blob: 8391d93f57d5cb82c80841439580dbb7e34e4ec3 [file] [log] [blame]
Len Brown4f86d3a2007-10-03 18:58:00 -04001/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
Arjan van de Ven69d25872009-09-21 17:04:08 -07005 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
Len Brown4f86d3a2007-10-03 18:58:00 -04008 *
Arjan van de Ven69d25872009-09-21 17:04:08 -07009 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
Len Brown4f86d3a2007-10-03 18:58:00 -040011 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
Jean Pihete8db0be2011-08-25 15:35:03 +020015#include <linux/pm_qos.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040016#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
Arjan van de Ven69d25872009-09-21 17:04:08 -070020#include <linux/sched.h>
Stephen Hemminger57875362010-01-08 14:43:08 -080021#include <linux/math64.h>
Paul Gortmaker884b17e2011-08-29 17:52:39 -040022#include <linux/module.h>
Len Brown4f86d3a2007-10-03 18:58:00 -040023
Arjan van de Ven69d25872009-09-21 17:04:08 -070024#define BUCKETS 12
Arjan van de Ven1f85f872010-05-24 14:32:59 -070025#define INTERVALS 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070026#define RESOLUTION 1024
Arjan van de Ven1f85f872010-05-24 14:32:59 -070027#define DECAY 8
Arjan van de Ven69d25872009-09-21 17:04:08 -070028#define MAX_INTERESTING 50000
Arjan van de Ven1f85f872010-05-24 14:32:59 -070029#define STDDEV_THRESH 400
30
Arjan van de Ven69d25872009-09-21 17:04:08 -070031
32/*
33 * Concepts and ideas behind the menu governor
34 *
35 * For the menu governor, there are 3 decision factors for picking a C
36 * state:
37 * 1) Energy break even point
38 * 2) Performance impact
39 * 3) Latency tolerance (from pmqos infrastructure)
40 * These these three factors are treated independently.
41 *
42 * Energy break even point
43 * -----------------------
44 * C state entry and exit have an energy cost, and a certain amount of time in
45 * the C state is required to actually break even on this cost. CPUIDLE
46 * provides us this duration in the "target_residency" field. So all that we
47 * need is a good prediction of how long we'll be idle. Like the traditional
48 * menu governor, we start with the actual known "next timer event" time.
49 *
50 * Since there are other source of wakeups (interrupts for example) than
51 * the next timer event, this estimation is rather optimistic. To get a
52 * more realistic estimate, a correction factor is applied to the estimate,
53 * that is based on historic behavior. For example, if in the past the actual
54 * duration always was 50% of the next timer tick, the correction factor will
55 * be 0.5.
56 *
57 * menu uses a running average for this correction factor, however it uses a
58 * set of factors, not just a single factor. This stems from the realization
59 * that the ratio is dependent on the order of magnitude of the expected
60 * duration; if we expect 500 milliseconds of idle time the likelihood of
61 * getting an interrupt very early is much higher than if we expect 50 micro
62 * seconds of idle time. A second independent factor that has big impact on
63 * the actual factor is if there is (disk) IO outstanding or not.
64 * (as a special twist, we consider every sleep longer than 50 milliseconds
65 * as perfect; there are no power gains for sleeping longer than this)
66 *
67 * For these two reasons we keep an array of 12 independent factors, that gets
68 * indexed based on the magnitude of the expected duration as well as the
69 * "is IO outstanding" property.
70 *
Arjan van de Ven1f85f872010-05-24 14:32:59 -070071 * Repeatable-interval-detector
72 * ----------------------------
73 * There are some cases where "next timer" is a completely unusable predictor:
74 * Those cases where the interval is fixed, for example due to hardware
75 * interrupt mitigation, but also due to fixed transfer rate devices such as
76 * mice.
77 * For this, we use a different predictor: We track the duration of the last 8
78 * intervals and if the stand deviation of these 8 intervals is below a
79 * threshold value, we use the average of these intervals as prediction.
80 *
Arjan van de Ven69d25872009-09-21 17:04:08 -070081 * Limiting Performance Impact
82 * ---------------------------
83 * C states, especially those with large exit latencies, can have a real
Lucas De Marchi20e33412010-09-07 12:53:49 -040084 * noticeable impact on workloads, which is not acceptable for most sysadmins,
Arjan van de Ven69d25872009-09-21 17:04:08 -070085 * and in addition, less performance has a power price of its own.
86 *
87 * As a general rule of thumb, menu assumes that the following heuristic
88 * holds:
89 * The busier the system, the less impact of C states is acceptable
90 *
91 * This rule-of-thumb is implemented using a performance-multiplier:
92 * If the exit latency times the performance multiplier is longer than
93 * the predicted duration, the C state is not considered a candidate
94 * for selection due to a too high performance impact. So the higher
95 * this multiplier is, the longer we need to be idle to pick a deep C
96 * state, and thus the less likely a busy CPU will hit such a deep
97 * C state.
98 *
99 * Two factors are used in determing this multiplier:
100 * a value of 10 is added for each point of "per cpu load average" we have.
101 * a value of 5 points is added for each process that is waiting for
102 * IO on this CPU.
103 * (these values are experimentally determined)
104 *
105 * The load average factor gives a longer term (few seconds) input to the
106 * decision, while the iowait value gives a cpu local instantanious input.
107 * The iowait factor may look low, but realize that this is also already
108 * represented in the system load average.
109 *
110 */
Len Brown4f86d3a2007-10-03 18:58:00 -0400111
112struct menu_device {
113 int last_state_idx;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700114 int needs_update;
Len Brown4f86d3a2007-10-03 18:58:00 -0400115
116 unsigned int expected_us;
Richard Kennedy56e6943b42010-03-05 13:42:30 -0800117 u64 predicted_us;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700118 unsigned int exit_us;
119 unsigned int bucket;
120 u64 correction_factor[BUCKETS];
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700121 u32 intervals[INTERVALS];
122 int interval_ptr;
Len Brown4f86d3a2007-10-03 18:58:00 -0400123};
124
Arjan van de Ven69d25872009-09-21 17:04:08 -0700125
126#define LOAD_INT(x) ((x) >> FSHIFT)
127#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
128
129static int get_loadavg(void)
130{
131 unsigned long this = this_cpu_load();
132
133
134 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
135}
136
137static inline int which_bucket(unsigned int duration)
138{
139 int bucket = 0;
140
141 /*
142 * We keep two groups of stats; one with no
143 * IO pending, one without.
144 * This allows us to calculate
145 * E(duration)|iowait
146 */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200147 if (nr_iowait_cpu(smp_processor_id()))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700148 bucket = BUCKETS/2;
149
150 if (duration < 10)
151 return bucket;
152 if (duration < 100)
153 return bucket + 1;
154 if (duration < 1000)
155 return bucket + 2;
156 if (duration < 10000)
157 return bucket + 3;
158 if (duration < 100000)
159 return bucket + 4;
160 return bucket + 5;
161}
162
163/*
164 * Return a multiplier for the exit latency that is intended
165 * to take performance requirements into account.
166 * The more performance critical we estimate the system
167 * to be, the higher this multiplier, and thus the higher
168 * the barrier to go to an expensive C state.
169 */
170static inline int performance_multiplier(void)
171{
172 int mult = 1;
173
174 /* for higher loadavg, we are more reluctant */
175
176 mult += 2 * get_loadavg();
177
178 /* for IO wait tasks (per cpu!) we add 5x each */
Peter Zijlstra8c215bd2010-07-01 09:07:17 +0200179 mult += 10 * nr_iowait_cpu(smp_processor_id());
Arjan van de Ven69d25872009-09-21 17:04:08 -0700180
181 return mult;
182}
183
Len Brown4f86d3a2007-10-03 18:58:00 -0400184static DEFINE_PER_CPU(struct menu_device, menu_devices);
185
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530186static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700187
Stephen Hemminger57875362010-01-08 14:43:08 -0800188/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
189static u64 div_round64(u64 dividend, u32 divisor)
190{
191 return div_u64(dividend + (divisor / 2), divisor);
192}
193
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700194/*
195 * Try detecting repeating patterns by keeping track of the last 8
196 * intervals, and checking if the standard deviation of that set
197 * of points is below a threshold. If it is... then use the
198 * average of these 8 points as the estimated value.
199 */
200static void detect_repeating_patterns(struct menu_device *data)
201{
202 int i;
203 uint64_t avg = 0;
204 uint64_t stddev = 0; /* contains the square of the std deviation */
205
206 /* first calculate average and standard deviation of the past */
207 for (i = 0; i < INTERVALS; i++)
208 avg += data->intervals[i];
209 avg = avg / INTERVALS;
210
211 /* if the avg is beyond the known next tick, it's worthless */
212 if (avg > data->expected_us)
213 return;
214
215 for (i = 0; i < INTERVALS; i++)
216 stddev += (data->intervals[i] - avg) *
217 (data->intervals[i] - avg);
218
219 stddev = stddev / INTERVALS;
220
221 /*
222 * now.. if stddev is small.. then assume we have a
223 * repeating pattern and predict we keep doing this.
224 */
225
226 if (avg && stddev < STDDEV_THRESH)
227 data->predicted_us = avg;
228}
229
Len Brown4f86d3a2007-10-03 18:58:00 -0400230/**
231 * menu_select - selects the next idle state to enter
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530232 * @drv: cpuidle driver containing state data
Len Brown4f86d3a2007-10-03 18:58:00 -0400233 * @dev: the CPU
234 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530235static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400236{
237 struct menu_device *data = &__get_cpu_var(menu_devices);
Mark Grossed771342010-05-06 01:59:26 +0200238 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
Boris Ostrovsky02401c02012-03-13 19:55:10 +0100239 int power_usage = -1;
Len Brown4f86d3a2007-10-03 18:58:00 -0400240 int i;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700241 int multiplier;
Tero Kristo74675712011-02-24 17:19:23 +0200242 struct timespec t;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700243
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700244 if (data->needs_update) {
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530245 menu_update(drv, dev);
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700246 data->needs_update = 0;
247 }
248
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700249 data->last_state_idx = 0;
250 data->exit_us = 0;
251
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700252 /* Special case when user has set very strict latency requirement */
Arjan van de Ven69d25872009-09-21 17:04:08 -0700253 if (unlikely(latency_req == 0))
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700254 return 0;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700255
Arjan van de Ven69d25872009-09-21 17:04:08 -0700256 /* determine the expected residency time, round up */
Tero Kristo74675712011-02-24 17:19:23 +0200257 t = ktime_to_timespec(tick_nohz_get_sleep_length());
Len Brown4f86d3a2007-10-03 18:58:00 -0400258 data->expected_us =
Tero Kristo74675712011-02-24 17:19:23 +0200259 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
Len Brown4f86d3a2007-10-03 18:58:00 -0400260
Arjan van de Ven69d25872009-09-21 17:04:08 -0700261
262 data->bucket = which_bucket(data->expected_us);
263
264 multiplier = performance_multiplier();
265
266 /*
267 * if the correction factor is 0 (eg first time init or cpu hotplug
268 * etc), we actually want to start out with a unity factor.
269 */
270 if (data->correction_factor[data->bucket] == 0)
271 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
272
273 /* Make sure to round up for half microseconds */
Stephen Hemminger57875362010-01-08 14:43:08 -0800274 data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
275 RESOLUTION * DECAY);
Arjan van de Ven69d25872009-09-21 17:04:08 -0700276
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700277 detect_repeating_patterns(data);
278
Arjan van de Ven69d25872009-09-21 17:04:08 -0700279 /*
280 * We want to default to C1 (hlt), not to busy polling
281 * unless the timer is happening really really soon.
282 */
ShuoX Liu3a53396b2012-03-28 15:19:11 -0700283 if (data->expected_us > 5 &&
ShuoX Liudc7fd272012-07-03 19:05:31 +0200284 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
Arjan van de Ven69d25872009-09-21 17:04:08 -0700285 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
286
Ai Li71abbbf2010-08-09 17:20:13 -0700287 /*
288 * Find the idle state with the lowest power while satisfying
289 * our constraints.
290 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530291 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
292 struct cpuidle_state *s = &drv->states[i];
ShuoX Liudc7fd272012-07-03 19:05:31 +0200293 struct cpuidle_state_usage *su = &dev->states_usage[i];
Len Brown4f86d3a2007-10-03 18:58:00 -0400294
ShuoX Liudc7fd272012-07-03 19:05:31 +0200295 if (su->disable)
ShuoX Liu3a53396b2012-03-28 15:19:11 -0700296 continue;
Len Brown4f86d3a2007-10-03 18:58:00 -0400297 if (s->target_residency > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700298 continue;
venkatesh.pallipadi@intel.coma2bd92022008-07-30 19:21:42 -0700299 if (s->exit_latency > latency_req)
Ai Li71abbbf2010-08-09 17:20:13 -0700300 continue;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700301 if (s->exit_latency * multiplier > data->predicted_us)
Ai Li71abbbf2010-08-09 17:20:13 -0700302 continue;
303
304 if (s->power_usage < power_usage) {
305 power_usage = s->power_usage;
306 data->last_state_idx = i;
307 data->exit_us = s->exit_latency;
308 }
Len Brown4f86d3a2007-10-03 18:58:00 -0400309 }
310
Arjan van de Ven69d25872009-09-21 17:04:08 -0700311 return data->last_state_idx;
Len Brown4f86d3a2007-10-03 18:58:00 -0400312}
313
314/**
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700315 * menu_reflect - records that data structures need update
Len Brown4f86d3a2007-10-03 18:58:00 -0400316 * @dev: the CPU
Deepthi Dharware978aa72011-10-28 16:20:09 +0530317 * @index: the index of actual entered state
Len Brown4f86d3a2007-10-03 18:58:00 -0400318 *
319 * NOTE: it's important to be fast here because this operation will add to
320 * the overall exit latency.
321 */
Deepthi Dharware978aa72011-10-28 16:20:09 +0530322static void menu_reflect(struct cpuidle_device *dev, int index)
Len Brown4f86d3a2007-10-03 18:58:00 -0400323{
324 struct menu_device *data = &__get_cpu_var(menu_devices);
Deepthi Dharware978aa72011-10-28 16:20:09 +0530325 data->last_state_idx = index;
326 if (index >= 0)
327 data->needs_update = 1;
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700328}
329
330/**
331 * menu_update - attempts to guess what happened after entry
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530332 * @drv: cpuidle driver containing state data
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700333 * @dev: the CPU
334 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530335static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
Corrado Zoccolo672917d2009-09-21 17:04:09 -0700336{
337 struct menu_device *data = &__get_cpu_var(menu_devices);
Len Brown4f86d3a2007-10-03 18:58:00 -0400338 int last_idx = data->last_state_idx;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700339 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530340 struct cpuidle_state *target = &drv->states[last_idx];
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700341 unsigned int measured_us;
Arjan van de Ven69d25872009-09-21 17:04:08 -0700342 u64 new_factor;
Len Brown4f86d3a2007-10-03 18:58:00 -0400343
344 /*
345 * Ugh, this idle state doesn't support residency measurements, so we
346 * are basically lost in the dark. As a compromise, assume we slept
Arjan van de Ven69d25872009-09-21 17:04:08 -0700347 * for the whole expected time.
Len Brown4f86d3a2007-10-03 18:58:00 -0400348 */
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700349 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
Arjan van de Ven69d25872009-09-21 17:04:08 -0700350 last_idle_us = data->expected_us;
351
352
353 measured_us = last_idle_us;
Len Brown4f86d3a2007-10-03 18:58:00 -0400354
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700355 /*
Arjan van de Ven69d25872009-09-21 17:04:08 -0700356 * We correct for the exit latency; we are assuming here that the
357 * exit latency happens after the event that we're interested in.
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700358 */
Arjan van de Ven69d25872009-09-21 17:04:08 -0700359 if (measured_us > data->exit_us)
360 measured_us -= data->exit_us;
361
362
363 /* update our correction ratio */
364
365 new_factor = data->correction_factor[data->bucket]
366 * (DECAY - 1) / DECAY;
367
Arjan van de Ven1c6fe032010-05-08 15:47:37 -0700368 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
Arjan van de Ven69d25872009-09-21 17:04:08 -0700369 new_factor += RESOLUTION * measured_us / data->expected_us;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700370 else
Arjan van de Ven69d25872009-09-21 17:04:08 -0700371 /*
372 * we were idle so long that we count it as a perfect
373 * prediction
374 */
375 new_factor += RESOLUTION;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700376
Arjan van de Ven69d25872009-09-21 17:04:08 -0700377 /*
378 * We don't want 0 as factor; we always want at least
379 * a tiny bit of estimated time.
380 */
381 if (new_factor == 0)
382 new_factor = 1;
venkatesh.pallipadi@intel.com320eee72008-07-30 19:21:43 -0700383
Arjan van de Ven69d25872009-09-21 17:04:08 -0700384 data->correction_factor[data->bucket] = new_factor;
Arjan van de Ven1f85f872010-05-24 14:32:59 -0700385
386 /* update the repeating-pattern data */
387 data->intervals[data->interval_ptr++] = last_idle_us;
388 if (data->interval_ptr >= INTERVALS)
389 data->interval_ptr = 0;
Len Brown4f86d3a2007-10-03 18:58:00 -0400390}
391
392/**
393 * menu_enable_device - scans a CPU's states and does setup
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530394 * @drv: cpuidle driver
Len Brown4f86d3a2007-10-03 18:58:00 -0400395 * @dev: the CPU
396 */
Deepthi Dharwar46bcfad2011-10-28 16:20:42 +0530397static int menu_enable_device(struct cpuidle_driver *drv,
398 struct cpuidle_device *dev)
Len Brown4f86d3a2007-10-03 18:58:00 -0400399{
400 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
401
402 memset(data, 0, sizeof(struct menu_device));
403
404 return 0;
405}
406
407static struct cpuidle_governor menu_governor = {
408 .name = "menu",
409 .rating = 20,
410 .enable = menu_enable_device,
411 .select = menu_select,
412 .reflect = menu_reflect,
413 .owner = THIS_MODULE,
414};
415
416/**
417 * init_menu - initializes the governor
418 */
419static int __init init_menu(void)
420{
421 return cpuidle_register_governor(&menu_governor);
422}
423
424/**
425 * exit_menu - exits the governor
426 */
427static void __exit exit_menu(void)
428{
429 cpuidle_unregister_governor(&menu_governor);
430}
431
432MODULE_LICENSE("GPL");
433module_init(init_menu);
434module_exit(exit_menu);