blob: 7982faf7223b9f5fd46898ecb62a1a428b3399ad [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100181#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200182#define WMULT_SHIFT 32
183
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100184static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200185{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100186 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200197 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100198 lw->inv_weight = WMULT_CONST / w;
199}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200200
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200225 }
226
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200229
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200236}
237
238
239const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200240
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
Peter Zijlstra8f488942009-07-24 12:25:30 +0200256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
Peter Zijlstrab7581492008-04-19 19:45:00 +0200264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
Paul Turneraff3e492012-10-04 13:18:30 +0200285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200287
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800305
306 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200307 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200308 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
Peter Zijlstrab7581492008-04-19 19:45:00 +0200320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100325static inline struct cfs_rq *
Peter Zijlstrab7581492008-04-19 19:45:00 +0200326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100329 return se->cfs_rq;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200330
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100331 return NULL;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
Peter Zijlstra464b7522008-10-24 11:06:15 +0200339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
Peter Zijlstra464b7522008-10-24 11:06:15 +0200354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
Peter Zijlstra8f488942009-07-24 12:25:30 +0200371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
381}
382
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200383#define entity_is_task(se) 1
384
Peter Zijlstrab7581492008-04-19 19:45:00 +0200385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200387
Peter Zijlstrab7581492008-04-19 19:45:00 +0200388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200389{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200390 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200391}
392
Peter Zijlstrab7581492008-04-19 19:45:00 +0200393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
Peter Zijlstrab7581492008-04-19 19:45:00 +0200415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
Peter Zijlstrab7581492008-04-19 19:45:00 +0200418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
Peter Zijlstra464b7522008-10-24 11:06:15 +0200423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
Peter Zijlstrab7581492008-04-19 19:45:00 +0200428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700430static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
Andrei Epure1bf08232013-03-12 21:12:24 +0200437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200438{
Andrei Epure1bf08232013-03-12 21:12:24 +0200439 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200440 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200441 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200442
Andrei Epure1bf08232013-03-12 21:12:24 +0200443 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200444}
445
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
Fabio Checconi54fdc582009-07-16 12:32:27 +0200455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100473 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
Andrei Epure1bf08232013-03-12 21:12:24 +0200479 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200485}
486
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200487/*
488 * Enqueue an entity into the rb-tree:
489 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200507 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200519 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200520 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200524}
525
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200527{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100533 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200534
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536}
537
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200546}
547
Rik van Rielac53db52011-02-01 09:51:03 -0500548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200560{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200562
Balbir Singh70eee742008-02-22 13:25:53 +0530563 if (!last)
564 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100565
566 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200567}
568
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100573int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700574 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100575 loff_t *ppos)
576{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100578 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100591#undef WRT_SYSCTL
592
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100593 return 0;
594}
595#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200596
597/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200598 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200599 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200601{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200602 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200604
605 return delta;
606}
607
608/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200609 * The idea is to set a period in which each task runs once.
610 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200611 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100619 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200620
621 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100622 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200623 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200624 }
625
626 return period;
627}
628
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200633 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200634 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200636{
Mike Galbraith0a582442009-01-02 12:16:42 +0100637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200638
Mike Galbraith0a582442009-01-02 12:16:42 +0100639 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100640 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200641 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200645
Mike Galbraith0a582442009-01-02 12:16:42 +0100646 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200647 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100652 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 }
654 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655}
656
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200657/*
Andrei Epure660cc002013-03-11 12:03:20 +0200658 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200659 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200660 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200661 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200663{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200665}
666
Alex Shia75cdaa2013-06-20 10:18:47 +0800667#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100668static unsigned long task_h_load(struct task_struct *p);
669
Alex Shia75cdaa2013-06-20 10:18:47 +0800670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200689/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100690 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200691 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200692static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200693{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200694 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200695 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100696 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200697
698 if (unlikely(!curr))
699 return;
700
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100703 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200704
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200705 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100706
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
Ingo Molnarf977bb42009-09-13 18:15:54 +0200719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100720 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700721 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100722 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725}
726
727static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200729{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200731}
732
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200733/*
734 * Task is being enqueued - update stats:
735 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200742 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200743 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200744}
745
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200748{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200758 }
759#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300760 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200761}
762
763static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200765{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200770 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200771 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
780 /*
781 * We are starting a new run period:
782 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200784}
785
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200790#ifdef CONFIG_NUMA_BALANCING
791/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200795 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200801
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
Mel Gorman598f0ec2013-10-07 11:28:55 +0100805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100867 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100868 struct list_head task_list;
869
870 struct rcu_head rcu;
Rik van Riel20e07de2014-01-27 17:03:43 -0500871 nodemask_t active_nodes;
Mel Gorman989348b2013-10-07 11:29:40 +0100872 unsigned long total_faults;
Rik van Riel7e2703e2014-01-27 17:03:45 -0500873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
Rik van Riel50ec8a42014-01-27 17:03:42 -0500878 unsigned long *faults_cpu;
Mel Gorman989348b2013-10-07 11:29:40 +0100879 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100880};
881
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
Mel Gormane29cf082013-10-07 11:29:22 +0100891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
Mel Gormanac8e8952013-10-07 11:29:03 +0100896static inline int task_faults_idx(int nid, int priv)
897{
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
Mel Gormanac8e8952013-10-07 11:29:03 +0100899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
Rik van Rielff1df892014-01-27 17:03:41 -0500903 if (!p->numa_faults_memory)
Mel Gormanac8e8952013-10-07 11:29:03 +0100904 return 0;
905
Rik van Rielff1df892014-01-27 17:03:41 -0500906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
Mel Gormanac8e8952013-10-07 11:29:03 +0100908}
909
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
Wanpeng Li82897b42013-12-12 15:23:25 +0800915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100917}
918
Rik van Riel20e07de2014-01-27 17:03:43 -0500919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
Rik van Rielff1df892014-01-27 17:03:41 -0500935 if (!p->numa_faults_memory)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
Mel Gorman989348b2013-10-07 11:29:40 +0100948 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100949 return 0;
950
Mel Gorman989348b2013-10-07 11:29:40 +0100951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100952}
953
Rik van Riel10f39042014-01-27 17:03:44 -0500954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
Mel Gormane6628d52013-10-07 11:29:02 +01001017static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +01001022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +01001024struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001025 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +01001026 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001034};
Mel Gormane6628d52013-10-07 11:29:02 +01001035
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001041 int cpu, cpus = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001050
1051 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001052 }
1053
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
Mel Gorman58d081b2013-10-07 11:29:10 +01001070struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
Wanpeng Li40ea2b42013-12-05 19:10:17 +08001078 int imbalance_pct;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001079
1080 struct task_struct *best_task;
1081 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001082 int best_cpu;
1083};
1084
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
Rik van Riel887c2902013-10-07 11:29:31 +01001104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001112 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
Rik van Riel887c2902013-10-07 11:29:31 +01001131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa532013-10-07 11:29:32 +01001133 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001134 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001135 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
Rik van Rielca28aa532013-10-07 11:29:32 +01001138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001144 } else {
Rik van Rielca28aa532013-10-07 11:29:32 +01001145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001161 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
Rik van Riel887c2902013-10-07 11:29:31 +01001211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001222 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001223 }
1224}
1225
Mel Gorman58d081b2013-10-07 11:29:10 +01001226static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001227{
Mel Gorman58d081b2013-10-07 11:29:10 +01001228 struct task_numa_env env = {
1229 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001230
Mel Gorman58d081b2013-10-07 11:29:10 +01001231 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001232 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001239 };
1240 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001241 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001242 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001243 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001244
Mel Gorman58d081b2013-10-07 11:29:10 +01001245 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001252 */
Mel Gormane6628d52013-10-07 11:29:02 +01001253 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001257 rcu_read_unlock();
1258
Rik van Riel46a73e82013-11-11 19:29:25 -05001259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
Wanpeng Lide1b3012013-12-12 15:23:24 +08001266 p->numa_preferred_nid = task_node(p);
Rik van Riel46a73e82013-11-11 19:29:25 -05001267 return -EINVAL;
1268 }
1269
Rik van Riel887c2902013-10-07 11:29:31 +01001270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001272 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001273 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001276 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001277
Rik van Riele1dda8a2013-10-07 11:29:19 +01001278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001280 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001286 continue;
1287
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001288 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001292 continue;
1293
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001296 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001297 }
1298 }
1299
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001304 sched_setnuma(p, env.dst_nid);
1305
Rik van Riel04bb2f92013-10-07 11:29:36 +01001306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001312 if (env.best_task == NULL) {
Mel Gorman286549d2014-01-21 15:51:03 -08001313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
Mel Gorman286549d2014-01-21 15:51:03 -08001320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001322 put_task_struct(env.best_task);
1323 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001324}
1325
Mel Gorman6b9a7462013-10-07 11:29:11 +01001326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001329 /* This task has no NUMA fault statistics yet */
Rik van Rielff1df892014-01-27 17:03:41 -05001330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
Rik van Riel2739d3e2013-10-07 11:29:41 +01001331 return;
1332
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
Mel Gorman6b9a7462013-10-07 11:29:11 +01001336 /* Success if task is already running on preferred CPU */
Wanpeng Lide1b3012013-12-12 15:23:24 +08001337 if (task_node(p) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001338 return;
1339
Mel Gorman6b9a7462013-10-07 11:29:11 +01001340 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001341 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001342}
1343
Rik van Riel04bb2f92013-10-07 11:29:36 +01001344/*
Rik van Riel20e07de2014-01-27 17:03:43 -05001345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
1376/*
Rik van Riel04bb2f92013-10-07 11:29:36 +01001377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
Rik van Riel04bb2f92013-10-07 11:29:36 +01001441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
Rik van Riel7e2703e2014-01-27 17:03:45 -05001450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001478static void task_numa_placement(struct task_struct *p)
1479{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001482 unsigned long fault_types[2] = { 0, 0 };
Rik van Riel7e2703e2014-01-27 17:03:45 -05001483 unsigned long total_faults;
1484 u64 runtime, period;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001485 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001486
Hugh Dickins2832bc12012-12-19 17:42:16 -08001487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001491 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001492
Rik van Riel7e2703e2014-01-27 17:03:45 -05001493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
Mel Gorman688b7582013-10-07 11:28:58 +01001503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001505 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001506 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001507
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
Rik van Riel7e2703e2014-01-27 17:03:45 -05001509 long diff, f_diff, f_weight;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001510
Mel Gormanac8e8952013-10-07 11:29:03 +01001511 i = task_faults_idx(nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001512
Mel Gormanac8e8952013-10-07 11:29:03 +01001513 /* Decay existing window, copy faults since last scan */
Rik van Riel35664fd2014-01-27 17:03:46 -05001514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
Rik van Rielff1df892014-01-27 17:03:41 -05001515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001517
Rik van Riel7e2703e2014-01-27 17:03:45 -05001518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
Rik van Riel35664fd2014-01-27 17:03:46 -05001528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001529 p->numa_faults_buffer_cpu[i] = 0;
1530
Rik van Riel35664fd2014-01-27 17:03:46 -05001531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
Rik van Rielff1df892014-01-27 17:03:41 -05001533 faults += p->numa_faults_memory[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001534 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001537 p->numa_group->faults[i] += diff;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001538 p->numa_group->faults_cpu[i] += f_diff;
Mel Gorman989348b2013-10-07 11:29:40 +01001539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001541 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001542 }
1543
Mel Gorman688b7582013-10-07 11:28:58 +01001544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
Rik van Riel04bb2f92013-10-07 11:29:36 +01001555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001557 if (p->numa_group) {
Rik van Riel20e07de2014-01-27 17:03:43 -05001558 update_numa_active_node_mask(p->numa_group);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001565
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001572 }
1573 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001574
1575 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001576 }
1577
Mel Gorman6b9a7462013-10-07 11:29:11 +01001578 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001579 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001580 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001581 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001582 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001583 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001584}
1585
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
Mel Gorman3e6a9412013-10-07 11:29:35 +01001597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
Rik van Riel50ec8a42014-01-27 17:03:42 -05001608 4*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001617 grp->gid = p->pid;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001618 /* Second half of the array tracks nids where faults happen */
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001621
Rik van Riel20e07de2014-01-27 17:03:43 -05001622 node_set(task_node(current), grp->active_nodes);
1623
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001625 grp->faults[i] = p->numa_faults_memory[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001626
Mel Gorman989348b2013-10-07 11:29:40 +01001627 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001628
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001638 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001642 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001646 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001653 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001659 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001660
Rik van Rieldabe1d92013-10-07 11:29:34 +01001661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001664
Rik van Rieldabe1d92013-10-07 11:29:34 +01001665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
1668
Mel Gorman3e6a9412013-10-07 11:29:35 +01001669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
Rik van Rieldabe1d92013-10-07 11:29:34 +01001672 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001673 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001674
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001680 double_lock(&my_grp->lock, &grp->lock);
1681
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
Rik van Rielff1df892014-01-27 17:03:41 -05001683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001685 }
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
1688
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
Rik van Rielff1df892014-01-27 17:03:41 -05001710 void *numa_faults = p->numa_faults_memory;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001711
1712 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001713 spin_lock(&grp->lock);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001715 grp->faults[i] -= p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001716 grp->total_faults -= p->total_numa_faults;
1717
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
Rik van Rielff1df892014-01-27 17:03:41 -05001725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
Rik van Riel82727012013-10-07 11:29:28 +01001729 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001730}
1731
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
Rik van Riel58b46da2014-01-27 17:03:47 -05001735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001736{
1737 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001738 bool migrated = flags & TNF_MIGRATED;
Rik van Riel58b46da2014-01-27 17:03:47 -05001739 int cpu_node = task_node(current);
Mel Gormanac8e8952013-10-07 11:29:03 +01001740 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001741
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001742 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001743 return;
1744
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
Rik van Riel82727012013-10-07 11:29:28 +01001749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
Mel Gormanf809ca92013-10-07 11:28:57 +01001753 /* Allocate buffer to track faults on a per-node basis */
Rik van Rielff1df892014-01-27 17:03:41 -05001754 if (unlikely(!p->numa_faults_memory)) {
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001757
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
Rik van Rielff1df892014-01-27 17:03:41 -05001759 if (!p->numa_faults_memory)
Mel Gormanf809ca92013-10-07 11:28:57 +01001760 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001761
Rik van Rielff1df892014-01-27 17:03:41 -05001762 BUG_ON(p->numa_faults_buffer_memory);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
Rik van Riel50ec8a42014-01-27 17:03:42 -05001769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001772 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001774 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001775
Mel Gormanfb003b82012-11-15 09:01:14 +00001776 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001784 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001785 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001786 }
1787
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001788 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001789
Rik van Riel2739d3e2013-10-07 11:29:41 +01001790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001795 numa_migrate_preferred(p);
1796
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
Rik van Riel58b46da2014-01-27 17:03:47 -05001800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001803}
1804
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001820 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001821 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001822 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001823 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
Mel Gorman930aa172013-10-07 11:29:37 +01001839 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001842 }
1843
1844 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
Mel Gorman598f0ec2013-10-07 11:28:55 +01001851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001855
Mel Gormanfb003b82012-11-15 09:01:14 +00001856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
Mel Gormane14808b2012-11-19 10:59:15 +00001860 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
Mel Gorman9f406042012-11-14 18:34:32 +00001866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001871
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001872 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001873 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001874 if (!vma) {
1875 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001876 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001877 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001878 }
Mel Gorman9f406042012-11-14 18:34:32 +00001879 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001881 continue;
1882
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
Mel Gorman3c67f472013-12-18 17:08:40 -08001893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
1899
Mel Gorman9f406042012-11-14 18:34:32 +00001900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001913
Mel Gorman9f406042012-11-14 18:34:32 +00001914 start = end;
1915 if (pages <= 0)
1916 goto out;
1917 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001918 }
1919
Mel Gorman9f406042012-11-14 18:34:32 +00001920out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001921 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001922 * It is possible to reach the end of the VMA list but the last few
1923 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1924 * would find the !migratable VMA on the next scan but not reset the
1925 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001926 */
1927 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001928 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001929 else
1930 reset_ptenuma_scan(p);
1931 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001932}
1933
1934/*
1935 * Drive the periodic memory faults..
1936 */
1937void task_tick_numa(struct rq *rq, struct task_struct *curr)
1938{
1939 struct callback_head *work = &curr->numa_work;
1940 u64 period, now;
1941
1942 /*
1943 * We don't care about NUMA placement if we don't have memory.
1944 */
1945 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1946 return;
1947
1948 /*
1949 * Using runtime rather than walltime has the dual advantage that
1950 * we (mostly) drive the selection from busy threads and that the
1951 * task needs to have done some actual work before we bother with
1952 * NUMA placement.
1953 */
1954 now = curr->se.sum_exec_runtime;
1955 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1956
1957 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001958 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001959 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001960 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001961
1962 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1963 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1964 task_work_add(curr, work, true);
1965 }
1966 }
1967}
1968#else
1969static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1970{
1971}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001972
1973static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1974{
1975}
1976
1977static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1978{
1979}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001980#endif /* CONFIG_NUMA_BALANCING */
1981
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001982static void
1983account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1984{
1985 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001986 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001987 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001988#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001989 if (entity_is_task(se)) {
1990 struct rq *rq = rq_of(cfs_rq);
1991
1992 account_numa_enqueue(rq, task_of(se));
1993 list_add(&se->group_node, &rq->cfs_tasks);
1994 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001995#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001996 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001997}
1998
1999static void
2000account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2001{
2002 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002003 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002004 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002005 if (entity_is_task(se)) {
2006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05302007 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002008 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002009 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002010}
2011
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002012#ifdef CONFIG_FAIR_GROUP_SCHED
2013# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002014static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2015{
2016 long tg_weight;
2017
2018 /*
2019 * Use this CPU's actual weight instead of the last load_contribution
2020 * to gain a more accurate current total weight. See
2021 * update_cfs_rq_load_contribution().
2022 */
Alex Shibf5b9862013-06-20 10:18:54 +08002023 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02002024 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002025 tg_weight += cfs_rq->load.weight;
2026
2027 return tg_weight;
2028}
2029
Paul Turner6d5ab292011-01-21 20:45:01 -08002030static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002031{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002032 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002033
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002034 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08002035 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002036
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002037 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002038 if (tg_weight)
2039 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002040
2041 if (shares < MIN_SHARES)
2042 shares = MIN_SHARES;
2043 if (shares > tg->shares)
2044 shares = tg->shares;
2045
2046 return shares;
2047}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002048# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08002049static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002050{
2051 return tg->shares;
2052}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002053# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002054static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2055 unsigned long weight)
2056{
Paul Turner19e5eeb2010-12-15 19:10:18 -08002057 if (se->on_rq) {
2058 /* commit outstanding execution time */
2059 if (cfs_rq->curr == se)
2060 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002061 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08002062 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002063
2064 update_load_set(&se->load, weight);
2065
2066 if (se->on_rq)
2067 account_entity_enqueue(cfs_rq, se);
2068}
2069
Paul Turner82958362012-10-04 13:18:31 +02002070static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2071
Paul Turner6d5ab292011-01-21 20:45:01 -08002072static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002073{
2074 struct task_group *tg;
2075 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002076 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002077
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002078 tg = cfs_rq->tg;
2079 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07002080 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002081 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002082#ifndef CONFIG_SMP
2083 if (likely(se->load.weight == tg->shares))
2084 return;
2085#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08002086 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002087
2088 reweight_entity(cfs_rq_of(se), se, shares);
2089}
2090#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08002091static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002092{
2093}
2094#endif /* CONFIG_FAIR_GROUP_SCHED */
2095
Alex Shi141965c2013-06-26 13:05:39 +08002096#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02002097/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02002098 * We choose a half-life close to 1 scheduling period.
2099 * Note: The tables below are dependent on this value.
2100 */
2101#define LOAD_AVG_PERIOD 32
2102#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2103#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2104
2105/* Precomputed fixed inverse multiplies for multiplication by y^n */
2106static const u32 runnable_avg_yN_inv[] = {
2107 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2108 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2109 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2110 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2111 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2112 0x85aac367, 0x82cd8698,
2113};
2114
2115/*
2116 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2117 * over-estimates when re-combining.
2118 */
2119static const u32 runnable_avg_yN_sum[] = {
2120 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2121 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2122 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2123};
2124
2125/*
Paul Turner9d85f212012-10-04 13:18:29 +02002126 * Approximate:
2127 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2128 */
2129static __always_inline u64 decay_load(u64 val, u64 n)
2130{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002131 unsigned int local_n;
2132
2133 if (!n)
2134 return val;
2135 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2136 return 0;
2137
2138 /* after bounds checking we can collapse to 32-bit */
2139 local_n = n;
2140
2141 /*
2142 * As y^PERIOD = 1/2, we can combine
2143 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2144 * With a look-up table which covers k^n (n<PERIOD)
2145 *
2146 * To achieve constant time decay_load.
2147 */
2148 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2149 val >>= local_n / LOAD_AVG_PERIOD;
2150 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02002151 }
2152
Paul Turner5b51f2f2012-10-04 13:18:32 +02002153 val *= runnable_avg_yN_inv[local_n];
2154 /* We don't use SRR here since we always want to round down. */
2155 return val >> 32;
2156}
2157
2158/*
2159 * For updates fully spanning n periods, the contribution to runnable
2160 * average will be: \Sum 1024*y^n
2161 *
2162 * We can compute this reasonably efficiently by combining:
2163 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2164 */
2165static u32 __compute_runnable_contrib(u64 n)
2166{
2167 u32 contrib = 0;
2168
2169 if (likely(n <= LOAD_AVG_PERIOD))
2170 return runnable_avg_yN_sum[n];
2171 else if (unlikely(n >= LOAD_AVG_MAX_N))
2172 return LOAD_AVG_MAX;
2173
2174 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2175 do {
2176 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2177 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2178
2179 n -= LOAD_AVG_PERIOD;
2180 } while (n > LOAD_AVG_PERIOD);
2181
2182 contrib = decay_load(contrib, n);
2183 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002184}
2185
2186/*
2187 * We can represent the historical contribution to runnable average as the
2188 * coefficients of a geometric series. To do this we sub-divide our runnable
2189 * history into segments of approximately 1ms (1024us); label the segment that
2190 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2191 *
2192 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2193 * p0 p1 p2
2194 * (now) (~1ms ago) (~2ms ago)
2195 *
2196 * Let u_i denote the fraction of p_i that the entity was runnable.
2197 *
2198 * We then designate the fractions u_i as our co-efficients, yielding the
2199 * following representation of historical load:
2200 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2201 *
2202 * We choose y based on the with of a reasonably scheduling period, fixing:
2203 * y^32 = 0.5
2204 *
2205 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2206 * approximately half as much as the contribution to load within the last ms
2207 * (u_0).
2208 *
2209 * When a period "rolls over" and we have new u_0`, multiplying the previous
2210 * sum again by y is sufficient to update:
2211 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2212 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2213 */
2214static __always_inline int __update_entity_runnable_avg(u64 now,
2215 struct sched_avg *sa,
2216 int runnable)
2217{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002218 u64 delta, periods;
2219 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002220 int delta_w, decayed = 0;
2221
2222 delta = now - sa->last_runnable_update;
2223 /*
2224 * This should only happen when time goes backwards, which it
2225 * unfortunately does during sched clock init when we swap over to TSC.
2226 */
2227 if ((s64)delta < 0) {
2228 sa->last_runnable_update = now;
2229 return 0;
2230 }
2231
2232 /*
2233 * Use 1024ns as the unit of measurement since it's a reasonable
2234 * approximation of 1us and fast to compute.
2235 */
2236 delta >>= 10;
2237 if (!delta)
2238 return 0;
2239 sa->last_runnable_update = now;
2240
2241 /* delta_w is the amount already accumulated against our next period */
2242 delta_w = sa->runnable_avg_period % 1024;
2243 if (delta + delta_w >= 1024) {
2244 /* period roll-over */
2245 decayed = 1;
2246
2247 /*
2248 * Now that we know we're crossing a period boundary, figure
2249 * out how much from delta we need to complete the current
2250 * period and accrue it.
2251 */
2252 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002253 if (runnable)
2254 sa->runnable_avg_sum += delta_w;
2255 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002256
Paul Turner5b51f2f2012-10-04 13:18:32 +02002257 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002258
Paul Turner5b51f2f2012-10-04 13:18:32 +02002259 /* Figure out how many additional periods this update spans */
2260 periods = delta / 1024;
2261 delta %= 1024;
2262
2263 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2264 periods + 1);
2265 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2266 periods + 1);
2267
2268 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2269 runnable_contrib = __compute_runnable_contrib(periods);
2270 if (runnable)
2271 sa->runnable_avg_sum += runnable_contrib;
2272 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002273 }
2274
2275 /* Remainder of delta accrued against u_0` */
2276 if (runnable)
2277 sa->runnable_avg_sum += delta;
2278 sa->runnable_avg_period += delta;
2279
2280 return decayed;
2281}
2282
Paul Turner9ee474f2012-10-04 13:18:30 +02002283/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002284static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002285{
2286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2287 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2288
2289 decays -= se->avg.decay_count;
2290 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002291 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002292
2293 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2294 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002295
2296 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002297}
2298
Paul Turnerc566e8e2012-10-04 13:18:30 +02002299#ifdef CONFIG_FAIR_GROUP_SCHED
2300static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2301 int force_update)
2302{
2303 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002304 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002305
2306 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2307 tg_contrib -= cfs_rq->tg_load_contrib;
2308
Alex Shibf5b9862013-06-20 10:18:54 +08002309 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2310 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002311 cfs_rq->tg_load_contrib += tg_contrib;
2312 }
2313}
Paul Turner8165e142012-10-04 13:18:31 +02002314
Paul Turnerbb17f652012-10-04 13:18:31 +02002315/*
2316 * Aggregate cfs_rq runnable averages into an equivalent task_group
2317 * representation for computing load contributions.
2318 */
2319static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2320 struct cfs_rq *cfs_rq)
2321{
2322 struct task_group *tg = cfs_rq->tg;
2323 long contrib;
2324
2325 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002326 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Paul Turnerbb17f652012-10-04 13:18:31 +02002327 sa->runnable_avg_period + 1);
2328 contrib -= cfs_rq->tg_runnable_contrib;
2329
2330 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2331 atomic_add(contrib, &tg->runnable_avg);
2332 cfs_rq->tg_runnable_contrib += contrib;
2333 }
2334}
2335
Paul Turner8165e142012-10-04 13:18:31 +02002336static inline void __update_group_entity_contrib(struct sched_entity *se)
2337{
2338 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2339 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002340 int runnable_avg;
2341
Paul Turner8165e142012-10-04 13:18:31 +02002342 u64 contrib;
2343
2344 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002345 se->avg.load_avg_contrib = div_u64(contrib,
2346 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002347
2348 /*
2349 * For group entities we need to compute a correction term in the case
2350 * that they are consuming <1 cpu so that we would contribute the same
2351 * load as a task of equal weight.
2352 *
2353 * Explicitly co-ordinating this measurement would be expensive, but
2354 * fortunately the sum of each cpus contribution forms a usable
2355 * lower-bound on the true value.
2356 *
2357 * Consider the aggregate of 2 contributions. Either they are disjoint
2358 * (and the sum represents true value) or they are disjoint and we are
2359 * understating by the aggregate of their overlap.
2360 *
2361 * Extending this to N cpus, for a given overlap, the maximum amount we
2362 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2363 * cpus that overlap for this interval and w_i is the interval width.
2364 *
2365 * On a small machine; the first term is well-bounded which bounds the
2366 * total error since w_i is a subset of the period. Whereas on a
2367 * larger machine, while this first term can be larger, if w_i is the
2368 * of consequential size guaranteed to see n_i*w_i quickly converge to
2369 * our upper bound of 1-cpu.
2370 */
2371 runnable_avg = atomic_read(&tg->runnable_avg);
2372 if (runnable_avg < NICE_0_LOAD) {
2373 se->avg.load_avg_contrib *= runnable_avg;
2374 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2375 }
Paul Turner8165e142012-10-04 13:18:31 +02002376}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002377#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002378static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2379 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002380static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2381 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002382static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002383#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002384
Paul Turner8165e142012-10-04 13:18:31 +02002385static inline void __update_task_entity_contrib(struct sched_entity *se)
2386{
2387 u32 contrib;
2388
2389 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2390 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2391 contrib /= (se->avg.runnable_avg_period + 1);
2392 se->avg.load_avg_contrib = scale_load(contrib);
2393}
2394
Paul Turner2dac7542012-10-04 13:18:30 +02002395/* Compute the current contribution to load_avg by se, return any delta */
2396static long __update_entity_load_avg_contrib(struct sched_entity *se)
2397{
2398 long old_contrib = se->avg.load_avg_contrib;
2399
Paul Turner8165e142012-10-04 13:18:31 +02002400 if (entity_is_task(se)) {
2401 __update_task_entity_contrib(se);
2402 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002403 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002404 __update_group_entity_contrib(se);
2405 }
Paul Turner2dac7542012-10-04 13:18:30 +02002406
2407 return se->avg.load_avg_contrib - old_contrib;
2408}
2409
Paul Turner9ee474f2012-10-04 13:18:30 +02002410static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2411 long load_contrib)
2412{
2413 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2414 cfs_rq->blocked_load_avg -= load_contrib;
2415 else
2416 cfs_rq->blocked_load_avg = 0;
2417}
2418
Paul Turnerf1b17282012-10-04 13:18:31 +02002419static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2420
Paul Turner9d85f212012-10-04 13:18:29 +02002421/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002424{
Paul Turner2dac7542012-10-04 13:18:30 +02002425 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2426 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002427 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002428
Paul Turnerf1b17282012-10-04 13:18:31 +02002429 /*
2430 * For a group entity we need to use their owned cfs_rq_clock_task() in
2431 * case they are the parent of a throttled hierarchy.
2432 */
2433 if (entity_is_task(se))
2434 now = cfs_rq_clock_task(cfs_rq);
2435 else
2436 now = cfs_rq_clock_task(group_cfs_rq(se));
2437
2438 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002439 return;
2440
2441 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002442
2443 if (!update_cfs_rq)
2444 return;
2445
Paul Turner2dac7542012-10-04 13:18:30 +02002446 if (se->on_rq)
2447 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002448 else
2449 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2450}
2451
2452/*
2453 * Decay the load contributed by all blocked children and account this so that
2454 * their contribution may appropriately discounted when they wake up.
2455 */
Paul Turneraff3e492012-10-04 13:18:30 +02002456static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002457{
Paul Turnerf1b17282012-10-04 13:18:31 +02002458 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002459 u64 decays;
2460
2461 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002462 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002463 return;
2464
Alex Shi25099402013-06-20 10:18:55 +08002465 if (atomic_long_read(&cfs_rq->removed_load)) {
2466 unsigned long removed_load;
2467 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002468 subtract_blocked_load_contrib(cfs_rq, removed_load);
2469 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002470
Paul Turneraff3e492012-10-04 13:18:30 +02002471 if (decays) {
2472 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2473 decays);
2474 atomic64_add(decays, &cfs_rq->decay_counter);
2475 cfs_rq->last_decay = now;
2476 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002477
2478 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002479}
Ben Segall18bf2802012-10-04 12:51:20 +02002480
2481static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2482{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002483 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002484 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002485}
Paul Turner2dac7542012-10-04 13:18:30 +02002486
2487/* Add the load generated by se into cfs_rq's child load-average */
2488static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002489 struct sched_entity *se,
2490 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002491{
Paul Turneraff3e492012-10-04 13:18:30 +02002492 /*
2493 * We track migrations using entity decay_count <= 0, on a wake-up
2494 * migration we use a negative decay count to track the remote decays
2495 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002496 *
2497 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2498 * are seen by enqueue_entity_load_avg() as a migration with an already
2499 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002500 */
2501 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002502 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002503 if (se->avg.decay_count) {
2504 /*
2505 * In a wake-up migration we have to approximate the
2506 * time sleeping. This is because we can't synchronize
2507 * clock_task between the two cpus, and it is not
2508 * guaranteed to be read-safe. Instead, we can
2509 * approximate this using our carried decays, which are
2510 * explicitly atomically readable.
2511 */
2512 se->avg.last_runnable_update -= (-se->avg.decay_count)
2513 << 20;
2514 update_entity_load_avg(se, 0);
2515 /* Indicate that we're now synchronized and on-rq */
2516 se->avg.decay_count = 0;
2517 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002518 wakeup = 0;
2519 } else {
Vincent Guittot93906752014-01-22 08:45:34 +01002520 __synchronize_entity_decay(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002521 }
2522
Paul Turneraff3e492012-10-04 13:18:30 +02002523 /* migrated tasks did not contribute to our blocked load */
2524 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002525 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002526 update_entity_load_avg(se, 0);
2527 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002528
Paul Turner2dac7542012-10-04 13:18:30 +02002529 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002530 /* we force update consideration on load-balancer moves */
2531 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002532}
2533
Paul Turner9ee474f2012-10-04 13:18:30 +02002534/*
2535 * Remove se's load from this cfs_rq child load-average, if the entity is
2536 * transitioning to a blocked state we track its projected decay using
2537 * blocked_load_avg.
2538 */
Paul Turner2dac7542012-10-04 13:18:30 +02002539static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002540 struct sched_entity *se,
2541 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002542{
Paul Turner9ee474f2012-10-04 13:18:30 +02002543 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002544 /* we force update consideration on load-balancer moves */
2545 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002546
Paul Turner2dac7542012-10-04 13:18:30 +02002547 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002548 if (sleep) {
2549 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2550 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2551 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002552}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002553
2554/*
2555 * Update the rq's load with the elapsed running time before entering
2556 * idle. if the last scheduled task is not a CFS task, idle_enter will
2557 * be the only way to update the runnable statistic.
2558 */
2559void idle_enter_fair(struct rq *this_rq)
2560{
2561 update_rq_runnable_avg(this_rq, 1);
2562}
2563
2564/*
2565 * Update the rq's load with the elapsed idle time before a task is
2566 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2567 * be the only way to update the runnable statistic.
2568 */
2569void idle_exit_fair(struct rq *this_rq)
2570{
2571 update_rq_runnable_avg(this_rq, 0);
2572}
2573
Peter Zijlstra6e831252014-02-11 16:11:48 +01002574static int idle_balance(struct rq *this_rq);
2575
Peter Zijlstra38033c32014-01-23 20:32:21 +01002576#else /* CONFIG_SMP */
2577
Paul Turner9ee474f2012-10-04 13:18:30 +02002578static inline void update_entity_load_avg(struct sched_entity *se,
2579 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002580static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002581static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002582 struct sched_entity *se,
2583 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002584static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002585 struct sched_entity *se,
2586 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002587static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2588 int force_update) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002589
2590static inline int idle_balance(struct rq *rq)
2591{
2592 return 0;
2593}
2594
Peter Zijlstra38033c32014-01-23 20:32:21 +01002595#endif /* CONFIG_SMP */
Paul Turner9d85f212012-10-04 13:18:29 +02002596
Ingo Molnar2396af62007-08-09 11:16:48 +02002597static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002598{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002599#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002600 struct task_struct *tsk = NULL;
2601
2602 if (entity_is_task(se))
2603 tsk = task_of(se);
2604
Lucas De Marchi41acab82010-03-10 23:37:45 -03002605 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002606 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002607
2608 if ((s64)delta < 0)
2609 delta = 0;
2610
Lucas De Marchi41acab82010-03-10 23:37:45 -03002611 if (unlikely(delta > se->statistics.sleep_max))
2612 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002613
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002614 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002615 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002616
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002617 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002618 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002619 trace_sched_stat_sleep(tsk, delta);
2620 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002621 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002622 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002623 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002624
2625 if ((s64)delta < 0)
2626 delta = 0;
2627
Lucas De Marchi41acab82010-03-10 23:37:45 -03002628 if (unlikely(delta > se->statistics.block_max))
2629 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002630
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002631 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002632 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002633
Peter Zijlstrae4143142009-07-23 20:13:26 +02002634 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002635 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002636 se->statistics.iowait_sum += delta;
2637 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002638 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002639 }
2640
Andrew Vaginb781a602011-11-28 12:03:35 +03002641 trace_sched_stat_blocked(tsk, delta);
2642
Peter Zijlstrae4143142009-07-23 20:13:26 +02002643 /*
2644 * Blocking time is in units of nanosecs, so shift by
2645 * 20 to get a milliseconds-range estimation of the
2646 * amount of time that the task spent sleeping:
2647 */
2648 if (unlikely(prof_on == SLEEP_PROFILING)) {
2649 profile_hits(SLEEP_PROFILING,
2650 (void *)get_wchan(tsk),
2651 delta >> 20);
2652 }
2653 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002654 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002655 }
2656#endif
2657}
2658
Peter Zijlstraddc97292007-10-15 17:00:10 +02002659static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2660{
2661#ifdef CONFIG_SCHED_DEBUG
2662 s64 d = se->vruntime - cfs_rq->min_vruntime;
2663
2664 if (d < 0)
2665 d = -d;
2666
2667 if (d > 3*sysctl_sched_latency)
2668 schedstat_inc(cfs_rq, nr_spread_over);
2669#endif
2670}
2671
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002672static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002673place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2674{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002675 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002676
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002677 /*
2678 * The 'current' period is already promised to the current tasks,
2679 * however the extra weight of the new task will slow them down a
2680 * little, place the new task so that it fits in the slot that
2681 * stays open at the end.
2682 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002683 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002684 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002685
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002686 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002687 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002688 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002689
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002690 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002691 * Halve their sleep time's effect, to allow
2692 * for a gentler effect of sleepers:
2693 */
2694 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2695 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002696
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002697 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002698 }
2699
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002700 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302701 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002702}
2703
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002704static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2705
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002706static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002707enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002708{
2709 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002710 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302711 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002712 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002713 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002714 se->vruntime += cfs_rq->min_vruntime;
2715
2716 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002717 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002718 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002719 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002720 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002721 account_entity_enqueue(cfs_rq, se);
2722 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002723
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002724 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002725 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002726 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002727 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002728
Ingo Molnard2417e52007-08-09 11:16:47 +02002729 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002730 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002731 if (se != cfs_rq->curr)
2732 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002733 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002734
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002735 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002736 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002737 check_enqueue_throttle(cfs_rq);
2738 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002739}
2740
Rik van Riel2c13c9192011-02-01 09:48:37 -05002741static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002742{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002743 for_each_sched_entity(se) {
2744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002745 if (cfs_rq->last != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002746 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002747
2748 cfs_rq->last = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002749 }
2750}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002751
Rik van Riel2c13c9192011-02-01 09:48:37 -05002752static void __clear_buddies_next(struct sched_entity *se)
2753{
2754 for_each_sched_entity(se) {
2755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002756 if (cfs_rq->next != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002757 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002758
2759 cfs_rq->next = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002760 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002761}
2762
Rik van Rielac53db52011-02-01 09:51:03 -05002763static void __clear_buddies_skip(struct sched_entity *se)
2764{
2765 for_each_sched_entity(se) {
2766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002767 if (cfs_rq->skip != se)
Rik van Rielac53db52011-02-01 09:51:03 -05002768 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002769
2770 cfs_rq->skip = NULL;
Rik van Rielac53db52011-02-01 09:51:03 -05002771 }
2772}
2773
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002774static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2775{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002776 if (cfs_rq->last == se)
2777 __clear_buddies_last(se);
2778
2779 if (cfs_rq->next == se)
2780 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002781
2782 if (cfs_rq->skip == se)
2783 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002784}
2785
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002786static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002787
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002788static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002789dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002790{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002791 /*
2792 * Update run-time statistics of the 'current'.
2793 */
2794 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002795 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002796
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002797 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002798 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002799#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002800 if (entity_is_task(se)) {
2801 struct task_struct *tsk = task_of(se);
2802
2803 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002804 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002805 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002806 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002807 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002808#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002809 }
2810
Peter Zijlstra2002c692008-11-11 11:52:33 +01002811 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002812
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002813 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002814 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002815 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002816 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002817
2818 /*
2819 * Normalize the entity after updating the min_vruntime because the
2820 * update can refer to the ->curr item and we need to reflect this
2821 * movement in our normalized position.
2822 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002823 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002824 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002825
Paul Turnerd8b49862011-07-21 09:43:41 -07002826 /* return excess runtime on last dequeue */
2827 return_cfs_rq_runtime(cfs_rq);
2828
Peter Zijlstra1e876232011-05-17 16:21:10 -07002829 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002830 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002831}
2832
2833/*
2834 * Preempt the current task with a newly woken task if needed:
2835 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002836static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002837check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002838{
Peter Zijlstra11697832007-09-05 14:32:49 +02002839 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002840 struct sched_entity *se;
2841 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002842
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002843 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002844 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002845 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002846 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002847 /*
2848 * The current task ran long enough, ensure it doesn't get
2849 * re-elected due to buddy favours.
2850 */
2851 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002852 return;
2853 }
2854
2855 /*
2856 * Ensure that a task that missed wakeup preemption by a
2857 * narrow margin doesn't have to wait for a full slice.
2858 * This also mitigates buddy induced latencies under load.
2859 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002860 if (delta_exec < sysctl_sched_min_granularity)
2861 return;
2862
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002863 se = __pick_first_entity(cfs_rq);
2864 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002865
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002866 if (delta < 0)
2867 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002868
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002869 if (delta > ideal_runtime)
2870 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002871}
2872
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002873static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002874set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002875{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002876 /* 'current' is not kept within the tree. */
2877 if (se->on_rq) {
2878 /*
2879 * Any task has to be enqueued before it get to execute on
2880 * a CPU. So account for the time it spent waiting on the
2881 * runqueue.
2882 */
2883 update_stats_wait_end(cfs_rq, se);
2884 __dequeue_entity(cfs_rq, se);
2885 }
2886
Ingo Molnar79303e92007-08-09 11:16:47 +02002887 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002888 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002889#ifdef CONFIG_SCHEDSTATS
2890 /*
2891 * Track our maximum slice length, if the CPU's load is at
2892 * least twice that of our own weight (i.e. dont track it
2893 * when there are only lesser-weight tasks around):
2894 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002895 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002896 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002897 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2898 }
2899#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002900 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002901}
2902
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002903static int
2904wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2905
Rik van Rielac53db52011-02-01 09:51:03 -05002906/*
2907 * Pick the next process, keeping these things in mind, in this order:
2908 * 1) keep things fair between processes/task groups
2909 * 2) pick the "next" process, since someone really wants that to run
2910 * 3) pick the "last" process, for cache locality
2911 * 4) do not run the "skip" process, if something else is available
2912 */
Peter Zijlstra678d5712012-02-11 06:05:00 +01002913static struct sched_entity *
2914pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002915{
Peter Zijlstra678d5712012-02-11 06:05:00 +01002916 struct sched_entity *left = __pick_first_entity(cfs_rq);
2917 struct sched_entity *se;
2918
2919 /*
2920 * If curr is set we have to see if its left of the leftmost entity
2921 * still in the tree, provided there was anything in the tree at all.
2922 */
2923 if (!left || (curr && entity_before(curr, left)))
2924 left = curr;
2925
2926 se = left; /* ideally we run the leftmost entity */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002927
Rik van Rielac53db52011-02-01 09:51:03 -05002928 /*
2929 * Avoid running the skip buddy, if running something else can
2930 * be done without getting too unfair.
2931 */
2932 if (cfs_rq->skip == se) {
Peter Zijlstra678d5712012-02-11 06:05:00 +01002933 struct sched_entity *second;
2934
2935 if (se == curr) {
2936 second = __pick_first_entity(cfs_rq);
2937 } else {
2938 second = __pick_next_entity(se);
2939 if (!second || (curr && entity_before(curr, second)))
2940 second = curr;
2941 }
2942
Rik van Rielac53db52011-02-01 09:51:03 -05002943 if (second && wakeup_preempt_entity(second, left) < 1)
2944 se = second;
2945 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002946
Mike Galbraithf685cea2009-10-23 23:09:22 +02002947 /*
2948 * Prefer last buddy, try to return the CPU to a preempted task.
2949 */
2950 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2951 se = cfs_rq->last;
2952
Rik van Rielac53db52011-02-01 09:51:03 -05002953 /*
2954 * Someone really wants this to run. If it's not unfair, run it.
2955 */
2956 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2957 se = cfs_rq->next;
2958
Mike Galbraithf685cea2009-10-23 23:09:22 +02002959 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002960
2961 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002962}
2963
Peter Zijlstra678d5712012-02-11 06:05:00 +01002964static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002965
Ingo Molnarab6cde22007-08-09 11:16:48 +02002966static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002967{
2968 /*
2969 * If still on the runqueue then deactivate_task()
2970 * was not called and update_curr() has to be done:
2971 */
2972 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002973 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002974
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002975 /* throttle cfs_rqs exceeding runtime */
2976 check_cfs_rq_runtime(cfs_rq);
2977
Peter Zijlstraddc97292007-10-15 17:00:10 +02002978 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002979 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002980 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002981 /* Put 'current' back into the tree. */
2982 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002983 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002984 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002985 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002986 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002987}
2988
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002989static void
2990entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002991{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002992 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002993 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002994 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002995 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002996
Paul Turner43365bd2010-12-15 19:10:17 -08002997 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002998 * Ensure that runnable average is periodically updated.
2999 */
Paul Turner9ee474f2012-10-04 13:18:30 +02003000 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02003001 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02003002 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02003003
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003004#ifdef CONFIG_SCHED_HRTICK
3005 /*
3006 * queued ticks are scheduled to match the slice, so don't bother
3007 * validating it and just reschedule.
3008 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003009 if (queued) {
3010 resched_task(rq_of(cfs_rq)->curr);
3011 return;
3012 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003013 /*
3014 * don't let the period tick interfere with the hrtick preemption
3015 */
3016 if (!sched_feat(DOUBLE_TICK) &&
3017 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3018 return;
3019#endif
3020
Yong Zhang2c2efae2011-07-29 16:20:33 +08003021 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003022 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003023}
3024
Paul Turnerab84d312011-07-21 09:43:28 -07003025
3026/**************************************************
3027 * CFS bandwidth control machinery
3028 */
3029
3030#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02003031
3032#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01003033static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003034
3035static inline bool cfs_bandwidth_used(void)
3036{
Ingo Molnarc5905af2012-02-24 08:31:31 +01003037 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003038}
3039
Ben Segall1ee14e62013-10-16 11:16:12 -07003040void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003041{
Ben Segall1ee14e62013-10-16 11:16:12 -07003042 static_key_slow_inc(&__cfs_bandwidth_used);
3043}
3044
3045void cfs_bandwidth_usage_dec(void)
3046{
3047 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003048}
3049#else /* HAVE_JUMP_LABEL */
3050static bool cfs_bandwidth_used(void)
3051{
3052 return true;
3053}
3054
Ben Segall1ee14e62013-10-16 11:16:12 -07003055void cfs_bandwidth_usage_inc(void) {}
3056void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003057#endif /* HAVE_JUMP_LABEL */
3058
Paul Turnerab84d312011-07-21 09:43:28 -07003059/*
3060 * default period for cfs group bandwidth.
3061 * default: 0.1s, units: nanoseconds
3062 */
3063static inline u64 default_cfs_period(void)
3064{
3065 return 100000000ULL;
3066}
Paul Turnerec12cb72011-07-21 09:43:30 -07003067
3068static inline u64 sched_cfs_bandwidth_slice(void)
3069{
3070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3071}
3072
Paul Turnera9cf55b2011-07-21 09:43:32 -07003073/*
3074 * Replenish runtime according to assigned quota and update expiration time.
3075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3076 * additional synchronization around rq->lock.
3077 *
3078 * requires cfs_b->lock
3079 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07003081{
3082 u64 now;
3083
3084 if (cfs_b->quota == RUNTIME_INF)
3085 return;
3086
3087 now = sched_clock_cpu(smp_processor_id());
3088 cfs_b->runtime = cfs_b->quota;
3089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3090}
3091
Peter Zijlstra029632f2011-10-25 10:00:11 +02003092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3093{
3094 return &tg->cfs_bandwidth;
3095}
3096
Paul Turnerf1b17282012-10-04 13:18:31 +02003097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3099{
3100 if (unlikely(cfs_rq->throttle_count))
3101 return cfs_rq->throttled_clock_task;
3102
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003103 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02003104}
3105
Paul Turner85dac902011-07-21 09:43:33 -07003106/* returns 0 on failure to allocate runtime */
3107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07003108{
3109 struct task_group *tg = cfs_rq->tg;
3110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003111 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003112
3113 /* note: this is a positive sum as runtime_remaining <= 0 */
3114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3115
3116 raw_spin_lock(&cfs_b->lock);
3117 if (cfs_b->quota == RUNTIME_INF)
3118 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07003119 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003120 /*
3121 * If the bandwidth pool has become inactive, then at least one
3122 * period must have elapsed since the last consumption.
3123 * Refresh the global state and ensure bandwidth timer becomes
3124 * active.
3125 */
3126 if (!cfs_b->timer_active) {
3127 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07003128 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003129 }
Paul Turner58088ad2011-07-21 09:43:31 -07003130
3131 if (cfs_b->runtime > 0) {
3132 amount = min(cfs_b->runtime, min_amount);
3133 cfs_b->runtime -= amount;
3134 cfs_b->idle = 0;
3135 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003136 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07003137 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003138 raw_spin_unlock(&cfs_b->lock);
3139
3140 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003141 /*
3142 * we may have advanced our local expiration to account for allowed
3143 * spread between our sched_clock and the one on which runtime was
3144 * issued.
3145 */
3146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3147 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07003148
3149 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003150}
3151
3152/*
3153 * Note: This depends on the synchronization provided by sched_clock and the
3154 * fact that rq->clock snapshots this value.
3155 */
3156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3157{
3158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003159
3160 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07003162 return;
3163
3164 if (cfs_rq->runtime_remaining < 0)
3165 return;
3166
3167 /*
3168 * If the local deadline has passed we have to consider the
3169 * possibility that our sched_clock is 'fast' and the global deadline
3170 * has not truly expired.
3171 *
3172 * Fortunately we can check determine whether this the case by checking
3173 * whether the global deadline has advanced.
3174 */
3175
3176 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3177 /* extend local deadline, drift is bounded above by 2 ticks */
3178 cfs_rq->runtime_expires += TICK_NSEC;
3179 } else {
3180 /* global deadline is ahead, expiration has passed */
3181 cfs_rq->runtime_remaining = 0;
3182 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003183}
3184
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003185static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003186{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003187 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003188 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003189 expire_cfs_rq_runtime(cfs_rq);
3190
3191 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003192 return;
3193
Paul Turner85dac902011-07-21 09:43:33 -07003194 /*
3195 * if we're unable to extend our runtime we resched so that the active
3196 * hierarchy can be throttled
3197 */
3198 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3199 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003200}
3201
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003202static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003203void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003204{
Paul Turner56f570e2011-11-07 20:26:33 -08003205 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003206 return;
3207
3208 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3209}
3210
Paul Turner85dac902011-07-21 09:43:33 -07003211static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3212{
Paul Turner56f570e2011-11-07 20:26:33 -08003213 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003214}
3215
Paul Turner64660c82011-07-21 09:43:36 -07003216/* check whether cfs_rq, or any parent, is throttled */
3217static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3218{
Paul Turner56f570e2011-11-07 20:26:33 -08003219 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003220}
3221
3222/*
3223 * Ensure that neither of the group entities corresponding to src_cpu or
3224 * dest_cpu are members of a throttled hierarchy when performing group
3225 * load-balance operations.
3226 */
3227static inline int throttled_lb_pair(struct task_group *tg,
3228 int src_cpu, int dest_cpu)
3229{
3230 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3231
3232 src_cfs_rq = tg->cfs_rq[src_cpu];
3233 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3234
3235 return throttled_hierarchy(src_cfs_rq) ||
3236 throttled_hierarchy(dest_cfs_rq);
3237}
3238
3239/* updated child weight may affect parent so we have to do this bottom up */
3240static int tg_unthrottle_up(struct task_group *tg, void *data)
3241{
3242 struct rq *rq = data;
3243 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3244
3245 cfs_rq->throttle_count--;
3246#ifdef CONFIG_SMP
3247 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003248 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003249 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003250 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003251 }
3252#endif
3253
3254 return 0;
3255}
3256
3257static int tg_throttle_down(struct task_group *tg, void *data)
3258{
3259 struct rq *rq = data;
3260 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3261
Paul Turner82958362012-10-04 13:18:31 +02003262 /* group is entering throttled state, stop time */
3263 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003264 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003265 cfs_rq->throttle_count++;
3266
3267 return 0;
3268}
3269
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003270static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003271{
3272 struct rq *rq = rq_of(cfs_rq);
3273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3274 struct sched_entity *se;
3275 long task_delta, dequeue = 1;
3276
3277 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3278
Paul Turnerf1b17282012-10-04 13:18:31 +02003279 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003280 rcu_read_lock();
3281 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3282 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003283
3284 task_delta = cfs_rq->h_nr_running;
3285 for_each_sched_entity(se) {
3286 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3287 /* throttled entity or throttle-on-deactivate */
3288 if (!se->on_rq)
3289 break;
3290
3291 if (dequeue)
3292 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3293 qcfs_rq->h_nr_running -= task_delta;
3294
3295 if (qcfs_rq->load.weight)
3296 dequeue = 0;
3297 }
3298
3299 if (!se)
3300 rq->nr_running -= task_delta;
3301
3302 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003303 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003304 raw_spin_lock(&cfs_b->lock);
3305 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003306 if (!cfs_b->timer_active)
3307 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003308 raw_spin_unlock(&cfs_b->lock);
3309}
3310
Peter Zijlstra029632f2011-10-25 10:00:11 +02003311void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003312{
3313 struct rq *rq = rq_of(cfs_rq);
3314 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3315 struct sched_entity *se;
3316 int enqueue = 1;
3317 long task_delta;
3318
Michael Wang22b958d2013-06-04 14:23:39 +08003319 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003320
3321 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003322
3323 update_rq_clock(rq);
3324
Paul Turner671fd9d2011-07-21 09:43:34 -07003325 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003326 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003327 list_del_rcu(&cfs_rq->throttled_list);
3328 raw_spin_unlock(&cfs_b->lock);
3329
Paul Turner64660c82011-07-21 09:43:36 -07003330 /* update hierarchical throttle state */
3331 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3332
Paul Turner671fd9d2011-07-21 09:43:34 -07003333 if (!cfs_rq->load.weight)
3334 return;
3335
3336 task_delta = cfs_rq->h_nr_running;
3337 for_each_sched_entity(se) {
3338 if (se->on_rq)
3339 enqueue = 0;
3340
3341 cfs_rq = cfs_rq_of(se);
3342 if (enqueue)
3343 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3344 cfs_rq->h_nr_running += task_delta;
3345
3346 if (cfs_rq_throttled(cfs_rq))
3347 break;
3348 }
3349
3350 if (!se)
3351 rq->nr_running += task_delta;
3352
3353 /* determine whether we need to wake up potentially idle cpu */
3354 if (rq->curr == rq->idle && rq->cfs.nr_running)
3355 resched_task(rq->curr);
3356}
3357
3358static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3359 u64 remaining, u64 expires)
3360{
3361 struct cfs_rq *cfs_rq;
3362 u64 runtime = remaining;
3363
3364 rcu_read_lock();
3365 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3366 throttled_list) {
3367 struct rq *rq = rq_of(cfs_rq);
3368
3369 raw_spin_lock(&rq->lock);
3370 if (!cfs_rq_throttled(cfs_rq))
3371 goto next;
3372
3373 runtime = -cfs_rq->runtime_remaining + 1;
3374 if (runtime > remaining)
3375 runtime = remaining;
3376 remaining -= runtime;
3377
3378 cfs_rq->runtime_remaining += runtime;
3379 cfs_rq->runtime_expires = expires;
3380
3381 /* we check whether we're throttled above */
3382 if (cfs_rq->runtime_remaining > 0)
3383 unthrottle_cfs_rq(cfs_rq);
3384
3385next:
3386 raw_spin_unlock(&rq->lock);
3387
3388 if (!remaining)
3389 break;
3390 }
3391 rcu_read_unlock();
3392
3393 return remaining;
3394}
3395
Paul Turner58088ad2011-07-21 09:43:31 -07003396/*
3397 * Responsible for refilling a task_group's bandwidth and unthrottling its
3398 * cfs_rqs as appropriate. If there has been no activity within the last
3399 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3400 * used to track this state.
3401 */
3402static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3403{
Paul Turner671fd9d2011-07-21 09:43:34 -07003404 u64 runtime, runtime_expires;
3405 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003406
3407 raw_spin_lock(&cfs_b->lock);
3408 /* no need to continue the timer with no bandwidth constraint */
3409 if (cfs_b->quota == RUNTIME_INF)
3410 goto out_unlock;
3411
Paul Turner671fd9d2011-07-21 09:43:34 -07003412 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3413 /* idle depends on !throttled (for the case of a large deficit) */
3414 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003415 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003416
Paul Turnera9cf55b2011-07-21 09:43:32 -07003417 /* if we're going inactive then everything else can be deferred */
3418 if (idle)
3419 goto out_unlock;
3420
Ben Segall927b54f2013-10-16 11:16:22 -07003421 /*
3422 * if we have relooped after returning idle once, we need to update our
3423 * status as actually running, so that other cpus doing
3424 * __start_cfs_bandwidth will stop trying to cancel us.
3425 */
3426 cfs_b->timer_active = 1;
3427
Paul Turnera9cf55b2011-07-21 09:43:32 -07003428 __refill_cfs_bandwidth_runtime(cfs_b);
3429
Paul Turner671fd9d2011-07-21 09:43:34 -07003430 if (!throttled) {
3431 /* mark as potentially idle for the upcoming period */
3432 cfs_b->idle = 1;
3433 goto out_unlock;
3434 }
Paul Turner58088ad2011-07-21 09:43:31 -07003435
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003436 /* account preceding periods in which throttling occurred */
3437 cfs_b->nr_throttled += overrun;
3438
Paul Turner671fd9d2011-07-21 09:43:34 -07003439 /*
3440 * There are throttled entities so we must first use the new bandwidth
3441 * to unthrottle them before making it generally available. This
3442 * ensures that all existing debts will be paid before a new cfs_rq is
3443 * allowed to run.
3444 */
3445 runtime = cfs_b->runtime;
3446 runtime_expires = cfs_b->runtime_expires;
3447 cfs_b->runtime = 0;
3448
3449 /*
3450 * This check is repeated as we are holding onto the new bandwidth
3451 * while we unthrottle. This can potentially race with an unthrottled
3452 * group trying to acquire new bandwidth from the global pool.
3453 */
3454 while (throttled && runtime > 0) {
3455 raw_spin_unlock(&cfs_b->lock);
3456 /* we can't nest cfs_b->lock while distributing bandwidth */
3457 runtime = distribute_cfs_runtime(cfs_b, runtime,
3458 runtime_expires);
3459 raw_spin_lock(&cfs_b->lock);
3460
3461 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3462 }
3463
3464 /* return (any) remaining runtime */
3465 cfs_b->runtime = runtime;
3466 /*
3467 * While we are ensured activity in the period following an
3468 * unthrottle, this also covers the case in which the new bandwidth is
3469 * insufficient to cover the existing bandwidth deficit. (Forcing the
3470 * timer to remain active while there are any throttled entities.)
3471 */
3472 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003473out_unlock:
3474 if (idle)
3475 cfs_b->timer_active = 0;
3476 raw_spin_unlock(&cfs_b->lock);
3477
3478 return idle;
3479}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003480
Paul Turnerd8b49862011-07-21 09:43:41 -07003481/* a cfs_rq won't donate quota below this amount */
3482static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3483/* minimum remaining period time to redistribute slack quota */
3484static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3485/* how long we wait to gather additional slack before distributing */
3486static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3487
Ben Segalldb06e782013-10-16 11:16:17 -07003488/*
3489 * Are we near the end of the current quota period?
3490 *
3491 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3492 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3493 * migrate_hrtimers, base is never cleared, so we are fine.
3494 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003495static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3496{
3497 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3498 u64 remaining;
3499
3500 /* if the call-back is running a quota refresh is already occurring */
3501 if (hrtimer_callback_running(refresh_timer))
3502 return 1;
3503
3504 /* is a quota refresh about to occur? */
3505 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3506 if (remaining < min_expire)
3507 return 1;
3508
3509 return 0;
3510}
3511
3512static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3513{
3514 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3515
3516 /* if there's a quota refresh soon don't bother with slack */
3517 if (runtime_refresh_within(cfs_b, min_left))
3518 return;
3519
3520 start_bandwidth_timer(&cfs_b->slack_timer,
3521 ns_to_ktime(cfs_bandwidth_slack_period));
3522}
3523
3524/* we know any runtime found here is valid as update_curr() precedes return */
3525static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3526{
3527 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3528 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3529
3530 if (slack_runtime <= 0)
3531 return;
3532
3533 raw_spin_lock(&cfs_b->lock);
3534 if (cfs_b->quota != RUNTIME_INF &&
3535 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3536 cfs_b->runtime += slack_runtime;
3537
3538 /* we are under rq->lock, defer unthrottling using a timer */
3539 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3540 !list_empty(&cfs_b->throttled_cfs_rq))
3541 start_cfs_slack_bandwidth(cfs_b);
3542 }
3543 raw_spin_unlock(&cfs_b->lock);
3544
3545 /* even if it's not valid for return we don't want to try again */
3546 cfs_rq->runtime_remaining -= slack_runtime;
3547}
3548
3549static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3550{
Paul Turner56f570e2011-11-07 20:26:33 -08003551 if (!cfs_bandwidth_used())
3552 return;
3553
Paul Turnerfccfdc62011-11-07 20:26:34 -08003554 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003555 return;
3556
3557 __return_cfs_rq_runtime(cfs_rq);
3558}
3559
3560/*
3561 * This is done with a timer (instead of inline with bandwidth return) since
3562 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3563 */
3564static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3565{
3566 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3567 u64 expires;
3568
3569 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003570 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003571 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3572 raw_spin_unlock(&cfs_b->lock);
3573 return;
3574 }
3575
Paul Turnerd8b49862011-07-21 09:43:41 -07003576 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3577 runtime = cfs_b->runtime;
3578 cfs_b->runtime = 0;
3579 }
3580 expires = cfs_b->runtime_expires;
3581 raw_spin_unlock(&cfs_b->lock);
3582
3583 if (!runtime)
3584 return;
3585
3586 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3587
3588 raw_spin_lock(&cfs_b->lock);
3589 if (expires == cfs_b->runtime_expires)
3590 cfs_b->runtime = runtime;
3591 raw_spin_unlock(&cfs_b->lock);
3592}
3593
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003594/*
3595 * When a group wakes up we want to make sure that its quota is not already
3596 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3597 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3598 */
3599static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3600{
Paul Turner56f570e2011-11-07 20:26:33 -08003601 if (!cfs_bandwidth_used())
3602 return;
3603
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003604 /* an active group must be handled by the update_curr()->put() path */
3605 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3606 return;
3607
3608 /* ensure the group is not already throttled */
3609 if (cfs_rq_throttled(cfs_rq))
3610 return;
3611
3612 /* update runtime allocation */
3613 account_cfs_rq_runtime(cfs_rq, 0);
3614 if (cfs_rq->runtime_remaining <= 0)
3615 throttle_cfs_rq(cfs_rq);
3616}
3617
3618/* conditionally throttle active cfs_rq's from put_prev_entity() */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003619static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003620{
Paul Turner56f570e2011-11-07 20:26:33 -08003621 if (!cfs_bandwidth_used())
Peter Zijlstra678d5712012-02-11 06:05:00 +01003622 return false;
Paul Turner56f570e2011-11-07 20:26:33 -08003623
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003624 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003625 return false;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003626
3627 /*
3628 * it's possible for a throttled entity to be forced into a running
3629 * state (e.g. set_curr_task), in this case we're finished.
3630 */
3631 if (cfs_rq_throttled(cfs_rq))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003632 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003633
3634 throttle_cfs_rq(cfs_rq);
Peter Zijlstra678d5712012-02-11 06:05:00 +01003635 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003636}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003637
Peter Zijlstra029632f2011-10-25 10:00:11 +02003638static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3639{
3640 struct cfs_bandwidth *cfs_b =
3641 container_of(timer, struct cfs_bandwidth, slack_timer);
3642 do_sched_cfs_slack_timer(cfs_b);
3643
3644 return HRTIMER_NORESTART;
3645}
3646
3647static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3648{
3649 struct cfs_bandwidth *cfs_b =
3650 container_of(timer, struct cfs_bandwidth, period_timer);
3651 ktime_t now;
3652 int overrun;
3653 int idle = 0;
3654
3655 for (;;) {
3656 now = hrtimer_cb_get_time(timer);
3657 overrun = hrtimer_forward(timer, now, cfs_b->period);
3658
3659 if (!overrun)
3660 break;
3661
3662 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3663 }
3664
3665 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3666}
3667
3668void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3669{
3670 raw_spin_lock_init(&cfs_b->lock);
3671 cfs_b->runtime = 0;
3672 cfs_b->quota = RUNTIME_INF;
3673 cfs_b->period = ns_to_ktime(default_cfs_period());
3674
3675 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3676 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3677 cfs_b->period_timer.function = sched_cfs_period_timer;
3678 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3679 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3680}
3681
3682static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3683{
3684 cfs_rq->runtime_enabled = 0;
3685 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3686}
3687
3688/* requires cfs_b->lock, may release to reprogram timer */
3689void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3690{
3691 /*
3692 * The timer may be active because we're trying to set a new bandwidth
3693 * period or because we're racing with the tear-down path
3694 * (timer_active==0 becomes visible before the hrtimer call-back
3695 * terminates). In either case we ensure that it's re-programmed
3696 */
Ben Segall927b54f2013-10-16 11:16:22 -07003697 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3698 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3699 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003700 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003701 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003702 raw_spin_lock(&cfs_b->lock);
3703 /* if someone else restarted the timer then we're done */
3704 if (cfs_b->timer_active)
3705 return;
3706 }
3707
3708 cfs_b->timer_active = 1;
3709 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3710}
3711
3712static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3713{
3714 hrtimer_cancel(&cfs_b->period_timer);
3715 hrtimer_cancel(&cfs_b->slack_timer);
3716}
3717
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003718static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003719{
3720 struct cfs_rq *cfs_rq;
3721
3722 for_each_leaf_cfs_rq(rq, cfs_rq) {
3723 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3724
3725 if (!cfs_rq->runtime_enabled)
3726 continue;
3727
3728 /*
3729 * clock_task is not advancing so we just need to make sure
3730 * there's some valid quota amount
3731 */
3732 cfs_rq->runtime_remaining = cfs_b->quota;
3733 if (cfs_rq_throttled(cfs_rq))
3734 unthrottle_cfs_rq(cfs_rq);
3735 }
3736}
3737
3738#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003739static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3740{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003741 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003742}
3743
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003744static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Peter Zijlstra678d5712012-02-11 06:05:00 +01003745static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003746static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003747static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003748
3749static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3750{
3751 return 0;
3752}
Paul Turner64660c82011-07-21 09:43:36 -07003753
3754static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3755{
3756 return 0;
3757}
3758
3759static inline int throttled_lb_pair(struct task_group *tg,
3760 int src_cpu, int dest_cpu)
3761{
3762 return 0;
3763}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003764
3765void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3766
3767#ifdef CONFIG_FAIR_GROUP_SCHED
3768static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003769#endif
3770
Peter Zijlstra029632f2011-10-25 10:00:11 +02003771static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3772{
3773 return NULL;
3774}
3775static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003776static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003777
3778#endif /* CONFIG_CFS_BANDWIDTH */
3779
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003780/**************************************************
3781 * CFS operations on tasks:
3782 */
3783
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003784#ifdef CONFIG_SCHED_HRTICK
3785static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3786{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003787 struct sched_entity *se = &p->se;
3788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3789
3790 WARN_ON(task_rq(p) != rq);
3791
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003792 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003793 u64 slice = sched_slice(cfs_rq, se);
3794 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3795 s64 delta = slice - ran;
3796
3797 if (delta < 0) {
3798 if (rq->curr == p)
3799 resched_task(p);
3800 return;
3801 }
3802
3803 /*
3804 * Don't schedule slices shorter than 10000ns, that just
3805 * doesn't make sense. Rely on vruntime for fairness.
3806 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003807 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003808 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003809
Peter Zijlstra31656512008-07-18 18:01:23 +02003810 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003811 }
3812}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003813
3814/*
3815 * called from enqueue/dequeue and updates the hrtick when the
3816 * current task is from our class and nr_running is low enough
3817 * to matter.
3818 */
3819static void hrtick_update(struct rq *rq)
3820{
3821 struct task_struct *curr = rq->curr;
3822
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003823 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003824 return;
3825
3826 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3827 hrtick_start_fair(rq, curr);
3828}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303829#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003830static inline void
3831hrtick_start_fair(struct rq *rq, struct task_struct *p)
3832{
3833}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003834
3835static inline void hrtick_update(struct rq *rq)
3836{
3837}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003838#endif
3839
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003840/*
3841 * The enqueue_task method is called before nr_running is
3842 * increased. Here we update the fair scheduling stats and
3843 * then put the task into the rbtree:
3844 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003845static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003846enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003847{
3848 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003849 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003850
3851 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003852 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003853 break;
3854 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003855 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003856
3857 /*
3858 * end evaluation on encountering a throttled cfs_rq
3859 *
3860 * note: in the case of encountering a throttled cfs_rq we will
3861 * post the final h_nr_running increment below.
3862 */
3863 if (cfs_rq_throttled(cfs_rq))
3864 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003865 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003866
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003867 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003868 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003869
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003870 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003871 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003872 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003873
Paul Turner85dac902011-07-21 09:43:33 -07003874 if (cfs_rq_throttled(cfs_rq))
3875 break;
3876
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003877 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003878 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003879 }
3880
Ben Segall18bf2802012-10-04 12:51:20 +02003881 if (!se) {
3882 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003883 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003884 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003885 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003886}
3887
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003888static void set_next_buddy(struct sched_entity *se);
3889
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003890/*
3891 * The dequeue_task method is called before nr_running is
3892 * decreased. We remove the task from the rbtree and
3893 * update the fair scheduling stats:
3894 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003895static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003896{
3897 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003898 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003899 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003900
3901 for_each_sched_entity(se) {
3902 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003903 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003904
3905 /*
3906 * end evaluation on encountering a throttled cfs_rq
3907 *
3908 * note: in the case of encountering a throttled cfs_rq we will
3909 * post the final h_nr_running decrement below.
3910 */
3911 if (cfs_rq_throttled(cfs_rq))
3912 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003913 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003914
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003915 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003916 if (cfs_rq->load.weight) {
3917 /*
3918 * Bias pick_next to pick a task from this cfs_rq, as
3919 * p is sleeping when it is within its sched_slice.
3920 */
3921 if (task_sleep && parent_entity(se))
3922 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003923
3924 /* avoid re-evaluating load for this entity */
3925 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003926 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003927 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003928 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003929 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003930
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003931 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003932 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003933 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003934
Paul Turner85dac902011-07-21 09:43:33 -07003935 if (cfs_rq_throttled(cfs_rq))
3936 break;
3937
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003938 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003939 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003940 }
3941
Ben Segall18bf2802012-10-04 12:51:20 +02003942 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003943 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003944 update_rq_runnable_avg(rq, 1);
3945 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003946 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003947}
3948
Gregory Haskinse7693a32008-01-25 21:08:09 +01003949#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003950/* Used instead of source_load when we know the type == 0 */
3951static unsigned long weighted_cpuload(const int cpu)
3952{
Alex Shib92486c2013-06-20 10:18:50 +08003953 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003954}
3955
3956/*
3957 * Return a low guess at the load of a migration-source cpu weighted
3958 * according to the scheduling class and "nice" value.
3959 *
3960 * We want to under-estimate the load of migration sources, to
3961 * balance conservatively.
3962 */
3963static unsigned long source_load(int cpu, int type)
3964{
3965 struct rq *rq = cpu_rq(cpu);
3966 unsigned long total = weighted_cpuload(cpu);
3967
3968 if (type == 0 || !sched_feat(LB_BIAS))
3969 return total;
3970
3971 return min(rq->cpu_load[type-1], total);
3972}
3973
3974/*
3975 * Return a high guess at the load of a migration-target cpu weighted
3976 * according to the scheduling class and "nice" value.
3977 */
3978static unsigned long target_load(int cpu, int type)
3979{
3980 struct rq *rq = cpu_rq(cpu);
3981 unsigned long total = weighted_cpuload(cpu);
3982
3983 if (type == 0 || !sched_feat(LB_BIAS))
3984 return total;
3985
3986 return max(rq->cpu_load[type-1], total);
3987}
3988
3989static unsigned long power_of(int cpu)
3990{
3991 return cpu_rq(cpu)->cpu_power;
3992}
3993
3994static unsigned long cpu_avg_load_per_task(int cpu)
3995{
3996 struct rq *rq = cpu_rq(cpu);
3997 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003998 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003999
4000 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08004001 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004002
4003 return 0;
4004}
4005
Michael Wang62470412013-07-04 12:55:51 +08004006static void record_wakee(struct task_struct *p)
4007{
4008 /*
4009 * Rough decay (wiping) for cost saving, don't worry
4010 * about the boundary, really active task won't care
4011 * about the loss.
4012 */
4013 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4014 current->wakee_flips = 0;
4015 current->wakee_flip_decay_ts = jiffies;
4016 }
4017
4018 if (current->last_wakee != p) {
4019 current->last_wakee = p;
4020 current->wakee_flips++;
4021 }
4022}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004023
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004024static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004025{
4026 struct sched_entity *se = &p->se;
4027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004028 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004029
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004030#ifndef CONFIG_64BIT
4031 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004032
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004033 do {
4034 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4035 smp_rmb();
4036 min_vruntime = cfs_rq->min_vruntime;
4037 } while (min_vruntime != min_vruntime_copy);
4038#else
4039 min_vruntime = cfs_rq->min_vruntime;
4040#endif
4041
4042 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08004043 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004044}
4045
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004046#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004047/*
4048 * effective_load() calculates the load change as seen from the root_task_group
4049 *
4050 * Adding load to a group doesn't make a group heavier, but can cause movement
4051 * of group shares between cpus. Assuming the shares were perfectly aligned one
4052 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004053 *
4054 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4055 * on this @cpu and results in a total addition (subtraction) of @wg to the
4056 * total group weight.
4057 *
4058 * Given a runqueue weight distribution (rw_i) we can compute a shares
4059 * distribution (s_i) using:
4060 *
4061 * s_i = rw_i / \Sum rw_j (1)
4062 *
4063 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4064 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4065 * shares distribution (s_i):
4066 *
4067 * rw_i = { 2, 4, 1, 0 }
4068 * s_i = { 2/7, 4/7, 1/7, 0 }
4069 *
4070 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4071 * task used to run on and the CPU the waker is running on), we need to
4072 * compute the effect of waking a task on either CPU and, in case of a sync
4073 * wakeup, compute the effect of the current task going to sleep.
4074 *
4075 * So for a change of @wl to the local @cpu with an overall group weight change
4076 * of @wl we can compute the new shares distribution (s'_i) using:
4077 *
4078 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4079 *
4080 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4081 * differences in waking a task to CPU 0. The additional task changes the
4082 * weight and shares distributions like:
4083 *
4084 * rw'_i = { 3, 4, 1, 0 }
4085 * s'_i = { 3/8, 4/8, 1/8, 0 }
4086 *
4087 * We can then compute the difference in effective weight by using:
4088 *
4089 * dw_i = S * (s'_i - s_i) (3)
4090 *
4091 * Where 'S' is the group weight as seen by its parent.
4092 *
4093 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4094 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4095 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004096 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004097static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004098{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004099 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004100
Rik van Riel9722c2d2014-01-06 11:39:12 +00004101 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004102 return wl;
4103
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004104 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004105 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004106
Paul Turner977dda72011-01-14 17:57:50 -08004107 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004108
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004109 /*
4110 * W = @wg + \Sum rw_j
4111 */
4112 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004113
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004114 /*
4115 * w = rw_i + @wl
4116 */
4117 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004118
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004119 /*
4120 * wl = S * s'_i; see (2)
4121 */
4122 if (W > 0 && w < W)
4123 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08004124 else
4125 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004126
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004127 /*
4128 * Per the above, wl is the new se->load.weight value; since
4129 * those are clipped to [MIN_SHARES, ...) do so now. See
4130 * calc_cfs_shares().
4131 */
Paul Turner977dda72011-01-14 17:57:50 -08004132 if (wl < MIN_SHARES)
4133 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004134
4135 /*
4136 * wl = dw_i = S * (s'_i - s_i); see (3)
4137 */
Paul Turner977dda72011-01-14 17:57:50 -08004138 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004139
4140 /*
4141 * Recursively apply this logic to all parent groups to compute
4142 * the final effective load change on the root group. Since
4143 * only the @tg group gets extra weight, all parent groups can
4144 * only redistribute existing shares. @wl is the shift in shares
4145 * resulting from this level per the above.
4146 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004147 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004148 }
4149
4150 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004151}
4152#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004153
Mel Gorman58d081b2013-10-07 11:29:10 +01004154static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004155{
Peter Zijlstra83378262008-06-27 13:41:37 +02004156 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004157}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004158
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004159#endif
4160
Michael Wang62470412013-07-04 12:55:51 +08004161static int wake_wide(struct task_struct *p)
4162{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08004163 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08004164
4165 /*
4166 * Yeah, it's the switching-frequency, could means many wakee or
4167 * rapidly switch, use factor here will just help to automatically
4168 * adjust the loose-degree, so bigger node will lead to more pull.
4169 */
4170 if (p->wakee_flips > factor) {
4171 /*
4172 * wakee is somewhat hot, it needs certain amount of cpu
4173 * resource, so if waker is far more hot, prefer to leave
4174 * it alone.
4175 */
4176 if (current->wakee_flips > (factor * p->wakee_flips))
4177 return 1;
4178 }
4179
4180 return 0;
4181}
4182
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004183static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004184{
Paul Turnere37b6a72011-01-21 20:44:59 -08004185 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004186 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004187 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004188 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004189 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004190 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004191
Michael Wang62470412013-07-04 12:55:51 +08004192 /*
4193 * If we wake multiple tasks be careful to not bounce
4194 * ourselves around too much.
4195 */
4196 if (wake_wide(p))
4197 return 0;
4198
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004199 idx = sd->wake_idx;
4200 this_cpu = smp_processor_id();
4201 prev_cpu = task_cpu(p);
4202 load = source_load(prev_cpu, idx);
4203 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004204
4205 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004206 * If sync wakeup then subtract the (maximum possible)
4207 * effect of the currently running task from the load
4208 * of the current CPU:
4209 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004210 if (sync) {
4211 tg = task_group(current);
4212 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004213
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004214 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004215 load += effective_load(tg, prev_cpu, 0, -weight);
4216 }
4217
4218 tg = task_group(p);
4219 weight = p->se.load.weight;
4220
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004221 /*
4222 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004223 * due to the sync cause above having dropped this_load to 0, we'll
4224 * always have an imbalance, but there's really nothing you can do
4225 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004226 *
4227 * Otherwise check if either cpus are near enough in load to allow this
4228 * task to be woken on this_cpu.
4229 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004230 if (this_load > 0) {
4231 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004232
4233 this_eff_load = 100;
4234 this_eff_load *= power_of(prev_cpu);
4235 this_eff_load *= this_load +
4236 effective_load(tg, this_cpu, weight, weight);
4237
4238 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4239 prev_eff_load *= power_of(this_cpu);
4240 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4241
4242 balanced = this_eff_load <= prev_eff_load;
4243 } else
4244 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004245
4246 /*
4247 * If the currently running task will sleep within
4248 * a reasonable amount of time then attract this newly
4249 * woken task:
4250 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004251 if (sync && balanced)
4252 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004253
Lucas De Marchi41acab82010-03-10 23:37:45 -03004254 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004255 tl_per_task = cpu_avg_load_per_task(this_cpu);
4256
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004257 if (balanced ||
4258 (this_load <= load &&
4259 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004260 /*
4261 * This domain has SD_WAKE_AFFINE and
4262 * p is cache cold in this domain, and
4263 * there is no bad imbalance.
4264 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004265 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004266 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004267
4268 return 1;
4269 }
4270 return 0;
4271}
4272
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004273/*
4274 * find_idlest_group finds and returns the least busy CPU group within the
4275 * domain.
4276 */
4277static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004278find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004279 int this_cpu, int sd_flag)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004280{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004281 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004282 unsigned long min_load = ULONG_MAX, this_load = 0;
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004283 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004284 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004285
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004286 if (sd_flag & SD_BALANCE_WAKE)
4287 load_idx = sd->wake_idx;
4288
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004289 do {
4290 unsigned long load, avg_load;
4291 int local_group;
4292 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004293
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004294 /* Skip over this group if it has no CPUs allowed */
4295 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004296 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004297 continue;
4298
4299 local_group = cpumask_test_cpu(this_cpu,
4300 sched_group_cpus(group));
4301
4302 /* Tally up the load of all CPUs in the group */
4303 avg_load = 0;
4304
4305 for_each_cpu(i, sched_group_cpus(group)) {
4306 /* Bias balancing toward cpus of our domain */
4307 if (local_group)
4308 load = source_load(i, load_idx);
4309 else
4310 load = target_load(i, load_idx);
4311
4312 avg_load += load;
4313 }
4314
4315 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004316 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004317
4318 if (local_group) {
4319 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004320 } else if (avg_load < min_load) {
4321 min_load = avg_load;
4322 idlest = group;
4323 }
4324 } while (group = group->next, group != sd->groups);
4325
4326 if (!idlest || 100*this_load < imbalance*min_load)
4327 return NULL;
4328 return idlest;
4329}
4330
4331/*
4332 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4333 */
4334static int
4335find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4336{
4337 unsigned long load, min_load = ULONG_MAX;
4338 int idlest = -1;
4339 int i;
4340
4341 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004342 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004343 load = weighted_cpuload(i);
4344
4345 if (load < min_load || (load == min_load && i == this_cpu)) {
4346 min_load = load;
4347 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004348 }
4349 }
4350
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004351 return idlest;
4352}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004353
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004354/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004355 * Try and locate an idle CPU in the sched_domain.
4356 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004357static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004358{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004359 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004360 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004361 int i = task_cpu(p);
4362
4363 if (idle_cpu(target))
4364 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004365
4366 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004367 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004368 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004369 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4370 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004371
4372 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004373 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004374 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004375 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004376 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004377 sg = sd->groups;
4378 do {
4379 if (!cpumask_intersects(sched_group_cpus(sg),
4380 tsk_cpus_allowed(p)))
4381 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004382
Linus Torvalds37407ea2012-09-16 12:29:43 -07004383 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004384 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004385 goto next;
4386 }
4387
4388 target = cpumask_first_and(sched_group_cpus(sg),
4389 tsk_cpus_allowed(p));
4390 goto done;
4391next:
4392 sg = sg->next;
4393 } while (sg != sd->groups);
4394 }
4395done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004396 return target;
4397}
4398
4399/*
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004400 * select_task_rq_fair: Select target runqueue for the waking task in domains
4401 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4402 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004403 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004404 * Balances load by selecting the idlest cpu in the idlest group, or under
4405 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004406 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004407 * Returns the target cpu number.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004408 *
4409 * preempt must be disabled.
4410 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004411static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004412select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004413{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004414 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004415 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004416 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004417 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004418 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004419
Peter Zijlstra29baa742012-04-23 12:11:21 +02004420 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004421 return prev_cpu;
4422
Peter Zijlstra0763a662009-09-14 19:37:39 +02004423 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004424 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004425 want_affine = 1;
4426 new_cpu = prev_cpu;
4427 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004428
Peter Zijlstradce840a2011-04-07 14:09:50 +02004429 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004430 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004431 if (!(tmp->flags & SD_LOAD_BALANCE))
4432 continue;
4433
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004434 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004435 * If both cpu and prev_cpu are part of this domain,
4436 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004437 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004438 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4439 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4440 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004441 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004442 }
4443
Alex Shif03542a2012-07-26 08:55:34 +08004444 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004445 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004446 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004447
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004448 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004449 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004450 prev_cpu = cpu;
4451
4452 new_cpu = select_idle_sibling(p, prev_cpu);
4453 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004454 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004455
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004456 while (sd) {
4457 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004458 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004459
Peter Zijlstra0763a662009-09-14 19:37:39 +02004460 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004461 sd = sd->child;
4462 continue;
4463 }
4464
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004465 group = find_idlest_group(sd, p, cpu, sd_flag);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004466 if (!group) {
4467 sd = sd->child;
4468 continue;
4469 }
4470
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004471 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004472 if (new_cpu == -1 || new_cpu == cpu) {
4473 /* Now try balancing at a lower domain level of cpu */
4474 sd = sd->child;
4475 continue;
4476 }
4477
4478 /* Now try balancing at a lower domain level of new_cpu */
4479 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004480 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004481 sd = NULL;
4482 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004483 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004484 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004485 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004486 sd = tmp;
4487 }
4488 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004489 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004490unlock:
4491 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004492
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004493 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004494}
Paul Turner0a74bef2012-10-04 13:18:30 +02004495
4496/*
4497 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4498 * cfs_rq_of(p) references at time of call are still valid and identify the
4499 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4500 * other assumptions, including the state of rq->lock, should be made.
4501 */
4502static void
4503migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4504{
Paul Turneraff3e492012-10-04 13:18:30 +02004505 struct sched_entity *se = &p->se;
4506 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4507
4508 /*
4509 * Load tracking: accumulate removed load so that it can be processed
4510 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4511 * to blocked load iff they have a positive decay-count. It can never
4512 * be negative here since on-rq tasks have decay-count == 0.
4513 */
4514 if (se->avg.decay_count) {
4515 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004516 atomic_long_add(se->avg.load_avg_contrib,
4517 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004518 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004519}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004520#endif /* CONFIG_SMP */
4521
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004522static unsigned long
4523wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004524{
4525 unsigned long gran = sysctl_sched_wakeup_granularity;
4526
4527 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004528 * Since its curr running now, convert the gran from real-time
4529 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004530 *
4531 * By using 'se' instead of 'curr' we penalize light tasks, so
4532 * they get preempted easier. That is, if 'se' < 'curr' then
4533 * the resulting gran will be larger, therefore penalizing the
4534 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4535 * be smaller, again penalizing the lighter task.
4536 *
4537 * This is especially important for buddies when the leftmost
4538 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004539 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004540 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004541}
4542
4543/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004544 * Should 'se' preempt 'curr'.
4545 *
4546 * |s1
4547 * |s2
4548 * |s3
4549 * g
4550 * |<--->|c
4551 *
4552 * w(c, s1) = -1
4553 * w(c, s2) = 0
4554 * w(c, s3) = 1
4555 *
4556 */
4557static int
4558wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4559{
4560 s64 gran, vdiff = curr->vruntime - se->vruntime;
4561
4562 if (vdiff <= 0)
4563 return -1;
4564
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004565 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004566 if (vdiff > gran)
4567 return 1;
4568
4569 return 0;
4570}
4571
Peter Zijlstra02479092008-11-04 21:25:10 +01004572static void set_last_buddy(struct sched_entity *se)
4573{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004574 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4575 return;
4576
4577 for_each_sched_entity(se)
4578 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004579}
4580
4581static void set_next_buddy(struct sched_entity *se)
4582{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004583 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4584 return;
4585
4586 for_each_sched_entity(se)
4587 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004588}
4589
Rik van Rielac53db52011-02-01 09:51:03 -05004590static void set_skip_buddy(struct sched_entity *se)
4591{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004592 for_each_sched_entity(se)
4593 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004594}
4595
Peter Zijlstra464b7522008-10-24 11:06:15 +02004596/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004597 * Preempt the current task with a newly woken task if needed:
4598 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004599static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004600{
4601 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004602 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004603 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004604 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004605 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004606
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004607 if (unlikely(se == pse))
4608 return;
4609
Paul Turner5238cdd2011-07-21 09:43:37 -07004610 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004611 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004612 * unconditionally check_prempt_curr() after an enqueue (which may have
4613 * lead to a throttle). This both saves work and prevents false
4614 * next-buddy nomination below.
4615 */
4616 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4617 return;
4618
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004619 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004620 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004621 next_buddy_marked = 1;
4622 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004623
Bharata B Raoaec0a512008-08-28 14:42:49 +05304624 /*
4625 * We can come here with TIF_NEED_RESCHED already set from new task
4626 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004627 *
4628 * Note: this also catches the edge-case of curr being in a throttled
4629 * group (e.g. via set_curr_task), since update_curr() (in the
4630 * enqueue of curr) will have resulted in resched being set. This
4631 * prevents us from potentially nominating it as a false LAST_BUDDY
4632 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304633 */
4634 if (test_tsk_need_resched(curr))
4635 return;
4636
Darren Harta2f5c9a2011-02-22 13:04:33 -08004637 /* Idle tasks are by definition preempted by non-idle tasks. */
4638 if (unlikely(curr->policy == SCHED_IDLE) &&
4639 likely(p->policy != SCHED_IDLE))
4640 goto preempt;
4641
Ingo Molnar91c234b2007-10-15 17:00:18 +02004642 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004643 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4644 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004645 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004646 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004647 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004648
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004649 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004650 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004651 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004652 if (wakeup_preempt_entity(se, pse) == 1) {
4653 /*
4654 * Bias pick_next to pick the sched entity that is
4655 * triggering this preemption.
4656 */
4657 if (!next_buddy_marked)
4658 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004659 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004660 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004661
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004662 return;
4663
4664preempt:
4665 resched_task(curr);
4666 /*
4667 * Only set the backward buddy when the current task is still
4668 * on the rq. This can happen when a wakeup gets interleaved
4669 * with schedule on the ->pre_schedule() or idle_balance()
4670 * point, either of which can * drop the rq lock.
4671 *
4672 * Also, during early boot the idle thread is in the fair class,
4673 * for obvious reasons its a bad idea to schedule back to it.
4674 */
4675 if (unlikely(!se->on_rq || curr == rq->idle))
4676 return;
4677
4678 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4679 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004680}
4681
Peter Zijlstra606dba22012-02-11 06:05:00 +01004682static struct task_struct *
4683pick_next_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004684{
4685 struct cfs_rq *cfs_rq = &rq->cfs;
4686 struct sched_entity *se;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004687 struct task_struct *p;
4688
Peter Zijlstra6e831252014-02-11 16:11:48 +01004689again:
Peter Zijlstra678d5712012-02-11 06:05:00 +01004690#ifdef CONFIG_FAIR_GROUP_SCHED
4691 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004692 goto idle;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004693
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004694 if (prev->sched_class != &fair_sched_class)
Peter Zijlstra678d5712012-02-11 06:05:00 +01004695 goto simple;
4696
4697 /*
4698 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4699 * likely that a next task is from the same cgroup as the current.
4700 *
4701 * Therefore attempt to avoid putting and setting the entire cgroup
4702 * hierarchy, only change the part that actually changes.
4703 */
4704
4705 do {
4706 struct sched_entity *curr = cfs_rq->curr;
4707
4708 /*
4709 * Since we got here without doing put_prev_entity() we also
4710 * have to consider cfs_rq->curr. If it is still a runnable
4711 * entity, update_curr() will update its vruntime, otherwise
4712 * forget we've ever seen it.
4713 */
4714 if (curr && curr->on_rq)
4715 update_curr(cfs_rq);
4716 else
4717 curr = NULL;
4718
4719 /*
4720 * This call to check_cfs_rq_runtime() will do the throttle and
4721 * dequeue its entity in the parent(s). Therefore the 'simple'
4722 * nr_running test will indeed be correct.
4723 */
4724 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4725 goto simple;
4726
4727 se = pick_next_entity(cfs_rq, curr);
4728 cfs_rq = group_cfs_rq(se);
4729 } while (cfs_rq);
4730
4731 p = task_of(se);
4732
4733 /*
4734 * Since we haven't yet done put_prev_entity and if the selected task
4735 * is a different task than we started out with, try and touch the
4736 * least amount of cfs_rqs.
4737 */
4738 if (prev != p) {
4739 struct sched_entity *pse = &prev->se;
4740
4741 while (!(cfs_rq = is_same_group(se, pse))) {
4742 int se_depth = se->depth;
4743 int pse_depth = pse->depth;
4744
4745 if (se_depth <= pse_depth) {
4746 put_prev_entity(cfs_rq_of(pse), pse);
4747 pse = parent_entity(pse);
4748 }
4749 if (se_depth >= pse_depth) {
4750 set_next_entity(cfs_rq_of(se), se);
4751 se = parent_entity(se);
4752 }
4753 }
4754
4755 put_prev_entity(cfs_rq, pse);
4756 set_next_entity(cfs_rq, se);
4757 }
4758
4759 if (hrtick_enabled(rq))
4760 hrtick_start_fair(rq, p);
4761
4762 return p;
4763simple:
4764 cfs_rq = &rq->cfs;
4765#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004766
Tim Blechmann36ace272009-11-24 11:55:45 +01004767 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004768 goto idle;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004769
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004770 put_prev_task(rq, prev);
Peter Zijlstra606dba22012-02-11 06:05:00 +01004771
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004772 do {
Peter Zijlstra678d5712012-02-11 06:05:00 +01004773 se = pick_next_entity(cfs_rq, NULL);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004774 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004775 cfs_rq = group_cfs_rq(se);
4776 } while (cfs_rq);
4777
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004778 p = task_of(se);
Peter Zijlstra678d5712012-02-11 06:05:00 +01004779
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004780 if (hrtick_enabled(rq))
4781 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004782
4783 return p;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004784
4785idle:
Peter Zijlstra6e831252014-02-11 16:11:48 +01004786 if (idle_balance(rq)) /* drops rq->lock */
Peter Zijlstra38033c32014-01-23 20:32:21 +01004787 goto again;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004788
4789 return NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004790}
4791
4792/*
4793 * Account for a descheduled task:
4794 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004795static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004796{
4797 struct sched_entity *se = &prev->se;
4798 struct cfs_rq *cfs_rq;
4799
4800 for_each_sched_entity(se) {
4801 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004802 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004803 }
4804}
4805
Rik van Rielac53db52011-02-01 09:51:03 -05004806/*
4807 * sched_yield() is very simple
4808 *
4809 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4810 */
4811static void yield_task_fair(struct rq *rq)
4812{
4813 struct task_struct *curr = rq->curr;
4814 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4815 struct sched_entity *se = &curr->se;
4816
4817 /*
4818 * Are we the only task in the tree?
4819 */
4820 if (unlikely(rq->nr_running == 1))
4821 return;
4822
4823 clear_buddies(cfs_rq, se);
4824
4825 if (curr->policy != SCHED_BATCH) {
4826 update_rq_clock(rq);
4827 /*
4828 * Update run-time statistics of the 'current'.
4829 */
4830 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004831 /*
4832 * Tell update_rq_clock() that we've just updated,
4833 * so we don't do microscopic update in schedule()
4834 * and double the fastpath cost.
4835 */
4836 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004837 }
4838
4839 set_skip_buddy(se);
4840}
4841
Mike Galbraithd95f4122011-02-01 09:50:51 -05004842static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4843{
4844 struct sched_entity *se = &p->se;
4845
Paul Turner5238cdd2011-07-21 09:43:37 -07004846 /* throttled hierarchies are not runnable */
4847 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004848 return false;
4849
4850 /* Tell the scheduler that we'd really like pse to run next. */
4851 set_next_buddy(se);
4852
Mike Galbraithd95f4122011-02-01 09:50:51 -05004853 yield_task_fair(rq);
4854
4855 return true;
4856}
4857
Peter Williams681f3e62007-10-24 18:23:51 +02004858#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004859/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004860 * Fair scheduling class load-balancing methods.
4861 *
4862 * BASICS
4863 *
4864 * The purpose of load-balancing is to achieve the same basic fairness the
4865 * per-cpu scheduler provides, namely provide a proportional amount of compute
4866 * time to each task. This is expressed in the following equation:
4867 *
4868 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4869 *
4870 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4871 * W_i,0 is defined as:
4872 *
4873 * W_i,0 = \Sum_j w_i,j (2)
4874 *
4875 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4876 * is derived from the nice value as per prio_to_weight[].
4877 *
4878 * The weight average is an exponential decay average of the instantaneous
4879 * weight:
4880 *
4881 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4882 *
4883 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4884 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4885 * can also include other factors [XXX].
4886 *
4887 * To achieve this balance we define a measure of imbalance which follows
4888 * directly from (1):
4889 *
4890 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4891 *
4892 * We them move tasks around to minimize the imbalance. In the continuous
4893 * function space it is obvious this converges, in the discrete case we get
4894 * a few fun cases generally called infeasible weight scenarios.
4895 *
4896 * [XXX expand on:
4897 * - infeasible weights;
4898 * - local vs global optima in the discrete case. ]
4899 *
4900 *
4901 * SCHED DOMAINS
4902 *
4903 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4904 * for all i,j solution, we create a tree of cpus that follows the hardware
4905 * topology where each level pairs two lower groups (or better). This results
4906 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4907 * tree to only the first of the previous level and we decrease the frequency
4908 * of load-balance at each level inv. proportional to the number of cpus in
4909 * the groups.
4910 *
4911 * This yields:
4912 *
4913 * log_2 n 1 n
4914 * \Sum { --- * --- * 2^i } = O(n) (5)
4915 * i = 0 2^i 2^i
4916 * `- size of each group
4917 * | | `- number of cpus doing load-balance
4918 * | `- freq
4919 * `- sum over all levels
4920 *
4921 * Coupled with a limit on how many tasks we can migrate every balance pass,
4922 * this makes (5) the runtime complexity of the balancer.
4923 *
4924 * An important property here is that each CPU is still (indirectly) connected
4925 * to every other cpu in at most O(log n) steps:
4926 *
4927 * The adjacency matrix of the resulting graph is given by:
4928 *
4929 * log_2 n
4930 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4931 * k = 0
4932 *
4933 * And you'll find that:
4934 *
4935 * A^(log_2 n)_i,j != 0 for all i,j (7)
4936 *
4937 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4938 * The task movement gives a factor of O(m), giving a convergence complexity
4939 * of:
4940 *
4941 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4942 *
4943 *
4944 * WORK CONSERVING
4945 *
4946 * In order to avoid CPUs going idle while there's still work to do, new idle
4947 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4948 * tree itself instead of relying on other CPUs to bring it work.
4949 *
4950 * This adds some complexity to both (5) and (8) but it reduces the total idle
4951 * time.
4952 *
4953 * [XXX more?]
4954 *
4955 *
4956 * CGROUPS
4957 *
4958 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4959 *
4960 * s_k,i
4961 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4962 * S_k
4963 *
4964 * Where
4965 *
4966 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4967 *
4968 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4969 *
4970 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4971 * property.
4972 *
4973 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4974 * rewrite all of this once again.]
4975 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004976
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004977static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4978
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004979enum fbq_type { regular, remote, all };
4980
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004981#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004982#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004983#define LBF_DST_PINNED 0x04
4984#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004985
4986struct lb_env {
4987 struct sched_domain *sd;
4988
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004989 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304990 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004991
4992 int dst_cpu;
4993 struct rq *dst_rq;
4994
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304995 struct cpumask *dst_grpmask;
4996 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004997 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004998 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004999 /* The set of CPUs under consideration for load-balancing */
5000 struct cpumask *cpus;
5001
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005002 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005003
5004 unsigned int loop;
5005 unsigned int loop_break;
5006 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005007
5008 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005009};
5010
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005011/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005012 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005013 * Both runqueues must be locked.
5014 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005015static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005016{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005017 deactivate_task(env->src_rq, p, 0);
5018 set_task_cpu(p, env->dst_cpu);
5019 activate_task(env->dst_rq, p, 0);
5020 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005021}
5022
5023/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02005024 * Is this task likely cache-hot:
5025 */
5026static int
5027task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5028{
5029 s64 delta;
5030
5031 if (p->sched_class != &fair_sched_class)
5032 return 0;
5033
5034 if (unlikely(p->policy == SCHED_IDLE))
5035 return 0;
5036
5037 /*
5038 * Buddy candidates are cache hot:
5039 */
5040 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5041 (&p->se == cfs_rq_of(&p->se)->next ||
5042 &p->se == cfs_rq_of(&p->se)->last))
5043 return 1;
5044
5045 if (sysctl_sched_migration_cost == -1)
5046 return 1;
5047 if (sysctl_sched_migration_cost == 0)
5048 return 0;
5049
5050 delta = now - p->se.exec_start;
5051
5052 return delta < (s64)sysctl_sched_migration_cost;
5053}
5054
Mel Gorman3a7053b2013-10-07 11:29:00 +01005055#ifdef CONFIG_NUMA_BALANCING
5056/* Returns true if the destination node has incurred more faults */
5057static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5058{
5059 int src_nid, dst_nid;
5060
Rik van Rielff1df892014-01-27 17:03:41 -05005061 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
Mel Gorman3a7053b2013-10-07 11:29:00 +01005062 !(env->sd->flags & SD_NUMA)) {
5063 return false;
5064 }
5065
5066 src_nid = cpu_to_node(env->src_cpu);
5067 dst_nid = cpu_to_node(env->dst_cpu);
5068
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005069 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01005070 return false;
5071
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005072 /* Always encourage migration to the preferred node. */
5073 if (dst_nid == p->numa_preferred_nid)
5074 return true;
5075
Rik van Riel887c2902013-10-07 11:29:31 +01005076 /* If both task and group weight improve, this move is a winner. */
5077 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5078 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01005079 return true;
5080
5081 return false;
5082}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005083
5084
5085static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5086{
5087 int src_nid, dst_nid;
5088
5089 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5090 return false;
5091
Rik van Rielff1df892014-01-27 17:03:41 -05005092 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005093 return false;
5094
5095 src_nid = cpu_to_node(env->src_cpu);
5096 dst_nid = cpu_to_node(env->dst_cpu);
5097
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005098 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01005099 return false;
5100
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005101 /* Migrating away from the preferred node is always bad. */
5102 if (src_nid == p->numa_preferred_nid)
5103 return true;
5104
Rik van Riel887c2902013-10-07 11:29:31 +01005105 /* If either task or group weight get worse, don't do it. */
5106 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5107 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005108 return true;
5109
5110 return false;
5111}
5112
Mel Gorman3a7053b2013-10-07 11:29:00 +01005113#else
5114static inline bool migrate_improves_locality(struct task_struct *p,
5115 struct lb_env *env)
5116{
5117 return false;
5118}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005119
5120static inline bool migrate_degrades_locality(struct task_struct *p,
5121 struct lb_env *env)
5122{
5123 return false;
5124}
Mel Gorman3a7053b2013-10-07 11:29:00 +01005125#endif
5126
Peter Zijlstra029632f2011-10-25 10:00:11 +02005127/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005128 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5129 */
5130static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005131int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005132{
5133 int tsk_cache_hot = 0;
5134 /*
5135 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09005136 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005137 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09005138 * 3) running (obviously), or
5139 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005140 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09005141 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5142 return 0;
5143
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005144 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005145 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305146
Lucas De Marchi41acab82010-03-10 23:37:45 -03005147 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305148
Peter Zijlstra62633222013-08-19 12:41:09 +02005149 env->flags |= LBF_SOME_PINNED;
5150
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305151 /*
5152 * Remember if this task can be migrated to any other cpu in
5153 * our sched_group. We may want to revisit it if we couldn't
5154 * meet load balance goals by pulling other tasks on src_cpu.
5155 *
5156 * Also avoid computing new_dst_cpu if we have already computed
5157 * one in current iteration.
5158 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005159 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305160 return 0;
5161
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005162 /* Prevent to re-select dst_cpu via env's cpus */
5163 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5164 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02005165 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005166 env->new_dst_cpu = cpu;
5167 break;
5168 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305169 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005170
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005171 return 0;
5172 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305173
5174 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005175 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005176
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005177 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03005178 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005179 return 0;
5180 }
5181
5182 /*
5183 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01005184 * 1) destination numa is preferred
5185 * 2) task is cache cold, or
5186 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005187 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005188 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005189 if (!tsk_cache_hot)
5190 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005191
5192 if (migrate_improves_locality(p, env)) {
5193#ifdef CONFIG_SCHEDSTATS
5194 if (tsk_cache_hot) {
5195 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5196 schedstat_inc(p, se.statistics.nr_forced_migrations);
5197 }
5198#endif
5199 return 1;
5200 }
5201
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005202 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005203 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005204
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005206 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03005207 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005209
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005210 return 1;
5211 }
5212
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005213 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5214 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005215}
5216
Peter Zijlstra897c3952009-12-17 17:45:42 +01005217/*
5218 * move_one_task tries to move exactly one task from busiest to this_rq, as
5219 * part of active balancing operations within "domain".
5220 * Returns 1 if successful and 0 otherwise.
5221 *
5222 * Called with both runqueues locked.
5223 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005224static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01005225{
5226 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005227
Peter Zijlstra367456c2012-02-20 21:49:09 +01005228 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01005229 if (!can_migrate_task(p, env))
5230 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005231
Peter Zijlstra367456c2012-02-20 21:49:09 +01005232 move_task(p, env);
5233 /*
5234 * Right now, this is only the second place move_task()
5235 * is called, so we can safely collect move_task()
5236 * stats here rather than inside move_task().
5237 */
5238 schedstat_inc(env->sd, lb_gained[env->idle]);
5239 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005240 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01005241 return 0;
5242}
5243
Peter Zijlstraeb953082012-04-17 13:38:40 +02005244static const unsigned int sched_nr_migrate_break = 32;
5245
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005246/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005247 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005248 * this_rq, as part of a balancing operation within domain "sd".
5249 * Returns 1 if successful and 0 otherwise.
5250 *
5251 * Called with both runqueues locked.
5252 */
5253static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005254{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005255 struct list_head *tasks = &env->src_rq->cfs_tasks;
5256 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005257 unsigned long load;
5258 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005260 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005261 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005263 while (!list_empty(tasks)) {
5264 p = list_first_entry(tasks, struct task_struct, se.group_node);
5265
Peter Zijlstra367456c2012-02-20 21:49:09 +01005266 env->loop++;
5267 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005268 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005269 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005270
5271 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005272 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005273 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005274 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005275 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005276 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005277
Joonsoo Kimd3198082013-04-23 17:27:40 +09005278 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005279 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280
Peter Zijlstra367456c2012-02-20 21:49:09 +01005281 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005282
Peter Zijlstraeb953082012-04-17 13:38:40 +02005283 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005284 goto next;
5285
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005286 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005287 goto next;
5288
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005289 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005290 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005291 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005292
5293#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005294 /*
5295 * NEWIDLE balancing is a source of latency, so preemptible
5296 * kernels will stop after the first task is pulled to minimize
5297 * the critical section.
5298 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005299 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005300 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005301#endif
5302
Peter Zijlstraee00e662009-12-17 17:25:20 +01005303 /*
5304 * We only want to steal up to the prescribed amount of
5305 * weighted load.
5306 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005307 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005308 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005309
Peter Zijlstra367456c2012-02-20 21:49:09 +01005310 continue;
5311next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005312 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005313 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005314
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005315 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005316 * Right now, this is one of only two places move_task() is called,
5317 * so we can safely collect move_task() stats here rather than
5318 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005319 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005320 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005321
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005322 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005323}
5324
Peter Zijlstra230059de2009-12-17 17:47:12 +01005325#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005326/*
5327 * update tg->load_weight by folding this cpu's load_avg
5328 */
Paul Turner48a16752012-10-04 13:18:31 +02005329static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005330{
Paul Turner48a16752012-10-04 13:18:31 +02005331 struct sched_entity *se = tg->se[cpu];
5332 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005333
Paul Turner48a16752012-10-04 13:18:31 +02005334 /* throttled entities do not contribute to load */
5335 if (throttled_hierarchy(cfs_rq))
5336 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005337
Paul Turneraff3e492012-10-04 13:18:30 +02005338 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005339
Paul Turner82958362012-10-04 13:18:31 +02005340 if (se) {
5341 update_entity_load_avg(se, 1);
5342 /*
5343 * We pivot on our runnable average having decayed to zero for
5344 * list removal. This generally implies that all our children
5345 * have also been removed (modulo rounding error or bandwidth
5346 * control); however, such cases are rare and we can fix these
5347 * at enqueue.
5348 *
5349 * TODO: fix up out-of-order children on enqueue.
5350 */
5351 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5352 list_del_leaf_cfs_rq(cfs_rq);
5353 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005354 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005355 update_rq_runnable_avg(rq, rq->nr_running);
5356 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005357}
5358
Paul Turner48a16752012-10-04 13:18:31 +02005359static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005360{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005361 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005362 struct cfs_rq *cfs_rq;
5363 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005364
Paul Turner48a16752012-10-04 13:18:31 +02005365 raw_spin_lock_irqsave(&rq->lock, flags);
5366 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005367 /*
5368 * Iterates the task_group tree in a bottom up fashion, see
5369 * list_add_leaf_cfs_rq() for details.
5370 */
Paul Turner64660c82011-07-21 09:43:36 -07005371 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005372 /*
5373 * Note: We may want to consider periodically releasing
5374 * rq->lock about these updates so that creating many task
5375 * groups does not result in continually extending hold time.
5376 */
5377 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005378 }
Paul Turner48a16752012-10-04 13:18:31 +02005379
5380 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005381}
5382
Peter Zijlstra9763b672011-07-13 13:09:25 +02005383/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005384 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005385 * This needs to be done in a top-down fashion because the load of a child
5386 * group is a fraction of its parents load.
5387 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005388static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005389{
Vladimir Davydov68520792013-07-15 17:49:19 +04005390 struct rq *rq = rq_of(cfs_rq);
5391 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005392 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005393 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005394
Vladimir Davydov68520792013-07-15 17:49:19 +04005395 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005396 return;
5397
Vladimir Davydov68520792013-07-15 17:49:19 +04005398 cfs_rq->h_load_next = NULL;
5399 for_each_sched_entity(se) {
5400 cfs_rq = cfs_rq_of(se);
5401 cfs_rq->h_load_next = se;
5402 if (cfs_rq->last_h_load_update == now)
5403 break;
5404 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005405
Vladimir Davydov68520792013-07-15 17:49:19 +04005406 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005407 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005408 cfs_rq->last_h_load_update = now;
5409 }
5410
5411 while ((se = cfs_rq->h_load_next) != NULL) {
5412 load = cfs_rq->h_load;
5413 load = div64_ul(load * se->avg.load_avg_contrib,
5414 cfs_rq->runnable_load_avg + 1);
5415 cfs_rq = group_cfs_rq(se);
5416 cfs_rq->h_load = load;
5417 cfs_rq->last_h_load_update = now;
5418 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005419}
5420
Peter Zijlstra367456c2012-02-20 21:49:09 +01005421static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005422{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005423 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005424
Vladimir Davydov68520792013-07-15 17:49:19 +04005425 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005426 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5427 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005428}
5429#else
Paul Turner48a16752012-10-04 13:18:31 +02005430static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005431{
5432}
5433
Peter Zijlstra367456c2012-02-20 21:49:09 +01005434static unsigned long task_h_load(struct task_struct *p)
5435{
Alex Shia003a252013-06-20 10:18:51 +08005436 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005437}
5438#endif
5439
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005440/********** Helpers for find_busiest_group ************************/
5441/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005442 * sg_lb_stats - stats of a sched_group required for load_balancing
5443 */
5444struct sg_lb_stats {
5445 unsigned long avg_load; /*Avg load across the CPUs of the group */
5446 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005447 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005448 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005449 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005450 unsigned int sum_nr_running; /* Nr tasks running in the group */
5451 unsigned int group_capacity;
5452 unsigned int idle_cpus;
5453 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005455 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005456#ifdef CONFIG_NUMA_BALANCING
5457 unsigned int nr_numa_running;
5458 unsigned int nr_preferred_running;
5459#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005460};
5461
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005462/*
5463 * sd_lb_stats - Structure to store the statistics of a sched_domain
5464 * during load balancing.
5465 */
5466struct sd_lb_stats {
5467 struct sched_group *busiest; /* Busiest group in this sd */
5468 struct sched_group *local; /* Local group in this sd */
5469 unsigned long total_load; /* Total load of all groups in sd */
5470 unsigned long total_pwr; /* Total power of all groups in sd */
5471 unsigned long avg_load; /* Average load across all groups in sd */
5472
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005473 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005474 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005475};
5476
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005477static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5478{
5479 /*
5480 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5481 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5482 * We must however clear busiest_stat::avg_load because
5483 * update_sd_pick_busiest() reads this before assignment.
5484 */
5485 *sds = (struct sd_lb_stats){
5486 .busiest = NULL,
5487 .local = NULL,
5488 .total_load = 0UL,
5489 .total_pwr = 0UL,
5490 .busiest_stat = {
5491 .avg_load = 0UL,
5492 },
5493 };
5494}
5495
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005496/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005497 * get_sd_load_idx - Obtain the load index for a given sched domain.
5498 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305499 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005500 *
5501 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005502 */
5503static inline int get_sd_load_idx(struct sched_domain *sd,
5504 enum cpu_idle_type idle)
5505{
5506 int load_idx;
5507
5508 switch (idle) {
5509 case CPU_NOT_IDLE:
5510 load_idx = sd->busy_idx;
5511 break;
5512
5513 case CPU_NEWLY_IDLE:
5514 load_idx = sd->newidle_idx;
5515 break;
5516 default:
5517 load_idx = sd->idle_idx;
5518 break;
5519 }
5520
5521 return load_idx;
5522}
5523
Li Zefan15f803c2013-03-05 16:07:11 +08005524static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005525{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005526 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005527}
5528
5529unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5530{
5531 return default_scale_freq_power(sd, cpu);
5532}
5533
Li Zefan15f803c2013-03-05 16:07:11 +08005534static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005535{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005536 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005537 unsigned long smt_gain = sd->smt_gain;
5538
5539 smt_gain /= weight;
5540
5541 return smt_gain;
5542}
5543
5544unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5545{
5546 return default_scale_smt_power(sd, cpu);
5547}
5548
Li Zefan15f803c2013-03-05 16:07:11 +08005549static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005550{
5551 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005552 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005553
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005554 /*
5555 * Since we're reading these variables without serialization make sure
5556 * we read them once before doing sanity checks on them.
5557 */
5558 age_stamp = ACCESS_ONCE(rq->age_stamp);
5559 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005560
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005561 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005562
5563 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005564 /* Ensures that power won't end up being negative */
5565 available = 0;
5566 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005567 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005568 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005569
Nikhil Rao1399fa72011-05-18 10:09:39 -07005570 if (unlikely((s64)total < SCHED_POWER_SCALE))
5571 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005572
Nikhil Rao1399fa72011-05-18 10:09:39 -07005573 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005574
5575 return div_u64(available, total);
5576}
5577
5578static void update_cpu_power(struct sched_domain *sd, int cpu)
5579{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005580 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005581 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005582 struct sched_group *sdg = sd->groups;
5583
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005584 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5585 if (sched_feat(ARCH_POWER))
5586 power *= arch_scale_smt_power(sd, cpu);
5587 else
5588 power *= default_scale_smt_power(sd, cpu);
5589
Nikhil Rao1399fa72011-05-18 10:09:39 -07005590 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005591 }
5592
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005593 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005594
5595 if (sched_feat(ARCH_POWER))
5596 power *= arch_scale_freq_power(sd, cpu);
5597 else
5598 power *= default_scale_freq_power(sd, cpu);
5599
Nikhil Rao1399fa72011-05-18 10:09:39 -07005600 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005601
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005603 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005604
5605 if (!power)
5606 power = 1;
5607
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005608 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005609 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005610}
5611
Peter Zijlstra029632f2011-10-25 10:00:11 +02005612void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005613{
5614 struct sched_domain *child = sd->child;
5615 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005616 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005617 unsigned long interval;
5618
5619 interval = msecs_to_jiffies(sd->balance_interval);
5620 interval = clamp(interval, 1UL, max_load_balance_interval);
5621 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005622
5623 if (!child) {
5624 update_cpu_power(sd, cpu);
5625 return;
5626 }
5627
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005628 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005629
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005630 if (child->flags & SD_OVERLAP) {
5631 /*
5632 * SD_OVERLAP domains cannot assume that child groups
5633 * span the current group.
5634 */
5635
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005636 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305637 struct sched_group_power *sgp;
5638 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005639
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305640 /*
5641 * build_sched_domains() -> init_sched_groups_power()
5642 * gets here before we've attached the domains to the
5643 * runqueues.
5644 *
5645 * Use power_of(), which is set irrespective of domains
5646 * in update_cpu_power().
5647 *
5648 * This avoids power/power_orig from being 0 and
5649 * causing divide-by-zero issues on boot.
5650 *
5651 * Runtime updates will correct power_orig.
5652 */
5653 if (unlikely(!rq->sd)) {
5654 power_orig += power_of(cpu);
5655 power += power_of(cpu);
5656 continue;
5657 }
5658
5659 sgp = rq->sd->groups->sgp;
5660 power_orig += sgp->power_orig;
5661 power += sgp->power;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005662 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005663 } else {
5664 /*
5665 * !SD_OVERLAP domains can assume that child groups
5666 * span the current group.
5667 */
5668
5669 group = child->groups;
5670 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005671 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005672 power += group->sgp->power;
5673 group = group->next;
5674 } while (group != child->groups);
5675 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005676
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005677 sdg->sgp->power_orig = power_orig;
5678 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005679}
5680
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005681/*
5682 * Try and fix up capacity for tiny siblings, this is needed when
5683 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5684 * which on its own isn't powerful enough.
5685 *
5686 * See update_sd_pick_busiest() and check_asym_packing().
5687 */
5688static inline int
5689fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5690{
5691 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005692 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005693 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005694 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005695 return 0;
5696
5697 /*
5698 * If ~90% of the cpu_power is still there, we're good.
5699 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005700 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005701 return 1;
5702
5703 return 0;
5704}
5705
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005706/*
5707 * Group imbalance indicates (and tries to solve) the problem where balancing
5708 * groups is inadequate due to tsk_cpus_allowed() constraints.
5709 *
5710 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5711 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5712 * Something like:
5713 *
5714 * { 0 1 2 3 } { 4 5 6 7 }
5715 * * * * *
5716 *
5717 * If we were to balance group-wise we'd place two tasks in the first group and
5718 * two tasks in the second group. Clearly this is undesired as it will overload
5719 * cpu 3 and leave one of the cpus in the second group unused.
5720 *
5721 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005722 * by noticing the lower domain failed to reach balance and had difficulty
5723 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005724 *
5725 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305726 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005727 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005728 * to create an effective group imbalance.
5729 *
5730 * This is a somewhat tricky proposition since the next run might not find the
5731 * group imbalance and decide the groups need to be balanced again. A most
5732 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005733 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005734
Peter Zijlstra62633222013-08-19 12:41:09 +02005735static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005736{
Peter Zijlstra62633222013-08-19 12:41:09 +02005737 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005738}
5739
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005740/*
5741 * Compute the group capacity.
5742 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005743 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5744 * first dividing out the smt factor and computing the actual number of cores
5745 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005746 */
5747static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5748{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005749 unsigned int capacity, smt, cpus;
5750 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005751
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005752 power = group->sgp->power;
5753 power_orig = group->sgp->power_orig;
5754 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005755
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005756 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5757 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5758 capacity = cpus / smt; /* cores */
5759
5760 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005761 if (!capacity)
5762 capacity = fix_small_capacity(env->sd, group);
5763
5764 return capacity;
5765}
5766
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767/**
5768 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5769 * @env: The load balancing environment.
5770 * @group: sched_group whose statistics are to be updated.
5771 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5772 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005773 * @sgs: variable to hold the statistics for this group.
5774 */
5775static inline void update_sg_lb_stats(struct lb_env *env,
5776 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005777 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005778{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005779 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005780 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005781
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005782 memset(sgs, 0, sizeof(*sgs));
5783
Michael Wangb94031302012-07-12 16:10:13 +08005784 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005785 struct rq *rq = cpu_rq(i);
5786
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005787 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005788 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005789 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005790 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005791 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005792
5793 sgs->group_load += load;
Kamalesh Babulal380c9072013-11-15 15:06:52 +05305794 sgs->sum_nr_running += rq->nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005795#ifdef CONFIG_NUMA_BALANCING
5796 sgs->nr_numa_running += rq->nr_numa_running;
5797 sgs->nr_preferred_running += rq->nr_preferred_running;
5798#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005799 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005800 if (idle_cpu(i))
5801 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802 }
5803
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005804 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005805 sgs->group_power = group->sgp->power;
5806 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005807
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005808 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005809 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005810
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005811 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005812
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005813 sgs->group_imb = sg_imbalanced(group);
5814 sgs->group_capacity = sg_capacity(env, group);
5815
Nikhil Raofab47622010-10-15 13:12:29 -07005816 if (sgs->group_capacity > sgs->sum_nr_running)
5817 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005818}
5819
5820/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005821 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005822 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005823 * @sds: sched_domain statistics
5824 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005825 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005826 *
5827 * Determine if @sg is a busier group than the previously selected
5828 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005829 *
5830 * Return: %true if @sg is a busier group than the previously selected
5831 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005832 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005833static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005834 struct sd_lb_stats *sds,
5835 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005836 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005837{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005838 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005839 return false;
5840
5841 if (sgs->sum_nr_running > sgs->group_capacity)
5842 return true;
5843
5844 if (sgs->group_imb)
5845 return true;
5846
5847 /*
5848 * ASYM_PACKING needs to move all the work to the lowest
5849 * numbered CPUs in the group, therefore mark all groups
5850 * higher than ourself as busy.
5851 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005852 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5853 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005854 if (!sds->busiest)
5855 return true;
5856
5857 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5858 return true;
5859 }
5860
5861 return false;
5862}
5863
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005864#ifdef CONFIG_NUMA_BALANCING
5865static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5866{
5867 if (sgs->sum_nr_running > sgs->nr_numa_running)
5868 return regular;
5869 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5870 return remote;
5871 return all;
5872}
5873
5874static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5875{
5876 if (rq->nr_running > rq->nr_numa_running)
5877 return regular;
5878 if (rq->nr_running > rq->nr_preferred_running)
5879 return remote;
5880 return all;
5881}
5882#else
5883static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5884{
5885 return all;
5886}
5887
5888static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5889{
5890 return regular;
5891}
5892#endif /* CONFIG_NUMA_BALANCING */
5893
Michael Neuling532cb4c2010-06-08 14:57:02 +10005894/**
Hui Kang461819a2011-10-11 23:00:59 -04005895 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005896 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005897 * @sds: variable to hold the statistics for this sched_domain.
5898 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005899static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005900{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005901 struct sched_domain *child = env->sd->child;
5902 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005903 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 int load_idx, prefer_sibling = 0;
5905
5906 if (child && child->flags & SD_PREFER_SIBLING)
5907 prefer_sibling = 1;
5908
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005909 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005910
5911 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005912 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005913 int local_group;
5914
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005915 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005916 if (local_group) {
5917 sds->local = sg;
5918 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005919
5920 if (env->idle != CPU_NEWLY_IDLE ||
5921 time_after_eq(jiffies, sg->sgp->next_update))
5922 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005923 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005924
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005925 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005926
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005927 if (local_group)
5928 goto next_group;
5929
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005930 /*
5931 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005932 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005933 * and move all the excess tasks away. We lower the capacity
5934 * of a group only if the local group has the capacity to fit
5935 * these excess tasks, i.e. nr_running < group_capacity. The
5936 * extra check prevents the case where you always pull from the
5937 * heaviest group when it is already under-utilized (possible
5938 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005939 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005940 if (prefer_sibling && sds->local &&
5941 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005942 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005943
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005944 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005945 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005946 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005947 }
5948
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005949next_group:
5950 /* Now, start updating sd_lb_stats */
5951 sds->total_load += sgs->group_load;
5952 sds->total_pwr += sgs->group_power;
5953
Michael Neuling532cb4c2010-06-08 14:57:02 +10005954 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005955 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005956
5957 if (env->sd->flags & SD_NUMA)
5958 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005959}
5960
Michael Neuling532cb4c2010-06-08 14:57:02 +10005961/**
5962 * check_asym_packing - Check to see if the group is packed into the
5963 * sched doman.
5964 *
5965 * This is primarily intended to used at the sibling level. Some
5966 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5967 * case of POWER7, it can move to lower SMT modes only when higher
5968 * threads are idle. When in lower SMT modes, the threads will
5969 * perform better since they share less core resources. Hence when we
5970 * have idle threads, we want them to be the higher ones.
5971 *
5972 * This packing function is run on idle threads. It checks to see if
5973 * the busiest CPU in this domain (core in the P7 case) has a higher
5974 * CPU number than the packing function is being run on. Here we are
5975 * assuming lower CPU number will be equivalent to lower a SMT thread
5976 * number.
5977 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005978 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005979 * this CPU. The amount of the imbalance is returned in *imbalance.
5980 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005981 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005982 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005983 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005984static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005985{
5986 int busiest_cpu;
5987
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005988 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005989 return 0;
5990
5991 if (!sds->busiest)
5992 return 0;
5993
5994 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005995 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005996 return 0;
5997
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005998 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005999 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6000 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006001
Michael Neuling532cb4c2010-06-08 14:57:02 +10006002 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006003}
6004
6005/**
6006 * fix_small_imbalance - Calculate the minor imbalance that exists
6007 * amongst the groups of a sched_domain, during
6008 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006009 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006010 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006011 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006012static inline
6013void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006014{
6015 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6016 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006017 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006018 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006019
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006020 local = &sds->local_stat;
6021 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006022
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006023 if (!local->sum_nr_running)
6024 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6025 else if (busiest->load_per_task > local->load_per_task)
6026 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006027
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006028 scaled_busy_load_per_task =
6029 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006030 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006031
Vladimir Davydov3029ede2013-09-15 17:49:14 +04006032 if (busiest->avg_load + scaled_busy_load_per_task >=
6033 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006034 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006035 return;
6036 }
6037
6038 /*
6039 * OK, we don't have enough imbalance to justify moving tasks,
6040 * however we may be able to increase total CPU power used by
6041 * moving them.
6042 */
6043
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006044 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006045 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006046 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006047 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006048 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006049
6050 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006051 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006052 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006053 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006054 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006055 min(busiest->load_per_task,
6056 busiest->avg_load - tmp);
6057 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006058
6059 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006060 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006061 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006062 tmp = (busiest->avg_load * busiest->group_power) /
6063 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006064 } else {
6065 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006066 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006067 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006068 pwr_move += local->group_power *
6069 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006070 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006071
6072 /* Move if we gain throughput */
6073 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006074 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006075}
6076
6077/**
6078 * calculate_imbalance - Calculate the amount of imbalance present within the
6079 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006080 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006081 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006082 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006083static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006084{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006085 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006086 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006087
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006088 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006089 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006090
6091 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006092 /*
6093 * In the group_imb case we cannot rely on group-wide averages
6094 * to ensure cpu-load equilibrium, look at wider averages. XXX
6095 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006096 busiest->load_per_task =
6097 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006098 }
6099
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006100 /*
6101 * In the presence of smp nice balancing, certain scenarios can have
6102 * max load less than avg load(as we skip the groups at or below
6103 * its cpu_power, while calculating max_load..)
6104 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04006105 if (busiest->avg_load <= sds->avg_load ||
6106 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006107 env->imbalance = 0;
6108 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006109 }
6110
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006111 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006112 /*
6113 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006114 * Except of course for the group_imb case, since then we might
6115 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006116 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006117 load_above_capacity =
6118 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006119
Nikhil Rao1399fa72011-05-18 10:09:39 -07006120 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006121 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006122 }
6123
6124 /*
6125 * We're trying to get all the cpus to the average_load, so we don't
6126 * want to push ourselves above the average load, nor do we wish to
6127 * reduce the max loaded cpu below the average load. At the same time,
6128 * we also don't want to reduce the group load below the group capacity
6129 * (so that we can implement power-savings policies etc). Thus we look
6130 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006131 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006132 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006133
6134 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006135 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006136 max_pull * busiest->group_power,
6137 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006138 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006139
6140 /*
6141 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03006142 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006143 * a think about bumping its value to force at least one task to be
6144 * moved
6145 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006146 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006147 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006148}
Nikhil Raofab47622010-10-15 13:12:29 -07006149
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006150/******* find_busiest_group() helpers end here *********************/
6151
6152/**
6153 * find_busiest_group - Returns the busiest group within the sched_domain
6154 * if there is an imbalance. If there isn't an imbalance, and
6155 * the user has opted for power-savings, it returns a group whose
6156 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6157 * such a group exists.
6158 *
6159 * Also calculates the amount of weighted load which should be moved
6160 * to restore balance.
6161 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006162 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006163 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006164 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006165 * - If no imbalance and user has opted for power-savings balance,
6166 * return the least loaded group whose CPUs can be
6167 * put to idle by rebalancing its tasks onto our group.
6168 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006169static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006170{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006171 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006172 struct sd_lb_stats sds;
6173
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006174 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006175
6176 /*
6177 * Compute the various statistics relavent for load balancing at
6178 * this level.
6179 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006180 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006181 local = &sds.local_stat;
6182 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006183
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006184 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6185 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006186 return sds.busiest;
6187
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006188 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006189 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006190 goto out_balanced;
6191
Nikhil Rao1399fa72011-05-18 10:09:39 -07006192 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07006193
Peter Zijlstra866ab432011-02-21 18:56:47 +01006194 /*
6195 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006196 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01006197 * isn't true due to cpus_allowed constraints and the like.
6198 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006199 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01006200 goto force_balance;
6201
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006202 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006203 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6204 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07006205 goto force_balance;
6206
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006207 /*
6208 * If the local group is more busy than the selected busiest group
6209 * don't try and pull any tasks.
6210 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006211 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006212 goto out_balanced;
6213
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006214 /*
6215 * Don't pull any tasks if this group is already above the domain
6216 * average load.
6217 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006218 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006219 goto out_balanced;
6220
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006221 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006222 /*
6223 * This cpu is idle. If the busiest group load doesn't
6224 * have more tasks than the number of available cpu's and
6225 * there is no imbalance between this and busiest group
6226 * wrt to idle cpu's, it is balanced.
6227 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006228 if ((local->idle_cpus < busiest->idle_cpus) &&
6229 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006230 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006231 } else {
6232 /*
6233 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6234 * imbalance_pct to be conservative.
6235 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006236 if (100 * busiest->avg_load <=
6237 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006238 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006239 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006240
Nikhil Raofab47622010-10-15 13:12:29 -07006241force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006242 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006243 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006244 return sds.busiest;
6245
6246out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006247 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006248 return NULL;
6249}
6250
6251/*
6252 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6253 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006254static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08006255 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006256{
6257 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006258 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006259 int i;
6260
Peter Zijlstra6906a402013-08-19 15:20:21 +02006261 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006262 unsigned long power, capacity, wl;
6263 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006264
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006265 rq = cpu_rq(i);
6266 rt = fbq_classify_rq(rq);
6267
6268 /*
6269 * We classify groups/runqueues into three groups:
6270 * - regular: there are !numa tasks
6271 * - remote: there are numa tasks that run on the 'wrong' node
6272 * - all: there is no distinction
6273 *
6274 * In order to avoid migrating ideally placed numa tasks,
6275 * ignore those when there's better options.
6276 *
6277 * If we ignore the actual busiest queue to migrate another
6278 * task, the next balance pass can still reduce the busiest
6279 * queue by moving tasks around inside the node.
6280 *
6281 * If we cannot move enough load due to this classification
6282 * the next pass will adjust the group classification and
6283 * allow migration of more tasks.
6284 *
6285 * Both cases only affect the total convergence complexity.
6286 */
6287 if (rt > env->fbq_type)
6288 continue;
6289
6290 power = power_of(i);
6291 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006292 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006293 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006294
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006295 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006297 /*
6298 * When comparing with imbalance, use weighted_cpuload()
6299 * which is not scaled with the cpu power.
6300 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006301 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006302 continue;
6303
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006304 /*
6305 * For the load comparisons with the other cpu's, consider
6306 * the weighted_cpuload() scaled with the cpu power, so that
6307 * the load can be moved away from the cpu that is potentially
6308 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006309 *
6310 * Thus we're looking for max(wl_i / power_i), crosswise
6311 * multiplication to rid ourselves of the division works out
6312 * to: wl_i * power_j > wl_j * power_i; where j is our
6313 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006314 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006315 if (wl * busiest_power > busiest_load * power) {
6316 busiest_load = wl;
6317 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006318 busiest = rq;
6319 }
6320 }
6321
6322 return busiest;
6323}
6324
6325/*
6326 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6327 * so long as it is large enough.
6328 */
6329#define MAX_PINNED_INTERVAL 512
6330
6331/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006332DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006333
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006334static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006335{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006336 struct sched_domain *sd = env->sd;
6337
6338 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006339
6340 /*
6341 * ASYM_PACKING needs to force migrate tasks from busy but
6342 * higher numbered CPUs in order to pack all tasks in the
6343 * lowest numbered CPUs.
6344 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006345 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006346 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006347 }
6348
6349 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6350}
6351
Tejun Heo969c7922010-05-06 18:49:21 +02006352static int active_load_balance_cpu_stop(void *data);
6353
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006354static int should_we_balance(struct lb_env *env)
6355{
6356 struct sched_group *sg = env->sd->groups;
6357 struct cpumask *sg_cpus, *sg_mask;
6358 int cpu, balance_cpu = -1;
6359
6360 /*
6361 * In the newly idle case, we will allow all the cpu's
6362 * to do the newly idle load balance.
6363 */
6364 if (env->idle == CPU_NEWLY_IDLE)
6365 return 1;
6366
6367 sg_cpus = sched_group_cpus(sg);
6368 sg_mask = sched_group_mask(sg);
6369 /* Try to find first idle cpu */
6370 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6371 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6372 continue;
6373
6374 balance_cpu = cpu;
6375 break;
6376 }
6377
6378 if (balance_cpu == -1)
6379 balance_cpu = group_balance_cpu(sg);
6380
6381 /*
6382 * First idle cpu or the first cpu(busiest) in this sched group
6383 * is eligible for doing load balancing at this and above domains.
6384 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006385 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006386}
6387
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006388/*
6389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6390 * tasks if there is an imbalance.
6391 */
6392static int load_balance(int this_cpu, struct rq *this_rq,
6393 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006394 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006395{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306396 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006397 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006398 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006399 struct rq *busiest;
6400 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006401 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006402
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006403 struct lb_env env = {
6404 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006405 .dst_cpu = this_cpu,
6406 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306407 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006408 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006409 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006410 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006411 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006412 };
6413
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006414 /*
6415 * For NEWLY_IDLE load_balancing, we don't need to consider
6416 * other cpus in our group
6417 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006418 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006419 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006420
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006421 cpumask_copy(cpus, cpu_active_mask);
6422
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423 schedstat_inc(sd, lb_count[idle]);
6424
6425redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006426 if (!should_we_balance(&env)) {
6427 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006428 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006429 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006430
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006431 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006432 if (!group) {
6433 schedstat_inc(sd, lb_nobusyg[idle]);
6434 goto out_balanced;
6435 }
6436
Michael Wangb94031302012-07-12 16:10:13 +08006437 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006438 if (!busiest) {
6439 schedstat_inc(sd, lb_nobusyq[idle]);
6440 goto out_balanced;
6441 }
6442
Michael Wang78feefc2012-08-06 16:41:59 +08006443 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006444
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006445 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006446
6447 ld_moved = 0;
6448 if (busiest->nr_running > 1) {
6449 /*
6450 * Attempt to move tasks. If find_busiest_group has found
6451 * an imbalance but busiest->nr_running <= 1, the group is
6452 * still unbalanced. ld_moved simply stays zero, so it is
6453 * correctly treated as an imbalance.
6454 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006455 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006456 env.src_cpu = busiest->cpu;
6457 env.src_rq = busiest;
6458 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006459
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006460more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006461 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006462 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306463
6464 /*
6465 * cur_ld_moved - load moved in current iteration
6466 * ld_moved - cumulative load moved across iterations
6467 */
6468 cur_ld_moved = move_tasks(&env);
6469 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006470 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006471 local_irq_restore(flags);
6472
6473 /*
6474 * some other cpu did the load balance for us.
6475 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306476 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6477 resched_cpu(env.dst_cpu);
6478
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006479 if (env.flags & LBF_NEED_BREAK) {
6480 env.flags &= ~LBF_NEED_BREAK;
6481 goto more_balance;
6482 }
6483
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306484 /*
6485 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6486 * us and move them to an alternate dst_cpu in our sched_group
6487 * where they can run. The upper limit on how many times we
6488 * iterate on same src_cpu is dependent on number of cpus in our
6489 * sched_group.
6490 *
6491 * This changes load balance semantics a bit on who can move
6492 * load to a given_cpu. In addition to the given_cpu itself
6493 * (or a ilb_cpu acting on its behalf where given_cpu is
6494 * nohz-idle), we now have balance_cpu in a position to move
6495 * load to given_cpu. In rare situations, this may cause
6496 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6497 * _independently_ and at _same_ time to move some load to
6498 * given_cpu) causing exceess load to be moved to given_cpu.
6499 * This however should not happen so much in practice and
6500 * moreover subsequent load balance cycles should correct the
6501 * excess load moved.
6502 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006503 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306504
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006505 /* Prevent to re-select dst_cpu via env's cpus */
6506 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6507
Michael Wang78feefc2012-08-06 16:41:59 +08006508 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306509 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006510 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306511 env.loop = 0;
6512 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006513
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306514 /*
6515 * Go back to "more_balance" rather than "redo" since we
6516 * need to continue with same src_cpu.
6517 */
6518 goto more_balance;
6519 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006520
Peter Zijlstra62633222013-08-19 12:41:09 +02006521 /*
6522 * We failed to reach balance because of affinity.
6523 */
6524 if (sd_parent) {
6525 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6526
6527 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6528 *group_imbalance = 1;
6529 } else if (*group_imbalance)
6530 *group_imbalance = 0;
6531 }
6532
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006533 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006534 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006535 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306536 if (!cpumask_empty(cpus)) {
6537 env.loop = 0;
6538 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006539 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306540 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006541 goto out_balanced;
6542 }
6543 }
6544
6545 if (!ld_moved) {
6546 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006547 /*
6548 * Increment the failure counter only on periodic balance.
6549 * We do not want newidle balance, which can be very
6550 * frequent, pollute the failure counter causing
6551 * excessive cache_hot migrations and active balances.
6552 */
6553 if (idle != CPU_NEWLY_IDLE)
6554 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006555
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006556 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006557 raw_spin_lock_irqsave(&busiest->lock, flags);
6558
Tejun Heo969c7922010-05-06 18:49:21 +02006559 /* don't kick the active_load_balance_cpu_stop,
6560 * if the curr task on busiest cpu can't be
6561 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006562 */
6563 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006564 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006565 raw_spin_unlock_irqrestore(&busiest->lock,
6566 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006567 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006568 goto out_one_pinned;
6569 }
6570
Tejun Heo969c7922010-05-06 18:49:21 +02006571 /*
6572 * ->active_balance synchronizes accesses to
6573 * ->active_balance_work. Once set, it's cleared
6574 * only after active load balance is finished.
6575 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006576 if (!busiest->active_balance) {
6577 busiest->active_balance = 1;
6578 busiest->push_cpu = this_cpu;
6579 active_balance = 1;
6580 }
6581 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006582
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006583 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006584 stop_one_cpu_nowait(cpu_of(busiest),
6585 active_load_balance_cpu_stop, busiest,
6586 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006587 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006588
6589 /*
6590 * We've kicked active balancing, reset the failure
6591 * counter.
6592 */
6593 sd->nr_balance_failed = sd->cache_nice_tries+1;
6594 }
6595 } else
6596 sd->nr_balance_failed = 0;
6597
6598 if (likely(!active_balance)) {
6599 /* We were unbalanced, so reset the balancing interval */
6600 sd->balance_interval = sd->min_interval;
6601 } else {
6602 /*
6603 * If we've begun active balancing, start to back off. This
6604 * case may not be covered by the all_pinned logic if there
6605 * is only 1 task on the busy runqueue (because we don't call
6606 * move_tasks).
6607 */
6608 if (sd->balance_interval < sd->max_interval)
6609 sd->balance_interval *= 2;
6610 }
6611
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006612 goto out;
6613
6614out_balanced:
6615 schedstat_inc(sd, lb_balanced[idle]);
6616
6617 sd->nr_balance_failed = 0;
6618
6619out_one_pinned:
6620 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006621 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006622 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006623 (sd->balance_interval < sd->max_interval))
6624 sd->balance_interval *= 2;
6625
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006626 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006627out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006628 return ld_moved;
6629}
6630
6631/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006632 * idle_balance is called by schedule() if this_cpu is about to become
6633 * idle. Attempts to pull tasks from other CPUs.
6634 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006635static int idle_balance(struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636{
6637 struct sched_domain *sd;
6638 int pulled_task = 0;
6639 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006640 u64 curr_cost = 0;
Daniel Lezcanob4f2ab432014-01-17 10:04:01 +01006641 int this_cpu = this_rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006642
Peter Zijlstra6e831252014-02-11 16:11:48 +01006643 idle_enter_fair(this_rq);
6644 /*
6645 * We must set idle_stamp _before_ calling idle_balance(), such that we
6646 * measure the duration of idle_balance() as idle time.
6647 */
6648 this_rq->idle_stamp = rq_clock(this_rq);
6649
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006650 if (this_rq->avg_idle < sysctl_sched_migration_cost)
Peter Zijlstra6e831252014-02-11 16:11:48 +01006651 goto out;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006652
Peter Zijlstraf492e122009-12-23 15:29:42 +01006653 /*
6654 * Drop the rq->lock, but keep IRQ/preempt disabled.
6655 */
6656 raw_spin_unlock(&this_rq->lock);
6657
Paul Turner48a16752012-10-04 13:18:31 +02006658 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006659 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006660 for_each_domain(this_cpu, sd) {
6661 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006662 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006663 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006664
6665 if (!(sd->flags & SD_LOAD_BALANCE))
6666 continue;
6667
Jason Low9bd721c2013-09-13 11:26:52 -07006668 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6669 break;
6670
Peter Zijlstraf492e122009-12-23 15:29:42 +01006671 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006672 t0 = sched_clock_cpu(this_cpu);
6673
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006674 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006675 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006676 sd, CPU_NEWLY_IDLE,
6677 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006678
6679 domain_cost = sched_clock_cpu(this_cpu) - t0;
6680 if (domain_cost > sd->max_newidle_lb_cost)
6681 sd->max_newidle_lb_cost = domain_cost;
6682
6683 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006684 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006685
6686 interval = msecs_to_jiffies(sd->balance_interval);
6687 if (time_after(next_balance, sd->last_balance + interval))
6688 next_balance = sd->last_balance + interval;
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006689 if (pulled_task)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006690 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006691 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006692 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006693
6694 raw_spin_lock(&this_rq->lock);
6695
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006696 /*
6697 * While browsing the domains, we released the rq lock.
6698 * A task could have be enqueued in the meantime
6699 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006700 if (this_rq->nr_running && !pulled_task) {
6701 pulled_task = 1;
6702 goto out;
6703 }
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006704
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006705 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6706 /*
6707 * We are going idle. next_balance may be set based on
6708 * a busy processor. So reset next_balance.
6709 */
6710 this_rq->next_balance = next_balance;
6711 }
Jason Low9bd721c2013-09-13 11:26:52 -07006712
6713 if (curr_cost > this_rq->max_idle_balance_cost)
6714 this_rq->max_idle_balance_cost = curr_cost;
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006715
Peter Zijlstra6e831252014-02-11 16:11:48 +01006716out:
6717 if (pulled_task)
6718 this_rq->idle_stamp = 0;
6719
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006720 return pulled_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006721}
6722
6723/*
Tejun Heo969c7922010-05-06 18:49:21 +02006724 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6725 * running tasks off the busiest CPU onto idle CPUs. It requires at
6726 * least 1 task to be running on each physical CPU where possible, and
6727 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006728 */
Tejun Heo969c7922010-05-06 18:49:21 +02006729static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006730{
Tejun Heo969c7922010-05-06 18:49:21 +02006731 struct rq *busiest_rq = data;
6732 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006733 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006734 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006735 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006736
6737 raw_spin_lock_irq(&busiest_rq->lock);
6738
6739 /* make sure the requested cpu hasn't gone down in the meantime */
6740 if (unlikely(busiest_cpu != smp_processor_id() ||
6741 !busiest_rq->active_balance))
6742 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006743
6744 /* Is there any task to move? */
6745 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006746 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006747
6748 /*
6749 * This condition is "impossible", if it occurs
6750 * we need to fix it. Originally reported by
6751 * Bjorn Helgaas on a 128-cpu setup.
6752 */
6753 BUG_ON(busiest_rq == target_rq);
6754
6755 /* move a task from busiest_rq to target_rq */
6756 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006757
6758 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006759 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006760 for_each_domain(target_cpu, sd) {
6761 if ((sd->flags & SD_LOAD_BALANCE) &&
6762 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6763 break;
6764 }
6765
6766 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006767 struct lb_env env = {
6768 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006769 .dst_cpu = target_cpu,
6770 .dst_rq = target_rq,
6771 .src_cpu = busiest_rq->cpu,
6772 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006773 .idle = CPU_IDLE,
6774 };
6775
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006776 schedstat_inc(sd, alb_count);
6777
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006778 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006779 schedstat_inc(sd, alb_pushed);
6780 else
6781 schedstat_inc(sd, alb_failed);
6782 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006783 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006784 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006785out_unlock:
6786 busiest_rq->active_balance = 0;
6787 raw_spin_unlock_irq(&busiest_rq->lock);
6788 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006789}
6790
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006791#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006792/*
6793 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006794 * - When one of the busy CPUs notice that there may be an idle rebalancing
6795 * needed, they will kick the idle load balancer, which then does idle
6796 * load balancing for all the idle CPUs.
6797 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006798static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006799 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006800 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006801 unsigned long next_balance; /* in jiffy units */
6802} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006803
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006804static inline int find_new_ilb(void)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006805{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006806 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006807
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006808 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6809 return ilb;
6810
6811 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006812}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006813
6814/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006815 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6816 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6817 * CPU (if there is one).
6818 */
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01006819static void nohz_balancer_kick(void)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006820{
6821 int ilb_cpu;
6822
6823 nohz.next_balance++;
6824
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006825 ilb_cpu = find_new_ilb();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006826
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006827 if (ilb_cpu >= nr_cpu_ids)
6828 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006829
Suresh Siddhacd490c52011-12-06 11:26:34 -08006830 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006831 return;
6832 /*
6833 * Use smp_send_reschedule() instead of resched_cpu().
6834 * This way we generate a sched IPI on the target cpu which
6835 * is idle. And the softirq performing nohz idle load balance
6836 * will be run before returning from the IPI.
6837 */
6838 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006839 return;
6840}
6841
Alex Shic1cc0172012-09-10 15:10:58 +08006842static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006843{
6844 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6845 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6846 atomic_dec(&nohz.nr_cpus);
6847 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6848 }
6849}
6850
Suresh Siddha69e1e812011-12-01 17:07:33 -08006851static inline void set_cpu_sd_state_busy(void)
6852{
6853 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306854 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006855
Suresh Siddha69e1e812011-12-01 17:07:33 -08006856 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306857 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006858
6859 if (!sd || !sd->nohz_idle)
6860 goto unlock;
6861 sd->nohz_idle = 0;
6862
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306863 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006864unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006865 rcu_read_unlock();
6866}
6867
6868void set_cpu_sd_state_idle(void)
6869{
6870 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306871 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006872
Suresh Siddha69e1e812011-12-01 17:07:33 -08006873 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306874 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006875
6876 if (!sd || sd->nohz_idle)
6877 goto unlock;
6878 sd->nohz_idle = 1;
6879
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306880 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006881unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006882 rcu_read_unlock();
6883}
6884
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006885/*
Alex Shic1cc0172012-09-10 15:10:58 +08006886 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006887 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006888 */
Alex Shic1cc0172012-09-10 15:10:58 +08006889void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006890{
Suresh Siddha71325962012-01-19 18:28:57 -08006891 /*
6892 * If this cpu is going down, then nothing needs to be done.
6893 */
6894 if (!cpu_active(cpu))
6895 return;
6896
Alex Shic1cc0172012-09-10 15:10:58 +08006897 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6898 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006899
Alex Shic1cc0172012-09-10 15:10:58 +08006900 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6901 atomic_inc(&nohz.nr_cpus);
6902 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006903}
Suresh Siddha71325962012-01-19 18:28:57 -08006904
Paul Gortmaker0db06282013-06-19 14:53:51 -04006905static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006906 unsigned long action, void *hcpu)
6907{
6908 switch (action & ~CPU_TASKS_FROZEN) {
6909 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006910 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006911 return NOTIFY_OK;
6912 default:
6913 return NOTIFY_DONE;
6914 }
6915}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006916#endif
6917
6918static DEFINE_SPINLOCK(balancing);
6919
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006920/*
6921 * Scale the max load_balance interval with the number of CPUs in the system.
6922 * This trades load-balance latency on larger machines for less cross talk.
6923 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006924void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006925{
6926 max_load_balance_interval = HZ*num_online_cpus()/10;
6927}
6928
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006929/*
6930 * It checks each scheduling domain to see if it is due to be balanced,
6931 * and initiates a balancing operation if so.
6932 *
Libinb9b08532013-04-01 19:14:01 +08006933 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006934 */
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01006935static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006936{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006937 int continue_balancing = 1;
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01006938 int cpu = rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006939 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006940 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006941 /* Earliest time when we have to do rebalance again */
6942 unsigned long next_balance = jiffies + 60*HZ;
6943 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006944 int need_serialize, need_decay = 0;
6945 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006946
Paul Turner48a16752012-10-04 13:18:31 +02006947 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006948
Peter Zijlstradce840a2011-04-07 14:09:50 +02006949 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006950 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006951 /*
6952 * Decay the newidle max times here because this is a regular
6953 * visit to all the domains. Decay ~1% per second.
6954 */
6955 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6956 sd->max_newidle_lb_cost =
6957 (sd->max_newidle_lb_cost * 253) / 256;
6958 sd->next_decay_max_lb_cost = jiffies + HZ;
6959 need_decay = 1;
6960 }
6961 max_cost += sd->max_newidle_lb_cost;
6962
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006963 if (!(sd->flags & SD_LOAD_BALANCE))
6964 continue;
6965
Jason Lowf48627e2013-09-13 11:26:53 -07006966 /*
6967 * Stop the load balance at this level. There is another
6968 * CPU in our sched group which is doing load balancing more
6969 * actively.
6970 */
6971 if (!continue_balancing) {
6972 if (need_decay)
6973 continue;
6974 break;
6975 }
6976
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006977 interval = sd->balance_interval;
6978 if (idle != CPU_IDLE)
6979 interval *= sd->busy_factor;
6980
6981 /* scale ms to jiffies */
6982 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006983 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006984
6985 need_serialize = sd->flags & SD_SERIALIZE;
6986
6987 if (need_serialize) {
6988 if (!spin_trylock(&balancing))
6989 goto out;
6990 }
6991
6992 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006993 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006994 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006995 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006996 * env->dst_cpu, so we can't know our idle
6997 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006998 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006999 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007000 }
7001 sd->last_balance = jiffies;
7002 }
7003 if (need_serialize)
7004 spin_unlock(&balancing);
7005out:
7006 if (time_after(next_balance, sd->last_balance + interval)) {
7007 next_balance = sd->last_balance + interval;
7008 update_next_balance = 1;
7009 }
Jason Lowf48627e2013-09-13 11:26:53 -07007010 }
7011 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007012 /*
Jason Lowf48627e2013-09-13 11:26:53 -07007013 * Ensure the rq-wide value also decays but keep it at a
7014 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007015 */
Jason Lowf48627e2013-09-13 11:26:53 -07007016 rq->max_idle_balance_cost =
7017 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007018 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007019 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007020
7021 /*
7022 * next_balance will be updated only when there is a need.
7023 * When the cpu is attached to null domain for ex, it will not be
7024 * updated.
7025 */
7026 if (likely(update_next_balance))
7027 rq->next_balance = next_balance;
7028}
7029
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007030#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007031/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007032 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007033 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7034 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007035static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007036{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007037 int this_cpu = this_rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007038 struct rq *rq;
7039 int balance_cpu;
7040
Suresh Siddha1c792db2011-12-01 17:07:32 -08007041 if (idle != CPU_IDLE ||
7042 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7043 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007044
7045 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08007046 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007047 continue;
7048
7049 /*
7050 * If this cpu gets work to do, stop the load balancing
7051 * work being done for other cpus. Next load
7052 * balancing owner will pick it up.
7053 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08007054 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007055 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007056
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02007057 rq = cpu_rq(balance_cpu);
7058
7059 raw_spin_lock_irq(&rq->lock);
7060 update_rq_clock(rq);
7061 update_idle_cpu_load(rq);
7062 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007063
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007064 rebalance_domains(rq, CPU_IDLE);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007065
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007066 if (time_after(this_rq->next_balance, rq->next_balance))
7067 this_rq->next_balance = rq->next_balance;
7068 }
7069 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007070end:
7071 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007072}
7073
7074/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007075 * Current heuristic for kicking the idle load balancer in the presence
7076 * of an idle cpu is the system.
7077 * - This rq has more than one task.
7078 * - At any scheduler domain level, this cpu's scheduler group has multiple
7079 * busy cpu's exceeding the group's power.
7080 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7081 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007082 */
Daniel Lezcano4a725622014-01-06 12:34:39 +01007083static inline int nohz_kick_needed(struct rq *rq)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007084{
7085 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007086 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307087 struct sched_group_power *sgp;
Daniel Lezcano4a725622014-01-06 12:34:39 +01007088 int nr_busy, cpu = rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007089
Daniel Lezcano4a725622014-01-06 12:34:39 +01007090 if (unlikely(rq->idle_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007091 return 0;
7092
Suresh Siddha1c792db2011-12-01 17:07:32 -08007093 /*
7094 * We may be recently in ticked or tickless idle mode. At the first
7095 * busy tick after returning from idle, we will update the busy stats.
7096 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08007097 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08007098 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007099
7100 /*
7101 * None are in tickless mode and hence no need for NOHZ idle load
7102 * balancing.
7103 */
7104 if (likely(!atomic_read(&nohz.nr_cpus)))
7105 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007106
7107 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007108 return 0;
7109
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007110 if (rq->nr_running >= 2)
7111 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007112
Peter Zijlstra067491b2011-12-07 14:32:08 +01007113 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307114 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007115
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307116 if (sd) {
7117 sgp = sd->groups->sgp;
7118 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7119
7120 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01007121 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007122 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307123
7124 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7125
7126 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7127 sched_domain_span(sd)) < cpu))
7128 goto need_kick_unlock;
7129
Peter Zijlstra067491b2011-12-07 14:32:08 +01007130 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007131 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01007132
7133need_kick_unlock:
7134 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007135need_kick:
7136 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007137}
7138#else
Daniel Lezcano208cb162014-01-06 12:34:44 +01007139static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007140#endif
7141
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007142/*
7143 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007144 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007145 */
7146static void run_rebalance_domains(struct softirq_action *h)
7147{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007148 struct rq *this_rq = this_rq();
Suresh Siddha6eb57e02011-10-03 15:09:01 -07007149 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007150 CPU_IDLE : CPU_NOT_IDLE;
7151
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007152 rebalance_domains(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007153
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007154 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007155 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007156 * balancing on behalf of the other idle cpus whose ticks are
7157 * stopped.
7158 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007159 nohz_idle_balance(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007160}
7161
Daniel Lezcano63f609b2014-01-06 12:34:40 +01007162static inline int on_null_domain(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007163{
Daniel Lezcano63f609b2014-01-06 12:34:40 +01007164 return !rcu_dereference_sched(rq->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007165}
7166
7167/*
7168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007169 */
Daniel Lezcano7caff662014-01-06 12:34:38 +01007170void trigger_load_balance(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007171{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007172 /* Don't need to rebalance while attached to NULL domain */
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007173 if (unlikely(on_null_domain(rq)))
7174 return;
7175
7176 if (time_after_eq(jiffies, rq->next_balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007177 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007178#ifdef CONFIG_NO_HZ_COMMON
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007179 if (nohz_kick_needed(rq))
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007180 nohz_balancer_kick();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007181#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007182}
7183
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007184static void rq_online_fair(struct rq *rq)
7185{
7186 update_sysctl();
7187}
7188
7189static void rq_offline_fair(struct rq *rq)
7190{
7191 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07007192
7193 /* Ensure any throttled groups are reachable by pick_next_task */
7194 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007195}
7196
Dhaval Giani55e12e52008-06-24 23:39:43 +05307197#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02007198
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007199/*
7200 * scheduler tick hitting a task of our scheduling class:
7201 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007202static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007203{
7204 struct cfs_rq *cfs_rq;
7205 struct sched_entity *se = &curr->se;
7206
7207 for_each_sched_entity(se) {
7208 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007209 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007210 }
Ben Segall18bf2802012-10-04 12:51:20 +02007211
Dave Kleikamp10e84b92013-07-31 13:53:35 -07007212 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02007213 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08007214
Ben Segall18bf2802012-10-04 12:51:20 +02007215 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007216}
7217
7218/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007219 * called on fork with the child task as argument from the parent's context
7220 * - child not yet on the tasklist
7221 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007222 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007223static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007224{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007225 struct cfs_rq *cfs_rq;
7226 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02007227 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007228 struct rq *rq = this_rq();
7229 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007230
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007231 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007232
Peter Zijlstra861d0342010-08-19 13:31:43 +02007233 update_rq_clock(rq);
7234
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007235 cfs_rq = task_cfs_rq(current);
7236 curr = cfs_rq->curr;
7237
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09007238 /*
7239 * Not only the cpu but also the task_group of the parent might have
7240 * been changed after parent->se.parent,cfs_rq were copied to
7241 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7242 * of child point to valid ones.
7243 */
7244 rcu_read_lock();
7245 __set_task_cpu(p, this_cpu);
7246 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007247
Ting Yang7109c4422007-08-28 12:53:24 +02007248 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007249
Mike Galbraithb5d9d732009-09-08 11:12:28 +02007250 if (curr)
7251 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02007252 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007253
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007254 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02007255 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02007256 * Upon rescheduling, sched_class::put_prev_task() will place
7257 * 'current' within the tree based on its new key value.
7258 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007259 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05307260 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007261 }
7262
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007263 se->vruntime -= cfs_rq->min_vruntime;
7264
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007265 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007266}
7267
Steven Rostedtcb469842008-01-25 21:08:22 +01007268/*
7269 * Priority of the task has changed. Check to see if we preempt
7270 * the current task.
7271 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007272static void
7273prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01007274{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007275 if (!p->se.on_rq)
7276 return;
7277
Steven Rostedtcb469842008-01-25 21:08:22 +01007278 /*
7279 * Reschedule if we are currently running on this runqueue and
7280 * our priority decreased, or if we are not currently running on
7281 * this runqueue and our priority is higher than the current's
7282 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007283 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01007284 if (p->prio > oldprio)
7285 resched_task(rq->curr);
7286 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007287 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007288}
7289
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007290static void switched_from_fair(struct rq *rq, struct task_struct *p)
7291{
7292 struct sched_entity *se = &p->se;
7293 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7294
7295 /*
7296 * Ensure the task's vruntime is normalized, so that when its
7297 * switched back to the fair class the enqueue_entity(.flags=0) will
7298 * do the right thing.
7299 *
7300 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7301 * have normalized the vruntime, if it was !on_rq, then only when
7302 * the task is sleeping will it still have non-normalized vruntime.
7303 */
7304 if (!se->on_rq && p->state != TASK_RUNNING) {
7305 /*
7306 * Fix up our vruntime so that the current sleep doesn't
7307 * cause 'unlimited' sleep bonus.
7308 */
7309 place_entity(cfs_rq, se, 0);
7310 se->vruntime -= cfs_rq->min_vruntime;
7311 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007312
Alex Shi141965c2013-06-26 13:05:39 +08007313#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007314 /*
7315 * Remove our load from contribution when we leave sched_fair
7316 * and ensure we don't carry in an old decay_count if we
7317 * switch back.
7318 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007319 if (se->avg.decay_count) {
7320 __synchronize_entity_decay(se);
7321 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007322 }
7323#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007324}
7325
Steven Rostedtcb469842008-01-25 21:08:22 +01007326/*
7327 * We switched to the sched_fair class.
7328 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007329static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007330{
Michael wangeb7a59b2014-02-20 11:14:53 +08007331 struct sched_entity *se = &p->se;
7332#ifdef CONFIG_FAIR_GROUP_SCHED
7333 /*
7334 * Since the real-depth could have been changed (only FAIR
7335 * class maintain depth value), reset depth properly.
7336 */
7337 se->depth = se->parent ? se->parent->depth + 1 : 0;
7338#endif
7339 if (!se->on_rq)
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007340 return;
7341
Steven Rostedtcb469842008-01-25 21:08:22 +01007342 /*
7343 * We were most likely switched from sched_rt, so
7344 * kick off the schedule if running, otherwise just see
7345 * if we can still preempt the current task.
7346 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007347 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007348 resched_task(rq->curr);
7349 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007350 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007351}
7352
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007353/* Account for a task changing its policy or group.
7354 *
7355 * This routine is mostly called to set cfs_rq->curr field when a task
7356 * migrates between groups/classes.
7357 */
7358static void set_curr_task_fair(struct rq *rq)
7359{
7360 struct sched_entity *se = &rq->curr->se;
7361
Paul Turnerec12cb72011-07-21 09:43:30 -07007362 for_each_sched_entity(se) {
7363 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7364
7365 set_next_entity(cfs_rq, se);
7366 /* ensure bandwidth has been allocated on our new cfs_rq */
7367 account_cfs_rq_runtime(cfs_rq, 0);
7368 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007369}
7370
Peter Zijlstra029632f2011-10-25 10:00:11 +02007371void init_cfs_rq(struct cfs_rq *cfs_rq)
7372{
7373 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007374 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7375#ifndef CONFIG_64BIT
7376 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7377#endif
Alex Shi141965c2013-06-26 13:05:39 +08007378#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007379 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007380 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007381#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007382}
7383
Peter Zijlstra810b3812008-02-29 15:21:01 -05007384#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007385static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007386{
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007387 struct sched_entity *se = &p->se;
Paul Turneraff3e492012-10-04 13:18:30 +02007388 struct cfs_rq *cfs_rq;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007389
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007390 /*
7391 * If the task was not on the rq at the time of this cgroup movement
7392 * it must have been asleep, sleeping tasks keep their ->vruntime
7393 * absolute on their old rq until wakeup (needed for the fair sleeper
7394 * bonus in place_entity()).
7395 *
7396 * If it was on the rq, we've just 'preempted' it, which does convert
7397 * ->vruntime to a relative base.
7398 *
7399 * Make sure both cases convert their relative position when migrating
7400 * to another cgroup's rq. This does somewhat interfere with the
7401 * fair sleeper stuff for the first placement, but who cares.
7402 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007403 /*
7404 * When !on_rq, vruntime of the task has usually NOT been normalized.
7405 * But there are some cases where it has already been normalized:
7406 *
7407 * - Moving a forked child which is waiting for being woken up by
7408 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007409 * - Moving a task which has been woken up by try_to_wake_up() and
7410 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007411 *
7412 * To prevent boost or penalty in the new cfs_rq caused by delta
7413 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7414 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007415 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007416 on_rq = 1;
7417
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007418 if (!on_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007419 se->vruntime -= cfs_rq_of(se)->min_vruntime;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007420 set_task_rq(p, task_cpu(p));
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007421 se->depth = se->parent ? se->parent->depth + 1 : 0;
Paul Turneraff3e492012-10-04 13:18:30 +02007422 if (!on_rq) {
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007423 cfs_rq = cfs_rq_of(se);
7424 se->vruntime += cfs_rq->min_vruntime;
Paul Turneraff3e492012-10-04 13:18:30 +02007425#ifdef CONFIG_SMP
7426 /*
7427 * migrate_task_rq_fair() will have removed our previous
7428 * contribution, but we must synchronize for ongoing future
7429 * decay.
7430 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007431 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7432 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02007433#endif
7434 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007435}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007436
7437void free_fair_sched_group(struct task_group *tg)
7438{
7439 int i;
7440
7441 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7442
7443 for_each_possible_cpu(i) {
7444 if (tg->cfs_rq)
7445 kfree(tg->cfs_rq[i]);
7446 if (tg->se)
7447 kfree(tg->se[i]);
7448 }
7449
7450 kfree(tg->cfs_rq);
7451 kfree(tg->se);
7452}
7453
7454int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7455{
7456 struct cfs_rq *cfs_rq;
7457 struct sched_entity *se;
7458 int i;
7459
7460 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7461 if (!tg->cfs_rq)
7462 goto err;
7463 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7464 if (!tg->se)
7465 goto err;
7466
7467 tg->shares = NICE_0_LOAD;
7468
7469 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7470
7471 for_each_possible_cpu(i) {
7472 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7473 GFP_KERNEL, cpu_to_node(i));
7474 if (!cfs_rq)
7475 goto err;
7476
7477 se = kzalloc_node(sizeof(struct sched_entity),
7478 GFP_KERNEL, cpu_to_node(i));
7479 if (!se)
7480 goto err_free_rq;
7481
7482 init_cfs_rq(cfs_rq);
7483 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7484 }
7485
7486 return 1;
7487
7488err_free_rq:
7489 kfree(cfs_rq);
7490err:
7491 return 0;
7492}
7493
7494void unregister_fair_sched_group(struct task_group *tg, int cpu)
7495{
7496 struct rq *rq = cpu_rq(cpu);
7497 unsigned long flags;
7498
7499 /*
7500 * Only empty task groups can be destroyed; so we can speculatively
7501 * check on_list without danger of it being re-added.
7502 */
7503 if (!tg->cfs_rq[cpu]->on_list)
7504 return;
7505
7506 raw_spin_lock_irqsave(&rq->lock, flags);
7507 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7508 raw_spin_unlock_irqrestore(&rq->lock, flags);
7509}
7510
7511void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7512 struct sched_entity *se, int cpu,
7513 struct sched_entity *parent)
7514{
7515 struct rq *rq = cpu_rq(cpu);
7516
7517 cfs_rq->tg = tg;
7518 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007519 init_cfs_rq_runtime(cfs_rq);
7520
7521 tg->cfs_rq[cpu] = cfs_rq;
7522 tg->se[cpu] = se;
7523
7524 /* se could be NULL for root_task_group */
7525 if (!se)
7526 return;
7527
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007528 if (!parent) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007529 se->cfs_rq = &rq->cfs;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007530 se->depth = 0;
7531 } else {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007532 se->cfs_rq = parent->my_q;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007533 se->depth = parent->depth + 1;
7534 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02007535
7536 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007537 /* guarantee group entities always have weight */
7538 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007539 se->parent = parent;
7540}
7541
7542static DEFINE_MUTEX(shares_mutex);
7543
7544int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7545{
7546 int i;
7547 unsigned long flags;
7548
7549 /*
7550 * We can't change the weight of the root cgroup.
7551 */
7552 if (!tg->se[0])
7553 return -EINVAL;
7554
7555 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7556
7557 mutex_lock(&shares_mutex);
7558 if (tg->shares == shares)
7559 goto done;
7560
7561 tg->shares = shares;
7562 for_each_possible_cpu(i) {
7563 struct rq *rq = cpu_rq(i);
7564 struct sched_entity *se;
7565
7566 se = tg->se[i];
7567 /* Propagate contribution to hierarchy */
7568 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007569
7570 /* Possible calls to update_curr() need rq clock */
7571 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007572 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007573 update_cfs_shares(group_cfs_rq(se));
7574 raw_spin_unlock_irqrestore(&rq->lock, flags);
7575 }
7576
7577done:
7578 mutex_unlock(&shares_mutex);
7579 return 0;
7580}
7581#else /* CONFIG_FAIR_GROUP_SCHED */
7582
7583void free_fair_sched_group(struct task_group *tg) { }
7584
7585int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7586{
7587 return 1;
7588}
7589
7590void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7591
7592#endif /* CONFIG_FAIR_GROUP_SCHED */
7593
Peter Zijlstra810b3812008-02-29 15:21:01 -05007594
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007595static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007596{
7597 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007598 unsigned int rr_interval = 0;
7599
7600 /*
7601 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7602 * idle runqueue:
7603 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007604 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007605 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007606
7607 return rr_interval;
7608}
7609
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007610/*
7611 * All the scheduling class methods:
7612 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007613const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007614 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007615 .enqueue_task = enqueue_task_fair,
7616 .dequeue_task = dequeue_task_fair,
7617 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007618 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007619
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007620 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007621
7622 .pick_next_task = pick_next_task_fair,
7623 .put_prev_task = put_prev_task_fair,
7624
Peter Williams681f3e62007-10-24 18:23:51 +02007625#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007626 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007627 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007628
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007629 .rq_online = rq_online_fair,
7630 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007631
7632 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007633#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007634
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007635 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007636 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007637 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007638
7639 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007640 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007641 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007642
Peter Williams0d721ce2009-09-21 01:31:53 +00007643 .get_rr_interval = get_rr_interval_fair,
7644
Peter Zijlstra810b3812008-02-29 15:21:01 -05007645#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007646 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007647#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007648};
7649
7650#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007651void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007652{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007653 struct cfs_rq *cfs_rq;
7654
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007655 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007656 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007657 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007658 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007659}
7660#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007661
7662__init void init_sched_fair_class(void)
7663{
7664#ifdef CONFIG_SMP
7665 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7666
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007667#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007668 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007669 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007670 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007671#endif
7672#endif /* SMP */
7673
7674}