blob: 10db4a87ad72186203d892bb96df66a6b28beee2 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100181#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200182#define WMULT_SHIFT 32
183
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100184static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200185{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100186 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200197 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100198 lw->inv_weight = WMULT_CONST / w;
199}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200200
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200225 }
226
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200229
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200236}
237
238
239const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200240
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
Peter Zijlstra8f488942009-07-24 12:25:30 +0200256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
Peter Zijlstrab7581492008-04-19 19:45:00 +0200264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
Paul Turneraff3e492012-10-04 13:18:30 +0200285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200287
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800305
306 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200307 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200308 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
Peter Zijlstrab7581492008-04-19 19:45:00 +0200320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100325static inline struct cfs_rq *
Peter Zijlstrab7581492008-04-19 19:45:00 +0200326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100329 return se->cfs_rq;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200330
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100331 return NULL;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
Peter Zijlstra464b7522008-10-24 11:06:15 +0200339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
Peter Zijlstra464b7522008-10-24 11:06:15 +0200354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
Peter Zijlstra8f488942009-07-24 12:25:30 +0200371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
381}
382
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200383#define entity_is_task(se) 1
384
Peter Zijlstrab7581492008-04-19 19:45:00 +0200385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200387
Peter Zijlstrab7581492008-04-19 19:45:00 +0200388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200389{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200390 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200391}
392
Peter Zijlstrab7581492008-04-19 19:45:00 +0200393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
Peter Zijlstrab7581492008-04-19 19:45:00 +0200415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
Peter Zijlstrab7581492008-04-19 19:45:00 +0200418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
Peter Zijlstra464b7522008-10-24 11:06:15 +0200423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
Peter Zijlstrab7581492008-04-19 19:45:00 +0200428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700430static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
Andrei Epure1bf08232013-03-12 21:12:24 +0200437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200438{
Andrei Epure1bf08232013-03-12 21:12:24 +0200439 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200440 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200441 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200442
Andrei Epure1bf08232013-03-12 21:12:24 +0200443 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200444}
445
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
Fabio Checconi54fdc582009-07-16 12:32:27 +0200455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100473 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
Andrei Epure1bf08232013-03-12 21:12:24 +0200479 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200485}
486
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200487/*
488 * Enqueue an entity into the rb-tree:
489 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200507 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200519 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200520 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200524}
525
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200527{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100533 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200534
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536}
537
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200546}
547
Rik van Rielac53db52011-02-01 09:51:03 -0500548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200560{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200562
Balbir Singh70eee742008-02-22 13:25:53 +0530563 if (!last)
564 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100565
566 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200567}
568
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100573int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700574 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100575 loff_t *ppos)
576{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100578 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100591#undef WRT_SYSCTL
592
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100593 return 0;
594}
595#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200596
597/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200598 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200599 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200601{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200602 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200604
605 return delta;
606}
607
608/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200609 * The idea is to set a period in which each task runs once.
610 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200611 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100619 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200620
621 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100622 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200623 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200624 }
625
626 return period;
627}
628
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200633 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200634 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200636{
Mike Galbraith0a582442009-01-02 12:16:42 +0100637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200638
Mike Galbraith0a582442009-01-02 12:16:42 +0100639 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100640 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200641 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200645
Mike Galbraith0a582442009-01-02 12:16:42 +0100646 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200647 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100652 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 }
654 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655}
656
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200657/*
Andrei Epure660cc002013-03-11 12:03:20 +0200658 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200659 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200660 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200661 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200663{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200665}
666
Alex Shia75cdaa2013-06-20 10:18:47 +0800667#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100668static unsigned long task_h_load(struct task_struct *p);
669
Alex Shia75cdaa2013-06-20 10:18:47 +0800670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200689/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100690 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200691 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200692static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200693{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200694 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200695 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100696 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200697
698 if (unlikely(!curr))
699 return;
700
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100703 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200704
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200705 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100706
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
Ingo Molnarf977bb42009-09-13 18:15:54 +0200719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100720 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700721 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100722 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725}
726
727static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200729{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200731}
732
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200733/*
734 * Task is being enqueued - update stats:
735 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200742 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200743 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200744}
745
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200748{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200758 }
759#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300760 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200761}
762
763static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200765{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200770 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200771 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
780 /*
781 * We are starting a new run period:
782 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200784}
785
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200790#ifdef CONFIG_NUMA_BALANCING
791/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200795 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200801
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
Mel Gorman598f0ec2013-10-07 11:28:55 +0100805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100867 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100868 struct list_head task_list;
869
870 struct rcu_head rcu;
Rik van Riel20e07de2014-01-27 17:03:43 -0500871 nodemask_t active_nodes;
Mel Gorman989348b2013-10-07 11:29:40 +0100872 unsigned long total_faults;
Rik van Riel7e2703e2014-01-27 17:03:45 -0500873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
Rik van Riel50ec8a42014-01-27 17:03:42 -0500878 unsigned long *faults_cpu;
Mel Gorman989348b2013-10-07 11:29:40 +0100879 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100880};
881
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
Mel Gormane29cf082013-10-07 11:29:22 +0100891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
Mel Gormanac8e8952013-10-07 11:29:03 +0100896static inline int task_faults_idx(int nid, int priv)
897{
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
Mel Gormanac8e8952013-10-07 11:29:03 +0100899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
Rik van Rielff1df892014-01-27 17:03:41 -0500903 if (!p->numa_faults_memory)
Mel Gormanac8e8952013-10-07 11:29:03 +0100904 return 0;
905
Rik van Rielff1df892014-01-27 17:03:41 -0500906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
Mel Gormanac8e8952013-10-07 11:29:03 +0100908}
909
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
Wanpeng Li82897b42013-12-12 15:23:25 +0800915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100917}
918
Rik van Riel20e07de2014-01-27 17:03:43 -0500919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
Rik van Rielff1df892014-01-27 17:03:41 -0500935 if (!p->numa_faults_memory)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
Mel Gorman989348b2013-10-07 11:29:40 +0100948 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100949 return 0;
950
Mel Gorman989348b2013-10-07 11:29:40 +0100951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100952}
953
Rik van Riel10f39042014-01-27 17:03:44 -0500954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
Mel Gormane6628d52013-10-07 11:29:02 +01001017static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +01001022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +01001024struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001025 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +01001026 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001034};
Mel Gormane6628d52013-10-07 11:29:02 +01001035
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001041 int cpu, cpus = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001050
1051 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001052 }
1053
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
Mel Gorman58d081b2013-10-07 11:29:10 +01001070struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
Wanpeng Li40ea2b42013-12-05 19:10:17 +08001078 int imbalance_pct;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001079
1080 struct task_struct *best_task;
1081 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001082 int best_cpu;
1083};
1084
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
Rik van Riel887c2902013-10-07 11:29:31 +01001104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001112 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
Rik van Riel887c2902013-10-07 11:29:31 +01001131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa532013-10-07 11:29:32 +01001133 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001134 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001135 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
Rik van Rielca28aa532013-10-07 11:29:32 +01001138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001144 } else {
Rik van Rielca28aa532013-10-07 11:29:32 +01001145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001161 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
Rik van Riel887c2902013-10-07 11:29:31 +01001211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001222 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001223 }
1224}
1225
Mel Gorman58d081b2013-10-07 11:29:10 +01001226static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001227{
Mel Gorman58d081b2013-10-07 11:29:10 +01001228 struct task_numa_env env = {
1229 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001230
Mel Gorman58d081b2013-10-07 11:29:10 +01001231 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001232 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001239 };
1240 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001241 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001242 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001243 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001244
Mel Gorman58d081b2013-10-07 11:29:10 +01001245 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001252 */
Mel Gormane6628d52013-10-07 11:29:02 +01001253 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001257 rcu_read_unlock();
1258
Rik van Riel46a73e82013-11-11 19:29:25 -05001259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
Wanpeng Lide1b3012013-12-12 15:23:24 +08001266 p->numa_preferred_nid = task_node(p);
Rik van Riel46a73e82013-11-11 19:29:25 -05001267 return -EINVAL;
1268 }
1269
Rik van Riel887c2902013-10-07 11:29:31 +01001270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001272 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001273 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001276 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001277
Rik van Riele1dda8a2013-10-07 11:29:19 +01001278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001280 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001286 continue;
1287
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001288 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001292 continue;
1293
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001296 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001297 }
1298 }
1299
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001304 sched_setnuma(p, env.dst_nid);
1305
Rik van Riel04bb2f92013-10-07 11:29:36 +01001306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001312 if (env.best_task == NULL) {
Mel Gorman286549d2014-01-21 15:51:03 -08001313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
Mel Gorman286549d2014-01-21 15:51:03 -08001320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001322 put_task_struct(env.best_task);
1323 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001324}
1325
Mel Gorman6b9a7462013-10-07 11:29:11 +01001326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001329 /* This task has no NUMA fault statistics yet */
Rik van Rielff1df892014-01-27 17:03:41 -05001330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
Rik van Riel2739d3e2013-10-07 11:29:41 +01001331 return;
1332
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
Mel Gorman6b9a7462013-10-07 11:29:11 +01001336 /* Success if task is already running on preferred CPU */
Wanpeng Lide1b3012013-12-12 15:23:24 +08001337 if (task_node(p) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001338 return;
1339
Mel Gorman6b9a7462013-10-07 11:29:11 +01001340 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001341 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001342}
1343
Rik van Riel04bb2f92013-10-07 11:29:36 +01001344/*
Rik van Riel20e07de2014-01-27 17:03:43 -05001345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
1376/*
Rik van Riel04bb2f92013-10-07 11:29:36 +01001377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
Rik van Riel04bb2f92013-10-07 11:29:36 +01001441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
Rik van Riel7e2703e2014-01-27 17:03:45 -05001450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001478static void task_numa_placement(struct task_struct *p)
1479{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001482 unsigned long fault_types[2] = { 0, 0 };
Rik van Riel7e2703e2014-01-27 17:03:45 -05001483 unsigned long total_faults;
1484 u64 runtime, period;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001485 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001486
Hugh Dickins2832bc12012-12-19 17:42:16 -08001487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001491 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001492
Rik van Riel7e2703e2014-01-27 17:03:45 -05001493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
Mel Gorman688b7582013-10-07 11:28:58 +01001503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001505 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001506 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001507
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
Rik van Riel7e2703e2014-01-27 17:03:45 -05001509 long diff, f_diff, f_weight;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001510
Mel Gormanac8e8952013-10-07 11:29:03 +01001511 i = task_faults_idx(nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001512
Mel Gormanac8e8952013-10-07 11:29:03 +01001513 /* Decay existing window, copy faults since last scan */
Rik van Riel35664fd2014-01-27 17:03:46 -05001514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
Rik van Rielff1df892014-01-27 17:03:41 -05001515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001517
Rik van Riel7e2703e2014-01-27 17:03:45 -05001518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
Rik van Riel35664fd2014-01-27 17:03:46 -05001528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001529 p->numa_faults_buffer_cpu[i] = 0;
1530
Rik van Riel35664fd2014-01-27 17:03:46 -05001531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
Rik van Rielff1df892014-01-27 17:03:41 -05001533 faults += p->numa_faults_memory[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001534 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001537 p->numa_group->faults[i] += diff;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001538 p->numa_group->faults_cpu[i] += f_diff;
Mel Gorman989348b2013-10-07 11:29:40 +01001539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001541 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001542 }
1543
Mel Gorman688b7582013-10-07 11:28:58 +01001544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
Rik van Riel04bb2f92013-10-07 11:29:36 +01001555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001557 if (p->numa_group) {
Rik van Riel20e07de2014-01-27 17:03:43 -05001558 update_numa_active_node_mask(p->numa_group);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001565
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001572 }
1573 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001574
1575 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001576 }
1577
Mel Gorman6b9a7462013-10-07 11:29:11 +01001578 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001579 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001580 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001581 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001582 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001583 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001584}
1585
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
Mel Gorman3e6a9412013-10-07 11:29:35 +01001597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
Rik van Riel50ec8a42014-01-27 17:03:42 -05001608 4*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001617 grp->gid = p->pid;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001618 /* Second half of the array tracks nids where faults happen */
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001621
Rik van Riel20e07de2014-01-27 17:03:43 -05001622 node_set(task_node(current), grp->active_nodes);
1623
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001625 grp->faults[i] = p->numa_faults_memory[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001626
Mel Gorman989348b2013-10-07 11:29:40 +01001627 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001628
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001638 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001642 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001646 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001653 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001659 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001660
Rik van Rieldabe1d92013-10-07 11:29:34 +01001661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001664
Rik van Rieldabe1d92013-10-07 11:29:34 +01001665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
1668
Mel Gorman3e6a9412013-10-07 11:29:35 +01001669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
Rik van Rieldabe1d92013-10-07 11:29:34 +01001672 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001673 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001674
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001680 double_lock(&my_grp->lock, &grp->lock);
1681
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
Rik van Rielff1df892014-01-27 17:03:41 -05001683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001685 }
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
1688
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
Rik van Rielff1df892014-01-27 17:03:41 -05001710 void *numa_faults = p->numa_faults_memory;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001711
1712 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001713 spin_lock(&grp->lock);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001715 grp->faults[i] -= p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001716 grp->total_faults -= p->total_numa_faults;
1717
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
Rik van Rielff1df892014-01-27 17:03:41 -05001725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
Rik van Riel82727012013-10-07 11:29:28 +01001729 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001730}
1731
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
Rik van Riel58b46da2014-01-27 17:03:47 -05001735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001736{
1737 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001738 bool migrated = flags & TNF_MIGRATED;
Rik van Riel58b46da2014-01-27 17:03:47 -05001739 int cpu_node = task_node(current);
Mel Gormanac8e8952013-10-07 11:29:03 +01001740 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001741
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001742 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001743 return;
1744
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
Rik van Riel82727012013-10-07 11:29:28 +01001749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
Mel Gormanf809ca92013-10-07 11:28:57 +01001753 /* Allocate buffer to track faults on a per-node basis */
Rik van Rielff1df892014-01-27 17:03:41 -05001754 if (unlikely(!p->numa_faults_memory)) {
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001757
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
Rik van Rielff1df892014-01-27 17:03:41 -05001759 if (!p->numa_faults_memory)
Mel Gormanf809ca92013-10-07 11:28:57 +01001760 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001761
Rik van Rielff1df892014-01-27 17:03:41 -05001762 BUG_ON(p->numa_faults_buffer_memory);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
Rik van Riel50ec8a42014-01-27 17:03:42 -05001769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001772 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001774 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001775
Mel Gormanfb003b82012-11-15 09:01:14 +00001776 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001784 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001785 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001786 }
1787
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001788 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001789
Rik van Riel2739d3e2013-10-07 11:29:41 +01001790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001795 numa_migrate_preferred(p);
1796
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
Rik van Riel58b46da2014-01-27 17:03:47 -05001800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001803}
1804
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001820 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001821 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001822 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001823 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
Mel Gorman930aa172013-10-07 11:29:37 +01001839 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001842 }
1843
1844 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
Mel Gorman598f0ec2013-10-07 11:28:55 +01001851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001855
Mel Gormanfb003b82012-11-15 09:01:14 +00001856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
Mel Gormane14808b2012-11-19 10:59:15 +00001860 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
Mel Gorman9f406042012-11-14 18:34:32 +00001866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001871
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001872 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001873 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001874 if (!vma) {
1875 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001876 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001877 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001878 }
Mel Gorman9f406042012-11-14 18:34:32 +00001879 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001881 continue;
1882
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
Mel Gorman3c67f472013-12-18 17:08:40 -08001893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
1899
Mel Gorman9f406042012-11-14 18:34:32 +00001900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001913
Mel Gorman9f406042012-11-14 18:34:32 +00001914 start = end;
1915 if (pages <= 0)
1916 goto out;
Rik van Riel3cf19622014-02-18 17:12:44 -05001917
1918 cond_resched();
Mel Gorman9f406042012-11-14 18:34:32 +00001919 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001920 }
1921
Mel Gorman9f406042012-11-14 18:34:32 +00001922out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001923 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001924 * It is possible to reach the end of the VMA list but the last few
1925 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1926 * would find the !migratable VMA on the next scan but not reset the
1927 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001928 */
1929 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001930 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001931 else
1932 reset_ptenuma_scan(p);
1933 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001934}
1935
1936/*
1937 * Drive the periodic memory faults..
1938 */
1939void task_tick_numa(struct rq *rq, struct task_struct *curr)
1940{
1941 struct callback_head *work = &curr->numa_work;
1942 u64 period, now;
1943
1944 /*
1945 * We don't care about NUMA placement if we don't have memory.
1946 */
1947 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1948 return;
1949
1950 /*
1951 * Using runtime rather than walltime has the dual advantage that
1952 * we (mostly) drive the selection from busy threads and that the
1953 * task needs to have done some actual work before we bother with
1954 * NUMA placement.
1955 */
1956 now = curr->se.sum_exec_runtime;
1957 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1958
1959 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001960 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001961 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001962 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001963
1964 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1965 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1966 task_work_add(curr, work, true);
1967 }
1968 }
1969}
1970#else
1971static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1972{
1973}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001974
1975static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1980{
1981}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001982#endif /* CONFIG_NUMA_BALANCING */
1983
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001984static void
1985account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1986{
1987 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001988 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001989 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001990#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001991 if (entity_is_task(se)) {
1992 struct rq *rq = rq_of(cfs_rq);
1993
1994 account_numa_enqueue(rq, task_of(se));
1995 list_add(&se->group_node, &rq->cfs_tasks);
1996 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001997#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001998 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001999}
2000
2001static void
2002account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2003{
2004 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002005 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002006 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002007 if (entity_is_task(se)) {
2008 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05302009 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002010 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002011 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002012}
2013
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002014#ifdef CONFIG_FAIR_GROUP_SCHED
2015# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002016static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2017{
2018 long tg_weight;
2019
2020 /*
2021 * Use this CPU's actual weight instead of the last load_contribution
2022 * to gain a more accurate current total weight. See
2023 * update_cfs_rq_load_contribution().
2024 */
Alex Shibf5b9862013-06-20 10:18:54 +08002025 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02002026 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002027 tg_weight += cfs_rq->load.weight;
2028
2029 return tg_weight;
2030}
2031
Paul Turner6d5ab292011-01-21 20:45:01 -08002032static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002033{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002034 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002035
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002036 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08002037 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002038
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002039 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002040 if (tg_weight)
2041 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002042
2043 if (shares < MIN_SHARES)
2044 shares = MIN_SHARES;
2045 if (shares > tg->shares)
2046 shares = tg->shares;
2047
2048 return shares;
2049}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002050# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08002051static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002052{
2053 return tg->shares;
2054}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002055# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002056static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2057 unsigned long weight)
2058{
Paul Turner19e5eeb2010-12-15 19:10:18 -08002059 if (se->on_rq) {
2060 /* commit outstanding execution time */
2061 if (cfs_rq->curr == se)
2062 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002063 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08002064 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002065
2066 update_load_set(&se->load, weight);
2067
2068 if (se->on_rq)
2069 account_entity_enqueue(cfs_rq, se);
2070}
2071
Paul Turner82958362012-10-04 13:18:31 +02002072static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2073
Paul Turner6d5ab292011-01-21 20:45:01 -08002074static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002075{
2076 struct task_group *tg;
2077 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002078 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002079
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002080 tg = cfs_rq->tg;
2081 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07002082 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002083 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002084#ifndef CONFIG_SMP
2085 if (likely(se->load.weight == tg->shares))
2086 return;
2087#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08002088 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002089
2090 reweight_entity(cfs_rq_of(se), se, shares);
2091}
2092#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08002093static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002094{
2095}
2096#endif /* CONFIG_FAIR_GROUP_SCHED */
2097
Alex Shi141965c2013-06-26 13:05:39 +08002098#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02002099/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02002100 * We choose a half-life close to 1 scheduling period.
2101 * Note: The tables below are dependent on this value.
2102 */
2103#define LOAD_AVG_PERIOD 32
2104#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2105#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2106
2107/* Precomputed fixed inverse multiplies for multiplication by y^n */
2108static const u32 runnable_avg_yN_inv[] = {
2109 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2110 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2111 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2112 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2113 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2114 0x85aac367, 0x82cd8698,
2115};
2116
2117/*
2118 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2119 * over-estimates when re-combining.
2120 */
2121static const u32 runnable_avg_yN_sum[] = {
2122 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2123 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2124 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2125};
2126
2127/*
Paul Turner9d85f212012-10-04 13:18:29 +02002128 * Approximate:
2129 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2130 */
2131static __always_inline u64 decay_load(u64 val, u64 n)
2132{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002133 unsigned int local_n;
2134
2135 if (!n)
2136 return val;
2137 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2138 return 0;
2139
2140 /* after bounds checking we can collapse to 32-bit */
2141 local_n = n;
2142
2143 /*
2144 * As y^PERIOD = 1/2, we can combine
2145 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2146 * With a look-up table which covers k^n (n<PERIOD)
2147 *
2148 * To achieve constant time decay_load.
2149 */
2150 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2151 val >>= local_n / LOAD_AVG_PERIOD;
2152 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02002153 }
2154
Paul Turner5b51f2f2012-10-04 13:18:32 +02002155 val *= runnable_avg_yN_inv[local_n];
2156 /* We don't use SRR here since we always want to round down. */
2157 return val >> 32;
2158}
2159
2160/*
2161 * For updates fully spanning n periods, the contribution to runnable
2162 * average will be: \Sum 1024*y^n
2163 *
2164 * We can compute this reasonably efficiently by combining:
2165 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2166 */
2167static u32 __compute_runnable_contrib(u64 n)
2168{
2169 u32 contrib = 0;
2170
2171 if (likely(n <= LOAD_AVG_PERIOD))
2172 return runnable_avg_yN_sum[n];
2173 else if (unlikely(n >= LOAD_AVG_MAX_N))
2174 return LOAD_AVG_MAX;
2175
2176 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2177 do {
2178 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2179 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2180
2181 n -= LOAD_AVG_PERIOD;
2182 } while (n > LOAD_AVG_PERIOD);
2183
2184 contrib = decay_load(contrib, n);
2185 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002186}
2187
2188/*
2189 * We can represent the historical contribution to runnable average as the
2190 * coefficients of a geometric series. To do this we sub-divide our runnable
2191 * history into segments of approximately 1ms (1024us); label the segment that
2192 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2193 *
2194 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2195 * p0 p1 p2
2196 * (now) (~1ms ago) (~2ms ago)
2197 *
2198 * Let u_i denote the fraction of p_i that the entity was runnable.
2199 *
2200 * We then designate the fractions u_i as our co-efficients, yielding the
2201 * following representation of historical load:
2202 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2203 *
2204 * We choose y based on the with of a reasonably scheduling period, fixing:
2205 * y^32 = 0.5
2206 *
2207 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2208 * approximately half as much as the contribution to load within the last ms
2209 * (u_0).
2210 *
2211 * When a period "rolls over" and we have new u_0`, multiplying the previous
2212 * sum again by y is sufficient to update:
2213 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2214 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2215 */
2216static __always_inline int __update_entity_runnable_avg(u64 now,
2217 struct sched_avg *sa,
2218 int runnable)
2219{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002220 u64 delta, periods;
2221 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002222 int delta_w, decayed = 0;
2223
2224 delta = now - sa->last_runnable_update;
2225 /*
2226 * This should only happen when time goes backwards, which it
2227 * unfortunately does during sched clock init when we swap over to TSC.
2228 */
2229 if ((s64)delta < 0) {
2230 sa->last_runnable_update = now;
2231 return 0;
2232 }
2233
2234 /*
2235 * Use 1024ns as the unit of measurement since it's a reasonable
2236 * approximation of 1us and fast to compute.
2237 */
2238 delta >>= 10;
2239 if (!delta)
2240 return 0;
2241 sa->last_runnable_update = now;
2242
2243 /* delta_w is the amount already accumulated against our next period */
2244 delta_w = sa->runnable_avg_period % 1024;
2245 if (delta + delta_w >= 1024) {
2246 /* period roll-over */
2247 decayed = 1;
2248
2249 /*
2250 * Now that we know we're crossing a period boundary, figure
2251 * out how much from delta we need to complete the current
2252 * period and accrue it.
2253 */
2254 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002255 if (runnable)
2256 sa->runnable_avg_sum += delta_w;
2257 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002258
Paul Turner5b51f2f2012-10-04 13:18:32 +02002259 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002260
Paul Turner5b51f2f2012-10-04 13:18:32 +02002261 /* Figure out how many additional periods this update spans */
2262 periods = delta / 1024;
2263 delta %= 1024;
2264
2265 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2266 periods + 1);
2267 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2268 periods + 1);
2269
2270 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2271 runnable_contrib = __compute_runnable_contrib(periods);
2272 if (runnable)
2273 sa->runnable_avg_sum += runnable_contrib;
2274 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002275 }
2276
2277 /* Remainder of delta accrued against u_0` */
2278 if (runnable)
2279 sa->runnable_avg_sum += delta;
2280 sa->runnable_avg_period += delta;
2281
2282 return decayed;
2283}
2284
Paul Turner9ee474f2012-10-04 13:18:30 +02002285/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002286static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002287{
2288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2289 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2290
2291 decays -= se->avg.decay_count;
2292 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002293 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002294
2295 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2296 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002297
2298 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002299}
2300
Paul Turnerc566e8e2012-10-04 13:18:30 +02002301#ifdef CONFIG_FAIR_GROUP_SCHED
2302static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2303 int force_update)
2304{
2305 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002306 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002307
2308 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2309 tg_contrib -= cfs_rq->tg_load_contrib;
2310
Alex Shibf5b9862013-06-20 10:18:54 +08002311 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2312 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002313 cfs_rq->tg_load_contrib += tg_contrib;
2314 }
2315}
Paul Turner8165e142012-10-04 13:18:31 +02002316
Paul Turnerbb17f652012-10-04 13:18:31 +02002317/*
2318 * Aggregate cfs_rq runnable averages into an equivalent task_group
2319 * representation for computing load contributions.
2320 */
2321static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2322 struct cfs_rq *cfs_rq)
2323{
2324 struct task_group *tg = cfs_rq->tg;
2325 long contrib;
2326
2327 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002328 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Paul Turnerbb17f652012-10-04 13:18:31 +02002329 sa->runnable_avg_period + 1);
2330 contrib -= cfs_rq->tg_runnable_contrib;
2331
2332 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2333 atomic_add(contrib, &tg->runnable_avg);
2334 cfs_rq->tg_runnable_contrib += contrib;
2335 }
2336}
2337
Paul Turner8165e142012-10-04 13:18:31 +02002338static inline void __update_group_entity_contrib(struct sched_entity *se)
2339{
2340 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2341 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002342 int runnable_avg;
2343
Paul Turner8165e142012-10-04 13:18:31 +02002344 u64 contrib;
2345
2346 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002347 se->avg.load_avg_contrib = div_u64(contrib,
2348 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002349
2350 /*
2351 * For group entities we need to compute a correction term in the case
2352 * that they are consuming <1 cpu so that we would contribute the same
2353 * load as a task of equal weight.
2354 *
2355 * Explicitly co-ordinating this measurement would be expensive, but
2356 * fortunately the sum of each cpus contribution forms a usable
2357 * lower-bound on the true value.
2358 *
2359 * Consider the aggregate of 2 contributions. Either they are disjoint
2360 * (and the sum represents true value) or they are disjoint and we are
2361 * understating by the aggregate of their overlap.
2362 *
2363 * Extending this to N cpus, for a given overlap, the maximum amount we
2364 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2365 * cpus that overlap for this interval and w_i is the interval width.
2366 *
2367 * On a small machine; the first term is well-bounded which bounds the
2368 * total error since w_i is a subset of the period. Whereas on a
2369 * larger machine, while this first term can be larger, if w_i is the
2370 * of consequential size guaranteed to see n_i*w_i quickly converge to
2371 * our upper bound of 1-cpu.
2372 */
2373 runnable_avg = atomic_read(&tg->runnable_avg);
2374 if (runnable_avg < NICE_0_LOAD) {
2375 se->avg.load_avg_contrib *= runnable_avg;
2376 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2377 }
Paul Turner8165e142012-10-04 13:18:31 +02002378}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002379
2380static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2381{
2382 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2383 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2384}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002385#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002386static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2387 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002388static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2389 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002390static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002391static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002392#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002393
Paul Turner8165e142012-10-04 13:18:31 +02002394static inline void __update_task_entity_contrib(struct sched_entity *se)
2395{
2396 u32 contrib;
2397
2398 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2399 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2400 contrib /= (se->avg.runnable_avg_period + 1);
2401 se->avg.load_avg_contrib = scale_load(contrib);
2402}
2403
Paul Turner2dac7542012-10-04 13:18:30 +02002404/* Compute the current contribution to load_avg by se, return any delta */
2405static long __update_entity_load_avg_contrib(struct sched_entity *se)
2406{
2407 long old_contrib = se->avg.load_avg_contrib;
2408
Paul Turner8165e142012-10-04 13:18:31 +02002409 if (entity_is_task(se)) {
2410 __update_task_entity_contrib(se);
2411 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002412 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002413 __update_group_entity_contrib(se);
2414 }
Paul Turner2dac7542012-10-04 13:18:30 +02002415
2416 return se->avg.load_avg_contrib - old_contrib;
2417}
2418
Paul Turner9ee474f2012-10-04 13:18:30 +02002419static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2420 long load_contrib)
2421{
2422 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2423 cfs_rq->blocked_load_avg -= load_contrib;
2424 else
2425 cfs_rq->blocked_load_avg = 0;
2426}
2427
Paul Turnerf1b17282012-10-04 13:18:31 +02002428static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2429
Paul Turner9d85f212012-10-04 13:18:29 +02002430/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002431static inline void update_entity_load_avg(struct sched_entity *se,
2432 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002433{
Paul Turner2dac7542012-10-04 13:18:30 +02002434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2435 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002436 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002437
Paul Turnerf1b17282012-10-04 13:18:31 +02002438 /*
2439 * For a group entity we need to use their owned cfs_rq_clock_task() in
2440 * case they are the parent of a throttled hierarchy.
2441 */
2442 if (entity_is_task(se))
2443 now = cfs_rq_clock_task(cfs_rq);
2444 else
2445 now = cfs_rq_clock_task(group_cfs_rq(se));
2446
2447 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002448 return;
2449
2450 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002451
2452 if (!update_cfs_rq)
2453 return;
2454
Paul Turner2dac7542012-10-04 13:18:30 +02002455 if (se->on_rq)
2456 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002457 else
2458 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2459}
2460
2461/*
2462 * Decay the load contributed by all blocked children and account this so that
2463 * their contribution may appropriately discounted when they wake up.
2464 */
Paul Turneraff3e492012-10-04 13:18:30 +02002465static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002466{
Paul Turnerf1b17282012-10-04 13:18:31 +02002467 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002468 u64 decays;
2469
2470 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002471 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002472 return;
2473
Alex Shi25099402013-06-20 10:18:55 +08002474 if (atomic_long_read(&cfs_rq->removed_load)) {
2475 unsigned long removed_load;
2476 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002477 subtract_blocked_load_contrib(cfs_rq, removed_load);
2478 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002479
Paul Turneraff3e492012-10-04 13:18:30 +02002480 if (decays) {
2481 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2482 decays);
2483 atomic64_add(decays, &cfs_rq->decay_counter);
2484 cfs_rq->last_decay = now;
2485 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002486
2487 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002488}
Ben Segall18bf2802012-10-04 12:51:20 +02002489
Paul Turner2dac7542012-10-04 13:18:30 +02002490/* Add the load generated by se into cfs_rq's child load-average */
2491static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002492 struct sched_entity *se,
2493 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002494{
Paul Turneraff3e492012-10-04 13:18:30 +02002495 /*
2496 * We track migrations using entity decay_count <= 0, on a wake-up
2497 * migration we use a negative decay count to track the remote decays
2498 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002499 *
2500 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2501 * are seen by enqueue_entity_load_avg() as a migration with an already
2502 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002503 */
2504 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002505 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002506 if (se->avg.decay_count) {
2507 /*
2508 * In a wake-up migration we have to approximate the
2509 * time sleeping. This is because we can't synchronize
2510 * clock_task between the two cpus, and it is not
2511 * guaranteed to be read-safe. Instead, we can
2512 * approximate this using our carried decays, which are
2513 * explicitly atomically readable.
2514 */
2515 se->avg.last_runnable_update -= (-se->avg.decay_count)
2516 << 20;
2517 update_entity_load_avg(se, 0);
2518 /* Indicate that we're now synchronized and on-rq */
2519 se->avg.decay_count = 0;
2520 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002521 wakeup = 0;
2522 } else {
Vincent Guittot93906752014-01-22 08:45:34 +01002523 __synchronize_entity_decay(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002524 }
2525
Paul Turneraff3e492012-10-04 13:18:30 +02002526 /* migrated tasks did not contribute to our blocked load */
2527 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002528 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002529 update_entity_load_avg(se, 0);
2530 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002531
Paul Turner2dac7542012-10-04 13:18:30 +02002532 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002533 /* we force update consideration on load-balancer moves */
2534 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002535}
2536
Paul Turner9ee474f2012-10-04 13:18:30 +02002537/*
2538 * Remove se's load from this cfs_rq child load-average, if the entity is
2539 * transitioning to a blocked state we track its projected decay using
2540 * blocked_load_avg.
2541 */
Paul Turner2dac7542012-10-04 13:18:30 +02002542static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002543 struct sched_entity *se,
2544 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002545{
Paul Turner9ee474f2012-10-04 13:18:30 +02002546 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002547 /* we force update consideration on load-balancer moves */
2548 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002549
Paul Turner2dac7542012-10-04 13:18:30 +02002550 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002551 if (sleep) {
2552 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2553 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2554 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002555}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002556
2557/*
2558 * Update the rq's load with the elapsed running time before entering
2559 * idle. if the last scheduled task is not a CFS task, idle_enter will
2560 * be the only way to update the runnable statistic.
2561 */
2562void idle_enter_fair(struct rq *this_rq)
2563{
2564 update_rq_runnable_avg(this_rq, 1);
2565}
2566
2567/*
2568 * Update the rq's load with the elapsed idle time before a task is
2569 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2570 * be the only way to update the runnable statistic.
2571 */
2572void idle_exit_fair(struct rq *this_rq)
2573{
2574 update_rq_runnable_avg(this_rq, 0);
2575}
2576
Peter Zijlstra6e831252014-02-11 16:11:48 +01002577static int idle_balance(struct rq *this_rq);
2578
Peter Zijlstra38033c32014-01-23 20:32:21 +01002579#else /* CONFIG_SMP */
2580
Paul Turner9ee474f2012-10-04 13:18:30 +02002581static inline void update_entity_load_avg(struct sched_entity *se,
2582 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002583static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002584static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002585 struct sched_entity *se,
2586 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002587static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002588 struct sched_entity *se,
2589 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002590static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2591 int force_update) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002592
2593static inline int idle_balance(struct rq *rq)
2594{
2595 return 0;
2596}
2597
Peter Zijlstra38033c32014-01-23 20:32:21 +01002598#endif /* CONFIG_SMP */
Paul Turner9d85f212012-10-04 13:18:29 +02002599
Ingo Molnar2396af62007-08-09 11:16:48 +02002600static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002601{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002602#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002603 struct task_struct *tsk = NULL;
2604
2605 if (entity_is_task(se))
2606 tsk = task_of(se);
2607
Lucas De Marchi41acab82010-03-10 23:37:45 -03002608 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002609 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002610
2611 if ((s64)delta < 0)
2612 delta = 0;
2613
Lucas De Marchi41acab82010-03-10 23:37:45 -03002614 if (unlikely(delta > se->statistics.sleep_max))
2615 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002616
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002617 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002618 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002619
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002620 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002621 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002622 trace_sched_stat_sleep(tsk, delta);
2623 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002624 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002625 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002626 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002627
2628 if ((s64)delta < 0)
2629 delta = 0;
2630
Lucas De Marchi41acab82010-03-10 23:37:45 -03002631 if (unlikely(delta > se->statistics.block_max))
2632 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002633
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002634 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002635 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002636
Peter Zijlstrae4143142009-07-23 20:13:26 +02002637 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002638 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002639 se->statistics.iowait_sum += delta;
2640 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002641 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002642 }
2643
Andrew Vaginb781a602011-11-28 12:03:35 +03002644 trace_sched_stat_blocked(tsk, delta);
2645
Peter Zijlstrae4143142009-07-23 20:13:26 +02002646 /*
2647 * Blocking time is in units of nanosecs, so shift by
2648 * 20 to get a milliseconds-range estimation of the
2649 * amount of time that the task spent sleeping:
2650 */
2651 if (unlikely(prof_on == SLEEP_PROFILING)) {
2652 profile_hits(SLEEP_PROFILING,
2653 (void *)get_wchan(tsk),
2654 delta >> 20);
2655 }
2656 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002657 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002658 }
2659#endif
2660}
2661
Peter Zijlstraddc97292007-10-15 17:00:10 +02002662static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2663{
2664#ifdef CONFIG_SCHED_DEBUG
2665 s64 d = se->vruntime - cfs_rq->min_vruntime;
2666
2667 if (d < 0)
2668 d = -d;
2669
2670 if (d > 3*sysctl_sched_latency)
2671 schedstat_inc(cfs_rq, nr_spread_over);
2672#endif
2673}
2674
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002675static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002676place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2677{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002678 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002679
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002680 /*
2681 * The 'current' period is already promised to the current tasks,
2682 * however the extra weight of the new task will slow them down a
2683 * little, place the new task so that it fits in the slot that
2684 * stays open at the end.
2685 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002686 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002687 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002688
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002689 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002690 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002691 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002692
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002693 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002694 * Halve their sleep time's effect, to allow
2695 * for a gentler effect of sleepers:
2696 */
2697 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2698 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002699
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002700 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002701 }
2702
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002703 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302704 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002705}
2706
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002707static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2708
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002709static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002710enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002711{
2712 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002713 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302714 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002715 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002716 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002717 se->vruntime += cfs_rq->min_vruntime;
2718
2719 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002720 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002721 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002722 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002723 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002724 account_entity_enqueue(cfs_rq, se);
2725 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002726
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002727 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002728 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002729 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002730 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002731
Ingo Molnard2417e52007-08-09 11:16:47 +02002732 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002733 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002734 if (se != cfs_rq->curr)
2735 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002736 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002737
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002738 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002739 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002740 check_enqueue_throttle(cfs_rq);
2741 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002742}
2743
Rik van Riel2c13c9192011-02-01 09:48:37 -05002744static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002745{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002746 for_each_sched_entity(se) {
2747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002748 if (cfs_rq->last != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002749 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002750
2751 cfs_rq->last = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002752 }
2753}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002754
Rik van Riel2c13c9192011-02-01 09:48:37 -05002755static void __clear_buddies_next(struct sched_entity *se)
2756{
2757 for_each_sched_entity(se) {
2758 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002759 if (cfs_rq->next != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002760 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002761
2762 cfs_rq->next = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002763 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002764}
2765
Rik van Rielac53db52011-02-01 09:51:03 -05002766static void __clear_buddies_skip(struct sched_entity *se)
2767{
2768 for_each_sched_entity(se) {
2769 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002770 if (cfs_rq->skip != se)
Rik van Rielac53db52011-02-01 09:51:03 -05002771 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002772
2773 cfs_rq->skip = NULL;
Rik van Rielac53db52011-02-01 09:51:03 -05002774 }
2775}
2776
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002777static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2778{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002779 if (cfs_rq->last == se)
2780 __clear_buddies_last(se);
2781
2782 if (cfs_rq->next == se)
2783 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002784
2785 if (cfs_rq->skip == se)
2786 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002787}
2788
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002789static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002790
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002791static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002792dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002793{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002794 /*
2795 * Update run-time statistics of the 'current'.
2796 */
2797 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002798 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002799
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002800 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002801 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002802#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002803 if (entity_is_task(se)) {
2804 struct task_struct *tsk = task_of(se);
2805
2806 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002807 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002808 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002809 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002810 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002811#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002812 }
2813
Peter Zijlstra2002c692008-11-11 11:52:33 +01002814 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002815
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002816 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002817 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002818 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002819 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002820
2821 /*
2822 * Normalize the entity after updating the min_vruntime because the
2823 * update can refer to the ->curr item and we need to reflect this
2824 * movement in our normalized position.
2825 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002826 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002827 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002828
Paul Turnerd8b49862011-07-21 09:43:41 -07002829 /* return excess runtime on last dequeue */
2830 return_cfs_rq_runtime(cfs_rq);
2831
Peter Zijlstra1e876232011-05-17 16:21:10 -07002832 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002833 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002834}
2835
2836/*
2837 * Preempt the current task with a newly woken task if needed:
2838 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002839static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002840check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002841{
Peter Zijlstra11697832007-09-05 14:32:49 +02002842 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002843 struct sched_entity *se;
2844 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002845
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002846 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002847 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002848 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002849 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002850 /*
2851 * The current task ran long enough, ensure it doesn't get
2852 * re-elected due to buddy favours.
2853 */
2854 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002855 return;
2856 }
2857
2858 /*
2859 * Ensure that a task that missed wakeup preemption by a
2860 * narrow margin doesn't have to wait for a full slice.
2861 * This also mitigates buddy induced latencies under load.
2862 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002863 if (delta_exec < sysctl_sched_min_granularity)
2864 return;
2865
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002866 se = __pick_first_entity(cfs_rq);
2867 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002868
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002869 if (delta < 0)
2870 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002871
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002872 if (delta > ideal_runtime)
2873 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002874}
2875
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002876static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002877set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002878{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002879 /* 'current' is not kept within the tree. */
2880 if (se->on_rq) {
2881 /*
2882 * Any task has to be enqueued before it get to execute on
2883 * a CPU. So account for the time it spent waiting on the
2884 * runqueue.
2885 */
2886 update_stats_wait_end(cfs_rq, se);
2887 __dequeue_entity(cfs_rq, se);
2888 }
2889
Ingo Molnar79303e92007-08-09 11:16:47 +02002890 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002891 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002892#ifdef CONFIG_SCHEDSTATS
2893 /*
2894 * Track our maximum slice length, if the CPU's load is at
2895 * least twice that of our own weight (i.e. dont track it
2896 * when there are only lesser-weight tasks around):
2897 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002898 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002899 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002900 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2901 }
2902#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002903 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002904}
2905
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002906static int
2907wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2908
Rik van Rielac53db52011-02-01 09:51:03 -05002909/*
2910 * Pick the next process, keeping these things in mind, in this order:
2911 * 1) keep things fair between processes/task groups
2912 * 2) pick the "next" process, since someone really wants that to run
2913 * 3) pick the "last" process, for cache locality
2914 * 4) do not run the "skip" process, if something else is available
2915 */
Peter Zijlstra678d5712012-02-11 06:05:00 +01002916static struct sched_entity *
2917pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002918{
Peter Zijlstra678d5712012-02-11 06:05:00 +01002919 struct sched_entity *left = __pick_first_entity(cfs_rq);
2920 struct sched_entity *se;
2921
2922 /*
2923 * If curr is set we have to see if its left of the leftmost entity
2924 * still in the tree, provided there was anything in the tree at all.
2925 */
2926 if (!left || (curr && entity_before(curr, left)))
2927 left = curr;
2928
2929 se = left; /* ideally we run the leftmost entity */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002930
Rik van Rielac53db52011-02-01 09:51:03 -05002931 /*
2932 * Avoid running the skip buddy, if running something else can
2933 * be done without getting too unfair.
2934 */
2935 if (cfs_rq->skip == se) {
Peter Zijlstra678d5712012-02-11 06:05:00 +01002936 struct sched_entity *second;
2937
2938 if (se == curr) {
2939 second = __pick_first_entity(cfs_rq);
2940 } else {
2941 second = __pick_next_entity(se);
2942 if (!second || (curr && entity_before(curr, second)))
2943 second = curr;
2944 }
2945
Rik van Rielac53db52011-02-01 09:51:03 -05002946 if (second && wakeup_preempt_entity(second, left) < 1)
2947 se = second;
2948 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002949
Mike Galbraithf685cea2009-10-23 23:09:22 +02002950 /*
2951 * Prefer last buddy, try to return the CPU to a preempted task.
2952 */
2953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2954 se = cfs_rq->last;
2955
Rik van Rielac53db52011-02-01 09:51:03 -05002956 /*
2957 * Someone really wants this to run. If it's not unfair, run it.
2958 */
2959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2960 se = cfs_rq->next;
2961
Mike Galbraithf685cea2009-10-23 23:09:22 +02002962 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002963
2964 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002965}
2966
Peter Zijlstra678d5712012-02-11 06:05:00 +01002967static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002968
Ingo Molnarab6cde22007-08-09 11:16:48 +02002969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002970{
2971 /*
2972 * If still on the runqueue then deactivate_task()
2973 * was not called and update_curr() has to be done:
2974 */
2975 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002976 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002977
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002978 /* throttle cfs_rqs exceeding runtime */
2979 check_cfs_rq_runtime(cfs_rq);
2980
Peter Zijlstraddc97292007-10-15 17:00:10 +02002981 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002982 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002983 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002984 /* Put 'current' back into the tree. */
2985 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002986 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002987 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002988 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002989 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002990}
2991
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002992static void
2993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002994{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002995 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002996 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002997 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002998 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002999
Paul Turner43365bd2010-12-15 19:10:17 -08003000 /*
Paul Turner9d85f212012-10-04 13:18:29 +02003001 * Ensure that runnable average is periodically updated.
3002 */
Paul Turner9ee474f2012-10-04 13:18:30 +02003003 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02003004 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02003005 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02003006
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003007#ifdef CONFIG_SCHED_HRTICK
3008 /*
3009 * queued ticks are scheduled to match the slice, so don't bother
3010 * validating it and just reschedule.
3011 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003012 if (queued) {
3013 resched_task(rq_of(cfs_rq)->curr);
3014 return;
3015 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003016 /*
3017 * don't let the period tick interfere with the hrtick preemption
3018 */
3019 if (!sched_feat(DOUBLE_TICK) &&
3020 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3021 return;
3022#endif
3023
Yong Zhang2c2efae2011-07-29 16:20:33 +08003024 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003025 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003026}
3027
Paul Turnerab84d312011-07-21 09:43:28 -07003028
3029/**************************************************
3030 * CFS bandwidth control machinery
3031 */
3032
3033#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02003034
3035#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01003036static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003037
3038static inline bool cfs_bandwidth_used(void)
3039{
Ingo Molnarc5905af2012-02-24 08:31:31 +01003040 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003041}
3042
Ben Segall1ee14e62013-10-16 11:16:12 -07003043void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003044{
Ben Segall1ee14e62013-10-16 11:16:12 -07003045 static_key_slow_inc(&__cfs_bandwidth_used);
3046}
3047
3048void cfs_bandwidth_usage_dec(void)
3049{
3050 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003051}
3052#else /* HAVE_JUMP_LABEL */
3053static bool cfs_bandwidth_used(void)
3054{
3055 return true;
3056}
3057
Ben Segall1ee14e62013-10-16 11:16:12 -07003058void cfs_bandwidth_usage_inc(void) {}
3059void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003060#endif /* HAVE_JUMP_LABEL */
3061
Paul Turnerab84d312011-07-21 09:43:28 -07003062/*
3063 * default period for cfs group bandwidth.
3064 * default: 0.1s, units: nanoseconds
3065 */
3066static inline u64 default_cfs_period(void)
3067{
3068 return 100000000ULL;
3069}
Paul Turnerec12cb72011-07-21 09:43:30 -07003070
3071static inline u64 sched_cfs_bandwidth_slice(void)
3072{
3073 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3074}
3075
Paul Turnera9cf55b2011-07-21 09:43:32 -07003076/*
3077 * Replenish runtime according to assigned quota and update expiration time.
3078 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3079 * additional synchronization around rq->lock.
3080 *
3081 * requires cfs_b->lock
3082 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003083void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07003084{
3085 u64 now;
3086
3087 if (cfs_b->quota == RUNTIME_INF)
3088 return;
3089
3090 now = sched_clock_cpu(smp_processor_id());
3091 cfs_b->runtime = cfs_b->quota;
3092 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3093}
3094
Peter Zijlstra029632f2011-10-25 10:00:11 +02003095static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3096{
3097 return &tg->cfs_bandwidth;
3098}
3099
Paul Turnerf1b17282012-10-04 13:18:31 +02003100/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3101static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3102{
3103 if (unlikely(cfs_rq->throttle_count))
3104 return cfs_rq->throttled_clock_task;
3105
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003106 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02003107}
3108
Paul Turner85dac902011-07-21 09:43:33 -07003109/* returns 0 on failure to allocate runtime */
3110static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07003111{
3112 struct task_group *tg = cfs_rq->tg;
3113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003114 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003115
3116 /* note: this is a positive sum as runtime_remaining <= 0 */
3117 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3118
3119 raw_spin_lock(&cfs_b->lock);
3120 if (cfs_b->quota == RUNTIME_INF)
3121 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07003122 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003123 /*
3124 * If the bandwidth pool has become inactive, then at least one
3125 * period must have elapsed since the last consumption.
3126 * Refresh the global state and ensure bandwidth timer becomes
3127 * active.
3128 */
3129 if (!cfs_b->timer_active) {
3130 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07003131 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003132 }
Paul Turner58088ad2011-07-21 09:43:31 -07003133
3134 if (cfs_b->runtime > 0) {
3135 amount = min(cfs_b->runtime, min_amount);
3136 cfs_b->runtime -= amount;
3137 cfs_b->idle = 0;
3138 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003139 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07003140 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003141 raw_spin_unlock(&cfs_b->lock);
3142
3143 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003144 /*
3145 * we may have advanced our local expiration to account for allowed
3146 * spread between our sched_clock and the one on which runtime was
3147 * issued.
3148 */
3149 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3150 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07003151
3152 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003153}
3154
3155/*
3156 * Note: This depends on the synchronization provided by sched_clock and the
3157 * fact that rq->clock snapshots this value.
3158 */
3159static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3160{
3161 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003162
3163 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003164 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07003165 return;
3166
3167 if (cfs_rq->runtime_remaining < 0)
3168 return;
3169
3170 /*
3171 * If the local deadline has passed we have to consider the
3172 * possibility that our sched_clock is 'fast' and the global deadline
3173 * has not truly expired.
3174 *
3175 * Fortunately we can check determine whether this the case by checking
3176 * whether the global deadline has advanced.
3177 */
3178
3179 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3180 /* extend local deadline, drift is bounded above by 2 ticks */
3181 cfs_rq->runtime_expires += TICK_NSEC;
3182 } else {
3183 /* global deadline is ahead, expiration has passed */
3184 cfs_rq->runtime_remaining = 0;
3185 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003186}
3187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003188static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003189{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003190 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003191 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003192 expire_cfs_rq_runtime(cfs_rq);
3193
3194 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003195 return;
3196
Paul Turner85dac902011-07-21 09:43:33 -07003197 /*
3198 * if we're unable to extend our runtime we resched so that the active
3199 * hierarchy can be throttled
3200 */
3201 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3202 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003203}
3204
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003205static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003206void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003207{
Paul Turner56f570e2011-11-07 20:26:33 -08003208 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003209 return;
3210
3211 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3212}
3213
Paul Turner85dac902011-07-21 09:43:33 -07003214static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3215{
Paul Turner56f570e2011-11-07 20:26:33 -08003216 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003217}
3218
Paul Turner64660c82011-07-21 09:43:36 -07003219/* check whether cfs_rq, or any parent, is throttled */
3220static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3221{
Paul Turner56f570e2011-11-07 20:26:33 -08003222 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003223}
3224
3225/*
3226 * Ensure that neither of the group entities corresponding to src_cpu or
3227 * dest_cpu are members of a throttled hierarchy when performing group
3228 * load-balance operations.
3229 */
3230static inline int throttled_lb_pair(struct task_group *tg,
3231 int src_cpu, int dest_cpu)
3232{
3233 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3234
3235 src_cfs_rq = tg->cfs_rq[src_cpu];
3236 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3237
3238 return throttled_hierarchy(src_cfs_rq) ||
3239 throttled_hierarchy(dest_cfs_rq);
3240}
3241
3242/* updated child weight may affect parent so we have to do this bottom up */
3243static int tg_unthrottle_up(struct task_group *tg, void *data)
3244{
3245 struct rq *rq = data;
3246 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3247
3248 cfs_rq->throttle_count--;
3249#ifdef CONFIG_SMP
3250 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003251 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003252 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003253 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003254 }
3255#endif
3256
3257 return 0;
3258}
3259
3260static int tg_throttle_down(struct task_group *tg, void *data)
3261{
3262 struct rq *rq = data;
3263 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3264
Paul Turner82958362012-10-04 13:18:31 +02003265 /* group is entering throttled state, stop time */
3266 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003267 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003268 cfs_rq->throttle_count++;
3269
3270 return 0;
3271}
3272
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003273static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003274{
3275 struct rq *rq = rq_of(cfs_rq);
3276 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3277 struct sched_entity *se;
3278 long task_delta, dequeue = 1;
3279
3280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3281
Paul Turnerf1b17282012-10-04 13:18:31 +02003282 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003283 rcu_read_lock();
3284 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3285 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003286
3287 task_delta = cfs_rq->h_nr_running;
3288 for_each_sched_entity(se) {
3289 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3290 /* throttled entity or throttle-on-deactivate */
3291 if (!se->on_rq)
3292 break;
3293
3294 if (dequeue)
3295 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3296 qcfs_rq->h_nr_running -= task_delta;
3297
3298 if (qcfs_rq->load.weight)
3299 dequeue = 0;
3300 }
3301
3302 if (!se)
3303 rq->nr_running -= task_delta;
3304
3305 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003306 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003307 raw_spin_lock(&cfs_b->lock);
3308 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003309 if (!cfs_b->timer_active)
3310 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003311 raw_spin_unlock(&cfs_b->lock);
3312}
3313
Peter Zijlstra029632f2011-10-25 10:00:11 +02003314void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003315{
3316 struct rq *rq = rq_of(cfs_rq);
3317 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3318 struct sched_entity *se;
3319 int enqueue = 1;
3320 long task_delta;
3321
Michael Wang22b958d2013-06-04 14:23:39 +08003322 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003323
3324 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003325
3326 update_rq_clock(rq);
3327
Paul Turner671fd9d2011-07-21 09:43:34 -07003328 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003329 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003330 list_del_rcu(&cfs_rq->throttled_list);
3331 raw_spin_unlock(&cfs_b->lock);
3332
Paul Turner64660c82011-07-21 09:43:36 -07003333 /* update hierarchical throttle state */
3334 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3335
Paul Turner671fd9d2011-07-21 09:43:34 -07003336 if (!cfs_rq->load.weight)
3337 return;
3338
3339 task_delta = cfs_rq->h_nr_running;
3340 for_each_sched_entity(se) {
3341 if (se->on_rq)
3342 enqueue = 0;
3343
3344 cfs_rq = cfs_rq_of(se);
3345 if (enqueue)
3346 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3347 cfs_rq->h_nr_running += task_delta;
3348
3349 if (cfs_rq_throttled(cfs_rq))
3350 break;
3351 }
3352
3353 if (!se)
3354 rq->nr_running += task_delta;
3355
3356 /* determine whether we need to wake up potentially idle cpu */
3357 if (rq->curr == rq->idle && rq->cfs.nr_running)
3358 resched_task(rq->curr);
3359}
3360
3361static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3362 u64 remaining, u64 expires)
3363{
3364 struct cfs_rq *cfs_rq;
3365 u64 runtime = remaining;
3366
3367 rcu_read_lock();
3368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3369 throttled_list) {
3370 struct rq *rq = rq_of(cfs_rq);
3371
3372 raw_spin_lock(&rq->lock);
3373 if (!cfs_rq_throttled(cfs_rq))
3374 goto next;
3375
3376 runtime = -cfs_rq->runtime_remaining + 1;
3377 if (runtime > remaining)
3378 runtime = remaining;
3379 remaining -= runtime;
3380
3381 cfs_rq->runtime_remaining += runtime;
3382 cfs_rq->runtime_expires = expires;
3383
3384 /* we check whether we're throttled above */
3385 if (cfs_rq->runtime_remaining > 0)
3386 unthrottle_cfs_rq(cfs_rq);
3387
3388next:
3389 raw_spin_unlock(&rq->lock);
3390
3391 if (!remaining)
3392 break;
3393 }
3394 rcu_read_unlock();
3395
3396 return remaining;
3397}
3398
Paul Turner58088ad2011-07-21 09:43:31 -07003399/*
3400 * Responsible for refilling a task_group's bandwidth and unthrottling its
3401 * cfs_rqs as appropriate. If there has been no activity within the last
3402 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3403 * used to track this state.
3404 */
3405static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3406{
Paul Turner671fd9d2011-07-21 09:43:34 -07003407 u64 runtime, runtime_expires;
3408 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003409
3410 raw_spin_lock(&cfs_b->lock);
3411 /* no need to continue the timer with no bandwidth constraint */
3412 if (cfs_b->quota == RUNTIME_INF)
3413 goto out_unlock;
3414
Paul Turner671fd9d2011-07-21 09:43:34 -07003415 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3416 /* idle depends on !throttled (for the case of a large deficit) */
3417 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003418 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003419
Paul Turnera9cf55b2011-07-21 09:43:32 -07003420 /* if we're going inactive then everything else can be deferred */
3421 if (idle)
3422 goto out_unlock;
3423
Ben Segall927b54f2013-10-16 11:16:22 -07003424 /*
3425 * if we have relooped after returning idle once, we need to update our
3426 * status as actually running, so that other cpus doing
3427 * __start_cfs_bandwidth will stop trying to cancel us.
3428 */
3429 cfs_b->timer_active = 1;
3430
Paul Turnera9cf55b2011-07-21 09:43:32 -07003431 __refill_cfs_bandwidth_runtime(cfs_b);
3432
Paul Turner671fd9d2011-07-21 09:43:34 -07003433 if (!throttled) {
3434 /* mark as potentially idle for the upcoming period */
3435 cfs_b->idle = 1;
3436 goto out_unlock;
3437 }
Paul Turner58088ad2011-07-21 09:43:31 -07003438
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003439 /* account preceding periods in which throttling occurred */
3440 cfs_b->nr_throttled += overrun;
3441
Paul Turner671fd9d2011-07-21 09:43:34 -07003442 /*
3443 * There are throttled entities so we must first use the new bandwidth
3444 * to unthrottle them before making it generally available. This
3445 * ensures that all existing debts will be paid before a new cfs_rq is
3446 * allowed to run.
3447 */
3448 runtime = cfs_b->runtime;
3449 runtime_expires = cfs_b->runtime_expires;
3450 cfs_b->runtime = 0;
3451
3452 /*
3453 * This check is repeated as we are holding onto the new bandwidth
3454 * while we unthrottle. This can potentially race with an unthrottled
3455 * group trying to acquire new bandwidth from the global pool.
3456 */
3457 while (throttled && runtime > 0) {
3458 raw_spin_unlock(&cfs_b->lock);
3459 /* we can't nest cfs_b->lock while distributing bandwidth */
3460 runtime = distribute_cfs_runtime(cfs_b, runtime,
3461 runtime_expires);
3462 raw_spin_lock(&cfs_b->lock);
3463
3464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3465 }
3466
3467 /* return (any) remaining runtime */
3468 cfs_b->runtime = runtime;
3469 /*
3470 * While we are ensured activity in the period following an
3471 * unthrottle, this also covers the case in which the new bandwidth is
3472 * insufficient to cover the existing bandwidth deficit. (Forcing the
3473 * timer to remain active while there are any throttled entities.)
3474 */
3475 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003476out_unlock:
3477 if (idle)
3478 cfs_b->timer_active = 0;
3479 raw_spin_unlock(&cfs_b->lock);
3480
3481 return idle;
3482}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003483
Paul Turnerd8b49862011-07-21 09:43:41 -07003484/* a cfs_rq won't donate quota below this amount */
3485static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3486/* minimum remaining period time to redistribute slack quota */
3487static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3488/* how long we wait to gather additional slack before distributing */
3489static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3490
Ben Segalldb06e782013-10-16 11:16:17 -07003491/*
3492 * Are we near the end of the current quota period?
3493 *
3494 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3495 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3496 * migrate_hrtimers, base is never cleared, so we are fine.
3497 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003498static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3499{
3500 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3501 u64 remaining;
3502
3503 /* if the call-back is running a quota refresh is already occurring */
3504 if (hrtimer_callback_running(refresh_timer))
3505 return 1;
3506
3507 /* is a quota refresh about to occur? */
3508 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3509 if (remaining < min_expire)
3510 return 1;
3511
3512 return 0;
3513}
3514
3515static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3516{
3517 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3518
3519 /* if there's a quota refresh soon don't bother with slack */
3520 if (runtime_refresh_within(cfs_b, min_left))
3521 return;
3522
3523 start_bandwidth_timer(&cfs_b->slack_timer,
3524 ns_to_ktime(cfs_bandwidth_slack_period));
3525}
3526
3527/* we know any runtime found here is valid as update_curr() precedes return */
3528static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3529{
3530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3531 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3532
3533 if (slack_runtime <= 0)
3534 return;
3535
3536 raw_spin_lock(&cfs_b->lock);
3537 if (cfs_b->quota != RUNTIME_INF &&
3538 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3539 cfs_b->runtime += slack_runtime;
3540
3541 /* we are under rq->lock, defer unthrottling using a timer */
3542 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3543 !list_empty(&cfs_b->throttled_cfs_rq))
3544 start_cfs_slack_bandwidth(cfs_b);
3545 }
3546 raw_spin_unlock(&cfs_b->lock);
3547
3548 /* even if it's not valid for return we don't want to try again */
3549 cfs_rq->runtime_remaining -= slack_runtime;
3550}
3551
3552static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3553{
Paul Turner56f570e2011-11-07 20:26:33 -08003554 if (!cfs_bandwidth_used())
3555 return;
3556
Paul Turnerfccfdc62011-11-07 20:26:34 -08003557 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003558 return;
3559
3560 __return_cfs_rq_runtime(cfs_rq);
3561}
3562
3563/*
3564 * This is done with a timer (instead of inline with bandwidth return) since
3565 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3566 */
3567static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3568{
3569 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3570 u64 expires;
3571
3572 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003573 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3575 raw_spin_unlock(&cfs_b->lock);
3576 return;
3577 }
3578
Paul Turnerd8b49862011-07-21 09:43:41 -07003579 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3580 runtime = cfs_b->runtime;
3581 cfs_b->runtime = 0;
3582 }
3583 expires = cfs_b->runtime_expires;
3584 raw_spin_unlock(&cfs_b->lock);
3585
3586 if (!runtime)
3587 return;
3588
3589 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3590
3591 raw_spin_lock(&cfs_b->lock);
3592 if (expires == cfs_b->runtime_expires)
3593 cfs_b->runtime = runtime;
3594 raw_spin_unlock(&cfs_b->lock);
3595}
3596
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003597/*
3598 * When a group wakes up we want to make sure that its quota is not already
3599 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3600 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3601 */
3602static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3603{
Paul Turner56f570e2011-11-07 20:26:33 -08003604 if (!cfs_bandwidth_used())
3605 return;
3606
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003607 /* an active group must be handled by the update_curr()->put() path */
3608 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3609 return;
3610
3611 /* ensure the group is not already throttled */
3612 if (cfs_rq_throttled(cfs_rq))
3613 return;
3614
3615 /* update runtime allocation */
3616 account_cfs_rq_runtime(cfs_rq, 0);
3617 if (cfs_rq->runtime_remaining <= 0)
3618 throttle_cfs_rq(cfs_rq);
3619}
3620
3621/* conditionally throttle active cfs_rq's from put_prev_entity() */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003622static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003623{
Paul Turner56f570e2011-11-07 20:26:33 -08003624 if (!cfs_bandwidth_used())
Peter Zijlstra678d5712012-02-11 06:05:00 +01003625 return false;
Paul Turner56f570e2011-11-07 20:26:33 -08003626
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003627 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003628 return false;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003629
3630 /*
3631 * it's possible for a throttled entity to be forced into a running
3632 * state (e.g. set_curr_task), in this case we're finished.
3633 */
3634 if (cfs_rq_throttled(cfs_rq))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003635 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003636
3637 throttle_cfs_rq(cfs_rq);
Peter Zijlstra678d5712012-02-11 06:05:00 +01003638 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003639}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003640
Peter Zijlstra029632f2011-10-25 10:00:11 +02003641static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3642{
3643 struct cfs_bandwidth *cfs_b =
3644 container_of(timer, struct cfs_bandwidth, slack_timer);
3645 do_sched_cfs_slack_timer(cfs_b);
3646
3647 return HRTIMER_NORESTART;
3648}
3649
3650static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3651{
3652 struct cfs_bandwidth *cfs_b =
3653 container_of(timer, struct cfs_bandwidth, period_timer);
3654 ktime_t now;
3655 int overrun;
3656 int idle = 0;
3657
3658 for (;;) {
3659 now = hrtimer_cb_get_time(timer);
3660 overrun = hrtimer_forward(timer, now, cfs_b->period);
3661
3662 if (!overrun)
3663 break;
3664
3665 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3666 }
3667
3668 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3669}
3670
3671void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3672{
3673 raw_spin_lock_init(&cfs_b->lock);
3674 cfs_b->runtime = 0;
3675 cfs_b->quota = RUNTIME_INF;
3676 cfs_b->period = ns_to_ktime(default_cfs_period());
3677
3678 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3679 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3680 cfs_b->period_timer.function = sched_cfs_period_timer;
3681 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3683}
3684
3685static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3686{
3687 cfs_rq->runtime_enabled = 0;
3688 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3689}
3690
3691/* requires cfs_b->lock, may release to reprogram timer */
3692void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3693{
3694 /*
3695 * The timer may be active because we're trying to set a new bandwidth
3696 * period or because we're racing with the tear-down path
3697 * (timer_active==0 becomes visible before the hrtimer call-back
3698 * terminates). In either case we ensure that it's re-programmed
3699 */
Ben Segall927b54f2013-10-16 11:16:22 -07003700 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3701 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3702 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003703 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003704 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003705 raw_spin_lock(&cfs_b->lock);
3706 /* if someone else restarted the timer then we're done */
3707 if (cfs_b->timer_active)
3708 return;
3709 }
3710
3711 cfs_b->timer_active = 1;
3712 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3713}
3714
3715static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3716{
3717 hrtimer_cancel(&cfs_b->period_timer);
3718 hrtimer_cancel(&cfs_b->slack_timer);
3719}
3720
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003721static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003722{
3723 struct cfs_rq *cfs_rq;
3724
3725 for_each_leaf_cfs_rq(rq, cfs_rq) {
3726 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3727
3728 if (!cfs_rq->runtime_enabled)
3729 continue;
3730
3731 /*
3732 * clock_task is not advancing so we just need to make sure
3733 * there's some valid quota amount
3734 */
3735 cfs_rq->runtime_remaining = cfs_b->quota;
3736 if (cfs_rq_throttled(cfs_rq))
3737 unthrottle_cfs_rq(cfs_rq);
3738 }
3739}
3740
3741#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003742static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3743{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003744 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003745}
3746
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003747static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Peter Zijlstra678d5712012-02-11 06:05:00 +01003748static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003749static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003750static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003751
3752static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3753{
3754 return 0;
3755}
Paul Turner64660c82011-07-21 09:43:36 -07003756
3757static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3758{
3759 return 0;
3760}
3761
3762static inline int throttled_lb_pair(struct task_group *tg,
3763 int src_cpu, int dest_cpu)
3764{
3765 return 0;
3766}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003767
3768void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3769
3770#ifdef CONFIG_FAIR_GROUP_SCHED
3771static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003772#endif
3773
Peter Zijlstra029632f2011-10-25 10:00:11 +02003774static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3775{
3776 return NULL;
3777}
3778static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003779static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003780
3781#endif /* CONFIG_CFS_BANDWIDTH */
3782
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003783/**************************************************
3784 * CFS operations on tasks:
3785 */
3786
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003787#ifdef CONFIG_SCHED_HRTICK
3788static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3789{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003790 struct sched_entity *se = &p->se;
3791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3792
3793 WARN_ON(task_rq(p) != rq);
3794
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003795 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003796 u64 slice = sched_slice(cfs_rq, se);
3797 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3798 s64 delta = slice - ran;
3799
3800 if (delta < 0) {
3801 if (rq->curr == p)
3802 resched_task(p);
3803 return;
3804 }
3805
3806 /*
3807 * Don't schedule slices shorter than 10000ns, that just
3808 * doesn't make sense. Rely on vruntime for fairness.
3809 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003810 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003811 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003812
Peter Zijlstra31656512008-07-18 18:01:23 +02003813 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003814 }
3815}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003816
3817/*
3818 * called from enqueue/dequeue and updates the hrtick when the
3819 * current task is from our class and nr_running is low enough
3820 * to matter.
3821 */
3822static void hrtick_update(struct rq *rq)
3823{
3824 struct task_struct *curr = rq->curr;
3825
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003826 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003827 return;
3828
3829 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3830 hrtick_start_fair(rq, curr);
3831}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303832#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003833static inline void
3834hrtick_start_fair(struct rq *rq, struct task_struct *p)
3835{
3836}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003837
3838static inline void hrtick_update(struct rq *rq)
3839{
3840}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003841#endif
3842
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003843/*
3844 * The enqueue_task method is called before nr_running is
3845 * increased. Here we update the fair scheduling stats and
3846 * then put the task into the rbtree:
3847 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003848static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003849enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003850{
3851 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003852 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003853
3854 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003855 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003856 break;
3857 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003858 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003859
3860 /*
3861 * end evaluation on encountering a throttled cfs_rq
3862 *
3863 * note: in the case of encountering a throttled cfs_rq we will
3864 * post the final h_nr_running increment below.
3865 */
3866 if (cfs_rq_throttled(cfs_rq))
3867 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003868 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003869
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003870 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003871 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003872
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003873 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003874 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003875 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003876
Paul Turner85dac902011-07-21 09:43:33 -07003877 if (cfs_rq_throttled(cfs_rq))
3878 break;
3879
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003880 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003881 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003882 }
3883
Ben Segall18bf2802012-10-04 12:51:20 +02003884 if (!se) {
3885 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003886 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003887 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003888 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003889}
3890
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003891static void set_next_buddy(struct sched_entity *se);
3892
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003893/*
3894 * The dequeue_task method is called before nr_running is
3895 * decreased. We remove the task from the rbtree and
3896 * update the fair scheduling stats:
3897 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003898static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003899{
3900 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003901 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003902 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003903
3904 for_each_sched_entity(se) {
3905 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003906 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003907
3908 /*
3909 * end evaluation on encountering a throttled cfs_rq
3910 *
3911 * note: in the case of encountering a throttled cfs_rq we will
3912 * post the final h_nr_running decrement below.
3913 */
3914 if (cfs_rq_throttled(cfs_rq))
3915 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003916 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003917
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003918 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003919 if (cfs_rq->load.weight) {
3920 /*
3921 * Bias pick_next to pick a task from this cfs_rq, as
3922 * p is sleeping when it is within its sched_slice.
3923 */
3924 if (task_sleep && parent_entity(se))
3925 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003926
3927 /* avoid re-evaluating load for this entity */
3928 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003929 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003930 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003931 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003932 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003933
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003934 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003935 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003936 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003937
Paul Turner85dac902011-07-21 09:43:33 -07003938 if (cfs_rq_throttled(cfs_rq))
3939 break;
3940
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003941 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003942 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003943 }
3944
Ben Segall18bf2802012-10-04 12:51:20 +02003945 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003946 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003947 update_rq_runnable_avg(rq, 1);
3948 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003949 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003950}
3951
Gregory Haskinse7693a32008-01-25 21:08:09 +01003952#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003953/* Used instead of source_load when we know the type == 0 */
3954static unsigned long weighted_cpuload(const int cpu)
3955{
Alex Shib92486c2013-06-20 10:18:50 +08003956 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003957}
3958
3959/*
3960 * Return a low guess at the load of a migration-source cpu weighted
3961 * according to the scheduling class and "nice" value.
3962 *
3963 * We want to under-estimate the load of migration sources, to
3964 * balance conservatively.
3965 */
3966static unsigned long source_load(int cpu, int type)
3967{
3968 struct rq *rq = cpu_rq(cpu);
3969 unsigned long total = weighted_cpuload(cpu);
3970
3971 if (type == 0 || !sched_feat(LB_BIAS))
3972 return total;
3973
3974 return min(rq->cpu_load[type-1], total);
3975}
3976
3977/*
3978 * Return a high guess at the load of a migration-target cpu weighted
3979 * according to the scheduling class and "nice" value.
3980 */
3981static unsigned long target_load(int cpu, int type)
3982{
3983 struct rq *rq = cpu_rq(cpu);
3984 unsigned long total = weighted_cpuload(cpu);
3985
3986 if (type == 0 || !sched_feat(LB_BIAS))
3987 return total;
3988
3989 return max(rq->cpu_load[type-1], total);
3990}
3991
3992static unsigned long power_of(int cpu)
3993{
3994 return cpu_rq(cpu)->cpu_power;
3995}
3996
3997static unsigned long cpu_avg_load_per_task(int cpu)
3998{
3999 struct rq *rq = cpu_rq(cpu);
4000 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08004001 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004002
4003 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08004004 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004005
4006 return 0;
4007}
4008
Michael Wang62470412013-07-04 12:55:51 +08004009static void record_wakee(struct task_struct *p)
4010{
4011 /*
4012 * Rough decay (wiping) for cost saving, don't worry
4013 * about the boundary, really active task won't care
4014 * about the loss.
4015 */
4016 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4017 current->wakee_flips = 0;
4018 current->wakee_flip_decay_ts = jiffies;
4019 }
4020
4021 if (current->last_wakee != p) {
4022 current->last_wakee = p;
4023 current->wakee_flips++;
4024 }
4025}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004026
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004027static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004028{
4029 struct sched_entity *se = &p->se;
4030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004031 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004032
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004033#ifndef CONFIG_64BIT
4034 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004035
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004036 do {
4037 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4038 smp_rmb();
4039 min_vruntime = cfs_rq->min_vruntime;
4040 } while (min_vruntime != min_vruntime_copy);
4041#else
4042 min_vruntime = cfs_rq->min_vruntime;
4043#endif
4044
4045 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08004046 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004047}
4048
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004049#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004050/*
4051 * effective_load() calculates the load change as seen from the root_task_group
4052 *
4053 * Adding load to a group doesn't make a group heavier, but can cause movement
4054 * of group shares between cpus. Assuming the shares were perfectly aligned one
4055 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004056 *
4057 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4058 * on this @cpu and results in a total addition (subtraction) of @wg to the
4059 * total group weight.
4060 *
4061 * Given a runqueue weight distribution (rw_i) we can compute a shares
4062 * distribution (s_i) using:
4063 *
4064 * s_i = rw_i / \Sum rw_j (1)
4065 *
4066 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4067 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4068 * shares distribution (s_i):
4069 *
4070 * rw_i = { 2, 4, 1, 0 }
4071 * s_i = { 2/7, 4/7, 1/7, 0 }
4072 *
4073 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4074 * task used to run on and the CPU the waker is running on), we need to
4075 * compute the effect of waking a task on either CPU and, in case of a sync
4076 * wakeup, compute the effect of the current task going to sleep.
4077 *
4078 * So for a change of @wl to the local @cpu with an overall group weight change
4079 * of @wl we can compute the new shares distribution (s'_i) using:
4080 *
4081 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4082 *
4083 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4084 * differences in waking a task to CPU 0. The additional task changes the
4085 * weight and shares distributions like:
4086 *
4087 * rw'_i = { 3, 4, 1, 0 }
4088 * s'_i = { 3/8, 4/8, 1/8, 0 }
4089 *
4090 * We can then compute the difference in effective weight by using:
4091 *
4092 * dw_i = S * (s'_i - s_i) (3)
4093 *
4094 * Where 'S' is the group weight as seen by its parent.
4095 *
4096 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4097 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4098 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004099 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004100static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004101{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004102 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004103
Rik van Riel9722c2d2014-01-06 11:39:12 +00004104 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004105 return wl;
4106
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004107 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004108 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004109
Paul Turner977dda72011-01-14 17:57:50 -08004110 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004111
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004112 /*
4113 * W = @wg + \Sum rw_j
4114 */
4115 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004116
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004117 /*
4118 * w = rw_i + @wl
4119 */
4120 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004121
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004122 /*
4123 * wl = S * s'_i; see (2)
4124 */
4125 if (W > 0 && w < W)
4126 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08004127 else
4128 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004129
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004130 /*
4131 * Per the above, wl is the new se->load.weight value; since
4132 * those are clipped to [MIN_SHARES, ...) do so now. See
4133 * calc_cfs_shares().
4134 */
Paul Turner977dda72011-01-14 17:57:50 -08004135 if (wl < MIN_SHARES)
4136 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004137
4138 /*
4139 * wl = dw_i = S * (s'_i - s_i); see (3)
4140 */
Paul Turner977dda72011-01-14 17:57:50 -08004141 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004142
4143 /*
4144 * Recursively apply this logic to all parent groups to compute
4145 * the final effective load change on the root group. Since
4146 * only the @tg group gets extra weight, all parent groups can
4147 * only redistribute existing shares. @wl is the shift in shares
4148 * resulting from this level per the above.
4149 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004150 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004151 }
4152
4153 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004154}
4155#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004156
Mel Gorman58d081b2013-10-07 11:29:10 +01004157static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004158{
Peter Zijlstra83378262008-06-27 13:41:37 +02004159 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004160}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004161
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004162#endif
4163
Michael Wang62470412013-07-04 12:55:51 +08004164static int wake_wide(struct task_struct *p)
4165{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08004166 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08004167
4168 /*
4169 * Yeah, it's the switching-frequency, could means many wakee or
4170 * rapidly switch, use factor here will just help to automatically
4171 * adjust the loose-degree, so bigger node will lead to more pull.
4172 */
4173 if (p->wakee_flips > factor) {
4174 /*
4175 * wakee is somewhat hot, it needs certain amount of cpu
4176 * resource, so if waker is far more hot, prefer to leave
4177 * it alone.
4178 */
4179 if (current->wakee_flips > (factor * p->wakee_flips))
4180 return 1;
4181 }
4182
4183 return 0;
4184}
4185
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004186static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004187{
Paul Turnere37b6a72011-01-21 20:44:59 -08004188 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004189 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004190 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004191 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004192 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004193 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004194
Michael Wang62470412013-07-04 12:55:51 +08004195 /*
4196 * If we wake multiple tasks be careful to not bounce
4197 * ourselves around too much.
4198 */
4199 if (wake_wide(p))
4200 return 0;
4201
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004202 idx = sd->wake_idx;
4203 this_cpu = smp_processor_id();
4204 prev_cpu = task_cpu(p);
4205 load = source_load(prev_cpu, idx);
4206 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004207
4208 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004209 * If sync wakeup then subtract the (maximum possible)
4210 * effect of the currently running task from the load
4211 * of the current CPU:
4212 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004213 if (sync) {
4214 tg = task_group(current);
4215 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004216
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004217 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004218 load += effective_load(tg, prev_cpu, 0, -weight);
4219 }
4220
4221 tg = task_group(p);
4222 weight = p->se.load.weight;
4223
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004224 /*
4225 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004226 * due to the sync cause above having dropped this_load to 0, we'll
4227 * always have an imbalance, but there's really nothing you can do
4228 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004229 *
4230 * Otherwise check if either cpus are near enough in load to allow this
4231 * task to be woken on this_cpu.
4232 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004233 if (this_load > 0) {
4234 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004235
4236 this_eff_load = 100;
4237 this_eff_load *= power_of(prev_cpu);
4238 this_eff_load *= this_load +
4239 effective_load(tg, this_cpu, weight, weight);
4240
4241 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4242 prev_eff_load *= power_of(this_cpu);
4243 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4244
4245 balanced = this_eff_load <= prev_eff_load;
4246 } else
4247 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004248
4249 /*
4250 * If the currently running task will sleep within
4251 * a reasonable amount of time then attract this newly
4252 * woken task:
4253 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004254 if (sync && balanced)
4255 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004256
Lucas De Marchi41acab82010-03-10 23:37:45 -03004257 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004258 tl_per_task = cpu_avg_load_per_task(this_cpu);
4259
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004260 if (balanced ||
4261 (this_load <= load &&
4262 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004263 /*
4264 * This domain has SD_WAKE_AFFINE and
4265 * p is cache cold in this domain, and
4266 * there is no bad imbalance.
4267 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004268 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004269 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004270
4271 return 1;
4272 }
4273 return 0;
4274}
4275
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004276/*
4277 * find_idlest_group finds and returns the least busy CPU group within the
4278 * domain.
4279 */
4280static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004281find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004282 int this_cpu, int sd_flag)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004283{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004284 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004285 unsigned long min_load = ULONG_MAX, this_load = 0;
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004286 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004287 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004288
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004289 if (sd_flag & SD_BALANCE_WAKE)
4290 load_idx = sd->wake_idx;
4291
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004292 do {
4293 unsigned long load, avg_load;
4294 int local_group;
4295 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004296
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004297 /* Skip over this group if it has no CPUs allowed */
4298 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004299 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004300 continue;
4301
4302 local_group = cpumask_test_cpu(this_cpu,
4303 sched_group_cpus(group));
4304
4305 /* Tally up the load of all CPUs in the group */
4306 avg_load = 0;
4307
4308 for_each_cpu(i, sched_group_cpus(group)) {
4309 /* Bias balancing toward cpus of our domain */
4310 if (local_group)
4311 load = source_load(i, load_idx);
4312 else
4313 load = target_load(i, load_idx);
4314
4315 avg_load += load;
4316 }
4317
4318 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004319 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004320
4321 if (local_group) {
4322 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004323 } else if (avg_load < min_load) {
4324 min_load = avg_load;
4325 idlest = group;
4326 }
4327 } while (group = group->next, group != sd->groups);
4328
4329 if (!idlest || 100*this_load < imbalance*min_load)
4330 return NULL;
4331 return idlest;
4332}
4333
4334/*
4335 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4336 */
4337static int
4338find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4339{
4340 unsigned long load, min_load = ULONG_MAX;
4341 int idlest = -1;
4342 int i;
4343
4344 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004345 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004346 load = weighted_cpuload(i);
4347
4348 if (load < min_load || (load == min_load && i == this_cpu)) {
4349 min_load = load;
4350 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004351 }
4352 }
4353
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004354 return idlest;
4355}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004356
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004357/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004358 * Try and locate an idle CPU in the sched_domain.
4359 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004360static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004361{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004362 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004363 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004364 int i = task_cpu(p);
4365
4366 if (idle_cpu(target))
4367 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004368
4369 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004370 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004371 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004372 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4373 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004374
4375 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004376 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004377 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004378 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004379 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004380 sg = sd->groups;
4381 do {
4382 if (!cpumask_intersects(sched_group_cpus(sg),
4383 tsk_cpus_allowed(p)))
4384 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004385
Linus Torvalds37407ea2012-09-16 12:29:43 -07004386 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004387 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004388 goto next;
4389 }
4390
4391 target = cpumask_first_and(sched_group_cpus(sg),
4392 tsk_cpus_allowed(p));
4393 goto done;
4394next:
4395 sg = sg->next;
4396 } while (sg != sd->groups);
4397 }
4398done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004399 return target;
4400}
4401
4402/*
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004403 * select_task_rq_fair: Select target runqueue for the waking task in domains
4404 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4405 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004406 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004407 * Balances load by selecting the idlest cpu in the idlest group, or under
4408 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004409 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004410 * Returns the target cpu number.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004411 *
4412 * preempt must be disabled.
4413 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004414static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004415select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004416{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004417 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004418 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004419 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004420 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004421 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004422
Peter Zijlstra29baa742012-04-23 12:11:21 +02004423 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004424 return prev_cpu;
4425
Peter Zijlstra0763a662009-09-14 19:37:39 +02004426 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004427 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004428 want_affine = 1;
4429 new_cpu = prev_cpu;
4430 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004431
Peter Zijlstradce840a2011-04-07 14:09:50 +02004432 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004433 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004434 if (!(tmp->flags & SD_LOAD_BALANCE))
4435 continue;
4436
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004437 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004438 * If both cpu and prev_cpu are part of this domain,
4439 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004440 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004441 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4442 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4443 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004444 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004445 }
4446
Alex Shif03542a2012-07-26 08:55:34 +08004447 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004448 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004449 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004450
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004451 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004452 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004453 prev_cpu = cpu;
4454
4455 new_cpu = select_idle_sibling(p, prev_cpu);
4456 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004457 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004458
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004459 while (sd) {
4460 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004461 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004462
Peter Zijlstra0763a662009-09-14 19:37:39 +02004463 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004464 sd = sd->child;
4465 continue;
4466 }
4467
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004468 group = find_idlest_group(sd, p, cpu, sd_flag);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004469 if (!group) {
4470 sd = sd->child;
4471 continue;
4472 }
4473
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004474 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004475 if (new_cpu == -1 || new_cpu == cpu) {
4476 /* Now try balancing at a lower domain level of cpu */
4477 sd = sd->child;
4478 continue;
4479 }
4480
4481 /* Now try balancing at a lower domain level of new_cpu */
4482 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004483 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004484 sd = NULL;
4485 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004486 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004487 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004488 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004489 sd = tmp;
4490 }
4491 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004492 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004493unlock:
4494 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004495
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004496 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004497}
Paul Turner0a74bef2012-10-04 13:18:30 +02004498
4499/*
4500 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4501 * cfs_rq_of(p) references at time of call are still valid and identify the
4502 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4503 * other assumptions, including the state of rq->lock, should be made.
4504 */
4505static void
4506migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4507{
Paul Turneraff3e492012-10-04 13:18:30 +02004508 struct sched_entity *se = &p->se;
4509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4510
4511 /*
4512 * Load tracking: accumulate removed load so that it can be processed
4513 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4514 * to blocked load iff they have a positive decay-count. It can never
4515 * be negative here since on-rq tasks have decay-count == 0.
4516 */
4517 if (se->avg.decay_count) {
4518 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004519 atomic_long_add(se->avg.load_avg_contrib,
4520 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004521 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004522}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004523#endif /* CONFIG_SMP */
4524
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004525static unsigned long
4526wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004527{
4528 unsigned long gran = sysctl_sched_wakeup_granularity;
4529
4530 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004531 * Since its curr running now, convert the gran from real-time
4532 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004533 *
4534 * By using 'se' instead of 'curr' we penalize light tasks, so
4535 * they get preempted easier. That is, if 'se' < 'curr' then
4536 * the resulting gran will be larger, therefore penalizing the
4537 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4538 * be smaller, again penalizing the lighter task.
4539 *
4540 * This is especially important for buddies when the leftmost
4541 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004542 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004543 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004544}
4545
4546/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004547 * Should 'se' preempt 'curr'.
4548 *
4549 * |s1
4550 * |s2
4551 * |s3
4552 * g
4553 * |<--->|c
4554 *
4555 * w(c, s1) = -1
4556 * w(c, s2) = 0
4557 * w(c, s3) = 1
4558 *
4559 */
4560static int
4561wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4562{
4563 s64 gran, vdiff = curr->vruntime - se->vruntime;
4564
4565 if (vdiff <= 0)
4566 return -1;
4567
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004568 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004569 if (vdiff > gran)
4570 return 1;
4571
4572 return 0;
4573}
4574
Peter Zijlstra02479092008-11-04 21:25:10 +01004575static void set_last_buddy(struct sched_entity *se)
4576{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004577 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4578 return;
4579
4580 for_each_sched_entity(se)
4581 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004582}
4583
4584static void set_next_buddy(struct sched_entity *se)
4585{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004586 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4587 return;
4588
4589 for_each_sched_entity(se)
4590 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004591}
4592
Rik van Rielac53db52011-02-01 09:51:03 -05004593static void set_skip_buddy(struct sched_entity *se)
4594{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004595 for_each_sched_entity(se)
4596 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004597}
4598
Peter Zijlstra464b7522008-10-24 11:06:15 +02004599/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004600 * Preempt the current task with a newly woken task if needed:
4601 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004602static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004603{
4604 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004605 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004606 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004607 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004608 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004609
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004610 if (unlikely(se == pse))
4611 return;
4612
Paul Turner5238cdd2011-07-21 09:43:37 -07004613 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004614 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004615 * unconditionally check_prempt_curr() after an enqueue (which may have
4616 * lead to a throttle). This both saves work and prevents false
4617 * next-buddy nomination below.
4618 */
4619 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4620 return;
4621
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004622 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004623 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004624 next_buddy_marked = 1;
4625 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004626
Bharata B Raoaec0a512008-08-28 14:42:49 +05304627 /*
4628 * We can come here with TIF_NEED_RESCHED already set from new task
4629 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004630 *
4631 * Note: this also catches the edge-case of curr being in a throttled
4632 * group (e.g. via set_curr_task), since update_curr() (in the
4633 * enqueue of curr) will have resulted in resched being set. This
4634 * prevents us from potentially nominating it as a false LAST_BUDDY
4635 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304636 */
4637 if (test_tsk_need_resched(curr))
4638 return;
4639
Darren Harta2f5c9a2011-02-22 13:04:33 -08004640 /* Idle tasks are by definition preempted by non-idle tasks. */
4641 if (unlikely(curr->policy == SCHED_IDLE) &&
4642 likely(p->policy != SCHED_IDLE))
4643 goto preempt;
4644
Ingo Molnar91c234b2007-10-15 17:00:18 +02004645 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004646 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4647 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004648 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004649 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004650 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004651
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004652 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004653 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004654 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004655 if (wakeup_preempt_entity(se, pse) == 1) {
4656 /*
4657 * Bias pick_next to pick the sched entity that is
4658 * triggering this preemption.
4659 */
4660 if (!next_buddy_marked)
4661 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004662 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004663 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004664
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004665 return;
4666
4667preempt:
4668 resched_task(curr);
4669 /*
4670 * Only set the backward buddy when the current task is still
4671 * on the rq. This can happen when a wakeup gets interleaved
4672 * with schedule on the ->pre_schedule() or idle_balance()
4673 * point, either of which can * drop the rq lock.
4674 *
4675 * Also, during early boot the idle thread is in the fair class,
4676 * for obvious reasons its a bad idea to schedule back to it.
4677 */
4678 if (unlikely(!se->on_rq || curr == rq->idle))
4679 return;
4680
4681 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4682 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004683}
4684
Peter Zijlstra606dba22012-02-11 06:05:00 +01004685static struct task_struct *
4686pick_next_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004687{
4688 struct cfs_rq *cfs_rq = &rq->cfs;
4689 struct sched_entity *se;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004690 struct task_struct *p;
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004691 int new_tasks;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004692
Peter Zijlstra6e831252014-02-11 16:11:48 +01004693again:
Peter Zijlstra678d5712012-02-11 06:05:00 +01004694#ifdef CONFIG_FAIR_GROUP_SCHED
4695 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004696 goto idle;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004697
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004698 if (prev->sched_class != &fair_sched_class)
Peter Zijlstra678d5712012-02-11 06:05:00 +01004699 goto simple;
4700
4701 /*
4702 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4703 * likely that a next task is from the same cgroup as the current.
4704 *
4705 * Therefore attempt to avoid putting and setting the entire cgroup
4706 * hierarchy, only change the part that actually changes.
4707 */
4708
4709 do {
4710 struct sched_entity *curr = cfs_rq->curr;
4711
4712 /*
4713 * Since we got here without doing put_prev_entity() we also
4714 * have to consider cfs_rq->curr. If it is still a runnable
4715 * entity, update_curr() will update its vruntime, otherwise
4716 * forget we've ever seen it.
4717 */
4718 if (curr && curr->on_rq)
4719 update_curr(cfs_rq);
4720 else
4721 curr = NULL;
4722
4723 /*
4724 * This call to check_cfs_rq_runtime() will do the throttle and
4725 * dequeue its entity in the parent(s). Therefore the 'simple'
4726 * nr_running test will indeed be correct.
4727 */
4728 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4729 goto simple;
4730
4731 se = pick_next_entity(cfs_rq, curr);
4732 cfs_rq = group_cfs_rq(se);
4733 } while (cfs_rq);
4734
4735 p = task_of(se);
4736
4737 /*
4738 * Since we haven't yet done put_prev_entity and if the selected task
4739 * is a different task than we started out with, try and touch the
4740 * least amount of cfs_rqs.
4741 */
4742 if (prev != p) {
4743 struct sched_entity *pse = &prev->se;
4744
4745 while (!(cfs_rq = is_same_group(se, pse))) {
4746 int se_depth = se->depth;
4747 int pse_depth = pse->depth;
4748
4749 if (se_depth <= pse_depth) {
4750 put_prev_entity(cfs_rq_of(pse), pse);
4751 pse = parent_entity(pse);
4752 }
4753 if (se_depth >= pse_depth) {
4754 set_next_entity(cfs_rq_of(se), se);
4755 se = parent_entity(se);
4756 }
4757 }
4758
4759 put_prev_entity(cfs_rq, pse);
4760 set_next_entity(cfs_rq, se);
4761 }
4762
4763 if (hrtick_enabled(rq))
4764 hrtick_start_fair(rq, p);
4765
4766 return p;
4767simple:
4768 cfs_rq = &rq->cfs;
4769#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004770
Tim Blechmann36ace272009-11-24 11:55:45 +01004771 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004772 goto idle;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004773
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004774 put_prev_task(rq, prev);
Peter Zijlstra606dba22012-02-11 06:05:00 +01004775
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004776 do {
Peter Zijlstra678d5712012-02-11 06:05:00 +01004777 se = pick_next_entity(cfs_rq, NULL);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004778 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004779 cfs_rq = group_cfs_rq(se);
4780 } while (cfs_rq);
4781
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004782 p = task_of(se);
Peter Zijlstra678d5712012-02-11 06:05:00 +01004783
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004784 if (hrtick_enabled(rq))
4785 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004786
4787 return p;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004788
4789idle:
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004790 new_tasks = idle_balance(rq);
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004791 /*
4792 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4793 * possible for any higher priority task to appear. In that case we
4794 * must re-start the pick_next_entity() loop.
4795 */
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004796 if (new_tasks < 0)
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004797 return RETRY_TASK;
4798
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004799 if (new_tasks > 0)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004800 goto again;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004801
4802 return NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004803}
4804
4805/*
4806 * Account for a descheduled task:
4807 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004808static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004809{
4810 struct sched_entity *se = &prev->se;
4811 struct cfs_rq *cfs_rq;
4812
4813 for_each_sched_entity(se) {
4814 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004815 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004816 }
4817}
4818
Rik van Rielac53db52011-02-01 09:51:03 -05004819/*
4820 * sched_yield() is very simple
4821 *
4822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4823 */
4824static void yield_task_fair(struct rq *rq)
4825{
4826 struct task_struct *curr = rq->curr;
4827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4828 struct sched_entity *se = &curr->se;
4829
4830 /*
4831 * Are we the only task in the tree?
4832 */
4833 if (unlikely(rq->nr_running == 1))
4834 return;
4835
4836 clear_buddies(cfs_rq, se);
4837
4838 if (curr->policy != SCHED_BATCH) {
4839 update_rq_clock(rq);
4840 /*
4841 * Update run-time statistics of the 'current'.
4842 */
4843 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004844 /*
4845 * Tell update_rq_clock() that we've just updated,
4846 * so we don't do microscopic update in schedule()
4847 * and double the fastpath cost.
4848 */
4849 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004850 }
4851
4852 set_skip_buddy(se);
4853}
4854
Mike Galbraithd95f4122011-02-01 09:50:51 -05004855static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4856{
4857 struct sched_entity *se = &p->se;
4858
Paul Turner5238cdd2011-07-21 09:43:37 -07004859 /* throttled hierarchies are not runnable */
4860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004861 return false;
4862
4863 /* Tell the scheduler that we'd really like pse to run next. */
4864 set_next_buddy(se);
4865
Mike Galbraithd95f4122011-02-01 09:50:51 -05004866 yield_task_fair(rq);
4867
4868 return true;
4869}
4870
Peter Williams681f3e62007-10-24 18:23:51 +02004871#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004872/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004873 * Fair scheduling class load-balancing methods.
4874 *
4875 * BASICS
4876 *
4877 * The purpose of load-balancing is to achieve the same basic fairness the
4878 * per-cpu scheduler provides, namely provide a proportional amount of compute
4879 * time to each task. This is expressed in the following equation:
4880 *
4881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4882 *
4883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4884 * W_i,0 is defined as:
4885 *
4886 * W_i,0 = \Sum_j w_i,j (2)
4887 *
4888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4889 * is derived from the nice value as per prio_to_weight[].
4890 *
4891 * The weight average is an exponential decay average of the instantaneous
4892 * weight:
4893 *
4894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4895 *
4896 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4898 * can also include other factors [XXX].
4899 *
4900 * To achieve this balance we define a measure of imbalance which follows
4901 * directly from (1):
4902 *
4903 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4904 *
4905 * We them move tasks around to minimize the imbalance. In the continuous
4906 * function space it is obvious this converges, in the discrete case we get
4907 * a few fun cases generally called infeasible weight scenarios.
4908 *
4909 * [XXX expand on:
4910 * - infeasible weights;
4911 * - local vs global optima in the discrete case. ]
4912 *
4913 *
4914 * SCHED DOMAINS
4915 *
4916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4917 * for all i,j solution, we create a tree of cpus that follows the hardware
4918 * topology where each level pairs two lower groups (or better). This results
4919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4920 * tree to only the first of the previous level and we decrease the frequency
4921 * of load-balance at each level inv. proportional to the number of cpus in
4922 * the groups.
4923 *
4924 * This yields:
4925 *
4926 * log_2 n 1 n
4927 * \Sum { --- * --- * 2^i } = O(n) (5)
4928 * i = 0 2^i 2^i
4929 * `- size of each group
4930 * | | `- number of cpus doing load-balance
4931 * | `- freq
4932 * `- sum over all levels
4933 *
4934 * Coupled with a limit on how many tasks we can migrate every balance pass,
4935 * this makes (5) the runtime complexity of the balancer.
4936 *
4937 * An important property here is that each CPU is still (indirectly) connected
4938 * to every other cpu in at most O(log n) steps:
4939 *
4940 * The adjacency matrix of the resulting graph is given by:
4941 *
4942 * log_2 n
4943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4944 * k = 0
4945 *
4946 * And you'll find that:
4947 *
4948 * A^(log_2 n)_i,j != 0 for all i,j (7)
4949 *
4950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4951 * The task movement gives a factor of O(m), giving a convergence complexity
4952 * of:
4953 *
4954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4955 *
4956 *
4957 * WORK CONSERVING
4958 *
4959 * In order to avoid CPUs going idle while there's still work to do, new idle
4960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4961 * tree itself instead of relying on other CPUs to bring it work.
4962 *
4963 * This adds some complexity to both (5) and (8) but it reduces the total idle
4964 * time.
4965 *
4966 * [XXX more?]
4967 *
4968 *
4969 * CGROUPS
4970 *
4971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4972 *
4973 * s_k,i
4974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4975 * S_k
4976 *
4977 * Where
4978 *
4979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4980 *
4981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4982 *
4983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4984 * property.
4985 *
4986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4987 * rewrite all of this once again.]
4988 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004989
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004990static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4991
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004992enum fbq_type { regular, remote, all };
4993
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004994#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004995#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004996#define LBF_DST_PINNED 0x04
4997#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004998
4999struct lb_env {
5000 struct sched_domain *sd;
5001
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005002 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05305003 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005004
5005 int dst_cpu;
5006 struct rq *dst_rq;
5007
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305008 struct cpumask *dst_grpmask;
5009 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005010 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005011 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08005012 /* The set of CPUs under consideration for load-balancing */
5013 struct cpumask *cpus;
5014
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005015 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005016
5017 unsigned int loop;
5018 unsigned int loop_break;
5019 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005020
5021 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005022};
5023
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005024/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005025 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005026 * Both runqueues must be locked.
5027 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005028static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005029{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005030 deactivate_task(env->src_rq, p, 0);
5031 set_task_cpu(p, env->dst_cpu);
5032 activate_task(env->dst_rq, p, 0);
5033 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005034}
5035
5036/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02005037 * Is this task likely cache-hot:
5038 */
5039static int
5040task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5041{
5042 s64 delta;
5043
5044 if (p->sched_class != &fair_sched_class)
5045 return 0;
5046
5047 if (unlikely(p->policy == SCHED_IDLE))
5048 return 0;
5049
5050 /*
5051 * Buddy candidates are cache hot:
5052 */
5053 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5054 (&p->se == cfs_rq_of(&p->se)->next ||
5055 &p->se == cfs_rq_of(&p->se)->last))
5056 return 1;
5057
5058 if (sysctl_sched_migration_cost == -1)
5059 return 1;
5060 if (sysctl_sched_migration_cost == 0)
5061 return 0;
5062
5063 delta = now - p->se.exec_start;
5064
5065 return delta < (s64)sysctl_sched_migration_cost;
5066}
5067
Mel Gorman3a7053b2013-10-07 11:29:00 +01005068#ifdef CONFIG_NUMA_BALANCING
5069/* Returns true if the destination node has incurred more faults */
5070static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5071{
5072 int src_nid, dst_nid;
5073
Rik van Rielff1df892014-01-27 17:03:41 -05005074 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
Mel Gorman3a7053b2013-10-07 11:29:00 +01005075 !(env->sd->flags & SD_NUMA)) {
5076 return false;
5077 }
5078
5079 src_nid = cpu_to_node(env->src_cpu);
5080 dst_nid = cpu_to_node(env->dst_cpu);
5081
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005082 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01005083 return false;
5084
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005085 /* Always encourage migration to the preferred node. */
5086 if (dst_nid == p->numa_preferred_nid)
5087 return true;
5088
Rik van Riel887c2902013-10-07 11:29:31 +01005089 /* If both task and group weight improve, this move is a winner. */
5090 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5091 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01005092 return true;
5093
5094 return false;
5095}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005096
5097
5098static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5099{
5100 int src_nid, dst_nid;
5101
5102 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5103 return false;
5104
Rik van Rielff1df892014-01-27 17:03:41 -05005105 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005106 return false;
5107
5108 src_nid = cpu_to_node(env->src_cpu);
5109 dst_nid = cpu_to_node(env->dst_cpu);
5110
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005111 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01005112 return false;
5113
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005114 /* Migrating away from the preferred node is always bad. */
5115 if (src_nid == p->numa_preferred_nid)
5116 return true;
5117
Rik van Riel887c2902013-10-07 11:29:31 +01005118 /* If either task or group weight get worse, don't do it. */
5119 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5120 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005121 return true;
5122
5123 return false;
5124}
5125
Mel Gorman3a7053b2013-10-07 11:29:00 +01005126#else
5127static inline bool migrate_improves_locality(struct task_struct *p,
5128 struct lb_env *env)
5129{
5130 return false;
5131}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005132
5133static inline bool migrate_degrades_locality(struct task_struct *p,
5134 struct lb_env *env)
5135{
5136 return false;
5137}
Mel Gorman3a7053b2013-10-07 11:29:00 +01005138#endif
5139
Peter Zijlstra029632f2011-10-25 10:00:11 +02005140/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5142 */
5143static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005144int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005145{
5146 int tsk_cache_hot = 0;
5147 /*
5148 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09005149 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09005151 * 3) running (obviously), or
5152 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005153 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09005154 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5155 return 0;
5156
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005157 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005158 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305159
Lucas De Marchi41acab82010-03-10 23:37:45 -03005160 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305161
Peter Zijlstra62633222013-08-19 12:41:09 +02005162 env->flags |= LBF_SOME_PINNED;
5163
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305164 /*
5165 * Remember if this task can be migrated to any other cpu in
5166 * our sched_group. We may want to revisit it if we couldn't
5167 * meet load balance goals by pulling other tasks on src_cpu.
5168 *
5169 * Also avoid computing new_dst_cpu if we have already computed
5170 * one in current iteration.
5171 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005172 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305173 return 0;
5174
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005175 /* Prevent to re-select dst_cpu via env's cpus */
5176 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5177 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02005178 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005179 env->new_dst_cpu = cpu;
5180 break;
5181 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305182 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005183
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005184 return 0;
5185 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305186
5187 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005188 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005189
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005190 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03005191 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005192 return 0;
5193 }
5194
5195 /*
5196 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01005197 * 1) destination numa is preferred
5198 * 2) task is cache cold, or
5199 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005200 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005201 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005202 if (!tsk_cache_hot)
5203 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005204
5205 if (migrate_improves_locality(p, env)) {
5206#ifdef CONFIG_SCHEDSTATS
5207 if (tsk_cache_hot) {
5208 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5209 schedstat_inc(p, se.statistics.nr_forced_migrations);
5210 }
5211#endif
5212 return 1;
5213 }
5214
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005215 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005216 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005217
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005218 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005219 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03005220 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005221 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005222
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005223 return 1;
5224 }
5225
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005226 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5227 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005228}
5229
Peter Zijlstra897c3952009-12-17 17:45:42 +01005230/*
5231 * move_one_task tries to move exactly one task from busiest to this_rq, as
5232 * part of active balancing operations within "domain".
5233 * Returns 1 if successful and 0 otherwise.
5234 *
5235 * Called with both runqueues locked.
5236 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005237static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01005238{
5239 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005240
Peter Zijlstra367456c2012-02-20 21:49:09 +01005241 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01005242 if (!can_migrate_task(p, env))
5243 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005244
Peter Zijlstra367456c2012-02-20 21:49:09 +01005245 move_task(p, env);
5246 /*
5247 * Right now, this is only the second place move_task()
5248 * is called, so we can safely collect move_task()
5249 * stats here rather than inside move_task().
5250 */
5251 schedstat_inc(env->sd, lb_gained[env->idle]);
5252 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005253 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01005254 return 0;
5255}
5256
Peter Zijlstraeb953082012-04-17 13:38:40 +02005257static const unsigned int sched_nr_migrate_break = 32;
5258
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005259/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005260 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005261 * this_rq, as part of a balancing operation within domain "sd".
5262 * Returns 1 if successful and 0 otherwise.
5263 *
5264 * Called with both runqueues locked.
5265 */
5266static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005267{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005268 struct list_head *tasks = &env->src_rq->cfs_tasks;
5269 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005270 unsigned long load;
5271 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005272
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005273 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005274 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005275
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005276 while (!list_empty(tasks)) {
5277 p = list_first_entry(tasks, struct task_struct, se.group_node);
5278
Peter Zijlstra367456c2012-02-20 21:49:09 +01005279 env->loop++;
5280 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005281 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005282 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005283
5284 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005285 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005286 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005287 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005288 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005289 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005290
Joonsoo Kimd3198082013-04-23 17:27:40 +09005291 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005292 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293
Peter Zijlstra367456c2012-02-20 21:49:09 +01005294 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005295
Peter Zijlstraeb953082012-04-17 13:38:40 +02005296 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005297 goto next;
5298
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005299 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005300 goto next;
5301
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005302 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005303 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005304 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305
5306#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005307 /*
5308 * NEWIDLE balancing is a source of latency, so preemptible
5309 * kernels will stop after the first task is pulled to minimize
5310 * the critical section.
5311 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005312 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005313 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005314#endif
5315
Peter Zijlstraee00e662009-12-17 17:25:20 +01005316 /*
5317 * We only want to steal up to the prescribed amount of
5318 * weighted load.
5319 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005320 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005321 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005322
Peter Zijlstra367456c2012-02-20 21:49:09 +01005323 continue;
5324next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005325 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005326 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005327
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005329 * Right now, this is one of only two places move_task() is called,
5330 * so we can safely collect move_task() stats here rather than
5331 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005332 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005333 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005334
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005335 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005336}
5337
Peter Zijlstra230059de2009-12-17 17:47:12 +01005338#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005339/*
5340 * update tg->load_weight by folding this cpu's load_avg
5341 */
Paul Turner48a16752012-10-04 13:18:31 +02005342static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005343{
Paul Turner48a16752012-10-04 13:18:31 +02005344 struct sched_entity *se = tg->se[cpu];
5345 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005346
Paul Turner48a16752012-10-04 13:18:31 +02005347 /* throttled entities do not contribute to load */
5348 if (throttled_hierarchy(cfs_rq))
5349 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005350
Paul Turneraff3e492012-10-04 13:18:30 +02005351 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005352
Paul Turner82958362012-10-04 13:18:31 +02005353 if (se) {
5354 update_entity_load_avg(se, 1);
5355 /*
5356 * We pivot on our runnable average having decayed to zero for
5357 * list removal. This generally implies that all our children
5358 * have also been removed (modulo rounding error or bandwidth
5359 * control); however, such cases are rare and we can fix these
5360 * at enqueue.
5361 *
5362 * TODO: fix up out-of-order children on enqueue.
5363 */
5364 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5365 list_del_leaf_cfs_rq(cfs_rq);
5366 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005367 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005368 update_rq_runnable_avg(rq, rq->nr_running);
5369 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005370}
5371
Paul Turner48a16752012-10-04 13:18:31 +02005372static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005373{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005374 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005375 struct cfs_rq *cfs_rq;
5376 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005377
Paul Turner48a16752012-10-04 13:18:31 +02005378 raw_spin_lock_irqsave(&rq->lock, flags);
5379 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005380 /*
5381 * Iterates the task_group tree in a bottom up fashion, see
5382 * list_add_leaf_cfs_rq() for details.
5383 */
Paul Turner64660c82011-07-21 09:43:36 -07005384 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005385 /*
5386 * Note: We may want to consider periodically releasing
5387 * rq->lock about these updates so that creating many task
5388 * groups does not result in continually extending hold time.
5389 */
5390 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005391 }
Paul Turner48a16752012-10-04 13:18:31 +02005392
5393 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005394}
5395
Peter Zijlstra9763b672011-07-13 13:09:25 +02005396/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005397 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005398 * This needs to be done in a top-down fashion because the load of a child
5399 * group is a fraction of its parents load.
5400 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005401static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005402{
Vladimir Davydov68520792013-07-15 17:49:19 +04005403 struct rq *rq = rq_of(cfs_rq);
5404 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005405 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005406 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005407
Vladimir Davydov68520792013-07-15 17:49:19 +04005408 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005409 return;
5410
Vladimir Davydov68520792013-07-15 17:49:19 +04005411 cfs_rq->h_load_next = NULL;
5412 for_each_sched_entity(se) {
5413 cfs_rq = cfs_rq_of(se);
5414 cfs_rq->h_load_next = se;
5415 if (cfs_rq->last_h_load_update == now)
5416 break;
5417 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005418
Vladimir Davydov68520792013-07-15 17:49:19 +04005419 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005420 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005421 cfs_rq->last_h_load_update = now;
5422 }
5423
5424 while ((se = cfs_rq->h_load_next) != NULL) {
5425 load = cfs_rq->h_load;
5426 load = div64_ul(load * se->avg.load_avg_contrib,
5427 cfs_rq->runnable_load_avg + 1);
5428 cfs_rq = group_cfs_rq(se);
5429 cfs_rq->h_load = load;
5430 cfs_rq->last_h_load_update = now;
5431 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005432}
5433
Peter Zijlstra367456c2012-02-20 21:49:09 +01005434static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005435{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005436 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005437
Vladimir Davydov68520792013-07-15 17:49:19 +04005438 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005439 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5440 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005441}
5442#else
Paul Turner48a16752012-10-04 13:18:31 +02005443static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005444{
5445}
5446
Peter Zijlstra367456c2012-02-20 21:49:09 +01005447static unsigned long task_h_load(struct task_struct *p)
5448{
Alex Shia003a252013-06-20 10:18:51 +08005449 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005450}
5451#endif
5452
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005453/********** Helpers for find_busiest_group ************************/
5454/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005455 * sg_lb_stats - stats of a sched_group required for load_balancing
5456 */
5457struct sg_lb_stats {
5458 unsigned long avg_load; /*Avg load across the CPUs of the group */
5459 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005460 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005461 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005462 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005463 unsigned int sum_nr_running; /* Nr tasks running in the group */
5464 unsigned int group_capacity;
5465 unsigned int idle_cpus;
5466 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005467 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005468 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005469#ifdef CONFIG_NUMA_BALANCING
5470 unsigned int nr_numa_running;
5471 unsigned int nr_preferred_running;
5472#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005473};
5474
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005475/*
5476 * sd_lb_stats - Structure to store the statistics of a sched_domain
5477 * during load balancing.
5478 */
5479struct sd_lb_stats {
5480 struct sched_group *busiest; /* Busiest group in this sd */
5481 struct sched_group *local; /* Local group in this sd */
5482 unsigned long total_load; /* Total load of all groups in sd */
5483 unsigned long total_pwr; /* Total power of all groups in sd */
5484 unsigned long avg_load; /* Average load across all groups in sd */
5485
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005486 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005487 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005488};
5489
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005490static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5491{
5492 /*
5493 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5494 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5495 * We must however clear busiest_stat::avg_load because
5496 * update_sd_pick_busiest() reads this before assignment.
5497 */
5498 *sds = (struct sd_lb_stats){
5499 .busiest = NULL,
5500 .local = NULL,
5501 .total_load = 0UL,
5502 .total_pwr = 0UL,
5503 .busiest_stat = {
5504 .avg_load = 0UL,
5505 },
5506 };
5507}
5508
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005509/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510 * get_sd_load_idx - Obtain the load index for a given sched domain.
5511 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305512 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005513 *
5514 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005515 */
5516static inline int get_sd_load_idx(struct sched_domain *sd,
5517 enum cpu_idle_type idle)
5518{
5519 int load_idx;
5520
5521 switch (idle) {
5522 case CPU_NOT_IDLE:
5523 load_idx = sd->busy_idx;
5524 break;
5525
5526 case CPU_NEWLY_IDLE:
5527 load_idx = sd->newidle_idx;
5528 break;
5529 default:
5530 load_idx = sd->idle_idx;
5531 break;
5532 }
5533
5534 return load_idx;
5535}
5536
Li Zefan15f803c2013-03-05 16:07:11 +08005537static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005538{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005539 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540}
5541
5542unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5543{
5544 return default_scale_freq_power(sd, cpu);
5545}
5546
Li Zefan15f803c2013-03-05 16:07:11 +08005547static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005548{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005549 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005550 unsigned long smt_gain = sd->smt_gain;
5551
5552 smt_gain /= weight;
5553
5554 return smt_gain;
5555}
5556
5557unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5558{
5559 return default_scale_smt_power(sd, cpu);
5560}
5561
Li Zefan15f803c2013-03-05 16:07:11 +08005562static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005563{
5564 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005565 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005566
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005567 /*
5568 * Since we're reading these variables without serialization make sure
5569 * we read them once before doing sanity checks on them.
5570 */
5571 age_stamp = ACCESS_ONCE(rq->age_stamp);
5572 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005573
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005574 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005575
5576 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005577 /* Ensures that power won't end up being negative */
5578 available = 0;
5579 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005580 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005581 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005582
Nikhil Rao1399fa72011-05-18 10:09:39 -07005583 if (unlikely((s64)total < SCHED_POWER_SCALE))
5584 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005585
Nikhil Rao1399fa72011-05-18 10:09:39 -07005586 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005587
5588 return div_u64(available, total);
5589}
5590
5591static void update_cpu_power(struct sched_domain *sd, int cpu)
5592{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005593 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005594 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005595 struct sched_group *sdg = sd->groups;
5596
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005597 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5598 if (sched_feat(ARCH_POWER))
5599 power *= arch_scale_smt_power(sd, cpu);
5600 else
5601 power *= default_scale_smt_power(sd, cpu);
5602
Nikhil Rao1399fa72011-05-18 10:09:39 -07005603 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005604 }
5605
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005606 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005607
5608 if (sched_feat(ARCH_POWER))
5609 power *= arch_scale_freq_power(sd, cpu);
5610 else
5611 power *= default_scale_freq_power(sd, cpu);
5612
Nikhil Rao1399fa72011-05-18 10:09:39 -07005613 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005614
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005615 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005616 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005617
5618 if (!power)
5619 power = 1;
5620
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005621 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005622 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005623}
5624
Peter Zijlstra029632f2011-10-25 10:00:11 +02005625void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005626{
5627 struct sched_domain *child = sd->child;
5628 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005629 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005630 unsigned long interval;
5631
5632 interval = msecs_to_jiffies(sd->balance_interval);
5633 interval = clamp(interval, 1UL, max_load_balance_interval);
5634 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005635
5636 if (!child) {
5637 update_cpu_power(sd, cpu);
5638 return;
5639 }
5640
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005641 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005642
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005643 if (child->flags & SD_OVERLAP) {
5644 /*
5645 * SD_OVERLAP domains cannot assume that child groups
5646 * span the current group.
5647 */
5648
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005649 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305650 struct sched_group_power *sgp;
5651 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005652
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305653 /*
5654 * build_sched_domains() -> init_sched_groups_power()
5655 * gets here before we've attached the domains to the
5656 * runqueues.
5657 *
5658 * Use power_of(), which is set irrespective of domains
5659 * in update_cpu_power().
5660 *
5661 * This avoids power/power_orig from being 0 and
5662 * causing divide-by-zero issues on boot.
5663 *
5664 * Runtime updates will correct power_orig.
5665 */
5666 if (unlikely(!rq->sd)) {
5667 power_orig += power_of(cpu);
5668 power += power_of(cpu);
5669 continue;
5670 }
5671
5672 sgp = rq->sd->groups->sgp;
5673 power_orig += sgp->power_orig;
5674 power += sgp->power;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005675 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005676 } else {
5677 /*
5678 * !SD_OVERLAP domains can assume that child groups
5679 * span the current group.
5680 */
5681
5682 group = child->groups;
5683 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005684 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005685 power += group->sgp->power;
5686 group = group->next;
5687 } while (group != child->groups);
5688 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005689
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005690 sdg->sgp->power_orig = power_orig;
5691 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005692}
5693
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005694/*
5695 * Try and fix up capacity for tiny siblings, this is needed when
5696 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5697 * which on its own isn't powerful enough.
5698 *
5699 * See update_sd_pick_busiest() and check_asym_packing().
5700 */
5701static inline int
5702fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5703{
5704 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005705 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005706 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005707 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005708 return 0;
5709
5710 /*
5711 * If ~90% of the cpu_power is still there, we're good.
5712 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005713 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005714 return 1;
5715
5716 return 0;
5717}
5718
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005719/*
5720 * Group imbalance indicates (and tries to solve) the problem where balancing
5721 * groups is inadequate due to tsk_cpus_allowed() constraints.
5722 *
5723 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5724 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5725 * Something like:
5726 *
5727 * { 0 1 2 3 } { 4 5 6 7 }
5728 * * * * *
5729 *
5730 * If we were to balance group-wise we'd place two tasks in the first group and
5731 * two tasks in the second group. Clearly this is undesired as it will overload
5732 * cpu 3 and leave one of the cpus in the second group unused.
5733 *
5734 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005735 * by noticing the lower domain failed to reach balance and had difficulty
5736 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005737 *
5738 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305739 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005740 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005741 * to create an effective group imbalance.
5742 *
5743 * This is a somewhat tricky proposition since the next run might not find the
5744 * group imbalance and decide the groups need to be balanced again. A most
5745 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005746 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005747
Peter Zijlstra62633222013-08-19 12:41:09 +02005748static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749{
Peter Zijlstra62633222013-08-19 12:41:09 +02005750 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005751}
5752
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005753/*
5754 * Compute the group capacity.
5755 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005756 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5757 * first dividing out the smt factor and computing the actual number of cores
5758 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005759 */
5760static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5761{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005762 unsigned int capacity, smt, cpus;
5763 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005764
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005765 power = group->sgp->power;
5766 power_orig = group->sgp->power_orig;
5767 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005768
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005769 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5770 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5771 capacity = cpus / smt; /* cores */
5772
5773 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005774 if (!capacity)
5775 capacity = fix_small_capacity(env->sd, group);
5776
5777 return capacity;
5778}
5779
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005780/**
5781 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5782 * @env: The load balancing environment.
5783 * @group: sched_group whose statistics are to be updated.
5784 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5785 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005786 * @sgs: variable to hold the statistics for this group.
5787 */
5788static inline void update_sg_lb_stats(struct lb_env *env,
5789 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005790 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005791{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005792 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005793 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005794
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005795 memset(sgs, 0, sizeof(*sgs));
5796
Michael Wangb94031302012-07-12 16:10:13 +08005797 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005798 struct rq *rq = cpu_rq(i);
5799
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005800 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005801 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005802 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005803 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005804 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005805
5806 sgs->group_load += load;
Kamalesh Babulal380c9072013-11-15 15:06:52 +05305807 sgs->sum_nr_running += rq->nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005808#ifdef CONFIG_NUMA_BALANCING
5809 sgs->nr_numa_running += rq->nr_numa_running;
5810 sgs->nr_preferred_running += rq->nr_preferred_running;
5811#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005812 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005813 if (idle_cpu(i))
5814 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005815 }
5816
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005817 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005818 sgs->group_power = group->sgp->power;
5819 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005820
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005821 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005822 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005823
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005824 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005825
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005826 sgs->group_imb = sg_imbalanced(group);
5827 sgs->group_capacity = sg_capacity(env, group);
5828
Nikhil Raofab47622010-10-15 13:12:29 -07005829 if (sgs->group_capacity > sgs->sum_nr_running)
5830 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005831}
5832
5833/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005834 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005835 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005836 * @sds: sched_domain statistics
5837 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005838 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005839 *
5840 * Determine if @sg is a busier group than the previously selected
5841 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005842 *
5843 * Return: %true if @sg is a busier group than the previously selected
5844 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005845 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005846static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005847 struct sd_lb_stats *sds,
5848 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005849 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005850{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005851 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005852 return false;
5853
5854 if (sgs->sum_nr_running > sgs->group_capacity)
5855 return true;
5856
5857 if (sgs->group_imb)
5858 return true;
5859
5860 /*
5861 * ASYM_PACKING needs to move all the work to the lowest
5862 * numbered CPUs in the group, therefore mark all groups
5863 * higher than ourself as busy.
5864 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005865 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5866 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005867 if (!sds->busiest)
5868 return true;
5869
5870 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5871 return true;
5872 }
5873
5874 return false;
5875}
5876
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005877#ifdef CONFIG_NUMA_BALANCING
5878static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5879{
5880 if (sgs->sum_nr_running > sgs->nr_numa_running)
5881 return regular;
5882 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5883 return remote;
5884 return all;
5885}
5886
5887static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5888{
5889 if (rq->nr_running > rq->nr_numa_running)
5890 return regular;
5891 if (rq->nr_running > rq->nr_preferred_running)
5892 return remote;
5893 return all;
5894}
5895#else
5896static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5897{
5898 return all;
5899}
5900
5901static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5902{
5903 return regular;
5904}
5905#endif /* CONFIG_NUMA_BALANCING */
5906
Michael Neuling532cb4c2010-06-08 14:57:02 +10005907/**
Hui Kang461819a2011-10-11 23:00:59 -04005908 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005909 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005910 * @sds: variable to hold the statistics for this sched_domain.
5911 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005912static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005913{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005914 struct sched_domain *child = env->sd->child;
5915 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005916 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005917 int load_idx, prefer_sibling = 0;
5918
5919 if (child && child->flags & SD_PREFER_SIBLING)
5920 prefer_sibling = 1;
5921
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005922 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005923
5924 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005925 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005926 int local_group;
5927
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005928 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005929 if (local_group) {
5930 sds->local = sg;
5931 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005932
5933 if (env->idle != CPU_NEWLY_IDLE ||
5934 time_after_eq(jiffies, sg->sgp->next_update))
5935 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005936 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005937
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005938 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005939
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005940 if (local_group)
5941 goto next_group;
5942
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005943 /*
5944 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005945 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005946 * and move all the excess tasks away. We lower the capacity
5947 * of a group only if the local group has the capacity to fit
5948 * these excess tasks, i.e. nr_running < group_capacity. The
5949 * extra check prevents the case where you always pull from the
5950 * heaviest group when it is already under-utilized (possible
5951 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005952 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005953 if (prefer_sibling && sds->local &&
5954 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005955 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005957 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005958 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005959 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005960 }
5961
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005962next_group:
5963 /* Now, start updating sd_lb_stats */
5964 sds->total_load += sgs->group_load;
5965 sds->total_pwr += sgs->group_power;
5966
Michael Neuling532cb4c2010-06-08 14:57:02 +10005967 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005968 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005969
5970 if (env->sd->flags & SD_NUMA)
5971 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005972}
5973
Michael Neuling532cb4c2010-06-08 14:57:02 +10005974/**
5975 * check_asym_packing - Check to see if the group is packed into the
5976 * sched doman.
5977 *
5978 * This is primarily intended to used at the sibling level. Some
5979 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5980 * case of POWER7, it can move to lower SMT modes only when higher
5981 * threads are idle. When in lower SMT modes, the threads will
5982 * perform better since they share less core resources. Hence when we
5983 * have idle threads, we want them to be the higher ones.
5984 *
5985 * This packing function is run on idle threads. It checks to see if
5986 * the busiest CPU in this domain (core in the P7 case) has a higher
5987 * CPU number than the packing function is being run on. Here we are
5988 * assuming lower CPU number will be equivalent to lower a SMT thread
5989 * number.
5990 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005991 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005992 * this CPU. The amount of the imbalance is returned in *imbalance.
5993 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005994 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005995 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005996 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005997static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005998{
5999 int busiest_cpu;
6000
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006001 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006002 return 0;
6003
6004 if (!sds->busiest)
6005 return 0;
6006
6007 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006008 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006009 return 0;
6010
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006011 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006012 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6013 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006014
Michael Neuling532cb4c2010-06-08 14:57:02 +10006015 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006016}
6017
6018/**
6019 * fix_small_imbalance - Calculate the minor imbalance that exists
6020 * amongst the groups of a sched_domain, during
6021 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006022 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006023 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006024 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006025static inline
6026void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006027{
6028 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6029 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006030 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006031 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006032
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006033 local = &sds->local_stat;
6034 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006035
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006036 if (!local->sum_nr_running)
6037 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6038 else if (busiest->load_per_task > local->load_per_task)
6039 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006040
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006041 scaled_busy_load_per_task =
6042 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006043 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006044
Vladimir Davydov3029ede2013-09-15 17:49:14 +04006045 if (busiest->avg_load + scaled_busy_load_per_task >=
6046 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006047 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006048 return;
6049 }
6050
6051 /*
6052 * OK, we don't have enough imbalance to justify moving tasks,
6053 * however we may be able to increase total CPU power used by
6054 * moving them.
6055 */
6056
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006057 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006058 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006059 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006060 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006061 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006062
6063 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006064 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006065 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006066 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006067 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006068 min(busiest->load_per_task,
6069 busiest->avg_load - tmp);
6070 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006071
6072 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006073 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006074 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006075 tmp = (busiest->avg_load * busiest->group_power) /
6076 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006077 } else {
6078 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006079 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006080 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006081 pwr_move += local->group_power *
6082 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006083 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006084
6085 /* Move if we gain throughput */
6086 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006087 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006088}
6089
6090/**
6091 * calculate_imbalance - Calculate the amount of imbalance present within the
6092 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006093 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006094 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006095 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006096static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006097{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006098 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006099 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006100
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006101 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006102 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006103
6104 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006105 /*
6106 * In the group_imb case we cannot rely on group-wide averages
6107 * to ensure cpu-load equilibrium, look at wider averages. XXX
6108 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006109 busiest->load_per_task =
6110 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006111 }
6112
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006113 /*
6114 * In the presence of smp nice balancing, certain scenarios can have
6115 * max load less than avg load(as we skip the groups at or below
6116 * its cpu_power, while calculating max_load..)
6117 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04006118 if (busiest->avg_load <= sds->avg_load ||
6119 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006120 env->imbalance = 0;
6121 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006122 }
6123
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006124 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006125 /*
6126 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006127 * Except of course for the group_imb case, since then we might
6128 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006129 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006130 load_above_capacity =
6131 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006132
Nikhil Rao1399fa72011-05-18 10:09:39 -07006133 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006134 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006135 }
6136
6137 /*
6138 * We're trying to get all the cpus to the average_load, so we don't
6139 * want to push ourselves above the average load, nor do we wish to
6140 * reduce the max loaded cpu below the average load. At the same time,
6141 * we also don't want to reduce the group load below the group capacity
6142 * (so that we can implement power-savings policies etc). Thus we look
6143 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006144 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006145 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006146
6147 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006148 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006149 max_pull * busiest->group_power,
6150 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006151 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006152
6153 /*
6154 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03006155 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006156 * a think about bumping its value to force at least one task to be
6157 * moved
6158 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006159 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006160 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006161}
Nikhil Raofab47622010-10-15 13:12:29 -07006162
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006163/******* find_busiest_group() helpers end here *********************/
6164
6165/**
6166 * find_busiest_group - Returns the busiest group within the sched_domain
6167 * if there is an imbalance. If there isn't an imbalance, and
6168 * the user has opted for power-savings, it returns a group whose
6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6170 * such a group exists.
6171 *
6172 * Also calculates the amount of weighted load which should be moved
6173 * to restore balance.
6174 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006175 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006176 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006177 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006178 * - If no imbalance and user has opted for power-savings balance,
6179 * return the least loaded group whose CPUs can be
6180 * put to idle by rebalancing its tasks onto our group.
6181 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006182static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006183{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006184 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006185 struct sd_lb_stats sds;
6186
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006187 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006188
6189 /*
6190 * Compute the various statistics relavent for load balancing at
6191 * this level.
6192 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006193 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006194 local = &sds.local_stat;
6195 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006196
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006197 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6198 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006199 return sds.busiest;
6200
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006201 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006202 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006203 goto out_balanced;
6204
Nikhil Rao1399fa72011-05-18 10:09:39 -07006205 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07006206
Peter Zijlstra866ab432011-02-21 18:56:47 +01006207 /*
6208 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006209 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01006210 * isn't true due to cpus_allowed constraints and the like.
6211 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006212 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01006213 goto force_balance;
6214
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006215 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006216 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6217 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07006218 goto force_balance;
6219
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006220 /*
6221 * If the local group is more busy than the selected busiest group
6222 * don't try and pull any tasks.
6223 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006224 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006225 goto out_balanced;
6226
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006227 /*
6228 * Don't pull any tasks if this group is already above the domain
6229 * average load.
6230 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006231 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006232 goto out_balanced;
6233
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006234 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006235 /*
6236 * This cpu is idle. If the busiest group load doesn't
6237 * have more tasks than the number of available cpu's and
6238 * there is no imbalance between this and busiest group
6239 * wrt to idle cpu's, it is balanced.
6240 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006241 if ((local->idle_cpus < busiest->idle_cpus) &&
6242 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006243 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006244 } else {
6245 /*
6246 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6247 * imbalance_pct to be conservative.
6248 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006249 if (100 * busiest->avg_load <=
6250 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006251 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006252 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006253
Nikhil Raofab47622010-10-15 13:12:29 -07006254force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006255 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006256 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006257 return sds.busiest;
6258
6259out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006260 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006261 return NULL;
6262}
6263
6264/*
6265 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6266 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006267static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08006268 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006269{
6270 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006271 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006272 int i;
6273
Peter Zijlstra6906a402013-08-19 15:20:21 +02006274 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006275 unsigned long power, capacity, wl;
6276 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006277
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006278 rq = cpu_rq(i);
6279 rt = fbq_classify_rq(rq);
6280
6281 /*
6282 * We classify groups/runqueues into three groups:
6283 * - regular: there are !numa tasks
6284 * - remote: there are numa tasks that run on the 'wrong' node
6285 * - all: there is no distinction
6286 *
6287 * In order to avoid migrating ideally placed numa tasks,
6288 * ignore those when there's better options.
6289 *
6290 * If we ignore the actual busiest queue to migrate another
6291 * task, the next balance pass can still reduce the busiest
6292 * queue by moving tasks around inside the node.
6293 *
6294 * If we cannot move enough load due to this classification
6295 * the next pass will adjust the group classification and
6296 * allow migration of more tasks.
6297 *
6298 * Both cases only affect the total convergence complexity.
6299 */
6300 if (rt > env->fbq_type)
6301 continue;
6302
6303 power = power_of(i);
6304 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006305 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006306 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006307
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006308 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006309
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006310 /*
6311 * When comparing with imbalance, use weighted_cpuload()
6312 * which is not scaled with the cpu power.
6313 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006314 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006315 continue;
6316
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006317 /*
6318 * For the load comparisons with the other cpu's, consider
6319 * the weighted_cpuload() scaled with the cpu power, so that
6320 * the load can be moved away from the cpu that is potentially
6321 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006322 *
6323 * Thus we're looking for max(wl_i / power_i), crosswise
6324 * multiplication to rid ourselves of the division works out
6325 * to: wl_i * power_j > wl_j * power_i; where j is our
6326 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006327 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006328 if (wl * busiest_power > busiest_load * power) {
6329 busiest_load = wl;
6330 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006331 busiest = rq;
6332 }
6333 }
6334
6335 return busiest;
6336}
6337
6338/*
6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6340 * so long as it is large enough.
6341 */
6342#define MAX_PINNED_INTERVAL 512
6343
6344/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006345DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006346
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006347static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006348{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006349 struct sched_domain *sd = env->sd;
6350
6351 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006352
6353 /*
6354 * ASYM_PACKING needs to force migrate tasks from busy but
6355 * higher numbered CPUs in order to pack all tasks in the
6356 * lowest numbered CPUs.
6357 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006358 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006359 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006360 }
6361
6362 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6363}
6364
Tejun Heo969c7922010-05-06 18:49:21 +02006365static int active_load_balance_cpu_stop(void *data);
6366
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006367static int should_we_balance(struct lb_env *env)
6368{
6369 struct sched_group *sg = env->sd->groups;
6370 struct cpumask *sg_cpus, *sg_mask;
6371 int cpu, balance_cpu = -1;
6372
6373 /*
6374 * In the newly idle case, we will allow all the cpu's
6375 * to do the newly idle load balance.
6376 */
6377 if (env->idle == CPU_NEWLY_IDLE)
6378 return 1;
6379
6380 sg_cpus = sched_group_cpus(sg);
6381 sg_mask = sched_group_mask(sg);
6382 /* Try to find first idle cpu */
6383 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6384 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6385 continue;
6386
6387 balance_cpu = cpu;
6388 break;
6389 }
6390
6391 if (balance_cpu == -1)
6392 balance_cpu = group_balance_cpu(sg);
6393
6394 /*
6395 * First idle cpu or the first cpu(busiest) in this sched group
6396 * is eligible for doing load balancing at this and above domains.
6397 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006398 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006399}
6400
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401/*
6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6403 * tasks if there is an imbalance.
6404 */
6405static int load_balance(int this_cpu, struct rq *this_rq,
6406 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006407 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006408{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306409 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006410 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006411 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006412 struct rq *busiest;
6413 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006414 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006415
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006416 struct lb_env env = {
6417 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006418 .dst_cpu = this_cpu,
6419 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306420 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006421 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006422 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006423 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006424 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006425 };
6426
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006427 /*
6428 * For NEWLY_IDLE load_balancing, we don't need to consider
6429 * other cpus in our group
6430 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006431 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006432 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006433
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006434 cpumask_copy(cpus, cpu_active_mask);
6435
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006436 schedstat_inc(sd, lb_count[idle]);
6437
6438redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006439 if (!should_we_balance(&env)) {
6440 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006441 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006442 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006443
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006444 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006445 if (!group) {
6446 schedstat_inc(sd, lb_nobusyg[idle]);
6447 goto out_balanced;
6448 }
6449
Michael Wangb94031302012-07-12 16:10:13 +08006450 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006451 if (!busiest) {
6452 schedstat_inc(sd, lb_nobusyq[idle]);
6453 goto out_balanced;
6454 }
6455
Michael Wang78feefc2012-08-06 16:41:59 +08006456 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006457
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006458 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006459
6460 ld_moved = 0;
6461 if (busiest->nr_running > 1) {
6462 /*
6463 * Attempt to move tasks. If find_busiest_group has found
6464 * an imbalance but busiest->nr_running <= 1, the group is
6465 * still unbalanced. ld_moved simply stays zero, so it is
6466 * correctly treated as an imbalance.
6467 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006468 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006469 env.src_cpu = busiest->cpu;
6470 env.src_rq = busiest;
6471 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006472
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006473more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006474 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006475 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306476
6477 /*
6478 * cur_ld_moved - load moved in current iteration
6479 * ld_moved - cumulative load moved across iterations
6480 */
6481 cur_ld_moved = move_tasks(&env);
6482 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006483 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484 local_irq_restore(flags);
6485
6486 /*
6487 * some other cpu did the load balance for us.
6488 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306489 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6490 resched_cpu(env.dst_cpu);
6491
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006492 if (env.flags & LBF_NEED_BREAK) {
6493 env.flags &= ~LBF_NEED_BREAK;
6494 goto more_balance;
6495 }
6496
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306497 /*
6498 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6499 * us and move them to an alternate dst_cpu in our sched_group
6500 * where they can run. The upper limit on how many times we
6501 * iterate on same src_cpu is dependent on number of cpus in our
6502 * sched_group.
6503 *
6504 * This changes load balance semantics a bit on who can move
6505 * load to a given_cpu. In addition to the given_cpu itself
6506 * (or a ilb_cpu acting on its behalf where given_cpu is
6507 * nohz-idle), we now have balance_cpu in a position to move
6508 * load to given_cpu. In rare situations, this may cause
6509 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6510 * _independently_ and at _same_ time to move some load to
6511 * given_cpu) causing exceess load to be moved to given_cpu.
6512 * This however should not happen so much in practice and
6513 * moreover subsequent load balance cycles should correct the
6514 * excess load moved.
6515 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006516 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306517
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006518 /* Prevent to re-select dst_cpu via env's cpus */
6519 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6520
Michael Wang78feefc2012-08-06 16:41:59 +08006521 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306522 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006523 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306524 env.loop = 0;
6525 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006526
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306527 /*
6528 * Go back to "more_balance" rather than "redo" since we
6529 * need to continue with same src_cpu.
6530 */
6531 goto more_balance;
6532 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006533
Peter Zijlstra62633222013-08-19 12:41:09 +02006534 /*
6535 * We failed to reach balance because of affinity.
6536 */
6537 if (sd_parent) {
6538 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6539
6540 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6541 *group_imbalance = 1;
6542 } else if (*group_imbalance)
6543 *group_imbalance = 0;
6544 }
6545
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006546 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006547 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006548 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306549 if (!cpumask_empty(cpus)) {
6550 env.loop = 0;
6551 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006552 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306553 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006554 goto out_balanced;
6555 }
6556 }
6557
6558 if (!ld_moved) {
6559 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006560 /*
6561 * Increment the failure counter only on periodic balance.
6562 * We do not want newidle balance, which can be very
6563 * frequent, pollute the failure counter causing
6564 * excessive cache_hot migrations and active balances.
6565 */
6566 if (idle != CPU_NEWLY_IDLE)
6567 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006568
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006569 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006570 raw_spin_lock_irqsave(&busiest->lock, flags);
6571
Tejun Heo969c7922010-05-06 18:49:21 +02006572 /* don't kick the active_load_balance_cpu_stop,
6573 * if the curr task on busiest cpu can't be
6574 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006575 */
6576 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006577 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006578 raw_spin_unlock_irqrestore(&busiest->lock,
6579 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006580 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006581 goto out_one_pinned;
6582 }
6583
Tejun Heo969c7922010-05-06 18:49:21 +02006584 /*
6585 * ->active_balance synchronizes accesses to
6586 * ->active_balance_work. Once set, it's cleared
6587 * only after active load balance is finished.
6588 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006589 if (!busiest->active_balance) {
6590 busiest->active_balance = 1;
6591 busiest->push_cpu = this_cpu;
6592 active_balance = 1;
6593 }
6594 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006595
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006596 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006597 stop_one_cpu_nowait(cpu_of(busiest),
6598 active_load_balance_cpu_stop, busiest,
6599 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006600 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006601
6602 /*
6603 * We've kicked active balancing, reset the failure
6604 * counter.
6605 */
6606 sd->nr_balance_failed = sd->cache_nice_tries+1;
6607 }
6608 } else
6609 sd->nr_balance_failed = 0;
6610
6611 if (likely(!active_balance)) {
6612 /* We were unbalanced, so reset the balancing interval */
6613 sd->balance_interval = sd->min_interval;
6614 } else {
6615 /*
6616 * If we've begun active balancing, start to back off. This
6617 * case may not be covered by the all_pinned logic if there
6618 * is only 1 task on the busy runqueue (because we don't call
6619 * move_tasks).
6620 */
6621 if (sd->balance_interval < sd->max_interval)
6622 sd->balance_interval *= 2;
6623 }
6624
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006625 goto out;
6626
6627out_balanced:
6628 schedstat_inc(sd, lb_balanced[idle]);
6629
6630 sd->nr_balance_failed = 0;
6631
6632out_one_pinned:
6633 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006634 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006635 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636 (sd->balance_interval < sd->max_interval))
6637 sd->balance_interval *= 2;
6638
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006639 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006640out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006641 return ld_moved;
6642}
6643
6644/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006645 * idle_balance is called by schedule() if this_cpu is about to become
6646 * idle. Attempts to pull tasks from other CPUs.
6647 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006648static int idle_balance(struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006649{
6650 struct sched_domain *sd;
6651 int pulled_task = 0;
6652 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006653 u64 curr_cost = 0;
Daniel Lezcanob4f2ab432014-01-17 10:04:01 +01006654 int this_cpu = this_rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006655
Peter Zijlstra6e831252014-02-11 16:11:48 +01006656 idle_enter_fair(this_rq);
6657 /*
6658 * We must set idle_stamp _before_ calling idle_balance(), such that we
6659 * measure the duration of idle_balance() as idle time.
6660 */
6661 this_rq->idle_stamp = rq_clock(this_rq);
6662
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006663 if (this_rq->avg_idle < sysctl_sched_migration_cost)
Peter Zijlstra6e831252014-02-11 16:11:48 +01006664 goto out;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006665
Peter Zijlstraf492e122009-12-23 15:29:42 +01006666 /*
6667 * Drop the rq->lock, but keep IRQ/preempt disabled.
6668 */
6669 raw_spin_unlock(&this_rq->lock);
6670
Paul Turner48a16752012-10-04 13:18:31 +02006671 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006672 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006673 for_each_domain(this_cpu, sd) {
6674 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006675 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006676 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006677
6678 if (!(sd->flags & SD_LOAD_BALANCE))
6679 continue;
6680
Jason Low9bd721c2013-09-13 11:26:52 -07006681 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6682 break;
6683
Peter Zijlstraf492e122009-12-23 15:29:42 +01006684 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006685 t0 = sched_clock_cpu(this_cpu);
6686
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006687 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006688 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006689 sd, CPU_NEWLY_IDLE,
6690 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006691
6692 domain_cost = sched_clock_cpu(this_cpu) - t0;
6693 if (domain_cost > sd->max_newidle_lb_cost)
6694 sd->max_newidle_lb_cost = domain_cost;
6695
6696 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006697 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006698
6699 interval = msecs_to_jiffies(sd->balance_interval);
6700 if (time_after(next_balance, sd->last_balance + interval))
6701 next_balance = sd->last_balance + interval;
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006702 if (pulled_task)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006703 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006704 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006705 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006706
6707 raw_spin_lock(&this_rq->lock);
6708
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006709 /*
6710 * While browsing the domains, we released the rq lock.
6711 * A task could have be enqueued in the meantime
6712 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006713 if (this_rq->nr_running && !pulled_task) {
6714 pulled_task = 1;
6715 goto out;
6716 }
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006717
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6719 /*
6720 * We are going idle. next_balance may be set based on
6721 * a busy processor. So reset next_balance.
6722 */
6723 this_rq->next_balance = next_balance;
6724 }
Jason Low9bd721c2013-09-13 11:26:52 -07006725
6726 if (curr_cost > this_rq->max_idle_balance_cost)
6727 this_rq->max_idle_balance_cost = curr_cost;
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006728
Peter Zijlstra6e831252014-02-11 16:11:48 +01006729out:
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006730 /* Is there a task of a high priority class? */
Kirill Tkhai4c6c4e32014-03-06 13:32:01 +04006731 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6732 (this_rq->dl.dl_nr_running ||
6733 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006734 pulled_task = -1;
6735
6736 if (pulled_task) {
6737 idle_exit_fair(this_rq);
Peter Zijlstra6e831252014-02-11 16:11:48 +01006738 this_rq->idle_stamp = 0;
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006739 }
Peter Zijlstra6e831252014-02-11 16:11:48 +01006740
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006741 return pulled_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006742}
6743
6744/*
Tejun Heo969c7922010-05-06 18:49:21 +02006745 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6746 * running tasks off the busiest CPU onto idle CPUs. It requires at
6747 * least 1 task to be running on each physical CPU where possible, and
6748 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006749 */
Tejun Heo969c7922010-05-06 18:49:21 +02006750static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006751{
Tejun Heo969c7922010-05-06 18:49:21 +02006752 struct rq *busiest_rq = data;
6753 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006754 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006755 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006756 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006757
6758 raw_spin_lock_irq(&busiest_rq->lock);
6759
6760 /* make sure the requested cpu hasn't gone down in the meantime */
6761 if (unlikely(busiest_cpu != smp_processor_id() ||
6762 !busiest_rq->active_balance))
6763 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006764
6765 /* Is there any task to move? */
6766 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006767 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006768
6769 /*
6770 * This condition is "impossible", if it occurs
6771 * we need to fix it. Originally reported by
6772 * Bjorn Helgaas on a 128-cpu setup.
6773 */
6774 BUG_ON(busiest_rq == target_rq);
6775
6776 /* move a task from busiest_rq to target_rq */
6777 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006778
6779 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006780 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006781 for_each_domain(target_cpu, sd) {
6782 if ((sd->flags & SD_LOAD_BALANCE) &&
6783 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6784 break;
6785 }
6786
6787 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006788 struct lb_env env = {
6789 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006790 .dst_cpu = target_cpu,
6791 .dst_rq = target_rq,
6792 .src_cpu = busiest_rq->cpu,
6793 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006794 .idle = CPU_IDLE,
6795 };
6796
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006797 schedstat_inc(sd, alb_count);
6798
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006799 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006800 schedstat_inc(sd, alb_pushed);
6801 else
6802 schedstat_inc(sd, alb_failed);
6803 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006804 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006805 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006806out_unlock:
6807 busiest_rq->active_balance = 0;
6808 raw_spin_unlock_irq(&busiest_rq->lock);
6809 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006810}
6811
Mike Galbraithd987fc72011-12-05 10:01:47 +01006812static inline int on_null_domain(struct rq *rq)
6813{
6814 return unlikely(!rcu_dereference_sched(rq->sd));
6815}
6816
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006817#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006818/*
6819 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006820 * - When one of the busy CPUs notice that there may be an idle rebalancing
6821 * needed, they will kick the idle load balancer, which then does idle
6822 * load balancing for all the idle CPUs.
6823 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006824static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006825 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006826 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006827 unsigned long next_balance; /* in jiffy units */
6828} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006829
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006830static inline int find_new_ilb(void)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006831{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006832 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006833
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006834 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6835 return ilb;
6836
6837 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006838}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006839
6840/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006841 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6842 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6843 * CPU (if there is one).
6844 */
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01006845static void nohz_balancer_kick(void)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006846{
6847 int ilb_cpu;
6848
6849 nohz.next_balance++;
6850
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006851 ilb_cpu = find_new_ilb();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006852
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006853 if (ilb_cpu >= nr_cpu_ids)
6854 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006855
Suresh Siddhacd490c52011-12-06 11:26:34 -08006856 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006857 return;
6858 /*
6859 * Use smp_send_reschedule() instead of resched_cpu().
6860 * This way we generate a sched IPI on the target cpu which
6861 * is idle. And the softirq performing nohz idle load balance
6862 * will be run before returning from the IPI.
6863 */
6864 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006865 return;
6866}
6867
Alex Shic1cc0172012-09-10 15:10:58 +08006868static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006869{
6870 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
Mike Galbraithd987fc72011-12-05 10:01:47 +01006871 /*
6872 * Completely isolated CPUs don't ever set, so we must test.
6873 */
6874 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6875 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6876 atomic_dec(&nohz.nr_cpus);
6877 }
Suresh Siddha71325962012-01-19 18:28:57 -08006878 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6879 }
6880}
6881
Suresh Siddha69e1e812011-12-01 17:07:33 -08006882static inline void set_cpu_sd_state_busy(void)
6883{
6884 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306885 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006886
Suresh Siddha69e1e812011-12-01 17:07:33 -08006887 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306888 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006889
6890 if (!sd || !sd->nohz_idle)
6891 goto unlock;
6892 sd->nohz_idle = 0;
6893
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306894 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006895unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006896 rcu_read_unlock();
6897}
6898
6899void set_cpu_sd_state_idle(void)
6900{
6901 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306902 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006903
Suresh Siddha69e1e812011-12-01 17:07:33 -08006904 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306905 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006906
6907 if (!sd || sd->nohz_idle)
6908 goto unlock;
6909 sd->nohz_idle = 1;
6910
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306911 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006912unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006913 rcu_read_unlock();
6914}
6915
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006916/*
Alex Shic1cc0172012-09-10 15:10:58 +08006917 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006918 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006919 */
Alex Shic1cc0172012-09-10 15:10:58 +08006920void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006921{
Suresh Siddha71325962012-01-19 18:28:57 -08006922 /*
6923 * If this cpu is going down, then nothing needs to be done.
6924 */
6925 if (!cpu_active(cpu))
6926 return;
6927
Alex Shic1cc0172012-09-10 15:10:58 +08006928 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6929 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006930
Mike Galbraithd987fc72011-12-05 10:01:47 +01006931 /*
6932 * If we're a completely isolated CPU, we don't play.
6933 */
6934 if (on_null_domain(cpu_rq(cpu)))
6935 return;
6936
Alex Shic1cc0172012-09-10 15:10:58 +08006937 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6938 atomic_inc(&nohz.nr_cpus);
6939 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006940}
Suresh Siddha71325962012-01-19 18:28:57 -08006941
Paul Gortmaker0db06282013-06-19 14:53:51 -04006942static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006943 unsigned long action, void *hcpu)
6944{
6945 switch (action & ~CPU_TASKS_FROZEN) {
6946 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006947 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006948 return NOTIFY_OK;
6949 default:
6950 return NOTIFY_DONE;
6951 }
6952}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006953#endif
6954
6955static DEFINE_SPINLOCK(balancing);
6956
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006957/*
6958 * Scale the max load_balance interval with the number of CPUs in the system.
6959 * This trades load-balance latency on larger machines for less cross talk.
6960 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006961void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006962{
6963 max_load_balance_interval = HZ*num_online_cpus()/10;
6964}
6965
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006966/*
6967 * It checks each scheduling domain to see if it is due to be balanced,
6968 * and initiates a balancing operation if so.
6969 *
Libinb9b08532013-04-01 19:14:01 +08006970 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006971 */
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01006972static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006973{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006974 int continue_balancing = 1;
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01006975 int cpu = rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006976 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006977 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006978 /* Earliest time when we have to do rebalance again */
6979 unsigned long next_balance = jiffies + 60*HZ;
6980 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006981 int need_serialize, need_decay = 0;
6982 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006983
Paul Turner48a16752012-10-04 13:18:31 +02006984 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006985
Peter Zijlstradce840a2011-04-07 14:09:50 +02006986 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006987 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006988 /*
6989 * Decay the newidle max times here because this is a regular
6990 * visit to all the domains. Decay ~1% per second.
6991 */
6992 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6993 sd->max_newidle_lb_cost =
6994 (sd->max_newidle_lb_cost * 253) / 256;
6995 sd->next_decay_max_lb_cost = jiffies + HZ;
6996 need_decay = 1;
6997 }
6998 max_cost += sd->max_newidle_lb_cost;
6999
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007000 if (!(sd->flags & SD_LOAD_BALANCE))
7001 continue;
7002
Jason Lowf48627e2013-09-13 11:26:53 -07007003 /*
7004 * Stop the load balance at this level. There is another
7005 * CPU in our sched group which is doing load balancing more
7006 * actively.
7007 */
7008 if (!continue_balancing) {
7009 if (need_decay)
7010 continue;
7011 break;
7012 }
7013
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007014 interval = sd->balance_interval;
7015 if (idle != CPU_IDLE)
7016 interval *= sd->busy_factor;
7017
7018 /* scale ms to jiffies */
7019 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007020 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007021
7022 need_serialize = sd->flags & SD_SERIALIZE;
7023
7024 if (need_serialize) {
7025 if (!spin_trylock(&balancing))
7026 goto out;
7027 }
7028
7029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007030 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007031 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02007032 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007033 * env->dst_cpu, so we can't know our idle
7034 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007035 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007036 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007037 }
7038 sd->last_balance = jiffies;
7039 }
7040 if (need_serialize)
7041 spin_unlock(&balancing);
7042out:
7043 if (time_after(next_balance, sd->last_balance + interval)) {
7044 next_balance = sd->last_balance + interval;
7045 update_next_balance = 1;
7046 }
Jason Lowf48627e2013-09-13 11:26:53 -07007047 }
7048 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007049 /*
Jason Lowf48627e2013-09-13 11:26:53 -07007050 * Ensure the rq-wide value also decays but keep it at a
7051 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007052 */
Jason Lowf48627e2013-09-13 11:26:53 -07007053 rq->max_idle_balance_cost =
7054 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007055 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007056 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007057
7058 /*
7059 * next_balance will be updated only when there is a need.
7060 * When the cpu is attached to null domain for ex, it will not be
7061 * updated.
7062 */
7063 if (likely(update_next_balance))
7064 rq->next_balance = next_balance;
7065}
7066
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007067#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007068/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007069 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007070 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7071 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007072static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007073{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007074 int this_cpu = this_rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007075 struct rq *rq;
7076 int balance_cpu;
7077
Suresh Siddha1c792db2011-12-01 17:07:32 -08007078 if (idle != CPU_IDLE ||
7079 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7080 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007081
7082 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08007083 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007084 continue;
7085
7086 /*
7087 * If this cpu gets work to do, stop the load balancing
7088 * work being done for other cpus. Next load
7089 * balancing owner will pick it up.
7090 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08007091 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007092 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007093
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02007094 rq = cpu_rq(balance_cpu);
7095
7096 raw_spin_lock_irq(&rq->lock);
7097 update_rq_clock(rq);
7098 update_idle_cpu_load(rq);
7099 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007100
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007101 rebalance_domains(rq, CPU_IDLE);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007102
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007103 if (time_after(this_rq->next_balance, rq->next_balance))
7104 this_rq->next_balance = rq->next_balance;
7105 }
7106 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007107end:
7108 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007109}
7110
7111/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007112 * Current heuristic for kicking the idle load balancer in the presence
7113 * of an idle cpu is the system.
7114 * - This rq has more than one task.
7115 * - At any scheduler domain level, this cpu's scheduler group has multiple
7116 * busy cpu's exceeding the group's power.
7117 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7118 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007119 */
Daniel Lezcano4a725622014-01-06 12:34:39 +01007120static inline int nohz_kick_needed(struct rq *rq)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007121{
7122 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007123 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307124 struct sched_group_power *sgp;
Daniel Lezcano4a725622014-01-06 12:34:39 +01007125 int nr_busy, cpu = rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007126
Daniel Lezcano4a725622014-01-06 12:34:39 +01007127 if (unlikely(rq->idle_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007128 return 0;
7129
Suresh Siddha1c792db2011-12-01 17:07:32 -08007130 /*
7131 * We may be recently in ticked or tickless idle mode. At the first
7132 * busy tick after returning from idle, we will update the busy stats.
7133 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08007134 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08007135 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007136
7137 /*
7138 * None are in tickless mode and hence no need for NOHZ idle load
7139 * balancing.
7140 */
7141 if (likely(!atomic_read(&nohz.nr_cpus)))
7142 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007143
7144 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007145 return 0;
7146
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007147 if (rq->nr_running >= 2)
7148 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007149
Peter Zijlstra067491b2011-12-07 14:32:08 +01007150 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307151 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007152
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307153 if (sd) {
7154 sgp = sd->groups->sgp;
7155 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7156
7157 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01007158 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007159 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307160
7161 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7162
7163 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7164 sched_domain_span(sd)) < cpu))
7165 goto need_kick_unlock;
7166
Peter Zijlstra067491b2011-12-07 14:32:08 +01007167 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007168 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01007169
7170need_kick_unlock:
7171 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007172need_kick:
7173 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007174}
7175#else
Daniel Lezcano208cb162014-01-06 12:34:44 +01007176static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007177#endif
7178
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007179/*
7180 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007181 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007182 */
7183static void run_rebalance_domains(struct softirq_action *h)
7184{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007185 struct rq *this_rq = this_rq();
Suresh Siddha6eb57e02011-10-03 15:09:01 -07007186 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007187 CPU_IDLE : CPU_NOT_IDLE;
7188
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007189 rebalance_domains(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007190
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007191 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007192 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007193 * balancing on behalf of the other idle cpus whose ticks are
7194 * stopped.
7195 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007196 nohz_idle_balance(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007197}
7198
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007199/*
7200 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007201 */
Daniel Lezcano7caff662014-01-06 12:34:38 +01007202void trigger_load_balance(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007203{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007204 /* Don't need to rebalance while attached to NULL domain */
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007205 if (unlikely(on_null_domain(rq)))
7206 return;
7207
7208 if (time_after_eq(jiffies, rq->next_balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007209 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007210#ifdef CONFIG_NO_HZ_COMMON
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007211 if (nohz_kick_needed(rq))
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007212 nohz_balancer_kick();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007213#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007214}
7215
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007216static void rq_online_fair(struct rq *rq)
7217{
7218 update_sysctl();
7219}
7220
7221static void rq_offline_fair(struct rq *rq)
7222{
7223 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07007224
7225 /* Ensure any throttled groups are reachable by pick_next_task */
7226 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007227}
7228
Dhaval Giani55e12e52008-06-24 23:39:43 +05307229#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02007230
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007231/*
7232 * scheduler tick hitting a task of our scheduling class:
7233 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007234static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007235{
7236 struct cfs_rq *cfs_rq;
7237 struct sched_entity *se = &curr->se;
7238
7239 for_each_sched_entity(se) {
7240 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007241 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007242 }
Ben Segall18bf2802012-10-04 12:51:20 +02007243
Dave Kleikamp10e84b92013-07-31 13:53:35 -07007244 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02007245 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08007246
Ben Segall18bf2802012-10-04 12:51:20 +02007247 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007248}
7249
7250/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007251 * called on fork with the child task as argument from the parent's context
7252 * - child not yet on the tasklist
7253 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007254 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007255static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007256{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007257 struct cfs_rq *cfs_rq;
7258 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02007259 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007260 struct rq *rq = this_rq();
7261 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007262
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007263 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007264
Peter Zijlstra861d0342010-08-19 13:31:43 +02007265 update_rq_clock(rq);
7266
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007267 cfs_rq = task_cfs_rq(current);
7268 curr = cfs_rq->curr;
7269
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09007270 /*
7271 * Not only the cpu but also the task_group of the parent might have
7272 * been changed after parent->se.parent,cfs_rq were copied to
7273 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7274 * of child point to valid ones.
7275 */
7276 rcu_read_lock();
7277 __set_task_cpu(p, this_cpu);
7278 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007279
Ting Yang7109c4422007-08-28 12:53:24 +02007280 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007281
Mike Galbraithb5d9d732009-09-08 11:12:28 +02007282 if (curr)
7283 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02007284 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007285
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007286 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02007287 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02007288 * Upon rescheduling, sched_class::put_prev_task() will place
7289 * 'current' within the tree based on its new key value.
7290 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007291 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05307292 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007293 }
7294
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007295 se->vruntime -= cfs_rq->min_vruntime;
7296
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007297 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007298}
7299
Steven Rostedtcb469842008-01-25 21:08:22 +01007300/*
7301 * Priority of the task has changed. Check to see if we preempt
7302 * the current task.
7303 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007304static void
7305prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01007306{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007307 if (!p->se.on_rq)
7308 return;
7309
Steven Rostedtcb469842008-01-25 21:08:22 +01007310 /*
7311 * Reschedule if we are currently running on this runqueue and
7312 * our priority decreased, or if we are not currently running on
7313 * this runqueue and our priority is higher than the current's
7314 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007315 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01007316 if (p->prio > oldprio)
7317 resched_task(rq->curr);
7318 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007319 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007320}
7321
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007322static void switched_from_fair(struct rq *rq, struct task_struct *p)
7323{
7324 struct sched_entity *se = &p->se;
7325 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7326
7327 /*
George McCollister791c9e02014-02-18 17:56:51 -06007328 * Ensure the task's vruntime is normalized, so that when it's
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007329 * switched back to the fair class the enqueue_entity(.flags=0) will
7330 * do the right thing.
7331 *
George McCollister791c9e02014-02-18 17:56:51 -06007332 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7333 * have normalized the vruntime, if it's !on_rq, then only when
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007334 * the task is sleeping will it still have non-normalized vruntime.
7335 */
George McCollister791c9e02014-02-18 17:56:51 -06007336 if (!p->on_rq && p->state != TASK_RUNNING) {
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007337 /*
7338 * Fix up our vruntime so that the current sleep doesn't
7339 * cause 'unlimited' sleep bonus.
7340 */
7341 place_entity(cfs_rq, se, 0);
7342 se->vruntime -= cfs_rq->min_vruntime;
7343 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007344
Alex Shi141965c2013-06-26 13:05:39 +08007345#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007346 /*
7347 * Remove our load from contribution when we leave sched_fair
7348 * and ensure we don't carry in an old decay_count if we
7349 * switch back.
7350 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007351 if (se->avg.decay_count) {
7352 __synchronize_entity_decay(se);
7353 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007354 }
7355#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007356}
7357
Steven Rostedtcb469842008-01-25 21:08:22 +01007358/*
7359 * We switched to the sched_fair class.
7360 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007361static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007362{
Michael wangeb7a59b2014-02-20 11:14:53 +08007363 struct sched_entity *se = &p->se;
7364#ifdef CONFIG_FAIR_GROUP_SCHED
7365 /*
7366 * Since the real-depth could have been changed (only FAIR
7367 * class maintain depth value), reset depth properly.
7368 */
7369 se->depth = se->parent ? se->parent->depth + 1 : 0;
7370#endif
7371 if (!se->on_rq)
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007372 return;
7373
Steven Rostedtcb469842008-01-25 21:08:22 +01007374 /*
7375 * We were most likely switched from sched_rt, so
7376 * kick off the schedule if running, otherwise just see
7377 * if we can still preempt the current task.
7378 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007379 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007380 resched_task(rq->curr);
7381 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007382 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007383}
7384
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007385/* Account for a task changing its policy or group.
7386 *
7387 * This routine is mostly called to set cfs_rq->curr field when a task
7388 * migrates between groups/classes.
7389 */
7390static void set_curr_task_fair(struct rq *rq)
7391{
7392 struct sched_entity *se = &rq->curr->se;
7393
Paul Turnerec12cb72011-07-21 09:43:30 -07007394 for_each_sched_entity(se) {
7395 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7396
7397 set_next_entity(cfs_rq, se);
7398 /* ensure bandwidth has been allocated on our new cfs_rq */
7399 account_cfs_rq_runtime(cfs_rq, 0);
7400 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007401}
7402
Peter Zijlstra029632f2011-10-25 10:00:11 +02007403void init_cfs_rq(struct cfs_rq *cfs_rq)
7404{
7405 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007406 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7407#ifndef CONFIG_64BIT
7408 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7409#endif
Alex Shi141965c2013-06-26 13:05:39 +08007410#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007411 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007412 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007413#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007414}
7415
Peter Zijlstra810b3812008-02-29 15:21:01 -05007416#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007417static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007418{
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007419 struct sched_entity *se = &p->se;
Paul Turneraff3e492012-10-04 13:18:30 +02007420 struct cfs_rq *cfs_rq;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007421
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007422 /*
7423 * If the task was not on the rq at the time of this cgroup movement
7424 * it must have been asleep, sleeping tasks keep their ->vruntime
7425 * absolute on their old rq until wakeup (needed for the fair sleeper
7426 * bonus in place_entity()).
7427 *
7428 * If it was on the rq, we've just 'preempted' it, which does convert
7429 * ->vruntime to a relative base.
7430 *
7431 * Make sure both cases convert their relative position when migrating
7432 * to another cgroup's rq. This does somewhat interfere with the
7433 * fair sleeper stuff for the first placement, but who cares.
7434 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007435 /*
7436 * When !on_rq, vruntime of the task has usually NOT been normalized.
7437 * But there are some cases where it has already been normalized:
7438 *
7439 * - Moving a forked child which is waiting for being woken up by
7440 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007441 * - Moving a task which has been woken up by try_to_wake_up() and
7442 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007443 *
7444 * To prevent boost or penalty in the new cfs_rq caused by delta
7445 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7446 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007447 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007448 on_rq = 1;
7449
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007450 if (!on_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007451 se->vruntime -= cfs_rq_of(se)->min_vruntime;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007452 set_task_rq(p, task_cpu(p));
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007453 se->depth = se->parent ? se->parent->depth + 1 : 0;
Paul Turneraff3e492012-10-04 13:18:30 +02007454 if (!on_rq) {
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007455 cfs_rq = cfs_rq_of(se);
7456 se->vruntime += cfs_rq->min_vruntime;
Paul Turneraff3e492012-10-04 13:18:30 +02007457#ifdef CONFIG_SMP
7458 /*
7459 * migrate_task_rq_fair() will have removed our previous
7460 * contribution, but we must synchronize for ongoing future
7461 * decay.
7462 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007463 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7464 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02007465#endif
7466 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007467}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007468
7469void free_fair_sched_group(struct task_group *tg)
7470{
7471 int i;
7472
7473 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7474
7475 for_each_possible_cpu(i) {
7476 if (tg->cfs_rq)
7477 kfree(tg->cfs_rq[i]);
7478 if (tg->se)
7479 kfree(tg->se[i]);
7480 }
7481
7482 kfree(tg->cfs_rq);
7483 kfree(tg->se);
7484}
7485
7486int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7487{
7488 struct cfs_rq *cfs_rq;
7489 struct sched_entity *se;
7490 int i;
7491
7492 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7493 if (!tg->cfs_rq)
7494 goto err;
7495 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7496 if (!tg->se)
7497 goto err;
7498
7499 tg->shares = NICE_0_LOAD;
7500
7501 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7502
7503 for_each_possible_cpu(i) {
7504 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7505 GFP_KERNEL, cpu_to_node(i));
7506 if (!cfs_rq)
7507 goto err;
7508
7509 se = kzalloc_node(sizeof(struct sched_entity),
7510 GFP_KERNEL, cpu_to_node(i));
7511 if (!se)
7512 goto err_free_rq;
7513
7514 init_cfs_rq(cfs_rq);
7515 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7516 }
7517
7518 return 1;
7519
7520err_free_rq:
7521 kfree(cfs_rq);
7522err:
7523 return 0;
7524}
7525
7526void unregister_fair_sched_group(struct task_group *tg, int cpu)
7527{
7528 struct rq *rq = cpu_rq(cpu);
7529 unsigned long flags;
7530
7531 /*
7532 * Only empty task groups can be destroyed; so we can speculatively
7533 * check on_list without danger of it being re-added.
7534 */
7535 if (!tg->cfs_rq[cpu]->on_list)
7536 return;
7537
7538 raw_spin_lock_irqsave(&rq->lock, flags);
7539 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7540 raw_spin_unlock_irqrestore(&rq->lock, flags);
7541}
7542
7543void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7544 struct sched_entity *se, int cpu,
7545 struct sched_entity *parent)
7546{
7547 struct rq *rq = cpu_rq(cpu);
7548
7549 cfs_rq->tg = tg;
7550 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007551 init_cfs_rq_runtime(cfs_rq);
7552
7553 tg->cfs_rq[cpu] = cfs_rq;
7554 tg->se[cpu] = se;
7555
7556 /* se could be NULL for root_task_group */
7557 if (!se)
7558 return;
7559
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007560 if (!parent) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007561 se->cfs_rq = &rq->cfs;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007562 se->depth = 0;
7563 } else {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007564 se->cfs_rq = parent->my_q;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007565 se->depth = parent->depth + 1;
7566 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02007567
7568 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007569 /* guarantee group entities always have weight */
7570 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007571 se->parent = parent;
7572}
7573
7574static DEFINE_MUTEX(shares_mutex);
7575
7576int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7577{
7578 int i;
7579 unsigned long flags;
7580
7581 /*
7582 * We can't change the weight of the root cgroup.
7583 */
7584 if (!tg->se[0])
7585 return -EINVAL;
7586
7587 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7588
7589 mutex_lock(&shares_mutex);
7590 if (tg->shares == shares)
7591 goto done;
7592
7593 tg->shares = shares;
7594 for_each_possible_cpu(i) {
7595 struct rq *rq = cpu_rq(i);
7596 struct sched_entity *se;
7597
7598 se = tg->se[i];
7599 /* Propagate contribution to hierarchy */
7600 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007601
7602 /* Possible calls to update_curr() need rq clock */
7603 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007604 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007605 update_cfs_shares(group_cfs_rq(se));
7606 raw_spin_unlock_irqrestore(&rq->lock, flags);
7607 }
7608
7609done:
7610 mutex_unlock(&shares_mutex);
7611 return 0;
7612}
7613#else /* CONFIG_FAIR_GROUP_SCHED */
7614
7615void free_fair_sched_group(struct task_group *tg) { }
7616
7617int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7618{
7619 return 1;
7620}
7621
7622void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7623
7624#endif /* CONFIG_FAIR_GROUP_SCHED */
7625
Peter Zijlstra810b3812008-02-29 15:21:01 -05007626
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007627static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007628{
7629 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007630 unsigned int rr_interval = 0;
7631
7632 /*
7633 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7634 * idle runqueue:
7635 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007636 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007637 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007638
7639 return rr_interval;
7640}
7641
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007642/*
7643 * All the scheduling class methods:
7644 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007645const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007646 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007647 .enqueue_task = enqueue_task_fair,
7648 .dequeue_task = dequeue_task_fair,
7649 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007650 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007651
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007652 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007653
7654 .pick_next_task = pick_next_task_fair,
7655 .put_prev_task = put_prev_task_fair,
7656
Peter Williams681f3e62007-10-24 18:23:51 +02007657#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007658 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007659 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007660
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007661 .rq_online = rq_online_fair,
7662 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007663
7664 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007665#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007666
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007667 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007668 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007669 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007670
7671 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007672 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007673 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007674
Peter Williams0d721ce2009-09-21 01:31:53 +00007675 .get_rr_interval = get_rr_interval_fair,
7676
Peter Zijlstra810b3812008-02-29 15:21:01 -05007677#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007678 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007679#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007680};
7681
7682#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007683void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007684{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007685 struct cfs_rq *cfs_rq;
7686
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007687 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007688 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007689 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007690 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007691}
7692#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007693
7694__init void init_sched_fair_class(void)
7695{
7696#ifdef CONFIG_SMP
7697 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7698
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007699#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007700 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007701 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007702 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007703#endif
7704#endif /* SMP */
7705
7706}