Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 1 | /* |
| 2 | * menu.c - the menu idle governor |
| 3 | * |
| 4 | * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com> |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 5 | * Copyright (C) 2009 Intel Corporation |
| 6 | * Author: |
| 7 | * Arjan van de Ven <arjan@linux.intel.com> |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 8 | * |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 9 | * This code is licenced under the GPL version 2 as described |
| 10 | * in the COPYING file that acompanies the Linux Kernel. |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 11 | */ |
| 12 | |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/cpuidle.h> |
Mark Gross | d82b351 | 2008-02-04 22:30:08 -0800 | [diff] [blame] | 15 | #include <linux/pm_qos_params.h> |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 16 | #include <linux/time.h> |
| 17 | #include <linux/ktime.h> |
| 18 | #include <linux/hrtimer.h> |
| 19 | #include <linux/tick.h> |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 20 | #include <linux/sched.h> |
Stephen Hemminger | 5787536 | 2010-01-08 14:43:08 -0800 | [diff] [blame] | 21 | #include <linux/math64.h> |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 22 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 23 | #define BUCKETS 12 |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 24 | #define INTERVALS 8 |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 25 | #define RESOLUTION 1024 |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 26 | #define DECAY 8 |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 27 | #define MAX_INTERESTING 50000 |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 28 | #define STDDEV_THRESH 400 |
| 29 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 30 | |
| 31 | /* |
| 32 | * Concepts and ideas behind the menu governor |
| 33 | * |
| 34 | * For the menu governor, there are 3 decision factors for picking a C |
| 35 | * state: |
| 36 | * 1) Energy break even point |
| 37 | * 2) Performance impact |
| 38 | * 3) Latency tolerance (from pmqos infrastructure) |
| 39 | * These these three factors are treated independently. |
| 40 | * |
| 41 | * Energy break even point |
| 42 | * ----------------------- |
| 43 | * C state entry and exit have an energy cost, and a certain amount of time in |
| 44 | * the C state is required to actually break even on this cost. CPUIDLE |
| 45 | * provides us this duration in the "target_residency" field. So all that we |
| 46 | * need is a good prediction of how long we'll be idle. Like the traditional |
| 47 | * menu governor, we start with the actual known "next timer event" time. |
| 48 | * |
| 49 | * Since there are other source of wakeups (interrupts for example) than |
| 50 | * the next timer event, this estimation is rather optimistic. To get a |
| 51 | * more realistic estimate, a correction factor is applied to the estimate, |
| 52 | * that is based on historic behavior. For example, if in the past the actual |
| 53 | * duration always was 50% of the next timer tick, the correction factor will |
| 54 | * be 0.5. |
| 55 | * |
| 56 | * menu uses a running average for this correction factor, however it uses a |
| 57 | * set of factors, not just a single factor. This stems from the realization |
| 58 | * that the ratio is dependent on the order of magnitude of the expected |
| 59 | * duration; if we expect 500 milliseconds of idle time the likelihood of |
| 60 | * getting an interrupt very early is much higher than if we expect 50 micro |
| 61 | * seconds of idle time. A second independent factor that has big impact on |
| 62 | * the actual factor is if there is (disk) IO outstanding or not. |
| 63 | * (as a special twist, we consider every sleep longer than 50 milliseconds |
| 64 | * as perfect; there are no power gains for sleeping longer than this) |
| 65 | * |
| 66 | * For these two reasons we keep an array of 12 independent factors, that gets |
| 67 | * indexed based on the magnitude of the expected duration as well as the |
| 68 | * "is IO outstanding" property. |
| 69 | * |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 70 | * Repeatable-interval-detector |
| 71 | * ---------------------------- |
| 72 | * There are some cases where "next timer" is a completely unusable predictor: |
| 73 | * Those cases where the interval is fixed, for example due to hardware |
| 74 | * interrupt mitigation, but also due to fixed transfer rate devices such as |
| 75 | * mice. |
| 76 | * For this, we use a different predictor: We track the duration of the last 8 |
| 77 | * intervals and if the stand deviation of these 8 intervals is below a |
| 78 | * threshold value, we use the average of these intervals as prediction. |
| 79 | * |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 80 | * Limiting Performance Impact |
| 81 | * --------------------------- |
| 82 | * C states, especially those with large exit latencies, can have a real |
| 83 | * noticable impact on workloads, which is not acceptable for most sysadmins, |
| 84 | * and in addition, less performance has a power price of its own. |
| 85 | * |
| 86 | * As a general rule of thumb, menu assumes that the following heuristic |
| 87 | * holds: |
| 88 | * The busier the system, the less impact of C states is acceptable |
| 89 | * |
| 90 | * This rule-of-thumb is implemented using a performance-multiplier: |
| 91 | * If the exit latency times the performance multiplier is longer than |
| 92 | * the predicted duration, the C state is not considered a candidate |
| 93 | * for selection due to a too high performance impact. So the higher |
| 94 | * this multiplier is, the longer we need to be idle to pick a deep C |
| 95 | * state, and thus the less likely a busy CPU will hit such a deep |
| 96 | * C state. |
| 97 | * |
| 98 | * Two factors are used in determing this multiplier: |
| 99 | * a value of 10 is added for each point of "per cpu load average" we have. |
| 100 | * a value of 5 points is added for each process that is waiting for |
| 101 | * IO on this CPU. |
| 102 | * (these values are experimentally determined) |
| 103 | * |
| 104 | * The load average factor gives a longer term (few seconds) input to the |
| 105 | * decision, while the iowait value gives a cpu local instantanious input. |
| 106 | * The iowait factor may look low, but realize that this is also already |
| 107 | * represented in the system load average. |
| 108 | * |
| 109 | */ |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 110 | |
| 111 | struct menu_device { |
| 112 | int last_state_idx; |
Corrado Zoccolo | 672917d | 2009-09-21 17:04:09 -0700 | [diff] [blame] | 113 | int needs_update; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 114 | |
| 115 | unsigned int expected_us; |
Richard Kennedy | 56e6943b4 | 2010-03-05 13:42:30 -0800 | [diff] [blame] | 116 | u64 predicted_us; |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 117 | unsigned int exit_us; |
| 118 | unsigned int bucket; |
| 119 | u64 correction_factor[BUCKETS]; |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 120 | u32 intervals[INTERVALS]; |
| 121 | int interval_ptr; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 122 | }; |
| 123 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 124 | |
| 125 | #define LOAD_INT(x) ((x) >> FSHIFT) |
| 126 | #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) |
| 127 | |
| 128 | static int get_loadavg(void) |
| 129 | { |
| 130 | unsigned long this = this_cpu_load(); |
| 131 | |
| 132 | |
| 133 | return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10; |
| 134 | } |
| 135 | |
| 136 | static inline int which_bucket(unsigned int duration) |
| 137 | { |
| 138 | int bucket = 0; |
| 139 | |
| 140 | /* |
| 141 | * We keep two groups of stats; one with no |
| 142 | * IO pending, one without. |
| 143 | * This allows us to calculate |
| 144 | * E(duration)|iowait |
| 145 | */ |
Peter Zijlstra | 8c215bd | 2010-07-01 09:07:17 +0200 | [diff] [blame^] | 146 | if (nr_iowait_cpu(smp_processor_id())) |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 147 | bucket = BUCKETS/2; |
| 148 | |
| 149 | if (duration < 10) |
| 150 | return bucket; |
| 151 | if (duration < 100) |
| 152 | return bucket + 1; |
| 153 | if (duration < 1000) |
| 154 | return bucket + 2; |
| 155 | if (duration < 10000) |
| 156 | return bucket + 3; |
| 157 | if (duration < 100000) |
| 158 | return bucket + 4; |
| 159 | return bucket + 5; |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * Return a multiplier for the exit latency that is intended |
| 164 | * to take performance requirements into account. |
| 165 | * The more performance critical we estimate the system |
| 166 | * to be, the higher this multiplier, and thus the higher |
| 167 | * the barrier to go to an expensive C state. |
| 168 | */ |
| 169 | static inline int performance_multiplier(void) |
| 170 | { |
| 171 | int mult = 1; |
| 172 | |
| 173 | /* for higher loadavg, we are more reluctant */ |
| 174 | |
| 175 | mult += 2 * get_loadavg(); |
| 176 | |
| 177 | /* for IO wait tasks (per cpu!) we add 5x each */ |
Peter Zijlstra | 8c215bd | 2010-07-01 09:07:17 +0200 | [diff] [blame^] | 178 | mult += 10 * nr_iowait_cpu(smp_processor_id()); |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 179 | |
| 180 | return mult; |
| 181 | } |
| 182 | |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 183 | static DEFINE_PER_CPU(struct menu_device, menu_devices); |
| 184 | |
Corrado Zoccolo | 672917d | 2009-09-21 17:04:09 -0700 | [diff] [blame] | 185 | static void menu_update(struct cpuidle_device *dev); |
| 186 | |
Stephen Hemminger | 5787536 | 2010-01-08 14:43:08 -0800 | [diff] [blame] | 187 | /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */ |
| 188 | static u64 div_round64(u64 dividend, u32 divisor) |
| 189 | { |
| 190 | return div_u64(dividend + (divisor / 2), divisor); |
| 191 | } |
| 192 | |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 193 | /* |
| 194 | * Try detecting repeating patterns by keeping track of the last 8 |
| 195 | * intervals, and checking if the standard deviation of that set |
| 196 | * of points is below a threshold. If it is... then use the |
| 197 | * average of these 8 points as the estimated value. |
| 198 | */ |
| 199 | static void detect_repeating_patterns(struct menu_device *data) |
| 200 | { |
| 201 | int i; |
| 202 | uint64_t avg = 0; |
| 203 | uint64_t stddev = 0; /* contains the square of the std deviation */ |
| 204 | |
| 205 | /* first calculate average and standard deviation of the past */ |
| 206 | for (i = 0; i < INTERVALS; i++) |
| 207 | avg += data->intervals[i]; |
| 208 | avg = avg / INTERVALS; |
| 209 | |
| 210 | /* if the avg is beyond the known next tick, it's worthless */ |
| 211 | if (avg > data->expected_us) |
| 212 | return; |
| 213 | |
| 214 | for (i = 0; i < INTERVALS; i++) |
| 215 | stddev += (data->intervals[i] - avg) * |
| 216 | (data->intervals[i] - avg); |
| 217 | |
| 218 | stddev = stddev / INTERVALS; |
| 219 | |
| 220 | /* |
| 221 | * now.. if stddev is small.. then assume we have a |
| 222 | * repeating pattern and predict we keep doing this. |
| 223 | */ |
| 224 | |
| 225 | if (avg && stddev < STDDEV_THRESH) |
| 226 | data->predicted_us = avg; |
| 227 | } |
| 228 | |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 229 | /** |
| 230 | * menu_select - selects the next idle state to enter |
| 231 | * @dev: the CPU |
| 232 | */ |
| 233 | static int menu_select(struct cpuidle_device *dev) |
| 234 | { |
| 235 | struct menu_device *data = &__get_cpu_var(menu_devices); |
Mark Gross | ed77134 | 2010-05-06 01:59:26 +0200 | [diff] [blame] | 236 | int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY); |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 237 | int i; |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 238 | int multiplier; |
| 239 | |
Corrado Zoccolo | 672917d | 2009-09-21 17:04:09 -0700 | [diff] [blame] | 240 | if (data->needs_update) { |
| 241 | menu_update(dev); |
| 242 | data->needs_update = 0; |
| 243 | } |
| 244 | |
Arjan van de Ven | 1c6fe03 | 2010-05-08 15:47:37 -0700 | [diff] [blame] | 245 | data->last_state_idx = 0; |
| 246 | data->exit_us = 0; |
| 247 | |
venkatesh.pallipadi@intel.com | a2bd9202 | 2008-07-30 19:21:42 -0700 | [diff] [blame] | 248 | /* Special case when user has set very strict latency requirement */ |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 249 | if (unlikely(latency_req == 0)) |
venkatesh.pallipadi@intel.com | a2bd9202 | 2008-07-30 19:21:42 -0700 | [diff] [blame] | 250 | return 0; |
venkatesh.pallipadi@intel.com | a2bd9202 | 2008-07-30 19:21:42 -0700 | [diff] [blame] | 251 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 252 | /* determine the expected residency time, round up */ |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 253 | data->expected_us = |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 254 | DIV_ROUND_UP((u32)ktime_to_ns(tick_nohz_get_sleep_length()), 1000); |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 255 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 256 | |
| 257 | data->bucket = which_bucket(data->expected_us); |
| 258 | |
| 259 | multiplier = performance_multiplier(); |
| 260 | |
| 261 | /* |
| 262 | * if the correction factor is 0 (eg first time init or cpu hotplug |
| 263 | * etc), we actually want to start out with a unity factor. |
| 264 | */ |
| 265 | if (data->correction_factor[data->bucket] == 0) |
| 266 | data->correction_factor[data->bucket] = RESOLUTION * DECAY; |
| 267 | |
| 268 | /* Make sure to round up for half microseconds */ |
Stephen Hemminger | 5787536 | 2010-01-08 14:43:08 -0800 | [diff] [blame] | 269 | data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket], |
| 270 | RESOLUTION * DECAY); |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 271 | |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 272 | detect_repeating_patterns(data); |
| 273 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 274 | /* |
| 275 | * We want to default to C1 (hlt), not to busy polling |
| 276 | * unless the timer is happening really really soon. |
| 277 | */ |
| 278 | if (data->expected_us > 5) |
| 279 | data->last_state_idx = CPUIDLE_DRIVER_STATE_START; |
| 280 | |
Pallipadi, Venkatesh | 816bb61 | 2008-12-30 14:46:02 -0800 | [diff] [blame] | 281 | |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 282 | /* find the deepest idle state that satisfies our constraints */ |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 283 | for (i = CPUIDLE_DRIVER_STATE_START; i < dev->state_count; i++) { |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 284 | struct cpuidle_state *s = &dev->states[i]; |
| 285 | |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 286 | if (s->target_residency > data->predicted_us) |
| 287 | break; |
venkatesh.pallipadi@intel.com | a2bd9202 | 2008-07-30 19:21:42 -0700 | [diff] [blame] | 288 | if (s->exit_latency > latency_req) |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 289 | break; |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 290 | if (s->exit_latency * multiplier > data->predicted_us) |
| 291 | break; |
| 292 | data->exit_us = s->exit_latency; |
| 293 | data->last_state_idx = i; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 294 | } |
| 295 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 296 | return data->last_state_idx; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 297 | } |
| 298 | |
| 299 | /** |
Corrado Zoccolo | 672917d | 2009-09-21 17:04:09 -0700 | [diff] [blame] | 300 | * menu_reflect - records that data structures need update |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 301 | * @dev: the CPU |
| 302 | * |
| 303 | * NOTE: it's important to be fast here because this operation will add to |
| 304 | * the overall exit latency. |
| 305 | */ |
| 306 | static void menu_reflect(struct cpuidle_device *dev) |
| 307 | { |
| 308 | struct menu_device *data = &__get_cpu_var(menu_devices); |
Corrado Zoccolo | 672917d | 2009-09-21 17:04:09 -0700 | [diff] [blame] | 309 | data->needs_update = 1; |
| 310 | } |
| 311 | |
| 312 | /** |
| 313 | * menu_update - attempts to guess what happened after entry |
| 314 | * @dev: the CPU |
| 315 | */ |
| 316 | static void menu_update(struct cpuidle_device *dev) |
| 317 | { |
| 318 | struct menu_device *data = &__get_cpu_var(menu_devices); |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 319 | int last_idx = data->last_state_idx; |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 320 | unsigned int last_idle_us = cpuidle_get_last_residency(dev); |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 321 | struct cpuidle_state *target = &dev->states[last_idx]; |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 322 | unsigned int measured_us; |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 323 | u64 new_factor; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 324 | |
| 325 | /* |
| 326 | * Ugh, this idle state doesn't support residency measurements, so we |
| 327 | * are basically lost in the dark. As a compromise, assume we slept |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 328 | * for the whole expected time. |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 329 | */ |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 330 | if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 331 | last_idle_us = data->expected_us; |
| 332 | |
| 333 | |
| 334 | measured_us = last_idle_us; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 335 | |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 336 | /* |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 337 | * We correct for the exit latency; we are assuming here that the |
| 338 | * exit latency happens after the event that we're interested in. |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 339 | */ |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 340 | if (measured_us > data->exit_us) |
| 341 | measured_us -= data->exit_us; |
| 342 | |
| 343 | |
| 344 | /* update our correction ratio */ |
| 345 | |
| 346 | new_factor = data->correction_factor[data->bucket] |
| 347 | * (DECAY - 1) / DECAY; |
| 348 | |
Arjan van de Ven | 1c6fe03 | 2010-05-08 15:47:37 -0700 | [diff] [blame] | 349 | if (data->expected_us > 0 && measured_us < MAX_INTERESTING) |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 350 | new_factor += RESOLUTION * measured_us / data->expected_us; |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 351 | else |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 352 | /* |
| 353 | * we were idle so long that we count it as a perfect |
| 354 | * prediction |
| 355 | */ |
| 356 | new_factor += RESOLUTION; |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 357 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 358 | /* |
| 359 | * We don't want 0 as factor; we always want at least |
| 360 | * a tiny bit of estimated time. |
| 361 | */ |
| 362 | if (new_factor == 0) |
| 363 | new_factor = 1; |
venkatesh.pallipadi@intel.com | 320eee7 | 2008-07-30 19:21:43 -0700 | [diff] [blame] | 364 | |
Arjan van de Ven | 69d2587 | 2009-09-21 17:04:08 -0700 | [diff] [blame] | 365 | data->correction_factor[data->bucket] = new_factor; |
Arjan van de Ven | 1f85f87 | 2010-05-24 14:32:59 -0700 | [diff] [blame] | 366 | |
| 367 | /* update the repeating-pattern data */ |
| 368 | data->intervals[data->interval_ptr++] = last_idle_us; |
| 369 | if (data->interval_ptr >= INTERVALS) |
| 370 | data->interval_ptr = 0; |
Len Brown | 4f86d3a | 2007-10-03 18:58:00 -0400 | [diff] [blame] | 371 | } |
| 372 | |
| 373 | /** |
| 374 | * menu_enable_device - scans a CPU's states and does setup |
| 375 | * @dev: the CPU |
| 376 | */ |
| 377 | static int menu_enable_device(struct cpuidle_device *dev) |
| 378 | { |
| 379 | struct menu_device *data = &per_cpu(menu_devices, dev->cpu); |
| 380 | |
| 381 | memset(data, 0, sizeof(struct menu_device)); |
| 382 | |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | static struct cpuidle_governor menu_governor = { |
| 387 | .name = "menu", |
| 388 | .rating = 20, |
| 389 | .enable = menu_enable_device, |
| 390 | .select = menu_select, |
| 391 | .reflect = menu_reflect, |
| 392 | .owner = THIS_MODULE, |
| 393 | }; |
| 394 | |
| 395 | /** |
| 396 | * init_menu - initializes the governor |
| 397 | */ |
| 398 | static int __init init_menu(void) |
| 399 | { |
| 400 | return cpuidle_register_governor(&menu_governor); |
| 401 | } |
| 402 | |
| 403 | /** |
| 404 | * exit_menu - exits the governor |
| 405 | */ |
| 406 | static void __exit exit_menu(void) |
| 407 | { |
| 408 | cpuidle_unregister_governor(&menu_governor); |
| 409 | } |
| 410 | |
| 411 | MODULE_LICENSE("GPL"); |
| 412 | module_init(init_menu); |
| 413 | module_exit(exit_menu); |