Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Deadline Scheduling Class (SCHED_DEADLINE) |
| 3 | * |
| 4 | * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). |
| 5 | * |
| 6 | * Tasks that periodically executes their instances for less than their |
| 7 | * runtime won't miss any of their deadlines. |
| 8 | * Tasks that are not periodic or sporadic or that tries to execute more |
| 9 | * than their reserved bandwidth will be slowed down (and may potentially |
| 10 | * miss some of their deadlines), and won't affect any other task. |
| 11 | * |
| 12 | * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 13 | * Juri Lelli <juri.lelli@gmail.com>, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 14 | * Michael Trimarchi <michael@amarulasolutions.com>, |
| 15 | * Fabio Checconi <fchecconi@gmail.com> |
| 16 | */ |
| 17 | #include "sched.h" |
| 18 | |
| 19 | static inline int dl_time_before(u64 a, u64 b) |
| 20 | { |
| 21 | return (s64)(a - b) < 0; |
| 22 | } |
| 23 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 24 | /* |
| 25 | * Tells if entity @a should preempt entity @b. |
| 26 | */ |
| 27 | static inline |
| 28 | int dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) |
| 29 | { |
| 30 | return dl_time_before(a->deadline, b->deadline); |
| 31 | } |
| 32 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 33 | static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) |
| 34 | { |
| 35 | return container_of(dl_se, struct task_struct, dl); |
| 36 | } |
| 37 | |
| 38 | static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) |
| 39 | { |
| 40 | return container_of(dl_rq, struct rq, dl); |
| 41 | } |
| 42 | |
| 43 | static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) |
| 44 | { |
| 45 | struct task_struct *p = dl_task_of(dl_se); |
| 46 | struct rq *rq = task_rq(p); |
| 47 | |
| 48 | return &rq->dl; |
| 49 | } |
| 50 | |
| 51 | static inline int on_dl_rq(struct sched_dl_entity *dl_se) |
| 52 | { |
| 53 | return !RB_EMPTY_NODE(&dl_se->rb_node); |
| 54 | } |
| 55 | |
| 56 | static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) |
| 57 | { |
| 58 | struct sched_dl_entity *dl_se = &p->dl; |
| 59 | |
| 60 | return dl_rq->rb_leftmost == &dl_se->rb_node; |
| 61 | } |
| 62 | |
| 63 | void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) |
| 64 | { |
| 65 | dl_rq->rb_root = RB_ROOT; |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 66 | |
| 67 | #ifdef CONFIG_SMP |
| 68 | /* zero means no -deadline tasks */ |
| 69 | dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; |
| 70 | |
| 71 | dl_rq->dl_nr_migratory = 0; |
| 72 | dl_rq->overloaded = 0; |
| 73 | dl_rq->pushable_dl_tasks_root = RB_ROOT; |
| 74 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 75 | } |
| 76 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 77 | #ifdef CONFIG_SMP |
| 78 | |
| 79 | static inline int dl_overloaded(struct rq *rq) |
| 80 | { |
| 81 | return atomic_read(&rq->rd->dlo_count); |
| 82 | } |
| 83 | |
| 84 | static inline void dl_set_overload(struct rq *rq) |
| 85 | { |
| 86 | if (!rq->online) |
| 87 | return; |
| 88 | |
| 89 | cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); |
| 90 | /* |
| 91 | * Must be visible before the overload count is |
| 92 | * set (as in sched_rt.c). |
| 93 | * |
| 94 | * Matched by the barrier in pull_dl_task(). |
| 95 | */ |
| 96 | smp_wmb(); |
| 97 | atomic_inc(&rq->rd->dlo_count); |
| 98 | } |
| 99 | |
| 100 | static inline void dl_clear_overload(struct rq *rq) |
| 101 | { |
| 102 | if (!rq->online) |
| 103 | return; |
| 104 | |
| 105 | atomic_dec(&rq->rd->dlo_count); |
| 106 | cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); |
| 107 | } |
| 108 | |
| 109 | static void update_dl_migration(struct dl_rq *dl_rq) |
| 110 | { |
| 111 | if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_total > 1) { |
| 112 | if (!dl_rq->overloaded) { |
| 113 | dl_set_overload(rq_of_dl_rq(dl_rq)); |
| 114 | dl_rq->overloaded = 1; |
| 115 | } |
| 116 | } else if (dl_rq->overloaded) { |
| 117 | dl_clear_overload(rq_of_dl_rq(dl_rq)); |
| 118 | dl_rq->overloaded = 0; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 123 | { |
| 124 | struct task_struct *p = dl_task_of(dl_se); |
| 125 | dl_rq = &rq_of_dl_rq(dl_rq)->dl; |
| 126 | |
| 127 | dl_rq->dl_nr_total++; |
| 128 | if (p->nr_cpus_allowed > 1) |
| 129 | dl_rq->dl_nr_migratory++; |
| 130 | |
| 131 | update_dl_migration(dl_rq); |
| 132 | } |
| 133 | |
| 134 | static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 135 | { |
| 136 | struct task_struct *p = dl_task_of(dl_se); |
| 137 | dl_rq = &rq_of_dl_rq(dl_rq)->dl; |
| 138 | |
| 139 | dl_rq->dl_nr_total--; |
| 140 | if (p->nr_cpus_allowed > 1) |
| 141 | dl_rq->dl_nr_migratory--; |
| 142 | |
| 143 | update_dl_migration(dl_rq); |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * The list of pushable -deadline task is not a plist, like in |
| 148 | * sched_rt.c, it is an rb-tree with tasks ordered by deadline. |
| 149 | */ |
| 150 | static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 151 | { |
| 152 | struct dl_rq *dl_rq = &rq->dl; |
| 153 | struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; |
| 154 | struct rb_node *parent = NULL; |
| 155 | struct task_struct *entry; |
| 156 | int leftmost = 1; |
| 157 | |
| 158 | BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); |
| 159 | |
| 160 | while (*link) { |
| 161 | parent = *link; |
| 162 | entry = rb_entry(parent, struct task_struct, |
| 163 | pushable_dl_tasks); |
| 164 | if (dl_entity_preempt(&p->dl, &entry->dl)) |
| 165 | link = &parent->rb_left; |
| 166 | else { |
| 167 | link = &parent->rb_right; |
| 168 | leftmost = 0; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | if (leftmost) |
| 173 | dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; |
| 174 | |
| 175 | rb_link_node(&p->pushable_dl_tasks, parent, link); |
| 176 | rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 177 | } |
| 178 | |
| 179 | static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 180 | { |
| 181 | struct dl_rq *dl_rq = &rq->dl; |
| 182 | |
| 183 | if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) |
| 184 | return; |
| 185 | |
| 186 | if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { |
| 187 | struct rb_node *next_node; |
| 188 | |
| 189 | next_node = rb_next(&p->pushable_dl_tasks); |
| 190 | dl_rq->pushable_dl_tasks_leftmost = next_node; |
| 191 | } |
| 192 | |
| 193 | rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| 194 | RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| 195 | } |
| 196 | |
| 197 | static inline int has_pushable_dl_tasks(struct rq *rq) |
| 198 | { |
| 199 | return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); |
| 200 | } |
| 201 | |
| 202 | static int push_dl_task(struct rq *rq); |
| 203 | |
| 204 | #else |
| 205 | |
| 206 | static inline |
| 207 | void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 208 | { |
| 209 | } |
| 210 | |
| 211 | static inline |
| 212 | void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| 213 | { |
| 214 | } |
| 215 | |
| 216 | static inline |
| 217 | void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 218 | { |
| 219 | } |
| 220 | |
| 221 | static inline |
| 222 | void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 223 | { |
| 224 | } |
| 225 | |
| 226 | #endif /* CONFIG_SMP */ |
| 227 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 228 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 229 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| 230 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 231 | int flags); |
| 232 | |
| 233 | /* |
| 234 | * We are being explicitly informed that a new instance is starting, |
| 235 | * and this means that: |
| 236 | * - the absolute deadline of the entity has to be placed at |
| 237 | * current time + relative deadline; |
| 238 | * - the runtime of the entity has to be set to the maximum value. |
| 239 | * |
| 240 | * The capability of specifying such event is useful whenever a -deadline |
| 241 | * entity wants to (try to!) synchronize its behaviour with the scheduler's |
| 242 | * one, and to (try to!) reconcile itself with its own scheduling |
| 243 | * parameters. |
| 244 | */ |
| 245 | static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) |
| 246 | { |
| 247 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 248 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 249 | |
| 250 | WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); |
| 251 | |
| 252 | /* |
| 253 | * We use the regular wall clock time to set deadlines in the |
| 254 | * future; in fact, we must consider execution overheads (time |
| 255 | * spent on hardirq context, etc.). |
| 256 | */ |
| 257 | dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; |
| 258 | dl_se->runtime = dl_se->dl_runtime; |
| 259 | dl_se->dl_new = 0; |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * Pure Earliest Deadline First (EDF) scheduling does not deal with the |
| 264 | * possibility of a entity lasting more than what it declared, and thus |
| 265 | * exhausting its runtime. |
| 266 | * |
| 267 | * Here we are interested in making runtime overrun possible, but we do |
| 268 | * not want a entity which is misbehaving to affect the scheduling of all |
| 269 | * other entities. |
| 270 | * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) |
| 271 | * is used, in order to confine each entity within its own bandwidth. |
| 272 | * |
| 273 | * This function deals exactly with that, and ensures that when the runtime |
| 274 | * of a entity is replenished, its deadline is also postponed. That ensures |
| 275 | * the overrunning entity can't interfere with other entity in the system and |
| 276 | * can't make them miss their deadlines. Reasons why this kind of overruns |
| 277 | * could happen are, typically, a entity voluntarily trying to overcome its |
| 278 | * runtime, or it just underestimated it during sched_setscheduler_ex(). |
| 279 | */ |
| 280 | static void replenish_dl_entity(struct sched_dl_entity *dl_se) |
| 281 | { |
| 282 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 283 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 284 | |
| 285 | /* |
| 286 | * We keep moving the deadline away until we get some |
| 287 | * available runtime for the entity. This ensures correct |
| 288 | * handling of situations where the runtime overrun is |
| 289 | * arbitrary large. |
| 290 | */ |
| 291 | while (dl_se->runtime <= 0) { |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame^] | 292 | dl_se->deadline += dl_se->dl_period; |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 293 | dl_se->runtime += dl_se->dl_runtime; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * At this point, the deadline really should be "in |
| 298 | * the future" with respect to rq->clock. If it's |
| 299 | * not, we are, for some reason, lagging too much! |
| 300 | * Anyway, after having warn userspace abut that, |
| 301 | * we still try to keep the things running by |
| 302 | * resetting the deadline and the budget of the |
| 303 | * entity. |
| 304 | */ |
| 305 | if (dl_time_before(dl_se->deadline, rq_clock(rq))) { |
| 306 | static bool lag_once = false; |
| 307 | |
| 308 | if (!lag_once) { |
| 309 | lag_once = true; |
| 310 | printk_sched("sched: DL replenish lagged to much\n"); |
| 311 | } |
| 312 | dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; |
| 313 | dl_se->runtime = dl_se->dl_runtime; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Here we check if --at time t-- an entity (which is probably being |
| 319 | * [re]activated or, in general, enqueued) can use its remaining runtime |
| 320 | * and its current deadline _without_ exceeding the bandwidth it is |
| 321 | * assigned (function returns true if it can't). We are in fact applying |
| 322 | * one of the CBS rules: when a task wakes up, if the residual runtime |
| 323 | * over residual deadline fits within the allocated bandwidth, then we |
| 324 | * can keep the current (absolute) deadline and residual budget without |
| 325 | * disrupting the schedulability of the system. Otherwise, we should |
| 326 | * refill the runtime and set the deadline a period in the future, |
| 327 | * because keeping the current (absolute) deadline of the task would |
| 328 | * result in breaking guarantees promised to other tasks. |
| 329 | * |
| 330 | * This function returns true if: |
| 331 | * |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame^] | 332 | * runtime / (deadline - t) > dl_runtime / dl_period , |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 333 | * |
| 334 | * IOW we can't recycle current parameters. |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame^] | 335 | * |
| 336 | * Notice that the bandwidth check is done against the period. For |
| 337 | * task with deadline equal to period this is the same of using |
| 338 | * dl_deadline instead of dl_period in the equation above. |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 339 | */ |
| 340 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) |
| 341 | { |
| 342 | u64 left, right; |
| 343 | |
| 344 | /* |
| 345 | * left and right are the two sides of the equation above, |
| 346 | * after a bit of shuffling to use multiplications instead |
| 347 | * of divisions. |
| 348 | * |
| 349 | * Note that none of the time values involved in the two |
| 350 | * multiplications are absolute: dl_deadline and dl_runtime |
| 351 | * are the relative deadline and the maximum runtime of each |
| 352 | * instance, runtime is the runtime left for the last instance |
| 353 | * and (deadline - t), since t is rq->clock, is the time left |
| 354 | * to the (absolute) deadline. Even if overflowing the u64 type |
| 355 | * is very unlikely to occur in both cases, here we scale down |
| 356 | * as we want to avoid that risk at all. Scaling down by 10 |
| 357 | * means that we reduce granularity to 1us. We are fine with it, |
| 358 | * since this is only a true/false check and, anyway, thinking |
| 359 | * of anything below microseconds resolution is actually fiction |
| 360 | * (but still we want to give the user that illusion >;). |
| 361 | */ |
Harald Gustafsson | 755378a | 2013-11-07 14:43:40 +0100 | [diff] [blame^] | 362 | left = (dl_se->dl_period >> 10) * (dl_se->runtime >> 10); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 363 | right = ((dl_se->deadline - t) >> 10) * (dl_se->dl_runtime >> 10); |
| 364 | |
| 365 | return dl_time_before(right, left); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * When a -deadline entity is queued back on the runqueue, its runtime and |
| 370 | * deadline might need updating. |
| 371 | * |
| 372 | * The policy here is that we update the deadline of the entity only if: |
| 373 | * - the current deadline is in the past, |
| 374 | * - using the remaining runtime with the current deadline would make |
| 375 | * the entity exceed its bandwidth. |
| 376 | */ |
| 377 | static void update_dl_entity(struct sched_dl_entity *dl_se) |
| 378 | { |
| 379 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 380 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 381 | |
| 382 | /* |
| 383 | * The arrival of a new instance needs special treatment, i.e., |
| 384 | * the actual scheduling parameters have to be "renewed". |
| 385 | */ |
| 386 | if (dl_se->dl_new) { |
| 387 | setup_new_dl_entity(dl_se); |
| 388 | return; |
| 389 | } |
| 390 | |
| 391 | if (dl_time_before(dl_se->deadline, rq_clock(rq)) || |
| 392 | dl_entity_overflow(dl_se, rq_clock(rq))) { |
| 393 | dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; |
| 394 | dl_se->runtime = dl_se->dl_runtime; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * If the entity depleted all its runtime, and if we want it to sleep |
| 400 | * while waiting for some new execution time to become available, we |
| 401 | * set the bandwidth enforcement timer to the replenishment instant |
| 402 | * and try to activate it. |
| 403 | * |
| 404 | * Notice that it is important for the caller to know if the timer |
| 405 | * actually started or not (i.e., the replenishment instant is in |
| 406 | * the future or in the past). |
| 407 | */ |
| 408 | static int start_dl_timer(struct sched_dl_entity *dl_se) |
| 409 | { |
| 410 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 411 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 412 | ktime_t now, act; |
| 413 | ktime_t soft, hard; |
| 414 | unsigned long range; |
| 415 | s64 delta; |
| 416 | |
| 417 | /* |
| 418 | * We want the timer to fire at the deadline, but considering |
| 419 | * that it is actually coming from rq->clock and not from |
| 420 | * hrtimer's time base reading. |
| 421 | */ |
| 422 | act = ns_to_ktime(dl_se->deadline); |
| 423 | now = hrtimer_cb_get_time(&dl_se->dl_timer); |
| 424 | delta = ktime_to_ns(now) - rq_clock(rq); |
| 425 | act = ktime_add_ns(act, delta); |
| 426 | |
| 427 | /* |
| 428 | * If the expiry time already passed, e.g., because the value |
| 429 | * chosen as the deadline is too small, don't even try to |
| 430 | * start the timer in the past! |
| 431 | */ |
| 432 | if (ktime_us_delta(act, now) < 0) |
| 433 | return 0; |
| 434 | |
| 435 | hrtimer_set_expires(&dl_se->dl_timer, act); |
| 436 | |
| 437 | soft = hrtimer_get_softexpires(&dl_se->dl_timer); |
| 438 | hard = hrtimer_get_expires(&dl_se->dl_timer); |
| 439 | range = ktime_to_ns(ktime_sub(hard, soft)); |
| 440 | __hrtimer_start_range_ns(&dl_se->dl_timer, soft, |
| 441 | range, HRTIMER_MODE_ABS, 0); |
| 442 | |
| 443 | return hrtimer_active(&dl_se->dl_timer); |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * This is the bandwidth enforcement timer callback. If here, we know |
| 448 | * a task is not on its dl_rq, since the fact that the timer was running |
| 449 | * means the task is throttled and needs a runtime replenishment. |
| 450 | * |
| 451 | * However, what we actually do depends on the fact the task is active, |
| 452 | * (it is on its rq) or has been removed from there by a call to |
| 453 | * dequeue_task_dl(). In the former case we must issue the runtime |
| 454 | * replenishment and add the task back to the dl_rq; in the latter, we just |
| 455 | * do nothing but clearing dl_throttled, so that runtime and deadline |
| 456 | * updating (and the queueing back to dl_rq) will be done by the |
| 457 | * next call to enqueue_task_dl(). |
| 458 | */ |
| 459 | static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) |
| 460 | { |
| 461 | struct sched_dl_entity *dl_se = container_of(timer, |
| 462 | struct sched_dl_entity, |
| 463 | dl_timer); |
| 464 | struct task_struct *p = dl_task_of(dl_se); |
| 465 | struct rq *rq = task_rq(p); |
| 466 | raw_spin_lock(&rq->lock); |
| 467 | |
| 468 | /* |
| 469 | * We need to take care of a possible races here. In fact, the |
| 470 | * task might have changed its scheduling policy to something |
| 471 | * different from SCHED_DEADLINE or changed its reservation |
| 472 | * parameters (through sched_setscheduler()). |
| 473 | */ |
| 474 | if (!dl_task(p) || dl_se->dl_new) |
| 475 | goto unlock; |
| 476 | |
| 477 | sched_clock_tick(); |
| 478 | update_rq_clock(rq); |
| 479 | dl_se->dl_throttled = 0; |
| 480 | if (p->on_rq) { |
| 481 | enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); |
| 482 | if (task_has_dl_policy(rq->curr)) |
| 483 | check_preempt_curr_dl(rq, p, 0); |
| 484 | else |
| 485 | resched_task(rq->curr); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 486 | #ifdef CONFIG_SMP |
| 487 | /* |
| 488 | * Queueing this task back might have overloaded rq, |
| 489 | * check if we need to kick someone away. |
| 490 | */ |
| 491 | if (has_pushable_dl_tasks(rq)) |
| 492 | push_dl_task(rq); |
| 493 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 494 | } |
| 495 | unlock: |
| 496 | raw_spin_unlock(&rq->lock); |
| 497 | |
| 498 | return HRTIMER_NORESTART; |
| 499 | } |
| 500 | |
| 501 | void init_dl_task_timer(struct sched_dl_entity *dl_se) |
| 502 | { |
| 503 | struct hrtimer *timer = &dl_se->dl_timer; |
| 504 | |
| 505 | if (hrtimer_active(timer)) { |
| 506 | hrtimer_try_to_cancel(timer); |
| 507 | return; |
| 508 | } |
| 509 | |
| 510 | hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 511 | timer->function = dl_task_timer; |
| 512 | } |
| 513 | |
| 514 | static |
| 515 | int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) |
| 516 | { |
| 517 | int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); |
| 518 | int rorun = dl_se->runtime <= 0; |
| 519 | |
| 520 | if (!rorun && !dmiss) |
| 521 | return 0; |
| 522 | |
| 523 | /* |
| 524 | * If we are beyond our current deadline and we are still |
| 525 | * executing, then we have already used some of the runtime of |
| 526 | * the next instance. Thus, if we do not account that, we are |
| 527 | * stealing bandwidth from the system at each deadline miss! |
| 528 | */ |
| 529 | if (dmiss) { |
| 530 | dl_se->runtime = rorun ? dl_se->runtime : 0; |
| 531 | dl_se->runtime -= rq_clock(rq) - dl_se->deadline; |
| 532 | } |
| 533 | |
| 534 | return 1; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Update the current task's runtime statistics (provided it is still |
| 539 | * a -deadline task and has not been removed from the dl_rq). |
| 540 | */ |
| 541 | static void update_curr_dl(struct rq *rq) |
| 542 | { |
| 543 | struct task_struct *curr = rq->curr; |
| 544 | struct sched_dl_entity *dl_se = &curr->dl; |
| 545 | u64 delta_exec; |
| 546 | |
| 547 | if (!dl_task(curr) || !on_dl_rq(dl_se)) |
| 548 | return; |
| 549 | |
| 550 | /* |
| 551 | * Consumed budget is computed considering the time as |
| 552 | * observed by schedulable tasks (excluding time spent |
| 553 | * in hardirq context, etc.). Deadlines are instead |
| 554 | * computed using hard walltime. This seems to be the more |
| 555 | * natural solution, but the full ramifications of this |
| 556 | * approach need further study. |
| 557 | */ |
| 558 | delta_exec = rq_clock_task(rq) - curr->se.exec_start; |
| 559 | if (unlikely((s64)delta_exec < 0)) |
| 560 | delta_exec = 0; |
| 561 | |
| 562 | schedstat_set(curr->se.statistics.exec_max, |
| 563 | max(curr->se.statistics.exec_max, delta_exec)); |
| 564 | |
| 565 | curr->se.sum_exec_runtime += delta_exec; |
| 566 | account_group_exec_runtime(curr, delta_exec); |
| 567 | |
| 568 | curr->se.exec_start = rq_clock_task(rq); |
| 569 | cpuacct_charge(curr, delta_exec); |
| 570 | |
Dario Faggioli | 239be4a | 2013-11-07 14:43:39 +0100 | [diff] [blame] | 571 | sched_rt_avg_update(rq, delta_exec); |
| 572 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 573 | dl_se->runtime -= delta_exec; |
| 574 | if (dl_runtime_exceeded(rq, dl_se)) { |
| 575 | __dequeue_task_dl(rq, curr, 0); |
| 576 | if (likely(start_dl_timer(dl_se))) |
| 577 | dl_se->dl_throttled = 1; |
| 578 | else |
| 579 | enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); |
| 580 | |
| 581 | if (!is_leftmost(curr, &rq->dl)) |
| 582 | resched_task(curr); |
| 583 | } |
| 584 | } |
| 585 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 586 | #ifdef CONFIG_SMP |
| 587 | |
| 588 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); |
| 589 | |
| 590 | static inline u64 next_deadline(struct rq *rq) |
| 591 | { |
| 592 | struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); |
| 593 | |
| 594 | if (next && dl_prio(next->prio)) |
| 595 | return next->dl.deadline; |
| 596 | else |
| 597 | return 0; |
| 598 | } |
| 599 | |
| 600 | static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 601 | { |
| 602 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 603 | |
| 604 | if (dl_rq->earliest_dl.curr == 0 || |
| 605 | dl_time_before(deadline, dl_rq->earliest_dl.curr)) { |
| 606 | /* |
| 607 | * If the dl_rq had no -deadline tasks, or if the new task |
| 608 | * has shorter deadline than the current one on dl_rq, we |
| 609 | * know that the previous earliest becomes our next earliest, |
| 610 | * as the new task becomes the earliest itself. |
| 611 | */ |
| 612 | dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; |
| 613 | dl_rq->earliest_dl.curr = deadline; |
| 614 | } else if (dl_rq->earliest_dl.next == 0 || |
| 615 | dl_time_before(deadline, dl_rq->earliest_dl.next)) { |
| 616 | /* |
| 617 | * On the other hand, if the new -deadline task has a |
| 618 | * a later deadline than the earliest one on dl_rq, but |
| 619 | * it is earlier than the next (if any), we must |
| 620 | * recompute the next-earliest. |
| 621 | */ |
| 622 | dl_rq->earliest_dl.next = next_deadline(rq); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| 627 | { |
| 628 | struct rq *rq = rq_of_dl_rq(dl_rq); |
| 629 | |
| 630 | /* |
| 631 | * Since we may have removed our earliest (and/or next earliest) |
| 632 | * task we must recompute them. |
| 633 | */ |
| 634 | if (!dl_rq->dl_nr_running) { |
| 635 | dl_rq->earliest_dl.curr = 0; |
| 636 | dl_rq->earliest_dl.next = 0; |
| 637 | } else { |
| 638 | struct rb_node *leftmost = dl_rq->rb_leftmost; |
| 639 | struct sched_dl_entity *entry; |
| 640 | |
| 641 | entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); |
| 642 | dl_rq->earliest_dl.curr = entry->deadline; |
| 643 | dl_rq->earliest_dl.next = next_deadline(rq); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | #else |
| 648 | |
| 649 | static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 650 | static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| 651 | |
| 652 | #endif /* CONFIG_SMP */ |
| 653 | |
| 654 | static inline |
| 655 | void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 656 | { |
| 657 | int prio = dl_task_of(dl_se)->prio; |
| 658 | u64 deadline = dl_se->deadline; |
| 659 | |
| 660 | WARN_ON(!dl_prio(prio)); |
| 661 | dl_rq->dl_nr_running++; |
| 662 | |
| 663 | inc_dl_deadline(dl_rq, deadline); |
| 664 | inc_dl_migration(dl_se, dl_rq); |
| 665 | } |
| 666 | |
| 667 | static inline |
| 668 | void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| 669 | { |
| 670 | int prio = dl_task_of(dl_se)->prio; |
| 671 | |
| 672 | WARN_ON(!dl_prio(prio)); |
| 673 | WARN_ON(!dl_rq->dl_nr_running); |
| 674 | dl_rq->dl_nr_running--; |
| 675 | |
| 676 | dec_dl_deadline(dl_rq, dl_se->deadline); |
| 677 | dec_dl_migration(dl_se, dl_rq); |
| 678 | } |
| 679 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 680 | static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) |
| 681 | { |
| 682 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 683 | struct rb_node **link = &dl_rq->rb_root.rb_node; |
| 684 | struct rb_node *parent = NULL; |
| 685 | struct sched_dl_entity *entry; |
| 686 | int leftmost = 1; |
| 687 | |
| 688 | BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); |
| 689 | |
| 690 | while (*link) { |
| 691 | parent = *link; |
| 692 | entry = rb_entry(parent, struct sched_dl_entity, rb_node); |
| 693 | if (dl_time_before(dl_se->deadline, entry->deadline)) |
| 694 | link = &parent->rb_left; |
| 695 | else { |
| 696 | link = &parent->rb_right; |
| 697 | leftmost = 0; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | if (leftmost) |
| 702 | dl_rq->rb_leftmost = &dl_se->rb_node; |
| 703 | |
| 704 | rb_link_node(&dl_se->rb_node, parent, link); |
| 705 | rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); |
| 706 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 707 | inc_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 708 | } |
| 709 | |
| 710 | static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 711 | { |
| 712 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| 713 | |
| 714 | if (RB_EMPTY_NODE(&dl_se->rb_node)) |
| 715 | return; |
| 716 | |
| 717 | if (dl_rq->rb_leftmost == &dl_se->rb_node) { |
| 718 | struct rb_node *next_node; |
| 719 | |
| 720 | next_node = rb_next(&dl_se->rb_node); |
| 721 | dl_rq->rb_leftmost = next_node; |
| 722 | } |
| 723 | |
| 724 | rb_erase(&dl_se->rb_node, &dl_rq->rb_root); |
| 725 | RB_CLEAR_NODE(&dl_se->rb_node); |
| 726 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 727 | dec_dl_tasks(dl_se, dl_rq); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 728 | } |
| 729 | |
| 730 | static void |
| 731 | enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) |
| 732 | { |
| 733 | BUG_ON(on_dl_rq(dl_se)); |
| 734 | |
| 735 | /* |
| 736 | * If this is a wakeup or a new instance, the scheduling |
| 737 | * parameters of the task might need updating. Otherwise, |
| 738 | * we want a replenishment of its runtime. |
| 739 | */ |
| 740 | if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) |
| 741 | replenish_dl_entity(dl_se); |
| 742 | else |
| 743 | update_dl_entity(dl_se); |
| 744 | |
| 745 | __enqueue_dl_entity(dl_se); |
| 746 | } |
| 747 | |
| 748 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| 749 | { |
| 750 | __dequeue_dl_entity(dl_se); |
| 751 | } |
| 752 | |
| 753 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 754 | { |
| 755 | /* |
| 756 | * If p is throttled, we do nothing. In fact, if it exhausted |
| 757 | * its budget it needs a replenishment and, since it now is on |
| 758 | * its rq, the bandwidth timer callback (which clearly has not |
| 759 | * run yet) will take care of this. |
| 760 | */ |
| 761 | if (p->dl.dl_throttled) |
| 762 | return; |
| 763 | |
| 764 | enqueue_dl_entity(&p->dl, flags); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 765 | |
| 766 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
| 767 | enqueue_pushable_dl_task(rq, p); |
| 768 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 769 | inc_nr_running(rq); |
| 770 | } |
| 771 | |
| 772 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 773 | { |
| 774 | dequeue_dl_entity(&p->dl); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 775 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 776 | } |
| 777 | |
| 778 | static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| 779 | { |
| 780 | update_curr_dl(rq); |
| 781 | __dequeue_task_dl(rq, p, flags); |
| 782 | |
| 783 | dec_nr_running(rq); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Yield task semantic for -deadline tasks is: |
| 788 | * |
| 789 | * get off from the CPU until our next instance, with |
| 790 | * a new runtime. This is of little use now, since we |
| 791 | * don't have a bandwidth reclaiming mechanism. Anyway, |
| 792 | * bandwidth reclaiming is planned for the future, and |
| 793 | * yield_task_dl will indicate that some spare budget |
| 794 | * is available for other task instances to use it. |
| 795 | */ |
| 796 | static void yield_task_dl(struct rq *rq) |
| 797 | { |
| 798 | struct task_struct *p = rq->curr; |
| 799 | |
| 800 | /* |
| 801 | * We make the task go to sleep until its current deadline by |
| 802 | * forcing its runtime to zero. This way, update_curr_dl() stops |
| 803 | * it and the bandwidth timer will wake it up and will give it |
| 804 | * new scheduling parameters (thanks to dl_new=1). |
| 805 | */ |
| 806 | if (p->dl.runtime > 0) { |
| 807 | rq->curr->dl.dl_new = 1; |
| 808 | p->dl.runtime = 0; |
| 809 | } |
| 810 | update_curr_dl(rq); |
| 811 | } |
| 812 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 813 | #ifdef CONFIG_SMP |
| 814 | |
| 815 | static int find_later_rq(struct task_struct *task); |
| 816 | static int latest_cpu_find(struct cpumask *span, |
| 817 | struct task_struct *task, |
| 818 | struct cpumask *later_mask); |
| 819 | |
| 820 | static int |
| 821 | select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) |
| 822 | { |
| 823 | struct task_struct *curr; |
| 824 | struct rq *rq; |
| 825 | |
| 826 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) |
| 827 | goto out; |
| 828 | |
| 829 | rq = cpu_rq(cpu); |
| 830 | |
| 831 | rcu_read_lock(); |
| 832 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ |
| 833 | |
| 834 | /* |
| 835 | * If we are dealing with a -deadline task, we must |
| 836 | * decide where to wake it up. |
| 837 | * If it has a later deadline and the current task |
| 838 | * on this rq can't move (provided the waking task |
| 839 | * can!) we prefer to send it somewhere else. On the |
| 840 | * other hand, if it has a shorter deadline, we |
| 841 | * try to make it stay here, it might be important. |
| 842 | */ |
| 843 | if (unlikely(dl_task(curr)) && |
| 844 | (curr->nr_cpus_allowed < 2 || |
| 845 | !dl_entity_preempt(&p->dl, &curr->dl)) && |
| 846 | (p->nr_cpus_allowed > 1)) { |
| 847 | int target = find_later_rq(p); |
| 848 | |
| 849 | if (target != -1) |
| 850 | cpu = target; |
| 851 | } |
| 852 | rcu_read_unlock(); |
| 853 | |
| 854 | out: |
| 855 | return cpu; |
| 856 | } |
| 857 | |
| 858 | static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) |
| 859 | { |
| 860 | /* |
| 861 | * Current can't be migrated, useless to reschedule, |
| 862 | * let's hope p can move out. |
| 863 | */ |
| 864 | if (rq->curr->nr_cpus_allowed == 1 || |
| 865 | latest_cpu_find(rq->rd->span, rq->curr, NULL) == -1) |
| 866 | return; |
| 867 | |
| 868 | /* |
| 869 | * p is migratable, so let's not schedule it and |
| 870 | * see if it is pushed or pulled somewhere else. |
| 871 | */ |
| 872 | if (p->nr_cpus_allowed != 1 && |
| 873 | latest_cpu_find(rq->rd->span, p, NULL) != -1) |
| 874 | return; |
| 875 | |
| 876 | resched_task(rq->curr); |
| 877 | } |
| 878 | |
| 879 | #endif /* CONFIG_SMP */ |
| 880 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 881 | /* |
| 882 | * Only called when both the current and waking task are -deadline |
| 883 | * tasks. |
| 884 | */ |
| 885 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| 886 | int flags) |
| 887 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 888 | if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 889 | resched_task(rq->curr); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 890 | return; |
| 891 | } |
| 892 | |
| 893 | #ifdef CONFIG_SMP |
| 894 | /* |
| 895 | * In the unlikely case current and p have the same deadline |
| 896 | * let us try to decide what's the best thing to do... |
| 897 | */ |
| 898 | if ((s64)(p->dl.deadline - rq->curr->dl.deadline) == 0 && |
| 899 | !need_resched()) |
| 900 | check_preempt_equal_dl(rq, p); |
| 901 | #endif /* CONFIG_SMP */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 902 | } |
| 903 | |
| 904 | #ifdef CONFIG_SCHED_HRTICK |
| 905 | static void start_hrtick_dl(struct rq *rq, struct task_struct *p) |
| 906 | { |
| 907 | s64 delta = p->dl.dl_runtime - p->dl.runtime; |
| 908 | |
| 909 | if (delta > 10000) |
| 910 | hrtick_start(rq, p->dl.runtime); |
| 911 | } |
| 912 | #endif |
| 913 | |
| 914 | static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, |
| 915 | struct dl_rq *dl_rq) |
| 916 | { |
| 917 | struct rb_node *left = dl_rq->rb_leftmost; |
| 918 | |
| 919 | if (!left) |
| 920 | return NULL; |
| 921 | |
| 922 | return rb_entry(left, struct sched_dl_entity, rb_node); |
| 923 | } |
| 924 | |
| 925 | struct task_struct *pick_next_task_dl(struct rq *rq) |
| 926 | { |
| 927 | struct sched_dl_entity *dl_se; |
| 928 | struct task_struct *p; |
| 929 | struct dl_rq *dl_rq; |
| 930 | |
| 931 | dl_rq = &rq->dl; |
| 932 | |
| 933 | if (unlikely(!dl_rq->dl_nr_running)) |
| 934 | return NULL; |
| 935 | |
| 936 | dl_se = pick_next_dl_entity(rq, dl_rq); |
| 937 | BUG_ON(!dl_se); |
| 938 | |
| 939 | p = dl_task_of(dl_se); |
| 940 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 941 | |
| 942 | /* Running task will never be pushed. */ |
| 943 | if (p) |
| 944 | dequeue_pushable_dl_task(rq, p); |
| 945 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 946 | #ifdef CONFIG_SCHED_HRTICK |
| 947 | if (hrtick_enabled(rq)) |
| 948 | start_hrtick_dl(rq, p); |
| 949 | #endif |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 950 | |
| 951 | #ifdef CONFIG_SMP |
| 952 | rq->post_schedule = has_pushable_dl_tasks(rq); |
| 953 | #endif /* CONFIG_SMP */ |
| 954 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 955 | return p; |
| 956 | } |
| 957 | |
| 958 | static void put_prev_task_dl(struct rq *rq, struct task_struct *p) |
| 959 | { |
| 960 | update_curr_dl(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 961 | |
| 962 | if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) |
| 963 | enqueue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 964 | } |
| 965 | |
| 966 | static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) |
| 967 | { |
| 968 | update_curr_dl(rq); |
| 969 | |
| 970 | #ifdef CONFIG_SCHED_HRTICK |
| 971 | if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) |
| 972 | start_hrtick_dl(rq, p); |
| 973 | #endif |
| 974 | } |
| 975 | |
| 976 | static void task_fork_dl(struct task_struct *p) |
| 977 | { |
| 978 | /* |
| 979 | * SCHED_DEADLINE tasks cannot fork and this is achieved through |
| 980 | * sched_fork() |
| 981 | */ |
| 982 | } |
| 983 | |
| 984 | static void task_dead_dl(struct task_struct *p) |
| 985 | { |
| 986 | struct hrtimer *timer = &p->dl.dl_timer; |
| 987 | |
| 988 | if (hrtimer_active(timer)) |
| 989 | hrtimer_try_to_cancel(timer); |
| 990 | } |
| 991 | |
| 992 | static void set_curr_task_dl(struct rq *rq) |
| 993 | { |
| 994 | struct task_struct *p = rq->curr; |
| 995 | |
| 996 | p->se.exec_start = rq_clock_task(rq); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 997 | |
| 998 | /* You can't push away the running task */ |
| 999 | dequeue_pushable_dl_task(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1000 | } |
| 1001 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1002 | #ifdef CONFIG_SMP |
| 1003 | |
| 1004 | /* Only try algorithms three times */ |
| 1005 | #define DL_MAX_TRIES 3 |
| 1006 | |
| 1007 | static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) |
| 1008 | { |
| 1009 | if (!task_running(rq, p) && |
| 1010 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && |
| 1011 | (p->nr_cpus_allowed > 1)) |
| 1012 | return 1; |
| 1013 | |
| 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | /* Returns the second earliest -deadline task, NULL otherwise */ |
| 1018 | static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) |
| 1019 | { |
| 1020 | struct rb_node *next_node = rq->dl.rb_leftmost; |
| 1021 | struct sched_dl_entity *dl_se; |
| 1022 | struct task_struct *p = NULL; |
| 1023 | |
| 1024 | next_node: |
| 1025 | next_node = rb_next(next_node); |
| 1026 | if (next_node) { |
| 1027 | dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); |
| 1028 | p = dl_task_of(dl_se); |
| 1029 | |
| 1030 | if (pick_dl_task(rq, p, cpu)) |
| 1031 | return p; |
| 1032 | |
| 1033 | goto next_node; |
| 1034 | } |
| 1035 | |
| 1036 | return NULL; |
| 1037 | } |
| 1038 | |
| 1039 | static int latest_cpu_find(struct cpumask *span, |
| 1040 | struct task_struct *task, |
| 1041 | struct cpumask *later_mask) |
| 1042 | { |
| 1043 | const struct sched_dl_entity *dl_se = &task->dl; |
| 1044 | int cpu, found = -1, best = 0; |
| 1045 | u64 max_dl = 0; |
| 1046 | |
| 1047 | for_each_cpu(cpu, span) { |
| 1048 | struct rq *rq = cpu_rq(cpu); |
| 1049 | struct dl_rq *dl_rq = &rq->dl; |
| 1050 | |
| 1051 | if (cpumask_test_cpu(cpu, &task->cpus_allowed) && |
| 1052 | (!dl_rq->dl_nr_running || dl_time_before(dl_se->deadline, |
| 1053 | dl_rq->earliest_dl.curr))) { |
| 1054 | if (later_mask) |
| 1055 | cpumask_set_cpu(cpu, later_mask); |
| 1056 | if (!best && !dl_rq->dl_nr_running) { |
| 1057 | best = 1; |
| 1058 | found = cpu; |
| 1059 | } else if (!best && |
| 1060 | dl_time_before(max_dl, |
| 1061 | dl_rq->earliest_dl.curr)) { |
| 1062 | max_dl = dl_rq->earliest_dl.curr; |
| 1063 | found = cpu; |
| 1064 | } |
| 1065 | } else if (later_mask) |
| 1066 | cpumask_clear_cpu(cpu, later_mask); |
| 1067 | } |
| 1068 | |
| 1069 | return found; |
| 1070 | } |
| 1071 | |
| 1072 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); |
| 1073 | |
| 1074 | static int find_later_rq(struct task_struct *task) |
| 1075 | { |
| 1076 | struct sched_domain *sd; |
| 1077 | struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); |
| 1078 | int this_cpu = smp_processor_id(); |
| 1079 | int best_cpu, cpu = task_cpu(task); |
| 1080 | |
| 1081 | /* Make sure the mask is initialized first */ |
| 1082 | if (unlikely(!later_mask)) |
| 1083 | return -1; |
| 1084 | |
| 1085 | if (task->nr_cpus_allowed == 1) |
| 1086 | return -1; |
| 1087 | |
| 1088 | best_cpu = latest_cpu_find(task_rq(task)->rd->span, task, later_mask); |
| 1089 | if (best_cpu == -1) |
| 1090 | return -1; |
| 1091 | |
| 1092 | /* |
| 1093 | * If we are here, some target has been found, |
| 1094 | * the most suitable of which is cached in best_cpu. |
| 1095 | * This is, among the runqueues where the current tasks |
| 1096 | * have later deadlines than the task's one, the rq |
| 1097 | * with the latest possible one. |
| 1098 | * |
| 1099 | * Now we check how well this matches with task's |
| 1100 | * affinity and system topology. |
| 1101 | * |
| 1102 | * The last cpu where the task run is our first |
| 1103 | * guess, since it is most likely cache-hot there. |
| 1104 | */ |
| 1105 | if (cpumask_test_cpu(cpu, later_mask)) |
| 1106 | return cpu; |
| 1107 | /* |
| 1108 | * Check if this_cpu is to be skipped (i.e., it is |
| 1109 | * not in the mask) or not. |
| 1110 | */ |
| 1111 | if (!cpumask_test_cpu(this_cpu, later_mask)) |
| 1112 | this_cpu = -1; |
| 1113 | |
| 1114 | rcu_read_lock(); |
| 1115 | for_each_domain(cpu, sd) { |
| 1116 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1117 | |
| 1118 | /* |
| 1119 | * If possible, preempting this_cpu is |
| 1120 | * cheaper than migrating. |
| 1121 | */ |
| 1122 | if (this_cpu != -1 && |
| 1123 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
| 1124 | rcu_read_unlock(); |
| 1125 | return this_cpu; |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * Last chance: if best_cpu is valid and is |
| 1130 | * in the mask, that becomes our choice. |
| 1131 | */ |
| 1132 | if (best_cpu < nr_cpu_ids && |
| 1133 | cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { |
| 1134 | rcu_read_unlock(); |
| 1135 | return best_cpu; |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | rcu_read_unlock(); |
| 1140 | |
| 1141 | /* |
| 1142 | * At this point, all our guesses failed, we just return |
| 1143 | * 'something', and let the caller sort the things out. |
| 1144 | */ |
| 1145 | if (this_cpu != -1) |
| 1146 | return this_cpu; |
| 1147 | |
| 1148 | cpu = cpumask_any(later_mask); |
| 1149 | if (cpu < nr_cpu_ids) |
| 1150 | return cpu; |
| 1151 | |
| 1152 | return -1; |
| 1153 | } |
| 1154 | |
| 1155 | /* Locks the rq it finds */ |
| 1156 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) |
| 1157 | { |
| 1158 | struct rq *later_rq = NULL; |
| 1159 | int tries; |
| 1160 | int cpu; |
| 1161 | |
| 1162 | for (tries = 0; tries < DL_MAX_TRIES; tries++) { |
| 1163 | cpu = find_later_rq(task); |
| 1164 | |
| 1165 | if ((cpu == -1) || (cpu == rq->cpu)) |
| 1166 | break; |
| 1167 | |
| 1168 | later_rq = cpu_rq(cpu); |
| 1169 | |
| 1170 | /* Retry if something changed. */ |
| 1171 | if (double_lock_balance(rq, later_rq)) { |
| 1172 | if (unlikely(task_rq(task) != rq || |
| 1173 | !cpumask_test_cpu(later_rq->cpu, |
| 1174 | &task->cpus_allowed) || |
| 1175 | task_running(rq, task) || !task->on_rq)) { |
| 1176 | double_unlock_balance(rq, later_rq); |
| 1177 | later_rq = NULL; |
| 1178 | break; |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | /* |
| 1183 | * If the rq we found has no -deadline task, or |
| 1184 | * its earliest one has a later deadline than our |
| 1185 | * task, the rq is a good one. |
| 1186 | */ |
| 1187 | if (!later_rq->dl.dl_nr_running || |
| 1188 | dl_time_before(task->dl.deadline, |
| 1189 | later_rq->dl.earliest_dl.curr)) |
| 1190 | break; |
| 1191 | |
| 1192 | /* Otherwise we try again. */ |
| 1193 | double_unlock_balance(rq, later_rq); |
| 1194 | later_rq = NULL; |
| 1195 | } |
| 1196 | |
| 1197 | return later_rq; |
| 1198 | } |
| 1199 | |
| 1200 | static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) |
| 1201 | { |
| 1202 | struct task_struct *p; |
| 1203 | |
| 1204 | if (!has_pushable_dl_tasks(rq)) |
| 1205 | return NULL; |
| 1206 | |
| 1207 | p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, |
| 1208 | struct task_struct, pushable_dl_tasks); |
| 1209 | |
| 1210 | BUG_ON(rq->cpu != task_cpu(p)); |
| 1211 | BUG_ON(task_current(rq, p)); |
| 1212 | BUG_ON(p->nr_cpus_allowed <= 1); |
| 1213 | |
| 1214 | BUG_ON(!p->se.on_rq); |
| 1215 | BUG_ON(!dl_task(p)); |
| 1216 | |
| 1217 | return p; |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * See if the non running -deadline tasks on this rq |
| 1222 | * can be sent to some other CPU where they can preempt |
| 1223 | * and start executing. |
| 1224 | */ |
| 1225 | static int push_dl_task(struct rq *rq) |
| 1226 | { |
| 1227 | struct task_struct *next_task; |
| 1228 | struct rq *later_rq; |
| 1229 | |
| 1230 | if (!rq->dl.overloaded) |
| 1231 | return 0; |
| 1232 | |
| 1233 | next_task = pick_next_pushable_dl_task(rq); |
| 1234 | if (!next_task) |
| 1235 | return 0; |
| 1236 | |
| 1237 | retry: |
| 1238 | if (unlikely(next_task == rq->curr)) { |
| 1239 | WARN_ON(1); |
| 1240 | return 0; |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * If next_task preempts rq->curr, and rq->curr |
| 1245 | * can move away, it makes sense to just reschedule |
| 1246 | * without going further in pushing next_task. |
| 1247 | */ |
| 1248 | if (dl_task(rq->curr) && |
| 1249 | dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && |
| 1250 | rq->curr->nr_cpus_allowed > 1) { |
| 1251 | resched_task(rq->curr); |
| 1252 | return 0; |
| 1253 | } |
| 1254 | |
| 1255 | /* We might release rq lock */ |
| 1256 | get_task_struct(next_task); |
| 1257 | |
| 1258 | /* Will lock the rq it'll find */ |
| 1259 | later_rq = find_lock_later_rq(next_task, rq); |
| 1260 | if (!later_rq) { |
| 1261 | struct task_struct *task; |
| 1262 | |
| 1263 | /* |
| 1264 | * We must check all this again, since |
| 1265 | * find_lock_later_rq releases rq->lock and it is |
| 1266 | * then possible that next_task has migrated. |
| 1267 | */ |
| 1268 | task = pick_next_pushable_dl_task(rq); |
| 1269 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
| 1270 | /* |
| 1271 | * The task is still there. We don't try |
| 1272 | * again, some other cpu will pull it when ready. |
| 1273 | */ |
| 1274 | dequeue_pushable_dl_task(rq, next_task); |
| 1275 | goto out; |
| 1276 | } |
| 1277 | |
| 1278 | if (!task) |
| 1279 | /* No more tasks */ |
| 1280 | goto out; |
| 1281 | |
| 1282 | put_task_struct(next_task); |
| 1283 | next_task = task; |
| 1284 | goto retry; |
| 1285 | } |
| 1286 | |
| 1287 | deactivate_task(rq, next_task, 0); |
| 1288 | set_task_cpu(next_task, later_rq->cpu); |
| 1289 | activate_task(later_rq, next_task, 0); |
| 1290 | |
| 1291 | resched_task(later_rq->curr); |
| 1292 | |
| 1293 | double_unlock_balance(rq, later_rq); |
| 1294 | |
| 1295 | out: |
| 1296 | put_task_struct(next_task); |
| 1297 | |
| 1298 | return 1; |
| 1299 | } |
| 1300 | |
| 1301 | static void push_dl_tasks(struct rq *rq) |
| 1302 | { |
| 1303 | /* Terminates as it moves a -deadline task */ |
| 1304 | while (push_dl_task(rq)) |
| 1305 | ; |
| 1306 | } |
| 1307 | |
| 1308 | static int pull_dl_task(struct rq *this_rq) |
| 1309 | { |
| 1310 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
| 1311 | struct task_struct *p; |
| 1312 | struct rq *src_rq; |
| 1313 | u64 dmin = LONG_MAX; |
| 1314 | |
| 1315 | if (likely(!dl_overloaded(this_rq))) |
| 1316 | return 0; |
| 1317 | |
| 1318 | /* |
| 1319 | * Match the barrier from dl_set_overloaded; this guarantees that if we |
| 1320 | * see overloaded we must also see the dlo_mask bit. |
| 1321 | */ |
| 1322 | smp_rmb(); |
| 1323 | |
| 1324 | for_each_cpu(cpu, this_rq->rd->dlo_mask) { |
| 1325 | if (this_cpu == cpu) |
| 1326 | continue; |
| 1327 | |
| 1328 | src_rq = cpu_rq(cpu); |
| 1329 | |
| 1330 | /* |
| 1331 | * It looks racy, abd it is! However, as in sched_rt.c, |
| 1332 | * we are fine with this. |
| 1333 | */ |
| 1334 | if (this_rq->dl.dl_nr_running && |
| 1335 | dl_time_before(this_rq->dl.earliest_dl.curr, |
| 1336 | src_rq->dl.earliest_dl.next)) |
| 1337 | continue; |
| 1338 | |
| 1339 | /* Might drop this_rq->lock */ |
| 1340 | double_lock_balance(this_rq, src_rq); |
| 1341 | |
| 1342 | /* |
| 1343 | * If there are no more pullable tasks on the |
| 1344 | * rq, we're done with it. |
| 1345 | */ |
| 1346 | if (src_rq->dl.dl_nr_running <= 1) |
| 1347 | goto skip; |
| 1348 | |
| 1349 | p = pick_next_earliest_dl_task(src_rq, this_cpu); |
| 1350 | |
| 1351 | /* |
| 1352 | * We found a task to be pulled if: |
| 1353 | * - it preempts our current (if there's one), |
| 1354 | * - it will preempt the last one we pulled (if any). |
| 1355 | */ |
| 1356 | if (p && dl_time_before(p->dl.deadline, dmin) && |
| 1357 | (!this_rq->dl.dl_nr_running || |
| 1358 | dl_time_before(p->dl.deadline, |
| 1359 | this_rq->dl.earliest_dl.curr))) { |
| 1360 | WARN_ON(p == src_rq->curr); |
| 1361 | WARN_ON(!p->se.on_rq); |
| 1362 | |
| 1363 | /* |
| 1364 | * Then we pull iff p has actually an earlier |
| 1365 | * deadline than the current task of its runqueue. |
| 1366 | */ |
| 1367 | if (dl_time_before(p->dl.deadline, |
| 1368 | src_rq->curr->dl.deadline)) |
| 1369 | goto skip; |
| 1370 | |
| 1371 | ret = 1; |
| 1372 | |
| 1373 | deactivate_task(src_rq, p, 0); |
| 1374 | set_task_cpu(p, this_cpu); |
| 1375 | activate_task(this_rq, p, 0); |
| 1376 | dmin = p->dl.deadline; |
| 1377 | |
| 1378 | /* Is there any other task even earlier? */ |
| 1379 | } |
| 1380 | skip: |
| 1381 | double_unlock_balance(this_rq, src_rq); |
| 1382 | } |
| 1383 | |
| 1384 | return ret; |
| 1385 | } |
| 1386 | |
| 1387 | static void pre_schedule_dl(struct rq *rq, struct task_struct *prev) |
| 1388 | { |
| 1389 | /* Try to pull other tasks here */ |
| 1390 | if (dl_task(prev)) |
| 1391 | pull_dl_task(rq); |
| 1392 | } |
| 1393 | |
| 1394 | static void post_schedule_dl(struct rq *rq) |
| 1395 | { |
| 1396 | push_dl_tasks(rq); |
| 1397 | } |
| 1398 | |
| 1399 | /* |
| 1400 | * Since the task is not running and a reschedule is not going to happen |
| 1401 | * anytime soon on its runqueue, we try pushing it away now. |
| 1402 | */ |
| 1403 | static void task_woken_dl(struct rq *rq, struct task_struct *p) |
| 1404 | { |
| 1405 | if (!task_running(rq, p) && |
| 1406 | !test_tsk_need_resched(rq->curr) && |
| 1407 | has_pushable_dl_tasks(rq) && |
| 1408 | p->nr_cpus_allowed > 1 && |
| 1409 | dl_task(rq->curr) && |
| 1410 | (rq->curr->nr_cpus_allowed < 2 || |
| 1411 | dl_entity_preempt(&rq->curr->dl, &p->dl))) { |
| 1412 | push_dl_tasks(rq); |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | static void set_cpus_allowed_dl(struct task_struct *p, |
| 1417 | const struct cpumask *new_mask) |
| 1418 | { |
| 1419 | struct rq *rq; |
| 1420 | int weight; |
| 1421 | |
| 1422 | BUG_ON(!dl_task(p)); |
| 1423 | |
| 1424 | /* |
| 1425 | * Update only if the task is actually running (i.e., |
| 1426 | * it is on the rq AND it is not throttled). |
| 1427 | */ |
| 1428 | if (!on_dl_rq(&p->dl)) |
| 1429 | return; |
| 1430 | |
| 1431 | weight = cpumask_weight(new_mask); |
| 1432 | |
| 1433 | /* |
| 1434 | * Only update if the process changes its state from whether it |
| 1435 | * can migrate or not. |
| 1436 | */ |
| 1437 | if ((p->nr_cpus_allowed > 1) == (weight > 1)) |
| 1438 | return; |
| 1439 | |
| 1440 | rq = task_rq(p); |
| 1441 | |
| 1442 | /* |
| 1443 | * The process used to be able to migrate OR it can now migrate |
| 1444 | */ |
| 1445 | if (weight <= 1) { |
| 1446 | if (!task_current(rq, p)) |
| 1447 | dequeue_pushable_dl_task(rq, p); |
| 1448 | BUG_ON(!rq->dl.dl_nr_migratory); |
| 1449 | rq->dl.dl_nr_migratory--; |
| 1450 | } else { |
| 1451 | if (!task_current(rq, p)) |
| 1452 | enqueue_pushable_dl_task(rq, p); |
| 1453 | rq->dl.dl_nr_migratory++; |
| 1454 | } |
| 1455 | |
| 1456 | update_dl_migration(&rq->dl); |
| 1457 | } |
| 1458 | |
| 1459 | /* Assumes rq->lock is held */ |
| 1460 | static void rq_online_dl(struct rq *rq) |
| 1461 | { |
| 1462 | if (rq->dl.overloaded) |
| 1463 | dl_set_overload(rq); |
| 1464 | } |
| 1465 | |
| 1466 | /* Assumes rq->lock is held */ |
| 1467 | static void rq_offline_dl(struct rq *rq) |
| 1468 | { |
| 1469 | if (rq->dl.overloaded) |
| 1470 | dl_clear_overload(rq); |
| 1471 | } |
| 1472 | |
| 1473 | void init_sched_dl_class(void) |
| 1474 | { |
| 1475 | unsigned int i; |
| 1476 | |
| 1477 | for_each_possible_cpu(i) |
| 1478 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), |
| 1479 | GFP_KERNEL, cpu_to_node(i)); |
| 1480 | } |
| 1481 | |
| 1482 | #endif /* CONFIG_SMP */ |
| 1483 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1484 | static void switched_from_dl(struct rq *rq, struct task_struct *p) |
| 1485 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1486 | if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1487 | hrtimer_try_to_cancel(&p->dl.dl_timer); |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1488 | |
| 1489 | #ifdef CONFIG_SMP |
| 1490 | /* |
| 1491 | * Since this might be the only -deadline task on the rq, |
| 1492 | * this is the right place to try to pull some other one |
| 1493 | * from an overloaded cpu, if any. |
| 1494 | */ |
| 1495 | if (!rq->dl.dl_nr_running) |
| 1496 | pull_dl_task(rq); |
| 1497 | #endif |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1498 | } |
| 1499 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1500 | /* |
| 1501 | * When switching to -deadline, we may overload the rq, then |
| 1502 | * we try to push someone off, if possible. |
| 1503 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1504 | static void switched_to_dl(struct rq *rq, struct task_struct *p) |
| 1505 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1506 | int check_resched = 1; |
| 1507 | |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1508 | /* |
| 1509 | * If p is throttled, don't consider the possibility |
| 1510 | * of preempting rq->curr, the check will be done right |
| 1511 | * after its runtime will get replenished. |
| 1512 | */ |
| 1513 | if (unlikely(p->dl.dl_throttled)) |
| 1514 | return; |
| 1515 | |
| 1516 | if (p->on_rq || rq->curr != p) { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1517 | #ifdef CONFIG_SMP |
| 1518 | if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) |
| 1519 | /* Only reschedule if pushing failed */ |
| 1520 | check_resched = 0; |
| 1521 | #endif /* CONFIG_SMP */ |
| 1522 | if (check_resched && task_has_dl_policy(rq->curr)) |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1523 | check_preempt_curr_dl(rq, p, 0); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1524 | } |
| 1525 | } |
| 1526 | |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1527 | /* |
| 1528 | * If the scheduling parameters of a -deadline task changed, |
| 1529 | * a push or pull operation might be needed. |
| 1530 | */ |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1531 | static void prio_changed_dl(struct rq *rq, struct task_struct *p, |
| 1532 | int oldprio) |
| 1533 | { |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1534 | if (p->on_rq || rq->curr == p) { |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1535 | #ifdef CONFIG_SMP |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1536 | /* |
| 1537 | * This might be too much, but unfortunately |
| 1538 | * we don't have the old deadline value, and |
| 1539 | * we can't argue if the task is increasing |
| 1540 | * or lowering its prio, so... |
| 1541 | */ |
| 1542 | if (!rq->dl.overloaded) |
| 1543 | pull_dl_task(rq); |
| 1544 | |
| 1545 | /* |
| 1546 | * If we now have a earlier deadline task than p, |
| 1547 | * then reschedule, provided p is still on this |
| 1548 | * runqueue. |
| 1549 | */ |
| 1550 | if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && |
| 1551 | rq->curr == p) |
| 1552 | resched_task(p); |
| 1553 | #else |
| 1554 | /* |
| 1555 | * Again, we don't know if p has a earlier |
| 1556 | * or later deadline, so let's blindly set a |
| 1557 | * (maybe not needed) rescheduling point. |
| 1558 | */ |
| 1559 | resched_task(p); |
| 1560 | #endif /* CONFIG_SMP */ |
| 1561 | } else |
| 1562 | switched_to_dl(rq, p); |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1563 | } |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1564 | |
| 1565 | const struct sched_class dl_sched_class = { |
| 1566 | .next = &rt_sched_class, |
| 1567 | .enqueue_task = enqueue_task_dl, |
| 1568 | .dequeue_task = dequeue_task_dl, |
| 1569 | .yield_task = yield_task_dl, |
| 1570 | |
| 1571 | .check_preempt_curr = check_preempt_curr_dl, |
| 1572 | |
| 1573 | .pick_next_task = pick_next_task_dl, |
| 1574 | .put_prev_task = put_prev_task_dl, |
| 1575 | |
| 1576 | #ifdef CONFIG_SMP |
| 1577 | .select_task_rq = select_task_rq_dl, |
Juri Lelli | 1baca4c | 2013-11-07 14:43:38 +0100 | [diff] [blame] | 1578 | .set_cpus_allowed = set_cpus_allowed_dl, |
| 1579 | .rq_online = rq_online_dl, |
| 1580 | .rq_offline = rq_offline_dl, |
| 1581 | .pre_schedule = pre_schedule_dl, |
| 1582 | .post_schedule = post_schedule_dl, |
| 1583 | .task_woken = task_woken_dl, |
Dario Faggioli | aab03e0 | 2013-11-28 11:14:43 +0100 | [diff] [blame] | 1584 | #endif |
| 1585 | |
| 1586 | .set_curr_task = set_curr_task_dl, |
| 1587 | .task_tick = task_tick_dl, |
| 1588 | .task_fork = task_fork_dl, |
| 1589 | .task_dead = task_dead_dl, |
| 1590 | |
| 1591 | .prio_changed = prio_changed_dl, |
| 1592 | .switched_from = switched_from_dl, |
| 1593 | .switched_to = switched_to_dl, |
| 1594 | }; |