Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Deadline Scheduling Class (SCHED_DEADLINE) |
| 3 | * |
| 4 | * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). |
| 5 | * |
| 6 | * Tasks that periodically executes their instances for less than their |
| 7 | * runtime won't miss any of their deadlines. |
| 8 | * Tasks that are not periodic or sporadic or that tries to execute more |
| 9 | * than their reserved bandwidth will be slowed down (and may potentially |
| 10 | * miss some of their deadlines), and won't affect any other task. |
| 11 | * |
| 12 | * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 13 | * Juri Lelli <juri.lelli@gmail.com>, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 14 | * Michael Trimarchi <michael@amarulasolutions.com>, |
| 15 | * Fabio Checconi <fchecconi@gmail.com> |
| 16 | */ |
| 17 | #include "sched.h" |
| 18 | |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 19 | #include <linux/slab.h> |
| 20 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 21 | struct dl_bandwidth def_dl_bandwidth; |
| 22 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 23 | static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) |
| 24 | { |
| 25 | return container_of(dl_se, struct task_struct, dl); |
| 26 | } |
| 27 | |
| 28 | static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) |
| 29 | { |
| 30 | return container_of(dl_rq, struct rq, dl); |
| 31 | } |
| 32 | |
| 33 | static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) |
| 34 | { |
| 35 | struct task_struct *p = dl_task_of(dl_se); |
| 36 | struct rq *rq = task_rq(p); |
| 37 | |
| 38 | return &rq->dl; |
| 39 | } |
| 40 | |
| 41 | static inline int on_dl_rq(struct sched_dl_entity *dl_se) |
| 42 | { |
| 43 | return !RB_EMPTY_NODE(&dl_se->rb_node); |
| 44 | } |
| 45 | |
| 46 | static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) |
| 47 | { |
| 48 | struct sched_dl_entity *dl_se = &p->dl; |
| 49 | |
| 50 | return dl_rq->rb_leftmost == &dl_se->rb_node; |
| 51 | } |
| 52 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 53 | void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) |
| 54 | { |
| 55 | raw_spin_lock_init(&dl_b->dl_runtime_lock); |
| 56 | dl_b->dl_period = period; |
| 57 | dl_b->dl_runtime = runtime; |
| 58 | } |
| 59 | |
| 60 | extern unsigned long to_ratio(u64 period, u64 runtime); |
| 61 | |
| 62 | void init_dl_bw(struct dl_bw *dl_b) |
| 63 | { |
| 64 | raw_spin_lock_init(&dl_b->lock); |
| 65 | raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 66 | if (global_rt_runtime() == RUNTIME_INF) |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 67 | dl_b->bw = -1; |
| 68 | else |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 69 | dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 70 | raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); |
| 71 | dl_b->total_bw = 0; |
| 72 | } |
| 73 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 74 | void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) |
| 75 | { |
| 76 | dl_rq->rb_root = RB_ROOT; |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 77 | |
| 78 | #ifdef CONFIG_SMP |
| 79 | /* zero means no -deadline tasks */ |
| 80 | dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; |
| 81 | |
| 82 | dl_rq->dl_nr_migratory = 0; |
| 83 | dl_rq->overloaded = 0; |
| 84 | dl_rq->pushable_dl_tasks_root = RB_ROOT; |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 85 | #else |
| 86 | init_dl_bw(&dl_rq->dl_bw); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 87 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 88 | } |
| 89 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 90 | #ifdef CONFIG_SMP |
| 91 | |
| 92 | static inline int dl_overloaded(struct rq *rq) |
| 93 | { |
| 94 | return atomic_read(&rq->rd->dlo_count); |
| 95 | } |
| 96 | |
| 97 | static inline void dl_set_overload(struct rq *rq) |
| 98 | { |
| 99 | if (!rq->online) |
| 100 | return; |
| 101 | |
| 102 | cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); |
| 103 | /* |
| 104 | * Must be visible before the overload count is |
| 105 | * set (as in sched_rt.c). |
| 106 | * |
| 107 | * Matched by the barrier in pull_dl_task(). |
| 108 | */ |
| 109 | smp_wmb(); |
| 110 | atomic_inc(&rq->rd->dlo_count); |
| 111 | } |
| 112 | |
| 113 | static inline void dl_clear_overload(struct rq *rq) |
| 114 | { |
| 115 | if (!rq->online) |
| 116 | return; |
| 117 | |
| 118 | atomic_dec(&rq->rd->dlo_count); |
| 119 | cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); |
| 120 | } |
| 121 | |
| 122 | static void update_dl_migration(struct dl_rq *dl_rq) |
| 123 | { |
Kirill Tkhai | 995b9ea | 2014-02-18 02:24:13 +0400 | [diff] [blame] | 124 | if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 125 | if (!dl_rq->overloaded) { |
| 126 | dl_set_overload(rq_of_dl_rq(dl_rq)); |
| 127 | dl_rq->overloaded = 1; |
| 128 | } |
| 129 | } else if (dl_rq->overloaded) { |
| 130 | dl_clear_overload(rq_of_dl_rq(dl_rq)); |
| 131 | dl_rq->overloaded = 0; |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 136 | { |
| 137 | struct task_struct *p = dl_task_of(dl_se); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 138 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 139 | if (p->nr_cpus_allowed > 1) |
| 140 | dl_rq->dl_nr_migratory++; |
| 141 | |
| 142 | update_dl_migration(dl_rq); |
| 143 | } |
| 144 | |
| 145 | static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 146 | { |
| 147 | struct task_struct *p = dl_task_of(dl_se); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 148 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 149 | if (p->nr_cpus_allowed > 1) |
| 150 | dl_rq->dl_nr_migratory--; |
| 151 | |
| 152 | update_dl_migration(dl_rq); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * The list of pushable -deadline task is not a plist, like in |
| 157 | * sched_rt.c, it is an rb-tree with tasks ordered by deadline. |
| 158 | */ |
| 159 | static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 160 | { |
| 161 | struct dl_rq *dl_rq = &rq->dl; |
| 162 | struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; |
| 163 | struct rb_node *parent = NULL; |
| 164 | struct task_struct *entry; |
| 165 | int leftmost = 1; |
| 166 | |
| 167 | BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); |
| 168 | |
| 169 | while (*link) { |
| 170 | parent = *link; |
| 171 | entry = rb_entry(parent, struct task_struct, |
| 172 | pushable_dl_tasks); |
| 173 | if (dl_entity_preempt(&p->dl, &entry->dl)) |
| 174 | link = &parent->rb_left; |
| 175 | else { |
| 176 | link = &parent->rb_right; |
| 177 | leftmost = 0; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | if (leftmost) |
| 182 | dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; |
| 183 | |
| 184 | rb_link_node(&p->pushable_dl_tasks, parent, link); |
| 185 | rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 186 | } |
| 187 | |
| 188 | static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 189 | { |
| 190 | struct dl_rq *dl_rq = &rq->dl; |
| 191 | |
| 192 | if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) |
| 193 | return; |
| 194 | |
| 195 | if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { |
| 196 | struct rb_node *next_node; |
| 197 | |
| 198 | next_node = rb_next(&p->pushable_dl_tasks); |
| 199 | dl_rq->pushable_dl_tasks_leftmost = next_node; |
| 200 | } |
| 201 | |
| 202 | rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 203 | RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| 204 | } |
| 205 | |
| 206 | static inline int has_pushable_dl_tasks(struct rq *rq) |
| 207 | { |
| 208 | return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); |
| 209 | } |
| 210 | |
| 211 | static int push_dl_task(struct rq *rq); |
| 212 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 213 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| 214 | { |
| 215 | return dl_task(prev); |
| 216 | } |
| 217 | |
| 218 | static inline void set_post_schedule(struct rq *rq) |
| 219 | { |
| 220 | rq->post_schedule = has_pushable_dl_tasks(rq); |
| 221 | } |
| 222 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 223 | #else |
| 224 | |
| 225 | static inline |
| 226 | void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 227 | { |
| 228 | } |
| 229 | |
| 230 | static inline |
| 231 | void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 232 | { |
| 233 | } |
| 234 | |
| 235 | static inline |
| 236 | void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 237 | { |
| 238 | } |
| 239 | |
| 240 | static inline |
| 241 | void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 242 | { |
| 243 | } |
| 244 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 245 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| 246 | { |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | static inline int pull_dl_task(struct rq *rq) |
| 251 | { |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | static inline void set_post_schedule(struct rq *rq) |
| 256 | { |
| 257 | } |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 258 | #endif /* CONFIG_SMP */ |
| 259 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 260 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 261 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 262 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 263 | int flags); |
| 264 | |
| 265 | /* |
| 266 | * We are being explicitly informed that a new instance is starting, |
| 267 | * and this means that: |
| 268 | * - the absolute deadline of the entity has to be placed at |
| 269 | * current time + relative deadline; |
| 270 | * - the runtime of the entity has to be set to the maximum value. |
| 271 | * |
| 272 | * The capability of specifying such event is useful whenever a -deadline |
| 273 | * entity wants to (try to!) synchronize its behaviour with the scheduler's |
| 274 | * one, and to (try to!) reconcile itself with its own scheduling |
| 275 | * parameters. |
| 276 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 277 | static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, |
| 278 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 279 | { |
| 280 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 281 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 282 | |
| 283 | WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); |
| 284 | |
| 285 | /* |
| 286 | * We use the regular wall clock time to set deadlines in the |
| 287 | * future; in fact, we must consider execution overheads (time |
| 288 | * spent on hardirq context, etc.). |
| 289 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 290 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 291 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 292 | dl_se->dl_new = 0; |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Pure Earliest Deadline First (EDF) scheduling does not deal with the |
| 297 | * possibility of a entity lasting more than what it declared, and thus |
| 298 | * exhausting its runtime. |
| 299 | * |
| 300 | * Here we are interested in making runtime overrun possible, but we do |
| 301 | * not want a entity which is misbehaving to affect the scheduling of all |
| 302 | * other entities. |
| 303 | * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) |
| 304 | * is used, in order to confine each entity within its own bandwidth. |
| 305 | * |
| 306 | * This function deals exactly with that, and ensures that when the runtime |
| 307 | * of a entity is replenished, its deadline is also postponed. That ensures |
| 308 | * the overrunning entity can't interfere with other entity in the system and |
| 309 | * can't make them miss their deadlines. Reasons why this kind of overruns |
| 310 | * could happen are, typically, a entity voluntarily trying to overcome its |
| 311 | * runtime, or it just underestimated it during sched_setscheduler_ex(). |
| 312 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 313 | static void replenish_dl_entity(struct sched_dl_entity *dl_se, |
| 314 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 315 | { |
| 316 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 317 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 318 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 319 | BUG_ON(pi_se->dl_runtime <= 0); |
| 320 | |
| 321 | /* |
| 322 | * This could be the case for a !-dl task that is boosted. |
| 323 | * Just go with full inherited parameters. |
| 324 | */ |
| 325 | if (dl_se->dl_deadline == 0) { |
| 326 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 327 | dl_se->runtime = pi_se->dl_runtime; |
| 328 | } |
| 329 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 330 | /* |
| 331 | * We keep moving the deadline away until we get some |
| 332 | * available runtime for the entity. This ensures correct |
| 333 | * handling of situations where the runtime overrun is |
| 334 | * arbitrary large. |
| 335 | */ |
| 336 | while (dl_se->runtime <= 0) { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 337 | dl_se->deadline += pi_se->dl_period; |
| 338 | dl_se->runtime += pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 339 | } |
| 340 | |
| 341 | /* |
| 342 | * At this point, the deadline really should be "in |
| 343 | * the future" with respect to rq->clock. If it's |
| 344 | * not, we are, for some reason, lagging too much! |
| 345 | * Anyway, after having warn userspace abut that, |
| 346 | * we still try to keep the things running by |
| 347 | * resetting the deadline and the budget of the |
| 348 | * entity. |
| 349 | */ |
| 350 | if (dl_time_before(dl_se->deadline, rq_clock(rq))) { |
John Stultz | c224815 | 2014-06-04 16:11:41 -0700 | [diff] [blame^] | 351 | printk_deferred_once("sched: DL replenish lagged to much\n"); |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 352 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 353 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 354 | } |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Here we check if --at time t-- an entity (which is probably being |
| 359 | * [re]activated or, in general, enqueued) can use its remaining runtime |
| 360 | * and its current deadline _without_ exceeding the bandwidth it is |
| 361 | * assigned (function returns true if it can't). We are in fact applying |
| 362 | * one of the CBS rules: when a task wakes up, if the residual runtime |
| 363 | * over residual deadline fits within the allocated bandwidth, then we |
| 364 | * can keep the current (absolute) deadline and residual budget without |
| 365 | * disrupting the schedulability of the system. Otherwise, we should |
| 366 | * refill the runtime and set the deadline a period in the future, |
| 367 | * because keeping the current (absolute) deadline of the task would |
Dario Faggioli | 712e5e3 | 2014-01-27 12:20:15 +0100 | [diff] [blame] | 368 | * result in breaking guarantees promised to other tasks (refer to |
| 369 | * Documentation/scheduler/sched-deadline.txt for more informations). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 370 | * |
| 371 | * This function returns true if: |
| 372 | * |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame] | 373 | * runtime / (deadline - t) > dl_runtime / dl_period , |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 374 | * |
| 375 | * IOW we can't recycle current parameters. |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame] | 376 | * |
| 377 | * Notice that the bandwidth check is done against the period. For |
| 378 | * task with deadline equal to period this is the same of using |
| 379 | * dl_deadline instead of dl_period in the equation above. |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 380 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 381 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, |
| 382 | struct sched_dl_entity *pi_se, u64 t) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 383 | { |
| 384 | u64 left, right; |
| 385 | |
| 386 | /* |
| 387 | * left and right are the two sides of the equation above, |
| 388 | * after a bit of shuffling to use multiplications instead |
| 389 | * of divisions. |
| 390 | * |
| 391 | * Note that none of the time values involved in the two |
| 392 | * multiplications are absolute: dl_deadline and dl_runtime |
| 393 | * are the relative deadline and the maximum runtime of each |
| 394 | * instance, runtime is the runtime left for the last instance |
| 395 | * and (deadline - t), since t is rq->clock, is the time left |
| 396 | * to the (absolute) deadline. Even if overflowing the u64 type |
| 397 | * is very unlikely to occur in both cases, here we scale down |
| 398 | * as we want to avoid that risk at all. Scaling down by 10 |
| 399 | * means that we reduce granularity to 1us. We are fine with it, |
| 400 | * since this is only a true/false check and, anyway, thinking |
| 401 | * of anything below microseconds resolution is actually fiction |
| 402 | * (but still we want to give the user that illusion >;). |
| 403 | */ |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 404 | left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); |
| 405 | right = ((dl_se->deadline - t) >> DL_SCALE) * |
| 406 | (pi_se->dl_runtime >> DL_SCALE); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 407 | |
| 408 | return dl_time_before(right, left); |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * When a -deadline entity is queued back on the runqueue, its runtime and |
| 413 | * deadline might need updating. |
| 414 | * |
| 415 | * The policy here is that we update the deadline of the entity only if: |
| 416 | * - the current deadline is in the past, |
| 417 | * - using the remaining runtime with the current deadline would make |
| 418 | * the entity exceed its bandwidth. |
| 419 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 420 | static void update_dl_entity(struct sched_dl_entity *dl_se, |
| 421 | struct sched_dl_entity *pi_se) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 422 | { |
| 423 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 424 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 425 | |
| 426 | /* |
| 427 | * The arrival of a new instance needs special treatment, i.e., |
| 428 | * the actual scheduling parameters have to be "renewed". |
| 429 | */ |
| 430 | if (dl_se->dl_new) { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 431 | setup_new_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 432 | return; |
| 433 | } |
| 434 | |
| 435 | if (dl_time_before(dl_se->deadline, rq_clock(rq)) || |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 436 | dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { |
| 437 | dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| 438 | dl_se->runtime = pi_se->dl_runtime; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 439 | } |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * If the entity depleted all its runtime, and if we want it to sleep |
| 444 | * while waiting for some new execution time to become available, we |
| 445 | * set the bandwidth enforcement timer to the replenishment instant |
| 446 | * and try to activate it. |
| 447 | * |
| 448 | * Notice that it is important for the caller to know if the timer |
| 449 | * actually started or not (i.e., the replenishment instant is in |
| 450 | * the future or in the past). |
| 451 | */ |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 452 | static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 453 | { |
| 454 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 455 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 456 | ktime_t now, act; |
| 457 | ktime_t soft, hard; |
| 458 | unsigned long range; |
| 459 | s64 delta; |
| 460 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 461 | if (boosted) |
| 462 | return 0; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 463 | /* |
| 464 | * We want the timer to fire at the deadline, but considering |
| 465 | * that it is actually coming from rq->clock and not from |
| 466 | * hrtimer's time base reading. |
| 467 | */ |
| 468 | act = ns_to_ktime(dl_se->deadline); |
| 469 | now = hrtimer_cb_get_time(&dl_se->dl_timer); |
| 470 | delta = ktime_to_ns(now) - rq_clock(rq); |
| 471 | act = ktime_add_ns(act, delta); |
| 472 | |
| 473 | /* |
| 474 | * If the expiry time already passed, e.g., because the value |
| 475 | * chosen as the deadline is too small, don't even try to |
| 476 | * start the timer in the past! |
| 477 | */ |
| 478 | if (ktime_us_delta(act, now) < 0) |
| 479 | return 0; |
| 480 | |
| 481 | hrtimer_set_expires(&dl_se->dl_timer, act); |
| 482 | |
| 483 | soft = hrtimer_get_softexpires(&dl_se->dl_timer); |
| 484 | hard = hrtimer_get_expires(&dl_se->dl_timer); |
| 485 | range = ktime_to_ns(ktime_sub(hard, soft)); |
| 486 | __hrtimer_start_range_ns(&dl_se->dl_timer, soft, |
| 487 | range, HRTIMER_MODE_ABS, 0); |
| 488 | |
| 489 | return hrtimer_active(&dl_se->dl_timer); |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * This is the bandwidth enforcement timer callback. If here, we know |
| 494 | * a task is not on its dl_rq, since the fact that the timer was running |
| 495 | * means the task is throttled and needs a runtime replenishment. |
| 496 | * |
| 497 | * However, what we actually do depends on the fact the task is active, |
| 498 | * (it is on its rq) or has been removed from there by a call to |
| 499 | * dequeue_task_dl(). In the former case we must issue the runtime |
| 500 | * replenishment and add the task back to the dl_rq; in the latter, we just |
| 501 | * do nothing but clearing dl_throttled, so that runtime and deadline |
| 502 | * updating (and the queueing back to dl_rq) will be done by the |
| 503 | * next call to enqueue_task_dl(). |
| 504 | */ |
| 505 | static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) |
| 506 | { |
| 507 | struct sched_dl_entity *dl_se = container_of(timer, |
| 508 | struct sched_dl_entity, |
| 509 | dl_timer); |
| 510 | struct task_struct *p = dl_task_of(dl_se); |
| 511 | struct rq *rq = task_rq(p); |
| 512 | raw_spin_lock(&rq->lock); |
| 513 | |
| 514 | /* |
| 515 | * We need to take care of a possible races here. In fact, the |
| 516 | * task might have changed its scheduling policy to something |
| 517 | * different from SCHED_DEADLINE or changed its reservation |
xiaofeng.yan | 4027d08 | 2014-05-09 03:21:27 +0000 | [diff] [blame] | 518 | * parameters (through sched_setattr()). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 519 | */ |
| 520 | if (!dl_task(p) || dl_se->dl_new) |
| 521 | goto unlock; |
| 522 | |
| 523 | sched_clock_tick(); |
| 524 | update_rq_clock(rq); |
| 525 | dl_se->dl_throttled = 0; |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 526 | dl_se->dl_yielded = 0; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 527 | if (p->on_rq) { |
| 528 | enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); |
| 529 | if (task_has_dl_policy(rq->curr)) |
| 530 | check_preempt_curr_dl(rq, p, 0); |
| 531 | else |
| 532 | resched_task(rq->curr); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 533 | #ifdef CONFIG_SMP |
| 534 | /* |
| 535 | * Queueing this task back might have overloaded rq, |
| 536 | * check if we need to kick someone away. |
| 537 | */ |
| 538 | if (has_pushable_dl_tasks(rq)) |
| 539 | push_dl_task(rq); |
| 540 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 541 | } |
| 542 | unlock: |
| 543 | raw_spin_unlock(&rq->lock); |
| 544 | |
| 545 | return HRTIMER_NORESTART; |
| 546 | } |
| 547 | |
| 548 | void init_dl_task_timer(struct sched_dl_entity *dl_se) |
| 549 | { |
| 550 | struct hrtimer *timer = &dl_se->dl_timer; |
| 551 | |
| 552 | if (hrtimer_active(timer)) { |
| 553 | hrtimer_try_to_cancel(timer); |
| 554 | return; |
| 555 | } |
| 556 | |
| 557 | hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 558 | timer->function = dl_task_timer; |
| 559 | } |
| 560 | |
| 561 | static |
| 562 | int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) |
| 563 | { |
| 564 | int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); |
| 565 | int rorun = dl_se->runtime <= 0; |
| 566 | |
| 567 | if (!rorun && !dmiss) |
| 568 | return 0; |
| 569 | |
| 570 | /* |
| 571 | * If we are beyond our current deadline and we are still |
| 572 | * executing, then we have already used some of the runtime of |
| 573 | * the next instance. Thus, if we do not account that, we are |
| 574 | * stealing bandwidth from the system at each deadline miss! |
| 575 | */ |
| 576 | if (dmiss) { |
| 577 | dl_se->runtime = rorun ? dl_se->runtime : 0; |
| 578 | dl_se->runtime -= rq_clock(rq) - dl_se->deadline; |
| 579 | } |
| 580 | |
| 581 | return 1; |
| 582 | } |
| 583 | |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 584 | extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); |
| 585 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 586 | /* |
| 587 | * Update the current task's runtime statistics (provided it is still |
| 588 | * a -deadline task and has not been removed from the dl_rq). |
| 589 | */ |
| 590 | static void update_curr_dl(struct rq *rq) |
| 591 | { |
| 592 | struct task_struct *curr = rq->curr; |
| 593 | struct sched_dl_entity *dl_se = &curr->dl; |
| 594 | u64 delta_exec; |
| 595 | |
| 596 | if (!dl_task(curr) || !on_dl_rq(dl_se)) |
| 597 | return; |
| 598 | |
| 599 | /* |
| 600 | * Consumed budget is computed considering the time as |
| 601 | * observed by schedulable tasks (excluding time spent |
| 602 | * in hardirq context, etc.). Deadlines are instead |
| 603 | * computed using hard walltime. This seems to be the more |
| 604 | * natural solution, but the full ramifications of this |
| 605 | * approach need further study. |
| 606 | */ |
| 607 | delta_exec = rq_clock_task(rq) - curr->se.exec_start; |
Kirill Tkhai | 734ff2a | 2014-03-04 19:25:46 +0400 | [diff] [blame] | 608 | if (unlikely((s64)delta_exec <= 0)) |
| 609 | return; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 610 | |
| 611 | schedstat_set(curr->se.statistics.exec_max, |
| 612 | max(curr->se.statistics.exec_max, delta_exec)); |
| 613 | |
| 614 | curr->se.sum_exec_runtime += delta_exec; |
| 615 | account_group_exec_runtime(curr, delta_exec); |
| 616 | |
| 617 | curr->se.exec_start = rq_clock_task(rq); |
| 618 | cpuacct_charge(curr, delta_exec); |
| 619 | |
Dario Faggioli | 239be4a | 2013-11-07 14:43:39 +0100 | [diff] [blame] | 620 | sched_rt_avg_update(rq, delta_exec); |
| 621 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 622 | dl_se->runtime -= delta_exec; |
| 623 | if (dl_runtime_exceeded(rq, dl_se)) { |
| 624 | __dequeue_task_dl(rq, curr, 0); |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 625 | if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 626 | dl_se->dl_throttled = 1; |
| 627 | else |
| 628 | enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); |
| 629 | |
| 630 | if (!is_leftmost(curr, &rq->dl)) |
| 631 | resched_task(curr); |
| 632 | } |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 633 | |
| 634 | /* |
| 635 | * Because -- for now -- we share the rt bandwidth, we need to |
| 636 | * account our runtime there too, otherwise actual rt tasks |
| 637 | * would be able to exceed the shared quota. |
| 638 | * |
| 639 | * Account to the root rt group for now. |
| 640 | * |
| 641 | * The solution we're working towards is having the RT groups scheduled |
| 642 | * using deadline servers -- however there's a few nasties to figure |
| 643 | * out before that can happen. |
| 644 | */ |
| 645 | if (rt_bandwidth_enabled()) { |
| 646 | struct rt_rq *rt_rq = &rq->rt; |
| 647 | |
| 648 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 649 | /* |
| 650 | * We'll let actual RT tasks worry about the overflow here, we |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 651 | * have our own CBS to keep us inline; only account when RT |
| 652 | * bandwidth is relevant. |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 653 | */ |
Juri Lelli | faa5993 | 2014-02-21 11:37:15 +0100 | [diff] [blame] | 654 | if (sched_rt_bandwidth_account(rt_rq)) |
| 655 | rt_rq->rt_time += delta_exec; |
Peter Zijlstra | 1724813 | 2013-12-17 12:44:49 +0100 | [diff] [blame] | 656 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 657 | } |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 658 | } |
| 659 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 660 | #ifdef CONFIG_SMP |
| 661 | |
| 662 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); |
| 663 | |
| 664 | static inline u64 next_deadline(struct rq *rq) |
| 665 | { |
| 666 | struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); |
| 667 | |
| 668 | if (next && dl_prio(next->prio)) |
| 669 | return next->dl.deadline; |
| 670 | else |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 675 | { |
| 676 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 677 | |
| 678 | if (dl_rq->earliest_dl.curr == 0 || |
| 679 | dl_time_before(deadline, dl_rq->earliest_dl.curr)) { |
| 680 | /* |
| 681 | * If the dl_rq had no -deadline tasks, or if the new task |
| 682 | * has shorter deadline than the current one on dl_rq, we |
| 683 | * know that the previous earliest becomes our next earliest, |
| 684 | * as the new task becomes the earliest itself. |
| 685 | */ |
| 686 | dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; |
| 687 | dl_rq->earliest_dl.curr = deadline; |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 688 | cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 689 | } else if (dl_rq->earliest_dl.next == 0 || |
| 690 | dl_time_before(deadline, dl_rq->earliest_dl.next)) { |
| 691 | /* |
| 692 | * On the other hand, if the new -deadline task has a |
| 693 | * a later deadline than the earliest one on dl_rq, but |
| 694 | * it is earlier than the next (if any), we must |
| 695 | * recompute the next-earliest. |
| 696 | */ |
| 697 | dl_rq->earliest_dl.next = next_deadline(rq); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 702 | { |
| 703 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 704 | |
| 705 | /* |
| 706 | * Since we may have removed our earliest (and/or next earliest) |
| 707 | * task we must recompute them. |
| 708 | */ |
| 709 | if (!dl_rq->dl_nr_running) { |
| 710 | dl_rq->earliest_dl.curr = 0; |
| 711 | dl_rq->earliest_dl.next = 0; |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 712 | cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 713 | } else { |
| 714 | struct rb_node *leftmost = dl_rq->rb_leftmost; |
| 715 | struct sched_dl_entity *entry; |
| 716 | |
| 717 | entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); |
| 718 | dl_rq->earliest_dl.curr = entry->deadline; |
| 719 | dl_rq->earliest_dl.next = next_deadline(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 720 | cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 721 | } |
| 722 | } |
| 723 | |
| 724 | #else |
| 725 | |
| 726 | static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 727 | static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 728 | |
| 729 | #endif /* CONFIG_SMP */ |
| 730 | |
| 731 | static inline |
| 732 | void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 733 | { |
| 734 | int prio = dl_task_of(dl_se)->prio; |
| 735 | u64 deadline = dl_se->deadline; |
| 736 | |
| 737 | WARN_ON(!dl_prio(prio)); |
| 738 | dl_rq->dl_nr_running++; |
Kirill Tkhai | 7246544 | 2014-05-09 03:00:14 +0400 | [diff] [blame] | 739 | add_nr_running(rq_of_dl_rq(dl_rq), 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 740 | |
| 741 | inc_dl_deadline(dl_rq, deadline); |
| 742 | inc_dl_migration(dl_se, dl_rq); |
| 743 | } |
| 744 | |
| 745 | static inline |
| 746 | void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 747 | { |
| 748 | int prio = dl_task_of(dl_se)->prio; |
| 749 | |
| 750 | WARN_ON(!dl_prio(prio)); |
| 751 | WARN_ON(!dl_rq->dl_nr_running); |
| 752 | dl_rq->dl_nr_running--; |
Kirill Tkhai | 7246544 | 2014-05-09 03:00:14 +0400 | [diff] [blame] | 753 | sub_nr_running(rq_of_dl_rq(dl_rq), 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 754 | |
| 755 | dec_dl_deadline(dl_rq, dl_se->deadline); |
| 756 | dec_dl_migration(dl_se, dl_rq); |
| 757 | } |
| 758 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 759 | static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) |
| 760 | { |
| 761 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 762 | struct rb_node **link = &dl_rq->rb_root.rb_node; |
| 763 | struct rb_node *parent = NULL; |
| 764 | struct sched_dl_entity *entry; |
| 765 | int leftmost = 1; |
| 766 | |
| 767 | BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); |
| 768 | |
| 769 | while (*link) { |
| 770 | parent = *link; |
| 771 | entry = rb_entry(parent, struct sched_dl_entity, rb_node); |
| 772 | if (dl_time_before(dl_se->deadline, entry->deadline)) |
| 773 | link = &parent->rb_left; |
| 774 | else { |
| 775 | link = &parent->rb_right; |
| 776 | leftmost = 0; |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | if (leftmost) |
| 781 | dl_rq->rb_leftmost = &dl_se->rb_node; |
| 782 | |
| 783 | rb_link_node(&dl_se->rb_node, parent, link); |
| 784 | rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); |
| 785 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 786 | inc_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 787 | } |
| 788 | |
| 789 | static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 790 | { |
| 791 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 792 | |
| 793 | if (RB_EMPTY_NODE(&dl_se->rb_node)) |
| 794 | return; |
| 795 | |
| 796 | if (dl_rq->rb_leftmost == &dl_se->rb_node) { |
| 797 | struct rb_node *next_node; |
| 798 | |
| 799 | next_node = rb_next(&dl_se->rb_node); |
| 800 | dl_rq->rb_leftmost = next_node; |
| 801 | } |
| 802 | |
| 803 | rb_erase(&dl_se->rb_node, &dl_rq->rb_root); |
| 804 | RB_CLEAR_NODE(&dl_se->rb_node); |
| 805 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 806 | dec_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 807 | } |
| 808 | |
| 809 | static void |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 810 | enqueue_dl_entity(struct sched_dl_entity *dl_se, |
| 811 | struct sched_dl_entity *pi_se, int flags) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 812 | { |
| 813 | BUG_ON(on_dl_rq(dl_se)); |
| 814 | |
| 815 | /* |
| 816 | * If this is a wakeup or a new instance, the scheduling |
| 817 | * parameters of the task might need updating. Otherwise, |
| 818 | * we want a replenishment of its runtime. |
| 819 | */ |
| 820 | if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 821 | replenish_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 822 | else |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 823 | update_dl_entity(dl_se, pi_se); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 824 | |
| 825 | __enqueue_dl_entity(dl_se); |
| 826 | } |
| 827 | |
| 828 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 829 | { |
| 830 | __dequeue_dl_entity(dl_se); |
| 831 | } |
| 832 | |
| 833 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 834 | { |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 835 | struct task_struct *pi_task = rt_mutex_get_top_task(p); |
| 836 | struct sched_dl_entity *pi_se = &p->dl; |
| 837 | |
| 838 | /* |
| 839 | * Use the scheduling parameters of the top pi-waiter |
| 840 | * task if we have one and its (relative) deadline is |
| 841 | * smaller than our one... OTW we keep our runtime and |
| 842 | * deadline. |
| 843 | */ |
| 844 | if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) |
| 845 | pi_se = &pi_task->dl; |
| 846 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 847 | /* |
| 848 | * If p is throttled, we do nothing. In fact, if it exhausted |
| 849 | * its budget it needs a replenishment and, since it now is on |
| 850 | * its rq, the bandwidth timer callback (which clearly has not |
| 851 | * run yet) will take care of this. |
| 852 | */ |
| 853 | if (p->dl.dl_throttled) |
| 854 | return; |
| 855 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 856 | enqueue_dl_entity(&p->dl, pi_se, flags); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 857 | |
| 858 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
| 859 | enqueue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 860 | } |
| 861 | |
| 862 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 863 | { |
| 864 | dequeue_dl_entity(&p->dl); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 865 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 866 | } |
| 867 | |
| 868 | static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 869 | { |
| 870 | update_curr_dl(rq); |
| 871 | __dequeue_task_dl(rq, p, flags); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 872 | } |
| 873 | |
| 874 | /* |
| 875 | * Yield task semantic for -deadline tasks is: |
| 876 | * |
| 877 | * get off from the CPU until our next instance, with |
| 878 | * a new runtime. This is of little use now, since we |
| 879 | * don't have a bandwidth reclaiming mechanism. Anyway, |
| 880 | * bandwidth reclaiming is planned for the future, and |
| 881 | * yield_task_dl will indicate that some spare budget |
| 882 | * is available for other task instances to use it. |
| 883 | */ |
| 884 | static void yield_task_dl(struct rq *rq) |
| 885 | { |
| 886 | struct task_struct *p = rq->curr; |
| 887 | |
| 888 | /* |
| 889 | * We make the task go to sleep until its current deadline by |
| 890 | * forcing its runtime to zero. This way, update_curr_dl() stops |
| 891 | * it and the bandwidth timer will wake it up and will give it |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 892 | * new scheduling parameters (thanks to dl_yielded=1). |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 893 | */ |
| 894 | if (p->dl.runtime > 0) { |
Juri Lelli | 5bfd126 | 2014-04-15 13:49:04 +0200 | [diff] [blame] | 895 | rq->curr->dl.dl_yielded = 1; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 896 | p->dl.runtime = 0; |
| 897 | } |
| 898 | update_curr_dl(rq); |
| 899 | } |
| 900 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 901 | #ifdef CONFIG_SMP |
| 902 | |
| 903 | static int find_later_rq(struct task_struct *task); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 904 | |
| 905 | static int |
| 906 | select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) |
| 907 | { |
| 908 | struct task_struct *curr; |
| 909 | struct rq *rq; |
| 910 | |
| 911 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) |
| 912 | goto out; |
| 913 | |
| 914 | rq = cpu_rq(cpu); |
| 915 | |
| 916 | rcu_read_lock(); |
| 917 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ |
| 918 | |
| 919 | /* |
| 920 | * If we are dealing with a -deadline task, we must |
| 921 | * decide where to wake it up. |
| 922 | * If it has a later deadline and the current task |
| 923 | * on this rq can't move (provided the waking task |
| 924 | * can!) we prefer to send it somewhere else. On the |
| 925 | * other hand, if it has a shorter deadline, we |
| 926 | * try to make it stay here, it might be important. |
| 927 | */ |
| 928 | if (unlikely(dl_task(curr)) && |
| 929 | (curr->nr_cpus_allowed < 2 || |
| 930 | !dl_entity_preempt(&p->dl, &curr->dl)) && |
| 931 | (p->nr_cpus_allowed > 1)) { |
| 932 | int target = find_later_rq(p); |
| 933 | |
| 934 | if (target != -1) |
| 935 | cpu = target; |
| 936 | } |
| 937 | rcu_read_unlock(); |
| 938 | |
| 939 | out: |
| 940 | return cpu; |
| 941 | } |
| 942 | |
| 943 | static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) |
| 944 | { |
| 945 | /* |
| 946 | * Current can't be migrated, useless to reschedule, |
| 947 | * let's hope p can move out. |
| 948 | */ |
| 949 | if (rq->curr->nr_cpus_allowed == 1 || |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 950 | cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 951 | return; |
| 952 | |
| 953 | /* |
| 954 | * p is migratable, so let's not schedule it and |
| 955 | * see if it is pushed or pulled somewhere else. |
| 956 | */ |
| 957 | if (p->nr_cpus_allowed != 1 && |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 958 | cpudl_find(&rq->rd->cpudl, p, NULL) != -1) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 959 | return; |
| 960 | |
| 961 | resched_task(rq->curr); |
| 962 | } |
| 963 | |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 964 | static int pull_dl_task(struct rq *this_rq); |
| 965 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 966 | #endif /* CONFIG_SMP */ |
| 967 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 968 | /* |
| 969 | * Only called when both the current and waking task are -deadline |
| 970 | * tasks. |
| 971 | */ |
| 972 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 973 | int flags) |
| 974 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 975 | if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 976 | resched_task(rq->curr); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 977 | return; |
| 978 | } |
| 979 | |
| 980 | #ifdef CONFIG_SMP |
| 981 | /* |
| 982 | * In the unlikely case current and p have the same deadline |
| 983 | * let us try to decide what's the best thing to do... |
| 984 | */ |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 985 | if ((p->dl.deadline == rq->curr->dl.deadline) && |
| 986 | !test_tsk_need_resched(rq->curr)) |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 987 | check_preempt_equal_dl(rq, p); |
| 988 | #endif /* CONFIG_SMP */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 989 | } |
| 990 | |
| 991 | #ifdef CONFIG_SCHED_HRTICK |
| 992 | static void start_hrtick_dl(struct rq *rq, struct task_struct *p) |
| 993 | { |
| 994 | s64 delta = p->dl.dl_runtime - p->dl.runtime; |
| 995 | |
| 996 | if (delta > 10000) |
| 997 | hrtick_start(rq, p->dl.runtime); |
| 998 | } |
| 999 | #endif |
| 1000 | |
| 1001 | static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, |
| 1002 | struct dl_rq *dl_rq) |
| 1003 | { |
| 1004 | struct rb_node *left = dl_rq->rb_leftmost; |
| 1005 | |
| 1006 | if (!left) |
| 1007 | return NULL; |
| 1008 | |
| 1009 | return rb_entry(left, struct sched_dl_entity, rb_node); |
| 1010 | } |
| 1011 | |
Peter Zijlstra | 606dba2 | 2012-02-11 06:05:00 +0100 | [diff] [blame] | 1012 | struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1013 | { |
| 1014 | struct sched_dl_entity *dl_se; |
| 1015 | struct task_struct *p; |
| 1016 | struct dl_rq *dl_rq; |
| 1017 | |
| 1018 | dl_rq = &rq->dl; |
| 1019 | |
Kirill Tkhai | a1d9a32 | 2014-04-10 17:38:36 +0400 | [diff] [blame] | 1020 | if (need_pull_dl_task(rq, prev)) { |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 1021 | pull_dl_task(rq); |
Kirill Tkhai | a1d9a32 | 2014-04-10 17:38:36 +0400 | [diff] [blame] | 1022 | /* |
| 1023 | * pull_rt_task() can drop (and re-acquire) rq->lock; this |
| 1024 | * means a stop task can slip in, in which case we need to |
| 1025 | * re-start task selection. |
| 1026 | */ |
| 1027 | if (rq->stop && rq->stop->on_rq) |
| 1028 | return RETRY_TASK; |
| 1029 | } |
| 1030 | |
Kirill Tkhai | 734ff2a | 2014-03-04 19:25:46 +0400 | [diff] [blame] | 1031 | /* |
| 1032 | * When prev is DL, we may throttle it in put_prev_task(). |
| 1033 | * So, we update time before we check for dl_nr_running. |
| 1034 | */ |
| 1035 | if (prev->sched_class == &dl_sched_class) |
| 1036 | update_curr_dl(rq); |
Peter Zijlstra | 38033c3 | 2014-01-23 20:32:21 +0100 | [diff] [blame] | 1037 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1038 | if (unlikely(!dl_rq->dl_nr_running)) |
| 1039 | return NULL; |
| 1040 | |
Peter Zijlstra | 3f1d2a3 | 2014-02-12 10:49:30 +0100 | [diff] [blame] | 1041 | put_prev_task(rq, prev); |
Peter Zijlstra | 606dba2 | 2012-02-11 06:05:00 +0100 | [diff] [blame] | 1042 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1043 | dl_se = pick_next_dl_entity(rq, dl_rq); |
| 1044 | BUG_ON(!dl_se); |
| 1045 | |
| 1046 | p = dl_task_of(dl_se); |
| 1047 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1048 | |
| 1049 | /* Running task will never be pushed. */ |
Juri Lelli | 7136265 | 2014-01-14 12:03:51 +0100 | [diff] [blame] | 1050 | dequeue_pushable_dl_task(rq, p); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1051 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1052 | #ifdef CONFIG_SCHED_HRTICK |
| 1053 | if (hrtick_enabled(rq)) |
| 1054 | start_hrtick_dl(rq, p); |
| 1055 | #endif |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1056 | |
Peter Zijlstra | dc87734 | 2014-02-12 15:47:29 +0100 | [diff] [blame] | 1057 | set_post_schedule(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1058 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1059 | return p; |
| 1060 | } |
| 1061 | |
| 1062 | static void put_prev_task_dl(struct rq *rq, struct task_struct *p) |
| 1063 | { |
| 1064 | update_curr_dl(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1065 | |
| 1066 | if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) |
| 1067 | enqueue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1068 | } |
| 1069 | |
| 1070 | static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) |
| 1071 | { |
| 1072 | update_curr_dl(rq); |
| 1073 | |
| 1074 | #ifdef CONFIG_SCHED_HRTICK |
| 1075 | if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) |
| 1076 | start_hrtick_dl(rq, p); |
| 1077 | #endif |
| 1078 | } |
| 1079 | |
| 1080 | static void task_fork_dl(struct task_struct *p) |
| 1081 | { |
| 1082 | /* |
| 1083 | * SCHED_DEADLINE tasks cannot fork and this is achieved through |
| 1084 | * sched_fork() |
| 1085 | */ |
| 1086 | } |
| 1087 | |
| 1088 | static void task_dead_dl(struct task_struct *p) |
| 1089 | { |
| 1090 | struct hrtimer *timer = &p->dl.dl_timer; |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 1091 | struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); |
| 1092 | |
| 1093 | /* |
| 1094 | * Since we are TASK_DEAD we won't slip out of the domain! |
| 1095 | */ |
| 1096 | raw_spin_lock_irq(&dl_b->lock); |
| 1097 | dl_b->total_bw -= p->dl.dl_bw; |
| 1098 | raw_spin_unlock_irq(&dl_b->lock); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1099 | |
Dario Faggioli | 2d3d891 | 2013-11-07 14:43:44 +0100 | [diff] [blame] | 1100 | hrtimer_cancel(timer); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1101 | } |
| 1102 | |
| 1103 | static void set_curr_task_dl(struct rq *rq) |
| 1104 | { |
| 1105 | struct task_struct *p = rq->curr; |
| 1106 | |
| 1107 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1108 | |
| 1109 | /* You can't push away the running task */ |
| 1110 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1111 | } |
| 1112 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1113 | #ifdef CONFIG_SMP |
| 1114 | |
| 1115 | /* Only try algorithms three times */ |
| 1116 | #define DL_MAX_TRIES 3 |
| 1117 | |
| 1118 | static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) |
| 1119 | { |
| 1120 | if (!task_running(rq, p) && |
| 1121 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && |
| 1122 | (p->nr_cpus_allowed > 1)) |
| 1123 | return 1; |
| 1124 | |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | /* Returns the second earliest -deadline task, NULL otherwise */ |
| 1129 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) |
| 1130 | { |
| 1131 | struct rb_node *next_node = rq->dl.rb_leftmost; |
| 1132 | struct sched_dl_entity *dl_se; |
| 1133 | struct task_struct *p = NULL; |
| 1134 | |
| 1135 | next_node: |
| 1136 | next_node = rb_next(next_node); |
| 1137 | if (next_node) { |
| 1138 | dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); |
| 1139 | p = dl_task_of(dl_se); |
| 1140 | |
| 1141 | if (pick_dl_task(rq, p, cpu)) |
| 1142 | return p; |
| 1143 | |
| 1144 | goto next_node; |
| 1145 | } |
| 1146 | |
| 1147 | return NULL; |
| 1148 | } |
| 1149 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1150 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); |
| 1151 | |
| 1152 | static int find_later_rq(struct task_struct *task) |
| 1153 | { |
| 1154 | struct sched_domain *sd; |
| 1155 | struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); |
| 1156 | int this_cpu = smp_processor_id(); |
| 1157 | int best_cpu, cpu = task_cpu(task); |
| 1158 | |
| 1159 | /* Make sure the mask is initialized first */ |
| 1160 | if (unlikely(!later_mask)) |
| 1161 | return -1; |
| 1162 | |
| 1163 | if (task->nr_cpus_allowed == 1) |
| 1164 | return -1; |
| 1165 | |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1166 | best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, |
| 1167 | task, later_mask); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1168 | if (best_cpu == -1) |
| 1169 | return -1; |
| 1170 | |
| 1171 | /* |
| 1172 | * If we are here, some target has been found, |
| 1173 | * the most suitable of which is cached in best_cpu. |
| 1174 | * This is, among the runqueues where the current tasks |
| 1175 | * have later deadlines than the task's one, the rq |
| 1176 | * with the latest possible one. |
| 1177 | * |
| 1178 | * Now we check how well this matches with task's |
| 1179 | * affinity and system topology. |
| 1180 | * |
| 1181 | * The last cpu where the task run is our first |
| 1182 | * guess, since it is most likely cache-hot there. |
| 1183 | */ |
| 1184 | if (cpumask_test_cpu(cpu, later_mask)) |
| 1185 | return cpu; |
| 1186 | /* |
| 1187 | * Check if this_cpu is to be skipped (i.e., it is |
| 1188 | * not in the mask) or not. |
| 1189 | */ |
| 1190 | if (!cpumask_test_cpu(this_cpu, later_mask)) |
| 1191 | this_cpu = -1; |
| 1192 | |
| 1193 | rcu_read_lock(); |
| 1194 | for_each_domain(cpu, sd) { |
| 1195 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1196 | |
| 1197 | /* |
| 1198 | * If possible, preempting this_cpu is |
| 1199 | * cheaper than migrating. |
| 1200 | */ |
| 1201 | if (this_cpu != -1 && |
| 1202 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
| 1203 | rcu_read_unlock(); |
| 1204 | return this_cpu; |
| 1205 | } |
| 1206 | |
| 1207 | /* |
| 1208 | * Last chance: if best_cpu is valid and is |
| 1209 | * in the mask, that becomes our choice. |
| 1210 | */ |
| 1211 | if (best_cpu < nr_cpu_ids && |
| 1212 | cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { |
| 1213 | rcu_read_unlock(); |
| 1214 | return best_cpu; |
| 1215 | } |
| 1216 | } |
| 1217 | } |
| 1218 | rcu_read_unlock(); |
| 1219 | |
| 1220 | /* |
| 1221 | * At this point, all our guesses failed, we just return |
| 1222 | * 'something', and let the caller sort the things out. |
| 1223 | */ |
| 1224 | if (this_cpu != -1) |
| 1225 | return this_cpu; |
| 1226 | |
| 1227 | cpu = cpumask_any(later_mask); |
| 1228 | if (cpu < nr_cpu_ids) |
| 1229 | return cpu; |
| 1230 | |
| 1231 | return -1; |
| 1232 | } |
| 1233 | |
| 1234 | /* Locks the rq it finds */ |
| 1235 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) |
| 1236 | { |
| 1237 | struct rq *later_rq = NULL; |
| 1238 | int tries; |
| 1239 | int cpu; |
| 1240 | |
| 1241 | for (tries = 0; tries < DL_MAX_TRIES; tries++) { |
| 1242 | cpu = find_later_rq(task); |
| 1243 | |
| 1244 | if ((cpu == -1) || (cpu == rq->cpu)) |
| 1245 | break; |
| 1246 | |
| 1247 | later_rq = cpu_rq(cpu); |
| 1248 | |
| 1249 | /* Retry if something changed. */ |
| 1250 | if (double_lock_balance(rq, later_rq)) { |
| 1251 | if (unlikely(task_rq(task) != rq || |
| 1252 | !cpumask_test_cpu(later_rq->cpu, |
| 1253 | &task->cpus_allowed) || |
| 1254 | task_running(rq, task) || !task->on_rq)) { |
| 1255 | double_unlock_balance(rq, later_rq); |
| 1256 | later_rq = NULL; |
| 1257 | break; |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * If the rq we found has no -deadline task, or |
| 1263 | * its earliest one has a later deadline than our |
| 1264 | * task, the rq is a good one. |
| 1265 | */ |
| 1266 | if (!later_rq->dl.dl_nr_running || |
| 1267 | dl_time_before(task->dl.deadline, |
| 1268 | later_rq->dl.earliest_dl.curr)) |
| 1269 | break; |
| 1270 | |
| 1271 | /* Otherwise we try again. */ |
| 1272 | double_unlock_balance(rq, later_rq); |
| 1273 | later_rq = NULL; |
| 1274 | } |
| 1275 | |
| 1276 | return later_rq; |
| 1277 | } |
| 1278 | |
| 1279 | static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) |
| 1280 | { |
| 1281 | struct task_struct *p; |
| 1282 | |
| 1283 | if (!has_pushable_dl_tasks(rq)) |
| 1284 | return NULL; |
| 1285 | |
| 1286 | p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, |
| 1287 | struct task_struct, pushable_dl_tasks); |
| 1288 | |
| 1289 | BUG_ON(rq->cpu != task_cpu(p)); |
| 1290 | BUG_ON(task_current(rq, p)); |
| 1291 | BUG_ON(p->nr_cpus_allowed <= 1); |
| 1292 | |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 1293 | BUG_ON(!p->on_rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1294 | BUG_ON(!dl_task(p)); |
| 1295 | |
| 1296 | return p; |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * See if the non running -deadline tasks on this rq |
| 1301 | * can be sent to some other CPU where they can preempt |
| 1302 | * and start executing. |
| 1303 | */ |
| 1304 | static int push_dl_task(struct rq *rq) |
| 1305 | { |
| 1306 | struct task_struct *next_task; |
| 1307 | struct rq *later_rq; |
| 1308 | |
| 1309 | if (!rq->dl.overloaded) |
| 1310 | return 0; |
| 1311 | |
| 1312 | next_task = pick_next_pushable_dl_task(rq); |
| 1313 | if (!next_task) |
| 1314 | return 0; |
| 1315 | |
| 1316 | retry: |
| 1317 | if (unlikely(next_task == rq->curr)) { |
| 1318 | WARN_ON(1); |
| 1319 | return 0; |
| 1320 | } |
| 1321 | |
| 1322 | /* |
| 1323 | * If next_task preempts rq->curr, and rq->curr |
| 1324 | * can move away, it makes sense to just reschedule |
| 1325 | * without going further in pushing next_task. |
| 1326 | */ |
| 1327 | if (dl_task(rq->curr) && |
| 1328 | dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && |
| 1329 | rq->curr->nr_cpus_allowed > 1) { |
| 1330 | resched_task(rq->curr); |
| 1331 | return 0; |
| 1332 | } |
| 1333 | |
| 1334 | /* We might release rq lock */ |
| 1335 | get_task_struct(next_task); |
| 1336 | |
| 1337 | /* Will lock the rq it'll find */ |
| 1338 | later_rq = find_lock_later_rq(next_task, rq); |
| 1339 | if (!later_rq) { |
| 1340 | struct task_struct *task; |
| 1341 | |
| 1342 | /* |
| 1343 | * We must check all this again, since |
| 1344 | * find_lock_later_rq releases rq->lock and it is |
| 1345 | * then possible that next_task has migrated. |
| 1346 | */ |
| 1347 | task = pick_next_pushable_dl_task(rq); |
| 1348 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
| 1349 | /* |
| 1350 | * The task is still there. We don't try |
| 1351 | * again, some other cpu will pull it when ready. |
| 1352 | */ |
| 1353 | dequeue_pushable_dl_task(rq, next_task); |
| 1354 | goto out; |
| 1355 | } |
| 1356 | |
| 1357 | if (!task) |
| 1358 | /* No more tasks */ |
| 1359 | goto out; |
| 1360 | |
| 1361 | put_task_struct(next_task); |
| 1362 | next_task = task; |
| 1363 | goto retry; |
| 1364 | } |
| 1365 | |
| 1366 | deactivate_task(rq, next_task, 0); |
| 1367 | set_task_cpu(next_task, later_rq->cpu); |
| 1368 | activate_task(later_rq, next_task, 0); |
| 1369 | |
| 1370 | resched_task(later_rq->curr); |
| 1371 | |
| 1372 | double_unlock_balance(rq, later_rq); |
| 1373 | |
| 1374 | out: |
| 1375 | put_task_struct(next_task); |
| 1376 | |
| 1377 | return 1; |
| 1378 | } |
| 1379 | |
| 1380 | static void push_dl_tasks(struct rq *rq) |
| 1381 | { |
| 1382 | /* Terminates as it moves a -deadline task */ |
| 1383 | while (push_dl_task(rq)) |
| 1384 | ; |
| 1385 | } |
| 1386 | |
| 1387 | static int pull_dl_task(struct rq *this_rq) |
| 1388 | { |
| 1389 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
| 1390 | struct task_struct *p; |
| 1391 | struct rq *src_rq; |
| 1392 | u64 dmin = LONG_MAX; |
| 1393 | |
| 1394 | if (likely(!dl_overloaded(this_rq))) |
| 1395 | return 0; |
| 1396 | |
| 1397 | /* |
| 1398 | * Match the barrier from dl_set_overloaded; this guarantees that if we |
| 1399 | * see overloaded we must also see the dlo_mask bit. |
| 1400 | */ |
| 1401 | smp_rmb(); |
| 1402 | |
| 1403 | for_each_cpu(cpu, this_rq->rd->dlo_mask) { |
| 1404 | if (this_cpu == cpu) |
| 1405 | continue; |
| 1406 | |
| 1407 | src_rq = cpu_rq(cpu); |
| 1408 | |
| 1409 | /* |
| 1410 | * It looks racy, abd it is! However, as in sched_rt.c, |
| 1411 | * we are fine with this. |
| 1412 | */ |
| 1413 | if (this_rq->dl.dl_nr_running && |
| 1414 | dl_time_before(this_rq->dl.earliest_dl.curr, |
| 1415 | src_rq->dl.earliest_dl.next)) |
| 1416 | continue; |
| 1417 | |
| 1418 | /* Might drop this_rq->lock */ |
| 1419 | double_lock_balance(this_rq, src_rq); |
| 1420 | |
| 1421 | /* |
| 1422 | * If there are no more pullable tasks on the |
| 1423 | * rq, we're done with it. |
| 1424 | */ |
| 1425 | if (src_rq->dl.dl_nr_running <= 1) |
| 1426 | goto skip; |
| 1427 | |
| 1428 | p = pick_next_earliest_dl_task(src_rq, this_cpu); |
| 1429 | |
| 1430 | /* |
| 1431 | * We found a task to be pulled if: |
| 1432 | * - it preempts our current (if there's one), |
| 1433 | * - it will preempt the last one we pulled (if any). |
| 1434 | */ |
| 1435 | if (p && dl_time_before(p->dl.deadline, dmin) && |
| 1436 | (!this_rq->dl.dl_nr_running || |
| 1437 | dl_time_before(p->dl.deadline, |
| 1438 | this_rq->dl.earliest_dl.curr))) { |
| 1439 | WARN_ON(p == src_rq->curr); |
Dario Faggioli | 332ac17 | 2013-11-07 14:43:45 +0100 | [diff] [blame] | 1440 | WARN_ON(!p->on_rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1441 | |
| 1442 | /* |
| 1443 | * Then we pull iff p has actually an earlier |
| 1444 | * deadline than the current task of its runqueue. |
| 1445 | */ |
| 1446 | if (dl_time_before(p->dl.deadline, |
| 1447 | src_rq->curr->dl.deadline)) |
| 1448 | goto skip; |
| 1449 | |
| 1450 | ret = 1; |
| 1451 | |
| 1452 | deactivate_task(src_rq, p, 0); |
| 1453 | set_task_cpu(p, this_cpu); |
| 1454 | activate_task(this_rq, p, 0); |
| 1455 | dmin = p->dl.deadline; |
| 1456 | |
| 1457 | /* Is there any other task even earlier? */ |
| 1458 | } |
| 1459 | skip: |
| 1460 | double_unlock_balance(this_rq, src_rq); |
| 1461 | } |
| 1462 | |
| 1463 | return ret; |
| 1464 | } |
| 1465 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1466 | static void post_schedule_dl(struct rq *rq) |
| 1467 | { |
| 1468 | push_dl_tasks(rq); |
| 1469 | } |
| 1470 | |
| 1471 | /* |
| 1472 | * Since the task is not running and a reschedule is not going to happen |
| 1473 | * anytime soon on its runqueue, we try pushing it away now. |
| 1474 | */ |
| 1475 | static void task_woken_dl(struct rq *rq, struct task_struct *p) |
| 1476 | { |
| 1477 | if (!task_running(rq, p) && |
| 1478 | !test_tsk_need_resched(rq->curr) && |
| 1479 | has_pushable_dl_tasks(rq) && |
| 1480 | p->nr_cpus_allowed > 1 && |
| 1481 | dl_task(rq->curr) && |
| 1482 | (rq->curr->nr_cpus_allowed < 2 || |
| 1483 | dl_entity_preempt(&rq->curr->dl, &p->dl))) { |
| 1484 | push_dl_tasks(rq); |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | static void set_cpus_allowed_dl(struct task_struct *p, |
| 1489 | const struct cpumask *new_mask) |
| 1490 | { |
| 1491 | struct rq *rq; |
| 1492 | int weight; |
| 1493 | |
| 1494 | BUG_ON(!dl_task(p)); |
| 1495 | |
| 1496 | /* |
| 1497 | * Update only if the task is actually running (i.e., |
| 1498 | * it is on the rq AND it is not throttled). |
| 1499 | */ |
| 1500 | if (!on_dl_rq(&p->dl)) |
| 1501 | return; |
| 1502 | |
| 1503 | weight = cpumask_weight(new_mask); |
| 1504 | |
| 1505 | /* |
| 1506 | * Only update if the process changes its state from whether it |
| 1507 | * can migrate or not. |
| 1508 | */ |
| 1509 | if ((p->nr_cpus_allowed > 1) == (weight > 1)) |
| 1510 | return; |
| 1511 | |
| 1512 | rq = task_rq(p); |
| 1513 | |
| 1514 | /* |
| 1515 | * The process used to be able to migrate OR it can now migrate |
| 1516 | */ |
| 1517 | if (weight <= 1) { |
| 1518 | if (!task_current(rq, p)) |
| 1519 | dequeue_pushable_dl_task(rq, p); |
| 1520 | BUG_ON(!rq->dl.dl_nr_migratory); |
| 1521 | rq->dl.dl_nr_migratory--; |
| 1522 | } else { |
| 1523 | if (!task_current(rq, p)) |
| 1524 | enqueue_pushable_dl_task(rq, p); |
| 1525 | rq->dl.dl_nr_migratory++; |
| 1526 | } |
| 1527 | |
| 1528 | update_dl_migration(&rq->dl); |
| 1529 | } |
| 1530 | |
| 1531 | /* Assumes rq->lock is held */ |
| 1532 | static void rq_online_dl(struct rq *rq) |
| 1533 | { |
| 1534 | if (rq->dl.overloaded) |
| 1535 | dl_set_overload(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1536 | |
| 1537 | if (rq->dl.dl_nr_running > 0) |
| 1538 | cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1539 | } |
| 1540 | |
| 1541 | /* Assumes rq->lock is held */ |
| 1542 | static void rq_offline_dl(struct rq *rq) |
| 1543 | { |
| 1544 | if (rq->dl.overloaded) |
| 1545 | dl_clear_overload(rq); |
Juri Lelli | 6bfd6d7 | 2013-11-07 14:43:47 +0100 | [diff] [blame] | 1546 | |
| 1547 | cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1548 | } |
| 1549 | |
| 1550 | void init_sched_dl_class(void) |
| 1551 | { |
| 1552 | unsigned int i; |
| 1553 | |
| 1554 | for_each_possible_cpu(i) |
| 1555 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), |
| 1556 | GFP_KERNEL, cpu_to_node(i)); |
| 1557 | } |
| 1558 | |
| 1559 | #endif /* CONFIG_SMP */ |
| 1560 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1561 | static void switched_from_dl(struct rq *rq, struct task_struct *p) |
| 1562 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1563 | if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1564 | hrtimer_try_to_cancel(&p->dl.dl_timer); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1565 | |
| 1566 | #ifdef CONFIG_SMP |
| 1567 | /* |
| 1568 | * Since this might be the only -deadline task on the rq, |
| 1569 | * this is the right place to try to pull some other one |
| 1570 | * from an overloaded cpu, if any. |
| 1571 | */ |
| 1572 | if (!rq->dl.dl_nr_running) |
| 1573 | pull_dl_task(rq); |
| 1574 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1575 | } |
| 1576 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1577 | /* |
| 1578 | * When switching to -deadline, we may overload the rq, then |
| 1579 | * we try to push someone off, if possible. |
| 1580 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1581 | static void switched_to_dl(struct rq *rq, struct task_struct *p) |
| 1582 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1583 | int check_resched = 1; |
| 1584 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1585 | /* |
| 1586 | * If p is throttled, don't consider the possibility |
| 1587 | * of preempting rq->curr, the check will be done right |
| 1588 | * after its runtime will get replenished. |
| 1589 | */ |
| 1590 | if (unlikely(p->dl.dl_throttled)) |
| 1591 | return; |
| 1592 | |
Kirill Tkhai | 390f325 | 2014-01-28 11:26:14 +0400 | [diff] [blame] | 1593 | if (p->on_rq && rq->curr != p) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1594 | #ifdef CONFIG_SMP |
| 1595 | if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) |
| 1596 | /* Only reschedule if pushing failed */ |
| 1597 | check_resched = 0; |
| 1598 | #endif /* CONFIG_SMP */ |
| 1599 | if (check_resched && task_has_dl_policy(rq->curr)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1600 | check_preempt_curr_dl(rq, p, 0); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1601 | } |
| 1602 | } |
| 1603 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1604 | /* |
| 1605 | * If the scheduling parameters of a -deadline task changed, |
| 1606 | * a push or pull operation might be needed. |
| 1607 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1608 | static void prio_changed_dl(struct rq *rq, struct task_struct *p, |
| 1609 | int oldprio) |
| 1610 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1611 | if (p->on_rq || rq->curr == p) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1612 | #ifdef CONFIG_SMP |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1613 | /* |
| 1614 | * This might be too much, but unfortunately |
| 1615 | * we don't have the old deadline value, and |
| 1616 | * we can't argue if the task is increasing |
| 1617 | * or lowering its prio, so... |
| 1618 | */ |
| 1619 | if (!rq->dl.overloaded) |
| 1620 | pull_dl_task(rq); |
| 1621 | |
| 1622 | /* |
| 1623 | * If we now have a earlier deadline task than p, |
| 1624 | * then reschedule, provided p is still on this |
| 1625 | * runqueue. |
| 1626 | */ |
| 1627 | if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && |
| 1628 | rq->curr == p) |
| 1629 | resched_task(p); |
| 1630 | #else |
| 1631 | /* |
| 1632 | * Again, we don't know if p has a earlier |
| 1633 | * or later deadline, so let's blindly set a |
| 1634 | * (maybe not needed) rescheduling point. |
| 1635 | */ |
| 1636 | resched_task(p); |
| 1637 | #endif /* CONFIG_SMP */ |
| 1638 | } else |
| 1639 | switched_to_dl(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1640 | } |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1641 | |
| 1642 | const struct sched_class dl_sched_class = { |
| 1643 | .next = &rt_sched_class, |
| 1644 | .enqueue_task = enqueue_task_dl, |
| 1645 | .dequeue_task = dequeue_task_dl, |
| 1646 | .yield_task = yield_task_dl, |
| 1647 | |
| 1648 | .check_preempt_curr = check_preempt_curr_dl, |
| 1649 | |
| 1650 | .pick_next_task = pick_next_task_dl, |
| 1651 | .put_prev_task = put_prev_task_dl, |
| 1652 | |
| 1653 | #ifdef CONFIG_SMP |
| 1654 | .select_task_rq = select_task_rq_dl, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1655 | .set_cpus_allowed = set_cpus_allowed_dl, |
| 1656 | .rq_online = rq_online_dl, |
| 1657 | .rq_offline = rq_offline_dl, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1658 | .post_schedule = post_schedule_dl, |
| 1659 | .task_woken = task_woken_dl, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1660 | #endif |
| 1661 | |
| 1662 | .set_curr_task = set_curr_task_dl, |
| 1663 | .task_tick = task_tick_dl, |
| 1664 | .task_fork = task_fork_dl, |
| 1665 | .task_dead = task_dead_dl, |
| 1666 | |
| 1667 | .prio_changed = prio_changed_dl, |
| 1668 | .switched_from = switched_from_dl, |
| 1669 | .switched_to = switched_to_dl, |
| 1670 | }; |