blob: cf7f2f0e4ef54d05ee1cc3babeb0555314c894f9 [file] [log] [blame]
Len Brown4f86d3a2007-10-03 18:58:00 -04001/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
Arjan van de Ven69d25872009-09-21 17:04:08 -07005 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
Len Brown4f86d3a2007-10-03 18:58:00 -04008 *
Arjan van de Ven69d25872009-09-21 17:04:08 -07009 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
Len Brown4f86d3a2007-10-03 18:58:00 -040011 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
Jean Pihete8db0be2011-08-25 15:35:03 +020015#include <linux/pm_qos.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040016#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
Arjan van de Ven69d25872009-09-21 17:04:08 -070020#include <linux/sched.h>
Stephen Hemminger57875362010-01-08 14:43:08 -080021#include <linux/math64.h>
Paul Gortmaker884b17e2011-08-29 17:52:39 -040022#include <linux/module.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040023
Tuukka Tikkanendecd51b2013-08-14 19:02:40 +030024/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
Arjan van de Ven69d25872009-09-21 17:04:08 -070033#define BUCKETS 12
Arjan van de Ven1f85f872010-05-24 14:32:59 -070034#define INTERVALS 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070035#define RESOLUTION 1024
Arjan van de Ven1f85f872010-05-24 14:32:59 -070036#define DECAY 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070037#define MAX_INTERESTING 50000
Arjan van de Ven1f85f872010-05-24 14:32:59 -070038#define STDDEV_THRESH 400
39
Arjan van de Ven69d25872009-09-21 17:04:08 -070040
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
Arjan van de Ven1f85f872010-05-24 14:32:59 -070080 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
Arjan van de Ven69d25872009-09-21 17:04:08 -070090 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
Lucas De Marchi20e33412010-09-07 12:53:49 -040093 * noticeable impact on workloads, which is not acceptable for most sysadmins,
Arjan van de Ven69d25872009-09-21 17:04:08 -070094 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
Len Brown4f86d3a2007-10-03 18:58:00 -0400120
121struct menu_device {
122 int last_state_idx;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700123 int needs_update;
Len Brown4f86d3a2007-10-03 18:58:00 -0400124
125 unsigned int expected_us;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300126 unsigned int predicted_us;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700127 unsigned int exit_us;
128 unsigned int bucket;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300129 unsigned int correction_factor[BUCKETS];
Tuukka Tikkanen939e33b2013-08-14 19:02:38 +0300130 unsigned int intervals[INTERVALS];
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700131 int interval_ptr;
Len Brown4f86d3a2007-10-03 18:58:00 -0400132};
133
Arjan van de Ven69d25872009-09-21 17:04:08 -0700134
135#define LOAD_INT(x) ((x) >> FSHIFT)
136#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
137
138static int get_loadavg(void)
139{
140 unsigned long this = this_cpu_load();
141
142
143 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
144}
145
146static inline int which_bucket(unsigned int duration)
147{
148 int bucket = 0;
149
150 /*
151 * We keep two groups of stats; one with no
152 * IO pending, one without.
153 * This allows us to calculate
154 * E(duration)|iowait
155 */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200156 if (nr_iowait_cpu(smp_processor_id()))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700157 bucket = BUCKETS/2;
158
159 if (duration < 10)
160 return bucket;
161 if (duration < 100)
162 return bucket + 1;
163 if (duration < 1000)
164 return bucket + 2;
165 if (duration < 10000)
166 return bucket + 3;
167 if (duration < 100000)
168 return bucket + 4;
169 return bucket + 5;
170}
171
172/*
173 * Return a multiplier for the exit latency that is intended
174 * to take performance requirements into account.
175 * The more performance critical we estimate the system
176 * to be, the higher this multiplier, and thus the higher
177 * the barrier to go to an expensive C state.
178 */
179static inline int performance_multiplier(void)
180{
181 int mult = 1;
182
183 /* for higher loadavg, we are more reluctant */
184
185 mult += 2 * get_loadavg();
186
187 /* for IO wait tasks (per cpu!) we add 5x each */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200188 mult += 10 * nr_iowait_cpu(smp_processor_id());
Arjan van de Ven69d25872009-09-21 17:04:08 -0700189
190 return mult;
191}
192
Len Brown4f86d3a2007-10-03 18:58:00 -0400193static DEFINE_PER_CPU(struct menu_device, menu_devices);
194
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530195static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700196
Stephen Hemminger57875362010-01-08 14:43:08 -0800197/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
198static u64 div_round64(u64 dividend, u32 divisor)
199{
200 return div_u64(dividend + (divisor / 2), divisor);
201}
202
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700203/*
204 * Try detecting repeating patterns by keeping track of the last 8
205 * intervals, and checking if the standard deviation of that set
206 * of points is below a threshold. If it is... then use the
207 * average of these 8 points as the estimated value.
208 */
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200209static void get_typical_interval(struct menu_device *data)
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700210{
Tuukka Tikkanen4cd46bc2013-08-14 19:02:37 +0300211 int i, divisor;
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300212 unsigned int max, thresh;
213 uint64_t avg, stddev;
214
215 thresh = UINT_MAX; /* Discard outliers above this value */
Youquan Songc96ca4f2012-10-26 12:27:07 +0200216
217again:
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700218
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300219 /* First calculate the average of past intervals */
Tuukka Tikkanen4cd46bc2013-08-14 19:02:37 +0300220 max = 0;
221 avg = 0;
222 divisor = 0;
Youquan Songc96ca4f2012-10-26 12:27:07 +0200223 for (i = 0; i < INTERVALS; i++) {
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300224 unsigned int value = data->intervals[i];
Youquan Songc96ca4f2012-10-26 12:27:07 +0200225 if (value <= thresh) {
226 avg += value;
227 divisor++;
228 if (value > max)
229 max = value;
230 }
231 }
232 do_div(avg, divisor);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700233
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300234 /* Then try to determine standard deviation */
235 stddev = 0;
Youquan Songc96ca4f2012-10-26 12:27:07 +0200236 for (i = 0; i < INTERVALS; i++) {
Tuukka Tikkanen0e96d5a2013-08-14 19:02:39 +0300237 unsigned int value = data->intervals[i];
Youquan Songc96ca4f2012-10-26 12:27:07 +0200238 if (value <= thresh) {
239 int64_t diff = value - avg;
240 stddev += diff * diff;
241 }
242 }
243 do_div(stddev, divisor);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700244 /*
Youquan Songc96ca4f2012-10-26 12:27:07 +0200245 * The typical interval is obtained when standard deviation is small
246 * or standard deviation is small compared to the average interval.
Tuukka Tikkanen330647a2013-08-14 19:02:34 +0300247 *
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300248 * int_sqrt() formal parameter type is unsigned long. When the
249 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
250 * the resulting squared standard deviation exceeds the input domain
251 * of int_sqrt on platforms where unsigned long is 32 bits in size.
252 * In such case reject the candidate average.
253 *
Tuukka Tikkanen330647a2013-08-14 19:02:34 +0300254 * Use this result only if there is no timer to wake us up sooner.
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700255 */
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300256 if (likely(stddev <= ULONG_MAX)) {
257 stddev = int_sqrt(stddev);
258 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
Youquan Songc96ca4f2012-10-26 12:27:07 +0200259 || stddev <= 20) {
Tuukka Tikkanen0d6a7ff2013-08-14 19:02:36 +0300260 if (data->expected_us > avg)
261 data->predicted_us = avg;
262 return;
263 }
Youquan Song69a37be2012-10-26 12:26:41 +0200264 }
Tuukka Tikkanen017099e2013-08-14 19:02:35 +0300265
266 /*
267 * If we have outliers to the upside in our distribution, discard
268 * those by setting the threshold to exclude these outliers, then
269 * calculate the average and standard deviation again. Once we get
270 * down to the bottom 3/4 of our samples, stop excluding samples.
271 *
272 * This can deal with workloads that have long pauses interspersed
273 * with sporadic activity with a bunch of short pauses.
274 */
275 if ((divisor * 4) <= INTERVALS * 3)
276 return;
277
278 thresh = max - 1;
279 goto again;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700280}
281
Len Brown4f86d3a2007-10-03 18:58:00 -0400282/**
283 * menu_select - selects the next idle state to enter
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530284 * @drv: cpuidle driver containing state data
Len Brown4f86d3a2007-10-03 18:58:00 -0400285 * @dev: the CPU
286 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530287static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400288{
289 struct menu_device *data = &__get_cpu_var(menu_devices);
Mark Grossed771342010-05-06 01:59:26 +0200290 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
Len Brown4f86d3a2007-10-03 18:58:00 -0400291 int i;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700292 int multiplier;
Tero Kristo74675712011-02-24 17:19:23 +0200293 struct timespec t;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700294
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700295 if (data->needs_update) {
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530296 menu_update(drv, dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700297 data->needs_update = 0;
298 }
299
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700300 data->last_state_idx = 0;
301 data->exit_us = 0;
302
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700303 /* Special case when user has set very strict latency requirement */
Arjan van de Ven69d25872009-09-21 17:04:08 -0700304 if (unlikely(latency_req == 0))
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700305 return 0;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700306
Arjan van de Ven69d25872009-09-21 17:04:08 -0700307 /* determine the expected residency time, round up */
Tero Kristo74675712011-02-24 17:19:23 +0200308 t = ktime_to_timespec(tick_nohz_get_sleep_length());
Len Brown4f86d3a2007-10-03 18:58:00 -0400309 data->expected_us =
Tero Kristo74675712011-02-24 17:19:23 +0200310 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
Len Brown4f86d3a2007-10-03 18:58:00 -0400311
Arjan van de Ven69d25872009-09-21 17:04:08 -0700312
313 data->bucket = which_bucket(data->expected_us);
314
315 multiplier = performance_multiplier();
316
317 /*
318 * if the correction factor is 0 (eg first time init or cpu hotplug
319 * etc), we actually want to start out with a unity factor.
320 */
321 if (data->correction_factor[data->bucket] == 0)
322 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
323
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300324 /*
325 * Force the result of multiplication to be 64 bits even if both
326 * operands are 32 bits.
327 * Make sure to round up for half microseconds.
328 */
329 data->predicted_us = div_round64((uint64_t)data->expected_us *
330 data->correction_factor[data->bucket],
Stephen Hemminger57875362010-01-08 14:43:08 -0800331 RESOLUTION * DECAY);
Arjan van de Ven69d25872009-09-21 17:04:08 -0700332
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200333 get_typical_interval(data);
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700334
Arjan van de Ven69d25872009-09-21 17:04:08 -0700335 /*
336 * We want to default to C1 (hlt), not to busy polling
337 * unless the timer is happening really really soon.
338 */
ShuoX Liu3a53396b2012-03-28 15:19:11 -0700339 if (data->expected_us > 5 &&
Rafael J. Wysockicbc9ef02012-07-03 19:07:42 +0200340 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
ShuoX Liudc7fd272012-07-03 19:05:31 +0200341 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
Arjan van de Ven69d25872009-09-21 17:04:08 -0700342 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
343
Ai Li71abbbf2010-08-09 17:20:13 -0700344 /*
345 * Find the idle state with the lowest power while satisfying
346 * our constraints.
347 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530348 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
349 struct cpuidle_state *s = &drv->states[i];
ShuoX Liudc7fd272012-07-03 19:05:31 +0200350 struct cpuidle_state_usage *su = &dev->states_usage[i];
Len Brown4f86d3a2007-10-03 18:58:00 -0400351
Rafael J. Wysockicbc9ef02012-07-03 19:07:42 +0200352 if (s->disabled || su->disable)
ShuoX Liu3a53396b2012-03-28 15:19:11 -0700353 continue;
Rafael J. Wysocki14851912013-07-27 01:41:34 +0200354 if (s->target_residency > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700355 continue;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700356 if (s->exit_latency > latency_req)
Ai Li71abbbf2010-08-09 17:20:13 -0700357 continue;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700358 if (s->exit_latency * multiplier > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700359 continue;
360
Daniel Lezcano8aef33a2013-01-15 14:18:04 +0100361 data->last_state_idx = i;
362 data->exit_us = s->exit_latency;
Len Brown4f86d3a2007-10-03 18:58:00 -0400363 }
364
Arjan van de Ven69d25872009-09-21 17:04:08 -0700365 return data->last_state_idx;
Len Brown4f86d3a2007-10-03 18:58:00 -0400366}
367
368/**
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700369 * menu_reflect - records that data structures need update
Len Brown4f86d3a2007-10-03 18:58:00 -0400370 * @dev: the CPU
Deepthi Dharware978aa72011-10-28 16:20:09 +0530371 * @index: the index of actual entered state
Len Brown4f86d3a2007-10-03 18:58:00 -0400372 *
373 * NOTE: it's important to be fast here because this operation will add to
374 * the overall exit latency.
375 */
Deepthi Dharware978aa72011-10-28 16:20:09 +0530376static void menu_reflect(struct cpuidle_device *dev, int index)
Len Brown4f86d3a2007-10-03 18:58:00 -0400377{
378 struct menu_device *data = &__get_cpu_var(menu_devices);
Deepthi Dharware978aa72011-10-28 16:20:09 +0530379 data->last_state_idx = index;
380 if (index >= 0)
381 data->needs_update = 1;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700382}
383
384/**
385 * menu_update - attempts to guess what happened after entry
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530386 * @drv: cpuidle driver containing state data
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700387 * @dev: the CPU
388 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530389static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700390{
391 struct menu_device *data = &__get_cpu_var(menu_devices);
Len Brown4f86d3a2007-10-03 18:58:00 -0400392 int last_idx = data->last_state_idx;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700393 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530394 struct cpuidle_state *target = &drv->states[last_idx];
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700395 unsigned int measured_us;
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300396 unsigned int new_factor;
Len Brown4f86d3a2007-10-03 18:58:00 -0400397
398 /*
399 * Ugh, this idle state doesn't support residency measurements, so we
400 * are basically lost in the dark. As a compromise, assume we slept
Arjan van de Ven69d25872009-09-21 17:04:08 -0700401 * for the whole expected time.
Len Brown4f86d3a2007-10-03 18:58:00 -0400402 */
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700403 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700404 last_idle_us = data->expected_us;
405
406
407 measured_us = last_idle_us;
Len Brown4f86d3a2007-10-03 18:58:00 -0400408
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700409 /*
Arjan van de Ven69d25872009-09-21 17:04:08 -0700410 * We correct for the exit latency; we are assuming here that the
411 * exit latency happens after the event that we're interested in.
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700412 */
Arjan van de Ven69d25872009-09-21 17:04:08 -0700413 if (measured_us > data->exit_us)
414 measured_us -= data->exit_us;
415
416
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300417 /* Update our correction ratio */
418 new_factor = data->correction_factor[data->bucket];
419 new_factor -= new_factor / DECAY;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700420
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700421 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
Arjan van de Ven69d25872009-09-21 17:04:08 -0700422 new_factor += RESOLUTION * measured_us / data->expected_us;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700423 else
Arjan van de Ven69d25872009-09-21 17:04:08 -0700424 /*
425 * we were idle so long that we count it as a perfect
426 * prediction
427 */
428 new_factor += RESOLUTION;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700429
Arjan van de Ven69d25872009-09-21 17:04:08 -0700430 /*
431 * We don't want 0 as factor; we always want at least
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300432 * a tiny bit of estimated time. Fortunately, due to rounding,
433 * new_factor will stay nonzero regardless of measured_us values
434 * and the compiler can eliminate this test as long as DECAY > 1.
Arjan van de Ven69d25872009-09-21 17:04:08 -0700435 */
Tuukka Tikkanen51f245b2013-08-14 19:02:41 +0300436 if (DECAY == 1 && unlikely(new_factor == 0))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700437 new_factor = 1;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700438
Arjan van de Ven69d25872009-09-21 17:04:08 -0700439 data->correction_factor[data->bucket] = new_factor;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700440
441 /* update the repeating-pattern data */
442 data->intervals[data->interval_ptr++] = last_idle_us;
443 if (data->interval_ptr >= INTERVALS)
444 data->interval_ptr = 0;
Len Brown4f86d3a2007-10-03 18:58:00 -0400445}
446
447/**
448 * menu_enable_device - scans a CPU's states and does setup
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530449 * @drv: cpuidle driver
Len Brown4f86d3a2007-10-03 18:58:00 -0400450 * @dev: the CPU
451 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530452static int menu_enable_device(struct cpuidle_driver *drv,
453 struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400454{
455 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
Len Brown4f86d3a2007-10-03 18:58:00 -0400456
457 memset(data, 0, sizeof(struct menu_device));
458
459 return 0;
460}
461
462static struct cpuidle_governor menu_governor = {
463 .name = "menu",
464 .rating = 20,
465 .enable = menu_enable_device,
466 .select = menu_select,
467 .reflect = menu_reflect,
468 .owner = THIS_MODULE,
469};
470
471/**
472 * init_menu - initializes the governor
473 */
474static int __init init_menu(void)
475{
476 return cpuidle_register_governor(&menu_governor);
477}
478
Daniel Lezcano137b9442013-06-12 15:08:48 +0200479postcore_initcall(init_menu);