blob: b347c101c1f7a1dd564e21df48aef1b9dc678487 [file] [log] [blame]
Len Brown4f86d3a2007-10-03 18:58:00 -04001/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
Arjan van de Ven69d25872009-09-21 17:04:08 -07005 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
Len Brown4f86d3a2007-10-03 18:58:00 -04008 *
Arjan van de Ven69d25872009-09-21 17:04:08 -07009 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
Len Brown4f86d3a2007-10-03 18:58:00 -040011 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
Jean Pihete8db0be2011-08-25 15:35:03 +020015#include <linux/pm_qos.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040016#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
Arjan van de Ven69d25872009-09-21 17:04:08 -070020#include <linux/sched.h>
Stephen Hemminger57875362010-01-08 14:43:08 -080021#include <linux/math64.h>
Paul Gortmaker884b17e2011-08-29 17:52:39 -040022#include <linux/module.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040023
Tuukka Tikkanendecd51b2013-08-14 19:02:40 +030024/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
Arjan van de Ven69d25872009-09-21 17:04:08 -070033#define BUCKETS 12
Arjan van de Ven1f85f872010-05-24 14:32:59 -070034#define INTERVALS 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070035#define RESOLUTION 1024
Arjan van de Ven1f85f872010-05-24 14:32:59 -070036#define DECAY 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070037#define MAX_INTERESTING 50000
Arjan van de Ven1f85f872010-05-24 14:32:59 -070038#define STDDEV_THRESH 400
39
Arjan van de Ven69d25872009-09-21 17:04:08 -070040
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
Arjan van de Ven1f85f872010-05-24 14:32:59 -070080 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
Arjan van de Ven69d25872009-09-21 17:04:08 -070090 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
Lucas De Marchi20e33412010-09-07 12:53:49 -040093 * noticeable impact on workloads, which is not acceptable for most sysadmins,
Arjan van de Ven69d25872009-09-21 17:04:08 -070094 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
Len Brown4f86d3a2007-10-03 18:58:00 -0400120
121struct menu_device {
122 int last_state_idx;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700123 int needs_update;
Len Brown4f86d3a2007-10-03 18:58:00 -0400124
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200125 unsigned int next_timer_us;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300126 unsigned int predicted_us;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700127 unsigned int bucket;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300128 unsigned int correction_factor[BUCKETS];
Tuukka Tikkanen939e33b2013-08-14 19:02:38 +0300129 unsigned int intervals[INTERVALS];
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700130 int interval_ptr;
Len Brown4f86d3a2007-10-03 18:58:00 -0400131};
132
Arjan van de Ven69d25872009-09-21 17:04:08 -0700133
134#define LOAD_INT(x) ((x) >> FSHIFT)
135#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136
137static int get_loadavg(void)
138{
139 unsigned long this = this_cpu_load();
140
141
142 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
143}
144
145static inline int which_bucket(unsigned int duration)
146{
147 int bucket = 0;
148
149 /*
150 * We keep two groups of stats; one with no
151 * IO pending, one without.
152 * This allows us to calculate
153 * E(duration)|iowait
154 */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200155 if (nr_iowait_cpu(smp_processor_id()))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700156 bucket = BUCKETS/2;
157
158 if (duration < 10)
159 return bucket;
160 if (duration < 100)
161 return bucket + 1;
162 if (duration < 1000)
163 return bucket + 2;
164 if (duration < 10000)
165 return bucket + 3;
166 if (duration < 100000)
167 return bucket + 4;
168 return bucket + 5;
169}
170
171/*
172 * Return a multiplier for the exit latency that is intended
173 * to take performance requirements into account.
174 * The more performance critical we estimate the system
175 * to be, the higher this multiplier, and thus the higher
176 * the barrier to go to an expensive C state.
177 */
178static inline int performance_multiplier(void)
179{
180 int mult = 1;
181
182 /* for higher loadavg, we are more reluctant */
183
184 mult += 2 * get_loadavg();
185
186 /* for IO wait tasks (per cpu!) we add 5x each */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200187 mult += 10 * nr_iowait_cpu(smp_processor_id());
Arjan van de Ven69d25872009-09-21 17:04:08 -0700188
189 return mult;
190}
191
Len Brown4f86d3a2007-10-03 18:58:00 -0400192static DEFINE_PER_CPU(struct menu_device, menu_devices);
193
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530194static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700195
Stephen Hemminger57875362010-01-08 14:43:08 -0800196/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
197static u64 div_round64(u64 dividend, u32 divisor)
198{
199 return div_u64(dividend + (divisor / 2), divisor);
200}
201
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700202/*
203 * Try detecting repeating patterns by keeping track of the last 8
204 * intervals, and checking if the standard deviation of that set
205 * of points is below a threshold. If it is... then use the
206 * average of these 8 points as the estimated value.
207 */
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200208static void get_typical_interval(struct menu_device *data)
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700209{
Tuukka Tikkanen4cd46bc2013-08-14 19:02:37 +0300210 int i, divisor;
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300211 unsigned int max, thresh;
212 uint64_t avg, stddev;
213
214 thresh = UINT_MAX; /* Discard outliers above this value */
Youquan Songc96ca4f2012-10-26 12:27:07 +0200215
216again:
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700217
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300218 /* First calculate the average of past intervals */
Tuukka Tikkanen4cd46bc2013-08-14 19:02:37 +0300219 max = 0;
220 avg = 0;
221 divisor = 0;
Youquan Songc96ca4f2012-10-26 12:27:07 +0200222 for (i = 0; i < INTERVALS; i++) {
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300223 unsigned int value = data->intervals[i];
Youquan Songc96ca4f2012-10-26 12:27:07 +0200224 if (value <= thresh) {
225 avg += value;
226 divisor++;
227 if (value > max)
228 max = value;
229 }
230 }
231 do_div(avg, divisor);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700232
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300233 /* Then try to determine standard deviation */
234 stddev = 0;
Youquan Songc96ca4f2012-10-26 12:27:07 +0200235 for (i = 0; i < INTERVALS; i++) {
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300236 unsigned int value = data->intervals[i];
Youquan Songc96ca4f2012-10-26 12:27:07 +0200237 if (value <= thresh) {
238 int64_t diff = value - avg;
239 stddev += diff * diff;
240 }
241 }
242 do_div(stddev, divisor);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700243 /*
Youquan Songc96ca4f2012-10-26 12:27:07 +0200244 * The typical interval is obtained when standard deviation is small
245 * or standard deviation is small compared to the average interval.
Tuukka Tikkanen330647a2013-08-14 19:02:34 +0300246 *
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300247 * int_sqrt() formal parameter type is unsigned long. When the
248 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
249 * the resulting squared standard deviation exceeds the input domain
250 * of int_sqrt on platforms where unsigned long is 32 bits in size.
251 * In such case reject the candidate average.
252 *
Tuukka Tikkanen330647a2013-08-14 19:02:34 +0300253 * Use this result only if there is no timer to wake us up sooner.
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700254 */
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300255 if (likely(stddev <= ULONG_MAX)) {
256 stddev = int_sqrt(stddev);
257 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
Youquan Songc96ca4f2012-10-26 12:27:07 +0200258 || stddev <= 20) {
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200259 if (data->next_timer_us > avg)
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300260 data->predicted_us = avg;
261 return;
262 }
Youquan Song69a37be2012-10-26 12:26:41 +0200263 }
Tuukka Tikkanen017099e2013-08-14 19:02:35 +0300264
265 /*
266 * If we have outliers to the upside in our distribution, discard
267 * those by setting the threshold to exclude these outliers, then
268 * calculate the average and standard deviation again. Once we get
269 * down to the bottom 3/4 of our samples, stop excluding samples.
270 *
271 * This can deal with workloads that have long pauses interspersed
272 * with sporadic activity with a bunch of short pauses.
273 */
274 if ((divisor * 4) <= INTERVALS * 3)
275 return;
276
277 thresh = max - 1;
278 goto again;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700279}
280
Len Brown4f86d3a2007-10-03 18:58:00 -0400281/**
282 * menu_select - selects the next idle state to enter
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530283 * @drv: cpuidle driver containing state data
Len Brown4f86d3a2007-10-03 18:58:00 -0400284 * @dev: the CPU
285 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530286static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400287{
288 struct menu_device *data = &__get_cpu_var(menu_devices);
Mark Grossed771342010-05-06 01:59:26 +0200289 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
Len Brown4f86d3a2007-10-03 18:58:00 -0400290 int i;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700291 int multiplier;
Tero Kristo74675712011-02-24 17:19:23 +0200292 struct timespec t;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700293
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700294 if (data->needs_update) {
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530295 menu_update(drv, dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700296 data->needs_update = 0;
297 }
298
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700299 data->last_state_idx = 0;
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700300
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700301 /* Special case when user has set very strict latency requirement */
Arjan van de Ven69d25872009-09-21 17:04:08 -0700302 if (unlikely(latency_req == 0))
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700303 return 0;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700304
Arjan van de Ven69d25872009-09-21 17:04:08 -0700305 /* determine the expected residency time, round up */
Tero Kristo74675712011-02-24 17:19:23 +0200306 t = ktime_to_timespec(tick_nohz_get_sleep_length());
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200307 data->next_timer_us =
Tero Kristo74675712011-02-24 17:19:23 +0200308 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
Len Brown4f86d3a2007-10-03 18:58:00 -0400309
Arjan van de Ven69d25872009-09-21 17:04:08 -0700310
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200311 data->bucket = which_bucket(data->next_timer_us);
Arjan van de Ven69d25872009-09-21 17:04:08 -0700312
313 multiplier = performance_multiplier();
314
315 /*
316 * if the correction factor is 0 (eg first time init or cpu hotplug
317 * etc), we actually want to start out with a unity factor.
318 */
319 if (data->correction_factor[data->bucket] == 0)
320 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
321
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300322 /*
323 * Force the result of multiplication to be 64 bits even if both
324 * operands are 32 bits.
325 * Make sure to round up for half microseconds.
326 */
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200327 data->predicted_us = div_round64((uint64_t)data->next_timer_us *
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300328 data->correction_factor[data->bucket],
Stephen Hemminger57875362010-01-08 14:43:08 -0800329 RESOLUTION * DECAY);
Arjan van de Ven69d25872009-09-21 17:04:08 -0700330
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200331 get_typical_interval(data);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700332
Arjan van de Ven69d25872009-09-21 17:04:08 -0700333 /*
334 * We want to default to C1 (hlt), not to busy polling
335 * unless the timer is happening really really soon.
336 */
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200337 if (data->next_timer_us > 5 &&
Rafael J. Wysockicbc9ef02012-07-03 19:07:42 +0200338 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
ShuoX Liudc7fd272012-07-03 19:05:31 +0200339 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
Arjan van de Ven69d25872009-09-21 17:04:08 -0700340 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
341
Ai Li71abbbf2010-08-09 17:20:13 -0700342 /*
343 * Find the idle state with the lowest power while satisfying
344 * our constraints.
345 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530346 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
347 struct cpuidle_state *s = &drv->states[i];
ShuoX Liudc7fd272012-07-03 19:05:31 +0200348 struct cpuidle_state_usage *su = &dev->states_usage[i];
Len Brown4f86d3a2007-10-03 18:58:00 -0400349
Rafael J. Wysockicbc9ef02012-07-03 19:07:42 +0200350 if (s->disabled || su->disable)
ShuoX Liu3a53396b2012-03-28 15:19:11 -0700351 continue;
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200352 if (s->target_residency > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700353 continue;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700354 if (s->exit_latency > latency_req)
Ai Li71abbbf2010-08-09 17:20:13 -0700355 continue;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700356 if (s->exit_latency * multiplier > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700357 continue;
358
Daniel Lezcano8aef33a2013-01-15 14:18:04 +0100359 data->last_state_idx = i;
Len Brown4f86d3a2007-10-03 18:58:00 -0400360 }
361
Arjan van de Ven69d25872009-09-21 17:04:08 -0700362 return data->last_state_idx;
Len Brown4f86d3a2007-10-03 18:58:00 -0400363}
364
365/**
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700366 * menu_reflect - records that data structures need update
Len Brown4f86d3a2007-10-03 18:58:00 -0400367 * @dev: the CPU
Deepthi Dharware978aa72011-10-28 16:20:09 +0530368 * @index: the index of actual entered state
Len Brown4f86d3a2007-10-03 18:58:00 -0400369 *
370 * NOTE: it's important to be fast here because this operation will add to
371 * the overall exit latency.
372 */
Deepthi Dharware978aa72011-10-28 16:20:09 +0530373static void menu_reflect(struct cpuidle_device *dev, int index)
Len Brown4f86d3a2007-10-03 18:58:00 -0400374{
375 struct menu_device *data = &__get_cpu_var(menu_devices);
Deepthi Dharware978aa72011-10-28 16:20:09 +0530376 data->last_state_idx = index;
377 if (index >= 0)
378 data->needs_update = 1;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700379}
380
381/**
382 * menu_update - attempts to guess what happened after entry
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530383 * @drv: cpuidle driver containing state data
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700384 * @dev: the CPU
385 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530386static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700387{
388 struct menu_device *data = &__get_cpu_var(menu_devices);
Len Brown4f86d3a2007-10-03 18:58:00 -0400389 int last_idx = data->last_state_idx;
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530390 struct cpuidle_state *target = &drv->states[last_idx];
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700391 unsigned int measured_us;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300392 unsigned int new_factor;
Len Brown4f86d3a2007-10-03 18:58:00 -0400393
394 /*
tuukka.tikkanen@linaro.org61c66d62014-02-24 08:29:34 +0200395 * Try to figure out how much time passed between entry to low
396 * power state and occurrence of the wakeup event.
397 *
398 * If the entered idle state didn't support residency measurements,
399 * we are basically lost in the dark how much time passed.
400 * As a compromise, assume we slept for the whole expected time.
401 *
402 * Any measured amount of time will include the exit latency.
403 * Since we are interested in when the wakeup begun, not when it
404 * was completed, we must substract the exit latency. However, if
405 * the measured amount of time is less than the exit latency,
406 * assume the state was never reached and the exit latency is 0.
Len Brown4f86d3a2007-10-03 18:58:00 -0400407 */
tuukka.tikkanen@linaro.org61c66d62014-02-24 08:29:34 +0200408 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) {
409 /* Use timer value as is */
tuukka.tikkanen@linaro.org7ac26432014-02-24 08:29:33 +0200410 measured_us = data->next_timer_us;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700411
tuukka.tikkanen@linaro.org61c66d62014-02-24 08:29:34 +0200412 } else {
413 /* Use measured value */
414 measured_us = cpuidle_get_last_residency(dev);
415
416 /* Deduct exit latency */
417 if (measured_us > target->exit_latency)
418 measured_us -= target->exit_latency;
419
420 /* Make sure our coefficients do not exceed unity */
421 if (measured_us > data->next_timer_us)
422 measured_us = data->next_timer_us;
423 }
424
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300425 /* Update our correction ratio */
426 new_factor = data->correction_factor[data->bucket];
427 new_factor -= new_factor / DECAY;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700428
tuukka.tikkanen@linaro.org5dc2f5a2014-02-24 08:29:31 +0200429 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
430 new_factor += RESOLUTION * measured_us / data->next_timer_us;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700431 else
Arjan van de Ven69d25872009-09-21 17:04:08 -0700432 /*
433 * we were idle so long that we count it as a perfect
434 * prediction
435 */
436 new_factor += RESOLUTION;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700437
Arjan van de Ven69d25872009-09-21 17:04:08 -0700438 /*
439 * We don't want 0 as factor; we always want at least
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300440 * a tiny bit of estimated time. Fortunately, due to rounding,
441 * new_factor will stay nonzero regardless of measured_us values
442 * and the compiler can eliminate this test as long as DECAY > 1.
Arjan van de Ven69d25872009-09-21 17:04:08 -0700443 */
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300444 if (DECAY == 1 && unlikely(new_factor == 0))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700445 new_factor = 1;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700446
Arjan van de Ven69d25872009-09-21 17:04:08 -0700447 data->correction_factor[data->bucket] = new_factor;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700448
449 /* update the repeating-pattern data */
tuukka.tikkanen@linaro.org61c66d62014-02-24 08:29:34 +0200450 data->intervals[data->interval_ptr++] = measured_us;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700451 if (data->interval_ptr >= INTERVALS)
452 data->interval_ptr = 0;
Len Brown4f86d3a2007-10-03 18:58:00 -0400453}
454
455/**
456 * menu_enable_device - scans a CPU's states and does setup
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530457 * @drv: cpuidle driver
Len Brown4f86d3a2007-10-03 18:58:00 -0400458 * @dev: the CPU
459 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530460static int menu_enable_device(struct cpuidle_driver *drv,
461 struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400462{
463 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
Len Brown4f86d3a2007-10-03 18:58:00 -0400464
465 memset(data, 0, sizeof(struct menu_device));
466
467 return 0;
468}
469
470static struct cpuidle_governor menu_governor = {
471 .name = "menu",
472 .rating = 20,
473 .enable = menu_enable_device,
474 .select = menu_select,
475 .reflect = menu_reflect,
476 .owner = THIS_MODULE,
477};
478
479/**
480 * init_menu - initializes the governor
481 */
482static int __init init_menu(void)
483{
484 return cpuidle_register_governor(&menu_governor);
485}
486
Daniel Lezcano137b9442013-06-12 15:08:48 +0200487postcore_initcall(init_menu);