); |
| 513 | |
Kirill Tkhai | 0f397f2 | 2014-05-20 13:33:42 +0400 | [diff] [blame] | 514 | if (rq != task_rq(p)) { |
| 515 | /* Task was moved, retrying. */ |
| 516 | raw_spin_unlock(&rq->lock); |
| 517 | goto again; |
| 518 | } |
| 519 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 520 | /* |
| 521 | * We need to take care of a possible races here. In fact, the |
| 522 | * task might have changed its scheduling policy to something |
| 523 | * different from SCHED_DEADLINE or changed its reservation |
xiaofeng.yan | 4027d08 | 2014-05-09 03:21:27 +0000 | [diff] [blame] | 524 | * parameters (through sched_setattr()). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 525 | */ |
| 526 | if (!dl_task(p) || dl_se->dl_new) |
| 527 | goto unlock; |
| 528 | |
| 529 | sched_clock_tick(); |
| 530 | update_rq_clock(rq); |
| 531 | dl_se->dl_throttled = 0; |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 532 | dl_se->dl_yielded = 0; |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 533 | if (task_on_rq_queued(p)) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 534 | enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); |
| 535 | if (task_has_dl_policy(rq->curr)) |
| 536 | check_preempt_curr_dl(rq, p, 0); |
| 537 | else |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 538 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 539 | #ifdef CONFIG_SMP |
| 540 | /* |
| 541 | * Queueing this task back might have overloaded rq, |
| 542 | * check if we need to kick someone away. |
| 543 | */ |
| 544 | if (has_pushable_dl_tasks(rq)) |
| 545 | push_dl_task(rq); |
| 546 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 547 | } |
| 548 | unlock: |
| 549 | raw_spin_unlock(&rq->lock); |
| 550 | |
| 551 | return HRTIMER_NORESTART; |
| 552 | } |
| 553 | |
| 554 | void init_dl_task_timer(struct sched_dl_entity *dl_se) |
| 555 | { |
| 556 | struct hrtimer *timer = &dl_se->dl_timer; |
| 557 | |
| 558 | if (hrtimer_active(timer)) { |
| 559 | hrtimer_try_to_cancel(timer); |
| 560 | return; |
| 561 | } |
| 562 | |
| 563 | hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 564 | timer->function = dl_task_timer; |
| 565 | } |
| 566 | |
| 567 | static |
| 568 | int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) |
| 569 | { |
| 570 | int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); |
| 571 | int rorun = dl_se->runtime <= 0; |
| 572 | |
| 573 | if (!rorun && !dmiss) |
| 574 | return 0; |
| 575 | |
| 576 | /* |
| 577 | * If we are beyond our current deadline and we are still |
| 578 | * executing, then we have already used some of the runtime of |
| 579 | * the next instance. Thus, if we do not account that, we are |
| 580 | * stealing bandwidth from the system at each deadline miss! |
| 581 | */ |
| 582 | if (dmiss) { |
| 583 | dl_se->runtime = rorun ? dl_se->runtime : 0; |
| 584 | dl_se->runtime -= rq_clock(rq) - dl_se->deadline; |
| 585 | } |
| 586 | |
| 587 | return 1; |
| 588 | } |
| 589 | |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 590 | extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); |
| 591 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 592 | /* |
| 593 | * Update the current task's runtime statistics (provided it is still |
| 594 | * a -deadline task and has not been removed from the dl_rq). |
| 595 | */ |
| 596 | static void update_curr_dl(struct rq *rq) |
| 597 | { |
| 598 | struct task_struct *curr = rq->curr; |
| 599 | struct sched_dl_entity *dl_se = &curr->dl; |
| 600 | u64 delta_exec; |
| 601 | |
| 602 | if (!dl_task(curr) || !on_dl_rq(dl_se)) |
| 603 | return; |
| 604 | |
| 605 | /* |
| 606 | * Consumed budget is computed considering the time as |
| 607 | * observed by schedulable tasks (excluding time spent |
| 608 | * in hardirq context, etc.). Deadlines are instead |
| 609 | * computed using hard walltime. This seems to be the more |
| 610 | * natural solution, but the full ramifications of this |
| 611 | * approach need further study. |
| 612 | */ |
| 613 | delta_exec = rq_clock_task(rq) - curr->se.exec_start; |
Kirill Tkhai | 734ff2a | 2014-03-04 19:25:46 +0400 | [diff] [blame] | 614 | if (unlikely((s64)delta_exec <= 0)) |
| 615 | return; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 616 | |
| 617 | schedstat_set(curr->se.statistics.exec_max, |
| 618 | max(curr->se.statistics.exec_max, delta_exec)); |
| 619 | |
| 620 | curr->se.sum_exec_runtime += delta_exec; |
| 621 | account_group_exec_runtime(curr, delta_exec); |
| 622 | |
| 623 | curr->se.exec_start = rq_clock_task(rq); |
| 624 | cpuacct_charge(curr, delta_exec); |
| 625 | |
Dario Faggioli | 239be4a | 2013-11-07 14:43:39 +0100 | [diff] [blame] | 626 | sched_rt_avg_update(rq, delta_exec); |
| 627 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 628 | dl_se->runtime -= delta_exec; |
| 629 | if (dl_runtime_exceeded(rq, dl_se)) { |
| 630 | __dequeue_task_dl(rq, curr, 0); |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 631 | if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 632 | dl_se->dl_throttled = 1; |
| 633 | else |
| 634 | enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); |
| 635 | |
| 636 | if (!is_leftmost(curr, &rq->dl)) |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 637 | resched_curr(rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 638 | } |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 639 | |
| 640 | /* |
| 641 | * Because -- for now -- we share the rt bandwidth, we need to |
| 642 | * account our runtime there too, otherwise actual rt tasks |
| 643 | * would be able to exceed the shared quota. |
| 644 | * |
| 645 | * Account to the root rt group for now. |
| 646 | * |
| 647 | * The solution we're working towards is having the RT groups scheduled |
| 648 | * using deadline servers -- however there's a few nasties to figure |
| 649 | * out before that can happen. |
| 650 | */ |
| 651 | if (rt_bandwidth_enabled()) { |
| 652 | struct rt_rq *rt_rq = &rq->rt; |
| 653 | |
| 654 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 655 | /* |
| 656 | * We'll let actual RT tasks worry about the overflow here, we |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 657 | * have our own CBS to keep us inline; only account when RT |
| 658 | * bandwidth is relevant. |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 659 | */ |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 660 | if (sched_rt_bandwidth_account(rt_rq)) |
| 661 | rt_rq->rt_time += delta_exec; |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 662 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 663 | } |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 664 | } |
| 665 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 666 | #ifdef CONFIG_SMP |
| 667 | |
| 668 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); |
| 669 | |
| 670 | static inline u64 next_deadline(struct rq *rq) |
| 671 | { |
| 672 | struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); |
| 673 | |
| 674 | if (next && dl_prio(next->prio)) |
| 675 | return next->dl.deadline; |
| 676 | else |
| 677 | return 0; |
| 678 | } |
| 679 | |
| 680 | static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 681 | { |
| 682 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 683 | |
| 684 | if (dl_rq->earliest_dl.curr == 0 || |
| 685 | dl_time_before(deadline, dl_rq->earliest_dl.curr)) { |
| 686 | /* |
| 687 | * If the dl_rq had no -deadline tasks, or if the new task |
| 688 | * has shorter deadline than the current one on dl_rq, we |
| 689 | * know that the previous earliest becomes our next earliest, |
| 690 | * as the new task becomes the earliest itself. |
| 691 | */ |
| 692 | dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; |
| 693 | dl_rq->earliest_dl.curr = deadline; |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 694 | cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 695 | } else if (dl_rq->earliest_dl.next == 0 || |
| 696 | dl_time_before(deadline, dl_rq->earliest_dl.next)) { |
| 697 | /* |
| 698 | * On the other hand, if the new -deadline task has a |
| 699 | * a later deadline than the earliest one on dl_rq, but |
| 700 | * it is earlier than the next (if any), we must |
| 701 | * recompute the next-earliest. |
| 702 | */ |
| 703 | dl_rq->earliest_dl.next = next_deadline(rq); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 708 | { |
| 709 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 710 | |
| 711 | /* |
| 712 | * Since we may have removed our earliest (and/or next earliest) |
| 713 | * task we must recompute them. |
| 714 | */ |
| 715 | if (!dl_rq->dl_nr_running) { |
| 716 | dl_rq->earliest_dl.curr = 0; |
| 717 | dl_rq->earliest_dl.next = 0; |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 718 | cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 719 | } else { |
| 720 | struct rb_node *leftmost = dl_rq->rb_leftmost; |
| 721 | struct sched_dl_entity *entry; |
| 722 | |
| 723 | entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); |
| 724 | dl_rq->earliest_dl.curr = entry->deadline; |
| 725 | dl_rq->earliest_dl.next = next_deadline(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 726 | cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 727 | } |
| 728 | } |
| 729 | |
| 730 | #else |
| 731 | |
| 732 | static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 733 | static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 734 | |
| 735 | #endif /* CONFIG_SMP */ |
| 736 | |
| 737 | static inline |
| 738 | void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 739 | { |
| 740 | int prio = dl_task_of(dl_se)->prio; |
| 741 | u64 deadline = dl_se->deadline; |
| 742 | |
| 743 | WARN_ON(!dl_prio(prio)); |
| 744 | dl_rq->dl_nr_running++; |
Kirill Tkhai | 7246544 | 2014-05-09 03:00:14 +0400 | [diff] [blame] | 745 | add_nr_running(rq_of_dl_rq(dl_rq), 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 746 | |
| 747 | inc_dl_deadline(dl_rq, deadline); |
| 748 | inc_dl_migration(dl_se, dl_rq); |
| 749 | } |
| 750 | |
| 751 | static inline |
| 752 | void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 753 | { |
| 754 | int prio = dl_task_of(dl_se)->prio; |
| 755 | |
| 756 | WARN_ON(!dl_prio(prio)); |
| 757 | WARN_ON(!dl_rq->dl_nr_running); |
| 758 | dl_rq->dl_nr_running--; |
Kirill Tkhai | 7246544 | 2014-05-09 03:00:14 +0400 | [diff] [blame] | 759 | sub_nr_running(rq_of_dl_rq(dl_rq), 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 760 | |
| 761 | dec_dl_deadline(dl_rq, dl_se->deadline); |
| 762 | dec_dl_migration(dl_se, dl_rq); |
| 763 | } |
| 764 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 765 | static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) |
| 766 | { |
| 767 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 768 | struct rb_node **link = &dl_rq->rb_root.rb_node; |
| 769 | struct rb_node *parent = NULL; |
| 770 | struct sched_dl_entity *entry; |
| 771 | int leftmost = 1; |
| 772 | |
| 773 | BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); |
| 774 | |
| 775 | while (*link) { |
| 776 | parent = *link; |
| 777 | entry = rb_entry(parent, struct sched_dl_entity, rb_node); |
| 778 | if (dl_time_before(dl_se->deadline, entry->deadline)) |
| 779 | link = &parent->rb_left; |
| 780 | else { |
| 781 | link = &parent->rb_right; |
| 782 | leftmost = 0; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | if (leftmost) |
| 787 | dl_rq->rb_leftmost = &dl_se->rb_node; |
| 788 | |
| 789 | rb_link_node(&dl_se->rb_node, parent, link); |
| 790 | rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); |
| 791 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 792 | inc_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 793 | } |
| 794 | |
| 795 | static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 796 | { |
| 797 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 798 | |
| 799 | if (RB_EMPTY_NODE(&dl_se->rb_node)) |
| 800 | return; |
| 801 | |
| 802 | if (dl_rq->rb_leftmost == &dl_se->rb_node) { |
| 803 | struct rb_node *next_node; |
| 804 | |
| 805 | next_node = rb_next(&dl_se->rb_node); |
| 806 | dl_rq->rb_leftmost = next_node; |
| 807 | } |
| 808 | |
| 809 | rb_erase(&dl_se->rb_node, &dl_rq->rb_root); |
| 810 | RB_CLEAR_NODE(&dl_se->rb_node); |
| 811 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 812 | dec_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 813 | } |
| 814 | |
| 815 | static void |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 816 | enqueue_dl_entity(struct sched_dl_entity *dl_se, |
| 817 | struct sched_dl_entity *pi_se, int flags) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 818 | { |
| 819 | BUG_ON(on_dl_rq(dl_se)); |
| 820 | |
| 821 | /* |
| 822 | * If this is a wakeup or a new instance, the scheduling |
| 823 | * parameters of the task might need updating. Otherwise, |
| 824 | * we want a replenishment of its runtime. |
| 825 | */ |
| 826 | if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 827 | replenish_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 828 | else |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 829 | update_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 830 | |
| 831 | __enqueue_dl_entity(dl_se); |
| 832 | } |
| 833 | |
| 834 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 835 | { |
| 836 | __dequeue_dl_entity(dl_se); |
| 837 | } |
| 838 | |
| 839 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 840 | { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 841 | struct task_struct *pi_task = rt_mutex_get_top_task(p); |
| 842 | struct sched_dl_entity *pi_se = &p->dl; |
| 843 | |
| 844 | /* |
| 845 | * Use the scheduling parameters of the top pi-waiter |
| 846 | * task if we have one and its (relative) deadline is |
| 847 | * smaller than our one... OTW we keep our runtime and |
| 848 | * deadline. |
| 849 | */ |
Juri Lelli | 64be6f1 | 2014-10-24 10:16:37 +0100 | [diff] [blame^] | 850 | if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 851 | pi_se = &pi_task->dl; |
Juri Lelli | 64be6f1 | 2014-10-24 10:16:37 +0100 | [diff] [blame^] | 852 | } else if (!dl_prio(p->normal_prio)) { |
| 853 | /* |
| 854 | * Special case in which we have a !SCHED_DEADLINE task |
| 855 | * that is going to be deboosted, but exceedes its |
| 856 | * runtime while doing so. No point in replenishing |
| 857 | * it, as it's going to return back to its original |
| 858 | * scheduling class after this. |
| 859 | */ |
| 860 | BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); |
| 861 | return; |
| 862 | } |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 863 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 864 | /* |
| 865 | * If p is throttled, we do nothing. In fact, if it exhausted |
| 866 | * its budget it needs a replenishment and, since it now is on |
| 867 | * its rq, the bandwidth timer callback (which clearly has not |
| 868 | * run yet) will take care of this. |
| 869 | */ |
| 870 | if (p->dl.dl_throttled) |
| 871 | return; |
| 872 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 873 | enqueue_dl_entity(&p->dl, pi_se, flags); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 874 | |
| 875 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
| 876 | enqueue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 877 | } |
| 878 | |
| 879 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 880 | { |
| 881 | dequeue_dl_entity(&p->dl); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 882 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 883 | } |
| 884 | |
| 885 | static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 886 | { |
| 887 | update_curr_dl(rq); |
| 888 | __dequeue_task_dl(rq, p, flags); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 889 | } |
| 890 | |
| 891 | /* |
| 892 | * Yield task semantic for -deadline tasks is: |
| 893 | * |
| 894 | * get off from the CPU until our next instance, with |
| 895 | * a new runtime. This is of little use now, since we |
| 896 | * don't have a bandwidth reclaiming mechanism. Anyway, |
| 897 | * bandwidth reclaiming is planned for the future, and |
| 898 | * yield_task_dl will indicate that some spare budget |
| 899 | * is available for other task instances to use it. |
| 900 | */ |
| 901 | static void yield_task_dl(struct rq *rq) |
| 902 | { |
| 903 | struct task_struct *p = rq->curr; |
| 904 | |
| 905 | /* |
| 906 | * We make the task go to sleep until its current deadline by |
| 907 | * forcing its runtime to zero. This way, update_curr_dl() stops |
| 908 | * it and the bandwidth timer will wake it up and will give it |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 909 | * new scheduling parameters (thanks to dl_yielded=1). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 910 | */ |
| 911 | if (p->dl.runtime > 0) { |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 912 | rq->curr->dl.dl_yielded = 1; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 913 | p->dl.runtime = 0; |
| 914 | } |
| 915 | update_curr_dl(rq); |
| 916 | } |
| 917 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 918 | #ifdef CONFIG_SMP |
| 919 | |
| 920 | static int find_later_rq(struct task_struct *task); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 921 | |
| 922 | static int |
| 923 | select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) |
| 924 | { |
| 925 | struct task_struct *curr; |
| 926 | struct rq *rq; |
| 927 | |
| 928 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) |
| 929 | goto out; |
| 930 | |
| 931 | rq = cpu_rq(cpu); |
| 932 | |
| 933 | rcu_read_lock(); |
| 934 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ |
| 935 | |
| 936 | /* |
| 937 | * If we are dealing with a -deadline task, we must |
| 938 | * decide where to wake it up. |
| 939 | * If it has a later deadline and the current task |
| 940 | * on this rq can't move (provided the waking task |
| 941 | * can!) we prefer to send it somewhere else. On the |
| 942 | * other hand, if it has a shorter deadline, we |
| 943 | * try to make it stay here, it might be important. |
| 944 | */ |
| 945 | if (unlikely(dl_task(curr)) && |
| 946 | (curr->nr_cpus_allowed < 2 || |
| 947 | !dl_entity_preempt(&p->dl, &curr->dl)) && |
| 948 | (p->nr_cpus_allowed > 1)) { |
| 949 | int target = find_later_rq(p); |
| 950 | |
| 951 | if (target != -1) |
| 952 | cpu = target; |
| 953 | } |
| 954 | rcu_read_unlock(); |
| 955 | |
| 956 | out: |
| 957 | return cpu; |
| 958 | } |
| 959 | |
| 960 | static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) |
| 961 | { |
| 962 | /* |
| 963 | * Current can't be migrated, useless to reschedule, |
| 964 | * let's hope p can move out. |
| 965 | */ |
| 966 | if (rq->curr->nr_cpus_allowed == 1 || |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 967 | cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 968 | return; |
| 969 | |
| 970 | /* |
| 971 | * p is migratable, so let's not schedule it and |
| 972 | * see if it is pushed or pulled somewhere else. |
| 973 | */ |
| 974 | if (p->nr_cpus_allowed != 1 && |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 975 | cpudl_find(&rq->rd->cpudl, p, NULL) != -1) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 976 | return; |
| 977 | |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 978 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 979 | } |
| 980 | |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 981 | static int pull_dl_task(struct rq *this_rq); |
| 982 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 983 | #endif /* CONFIG_SMP */ |
| 984 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 985 | /* |
| 986 | * Only called when both the current and waking task are -deadline |
| 987 | * tasks. |
| 988 | */ |
| 989 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 990 | int flags) |
| 991 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 992 | if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 993 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 994 | return; |
| 995 | } |
| 996 | |
| 997 | #ifdef CONFIG_SMP |
| 998 | /* |
| 999 | * In the unlikely case current and p have the same deadline |
| 1000 | * let us try to decide what's the best thing to do... |
| 1001 | */ |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 1002 | if ((p->dl.deadline == rq->curr->dl.deadline) && |
| 1003 | !test_tsk_need_resched(rq->curr)) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1004 | check_preempt_equal_dl(rq, p); |
| 1005 | #endif /* CONFIG_SMP */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1006 | } |
| 1007 | |
| 1008 | #ifdef CONFIG_SCHED_HRTICK |
| 1009 | static void start_hrtick_dl(struct rq *rq, struct task_struct *p) |
| 1010 | { |
xiaofeng.yan | 177ef2a | 2014-08-26 03:15:41 +0000 | [diff] [blame] | 1011 | hrtick_start(rq, p->dl.runtime); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1012 | } |
| 1013 | #endif |
| 1014 | |
| 1015 | static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, |
| 1016 | struct dl_rq *dl_rq) |
| 1017 | { |
| 1018 | struct rb_node *left = dl_rq->rb_leftmost; |
| 1019 | |
| 1020 | if (!left) |
| 1021 | return NULL; |
| 1022 | |
| 1023 | return rb_entry(left, struct sched_dl_entity, rb_node); |
| 1024 | } |
| 1025 | |
Peter Zijlstra | 606dba2 | 2012-02-11 06:05:00 +0100 | [diff] [blame] | 1026 | struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1027 | { |
| 1028 | struct sched_dl_entity *dl_se; |
| 1029 | struct task_struct *p; |
| 1030 | struct dl_rq *dl_rq; |
| 1031 | |
| 1032 | dl_rq = &rq->dl; |
| 1033 | |
Kirill Tkhai | a1d9a32 | 2014-04-10 17:38:36 +0400 | [diff] [blame] | 1034 | if (need_pull_dl_task(rq, prev)) { |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 1035 | pull_dl_task(rq); |
Kirill Tkhai | a1d9a32 | 2014-04-10 17:38:36 +0400 | [diff] [blame] | 1036 | /* |
| 1037 | * pull_rt_task() can drop (and re-acquire) rq->lock; this |
| 1038 | * means a stop task can slip in, in which case we need to |
| 1039 | * re-start task selection. |
| 1040 | */ |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1041 | if (rq->stop && task_on_rq_queued(rq->stop)) |
Kirill Tkhai | a1d9a32 | 2014-04-10 17:38:36 +0400 | [diff] [blame] | 1042 | return RETRY_TASK; |
| 1043 | } |
| 1044 | |
Kirill Tkhai | 734ff2a | 2014-03-04 19:25:46 +0400 | [diff] [blame] | 1045 | /* |
| 1046 | * When prev is DL, we may throttle it in put_prev_task(). |
| 1047 | * So, we update time before we check for dl_nr_running. |
| 1048 | */ |
| 1049 | if (prev->sched_class == &dl_sched_class) |
| 1050 | update_curr_dl(rq); |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 1051 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1052 | if (unlikely(!dl_rq->dl_nr_running)) |
| 1053 | return NULL; |
| 1054 | |
Peter Zijlstra | 3f1d2a3 | 2014-02-12 10:49:30 +0100 | [diff] [blame] | 1055 | put_prev_task(rq, prev); |
Peter Zijlstra | 606dba2 | 2012-02-11 06:05:00 +0100 | [diff] [blame] | 1056 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1057 | dl_se = pick_next_dl_entity(rq, dl_rq); |
| 1058 | BUG_ON(!dl_se); |
| 1059 | |
| 1060 | p = dl_task_of(dl_se); |
| 1061 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1062 | |
| 1063 | /* Running task will never be pushed. */ |
Juri Lelli | 7136265 | 2014-01-14 12:03:51 +0100 | [diff] [blame] | 1064 | dequeue_pushable_dl_task(rq, p); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1065 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1066 | #ifdef CONFIG_SCHED_HRTICK |
| 1067 | if (hrtick_enabled(rq)) |
| 1068 | start_hrtick_dl(rq, p); |
| 1069 | #endif |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1070 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 1071 | set_post_schedule(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1072 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1073 | return p; |
| 1074 | } |
| 1075 | |
| 1076 | static void put_prev_task_dl(struct rq *rq, struct task_struct *p) |
| 1077 | { |
| 1078 | update_curr_dl(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1079 | |
| 1080 | if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) |
| 1081 | enqueue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1082 | } |
| 1083 | |
| 1084 | static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) |
| 1085 | { |
| 1086 | update_curr_dl(rq); |
| 1087 | |
| 1088 | #ifdef CONFIG_SCHED_HRTICK |
| 1089 | if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) |
| 1090 | start_hrtick_dl(rq, p); |
| 1091 | #endif |
| 1092 | } |
| 1093 | |
| 1094 | static void task_fork_dl(struct task_struct *p) |
| 1095 | { |
| 1096 | /* |
| 1097 | * SCHED_DEADLINE tasks cannot fork and this is achieved through |
| 1098 | * sched_fork() |
| 1099 | */ |
| 1100 | } |
| 1101 | |
| 1102 | static void task_dead_dl(struct task_struct *p) |
| 1103 | { |
| 1104 | struct hrtimer *timer = &p->dl.dl_timer; |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 1105 | struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); |
| 1106 | |
| 1107 | /* |
| 1108 | * Since we are TASK_DEAD we won't slip out of the domain! |
| 1109 | */ |
| 1110 | raw_spin_lock_irq(&dl_b->lock); |
| 1111 | dl_b->total_bw -= p->dl.dl_bw; |
| 1112 | raw_spin_unlock_irq(&dl_b->lock); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1113 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 1114 | hrtimer_cancel(timer); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1115 | } |
| 1116 | |
| 1117 | static void set_curr_task_dl(struct rq *rq) |
| 1118 | { |
| 1119 | struct task_struct *p = rq->curr; |
| 1120 | |
| 1121 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1122 | |
| 1123 | /* You can't push away the running task */ |
| 1124 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1125 | } |
| 1126 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1127 | #ifdef CONFIG_SMP |
| 1128 | |
| 1129 | /* Only try algorithms three times */ |
| 1130 | #define DL_MAX_TRIES 3 |
| 1131 | |
| 1132 | static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) |
| 1133 | { |
| 1134 | if (!task_running(rq, p) && |
Kirill Tkhai | 1ba93d4 | 2014-09-12 17:42:20 +0400 | [diff] [blame] | 1135 | cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1136 | return 1; |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1137 | return 0; |
| 1138 | } |
| 1139 | |
| 1140 | /* Returns the second earliest -deadline task, NULL otherwise */ |
| 1141 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) |
| 1142 | { |
| 1143 | struct rb_node *next_node = rq->dl.rb_leftmost; |
| 1144 | struct sched_dl_entity *dl_se; |
| 1145 | struct task_struct *p = NULL; |
| 1146 | |
| 1147 | next_node: |
| 1148 | next_node = rb_next(next_node); |
| 1149 | if (next_node) { |
| 1150 | dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); |
| 1151 | p = dl_task_of(dl_se); |
| 1152 | |
| 1153 | if (pick_dl_task(rq, p, cpu)) |
| 1154 | return p; |
| 1155 | |
| 1156 | goto next_node; |
| 1157 | } |
| 1158 | |
| 1159 | return NULL; |
| 1160 | } |
| 1161 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1162 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); |
| 1163 | |
| 1164 | static int find_later_rq(struct task_struct *task) |
| 1165 | { |
| 1166 | struct sched_domain *sd; |
Christoph Lameter | 4ba2968 | 2014-08-26 19:12:21 -0500 | [diff] [blame] | 1167 | struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1168 | int this_cpu = smp_processor_id(); |
| 1169 | int best_cpu, cpu = task_cpu(task); |
| 1170 | |
| 1171 | /* Make sure the mask is initialized first */ |
| 1172 | if (unlikely(!later_mask)) |
| 1173 | return -1; |
| 1174 | |
| 1175 | if (task->nr_cpus_allowed == 1) |
| 1176 | return -1; |
| 1177 | |
Juri Lelli | 91ec677 | 2014-09-19 10:22:41 +0100 | [diff] [blame] | 1178 | /* |
| 1179 | * We have to consider system topology and task affinity |
| 1180 | * first, then we can look for a suitable cpu. |
| 1181 | */ |
| 1182 | cpumask_copy(later_mask, task_rq(task)->rd->span); |
| 1183 | cpumask_and(later_mask, later_mask, cpu_active_mask); |
| 1184 | cpumask_and(later_mask, later_mask, &task->cpus_allowed); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1185 | best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, |
| 1186 | task, later_mask); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1187 | if (best_cpu == -1) |
| 1188 | return -1; |
| 1189 | |
| 1190 | /* |
| 1191 | * If we are here, some target has been found, |
| 1192 | * the most suitable of which is cached in best_cpu. |
| 1193 | * This is, among the runqueues where the current tasks |
| 1194 | * have later deadlines than the task's one, the rq |
| 1195 | * with the latest possible one. |
| 1196 | * |
| 1197 | * Now we check how well this matches with task's |
| 1198 | * affinity and system topology. |
| 1199 | * |
| 1200 | * The last cpu where the task run is our first |
| 1201 | * guess, since it is most likely cache-hot there. |
| 1202 | */ |
| 1203 | if (cpumask_test_cpu(cpu, later_mask)) |
| 1204 | return cpu; |
| 1205 | /* |
| 1206 | * Check if this_cpu is to be skipped (i.e., it is |
| 1207 | * not in the mask) or not. |
| 1208 | */ |
| 1209 | if (!cpumask_test_cpu(this_cpu, later_mask)) |
| 1210 | this_cpu = -1; |
| 1211 | |
| 1212 | rcu_read_lock(); |
| 1213 | for_each_domain(cpu, sd) { |
| 1214 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1215 | |
| 1216 | /* |
| 1217 | * If possible, preempting this_cpu is |
| 1218 | * cheaper than migrating. |
| 1219 | */ |
| 1220 | if (this_cpu != -1 && |
| 1221 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
| 1222 | rcu_read_unlock(); |
| 1223 | return this_cpu; |
| 1224 | } |
| 1225 | |
| 1226 | /* |
| 1227 | * Last chance: if best_cpu is valid and is |
| 1228 | * in the mask, that becomes our choice. |
| 1229 | */ |
| 1230 | if (best_cpu < nr_cpu_ids && |
| 1231 | cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { |
| 1232 | rcu_read_unlock(); |
| 1233 | return best_cpu; |
| 1234 | } |
| 1235 | } |
| 1236 | } |
| 1237 | rcu_read_unlock(); |
| 1238 | |
| 1239 | /* |
| 1240 | * At this point, all our guesses failed, we just return |
| 1241 | * 'something', and let the caller sort the things out. |
| 1242 | */ |
| 1243 | if (this_cpu != -1) |
| 1244 | return this_cpu; |
| 1245 | |
| 1246 | cpu = cpumask_any(later_mask); |
| 1247 | if (cpu < nr_cpu_ids) |
| 1248 | return cpu; |
| 1249 | |
| 1250 | return -1; |
| 1251 | } |
| 1252 | |
| 1253 | /* Locks the rq it finds */ |
| 1254 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) |
| 1255 | { |
| 1256 | struct rq *later_rq = NULL; |
| 1257 | int tries; |
| 1258 | int cpu; |
| 1259 | |
| 1260 | for (tries = 0; tries < DL_MAX_TRIES; tries++) { |
| 1261 | cpu = find_later_rq(task); |
| 1262 | |
| 1263 | if ((cpu == -1) || (cpu == rq->cpu)) |
| 1264 | break; |
| 1265 | |
| 1266 | later_rq = cpu_rq(cpu); |
| 1267 | |
| 1268 | /* Retry if something changed. */ |
| 1269 | if (double_lock_balance(rq, later_rq)) { |
| 1270 | if (unlikely(task_rq(task) != rq || |
| 1271 | !cpumask_test_cpu(later_rq->cpu, |
| 1272 | &task->cpus_allowed) || |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1273 | task_running(rq, task) || |
| 1274 | !task_on_rq_queued(task))) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1275 | double_unlock_balance(rq, later_rq); |
| 1276 | later_rq = NULL; |
| 1277 | break; |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | /* |
| 1282 | * If the rq we found has no -deadline task, or |
| 1283 | * its earliest one has a later deadline than our |
| 1284 | * task, the rq is a good one. |
| 1285 | */ |
| 1286 | if (!later_rq->dl.dl_nr_running || |
| 1287 | dl_time_before(task->dl.deadline, |
| 1288 | later_rq->dl.earliest_dl.curr)) |
| 1289 | break; |
| 1290 | |
| 1291 | /* Otherwise we try again. */ |
| 1292 | double_unlock_balance(rq, later_rq); |
| 1293 | later_rq = NULL; |
| 1294 | } |
| 1295 | |
| 1296 | return later_rq; |
| 1297 | } |
| 1298 | |
| 1299 | static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) |
| 1300 | { |
| 1301 | struct task_struct *p; |
| 1302 | |
| 1303 | if (!has_pushable_dl_tasks(rq)) |
| 1304 | return NULL; |
| 1305 | |
| 1306 | p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, |
| 1307 | struct task_struct, pushable_dl_tasks); |
| 1308 | |
| 1309 | BUG_ON(rq->cpu != task_cpu(p)); |
| 1310 | BUG_ON(task_current(rq, p)); |
| 1311 | BUG_ON(p->nr_cpus_allowed <= 1); |
| 1312 | |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1313 | BUG_ON(!task_on_rq_queued(p)); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1314 | BUG_ON(!dl_task(p)); |
| 1315 | |
| 1316 | return p; |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * See if the non running -deadline tasks on this rq |
| 1321 | * can be sent to some other CPU where they can preempt |
| 1322 | * and start executing. |
| 1323 | */ |
| 1324 | static int push_dl_task(struct rq *rq) |
| 1325 | { |
| 1326 | struct task_struct *next_task; |
| 1327 | struct rq *later_rq; |
| 1328 | |
| 1329 | if (!rq->dl.overloaded) |
| 1330 | return 0; |
| 1331 | |
| 1332 | next_task = pick_next_pushable_dl_task(rq); |
| 1333 | if (!next_task) |
| 1334 | return 0; |
| 1335 | |
| 1336 | retry: |
| 1337 | if (unlikely(next_task == rq->curr)) { |
| 1338 | WARN_ON(1); |
| 1339 | return 0; |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * If next_task preempts rq->curr, and rq->curr |
| 1344 | * can move away, it makes sense to just reschedule |
| 1345 | * without going further in pushing next_task. |
| 1346 | */ |
| 1347 | if (dl_task(rq->curr) && |
| 1348 | dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && |
| 1349 | rq->curr->nr_cpus_allowed > 1) { |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 1350 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1351 | return 0; |
| 1352 | } |
| 1353 | |
| 1354 | /* We might release rq lock */ |
| 1355 | get_task_struct(next_task); |
| 1356 | |
| 1357 | /* Will lock the rq it'll find */ |
| 1358 | later_rq = find_lock_later_rq(next_task, rq); |
| 1359 | if (!later_rq) { |
| 1360 | struct task_struct *task; |
| 1361 | |
| 1362 | /* |
| 1363 | * We must check all this again, since |
| 1364 | * find_lock_later_rq releases rq->lock and it is |
| 1365 | * then possible that next_task has migrated. |
| 1366 | */ |
| 1367 | task = pick_next_pushable_dl_task(rq); |
| 1368 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
| 1369 | /* |
| 1370 | * The task is still there. We don't try |
| 1371 | * again, some other cpu will pull it when ready. |
| 1372 | */ |
| 1373 | dequeue_pushable_dl_task(rq, next_task); |
| 1374 | goto out; |
| 1375 | } |
| 1376 | |
| 1377 | if (!task) |
| 1378 | /* No more tasks */ |
| 1379 | goto out; |
| 1380 | |
| 1381 | put_task_struct(next_task); |
| 1382 | next_task = task; |
| 1383 | goto retry; |
| 1384 | } |
| 1385 | |
| 1386 | deactivate_task(rq, next_task, 0); |
| 1387 | set_task_cpu(next_task, later_rq->cpu); |
| 1388 | activate_task(later_rq, next_task, 0); |
| 1389 | |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 1390 | resched_curr(later_rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1391 | |
| 1392 | double_unlock_balance(rq, later_rq); |
| 1393 | |
| 1394 | out: |
| 1395 | put_task_struct(next_task); |
| 1396 | |
| 1397 | return 1; |
| 1398 | } |
| 1399 | |
| 1400 | static void push_dl_tasks(struct rq *rq) |
| 1401 | { |
| 1402 | /* Terminates as it moves a -deadline task */ |
| 1403 | while (push_dl_task(rq)) |
| 1404 | ; |
| 1405 | } |
| 1406 | |
| 1407 | static int pull_dl_task(struct rq *this_rq) |
| 1408 | { |
| 1409 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
| 1410 | struct task_struct *p; |
| 1411 | struct rq *src_rq; |
| 1412 | u64 dmin = LONG_MAX; |
| 1413 | |
| 1414 | if (likely(!dl_overloaded(this_rq))) |
| 1415 | return 0; |
| 1416 | |
| 1417 | /* |
| 1418 | * Match the barrier from dl_set_overloaded; this guarantees that if we |
| 1419 | * see overloaded we must also see the dlo_mask bit. |
| 1420 | */ |
| 1421 | smp_rmb(); |
| 1422 | |
| 1423 | for_each_cpu(cpu, this_rq->rd->dlo_mask) { |
| 1424 | if (this_cpu == cpu) |
| 1425 | continue; |
| 1426 | |
| 1427 | src_rq = cpu_rq(cpu); |
| 1428 | |
| 1429 | /* |
| 1430 | * It looks racy, abd it is! However, as in sched_rt.c, |
| 1431 | * we are fine with this. |
| 1432 | */ |
| 1433 | if (this_rq->dl.dl_nr_running && |
| 1434 | dl_time_before(this_rq->dl.earliest_dl.curr, |
| 1435 | src_rq->dl.earliest_dl.next)) |
| 1436 | continue; |
| 1437 | |
| 1438 | /* Might drop this_rq->lock */ |
| 1439 | double_lock_balance(this_rq, src_rq); |
| 1440 | |
| 1441 | /* |
| 1442 | * If there are no more pullable tasks on the |
| 1443 | * rq, we're done with it. |
| 1444 | */ |
| 1445 | if (src_rq->dl.dl_nr_running <= 1) |
| 1446 | goto skip; |
| 1447 | |
| 1448 | p = pick_next_earliest_dl_task(src_rq, this_cpu); |
| 1449 | |
| 1450 | /* |
| 1451 | * We found a task to be pulled if: |
| 1452 | * - it preempts our current (if there's one), |
| 1453 | * - it will preempt the last one we pulled (if any). |
| 1454 | */ |
| 1455 | if (p && dl_time_before(p->dl.deadline, dmin) && |
| 1456 | (!this_rq->dl.dl_nr_running || |
| 1457 | dl_time_before(p->dl.deadline, |
| 1458 | this_rq->dl.earliest_dl.curr))) { |
| 1459 | WARN_ON(p == src_rq->curr); |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1460 | WARN_ON(!task_on_rq_queued(p)); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1461 | |
| 1462 | /* |
| 1463 | * Then we pull iff p has actually an earlier |
| 1464 | * deadline than the current task of its runqueue. |
| 1465 | */ |
| 1466 | if (dl_time_before(p->dl.deadline, |
| 1467 | src_rq->curr->dl.deadline)) |
| 1468 | goto skip; |
| 1469 | |
| 1470 | ret = 1; |
| 1471 | |
| 1472 | deactivate_task(src_rq, p, 0); |
| 1473 | set_task_cpu(p, this_cpu); |
| 1474 | activate_task(this_rq, p, 0); |
| 1475 | dmin = p->dl.deadline; |
| 1476 | |
| 1477 | /* Is there any other task even earlier? */ |
| 1478 | } |
| 1479 | skip: |
| 1480 | double_unlock_balance(this_rq, src_rq); |
| 1481 | } |
| 1482 | |
| 1483 | return ret; |
| 1484 | } |
| 1485 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1486 | static void post_schedule_dl(struct rq *rq) |
| 1487 | { |
| 1488 | push_dl_tasks(rq); |
| 1489 | } |
| 1490 | |
| 1491 | /* |
| 1492 | * Since the task is not running and a reschedule is not going to happen |
| 1493 | * anytime soon on its runqueue, we try pushing it away now. |
| 1494 | */ |
| 1495 | static void task_woken_dl(struct rq *rq, struct task_struct *p) |
| 1496 | { |
| 1497 | if (!task_running(rq, p) && |
| 1498 | !test_tsk_need_resched(rq->curr) && |
| 1499 | has_pushable_dl_tasks(rq) && |
| 1500 | p->nr_cpus_allowed > 1 && |
| 1501 | dl_task(rq->curr) && |
| 1502 | (rq->curr->nr_cpus_allowed < 2 || |
| 1503 | dl_entity_preempt(&rq->curr->dl, &p->dl))) { |
| 1504 | push_dl_tasks(rq); |
| 1505 | } |
| 1506 | } |
| 1507 | |
| 1508 | static void set_cpus_allowed_dl(struct task_struct *p, |
| 1509 | const struct cpumask *new_mask) |
| 1510 | { |
| 1511 | struct rq *rq; |
| 1512 | int weight; |
| 1513 | |
| 1514 | BUG_ON(!dl_task(p)); |
| 1515 | |
| 1516 | /* |
| 1517 | * Update only if the task is actually running (i.e., |
| 1518 | * it is on the rq AND it is not throttled). |
| 1519 | */ |
| 1520 | if (!on_dl_rq(&p->dl)) |
| 1521 | return; |
| 1522 | |
| 1523 | weight = cpumask_weight(new_mask); |
| 1524 | |
| 1525 | /* |
| 1526 | * Only update if the process changes its state from whether it |
| 1527 | * can migrate or not. |
| 1528 | */ |
| 1529 | if ((p->nr_cpus_allowed > 1) == (weight > 1)) |
| 1530 | return; |
| 1531 | |
| 1532 | rq = task_rq(p); |
| 1533 | |
| 1534 | /* |
| 1535 | * The process used to be able to migrate OR it can now migrate |
| 1536 | */ |
| 1537 | if (weight <= 1) { |
| 1538 | if (!task_current(rq, p)) |
| 1539 | dequeue_pushable_dl_task(rq, p); |
| 1540 | BUG_ON(!rq->dl.dl_nr_migratory); |
| 1541 | rq->dl.dl_nr_migratory--; |
| 1542 | } else { |
| 1543 | if (!task_current(rq, p)) |
| 1544 | enqueue_pushable_dl_task(rq, p); |
| 1545 | rq->dl.dl_nr_migratory++; |
| 1546 | } |
| 1547 | |
| 1548 | update_dl_migration(&rq->dl); |
| 1549 | } |
| 1550 | |
| 1551 | /* Assumes rq->lock is held */ |
| 1552 | static void rq_online_dl(struct rq *rq) |
| 1553 | { |
| 1554 | if (rq->dl.overloaded) |
| 1555 | dl_set_overload(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1556 | |
| 1557 | if (rq->dl.dl_nr_running > 0) |
| 1558 | cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1559 | } |
| 1560 | |
| 1561 | /* Assumes rq->lock is held */ |
| 1562 | static void rq_offline_dl(struct rq *rq) |
| 1563 | { |
| 1564 | if (rq->dl.overloaded) |
| 1565 | dl_clear_overload(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1566 | |
| 1567 | cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1568 | } |
| 1569 | |
| 1570 | void init_sched_dl_class(void) |
| 1571 | { |
| 1572 | unsigned int i; |
| 1573 | |
| 1574 | for_each_possible_cpu(i) |
| 1575 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), |
| 1576 | GFP_KERNEL, cpu_to_node(i)); |
| 1577 | } |
| 1578 | |
| 1579 | #endif /* CONFIG_SMP */ |
| 1580 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1581 | static void switched_from_dl(struct rq *rq, struct task_struct *p) |
| 1582 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1583 | if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1584 | hrtimer_try_to_cancel(&p->dl.dl_timer); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1585 | |
Juri Lelli | a5e7be3 | 2014-09-19 10:22:39 +0100 | [diff] [blame] | 1586 | __dl_clear_params(p); |
| 1587 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1588 | #ifdef CONFIG_SMP |
| 1589 | /* |
| 1590 | * Since this might be the only -deadline task on the rq, |
| 1591 | * this is the right place to try to pull some other one |
| 1592 | * from an overloaded cpu, if any. |
| 1593 | */ |
| 1594 | if (!rq->dl.dl_nr_running) |
| 1595 | pull_dl_task(rq); |
| 1596 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1597 | } |
| 1598 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1599 | /* |
| 1600 | * When switching to -deadline, we may overload the rq, then |
| 1601 | * we try to push someone off, if possible. |
| 1602 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1603 | static void switched_to_dl(struct rq *rq, struct task_struct *p) |
| 1604 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1605 | int check_resched = 1; |
| 1606 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1607 | /* |
| 1608 | * If p is throttled, don't consider the possibility |
| 1609 | * of preempting rq->curr, the check will be done right |
| 1610 | * after its runtime will get replenished. |
| 1611 | */ |
| 1612 | if (unlikely(p->dl.dl_throttled)) |
| 1613 | return; |
| 1614 | |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1615 | if (task_on_rq_queued(p) && rq->curr != p) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1616 | #ifdef CONFIG_SMP |
| 1617 | if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) |
| 1618 | /* Only reschedule if pushing failed */ |
| 1619 | check_resched = 0; |
| 1620 | #endif /* CONFIG_SMP */ |
| 1621 | if (check_resched && task_has_dl_policy(rq->curr)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1622 | check_preempt_curr_dl(rq, p, 0); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1623 | } |
| 1624 | } |
| 1625 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1626 | /* |
| 1627 | * If the scheduling parameters of a -deadline task changed, |
| 1628 | * a push or pull operation might be needed. |
| 1629 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1630 | static void prio_changed_dl(struct rq *rq, struct task_struct *p, |
| 1631 | int oldprio) |
| 1632 | { |
Kirill Tkhai | da0c1e6 | 2014-08-20 13:47:32 +0400 | [diff] [blame] | 1633 | if (task_on_rq_queued(p) || rq->curr == p) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1634 | #ifdef CONFIG_SMP |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1635 | /* |
| 1636 | * This might be too much, but unfortunately |
| 1637 | * we don't have the old deadline value, and |
| 1638 | * we can't argue if the task is increasing |
| 1639 | * or lowering its prio, so... |
| 1640 | */ |
| 1641 | if (!rq->dl.overloaded) |
| 1642 | pull_dl_task(rq); |
| 1643 | |
| 1644 | /* |
| 1645 | * If we now have a earlier deadline task than p, |
| 1646 | * then reschedule, provided p is still on this |
| 1647 | * runqueue. |
| 1648 | */ |
| 1649 | if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && |
| 1650 | rq->curr == p) |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 1651 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1652 | #else |
| 1653 | /* |
| 1654 | * Again, we don't know if p has a earlier |
| 1655 | * or later deadline, so let's blindly set a |
| 1656 | * (maybe not needed) rescheduling point. |
| 1657 | */ |
Kirill Tkhai | 8875125 | 2014-06-29 00:03:57 +0400 | [diff] [blame] | 1658 | resched_curr(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1659 | #endif /* CONFIG_SMP */ |
| 1660 | } else |
| 1661 | switched_to_dl(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1662 | } |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1663 | |
| 1664 | const struct sched_class dl_sched_class = { |
| 1665 | .next = &rt_sched_class, |
| 1666 | .enqueue_task = enqueue_task_dl, |
| 1667 | .dequeue_task = dequeue_task_dl, |
| 1668 | .yield_task = yield_task_dl, |
| 1669 | |
| 1670 | .check_preempt_curr = check_preempt_curr_dl, |
| 1671 | |
| 1672 | .pick_next_task = pick_next_task_dl, |
| 1673 | .put_prev_task = put_prev_task_dl, |
| 1674 | |
| 1675 | #ifdef CONFIG_SMP |
| 1676 | .select_task_rq = select_task_rq_dl, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1677 | .set_cpus_allowed = set_cpus_allowed_dl, |
| 1678 | .rq_online = rq_online_dl, |
| 1679 | .rq_offline = rq_offline_dl, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1680 | .post_schedule = post_schedule_dl, |
| 1681 | .task_woken = task_woken_dl, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1682 | #endif |
| 1683 | |
| 1684 | .set_curr_task = set_curr_task_dl, |
| 1685 | .task_tick = task_tick_dl, |
| 1686 | .task_fork = task_fork_dl, |
| 1687 | .task_dead = task_dead_dl, |
| 1688 | |
| 1689 | .prio_changed = prio_changed_dl, |
| 1690 | .switched_from = switched_from_dl, |
| 1691 | .switched_to = switched_to_dl, |
| 1692 | }; |