blob: 4aa0b10889d004b212c8d93a90cb48de8707f54d [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
Mel Gorman598f0ec2013-10-07 11:28:55 +0100844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100897
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100915 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100916 struct list_head task_list;
917
918 struct rcu_head rcu;
Mel Gorman989348b2013-10-07 11:29:40 +0100919 unsigned long total_faults;
920 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100921};
922
Mel Gormane29cf082013-10-07 11:29:22 +0100923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
Mel Gormanac8e8952013-10-07 11:29:03 +0100928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
Mel Gorman989348b2013-10-07 11:29:40 +0100947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
Mel Gorman989348b2013-10-07 11:29:40 +0100973 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100974 return 0;
975
Mel Gorman989348b2013-10-07 11:29:40 +0100976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100977}
978
Mel Gormane6628d52013-10-07 11:29:02 +0100979static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100984
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100985/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100986struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100988 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996};
Mel Gormane6628d52013-10-07 11:29:02 +0100997
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
Mel Gorman58d081b2013-10-07 11:29:10 +01001019struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001031 int best_cpu;
1032};
1033
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
Rik van Riel887c2902013-10-07 11:29:31 +01001053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001061 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
Rik van Riel887c2902013-10-07 11:29:31 +01001080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa532013-10-07 11:29:32 +01001082 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001083 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001084 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
Rik van Rielca28aa532013-10-07 11:29:32 +01001087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001093 } else {
Rik van Rielca28aa532013-10-07 11:29:32 +01001094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001110 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001171 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001172 }
1173}
1174
Mel Gorman58d081b2013-10-07 11:29:10 +01001175static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001176{
Mel Gorman58d081b2013-10-07 11:29:10 +01001177 struct task_numa_env env = {
1178 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
Mel Gorman58d081b2013-10-07 11:29:10 +01001180 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001181 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 };
1189 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001190 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001191 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001192 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001193
Mel Gorman58d081b2013-10-07 11:29:10 +01001194 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001201 */
Mel Gormane6628d52013-10-07 11:29:02 +01001202 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001205 rcu_read_unlock();
1206
Rik van Riel887c2902013-10-07 11:29:31 +01001207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001209 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001210 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001214
Rik van Riele1dda8a2013-10-07 11:29:19 +01001215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001217 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001223 continue;
1224
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001225 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001229 continue;
1230
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001233 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001234 }
1235 }
1236
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001241 sched_setnuma(p, env.dst_nid);
1242
Rik van Riel04bb2f92013-10-07 11:29:36 +01001243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001257}
1258
Mel Gorman6b9a7462013-10-07 11:29:11 +01001259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
Rik van Riel2739d3e2013-10-07 11:29:41 +01001262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1264 return;
1265
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
Mel Gorman6b9a7462013-10-07 11:29:11 +01001269 /* Success if task is already running on preferred CPU */
Rik van Riel1e3646f2013-10-07 11:29:38 +01001270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001271 return;
1272
Mel Gorman6b9a7462013-10-07 11:29:11 +01001273 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001274 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001275}
1276
Rik van Riel04bb2f92013-10-07 11:29:36 +01001277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001352static void task_numa_placement(struct task_struct *p)
1353{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001356 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001357 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001358
Hugh Dickins2832bc12012-12-19 17:42:16 -08001359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001363 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001364
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
Mel Gorman688b7582013-10-07 11:28:58 +01001371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001373 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001374 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001375
Mel Gormanac8e8952013-10-07 11:29:03 +01001376 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001377 long diff;
1378
Mel Gormanac8e8952013-10-07 11:29:03 +01001379 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001380 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001381
Mel Gormanac8e8952013-10-07 11:29:03 +01001382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001385 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001386 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001387
1388 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001389 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001390 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001396 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001397 }
1398
Mel Gorman688b7582013-10-07 11:28:58 +01001399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
Rik van Riel04bb2f92013-10-07 11:29:36 +01001410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001419
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001426 }
1427 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001428
1429 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001430 }
1431
Mel Gorman6b9a7462013-10-07 11:29:11 +01001432 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001433 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001434 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001435 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001436 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001437 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001438}
1439
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
1451static void double_lock(spinlock_t *l1, spinlock_t *l2)
1452{
1453 if (l1 > l2)
1454 swap(l1, l2);
1455
1456 spin_lock(l1);
1457 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1458}
1459
Mel Gorman3e6a9412013-10-07 11:29:35 +01001460static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1461 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001462{
1463 struct numa_group *grp, *my_grp;
1464 struct task_struct *tsk;
1465 bool join = false;
1466 int cpu = cpupid_to_cpu(cpupid);
1467 int i;
1468
1469 if (unlikely(!p->numa_group)) {
1470 unsigned int size = sizeof(struct numa_group) +
Mel Gorman989348b2013-10-07 11:29:40 +01001471 2*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001472
1473 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1474 if (!grp)
1475 return;
1476
1477 atomic_set(&grp->refcount, 1);
1478 spin_lock_init(&grp->lock);
1479 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001480 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001481
1482 for (i = 0; i < 2*nr_node_ids; i++)
Mel Gorman989348b2013-10-07 11:29:40 +01001483 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001484
Mel Gorman989348b2013-10-07 11:29:40 +01001485 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001486
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001487 list_add(&p->numa_entry, &grp->task_list);
1488 grp->nr_tasks++;
1489 rcu_assign_pointer(p->numa_group, grp);
1490 }
1491
1492 rcu_read_lock();
1493 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1494
1495 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001496 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001497
1498 grp = rcu_dereference(tsk->numa_group);
1499 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001500 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001501
1502 my_grp = p->numa_group;
1503 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001504 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001505
1506 /*
1507 * Only join the other group if its bigger; if we're the bigger group,
1508 * the other task will join us.
1509 */
1510 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001511 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001512
1513 /*
1514 * Tie-break on the grp address.
1515 */
1516 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001517 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001518
Rik van Rieldabe1d92013-10-07 11:29:34 +01001519 /* Always join threads in the same process. */
1520 if (tsk->mm == current->mm)
1521 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001522
Rik van Rieldabe1d92013-10-07 11:29:34 +01001523 /* Simple filter to avoid false positives due to PID collisions */
1524 if (flags & TNF_SHARED)
1525 join = true;
1526
Mel Gorman3e6a9412013-10-07 11:29:35 +01001527 /* Update priv based on whether false sharing was detected */
1528 *priv = !join;
1529
Rik van Rieldabe1d92013-10-07 11:29:34 +01001530 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001531 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001532
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001533 rcu_read_unlock();
1534
1535 if (!join)
1536 return;
1537
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001538 double_lock(&my_grp->lock, &grp->lock);
1539
Mel Gorman989348b2013-10-07 11:29:40 +01001540 for (i = 0; i < 2*nr_node_ids; i++) {
1541 my_grp->faults[i] -= p->numa_faults[i];
1542 grp->faults[i] += p->numa_faults[i];
1543 }
1544 my_grp->total_faults -= p->total_numa_faults;
1545 grp->total_faults += p->total_numa_faults;
1546
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001547 list_move(&p->numa_entry, &grp->task_list);
1548 my_grp->nr_tasks--;
1549 grp->nr_tasks++;
1550
1551 spin_unlock(&my_grp->lock);
1552 spin_unlock(&grp->lock);
1553
1554 rcu_assign_pointer(p->numa_group, grp);
1555
1556 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001557 return;
1558
1559no_join:
1560 rcu_read_unlock();
1561 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001562}
1563
1564void task_numa_free(struct task_struct *p)
1565{
1566 struct numa_group *grp = p->numa_group;
1567 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001568 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001569
1570 if (grp) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001571 spin_lock(&grp->lock);
Mel Gorman989348b2013-10-07 11:29:40 +01001572 for (i = 0; i < 2*nr_node_ids; i++)
1573 grp->faults[i] -= p->numa_faults[i];
1574 grp->total_faults -= p->total_numa_faults;
1575
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001576 list_del(&p->numa_entry);
1577 grp->nr_tasks--;
1578 spin_unlock(&grp->lock);
1579 rcu_assign_pointer(p->numa_group, NULL);
1580 put_numa_group(grp);
1581 }
1582
Rik van Riel82727012013-10-07 11:29:28 +01001583 p->numa_faults = NULL;
1584 p->numa_faults_buffer = NULL;
1585 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001586}
1587
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001588/*
1589 * Got a PROT_NONE fault for a page on @node.
1590 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001591void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001592{
1593 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001594 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001595 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001596
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001597 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001598 return;
1599
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001600 /* for example, ksmd faulting in a user's mm */
1601 if (!p->mm)
1602 return;
1603
Rik van Riel82727012013-10-07 11:29:28 +01001604 /* Do not worry about placement if exiting */
1605 if (p->state == TASK_DEAD)
1606 return;
1607
Mel Gormanf809ca92013-10-07 11:28:57 +01001608 /* Allocate buffer to track faults on a per-node basis */
1609 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001610 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001611
Mel Gorman745d6142013-10-07 11:28:59 +01001612 /* numa_faults and numa_faults_buffer share the allocation */
1613 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001614 if (!p->numa_faults)
1615 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001616
1617 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001618 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001619 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001620 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001621 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001622
Mel Gormanfb003b82012-11-15 09:01:14 +00001623 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001624 * First accesses are treated as private, otherwise consider accesses
1625 * to be private if the accessing pid has not changed
1626 */
1627 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1628 priv = 1;
1629 } else {
1630 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001631 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001632 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001633 }
1634
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001635 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001636
Rik van Riel2739d3e2013-10-07 11:29:41 +01001637 /*
1638 * Retry task to preferred node migration periodically, in case it
1639 * case it previously failed, or the scheduler moved us.
1640 */
1641 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001642 numa_migrate_preferred(p);
1643
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001644 if (migrated)
1645 p->numa_pages_migrated += pages;
1646
Mel Gormanac8e8952013-10-07 11:29:03 +01001647 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001648 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001649}
1650
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001651static void reset_ptenuma_scan(struct task_struct *p)
1652{
1653 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1654 p->mm->numa_scan_offset = 0;
1655}
1656
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001657/*
1658 * The expensive part of numa migration is done from task_work context.
1659 * Triggered from task_tick_numa().
1660 */
1661void task_numa_work(struct callback_head *work)
1662{
1663 unsigned long migrate, next_scan, now = jiffies;
1664 struct task_struct *p = current;
1665 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001666 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001667 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001668 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001669 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001670
1671 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1672
1673 work->next = work; /* protect against double add */
1674 /*
1675 * Who cares about NUMA placement when they're dying.
1676 *
1677 * NOTE: make sure not to dereference p->mm before this check,
1678 * exit_task_work() happens _after_ exit_mm() so we could be called
1679 * without p->mm even though we still had it when we enqueued this
1680 * work.
1681 */
1682 if (p->flags & PF_EXITING)
1683 return;
1684
Mel Gorman930aa172013-10-07 11:29:37 +01001685 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001686 mm->numa_next_scan = now +
1687 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001688 }
1689
1690 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001691 * Enforce maximal scan/migration frequency..
1692 */
1693 migrate = mm->numa_next_scan;
1694 if (time_before(now, migrate))
1695 return;
1696
Mel Gorman598f0ec2013-10-07 11:28:55 +01001697 if (p->numa_scan_period == 0) {
1698 p->numa_scan_period_max = task_scan_max(p);
1699 p->numa_scan_period = task_scan_min(p);
1700 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001701
Mel Gormanfb003b82012-11-15 09:01:14 +00001702 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001703 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1704 return;
1705
Mel Gormane14808b2012-11-19 10:59:15 +00001706 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001707 * Delay this task enough that another task of this mm will likely win
1708 * the next time around.
1709 */
1710 p->node_stamp += 2 * TICK_NSEC;
1711
Mel Gorman9f406042012-11-14 18:34:32 +00001712 start = mm->numa_scan_offset;
1713 pages = sysctl_numa_balancing_scan_size;
1714 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1715 if (!pages)
1716 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001717
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001718 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001719 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001720 if (!vma) {
1721 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001722 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001723 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001724 }
Mel Gorman9f406042012-11-14 18:34:32 +00001725 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001726 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001727 continue;
1728
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001729 /*
1730 * Shared library pages mapped by multiple processes are not
1731 * migrated as it is expected they are cache replicated. Avoid
1732 * hinting faults in read-only file-backed mappings or the vdso
1733 * as migrating the pages will be of marginal benefit.
1734 */
1735 if (!vma->vm_mm ||
1736 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1737 continue;
1738
Mel Gorman9f406042012-11-14 18:34:32 +00001739 do {
1740 start = max(start, vma->vm_start);
1741 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1742 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001743 nr_pte_updates += change_prot_numa(vma, start, end);
1744
1745 /*
1746 * Scan sysctl_numa_balancing_scan_size but ensure that
1747 * at least one PTE is updated so that unused virtual
1748 * address space is quickly skipped.
1749 */
1750 if (nr_pte_updates)
1751 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001752
Mel Gorman9f406042012-11-14 18:34:32 +00001753 start = end;
1754 if (pages <= 0)
1755 goto out;
1756 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001757 }
1758
Mel Gorman9f406042012-11-14 18:34:32 +00001759out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001760 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001761 * It is possible to reach the end of the VMA list but the last few
1762 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1763 * would find the !migratable VMA on the next scan but not reset the
1764 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001765 */
1766 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001767 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001768 else
1769 reset_ptenuma_scan(p);
1770 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001771}
1772
1773/*
1774 * Drive the periodic memory faults..
1775 */
1776void task_tick_numa(struct rq *rq, struct task_struct *curr)
1777{
1778 struct callback_head *work = &curr->numa_work;
1779 u64 period, now;
1780
1781 /*
1782 * We don't care about NUMA placement if we don't have memory.
1783 */
1784 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1785 return;
1786
1787 /*
1788 * Using runtime rather than walltime has the dual advantage that
1789 * we (mostly) drive the selection from busy threads and that the
1790 * task needs to have done some actual work before we bother with
1791 * NUMA placement.
1792 */
1793 now = curr->se.sum_exec_runtime;
1794 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1795
1796 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001797 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001798 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001799 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001800
1801 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1802 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1803 task_work_add(curr, work, true);
1804 }
1805 }
1806}
1807#else
1808static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1809{
1810}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001811
1812static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1817{
1818}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001819#endif /* CONFIG_NUMA_BALANCING */
1820
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001821static void
1822account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1823{
1824 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001825 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001826 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001827#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001828 if (entity_is_task(se)) {
1829 struct rq *rq = rq_of(cfs_rq);
1830
1831 account_numa_enqueue(rq, task_of(se));
1832 list_add(&se->group_node, &rq->cfs_tasks);
1833 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001834#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001835 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001836}
1837
1838static void
1839account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1840{
1841 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001842 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001843 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001844 if (entity_is_task(se)) {
1845 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301846 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001847 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001848 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001849}
1850
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001851#ifdef CONFIG_FAIR_GROUP_SCHED
1852# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001853static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1854{
1855 long tg_weight;
1856
1857 /*
1858 * Use this CPU's actual weight instead of the last load_contribution
1859 * to gain a more accurate current total weight. See
1860 * update_cfs_rq_load_contribution().
1861 */
Alex Shibf5b9862013-06-20 10:18:54 +08001862 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001863 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001864 tg_weight += cfs_rq->load.weight;
1865
1866 return tg_weight;
1867}
1868
Paul Turner6d5ab292011-01-21 20:45:01 -08001869static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001870{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001871 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001872
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001873 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001874 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001875
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001876 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001877 if (tg_weight)
1878 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001879
1880 if (shares < MIN_SHARES)
1881 shares = MIN_SHARES;
1882 if (shares > tg->shares)
1883 shares = tg->shares;
1884
1885 return shares;
1886}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001887# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001888static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001889{
1890 return tg->shares;
1891}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001892# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001893static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1894 unsigned long weight)
1895{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001896 if (se->on_rq) {
1897 /* commit outstanding execution time */
1898 if (cfs_rq->curr == se)
1899 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001900 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001901 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001902
1903 update_load_set(&se->load, weight);
1904
1905 if (se->on_rq)
1906 account_entity_enqueue(cfs_rq, se);
1907}
1908
Paul Turner82958362012-10-04 13:18:31 +02001909static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1910
Paul Turner6d5ab292011-01-21 20:45:01 -08001911static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001912{
1913 struct task_group *tg;
1914 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001915 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001916
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001917 tg = cfs_rq->tg;
1918 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001919 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001920 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001921#ifndef CONFIG_SMP
1922 if (likely(se->load.weight == tg->shares))
1923 return;
1924#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001925 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001926
1927 reweight_entity(cfs_rq_of(se), se, shares);
1928}
1929#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001930static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001931{
1932}
1933#endif /* CONFIG_FAIR_GROUP_SCHED */
1934
Alex Shi141965c2013-06-26 13:05:39 +08001935#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001936/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001937 * We choose a half-life close to 1 scheduling period.
1938 * Note: The tables below are dependent on this value.
1939 */
1940#define LOAD_AVG_PERIOD 32
1941#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1942#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1943
1944/* Precomputed fixed inverse multiplies for multiplication by y^n */
1945static const u32 runnable_avg_yN_inv[] = {
1946 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1947 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1948 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1949 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1950 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1951 0x85aac367, 0x82cd8698,
1952};
1953
1954/*
1955 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1956 * over-estimates when re-combining.
1957 */
1958static const u32 runnable_avg_yN_sum[] = {
1959 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1960 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1961 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1962};
1963
1964/*
Paul Turner9d85f212012-10-04 13:18:29 +02001965 * Approximate:
1966 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1967 */
1968static __always_inline u64 decay_load(u64 val, u64 n)
1969{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001970 unsigned int local_n;
1971
1972 if (!n)
1973 return val;
1974 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1975 return 0;
1976
1977 /* after bounds checking we can collapse to 32-bit */
1978 local_n = n;
1979
1980 /*
1981 * As y^PERIOD = 1/2, we can combine
1982 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1983 * With a look-up table which covers k^n (n<PERIOD)
1984 *
1985 * To achieve constant time decay_load.
1986 */
1987 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1988 val >>= local_n / LOAD_AVG_PERIOD;
1989 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001990 }
1991
Paul Turner5b51f2f2012-10-04 13:18:32 +02001992 val *= runnable_avg_yN_inv[local_n];
1993 /* We don't use SRR here since we always want to round down. */
1994 return val >> 32;
1995}
1996
1997/*
1998 * For updates fully spanning n periods, the contribution to runnable
1999 * average will be: \Sum 1024*y^n
2000 *
2001 * We can compute this reasonably efficiently by combining:
2002 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2003 */
2004static u32 __compute_runnable_contrib(u64 n)
2005{
2006 u32 contrib = 0;
2007
2008 if (likely(n <= LOAD_AVG_PERIOD))
2009 return runnable_avg_yN_sum[n];
2010 else if (unlikely(n >= LOAD_AVG_MAX_N))
2011 return LOAD_AVG_MAX;
2012
2013 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2014 do {
2015 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2016 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2017
2018 n -= LOAD_AVG_PERIOD;
2019 } while (n > LOAD_AVG_PERIOD);
2020
2021 contrib = decay_load(contrib, n);
2022 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002023}
2024
2025/*
2026 * We can represent the historical contribution to runnable average as the
2027 * coefficients of a geometric series. To do this we sub-divide our runnable
2028 * history into segments of approximately 1ms (1024us); label the segment that
2029 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2030 *
2031 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2032 * p0 p1 p2
2033 * (now) (~1ms ago) (~2ms ago)
2034 *
2035 * Let u_i denote the fraction of p_i that the entity was runnable.
2036 *
2037 * We then designate the fractions u_i as our co-efficients, yielding the
2038 * following representation of historical load:
2039 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2040 *
2041 * We choose y based on the with of a reasonably scheduling period, fixing:
2042 * y^32 = 0.5
2043 *
2044 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2045 * approximately half as much as the contribution to load within the last ms
2046 * (u_0).
2047 *
2048 * When a period "rolls over" and we have new u_0`, multiplying the previous
2049 * sum again by y is sufficient to update:
2050 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2051 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2052 */
2053static __always_inline int __update_entity_runnable_avg(u64 now,
2054 struct sched_avg *sa,
2055 int runnable)
2056{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002057 u64 delta, periods;
2058 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002059 int delta_w, decayed = 0;
2060
2061 delta = now - sa->last_runnable_update;
2062 /*
2063 * This should only happen when time goes backwards, which it
2064 * unfortunately does during sched clock init when we swap over to TSC.
2065 */
2066 if ((s64)delta < 0) {
2067 sa->last_runnable_update = now;
2068 return 0;
2069 }
2070
2071 /*
2072 * Use 1024ns as the unit of measurement since it's a reasonable
2073 * approximation of 1us and fast to compute.
2074 */
2075 delta >>= 10;
2076 if (!delta)
2077 return 0;
2078 sa->last_runnable_update = now;
2079
2080 /* delta_w is the amount already accumulated against our next period */
2081 delta_w = sa->runnable_avg_period % 1024;
2082 if (delta + delta_w >= 1024) {
2083 /* period roll-over */
2084 decayed = 1;
2085
2086 /*
2087 * Now that we know we're crossing a period boundary, figure
2088 * out how much from delta we need to complete the current
2089 * period and accrue it.
2090 */
2091 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002092 if (runnable)
2093 sa->runnable_avg_sum += delta_w;
2094 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002095
Paul Turner5b51f2f2012-10-04 13:18:32 +02002096 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002097
Paul Turner5b51f2f2012-10-04 13:18:32 +02002098 /* Figure out how many additional periods this update spans */
2099 periods = delta / 1024;
2100 delta %= 1024;
2101
2102 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2103 periods + 1);
2104 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2105 periods + 1);
2106
2107 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2108 runnable_contrib = __compute_runnable_contrib(periods);
2109 if (runnable)
2110 sa->runnable_avg_sum += runnable_contrib;
2111 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002112 }
2113
2114 /* Remainder of delta accrued against u_0` */
2115 if (runnable)
2116 sa->runnable_avg_sum += delta;
2117 sa->runnable_avg_period += delta;
2118
2119 return decayed;
2120}
2121
Paul Turner9ee474f2012-10-04 13:18:30 +02002122/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002123static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002124{
2125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2126 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2127
2128 decays -= se->avg.decay_count;
2129 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002130 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002131
2132 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2133 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002134
2135 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002136}
2137
Paul Turnerc566e8e2012-10-04 13:18:30 +02002138#ifdef CONFIG_FAIR_GROUP_SCHED
2139static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2140 int force_update)
2141{
2142 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002143 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002144
2145 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2146 tg_contrib -= cfs_rq->tg_load_contrib;
2147
Alex Shibf5b9862013-06-20 10:18:54 +08002148 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2149 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002150 cfs_rq->tg_load_contrib += tg_contrib;
2151 }
2152}
Paul Turner8165e142012-10-04 13:18:31 +02002153
Paul Turnerbb17f652012-10-04 13:18:31 +02002154/*
2155 * Aggregate cfs_rq runnable averages into an equivalent task_group
2156 * representation for computing load contributions.
2157 */
2158static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2159 struct cfs_rq *cfs_rq)
2160{
2161 struct task_group *tg = cfs_rq->tg;
2162 long contrib;
2163
2164 /* The fraction of a cpu used by this cfs_rq */
2165 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2166 sa->runnable_avg_period + 1);
2167 contrib -= cfs_rq->tg_runnable_contrib;
2168
2169 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2170 atomic_add(contrib, &tg->runnable_avg);
2171 cfs_rq->tg_runnable_contrib += contrib;
2172 }
2173}
2174
Paul Turner8165e142012-10-04 13:18:31 +02002175static inline void __update_group_entity_contrib(struct sched_entity *se)
2176{
2177 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2178 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002179 int runnable_avg;
2180
Paul Turner8165e142012-10-04 13:18:31 +02002181 u64 contrib;
2182
2183 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002184 se->avg.load_avg_contrib = div_u64(contrib,
2185 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002186
2187 /*
2188 * For group entities we need to compute a correction term in the case
2189 * that they are consuming <1 cpu so that we would contribute the same
2190 * load as a task of equal weight.
2191 *
2192 * Explicitly co-ordinating this measurement would be expensive, but
2193 * fortunately the sum of each cpus contribution forms a usable
2194 * lower-bound on the true value.
2195 *
2196 * Consider the aggregate of 2 contributions. Either they are disjoint
2197 * (and the sum represents true value) or they are disjoint and we are
2198 * understating by the aggregate of their overlap.
2199 *
2200 * Extending this to N cpus, for a given overlap, the maximum amount we
2201 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2202 * cpus that overlap for this interval and w_i is the interval width.
2203 *
2204 * On a small machine; the first term is well-bounded which bounds the
2205 * total error since w_i is a subset of the period. Whereas on a
2206 * larger machine, while this first term can be larger, if w_i is the
2207 * of consequential size guaranteed to see n_i*w_i quickly converge to
2208 * our upper bound of 1-cpu.
2209 */
2210 runnable_avg = atomic_read(&tg->runnable_avg);
2211 if (runnable_avg < NICE_0_LOAD) {
2212 se->avg.load_avg_contrib *= runnable_avg;
2213 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2214 }
Paul Turner8165e142012-10-04 13:18:31 +02002215}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002216#else
2217static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2218 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002219static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2220 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002221static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002222#endif
2223
Paul Turner8165e142012-10-04 13:18:31 +02002224static inline void __update_task_entity_contrib(struct sched_entity *se)
2225{
2226 u32 contrib;
2227
2228 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2229 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2230 contrib /= (se->avg.runnable_avg_period + 1);
2231 se->avg.load_avg_contrib = scale_load(contrib);
2232}
2233
Paul Turner2dac7542012-10-04 13:18:30 +02002234/* Compute the current contribution to load_avg by se, return any delta */
2235static long __update_entity_load_avg_contrib(struct sched_entity *se)
2236{
2237 long old_contrib = se->avg.load_avg_contrib;
2238
Paul Turner8165e142012-10-04 13:18:31 +02002239 if (entity_is_task(se)) {
2240 __update_task_entity_contrib(se);
2241 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002242 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002243 __update_group_entity_contrib(se);
2244 }
Paul Turner2dac7542012-10-04 13:18:30 +02002245
2246 return se->avg.load_avg_contrib - old_contrib;
2247}
2248
Paul Turner9ee474f2012-10-04 13:18:30 +02002249static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2250 long load_contrib)
2251{
2252 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2253 cfs_rq->blocked_load_avg -= load_contrib;
2254 else
2255 cfs_rq->blocked_load_avg = 0;
2256}
2257
Paul Turnerf1b17282012-10-04 13:18:31 +02002258static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2259
Paul Turner9d85f212012-10-04 13:18:29 +02002260/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002261static inline void update_entity_load_avg(struct sched_entity *se,
2262 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002263{
Paul Turner2dac7542012-10-04 13:18:30 +02002264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2265 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002266 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002267
Paul Turnerf1b17282012-10-04 13:18:31 +02002268 /*
2269 * For a group entity we need to use their owned cfs_rq_clock_task() in
2270 * case they are the parent of a throttled hierarchy.
2271 */
2272 if (entity_is_task(se))
2273 now = cfs_rq_clock_task(cfs_rq);
2274 else
2275 now = cfs_rq_clock_task(group_cfs_rq(se));
2276
2277 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002278 return;
2279
2280 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002281
2282 if (!update_cfs_rq)
2283 return;
2284
Paul Turner2dac7542012-10-04 13:18:30 +02002285 if (se->on_rq)
2286 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002287 else
2288 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2289}
2290
2291/*
2292 * Decay the load contributed by all blocked children and account this so that
2293 * their contribution may appropriately discounted when they wake up.
2294 */
Paul Turneraff3e492012-10-04 13:18:30 +02002295static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002296{
Paul Turnerf1b17282012-10-04 13:18:31 +02002297 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002298 u64 decays;
2299
2300 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002301 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002302 return;
2303
Alex Shi25099402013-06-20 10:18:55 +08002304 if (atomic_long_read(&cfs_rq->removed_load)) {
2305 unsigned long removed_load;
2306 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002307 subtract_blocked_load_contrib(cfs_rq, removed_load);
2308 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002309
Paul Turneraff3e492012-10-04 13:18:30 +02002310 if (decays) {
2311 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2312 decays);
2313 atomic64_add(decays, &cfs_rq->decay_counter);
2314 cfs_rq->last_decay = now;
2315 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002316
2317 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002318}
Ben Segall18bf2802012-10-04 12:51:20 +02002319
2320static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2321{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002322 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002323 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002324}
Paul Turner2dac7542012-10-04 13:18:30 +02002325
2326/* Add the load generated by se into cfs_rq's child load-average */
2327static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002328 struct sched_entity *se,
2329 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002330{
Paul Turneraff3e492012-10-04 13:18:30 +02002331 /*
2332 * We track migrations using entity decay_count <= 0, on a wake-up
2333 * migration we use a negative decay count to track the remote decays
2334 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002335 *
2336 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2337 * are seen by enqueue_entity_load_avg() as a migration with an already
2338 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002339 */
2340 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002341 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002342 if (se->avg.decay_count) {
2343 /*
2344 * In a wake-up migration we have to approximate the
2345 * time sleeping. This is because we can't synchronize
2346 * clock_task between the two cpus, and it is not
2347 * guaranteed to be read-safe. Instead, we can
2348 * approximate this using our carried decays, which are
2349 * explicitly atomically readable.
2350 */
2351 se->avg.last_runnable_update -= (-se->avg.decay_count)
2352 << 20;
2353 update_entity_load_avg(se, 0);
2354 /* Indicate that we're now synchronized and on-rq */
2355 se->avg.decay_count = 0;
2356 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002357 wakeup = 0;
2358 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002359 /*
2360 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2361 * would have made count negative); we must be careful to avoid
2362 * double-accounting blocked time after synchronizing decays.
2363 */
2364 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2365 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002366 }
2367
Paul Turneraff3e492012-10-04 13:18:30 +02002368 /* migrated tasks did not contribute to our blocked load */
2369 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002370 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002371 update_entity_load_avg(se, 0);
2372 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002373
Paul Turner2dac7542012-10-04 13:18:30 +02002374 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002377}
2378
Paul Turner9ee474f2012-10-04 13:18:30 +02002379/*
2380 * Remove se's load from this cfs_rq child load-average, if the entity is
2381 * transitioning to a blocked state we track its projected decay using
2382 * blocked_load_avg.
2383 */
Paul Turner2dac7542012-10-04 13:18:30 +02002384static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002385 struct sched_entity *se,
2386 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002387{
Paul Turner9ee474f2012-10-04 13:18:30 +02002388 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002389 /* we force update consideration on load-balancer moves */
2390 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002391
Paul Turner2dac7542012-10-04 13:18:30 +02002392 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002393 if (sleep) {
2394 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2395 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2396 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002397}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002398
2399/*
2400 * Update the rq's load with the elapsed running time before entering
2401 * idle. if the last scheduled task is not a CFS task, idle_enter will
2402 * be the only way to update the runnable statistic.
2403 */
2404void idle_enter_fair(struct rq *this_rq)
2405{
2406 update_rq_runnable_avg(this_rq, 1);
2407}
2408
2409/*
2410 * Update the rq's load with the elapsed idle time before a task is
2411 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2412 * be the only way to update the runnable statistic.
2413 */
2414void idle_exit_fair(struct rq *this_rq)
2415{
2416 update_rq_runnable_avg(this_rq, 0);
2417}
2418
Paul Turner9d85f212012-10-04 13:18:29 +02002419#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002420static inline void update_entity_load_avg(struct sched_entity *se,
2421 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002422static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002423static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002424 struct sched_entity *se,
2425 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002426static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002427 struct sched_entity *se,
2428 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002429static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2430 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002431#endif
2432
Ingo Molnar2396af62007-08-09 11:16:48 +02002433static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002434{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002435#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002436 struct task_struct *tsk = NULL;
2437
2438 if (entity_is_task(se))
2439 tsk = task_of(se);
2440
Lucas De Marchi41acab82010-03-10 23:37:45 -03002441 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002442 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002443
2444 if ((s64)delta < 0)
2445 delta = 0;
2446
Lucas De Marchi41acab82010-03-10 23:37:45 -03002447 if (unlikely(delta > se->statistics.sleep_max))
2448 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002449
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002450 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002451 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002452
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002453 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002454 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002455 trace_sched_stat_sleep(tsk, delta);
2456 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002457 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002458 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002459 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002460
2461 if ((s64)delta < 0)
2462 delta = 0;
2463
Lucas De Marchi41acab82010-03-10 23:37:45 -03002464 if (unlikely(delta > se->statistics.block_max))
2465 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002466
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002467 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002468 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002469
Peter Zijlstrae4143142009-07-23 20:13:26 +02002470 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002471 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002472 se->statistics.iowait_sum += delta;
2473 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002474 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002475 }
2476
Andrew Vaginb781a602011-11-28 12:03:35 +03002477 trace_sched_stat_blocked(tsk, delta);
2478
Peter Zijlstrae4143142009-07-23 20:13:26 +02002479 /*
2480 * Blocking time is in units of nanosecs, so shift by
2481 * 20 to get a milliseconds-range estimation of the
2482 * amount of time that the task spent sleeping:
2483 */
2484 if (unlikely(prof_on == SLEEP_PROFILING)) {
2485 profile_hits(SLEEP_PROFILING,
2486 (void *)get_wchan(tsk),
2487 delta >> 20);
2488 }
2489 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002490 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002491 }
2492#endif
2493}
2494
Peter Zijlstraddc97292007-10-15 17:00:10 +02002495static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2496{
2497#ifdef CONFIG_SCHED_DEBUG
2498 s64 d = se->vruntime - cfs_rq->min_vruntime;
2499
2500 if (d < 0)
2501 d = -d;
2502
2503 if (d > 3*sysctl_sched_latency)
2504 schedstat_inc(cfs_rq, nr_spread_over);
2505#endif
2506}
2507
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002508static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002509place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2510{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002511 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002512
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002513 /*
2514 * The 'current' period is already promised to the current tasks,
2515 * however the extra weight of the new task will slow them down a
2516 * little, place the new task so that it fits in the slot that
2517 * stays open at the end.
2518 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002519 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002520 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002521
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002522 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002523 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002524 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002525
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002526 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002527 * Halve their sleep time's effect, to allow
2528 * for a gentler effect of sleepers:
2529 */
2530 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2531 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002532
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002533 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002534 }
2535
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002536 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302537 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002538}
2539
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002540static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2541
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002542static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002543enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002544{
2545 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002546 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302547 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002548 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002549 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002550 se->vruntime += cfs_rq->min_vruntime;
2551
2552 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002553 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002554 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002555 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002556 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002557 account_entity_enqueue(cfs_rq, se);
2558 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002559
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002560 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002561 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002562 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002563 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002564
Ingo Molnard2417e52007-08-09 11:16:47 +02002565 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002566 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002567 if (se != cfs_rq->curr)
2568 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002569 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002570
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002571 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002572 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002573 check_enqueue_throttle(cfs_rq);
2574 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002575}
2576
Rik van Riel2c13c9192011-02-01 09:48:37 -05002577static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002578{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002579 for_each_sched_entity(se) {
2580 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2581 if (cfs_rq->last == se)
2582 cfs_rq->last = NULL;
2583 else
2584 break;
2585 }
2586}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002587
Rik van Riel2c13c9192011-02-01 09:48:37 -05002588static void __clear_buddies_next(struct sched_entity *se)
2589{
2590 for_each_sched_entity(se) {
2591 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2592 if (cfs_rq->next == se)
2593 cfs_rq->next = NULL;
2594 else
2595 break;
2596 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002597}
2598
Rik van Rielac53db52011-02-01 09:51:03 -05002599static void __clear_buddies_skip(struct sched_entity *se)
2600{
2601 for_each_sched_entity(se) {
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 if (cfs_rq->skip == se)
2604 cfs_rq->skip = NULL;
2605 else
2606 break;
2607 }
2608}
2609
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002610static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2611{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002612 if (cfs_rq->last == se)
2613 __clear_buddies_last(se);
2614
2615 if (cfs_rq->next == se)
2616 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002617
2618 if (cfs_rq->skip == se)
2619 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002620}
2621
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002622static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002623
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002624static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002625dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002626{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002627 /*
2628 * Update run-time statistics of the 'current'.
2629 */
2630 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002631 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002632
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002633 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002634 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002635#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002636 if (entity_is_task(se)) {
2637 struct task_struct *tsk = task_of(se);
2638
2639 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002640 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002641 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002642 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002643 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002644#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002645 }
2646
Peter Zijlstra2002c692008-11-11 11:52:33 +01002647 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002648
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002649 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002650 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002651 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002652 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002653
2654 /*
2655 * Normalize the entity after updating the min_vruntime because the
2656 * update can refer to the ->curr item and we need to reflect this
2657 * movement in our normalized position.
2658 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002659 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002660 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002661
Paul Turnerd8b49862011-07-21 09:43:41 -07002662 /* return excess runtime on last dequeue */
2663 return_cfs_rq_runtime(cfs_rq);
2664
Peter Zijlstra1e876232011-05-17 16:21:10 -07002665 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002666 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002667}
2668
2669/*
2670 * Preempt the current task with a newly woken task if needed:
2671 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002672static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002673check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002674{
Peter Zijlstra11697832007-09-05 14:32:49 +02002675 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002676 struct sched_entity *se;
2677 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002678
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002679 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002680 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002681 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002682 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002683 /*
2684 * The current task ran long enough, ensure it doesn't get
2685 * re-elected due to buddy favours.
2686 */
2687 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002688 return;
2689 }
2690
2691 /*
2692 * Ensure that a task that missed wakeup preemption by a
2693 * narrow margin doesn't have to wait for a full slice.
2694 * This also mitigates buddy induced latencies under load.
2695 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002696 if (delta_exec < sysctl_sched_min_granularity)
2697 return;
2698
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002699 se = __pick_first_entity(cfs_rq);
2700 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002701
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002702 if (delta < 0)
2703 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002704
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002705 if (delta > ideal_runtime)
2706 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002707}
2708
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002709static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002710set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002711{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002712 /* 'current' is not kept within the tree. */
2713 if (se->on_rq) {
2714 /*
2715 * Any task has to be enqueued before it get to execute on
2716 * a CPU. So account for the time it spent waiting on the
2717 * runqueue.
2718 */
2719 update_stats_wait_end(cfs_rq, se);
2720 __dequeue_entity(cfs_rq, se);
2721 }
2722
Ingo Molnar79303e92007-08-09 11:16:47 +02002723 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002724 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002725#ifdef CONFIG_SCHEDSTATS
2726 /*
2727 * Track our maximum slice length, if the CPU's load is at
2728 * least twice that of our own weight (i.e. dont track it
2729 * when there are only lesser-weight tasks around):
2730 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002731 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002732 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002733 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2734 }
2735#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002736 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002737}
2738
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002739static int
2740wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2741
Rik van Rielac53db52011-02-01 09:51:03 -05002742/*
2743 * Pick the next process, keeping these things in mind, in this order:
2744 * 1) keep things fair between processes/task groups
2745 * 2) pick the "next" process, since someone really wants that to run
2746 * 3) pick the "last" process, for cache locality
2747 * 4) do not run the "skip" process, if something else is available
2748 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002749static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002750{
Rik van Rielac53db52011-02-01 09:51:03 -05002751 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002752 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002753
Rik van Rielac53db52011-02-01 09:51:03 -05002754 /*
2755 * Avoid running the skip buddy, if running something else can
2756 * be done without getting too unfair.
2757 */
2758 if (cfs_rq->skip == se) {
2759 struct sched_entity *second = __pick_next_entity(se);
2760 if (second && wakeup_preempt_entity(second, left) < 1)
2761 se = second;
2762 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002763
Mike Galbraithf685cea2009-10-23 23:09:22 +02002764 /*
2765 * Prefer last buddy, try to return the CPU to a preempted task.
2766 */
2767 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2768 se = cfs_rq->last;
2769
Rik van Rielac53db52011-02-01 09:51:03 -05002770 /*
2771 * Someone really wants this to run. If it's not unfair, run it.
2772 */
2773 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2774 se = cfs_rq->next;
2775
Mike Galbraithf685cea2009-10-23 23:09:22 +02002776 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002777
2778 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002779}
2780
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002781static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2782
Ingo Molnarab6cde22007-08-09 11:16:48 +02002783static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002784{
2785 /*
2786 * If still on the runqueue then deactivate_task()
2787 * was not called and update_curr() has to be done:
2788 */
2789 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002790 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002791
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002792 /* throttle cfs_rqs exceeding runtime */
2793 check_cfs_rq_runtime(cfs_rq);
2794
Peter Zijlstraddc97292007-10-15 17:00:10 +02002795 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002796 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002797 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002798 /* Put 'current' back into the tree. */
2799 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002800 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002801 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002802 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002803 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002804}
2805
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002806static void
2807entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002808{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002809 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002810 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002811 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002812 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002813
Paul Turner43365bd2010-12-15 19:10:17 -08002814 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002815 * Ensure that runnable average is periodically updated.
2816 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002817 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002818 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002819 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002820
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002821#ifdef CONFIG_SCHED_HRTICK
2822 /*
2823 * queued ticks are scheduled to match the slice, so don't bother
2824 * validating it and just reschedule.
2825 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002826 if (queued) {
2827 resched_task(rq_of(cfs_rq)->curr);
2828 return;
2829 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002830 /*
2831 * don't let the period tick interfere with the hrtick preemption
2832 */
2833 if (!sched_feat(DOUBLE_TICK) &&
2834 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2835 return;
2836#endif
2837
Yong Zhang2c2efae2011-07-29 16:20:33 +08002838 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002839 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002840}
2841
Paul Turnerab84d312011-07-21 09:43:28 -07002842
2843/**************************************************
2844 * CFS bandwidth control machinery
2845 */
2846
2847#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002848
2849#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002850static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002851
2852static inline bool cfs_bandwidth_used(void)
2853{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002854 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002855}
2856
2857void account_cfs_bandwidth_used(int enabled, int was_enabled)
2858{
2859 /* only need to count groups transitioning between enabled/!enabled */
2860 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002861 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002862 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002863 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002864}
2865#else /* HAVE_JUMP_LABEL */
2866static bool cfs_bandwidth_used(void)
2867{
2868 return true;
2869}
2870
2871void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2872#endif /* HAVE_JUMP_LABEL */
2873
Paul Turnerab84d312011-07-21 09:43:28 -07002874/*
2875 * default period for cfs group bandwidth.
2876 * default: 0.1s, units: nanoseconds
2877 */
2878static inline u64 default_cfs_period(void)
2879{
2880 return 100000000ULL;
2881}
Paul Turnerec12cb72011-07-21 09:43:30 -07002882
2883static inline u64 sched_cfs_bandwidth_slice(void)
2884{
2885 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2886}
2887
Paul Turnera9cf55b2011-07-21 09:43:32 -07002888/*
2889 * Replenish runtime according to assigned quota and update expiration time.
2890 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2891 * additional synchronization around rq->lock.
2892 *
2893 * requires cfs_b->lock
2894 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002895void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002896{
2897 u64 now;
2898
2899 if (cfs_b->quota == RUNTIME_INF)
2900 return;
2901
2902 now = sched_clock_cpu(smp_processor_id());
2903 cfs_b->runtime = cfs_b->quota;
2904 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2905}
2906
Peter Zijlstra029632f2011-10-25 10:00:11 +02002907static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2908{
2909 return &tg->cfs_bandwidth;
2910}
2911
Paul Turnerf1b17282012-10-04 13:18:31 +02002912/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2913static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2914{
2915 if (unlikely(cfs_rq->throttle_count))
2916 return cfs_rq->throttled_clock_task;
2917
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002918 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002919}
2920
Paul Turner85dac902011-07-21 09:43:33 -07002921/* returns 0 on failure to allocate runtime */
2922static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002923{
2924 struct task_group *tg = cfs_rq->tg;
2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002926 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002927
2928 /* note: this is a positive sum as runtime_remaining <= 0 */
2929 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2930
2931 raw_spin_lock(&cfs_b->lock);
2932 if (cfs_b->quota == RUNTIME_INF)
2933 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002934 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002935 /*
2936 * If the bandwidth pool has become inactive, then at least one
2937 * period must have elapsed since the last consumption.
2938 * Refresh the global state and ensure bandwidth timer becomes
2939 * active.
2940 */
2941 if (!cfs_b->timer_active) {
2942 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002943 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002944 }
Paul Turner58088ad2011-07-21 09:43:31 -07002945
2946 if (cfs_b->runtime > 0) {
2947 amount = min(cfs_b->runtime, min_amount);
2948 cfs_b->runtime -= amount;
2949 cfs_b->idle = 0;
2950 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002951 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002952 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002953 raw_spin_unlock(&cfs_b->lock);
2954
2955 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002956 /*
2957 * we may have advanced our local expiration to account for allowed
2958 * spread between our sched_clock and the one on which runtime was
2959 * issued.
2960 */
2961 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2962 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002963
2964 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002965}
2966
2967/*
2968 * Note: This depends on the synchronization provided by sched_clock and the
2969 * fact that rq->clock snapshots this value.
2970 */
2971static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2972{
2973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002974
2975 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002976 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002977 return;
2978
2979 if (cfs_rq->runtime_remaining < 0)
2980 return;
2981
2982 /*
2983 * If the local deadline has passed we have to consider the
2984 * possibility that our sched_clock is 'fast' and the global deadline
2985 * has not truly expired.
2986 *
2987 * Fortunately we can check determine whether this the case by checking
2988 * whether the global deadline has advanced.
2989 */
2990
2991 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2992 /* extend local deadline, drift is bounded above by 2 ticks */
2993 cfs_rq->runtime_expires += TICK_NSEC;
2994 } else {
2995 /* global deadline is ahead, expiration has passed */
2996 cfs_rq->runtime_remaining = 0;
2997 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002998}
2999
3000static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3001 unsigned long delta_exec)
3002{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003003 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003004 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003005 expire_cfs_rq_runtime(cfs_rq);
3006
3007 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003008 return;
3009
Paul Turner85dac902011-07-21 09:43:33 -07003010 /*
3011 * if we're unable to extend our runtime we resched so that the active
3012 * hierarchy can be throttled
3013 */
3014 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3015 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003016}
3017
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003018static __always_inline
3019void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003020{
Paul Turner56f570e2011-11-07 20:26:33 -08003021 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003022 return;
3023
3024 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3025}
3026
Paul Turner85dac902011-07-21 09:43:33 -07003027static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3028{
Paul Turner56f570e2011-11-07 20:26:33 -08003029 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003030}
3031
Paul Turner64660c82011-07-21 09:43:36 -07003032/* check whether cfs_rq, or any parent, is throttled */
3033static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3034{
Paul Turner56f570e2011-11-07 20:26:33 -08003035 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003036}
3037
3038/*
3039 * Ensure that neither of the group entities corresponding to src_cpu or
3040 * dest_cpu are members of a throttled hierarchy when performing group
3041 * load-balance operations.
3042 */
3043static inline int throttled_lb_pair(struct task_group *tg,
3044 int src_cpu, int dest_cpu)
3045{
3046 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3047
3048 src_cfs_rq = tg->cfs_rq[src_cpu];
3049 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3050
3051 return throttled_hierarchy(src_cfs_rq) ||
3052 throttled_hierarchy(dest_cfs_rq);
3053}
3054
3055/* updated child weight may affect parent so we have to do this bottom up */
3056static int tg_unthrottle_up(struct task_group *tg, void *data)
3057{
3058 struct rq *rq = data;
3059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3060
3061 cfs_rq->throttle_count--;
3062#ifdef CONFIG_SMP
3063 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003064 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003065 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003066 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003067 }
3068#endif
3069
3070 return 0;
3071}
3072
3073static int tg_throttle_down(struct task_group *tg, void *data)
3074{
3075 struct rq *rq = data;
3076 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3077
Paul Turner82958362012-10-04 13:18:31 +02003078 /* group is entering throttled state, stop time */
3079 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003080 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003081 cfs_rq->throttle_count++;
3082
3083 return 0;
3084}
3085
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003086static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003087{
3088 struct rq *rq = rq_of(cfs_rq);
3089 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3090 struct sched_entity *se;
3091 long task_delta, dequeue = 1;
3092
3093 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3094
Paul Turnerf1b17282012-10-04 13:18:31 +02003095 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003096 rcu_read_lock();
3097 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3098 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003099
3100 task_delta = cfs_rq->h_nr_running;
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3103 /* throttled entity or throttle-on-deactivate */
3104 if (!se->on_rq)
3105 break;
3106
3107 if (dequeue)
3108 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3109 qcfs_rq->h_nr_running -= task_delta;
3110
3111 if (qcfs_rq->load.weight)
3112 dequeue = 0;
3113 }
3114
3115 if (!se)
3116 rq->nr_running -= task_delta;
3117
3118 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003119 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003120 raw_spin_lock(&cfs_b->lock);
3121 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3122 raw_spin_unlock(&cfs_b->lock);
3123}
3124
Peter Zijlstra029632f2011-10-25 10:00:11 +02003125void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003126{
3127 struct rq *rq = rq_of(cfs_rq);
3128 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3129 struct sched_entity *se;
3130 int enqueue = 1;
3131 long task_delta;
3132
Michael Wang22b958d2013-06-04 14:23:39 +08003133 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003134
3135 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003136
3137 update_rq_clock(rq);
3138
Paul Turner671fd9d2011-07-21 09:43:34 -07003139 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003140 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003141 list_del_rcu(&cfs_rq->throttled_list);
3142 raw_spin_unlock(&cfs_b->lock);
3143
Paul Turner64660c82011-07-21 09:43:36 -07003144 /* update hierarchical throttle state */
3145 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3146
Paul Turner671fd9d2011-07-21 09:43:34 -07003147 if (!cfs_rq->load.weight)
3148 return;
3149
3150 task_delta = cfs_rq->h_nr_running;
3151 for_each_sched_entity(se) {
3152 if (se->on_rq)
3153 enqueue = 0;
3154
3155 cfs_rq = cfs_rq_of(se);
3156 if (enqueue)
3157 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3158 cfs_rq->h_nr_running += task_delta;
3159
3160 if (cfs_rq_throttled(cfs_rq))
3161 break;
3162 }
3163
3164 if (!se)
3165 rq->nr_running += task_delta;
3166
3167 /* determine whether we need to wake up potentially idle cpu */
3168 if (rq->curr == rq->idle && rq->cfs.nr_running)
3169 resched_task(rq->curr);
3170}
3171
3172static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3173 u64 remaining, u64 expires)
3174{
3175 struct cfs_rq *cfs_rq;
3176 u64 runtime = remaining;
3177
3178 rcu_read_lock();
3179 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3180 throttled_list) {
3181 struct rq *rq = rq_of(cfs_rq);
3182
3183 raw_spin_lock(&rq->lock);
3184 if (!cfs_rq_throttled(cfs_rq))
3185 goto next;
3186
3187 runtime = -cfs_rq->runtime_remaining + 1;
3188 if (runtime > remaining)
3189 runtime = remaining;
3190 remaining -= runtime;
3191
3192 cfs_rq->runtime_remaining += runtime;
3193 cfs_rq->runtime_expires = expires;
3194
3195 /* we check whether we're throttled above */
3196 if (cfs_rq->runtime_remaining > 0)
3197 unthrottle_cfs_rq(cfs_rq);
3198
3199next:
3200 raw_spin_unlock(&rq->lock);
3201
3202 if (!remaining)
3203 break;
3204 }
3205 rcu_read_unlock();
3206
3207 return remaining;
3208}
3209
Paul Turner58088ad2011-07-21 09:43:31 -07003210/*
3211 * Responsible for refilling a task_group's bandwidth and unthrottling its
3212 * cfs_rqs as appropriate. If there has been no activity within the last
3213 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3214 * used to track this state.
3215 */
3216static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3217{
Paul Turner671fd9d2011-07-21 09:43:34 -07003218 u64 runtime, runtime_expires;
3219 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003220
3221 raw_spin_lock(&cfs_b->lock);
3222 /* no need to continue the timer with no bandwidth constraint */
3223 if (cfs_b->quota == RUNTIME_INF)
3224 goto out_unlock;
3225
Paul Turner671fd9d2011-07-21 09:43:34 -07003226 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3227 /* idle depends on !throttled (for the case of a large deficit) */
3228 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003229 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003230
Paul Turnera9cf55b2011-07-21 09:43:32 -07003231 /* if we're going inactive then everything else can be deferred */
3232 if (idle)
3233 goto out_unlock;
3234
3235 __refill_cfs_bandwidth_runtime(cfs_b);
3236
Paul Turner671fd9d2011-07-21 09:43:34 -07003237 if (!throttled) {
3238 /* mark as potentially idle for the upcoming period */
3239 cfs_b->idle = 1;
3240 goto out_unlock;
3241 }
Paul Turner58088ad2011-07-21 09:43:31 -07003242
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003243 /* account preceding periods in which throttling occurred */
3244 cfs_b->nr_throttled += overrun;
3245
Paul Turner671fd9d2011-07-21 09:43:34 -07003246 /*
3247 * There are throttled entities so we must first use the new bandwidth
3248 * to unthrottle them before making it generally available. This
3249 * ensures that all existing debts will be paid before a new cfs_rq is
3250 * allowed to run.
3251 */
3252 runtime = cfs_b->runtime;
3253 runtime_expires = cfs_b->runtime_expires;
3254 cfs_b->runtime = 0;
3255
3256 /*
3257 * This check is repeated as we are holding onto the new bandwidth
3258 * while we unthrottle. This can potentially race with an unthrottled
3259 * group trying to acquire new bandwidth from the global pool.
3260 */
3261 while (throttled && runtime > 0) {
3262 raw_spin_unlock(&cfs_b->lock);
3263 /* we can't nest cfs_b->lock while distributing bandwidth */
3264 runtime = distribute_cfs_runtime(cfs_b, runtime,
3265 runtime_expires);
3266 raw_spin_lock(&cfs_b->lock);
3267
3268 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3269 }
3270
3271 /* return (any) remaining runtime */
3272 cfs_b->runtime = runtime;
3273 /*
3274 * While we are ensured activity in the period following an
3275 * unthrottle, this also covers the case in which the new bandwidth is
3276 * insufficient to cover the existing bandwidth deficit. (Forcing the
3277 * timer to remain active while there are any throttled entities.)
3278 */
3279 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003280out_unlock:
3281 if (idle)
3282 cfs_b->timer_active = 0;
3283 raw_spin_unlock(&cfs_b->lock);
3284
3285 return idle;
3286}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003287
Paul Turnerd8b49862011-07-21 09:43:41 -07003288/* a cfs_rq won't donate quota below this amount */
3289static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3290/* minimum remaining period time to redistribute slack quota */
3291static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3292/* how long we wait to gather additional slack before distributing */
3293static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3294
3295/* are we near the end of the current quota period? */
3296static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3297{
3298 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3299 u64 remaining;
3300
3301 /* if the call-back is running a quota refresh is already occurring */
3302 if (hrtimer_callback_running(refresh_timer))
3303 return 1;
3304
3305 /* is a quota refresh about to occur? */
3306 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3307 if (remaining < min_expire)
3308 return 1;
3309
3310 return 0;
3311}
3312
3313static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3314{
3315 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3316
3317 /* if there's a quota refresh soon don't bother with slack */
3318 if (runtime_refresh_within(cfs_b, min_left))
3319 return;
3320
3321 start_bandwidth_timer(&cfs_b->slack_timer,
3322 ns_to_ktime(cfs_bandwidth_slack_period));
3323}
3324
3325/* we know any runtime found here is valid as update_curr() precedes return */
3326static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3327{
3328 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3329 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3330
3331 if (slack_runtime <= 0)
3332 return;
3333
3334 raw_spin_lock(&cfs_b->lock);
3335 if (cfs_b->quota != RUNTIME_INF &&
3336 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3337 cfs_b->runtime += slack_runtime;
3338
3339 /* we are under rq->lock, defer unthrottling using a timer */
3340 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3341 !list_empty(&cfs_b->throttled_cfs_rq))
3342 start_cfs_slack_bandwidth(cfs_b);
3343 }
3344 raw_spin_unlock(&cfs_b->lock);
3345
3346 /* even if it's not valid for return we don't want to try again */
3347 cfs_rq->runtime_remaining -= slack_runtime;
3348}
3349
3350static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3351{
Paul Turner56f570e2011-11-07 20:26:33 -08003352 if (!cfs_bandwidth_used())
3353 return;
3354
Paul Turnerfccfdc62011-11-07 20:26:34 -08003355 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003356 return;
3357
3358 __return_cfs_rq_runtime(cfs_rq);
3359}
3360
3361/*
3362 * This is done with a timer (instead of inline with bandwidth return) since
3363 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3364 */
3365static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3366{
3367 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3368 u64 expires;
3369
3370 /* confirm we're still not at a refresh boundary */
3371 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3372 return;
3373
3374 raw_spin_lock(&cfs_b->lock);
3375 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3376 runtime = cfs_b->runtime;
3377 cfs_b->runtime = 0;
3378 }
3379 expires = cfs_b->runtime_expires;
3380 raw_spin_unlock(&cfs_b->lock);
3381
3382 if (!runtime)
3383 return;
3384
3385 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3386
3387 raw_spin_lock(&cfs_b->lock);
3388 if (expires == cfs_b->runtime_expires)
3389 cfs_b->runtime = runtime;
3390 raw_spin_unlock(&cfs_b->lock);
3391}
3392
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003393/*
3394 * When a group wakes up we want to make sure that its quota is not already
3395 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3396 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3397 */
3398static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3399{
Paul Turner56f570e2011-11-07 20:26:33 -08003400 if (!cfs_bandwidth_used())
3401 return;
3402
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003403 /* an active group must be handled by the update_curr()->put() path */
3404 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3405 return;
3406
3407 /* ensure the group is not already throttled */
3408 if (cfs_rq_throttled(cfs_rq))
3409 return;
3410
3411 /* update runtime allocation */
3412 account_cfs_rq_runtime(cfs_rq, 0);
3413 if (cfs_rq->runtime_remaining <= 0)
3414 throttle_cfs_rq(cfs_rq);
3415}
3416
3417/* conditionally throttle active cfs_rq's from put_prev_entity() */
3418static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3419{
Paul Turner56f570e2011-11-07 20:26:33 -08003420 if (!cfs_bandwidth_used())
3421 return;
3422
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003423 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3424 return;
3425
3426 /*
3427 * it's possible for a throttled entity to be forced into a running
3428 * state (e.g. set_curr_task), in this case we're finished.
3429 */
3430 if (cfs_rq_throttled(cfs_rq))
3431 return;
3432
3433 throttle_cfs_rq(cfs_rq);
3434}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003435
Peter Zijlstra029632f2011-10-25 10:00:11 +02003436static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3437{
3438 struct cfs_bandwidth *cfs_b =
3439 container_of(timer, struct cfs_bandwidth, slack_timer);
3440 do_sched_cfs_slack_timer(cfs_b);
3441
3442 return HRTIMER_NORESTART;
3443}
3444
3445static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3446{
3447 struct cfs_bandwidth *cfs_b =
3448 container_of(timer, struct cfs_bandwidth, period_timer);
3449 ktime_t now;
3450 int overrun;
3451 int idle = 0;
3452
3453 for (;;) {
3454 now = hrtimer_cb_get_time(timer);
3455 overrun = hrtimer_forward(timer, now, cfs_b->period);
3456
3457 if (!overrun)
3458 break;
3459
3460 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3461 }
3462
3463 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3464}
3465
3466void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3467{
3468 raw_spin_lock_init(&cfs_b->lock);
3469 cfs_b->runtime = 0;
3470 cfs_b->quota = RUNTIME_INF;
3471 cfs_b->period = ns_to_ktime(default_cfs_period());
3472
3473 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3474 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3475 cfs_b->period_timer.function = sched_cfs_period_timer;
3476 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3477 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3478}
3479
3480static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3481{
3482 cfs_rq->runtime_enabled = 0;
3483 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3484}
3485
3486/* requires cfs_b->lock, may release to reprogram timer */
3487void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3488{
3489 /*
3490 * The timer may be active because we're trying to set a new bandwidth
3491 * period or because we're racing with the tear-down path
3492 * (timer_active==0 becomes visible before the hrtimer call-back
3493 * terminates). In either case we ensure that it's re-programmed
3494 */
3495 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3496 raw_spin_unlock(&cfs_b->lock);
3497 /* ensure cfs_b->lock is available while we wait */
3498 hrtimer_cancel(&cfs_b->period_timer);
3499
3500 raw_spin_lock(&cfs_b->lock);
3501 /* if someone else restarted the timer then we're done */
3502 if (cfs_b->timer_active)
3503 return;
3504 }
3505
3506 cfs_b->timer_active = 1;
3507 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3508}
3509
3510static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3511{
3512 hrtimer_cancel(&cfs_b->period_timer);
3513 hrtimer_cancel(&cfs_b->slack_timer);
3514}
3515
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003516static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003517{
3518 struct cfs_rq *cfs_rq;
3519
3520 for_each_leaf_cfs_rq(rq, cfs_rq) {
3521 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3522
3523 if (!cfs_rq->runtime_enabled)
3524 continue;
3525
3526 /*
3527 * clock_task is not advancing so we just need to make sure
3528 * there's some valid quota amount
3529 */
3530 cfs_rq->runtime_remaining = cfs_b->quota;
3531 if (cfs_rq_throttled(cfs_rq))
3532 unthrottle_cfs_rq(cfs_rq);
3533 }
3534}
3535
3536#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003537static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3538{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003539 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003540}
3541
3542static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3543 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003544static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3545static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003546static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003547
3548static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3549{
3550 return 0;
3551}
Paul Turner64660c82011-07-21 09:43:36 -07003552
3553static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3554{
3555 return 0;
3556}
3557
3558static inline int throttled_lb_pair(struct task_group *tg,
3559 int src_cpu, int dest_cpu)
3560{
3561 return 0;
3562}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003563
3564void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3565
3566#ifdef CONFIG_FAIR_GROUP_SCHED
3567static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003568#endif
3569
Peter Zijlstra029632f2011-10-25 10:00:11 +02003570static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3571{
3572 return NULL;
3573}
3574static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003575static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003576
3577#endif /* CONFIG_CFS_BANDWIDTH */
3578
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003579/**************************************************
3580 * CFS operations on tasks:
3581 */
3582
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003583#ifdef CONFIG_SCHED_HRTICK
3584static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3585{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003586 struct sched_entity *se = &p->se;
3587 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3588
3589 WARN_ON(task_rq(p) != rq);
3590
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003591 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003592 u64 slice = sched_slice(cfs_rq, se);
3593 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3594 s64 delta = slice - ran;
3595
3596 if (delta < 0) {
3597 if (rq->curr == p)
3598 resched_task(p);
3599 return;
3600 }
3601
3602 /*
3603 * Don't schedule slices shorter than 10000ns, that just
3604 * doesn't make sense. Rely on vruntime for fairness.
3605 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003606 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003607 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003608
Peter Zijlstra31656512008-07-18 18:01:23 +02003609 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003610 }
3611}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003612
3613/*
3614 * called from enqueue/dequeue and updates the hrtick when the
3615 * current task is from our class and nr_running is low enough
3616 * to matter.
3617 */
3618static void hrtick_update(struct rq *rq)
3619{
3620 struct task_struct *curr = rq->curr;
3621
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003622 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003623 return;
3624
3625 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3626 hrtick_start_fair(rq, curr);
3627}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303628#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003629static inline void
3630hrtick_start_fair(struct rq *rq, struct task_struct *p)
3631{
3632}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003633
3634static inline void hrtick_update(struct rq *rq)
3635{
3636}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003637#endif
3638
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003639/*
3640 * The enqueue_task method is called before nr_running is
3641 * increased. Here we update the fair scheduling stats and
3642 * then put the task into the rbtree:
3643 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003644static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003645enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003646{
3647 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003648 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003649
3650 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003651 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003652 break;
3653 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003654 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003655
3656 /*
3657 * end evaluation on encountering a throttled cfs_rq
3658 *
3659 * note: in the case of encountering a throttled cfs_rq we will
3660 * post the final h_nr_running increment below.
3661 */
3662 if (cfs_rq_throttled(cfs_rq))
3663 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003664 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003665
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003666 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003667 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003668
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003669 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003670 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003671 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003672
Paul Turner85dac902011-07-21 09:43:33 -07003673 if (cfs_rq_throttled(cfs_rq))
3674 break;
3675
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003676 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003677 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003678 }
3679
Ben Segall18bf2802012-10-04 12:51:20 +02003680 if (!se) {
3681 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003682 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003683 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003684 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003685}
3686
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003687static void set_next_buddy(struct sched_entity *se);
3688
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003689/*
3690 * The dequeue_task method is called before nr_running is
3691 * decreased. We remove the task from the rbtree and
3692 * update the fair scheduling stats:
3693 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003694static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003695{
3696 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003697 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003698 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003699
3700 for_each_sched_entity(se) {
3701 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003702 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003703
3704 /*
3705 * end evaluation on encountering a throttled cfs_rq
3706 *
3707 * note: in the case of encountering a throttled cfs_rq we will
3708 * post the final h_nr_running decrement below.
3709 */
3710 if (cfs_rq_throttled(cfs_rq))
3711 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003712 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003713
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003714 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003715 if (cfs_rq->load.weight) {
3716 /*
3717 * Bias pick_next to pick a task from this cfs_rq, as
3718 * p is sleeping when it is within its sched_slice.
3719 */
3720 if (task_sleep && parent_entity(se))
3721 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003722
3723 /* avoid re-evaluating load for this entity */
3724 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003725 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003726 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003727 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003728 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003729
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003730 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003731 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003732 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003733
Paul Turner85dac902011-07-21 09:43:33 -07003734 if (cfs_rq_throttled(cfs_rq))
3735 break;
3736
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003737 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003738 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003739 }
3740
Ben Segall18bf2802012-10-04 12:51:20 +02003741 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003742 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003743 update_rq_runnable_avg(rq, 1);
3744 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003745 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003746}
3747
Gregory Haskinse7693a32008-01-25 21:08:09 +01003748#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003749/* Used instead of source_load when we know the type == 0 */
3750static unsigned long weighted_cpuload(const int cpu)
3751{
Alex Shib92486c2013-06-20 10:18:50 +08003752 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003753}
3754
3755/*
3756 * Return a low guess at the load of a migration-source cpu weighted
3757 * according to the scheduling class and "nice" value.
3758 *
3759 * We want to under-estimate the load of migration sources, to
3760 * balance conservatively.
3761 */
3762static unsigned long source_load(int cpu, int type)
3763{
3764 struct rq *rq = cpu_rq(cpu);
3765 unsigned long total = weighted_cpuload(cpu);
3766
3767 if (type == 0 || !sched_feat(LB_BIAS))
3768 return total;
3769
3770 return min(rq->cpu_load[type-1], total);
3771}
3772
3773/*
3774 * Return a high guess at the load of a migration-target cpu weighted
3775 * according to the scheduling class and "nice" value.
3776 */
3777static unsigned long target_load(int cpu, int type)
3778{
3779 struct rq *rq = cpu_rq(cpu);
3780 unsigned long total = weighted_cpuload(cpu);
3781
3782 if (type == 0 || !sched_feat(LB_BIAS))
3783 return total;
3784
3785 return max(rq->cpu_load[type-1], total);
3786}
3787
3788static unsigned long power_of(int cpu)
3789{
3790 return cpu_rq(cpu)->cpu_power;
3791}
3792
3793static unsigned long cpu_avg_load_per_task(int cpu)
3794{
3795 struct rq *rq = cpu_rq(cpu);
3796 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003797 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003798
3799 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003800 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003801
3802 return 0;
3803}
3804
Michael Wang62470412013-07-04 12:55:51 +08003805static void record_wakee(struct task_struct *p)
3806{
3807 /*
3808 * Rough decay (wiping) for cost saving, don't worry
3809 * about the boundary, really active task won't care
3810 * about the loss.
3811 */
3812 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3813 current->wakee_flips = 0;
3814 current->wakee_flip_decay_ts = jiffies;
3815 }
3816
3817 if (current->last_wakee != p) {
3818 current->last_wakee = p;
3819 current->wakee_flips++;
3820 }
3821}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003822
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003823static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003824{
3825 struct sched_entity *se = &p->se;
3826 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003827 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003828
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003829#ifndef CONFIG_64BIT
3830 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003831
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003832 do {
3833 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3834 smp_rmb();
3835 min_vruntime = cfs_rq->min_vruntime;
3836 } while (min_vruntime != min_vruntime_copy);
3837#else
3838 min_vruntime = cfs_rq->min_vruntime;
3839#endif
3840
3841 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003842 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003843}
3844
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003845#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003846/*
3847 * effective_load() calculates the load change as seen from the root_task_group
3848 *
3849 * Adding load to a group doesn't make a group heavier, but can cause movement
3850 * of group shares between cpus. Assuming the shares were perfectly aligned one
3851 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003852 *
3853 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3854 * on this @cpu and results in a total addition (subtraction) of @wg to the
3855 * total group weight.
3856 *
3857 * Given a runqueue weight distribution (rw_i) we can compute a shares
3858 * distribution (s_i) using:
3859 *
3860 * s_i = rw_i / \Sum rw_j (1)
3861 *
3862 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3863 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3864 * shares distribution (s_i):
3865 *
3866 * rw_i = { 2, 4, 1, 0 }
3867 * s_i = { 2/7, 4/7, 1/7, 0 }
3868 *
3869 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3870 * task used to run on and the CPU the waker is running on), we need to
3871 * compute the effect of waking a task on either CPU and, in case of a sync
3872 * wakeup, compute the effect of the current task going to sleep.
3873 *
3874 * So for a change of @wl to the local @cpu with an overall group weight change
3875 * of @wl we can compute the new shares distribution (s'_i) using:
3876 *
3877 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3878 *
3879 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3880 * differences in waking a task to CPU 0. The additional task changes the
3881 * weight and shares distributions like:
3882 *
3883 * rw'_i = { 3, 4, 1, 0 }
3884 * s'_i = { 3/8, 4/8, 1/8, 0 }
3885 *
3886 * We can then compute the difference in effective weight by using:
3887 *
3888 * dw_i = S * (s'_i - s_i) (3)
3889 *
3890 * Where 'S' is the group weight as seen by its parent.
3891 *
3892 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3893 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3894 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003895 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003896static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003897{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003898 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003899
Mel Gorman58d081b2013-10-07 11:29:10 +01003900 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003901 return wl;
3902
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003903 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003904 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003905
Paul Turner977dda72011-01-14 17:57:50 -08003906 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003907
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003908 /*
3909 * W = @wg + \Sum rw_j
3910 */
3911 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003912
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003913 /*
3914 * w = rw_i + @wl
3915 */
3916 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003917
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003918 /*
3919 * wl = S * s'_i; see (2)
3920 */
3921 if (W > 0 && w < W)
3922 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003923 else
3924 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003925
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003926 /*
3927 * Per the above, wl is the new se->load.weight value; since
3928 * those are clipped to [MIN_SHARES, ...) do so now. See
3929 * calc_cfs_shares().
3930 */
Paul Turner977dda72011-01-14 17:57:50 -08003931 if (wl < MIN_SHARES)
3932 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003933
3934 /*
3935 * wl = dw_i = S * (s'_i - s_i); see (3)
3936 */
Paul Turner977dda72011-01-14 17:57:50 -08003937 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003938
3939 /*
3940 * Recursively apply this logic to all parent groups to compute
3941 * the final effective load change on the root group. Since
3942 * only the @tg group gets extra weight, all parent groups can
3943 * only redistribute existing shares. @wl is the shift in shares
3944 * resulting from this level per the above.
3945 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003946 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003947 }
3948
3949 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003950}
3951#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003952
Mel Gorman58d081b2013-10-07 11:29:10 +01003953static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003954{
Peter Zijlstra83378262008-06-27 13:41:37 +02003955 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003956}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003957
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003958#endif
3959
Michael Wang62470412013-07-04 12:55:51 +08003960static int wake_wide(struct task_struct *p)
3961{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003962 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003963
3964 /*
3965 * Yeah, it's the switching-frequency, could means many wakee or
3966 * rapidly switch, use factor here will just help to automatically
3967 * adjust the loose-degree, so bigger node will lead to more pull.
3968 */
3969 if (p->wakee_flips > factor) {
3970 /*
3971 * wakee is somewhat hot, it needs certain amount of cpu
3972 * resource, so if waker is far more hot, prefer to leave
3973 * it alone.
3974 */
3975 if (current->wakee_flips > (factor * p->wakee_flips))
3976 return 1;
3977 }
3978
3979 return 0;
3980}
3981
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003982static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003983{
Paul Turnere37b6a72011-01-21 20:44:59 -08003984 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003985 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003986 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003987 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003988 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003989 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003990
Michael Wang62470412013-07-04 12:55:51 +08003991 /*
3992 * If we wake multiple tasks be careful to not bounce
3993 * ourselves around too much.
3994 */
3995 if (wake_wide(p))
3996 return 0;
3997
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003998 idx = sd->wake_idx;
3999 this_cpu = smp_processor_id();
4000 prev_cpu = task_cpu(p);
4001 load = source_load(prev_cpu, idx);
4002 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004003
4004 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004005 * If sync wakeup then subtract the (maximum possible)
4006 * effect of the currently running task from the load
4007 * of the current CPU:
4008 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004009 if (sync) {
4010 tg = task_group(current);
4011 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004012
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004013 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004014 load += effective_load(tg, prev_cpu, 0, -weight);
4015 }
4016
4017 tg = task_group(p);
4018 weight = p->se.load.weight;
4019
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004020 /*
4021 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004022 * due to the sync cause above having dropped this_load to 0, we'll
4023 * always have an imbalance, but there's really nothing you can do
4024 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004025 *
4026 * Otherwise check if either cpus are near enough in load to allow this
4027 * task to be woken on this_cpu.
4028 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004029 if (this_load > 0) {
4030 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004031
4032 this_eff_load = 100;
4033 this_eff_load *= power_of(prev_cpu);
4034 this_eff_load *= this_load +
4035 effective_load(tg, this_cpu, weight, weight);
4036
4037 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4038 prev_eff_load *= power_of(this_cpu);
4039 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4040
4041 balanced = this_eff_load <= prev_eff_load;
4042 } else
4043 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004044
4045 /*
4046 * If the currently running task will sleep within
4047 * a reasonable amount of time then attract this newly
4048 * woken task:
4049 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004050 if (sync && balanced)
4051 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004052
Lucas De Marchi41acab82010-03-10 23:37:45 -03004053 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004054 tl_per_task = cpu_avg_load_per_task(this_cpu);
4055
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004056 if (balanced ||
4057 (this_load <= load &&
4058 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004059 /*
4060 * This domain has SD_WAKE_AFFINE and
4061 * p is cache cold in this domain, and
4062 * there is no bad imbalance.
4063 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004064 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004065 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004066
4067 return 1;
4068 }
4069 return 0;
4070}
4071
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004072/*
4073 * find_idlest_group finds and returns the least busy CPU group within the
4074 * domain.
4075 */
4076static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004077find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004078 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004079{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004080 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004081 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004082 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004083
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004084 do {
4085 unsigned long load, avg_load;
4086 int local_group;
4087 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004088
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004089 /* Skip over this group if it has no CPUs allowed */
4090 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004091 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004092 continue;
4093
4094 local_group = cpumask_test_cpu(this_cpu,
4095 sched_group_cpus(group));
4096
4097 /* Tally up the load of all CPUs in the group */
4098 avg_load = 0;
4099
4100 for_each_cpu(i, sched_group_cpus(group)) {
4101 /* Bias balancing toward cpus of our domain */
4102 if (local_group)
4103 load = source_load(i, load_idx);
4104 else
4105 load = target_load(i, load_idx);
4106
4107 avg_load += load;
4108 }
4109
4110 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004111 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004112
4113 if (local_group) {
4114 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004115 } else if (avg_load < min_load) {
4116 min_load = avg_load;
4117 idlest = group;
4118 }
4119 } while (group = group->next, group != sd->groups);
4120
4121 if (!idlest || 100*this_load < imbalance*min_load)
4122 return NULL;
4123 return idlest;
4124}
4125
4126/*
4127 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4128 */
4129static int
4130find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4131{
4132 unsigned long load, min_load = ULONG_MAX;
4133 int idlest = -1;
4134 int i;
4135
4136 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004137 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004138 load = weighted_cpuload(i);
4139
4140 if (load < min_load || (load == min_load && i == this_cpu)) {
4141 min_load = load;
4142 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004143 }
4144 }
4145
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004146 return idlest;
4147}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004148
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004149/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004150 * Try and locate an idle CPU in the sched_domain.
4151 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004152static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004153{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004154 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004155 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004156 int i = task_cpu(p);
4157
4158 if (idle_cpu(target))
4159 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004160
4161 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004162 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004163 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004164 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4165 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004166
4167 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004168 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004169 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004170 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004171 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004172 sg = sd->groups;
4173 do {
4174 if (!cpumask_intersects(sched_group_cpus(sg),
4175 tsk_cpus_allowed(p)))
4176 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004177
Linus Torvalds37407ea2012-09-16 12:29:43 -07004178 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004179 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004180 goto next;
4181 }
4182
4183 target = cpumask_first_and(sched_group_cpus(sg),
4184 tsk_cpus_allowed(p));
4185 goto done;
4186next:
4187 sg = sg->next;
4188 } while (sg != sd->groups);
4189 }
4190done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004191 return target;
4192}
4193
4194/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004195 * sched_balance_self: balance the current task (running on cpu) in domains
4196 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4197 * SD_BALANCE_EXEC.
4198 *
4199 * Balance, ie. select the least loaded group.
4200 *
4201 * Returns the target CPU number, or the same CPU if no balancing is needed.
4202 *
4203 * preempt must be disabled.
4204 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004205static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004206select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004207{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004208 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004209 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004210 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004211 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004212 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004213
Peter Zijlstra29baa742012-04-23 12:11:21 +02004214 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004215 return prev_cpu;
4216
Peter Zijlstra0763a662009-09-14 19:37:39 +02004217 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004218 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004219 want_affine = 1;
4220 new_cpu = prev_cpu;
4221 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004222
Peter Zijlstradce840a2011-04-07 14:09:50 +02004223 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004224 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004225 if (!(tmp->flags & SD_LOAD_BALANCE))
4226 continue;
4227
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004228 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004229 * If both cpu and prev_cpu are part of this domain,
4230 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004231 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004232 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4233 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4234 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004235 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004236 }
4237
Alex Shif03542a2012-07-26 08:55:34 +08004238 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004239 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004240 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004241
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004242 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004243 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004244 prev_cpu = cpu;
4245
4246 new_cpu = select_idle_sibling(p, prev_cpu);
4247 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004248 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004249
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004250 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004251 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004252 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004253 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004254
Peter Zijlstra0763a662009-09-14 19:37:39 +02004255 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004256 sd = sd->child;
4257 continue;
4258 }
4259
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004260 if (sd_flag & SD_BALANCE_WAKE)
4261 load_idx = sd->wake_idx;
4262
4263 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004264 if (!group) {
4265 sd = sd->child;
4266 continue;
4267 }
4268
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004269 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004270 if (new_cpu == -1 || new_cpu == cpu) {
4271 /* Now try balancing at a lower domain level of cpu */
4272 sd = sd->child;
4273 continue;
4274 }
4275
4276 /* Now try balancing at a lower domain level of new_cpu */
4277 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004278 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004279 sd = NULL;
4280 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004281 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004282 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004283 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004284 sd = tmp;
4285 }
4286 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004287 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004288unlock:
4289 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004290
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004291 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004292}
Paul Turner0a74bef2012-10-04 13:18:30 +02004293
4294/*
4295 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4296 * cfs_rq_of(p) references at time of call are still valid and identify the
4297 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4298 * other assumptions, including the state of rq->lock, should be made.
4299 */
4300static void
4301migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4302{
Paul Turneraff3e492012-10-04 13:18:30 +02004303 struct sched_entity *se = &p->se;
4304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4305
4306 /*
4307 * Load tracking: accumulate removed load so that it can be processed
4308 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4309 * to blocked load iff they have a positive decay-count. It can never
4310 * be negative here since on-rq tasks have decay-count == 0.
4311 */
4312 if (se->avg.decay_count) {
4313 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004314 atomic_long_add(se->avg.load_avg_contrib,
4315 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004316 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004317}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004318#endif /* CONFIG_SMP */
4319
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004320static unsigned long
4321wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004322{
4323 unsigned long gran = sysctl_sched_wakeup_granularity;
4324
4325 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004326 * Since its curr running now, convert the gran from real-time
4327 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004328 *
4329 * By using 'se' instead of 'curr' we penalize light tasks, so
4330 * they get preempted easier. That is, if 'se' < 'curr' then
4331 * the resulting gran will be larger, therefore penalizing the
4332 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4333 * be smaller, again penalizing the lighter task.
4334 *
4335 * This is especially important for buddies when the leftmost
4336 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004337 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004338 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004339}
4340
4341/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004342 * Should 'se' preempt 'curr'.
4343 *
4344 * |s1
4345 * |s2
4346 * |s3
4347 * g
4348 * |<--->|c
4349 *
4350 * w(c, s1) = -1
4351 * w(c, s2) = 0
4352 * w(c, s3) = 1
4353 *
4354 */
4355static int
4356wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4357{
4358 s64 gran, vdiff = curr->vruntime - se->vruntime;
4359
4360 if (vdiff <= 0)
4361 return -1;
4362
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004363 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004364 if (vdiff > gran)
4365 return 1;
4366
4367 return 0;
4368}
4369
Peter Zijlstra02479092008-11-04 21:25:10 +01004370static void set_last_buddy(struct sched_entity *se)
4371{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004372 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4373 return;
4374
4375 for_each_sched_entity(se)
4376 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004377}
4378
4379static void set_next_buddy(struct sched_entity *se)
4380{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004381 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4382 return;
4383
4384 for_each_sched_entity(se)
4385 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004386}
4387
Rik van Rielac53db52011-02-01 09:51:03 -05004388static void set_skip_buddy(struct sched_entity *se)
4389{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004390 for_each_sched_entity(se)
4391 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004392}
4393
Peter Zijlstra464b7522008-10-24 11:06:15 +02004394/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004395 * Preempt the current task with a newly woken task if needed:
4396 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004397static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004398{
4399 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004400 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004401 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004402 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004403 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004404
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004405 if (unlikely(se == pse))
4406 return;
4407
Paul Turner5238cdd2011-07-21 09:43:37 -07004408 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004409 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004410 * unconditionally check_prempt_curr() after an enqueue (which may have
4411 * lead to a throttle). This both saves work and prevents false
4412 * next-buddy nomination below.
4413 */
4414 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4415 return;
4416
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004417 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004418 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004419 next_buddy_marked = 1;
4420 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004421
Bharata B Raoaec0a512008-08-28 14:42:49 +05304422 /*
4423 * We can come here with TIF_NEED_RESCHED already set from new task
4424 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004425 *
4426 * Note: this also catches the edge-case of curr being in a throttled
4427 * group (e.g. via set_curr_task), since update_curr() (in the
4428 * enqueue of curr) will have resulted in resched being set. This
4429 * prevents us from potentially nominating it as a false LAST_BUDDY
4430 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304431 */
4432 if (test_tsk_need_resched(curr))
4433 return;
4434
Darren Harta2f5c9a2011-02-22 13:04:33 -08004435 /* Idle tasks are by definition preempted by non-idle tasks. */
4436 if (unlikely(curr->policy == SCHED_IDLE) &&
4437 likely(p->policy != SCHED_IDLE))
4438 goto preempt;
4439
Ingo Molnar91c234b2007-10-15 17:00:18 +02004440 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004441 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4442 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004443 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004444 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004445 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004446
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004447 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004448 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004449 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004450 if (wakeup_preempt_entity(se, pse) == 1) {
4451 /*
4452 * Bias pick_next to pick the sched entity that is
4453 * triggering this preemption.
4454 */
4455 if (!next_buddy_marked)
4456 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004457 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004458 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004459
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004460 return;
4461
4462preempt:
4463 resched_task(curr);
4464 /*
4465 * Only set the backward buddy when the current task is still
4466 * on the rq. This can happen when a wakeup gets interleaved
4467 * with schedule on the ->pre_schedule() or idle_balance()
4468 * point, either of which can * drop the rq lock.
4469 *
4470 * Also, during early boot the idle thread is in the fair class,
4471 * for obvious reasons its a bad idea to schedule back to it.
4472 */
4473 if (unlikely(!se->on_rq || curr == rq->idle))
4474 return;
4475
4476 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4477 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004478}
4479
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004480static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004481{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004482 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004483 struct cfs_rq *cfs_rq = &rq->cfs;
4484 struct sched_entity *se;
4485
Tim Blechmann36ace272009-11-24 11:55:45 +01004486 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004487 return NULL;
4488
4489 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004490 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004491 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004492 cfs_rq = group_cfs_rq(se);
4493 } while (cfs_rq);
4494
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004495 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004496 if (hrtick_enabled(rq))
4497 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004498
4499 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004500}
4501
4502/*
4503 * Account for a descheduled task:
4504 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004505static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004506{
4507 struct sched_entity *se = &prev->se;
4508 struct cfs_rq *cfs_rq;
4509
4510 for_each_sched_entity(se) {
4511 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004512 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004513 }
4514}
4515
Rik van Rielac53db52011-02-01 09:51:03 -05004516/*
4517 * sched_yield() is very simple
4518 *
4519 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4520 */
4521static void yield_task_fair(struct rq *rq)
4522{
4523 struct task_struct *curr = rq->curr;
4524 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4525 struct sched_entity *se = &curr->se;
4526
4527 /*
4528 * Are we the only task in the tree?
4529 */
4530 if (unlikely(rq->nr_running == 1))
4531 return;
4532
4533 clear_buddies(cfs_rq, se);
4534
4535 if (curr->policy != SCHED_BATCH) {
4536 update_rq_clock(rq);
4537 /*
4538 * Update run-time statistics of the 'current'.
4539 */
4540 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004541 /*
4542 * Tell update_rq_clock() that we've just updated,
4543 * so we don't do microscopic update in schedule()
4544 * and double the fastpath cost.
4545 */
4546 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004547 }
4548
4549 set_skip_buddy(se);
4550}
4551
Mike Galbraithd95f4122011-02-01 09:50:51 -05004552static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4553{
4554 struct sched_entity *se = &p->se;
4555
Paul Turner5238cdd2011-07-21 09:43:37 -07004556 /* throttled hierarchies are not runnable */
4557 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004558 return false;
4559
4560 /* Tell the scheduler that we'd really like pse to run next. */
4561 set_next_buddy(se);
4562
Mike Galbraithd95f4122011-02-01 09:50:51 -05004563 yield_task_fair(rq);
4564
4565 return true;
4566}
4567
Peter Williams681f3e62007-10-24 18:23:51 +02004568#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004569/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004570 * Fair scheduling class load-balancing methods.
4571 *
4572 * BASICS
4573 *
4574 * The purpose of load-balancing is to achieve the same basic fairness the
4575 * per-cpu scheduler provides, namely provide a proportional amount of compute
4576 * time to each task. This is expressed in the following equation:
4577 *
4578 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4579 *
4580 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4581 * W_i,0 is defined as:
4582 *
4583 * W_i,0 = \Sum_j w_i,j (2)
4584 *
4585 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4586 * is derived from the nice value as per prio_to_weight[].
4587 *
4588 * The weight average is an exponential decay average of the instantaneous
4589 * weight:
4590 *
4591 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4592 *
4593 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4594 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4595 * can also include other factors [XXX].
4596 *
4597 * To achieve this balance we define a measure of imbalance which follows
4598 * directly from (1):
4599 *
4600 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4601 *
4602 * We them move tasks around to minimize the imbalance. In the continuous
4603 * function space it is obvious this converges, in the discrete case we get
4604 * a few fun cases generally called infeasible weight scenarios.
4605 *
4606 * [XXX expand on:
4607 * - infeasible weights;
4608 * - local vs global optima in the discrete case. ]
4609 *
4610 *
4611 * SCHED DOMAINS
4612 *
4613 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4614 * for all i,j solution, we create a tree of cpus that follows the hardware
4615 * topology where each level pairs two lower groups (or better). This results
4616 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4617 * tree to only the first of the previous level and we decrease the frequency
4618 * of load-balance at each level inv. proportional to the number of cpus in
4619 * the groups.
4620 *
4621 * This yields:
4622 *
4623 * log_2 n 1 n
4624 * \Sum { --- * --- * 2^i } = O(n) (5)
4625 * i = 0 2^i 2^i
4626 * `- size of each group
4627 * | | `- number of cpus doing load-balance
4628 * | `- freq
4629 * `- sum over all levels
4630 *
4631 * Coupled with a limit on how many tasks we can migrate every balance pass,
4632 * this makes (5) the runtime complexity of the balancer.
4633 *
4634 * An important property here is that each CPU is still (indirectly) connected
4635 * to every other cpu in at most O(log n) steps:
4636 *
4637 * The adjacency matrix of the resulting graph is given by:
4638 *
4639 * log_2 n
4640 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4641 * k = 0
4642 *
4643 * And you'll find that:
4644 *
4645 * A^(log_2 n)_i,j != 0 for all i,j (7)
4646 *
4647 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4648 * The task movement gives a factor of O(m), giving a convergence complexity
4649 * of:
4650 *
4651 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4652 *
4653 *
4654 * WORK CONSERVING
4655 *
4656 * In order to avoid CPUs going idle while there's still work to do, new idle
4657 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4658 * tree itself instead of relying on other CPUs to bring it work.
4659 *
4660 * This adds some complexity to both (5) and (8) but it reduces the total idle
4661 * time.
4662 *
4663 * [XXX more?]
4664 *
4665 *
4666 * CGROUPS
4667 *
4668 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4669 *
4670 * s_k,i
4671 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4672 * S_k
4673 *
4674 * Where
4675 *
4676 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4677 *
4678 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4679 *
4680 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4681 * property.
4682 *
4683 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4684 * rewrite all of this once again.]
4685 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004686
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004687static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4688
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004689enum fbq_type { regular, remote, all };
4690
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004691#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004692#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004693#define LBF_DST_PINNED 0x04
4694#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004695
4696struct lb_env {
4697 struct sched_domain *sd;
4698
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004699 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304700 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004701
4702 int dst_cpu;
4703 struct rq *dst_rq;
4704
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304705 struct cpumask *dst_grpmask;
4706 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004707 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004708 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08004709 /* The set of CPUs under consideration for load-balancing */
4710 struct cpumask *cpus;
4711
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004712 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004713
4714 unsigned int loop;
4715 unsigned int loop_break;
4716 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004717
4718 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004719};
4720
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004721/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004722 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004723 * Both runqueues must be locked.
4724 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004725static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004726{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004727 deactivate_task(env->src_rq, p, 0);
4728 set_task_cpu(p, env->dst_cpu);
4729 activate_task(env->dst_rq, p, 0);
4730 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004731}
4732
4733/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004734 * Is this task likely cache-hot:
4735 */
4736static int
4737task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4738{
4739 s64 delta;
4740
4741 if (p->sched_class != &fair_sched_class)
4742 return 0;
4743
4744 if (unlikely(p->policy == SCHED_IDLE))
4745 return 0;
4746
4747 /*
4748 * Buddy candidates are cache hot:
4749 */
4750 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4751 (&p->se == cfs_rq_of(&p->se)->next ||
4752 &p->se == cfs_rq_of(&p->se)->last))
4753 return 1;
4754
4755 if (sysctl_sched_migration_cost == -1)
4756 return 1;
4757 if (sysctl_sched_migration_cost == 0)
4758 return 0;
4759
4760 delta = now - p->se.exec_start;
4761
4762 return delta < (s64)sysctl_sched_migration_cost;
4763}
4764
Mel Gorman3a7053b2013-10-07 11:29:00 +01004765#ifdef CONFIG_NUMA_BALANCING
4766/* Returns true if the destination node has incurred more faults */
4767static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4768{
4769 int src_nid, dst_nid;
4770
4771 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4772 !(env->sd->flags & SD_NUMA)) {
4773 return false;
4774 }
4775
4776 src_nid = cpu_to_node(env->src_cpu);
4777 dst_nid = cpu_to_node(env->dst_cpu);
4778
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004779 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004780 return false;
4781
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004782 /* Always encourage migration to the preferred node. */
4783 if (dst_nid == p->numa_preferred_nid)
4784 return true;
4785
Rik van Riel887c2902013-10-07 11:29:31 +01004786 /* If both task and group weight improve, this move is a winner. */
4787 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4788 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004789 return true;
4790
4791 return false;
4792}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004793
4794
4795static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4796{
4797 int src_nid, dst_nid;
4798
4799 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4800 return false;
4801
4802 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4803 return false;
4804
4805 src_nid = cpu_to_node(env->src_cpu);
4806 dst_nid = cpu_to_node(env->dst_cpu);
4807
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004808 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004809 return false;
4810
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004811 /* Migrating away from the preferred node is always bad. */
4812 if (src_nid == p->numa_preferred_nid)
4813 return true;
4814
Rik van Riel887c2902013-10-07 11:29:31 +01004815 /* If either task or group weight get worse, don't do it. */
4816 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4817 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004818 return true;
4819
4820 return false;
4821}
4822
Mel Gorman3a7053b2013-10-07 11:29:00 +01004823#else
4824static inline bool migrate_improves_locality(struct task_struct *p,
4825 struct lb_env *env)
4826{
4827 return false;
4828}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004829
4830static inline bool migrate_degrades_locality(struct task_struct *p,
4831 struct lb_env *env)
4832{
4833 return false;
4834}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004835#endif
4836
Peter Zijlstra029632f2011-10-25 10:00:11 +02004837/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004838 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4839 */
4840static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004841int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004842{
4843 int tsk_cache_hot = 0;
4844 /*
4845 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004846 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004847 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004848 * 3) running (obviously), or
4849 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004850 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004851 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4852 return 0;
4853
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004854 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004855 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304856
Lucas De Marchi41acab82010-03-10 23:37:45 -03004857 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304858
Peter Zijlstra62633222013-08-19 12:41:09 +02004859 env->flags |= LBF_SOME_PINNED;
4860
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304861 /*
4862 * Remember if this task can be migrated to any other cpu in
4863 * our sched_group. We may want to revisit it if we couldn't
4864 * meet load balance goals by pulling other tasks on src_cpu.
4865 *
4866 * Also avoid computing new_dst_cpu if we have already computed
4867 * one in current iteration.
4868 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004869 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304870 return 0;
4871
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004872 /* Prevent to re-select dst_cpu via env's cpus */
4873 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4874 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004875 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004876 env->new_dst_cpu = cpu;
4877 break;
4878 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304879 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004880
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004881 return 0;
4882 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304883
4884 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004885 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004886
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004887 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004888 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004889 return 0;
4890 }
4891
4892 /*
4893 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004894 * 1) destination numa is preferred
4895 * 2) task is cache cold, or
4896 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004897 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004898 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004899 if (!tsk_cache_hot)
4900 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004901
4902 if (migrate_improves_locality(p, env)) {
4903#ifdef CONFIG_SCHEDSTATS
4904 if (tsk_cache_hot) {
4905 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4906 schedstat_inc(p, se.statistics.nr_forced_migrations);
4907 }
4908#endif
4909 return 1;
4910 }
4911
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004912 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004913 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004914
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004915 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004916 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004917 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004918 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004919
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004920 return 1;
4921 }
4922
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004923 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4924 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004925}
4926
Peter Zijlstra897c3952009-12-17 17:45:42 +01004927/*
4928 * move_one_task tries to move exactly one task from busiest to this_rq, as
4929 * part of active balancing operations within "domain".
4930 * Returns 1 if successful and 0 otherwise.
4931 *
4932 * Called with both runqueues locked.
4933 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004934static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004935{
4936 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004937
Peter Zijlstra367456c2012-02-20 21:49:09 +01004938 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004939 if (!can_migrate_task(p, env))
4940 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004941
Peter Zijlstra367456c2012-02-20 21:49:09 +01004942 move_task(p, env);
4943 /*
4944 * Right now, this is only the second place move_task()
4945 * is called, so we can safely collect move_task()
4946 * stats here rather than inside move_task().
4947 */
4948 schedstat_inc(env->sd, lb_gained[env->idle]);
4949 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004950 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004951 return 0;
4952}
4953
Peter Zijlstraeb953082012-04-17 13:38:40 +02004954static const unsigned int sched_nr_migrate_break = 32;
4955
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004956/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004957 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004958 * this_rq, as part of a balancing operation within domain "sd".
4959 * Returns 1 if successful and 0 otherwise.
4960 *
4961 * Called with both runqueues locked.
4962 */
4963static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004964{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004965 struct list_head *tasks = &env->src_rq->cfs_tasks;
4966 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004967 unsigned long load;
4968 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004969
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004970 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004971 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004972
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004973 while (!list_empty(tasks)) {
4974 p = list_first_entry(tasks, struct task_struct, se.group_node);
4975
Peter Zijlstra367456c2012-02-20 21:49:09 +01004976 env->loop++;
4977 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004978 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004979 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004980
4981 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004982 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004983 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004984 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004985 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004986 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004987
Joonsoo Kimd3198082013-04-23 17:27:40 +09004988 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004989 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004990
Peter Zijlstra367456c2012-02-20 21:49:09 +01004991 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004992
Peter Zijlstraeb953082012-04-17 13:38:40 +02004993 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004994 goto next;
4995
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004996 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004997 goto next;
4998
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004999 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005000 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005001 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005002
5003#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005004 /*
5005 * NEWIDLE balancing is a source of latency, so preemptible
5006 * kernels will stop after the first task is pulled to minimize
5007 * the critical section.
5008 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005009 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005010 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005011#endif
5012
Peter Zijlstraee00e662009-12-17 17:25:20 +01005013 /*
5014 * We only want to steal up to the prescribed amount of
5015 * weighted load.
5016 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005017 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005018 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005019
Peter Zijlstra367456c2012-02-20 21:49:09 +01005020 continue;
5021next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005022 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005023 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005024
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005025 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005026 * Right now, this is one of only two places move_task() is called,
5027 * so we can safely collect move_task() stats here rather than
5028 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005029 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005030 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005031
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005032 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005033}
5034
Peter Zijlstra230059de2009-12-17 17:47:12 +01005035#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005036/*
5037 * update tg->load_weight by folding this cpu's load_avg
5038 */
Paul Turner48a16752012-10-04 13:18:31 +02005039static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005040{
Paul Turner48a16752012-10-04 13:18:31 +02005041 struct sched_entity *se = tg->se[cpu];
5042 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005043
Paul Turner48a16752012-10-04 13:18:31 +02005044 /* throttled entities do not contribute to load */
5045 if (throttled_hierarchy(cfs_rq))
5046 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005047
Paul Turneraff3e492012-10-04 13:18:30 +02005048 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005049
Paul Turner82958362012-10-04 13:18:31 +02005050 if (se) {
5051 update_entity_load_avg(se, 1);
5052 /*
5053 * We pivot on our runnable average having decayed to zero for
5054 * list removal. This generally implies that all our children
5055 * have also been removed (modulo rounding error or bandwidth
5056 * control); however, such cases are rare and we can fix these
5057 * at enqueue.
5058 *
5059 * TODO: fix up out-of-order children on enqueue.
5060 */
5061 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5062 list_del_leaf_cfs_rq(cfs_rq);
5063 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005064 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005065 update_rq_runnable_avg(rq, rq->nr_running);
5066 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005067}
5068
Paul Turner48a16752012-10-04 13:18:31 +02005069static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005070{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005071 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005072 struct cfs_rq *cfs_rq;
5073 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005074
Paul Turner48a16752012-10-04 13:18:31 +02005075 raw_spin_lock_irqsave(&rq->lock, flags);
5076 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005077 /*
5078 * Iterates the task_group tree in a bottom up fashion, see
5079 * list_add_leaf_cfs_rq() for details.
5080 */
Paul Turner64660c82011-07-21 09:43:36 -07005081 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005082 /*
5083 * Note: We may want to consider periodically releasing
5084 * rq->lock about these updates so that creating many task
5085 * groups does not result in continually extending hold time.
5086 */
5087 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005088 }
Paul Turner48a16752012-10-04 13:18:31 +02005089
5090 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005091}
5092
Peter Zijlstra9763b672011-07-13 13:09:25 +02005093/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005094 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005095 * This needs to be done in a top-down fashion because the load of a child
5096 * group is a fraction of its parents load.
5097 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005098static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005099{
Vladimir Davydov68520792013-07-15 17:49:19 +04005100 struct rq *rq = rq_of(cfs_rq);
5101 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005102 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005103 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005104
Vladimir Davydov68520792013-07-15 17:49:19 +04005105 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005106 return;
5107
Vladimir Davydov68520792013-07-15 17:49:19 +04005108 cfs_rq->h_load_next = NULL;
5109 for_each_sched_entity(se) {
5110 cfs_rq = cfs_rq_of(se);
5111 cfs_rq->h_load_next = se;
5112 if (cfs_rq->last_h_load_update == now)
5113 break;
5114 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005115
Vladimir Davydov68520792013-07-15 17:49:19 +04005116 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005117 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005118 cfs_rq->last_h_load_update = now;
5119 }
5120
5121 while ((se = cfs_rq->h_load_next) != NULL) {
5122 load = cfs_rq->h_load;
5123 load = div64_ul(load * se->avg.load_avg_contrib,
5124 cfs_rq->runnable_load_avg + 1);
5125 cfs_rq = group_cfs_rq(se);
5126 cfs_rq->h_load = load;
5127 cfs_rq->last_h_load_update = now;
5128 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005129}
5130
Peter Zijlstra367456c2012-02-20 21:49:09 +01005131static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005132{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005133 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005134
Vladimir Davydov68520792013-07-15 17:49:19 +04005135 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005136 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5137 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005138}
5139#else
Paul Turner48a16752012-10-04 13:18:31 +02005140static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005141{
5142}
5143
Peter Zijlstra367456c2012-02-20 21:49:09 +01005144static unsigned long task_h_load(struct task_struct *p)
5145{
Alex Shia003a252013-06-20 10:18:51 +08005146 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005147}
5148#endif
5149
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005150/********** Helpers for find_busiest_group ************************/
5151/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005152 * sg_lb_stats - stats of a sched_group required for load_balancing
5153 */
5154struct sg_lb_stats {
5155 unsigned long avg_load; /*Avg load across the CPUs of the group */
5156 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005157 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005158 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005159 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005160 unsigned int sum_nr_running; /* Nr tasks running in the group */
5161 unsigned int group_capacity;
5162 unsigned int idle_cpus;
5163 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005164 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005165 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005166#ifdef CONFIG_NUMA_BALANCING
5167 unsigned int nr_numa_running;
5168 unsigned int nr_preferred_running;
5169#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005170};
5171
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005172/*
5173 * sd_lb_stats - Structure to store the statistics of a sched_domain
5174 * during load balancing.
5175 */
5176struct sd_lb_stats {
5177 struct sched_group *busiest; /* Busiest group in this sd */
5178 struct sched_group *local; /* Local group in this sd */
5179 unsigned long total_load; /* Total load of all groups in sd */
5180 unsigned long total_pwr; /* Total power of all groups in sd */
5181 unsigned long avg_load; /* Average load across all groups in sd */
5182
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005183 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005184 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005185};
5186
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005187static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5188{
5189 /*
5190 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5191 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5192 * We must however clear busiest_stat::avg_load because
5193 * update_sd_pick_busiest() reads this before assignment.
5194 */
5195 *sds = (struct sd_lb_stats){
5196 .busiest = NULL,
5197 .local = NULL,
5198 .total_load = 0UL,
5199 .total_pwr = 0UL,
5200 .busiest_stat = {
5201 .avg_load = 0UL,
5202 },
5203 };
5204}
5205
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005206/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005207 * get_sd_load_idx - Obtain the load index for a given sched domain.
5208 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305209 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005210 *
5211 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005212 */
5213static inline int get_sd_load_idx(struct sched_domain *sd,
5214 enum cpu_idle_type idle)
5215{
5216 int load_idx;
5217
5218 switch (idle) {
5219 case CPU_NOT_IDLE:
5220 load_idx = sd->busy_idx;
5221 break;
5222
5223 case CPU_NEWLY_IDLE:
5224 load_idx = sd->newidle_idx;
5225 break;
5226 default:
5227 load_idx = sd->idle_idx;
5228 break;
5229 }
5230
5231 return load_idx;
5232}
5233
Li Zefan15f803c2013-03-05 16:07:11 +08005234static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005235{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005236 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005237}
5238
5239unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5240{
5241 return default_scale_freq_power(sd, cpu);
5242}
5243
Li Zefan15f803c2013-03-05 16:07:11 +08005244static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005245{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005246 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005247 unsigned long smt_gain = sd->smt_gain;
5248
5249 smt_gain /= weight;
5250
5251 return smt_gain;
5252}
5253
5254unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5255{
5256 return default_scale_smt_power(sd, cpu);
5257}
5258
Li Zefan15f803c2013-03-05 16:07:11 +08005259static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005260{
5261 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005262 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005263
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005264 /*
5265 * Since we're reading these variables without serialization make sure
5266 * we read them once before doing sanity checks on them.
5267 */
5268 age_stamp = ACCESS_ONCE(rq->age_stamp);
5269 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005270
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005271 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005272
5273 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005274 /* Ensures that power won't end up being negative */
5275 available = 0;
5276 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005277 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005278 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005279
Nikhil Rao1399fa72011-05-18 10:09:39 -07005280 if (unlikely((s64)total < SCHED_POWER_SCALE))
5281 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005282
Nikhil Rao1399fa72011-05-18 10:09:39 -07005283 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005284
5285 return div_u64(available, total);
5286}
5287
5288static void update_cpu_power(struct sched_domain *sd, int cpu)
5289{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005290 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005291 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005292 struct sched_group *sdg = sd->groups;
5293
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005294 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5295 if (sched_feat(ARCH_POWER))
5296 power *= arch_scale_smt_power(sd, cpu);
5297 else
5298 power *= default_scale_smt_power(sd, cpu);
5299
Nikhil Rao1399fa72011-05-18 10:09:39 -07005300 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005301 }
5302
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005303 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005304
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_freq_power(sd, cpu);
5307 else
5308 power *= default_scale_freq_power(sd, cpu);
5309
Nikhil Rao1399fa72011-05-18 10:09:39 -07005310 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005311
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005312 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005313 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005314
5315 if (!power)
5316 power = 1;
5317
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005318 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005319 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005320}
5321
Peter Zijlstra029632f2011-10-25 10:00:11 +02005322void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005323{
5324 struct sched_domain *child = sd->child;
5325 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005326 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005327 unsigned long interval;
5328
5329 interval = msecs_to_jiffies(sd->balance_interval);
5330 interval = clamp(interval, 1UL, max_load_balance_interval);
5331 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005332
5333 if (!child) {
5334 update_cpu_power(sd, cpu);
5335 return;
5336 }
5337
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005338 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005339
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005340 if (child->flags & SD_OVERLAP) {
5341 /*
5342 * SD_OVERLAP domains cannot assume that child groups
5343 * span the current group.
5344 */
5345
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005346 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5347 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5348
5349 power_orig += sg->sgp->power_orig;
5350 power += sg->sgp->power;
5351 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005352 } else {
5353 /*
5354 * !SD_OVERLAP domains can assume that child groups
5355 * span the current group.
5356 */
5357
5358 group = child->groups;
5359 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005360 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005361 power += group->sgp->power;
5362 group = group->next;
5363 } while (group != child->groups);
5364 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005365
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005366 sdg->sgp->power_orig = power_orig;
5367 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005368}
5369
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005370/*
5371 * Try and fix up capacity for tiny siblings, this is needed when
5372 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5373 * which on its own isn't powerful enough.
5374 *
5375 * See update_sd_pick_busiest() and check_asym_packing().
5376 */
5377static inline int
5378fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5379{
5380 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005381 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005382 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005383 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005384 return 0;
5385
5386 /*
5387 * If ~90% of the cpu_power is still there, we're good.
5388 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005389 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005390 return 1;
5391
5392 return 0;
5393}
5394
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005395/*
5396 * Group imbalance indicates (and tries to solve) the problem where balancing
5397 * groups is inadequate due to tsk_cpus_allowed() constraints.
5398 *
5399 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5400 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5401 * Something like:
5402 *
5403 * { 0 1 2 3 } { 4 5 6 7 }
5404 * * * * *
5405 *
5406 * If we were to balance group-wise we'd place two tasks in the first group and
5407 * two tasks in the second group. Clearly this is undesired as it will overload
5408 * cpu 3 and leave one of the cpus in the second group unused.
5409 *
5410 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005411 * by noticing the lower domain failed to reach balance and had difficulty
5412 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005413 *
5414 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305415 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005416 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005417 * to create an effective group imbalance.
5418 *
5419 * This is a somewhat tricky proposition since the next run might not find the
5420 * group imbalance and decide the groups need to be balanced again. A most
5421 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005422 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005423
Peter Zijlstra62633222013-08-19 12:41:09 +02005424static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005425{
Peter Zijlstra62633222013-08-19 12:41:09 +02005426 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005427}
5428
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005429/*
5430 * Compute the group capacity.
5431 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005432 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5433 * first dividing out the smt factor and computing the actual number of cores
5434 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005435 */
5436static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5437{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005438 unsigned int capacity, smt, cpus;
5439 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005440
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005441 power = group->sgp->power;
5442 power_orig = group->sgp->power_orig;
5443 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005444
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005445 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5446 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5447 capacity = cpus / smt; /* cores */
5448
5449 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005450 if (!capacity)
5451 capacity = fix_small_capacity(env->sd, group);
5452
5453 return capacity;
5454}
5455
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005456/**
5457 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5458 * @env: The load balancing environment.
5459 * @group: sched_group whose statistics are to be updated.
5460 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5461 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005462 * @sgs: variable to hold the statistics for this group.
5463 */
5464static inline void update_sg_lb_stats(struct lb_env *env,
5465 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005466 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005467{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005468 unsigned long nr_running;
5469 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005470 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005471
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005472 memset(sgs, 0, sizeof(*sgs));
5473
Michael Wangb94031302012-07-12 16:10:13 +08005474 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005475 struct rq *rq = cpu_rq(i);
5476
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005477 nr_running = rq->nr_running;
5478
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005479 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005480 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005481 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005482 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005483 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005484
5485 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005486 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005487#ifdef CONFIG_NUMA_BALANCING
5488 sgs->nr_numa_running += rq->nr_numa_running;
5489 sgs->nr_preferred_running += rq->nr_preferred_running;
5490#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005491 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005492 if (idle_cpu(i))
5493 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005494 }
5495
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005496 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005497 sgs->group_power = group->sgp->power;
5498 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005499
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005500 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005501 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005502
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005503 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005504
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005505 sgs->group_imb = sg_imbalanced(group);
5506 sgs->group_capacity = sg_capacity(env, group);
5507
Nikhil Raofab47622010-10-15 13:12:29 -07005508 if (sgs->group_capacity > sgs->sum_nr_running)
5509 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510}
5511
5512/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005513 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005514 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005515 * @sds: sched_domain statistics
5516 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005517 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005518 *
5519 * Determine if @sg is a busier group than the previously selected
5520 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005521 *
5522 * Return: %true if @sg is a busier group than the previously selected
5523 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005524 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005525static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005526 struct sd_lb_stats *sds,
5527 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005528 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005529{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005530 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005531 return false;
5532
5533 if (sgs->sum_nr_running > sgs->group_capacity)
5534 return true;
5535
5536 if (sgs->group_imb)
5537 return true;
5538
5539 /*
5540 * ASYM_PACKING needs to move all the work to the lowest
5541 * numbered CPUs in the group, therefore mark all groups
5542 * higher than ourself as busy.
5543 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005544 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5545 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005546 if (!sds->busiest)
5547 return true;
5548
5549 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5550 return true;
5551 }
5552
5553 return false;
5554}
5555
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005556#ifdef CONFIG_NUMA_BALANCING
5557static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5558{
5559 if (sgs->sum_nr_running > sgs->nr_numa_running)
5560 return regular;
5561 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5562 return remote;
5563 return all;
5564}
5565
5566static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5567{
5568 if (rq->nr_running > rq->nr_numa_running)
5569 return regular;
5570 if (rq->nr_running > rq->nr_preferred_running)
5571 return remote;
5572 return all;
5573}
5574#else
5575static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5576{
5577 return all;
5578}
5579
5580static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5581{
5582 return regular;
5583}
5584#endif /* CONFIG_NUMA_BALANCING */
5585
Michael Neuling532cb4c2010-06-08 14:57:02 +10005586/**
Hui Kang461819a2011-10-11 23:00:59 -04005587 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005588 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589 * @sds: variable to hold the statistics for this sched_domain.
5590 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005591static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005592{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005593 struct sched_domain *child = env->sd->child;
5594 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005595 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005596 int load_idx, prefer_sibling = 0;
5597
5598 if (child && child->flags & SD_PREFER_SIBLING)
5599 prefer_sibling = 1;
5600
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005601 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602
5603 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005604 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005605 int local_group;
5606
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005607 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005608 if (local_group) {
5609 sds->local = sg;
5610 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005611
5612 if (env->idle != CPU_NEWLY_IDLE ||
5613 time_after_eq(jiffies, sg->sgp->next_update))
5614 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005615 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005616
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005617 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005618
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005619 if (local_group)
5620 goto next_group;
5621
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005622 /*
5623 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005624 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005625 * and move all the excess tasks away. We lower the capacity
5626 * of a group only if the local group has the capacity to fit
5627 * these excess tasks, i.e. nr_running < group_capacity. The
5628 * extra check prevents the case where you always pull from the
5629 * heaviest group when it is already under-utilized (possible
5630 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005631 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005632 if (prefer_sibling && sds->local &&
5633 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005634 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005635
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005636 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005637 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005638 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005639 }
5640
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005641next_group:
5642 /* Now, start updating sd_lb_stats */
5643 sds->total_load += sgs->group_load;
5644 sds->total_pwr += sgs->group_power;
5645
Michael Neuling532cb4c2010-06-08 14:57:02 +10005646 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005647 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005648
5649 if (env->sd->flags & SD_NUMA)
5650 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005651}
5652
Michael Neuling532cb4c2010-06-08 14:57:02 +10005653/**
5654 * check_asym_packing - Check to see if the group is packed into the
5655 * sched doman.
5656 *
5657 * This is primarily intended to used at the sibling level. Some
5658 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5659 * case of POWER7, it can move to lower SMT modes only when higher
5660 * threads are idle. When in lower SMT modes, the threads will
5661 * perform better since they share less core resources. Hence when we
5662 * have idle threads, we want them to be the higher ones.
5663 *
5664 * This packing function is run on idle threads. It checks to see if
5665 * the busiest CPU in this domain (core in the P7 case) has a higher
5666 * CPU number than the packing function is being run on. Here we are
5667 * assuming lower CPU number will be equivalent to lower a SMT thread
5668 * number.
5669 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005670 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005671 * this CPU. The amount of the imbalance is returned in *imbalance.
5672 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005673 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005674 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005675 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005676static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005677{
5678 int busiest_cpu;
5679
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005680 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005681 return 0;
5682
5683 if (!sds->busiest)
5684 return 0;
5685
5686 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005687 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005688 return 0;
5689
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005690 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005691 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5692 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005693
Michael Neuling532cb4c2010-06-08 14:57:02 +10005694 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005695}
5696
5697/**
5698 * fix_small_imbalance - Calculate the minor imbalance that exists
5699 * amongst the groups of a sched_domain, during
5700 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005701 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005702 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005703 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005704static inline
5705void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005706{
5707 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5708 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005709 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005710 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005711
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005712 local = &sds->local_stat;
5713 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005714
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005715 if (!local->sum_nr_running)
5716 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5717 else if (busiest->load_per_task > local->load_per_task)
5718 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005719
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005720 scaled_busy_load_per_task =
5721 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005722 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005723
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005724 if (busiest->avg_load + scaled_busy_load_per_task >=
5725 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005726 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005727 return;
5728 }
5729
5730 /*
5731 * OK, we don't have enough imbalance to justify moving tasks,
5732 * however we may be able to increase total CPU power used by
5733 * moving them.
5734 */
5735
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005736 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005737 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005738 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005739 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005740 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005741
5742 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005743 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005744 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005745 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005746 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005747 min(busiest->load_per_task,
5748 busiest->avg_load - tmp);
5749 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005750
5751 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005752 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005753 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005754 tmp = (busiest->avg_load * busiest->group_power) /
5755 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005756 } else {
5757 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005758 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005759 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005760 pwr_move += local->group_power *
5761 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005762 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005763
5764 /* Move if we gain throughput */
5765 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005766 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767}
5768
5769/**
5770 * calculate_imbalance - Calculate the amount of imbalance present within the
5771 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005772 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005773 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005774 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005775static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005776{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005777 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005778 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005779
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005780 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005781 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005782
5783 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005784 /*
5785 * In the group_imb case we cannot rely on group-wide averages
5786 * to ensure cpu-load equilibrium, look at wider averages. XXX
5787 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005788 busiest->load_per_task =
5789 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005790 }
5791
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005792 /*
5793 * In the presence of smp nice balancing, certain scenarios can have
5794 * max load less than avg load(as we skip the groups at or below
5795 * its cpu_power, while calculating max_load..)
5796 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005797 if (busiest->avg_load <= sds->avg_load ||
5798 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005799 env->imbalance = 0;
5800 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005801 }
5802
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005803 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005804 /*
5805 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005806 * Except of course for the group_imb case, since then we might
5807 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005808 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005809 load_above_capacity =
5810 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005811
Nikhil Rao1399fa72011-05-18 10:09:39 -07005812 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005813 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005814 }
5815
5816 /*
5817 * We're trying to get all the cpus to the average_load, so we don't
5818 * want to push ourselves above the average load, nor do we wish to
5819 * reduce the max loaded cpu below the average load. At the same time,
5820 * we also don't want to reduce the group load below the group capacity
5821 * (so that we can implement power-savings policies etc). Thus we look
5822 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005823 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005824 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005825
5826 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005827 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005828 max_pull * busiest->group_power,
5829 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005830 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005831
5832 /*
5833 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005834 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005835 * a think about bumping its value to force at least one task to be
5836 * moved
5837 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005838 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005839 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005840}
Nikhil Raofab47622010-10-15 13:12:29 -07005841
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005842/******* find_busiest_group() helpers end here *********************/
5843
5844/**
5845 * find_busiest_group - Returns the busiest group within the sched_domain
5846 * if there is an imbalance. If there isn't an imbalance, and
5847 * the user has opted for power-savings, it returns a group whose
5848 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5849 * such a group exists.
5850 *
5851 * Also calculates the amount of weighted load which should be moved
5852 * to restore balance.
5853 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005854 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005855 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005856 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857 * - If no imbalance and user has opted for power-savings balance,
5858 * return the least loaded group whose CPUs can be
5859 * put to idle by rebalancing its tasks onto our group.
5860 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005861static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005862{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005863 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005864 struct sd_lb_stats sds;
5865
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005866 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005867
5868 /*
5869 * Compute the various statistics relavent for load balancing at
5870 * this level.
5871 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005872 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005873 local = &sds.local_stat;
5874 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005875
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005876 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5877 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005878 return sds.busiest;
5879
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005880 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005881 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005882 goto out_balanced;
5883
Nikhil Rao1399fa72011-05-18 10:09:39 -07005884 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005885
Peter Zijlstra866ab432011-02-21 18:56:47 +01005886 /*
5887 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005888 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005889 * isn't true due to cpus_allowed constraints and the like.
5890 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005891 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005892 goto force_balance;
5893
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005894 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005895 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5896 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005897 goto force_balance;
5898
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005899 /*
5900 * If the local group is more busy than the selected busiest group
5901 * don't try and pull any tasks.
5902 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005903 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 goto out_balanced;
5905
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005906 /*
5907 * Don't pull any tasks if this group is already above the domain
5908 * average load.
5909 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005910 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005911 goto out_balanced;
5912
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005913 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005914 /*
5915 * This cpu is idle. If the busiest group load doesn't
5916 * have more tasks than the number of available cpu's and
5917 * there is no imbalance between this and busiest group
5918 * wrt to idle cpu's, it is balanced.
5919 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005920 if ((local->idle_cpus < busiest->idle_cpus) &&
5921 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005922 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005923 } else {
5924 /*
5925 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5926 * imbalance_pct to be conservative.
5927 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005928 if (100 * busiest->avg_load <=
5929 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005930 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005931 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005932
Nikhil Raofab47622010-10-15 13:12:29 -07005933force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005934 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005935 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005936 return sds.busiest;
5937
5938out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005939 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005940 return NULL;
5941}
5942
5943/*
5944 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5945 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005946static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08005947 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005948{
5949 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005950 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005951 int i;
5952
Peter Zijlstra6906a402013-08-19 15:20:21 +02005953 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005954 unsigned long power, capacity, wl;
5955 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005957 rq = cpu_rq(i);
5958 rt = fbq_classify_rq(rq);
5959
5960 /*
5961 * We classify groups/runqueues into three groups:
5962 * - regular: there are !numa tasks
5963 * - remote: there are numa tasks that run on the 'wrong' node
5964 * - all: there is no distinction
5965 *
5966 * In order to avoid migrating ideally placed numa tasks,
5967 * ignore those when there's better options.
5968 *
5969 * If we ignore the actual busiest queue to migrate another
5970 * task, the next balance pass can still reduce the busiest
5971 * queue by moving tasks around inside the node.
5972 *
5973 * If we cannot move enough load due to this classification
5974 * the next pass will adjust the group classification and
5975 * allow migration of more tasks.
5976 *
5977 * Both cases only affect the total convergence complexity.
5978 */
5979 if (rt > env->fbq_type)
5980 continue;
5981
5982 power = power_of(i);
5983 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005984 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005985 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005986
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005987 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005988
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005989 /*
5990 * When comparing with imbalance, use weighted_cpuload()
5991 * which is not scaled with the cpu power.
5992 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005993 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005994 continue;
5995
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005996 /*
5997 * For the load comparisons with the other cpu's, consider
5998 * the weighted_cpuload() scaled with the cpu power, so that
5999 * the load can be moved away from the cpu that is potentially
6000 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006001 *
6002 * Thus we're looking for max(wl_i / power_i), crosswise
6003 * multiplication to rid ourselves of the division works out
6004 * to: wl_i * power_j > wl_j * power_i; where j is our
6005 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006006 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006007 if (wl * busiest_power > busiest_load * power) {
6008 busiest_load = wl;
6009 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006010 busiest = rq;
6011 }
6012 }
6013
6014 return busiest;
6015}
6016
6017/*
6018 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6019 * so long as it is large enough.
6020 */
6021#define MAX_PINNED_INTERVAL 512
6022
6023/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006024DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006025
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006026static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006027{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006028 struct sched_domain *sd = env->sd;
6029
6030 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006031
6032 /*
6033 * ASYM_PACKING needs to force migrate tasks from busy but
6034 * higher numbered CPUs in order to pack all tasks in the
6035 * lowest numbered CPUs.
6036 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006037 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006038 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006039 }
6040
6041 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6042}
6043
Tejun Heo969c7922010-05-06 18:49:21 +02006044static int active_load_balance_cpu_stop(void *data);
6045
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006046static int should_we_balance(struct lb_env *env)
6047{
6048 struct sched_group *sg = env->sd->groups;
6049 struct cpumask *sg_cpus, *sg_mask;
6050 int cpu, balance_cpu = -1;
6051
6052 /*
6053 * In the newly idle case, we will allow all the cpu's
6054 * to do the newly idle load balance.
6055 */
6056 if (env->idle == CPU_NEWLY_IDLE)
6057 return 1;
6058
6059 sg_cpus = sched_group_cpus(sg);
6060 sg_mask = sched_group_mask(sg);
6061 /* Try to find first idle cpu */
6062 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6063 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6064 continue;
6065
6066 balance_cpu = cpu;
6067 break;
6068 }
6069
6070 if (balance_cpu == -1)
6071 balance_cpu = group_balance_cpu(sg);
6072
6073 /*
6074 * First idle cpu or the first cpu(busiest) in this sched group
6075 * is eligible for doing load balancing at this and above domains.
6076 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006077 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006078}
6079
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006080/*
6081 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6082 * tasks if there is an imbalance.
6083 */
6084static int load_balance(int this_cpu, struct rq *this_rq,
6085 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006086 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006087{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306088 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006089 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006090 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091 struct rq *busiest;
6092 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006093 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006094
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006095 struct lb_env env = {
6096 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006097 .dst_cpu = this_cpu,
6098 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306099 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006100 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006101 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006102 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006103 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006104 };
6105
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006106 /*
6107 * For NEWLY_IDLE load_balancing, we don't need to consider
6108 * other cpus in our group
6109 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006110 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006111 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006112
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006113 cpumask_copy(cpus, cpu_active_mask);
6114
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006115 schedstat_inc(sd, lb_count[idle]);
6116
6117redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006118 if (!should_we_balance(&env)) {
6119 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006120 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006121 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006122
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006123 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124 if (!group) {
6125 schedstat_inc(sd, lb_nobusyg[idle]);
6126 goto out_balanced;
6127 }
6128
Michael Wangb94031302012-07-12 16:10:13 +08006129 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006130 if (!busiest) {
6131 schedstat_inc(sd, lb_nobusyq[idle]);
6132 goto out_balanced;
6133 }
6134
Michael Wang78feefc2012-08-06 16:41:59 +08006135 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006136
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006137 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006138
6139 ld_moved = 0;
6140 if (busiest->nr_running > 1) {
6141 /*
6142 * Attempt to move tasks. If find_busiest_group has found
6143 * an imbalance but busiest->nr_running <= 1, the group is
6144 * still unbalanced. ld_moved simply stays zero, so it is
6145 * correctly treated as an imbalance.
6146 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006147 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006148 env.src_cpu = busiest->cpu;
6149 env.src_rq = busiest;
6150 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006151
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006152more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006154 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306155
6156 /*
6157 * cur_ld_moved - load moved in current iteration
6158 * ld_moved - cumulative load moved across iterations
6159 */
6160 cur_ld_moved = move_tasks(&env);
6161 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006162 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006163 local_irq_restore(flags);
6164
6165 /*
6166 * some other cpu did the load balance for us.
6167 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306168 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6169 resched_cpu(env.dst_cpu);
6170
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006171 if (env.flags & LBF_NEED_BREAK) {
6172 env.flags &= ~LBF_NEED_BREAK;
6173 goto more_balance;
6174 }
6175
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306176 /*
6177 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6178 * us and move them to an alternate dst_cpu in our sched_group
6179 * where they can run. The upper limit on how many times we
6180 * iterate on same src_cpu is dependent on number of cpus in our
6181 * sched_group.
6182 *
6183 * This changes load balance semantics a bit on who can move
6184 * load to a given_cpu. In addition to the given_cpu itself
6185 * (or a ilb_cpu acting on its behalf where given_cpu is
6186 * nohz-idle), we now have balance_cpu in a position to move
6187 * load to given_cpu. In rare situations, this may cause
6188 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6189 * _independently_ and at _same_ time to move some load to
6190 * given_cpu) causing exceess load to be moved to given_cpu.
6191 * This however should not happen so much in practice and
6192 * moreover subsequent load balance cycles should correct the
6193 * excess load moved.
6194 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006195 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306196
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006197 /* Prevent to re-select dst_cpu via env's cpus */
6198 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6199
Michael Wang78feefc2012-08-06 16:41:59 +08006200 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306201 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006202 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306203 env.loop = 0;
6204 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006205
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306206 /*
6207 * Go back to "more_balance" rather than "redo" since we
6208 * need to continue with same src_cpu.
6209 */
6210 goto more_balance;
6211 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006212
Peter Zijlstra62633222013-08-19 12:41:09 +02006213 /*
6214 * We failed to reach balance because of affinity.
6215 */
6216 if (sd_parent) {
6217 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6218
6219 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6220 *group_imbalance = 1;
6221 } else if (*group_imbalance)
6222 *group_imbalance = 0;
6223 }
6224
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006225 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006226 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006227 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306228 if (!cpumask_empty(cpus)) {
6229 env.loop = 0;
6230 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006231 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306232 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006233 goto out_balanced;
6234 }
6235 }
6236
6237 if (!ld_moved) {
6238 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006239 /*
6240 * Increment the failure counter only on periodic balance.
6241 * We do not want newidle balance, which can be very
6242 * frequent, pollute the failure counter causing
6243 * excessive cache_hot migrations and active balances.
6244 */
6245 if (idle != CPU_NEWLY_IDLE)
6246 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006247
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006248 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006249 raw_spin_lock_irqsave(&busiest->lock, flags);
6250
Tejun Heo969c7922010-05-06 18:49:21 +02006251 /* don't kick the active_load_balance_cpu_stop,
6252 * if the curr task on busiest cpu can't be
6253 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006254 */
6255 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006256 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006257 raw_spin_unlock_irqrestore(&busiest->lock,
6258 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006259 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006260 goto out_one_pinned;
6261 }
6262
Tejun Heo969c7922010-05-06 18:49:21 +02006263 /*
6264 * ->active_balance synchronizes accesses to
6265 * ->active_balance_work. Once set, it's cleared
6266 * only after active load balance is finished.
6267 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006268 if (!busiest->active_balance) {
6269 busiest->active_balance = 1;
6270 busiest->push_cpu = this_cpu;
6271 active_balance = 1;
6272 }
6273 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006274
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006275 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006276 stop_one_cpu_nowait(cpu_of(busiest),
6277 active_load_balance_cpu_stop, busiest,
6278 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006279 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006280
6281 /*
6282 * We've kicked active balancing, reset the failure
6283 * counter.
6284 */
6285 sd->nr_balance_failed = sd->cache_nice_tries+1;
6286 }
6287 } else
6288 sd->nr_balance_failed = 0;
6289
6290 if (likely(!active_balance)) {
6291 /* We were unbalanced, so reset the balancing interval */
6292 sd->balance_interval = sd->min_interval;
6293 } else {
6294 /*
6295 * If we've begun active balancing, start to back off. This
6296 * case may not be covered by the all_pinned logic if there
6297 * is only 1 task on the busy runqueue (because we don't call
6298 * move_tasks).
6299 */
6300 if (sd->balance_interval < sd->max_interval)
6301 sd->balance_interval *= 2;
6302 }
6303
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006304 goto out;
6305
6306out_balanced:
6307 schedstat_inc(sd, lb_balanced[idle]);
6308
6309 sd->nr_balance_failed = 0;
6310
6311out_one_pinned:
6312 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006313 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006314 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006315 (sd->balance_interval < sd->max_interval))
6316 sd->balance_interval *= 2;
6317
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006318 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006319out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006320 return ld_moved;
6321}
6322
6323/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006324 * idle_balance is called by schedule() if this_cpu is about to become
6325 * idle. Attempts to pull tasks from other CPUs.
6326 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006327void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006328{
6329 struct sched_domain *sd;
6330 int pulled_task = 0;
6331 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006332 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006333
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006334 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006335
6336 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6337 return;
6338
Peter Zijlstraf492e122009-12-23 15:29:42 +01006339 /*
6340 * Drop the rq->lock, but keep IRQ/preempt disabled.
6341 */
6342 raw_spin_unlock(&this_rq->lock);
6343
Paul Turner48a16752012-10-04 13:18:31 +02006344 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006345 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006346 for_each_domain(this_cpu, sd) {
6347 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006348 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006349 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006350
6351 if (!(sd->flags & SD_LOAD_BALANCE))
6352 continue;
6353
Jason Low9bd721c2013-09-13 11:26:52 -07006354 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6355 break;
6356
Peter Zijlstraf492e122009-12-23 15:29:42 +01006357 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006358 t0 = sched_clock_cpu(this_cpu);
6359
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006360 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006361 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006362 sd, CPU_NEWLY_IDLE,
6363 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006364
6365 domain_cost = sched_clock_cpu(this_cpu) - t0;
6366 if (domain_cost > sd->max_newidle_lb_cost)
6367 sd->max_newidle_lb_cost = domain_cost;
6368
6369 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006370 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006371
6372 interval = msecs_to_jiffies(sd->balance_interval);
6373 if (time_after(next_balance, sd->last_balance + interval))
6374 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006375 if (pulled_task) {
6376 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006377 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006378 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006379 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006380 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006381
6382 raw_spin_lock(&this_rq->lock);
6383
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006384 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6385 /*
6386 * We are going idle. next_balance may be set based on
6387 * a busy processor. So reset next_balance.
6388 */
6389 this_rq->next_balance = next_balance;
6390 }
Jason Low9bd721c2013-09-13 11:26:52 -07006391
6392 if (curr_cost > this_rq->max_idle_balance_cost)
6393 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394}
6395
6396/*
Tejun Heo969c7922010-05-06 18:49:21 +02006397 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6398 * running tasks off the busiest CPU onto idle CPUs. It requires at
6399 * least 1 task to be running on each physical CPU where possible, and
6400 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401 */
Tejun Heo969c7922010-05-06 18:49:21 +02006402static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006403{
Tejun Heo969c7922010-05-06 18:49:21 +02006404 struct rq *busiest_rq = data;
6405 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006406 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006407 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006408 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006409
6410 raw_spin_lock_irq(&busiest_rq->lock);
6411
6412 /* make sure the requested cpu hasn't gone down in the meantime */
6413 if (unlikely(busiest_cpu != smp_processor_id() ||
6414 !busiest_rq->active_balance))
6415 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006416
6417 /* Is there any task to move? */
6418 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006419 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006420
6421 /*
6422 * This condition is "impossible", if it occurs
6423 * we need to fix it. Originally reported by
6424 * Bjorn Helgaas on a 128-cpu setup.
6425 */
6426 BUG_ON(busiest_rq == target_rq);
6427
6428 /* move a task from busiest_rq to target_rq */
6429 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006430
6431 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006432 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006433 for_each_domain(target_cpu, sd) {
6434 if ((sd->flags & SD_LOAD_BALANCE) &&
6435 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6436 break;
6437 }
6438
6439 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006440 struct lb_env env = {
6441 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006442 .dst_cpu = target_cpu,
6443 .dst_rq = target_rq,
6444 .src_cpu = busiest_rq->cpu,
6445 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006446 .idle = CPU_IDLE,
6447 };
6448
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006449 schedstat_inc(sd, alb_count);
6450
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006451 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006452 schedstat_inc(sd, alb_pushed);
6453 else
6454 schedstat_inc(sd, alb_failed);
6455 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006456 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006457 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006458out_unlock:
6459 busiest_rq->active_balance = 0;
6460 raw_spin_unlock_irq(&busiest_rq->lock);
6461 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006462}
6463
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006464#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006465/*
6466 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006467 * - When one of the busy CPUs notice that there may be an idle rebalancing
6468 * needed, they will kick the idle load balancer, which then does idle
6469 * load balancing for all the idle CPUs.
6470 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006471static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006472 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006473 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006474 unsigned long next_balance; /* in jiffy units */
6475} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006476
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006477static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006478{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006479 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006480
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006481 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6482 return ilb;
6483
6484 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006485}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006486
6487/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006488 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6489 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6490 * CPU (if there is one).
6491 */
6492static void nohz_balancer_kick(int cpu)
6493{
6494 int ilb_cpu;
6495
6496 nohz.next_balance++;
6497
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006498 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006499
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006500 if (ilb_cpu >= nr_cpu_ids)
6501 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006502
Suresh Siddhacd490c52011-12-06 11:26:34 -08006503 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006504 return;
6505 /*
6506 * Use smp_send_reschedule() instead of resched_cpu().
6507 * This way we generate a sched IPI on the target cpu which
6508 * is idle. And the softirq performing nohz idle load balance
6509 * will be run before returning from the IPI.
6510 */
6511 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006512 return;
6513}
6514
Alex Shic1cc0172012-09-10 15:10:58 +08006515static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006516{
6517 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6518 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6519 atomic_dec(&nohz.nr_cpus);
6520 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6521 }
6522}
6523
Suresh Siddha69e1e812011-12-01 17:07:33 -08006524static inline void set_cpu_sd_state_busy(void)
6525{
6526 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006527
Suresh Siddha69e1e812011-12-01 17:07:33 -08006528 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006529 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006530
6531 if (!sd || !sd->nohz_idle)
6532 goto unlock;
6533 sd->nohz_idle = 0;
6534
6535 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006536 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006537unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006538 rcu_read_unlock();
6539}
6540
6541void set_cpu_sd_state_idle(void)
6542{
6543 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006544
Suresh Siddha69e1e812011-12-01 17:07:33 -08006545 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006546 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006547
6548 if (!sd || sd->nohz_idle)
6549 goto unlock;
6550 sd->nohz_idle = 1;
6551
6552 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006553 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006554unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006555 rcu_read_unlock();
6556}
6557
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006558/*
Alex Shic1cc0172012-09-10 15:10:58 +08006559 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006560 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006561 */
Alex Shic1cc0172012-09-10 15:10:58 +08006562void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006563{
Suresh Siddha71325962012-01-19 18:28:57 -08006564 /*
6565 * If this cpu is going down, then nothing needs to be done.
6566 */
6567 if (!cpu_active(cpu))
6568 return;
6569
Alex Shic1cc0172012-09-10 15:10:58 +08006570 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6571 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006572
Alex Shic1cc0172012-09-10 15:10:58 +08006573 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6574 atomic_inc(&nohz.nr_cpus);
6575 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006576}
Suresh Siddha71325962012-01-19 18:28:57 -08006577
Paul Gortmaker0db06282013-06-19 14:53:51 -04006578static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006579 unsigned long action, void *hcpu)
6580{
6581 switch (action & ~CPU_TASKS_FROZEN) {
6582 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006583 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006584 return NOTIFY_OK;
6585 default:
6586 return NOTIFY_DONE;
6587 }
6588}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006589#endif
6590
6591static DEFINE_SPINLOCK(balancing);
6592
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006593/*
6594 * Scale the max load_balance interval with the number of CPUs in the system.
6595 * This trades load-balance latency on larger machines for less cross talk.
6596 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006597void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006598{
6599 max_load_balance_interval = HZ*num_online_cpus()/10;
6600}
6601
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006602/*
6603 * It checks each scheduling domain to see if it is due to be balanced,
6604 * and initiates a balancing operation if so.
6605 *
Libinb9b08532013-04-01 19:14:01 +08006606 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006607 */
6608static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6609{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006610 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006611 struct rq *rq = cpu_rq(cpu);
6612 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006613 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006614 /* Earliest time when we have to do rebalance again */
6615 unsigned long next_balance = jiffies + 60*HZ;
6616 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006617 int need_serialize, need_decay = 0;
6618 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006619
Paul Turner48a16752012-10-04 13:18:31 +02006620 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006621
Peter Zijlstradce840a2011-04-07 14:09:50 +02006622 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006623 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006624 /*
6625 * Decay the newidle max times here because this is a regular
6626 * visit to all the domains. Decay ~1% per second.
6627 */
6628 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6629 sd->max_newidle_lb_cost =
6630 (sd->max_newidle_lb_cost * 253) / 256;
6631 sd->next_decay_max_lb_cost = jiffies + HZ;
6632 need_decay = 1;
6633 }
6634 max_cost += sd->max_newidle_lb_cost;
6635
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636 if (!(sd->flags & SD_LOAD_BALANCE))
6637 continue;
6638
Jason Lowf48627e2013-09-13 11:26:53 -07006639 /*
6640 * Stop the load balance at this level. There is another
6641 * CPU in our sched group which is doing load balancing more
6642 * actively.
6643 */
6644 if (!continue_balancing) {
6645 if (need_decay)
6646 continue;
6647 break;
6648 }
6649
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006650 interval = sd->balance_interval;
6651 if (idle != CPU_IDLE)
6652 interval *= sd->busy_factor;
6653
6654 /* scale ms to jiffies */
6655 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006656 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006657
6658 need_serialize = sd->flags & SD_SERIALIZE;
6659
6660 if (need_serialize) {
6661 if (!spin_trylock(&balancing))
6662 goto out;
6663 }
6664
6665 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006666 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006667 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006668 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006669 * env->dst_cpu, so we can't know our idle
6670 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006671 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006672 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006673 }
6674 sd->last_balance = jiffies;
6675 }
6676 if (need_serialize)
6677 spin_unlock(&balancing);
6678out:
6679 if (time_after(next_balance, sd->last_balance + interval)) {
6680 next_balance = sd->last_balance + interval;
6681 update_next_balance = 1;
6682 }
Jason Lowf48627e2013-09-13 11:26:53 -07006683 }
6684 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006685 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006686 * Ensure the rq-wide value also decays but keep it at a
6687 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006688 */
Jason Lowf48627e2013-09-13 11:26:53 -07006689 rq->max_idle_balance_cost =
6690 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006691 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006692 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006693
6694 /*
6695 * next_balance will be updated only when there is a need.
6696 * When the cpu is attached to null domain for ex, it will not be
6697 * updated.
6698 */
6699 if (likely(update_next_balance))
6700 rq->next_balance = next_balance;
6701}
6702
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006703#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006704/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006705 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006706 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6707 */
6708static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6709{
6710 struct rq *this_rq = cpu_rq(this_cpu);
6711 struct rq *rq;
6712 int balance_cpu;
6713
Suresh Siddha1c792db2011-12-01 17:07:32 -08006714 if (idle != CPU_IDLE ||
6715 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6716 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006717
6718 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006719 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006720 continue;
6721
6722 /*
6723 * If this cpu gets work to do, stop the load balancing
6724 * work being done for other cpus. Next load
6725 * balancing owner will pick it up.
6726 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006727 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006728 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006729
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006730 rq = cpu_rq(balance_cpu);
6731
6732 raw_spin_lock_irq(&rq->lock);
6733 update_rq_clock(rq);
6734 update_idle_cpu_load(rq);
6735 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006736
6737 rebalance_domains(balance_cpu, CPU_IDLE);
6738
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006739 if (time_after(this_rq->next_balance, rq->next_balance))
6740 this_rq->next_balance = rq->next_balance;
6741 }
6742 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006743end:
6744 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006745}
6746
6747/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006748 * Current heuristic for kicking the idle load balancer in the presence
6749 * of an idle cpu is the system.
6750 * - This rq has more than one task.
6751 * - At any scheduler domain level, this cpu's scheduler group has multiple
6752 * busy cpu's exceeding the group's power.
6753 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6754 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006755 */
6756static inline int nohz_kick_needed(struct rq *rq, int cpu)
6757{
6758 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006759 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006760
Suresh Siddha1c792db2011-12-01 17:07:32 -08006761 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006762 return 0;
6763
Suresh Siddha1c792db2011-12-01 17:07:32 -08006764 /*
6765 * We may be recently in ticked or tickless idle mode. At the first
6766 * busy tick after returning from idle, we will update the busy stats.
6767 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006768 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006769 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006770
6771 /*
6772 * None are in tickless mode and hence no need for NOHZ idle load
6773 * balancing.
6774 */
6775 if (likely(!atomic_read(&nohz.nr_cpus)))
6776 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006777
6778 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006779 return 0;
6780
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006781 if (rq->nr_running >= 2)
6782 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006783
Peter Zijlstra067491b2011-12-07 14:32:08 +01006784 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006785 for_each_domain(cpu, sd) {
6786 struct sched_group *sg = sd->groups;
6787 struct sched_group_power *sgp = sg->sgp;
6788 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006789
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006790 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006791 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006792
6793 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6794 && (cpumask_first_and(nohz.idle_cpus_mask,
6795 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006796 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006797
6798 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6799 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006800 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006801 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006802 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006803
6804need_kick_unlock:
6805 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006806need_kick:
6807 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006808}
6809#else
6810static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6811#endif
6812
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006813/*
6814 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006815 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006816 */
6817static void run_rebalance_domains(struct softirq_action *h)
6818{
6819 int this_cpu = smp_processor_id();
6820 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006821 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006822 CPU_IDLE : CPU_NOT_IDLE;
6823
6824 rebalance_domains(this_cpu, idle);
6825
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006826 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006827 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006828 * balancing on behalf of the other idle cpus whose ticks are
6829 * stopped.
6830 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006831 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006832}
6833
6834static inline int on_null_domain(int cpu)
6835{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006836 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006837}
6838
6839/*
6840 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006841 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006842void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006843{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006844 /* Don't need to rebalance while attached to NULL domain */
6845 if (time_after_eq(jiffies, rq->next_balance) &&
6846 likely(!on_null_domain(cpu)))
6847 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006848#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006849 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006850 nohz_balancer_kick(cpu);
6851#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006852}
6853
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006854static void rq_online_fair(struct rq *rq)
6855{
6856 update_sysctl();
6857}
6858
6859static void rq_offline_fair(struct rq *rq)
6860{
6861 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006862
6863 /* Ensure any throttled groups are reachable by pick_next_task */
6864 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006865}
6866
Dhaval Giani55e12e52008-06-24 23:39:43 +05306867#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006868
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006869/*
6870 * scheduler tick hitting a task of our scheduling class:
6871 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006872static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006873{
6874 struct cfs_rq *cfs_rq;
6875 struct sched_entity *se = &curr->se;
6876
6877 for_each_sched_entity(se) {
6878 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006879 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006880 }
Ben Segall18bf2802012-10-04 12:51:20 +02006881
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006882 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006883 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006884
Ben Segall18bf2802012-10-04 12:51:20 +02006885 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006886}
6887
6888/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006889 * called on fork with the child task as argument from the parent's context
6890 * - child not yet on the tasklist
6891 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006892 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006893static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006894{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006895 struct cfs_rq *cfs_rq;
6896 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006897 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006898 struct rq *rq = this_rq();
6899 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006900
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006901 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006902
Peter Zijlstra861d0342010-08-19 13:31:43 +02006903 update_rq_clock(rq);
6904
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006905 cfs_rq = task_cfs_rq(current);
6906 curr = cfs_rq->curr;
6907
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006908 /*
6909 * Not only the cpu but also the task_group of the parent might have
6910 * been changed after parent->se.parent,cfs_rq were copied to
6911 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6912 * of child point to valid ones.
6913 */
6914 rcu_read_lock();
6915 __set_task_cpu(p, this_cpu);
6916 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006917
Ting Yang7109c4422007-08-28 12:53:24 +02006918 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006919
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006920 if (curr)
6921 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006922 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006923
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006924 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006925 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006926 * Upon rescheduling, sched_class::put_prev_task() will place
6927 * 'current' within the tree based on its new key value.
6928 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006929 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306930 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006931 }
6932
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006933 se->vruntime -= cfs_rq->min_vruntime;
6934
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006935 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006936}
6937
Steven Rostedtcb469842008-01-25 21:08:22 +01006938/*
6939 * Priority of the task has changed. Check to see if we preempt
6940 * the current task.
6941 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006942static void
6943prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006944{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006945 if (!p->se.on_rq)
6946 return;
6947
Steven Rostedtcb469842008-01-25 21:08:22 +01006948 /*
6949 * Reschedule if we are currently running on this runqueue and
6950 * our priority decreased, or if we are not currently running on
6951 * this runqueue and our priority is higher than the current's
6952 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006953 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006954 if (p->prio > oldprio)
6955 resched_task(rq->curr);
6956 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006957 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006958}
6959
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006960static void switched_from_fair(struct rq *rq, struct task_struct *p)
6961{
6962 struct sched_entity *se = &p->se;
6963 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6964
6965 /*
6966 * Ensure the task's vruntime is normalized, so that when its
6967 * switched back to the fair class the enqueue_entity(.flags=0) will
6968 * do the right thing.
6969 *
6970 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6971 * have normalized the vruntime, if it was !on_rq, then only when
6972 * the task is sleeping will it still have non-normalized vruntime.
6973 */
6974 if (!se->on_rq && p->state != TASK_RUNNING) {
6975 /*
6976 * Fix up our vruntime so that the current sleep doesn't
6977 * cause 'unlimited' sleep bonus.
6978 */
6979 place_entity(cfs_rq, se, 0);
6980 se->vruntime -= cfs_rq->min_vruntime;
6981 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006982
Alex Shi141965c2013-06-26 13:05:39 +08006983#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006984 /*
6985 * Remove our load from contribution when we leave sched_fair
6986 * and ensure we don't carry in an old decay_count if we
6987 * switch back.
6988 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006989 if (se->avg.decay_count) {
6990 __synchronize_entity_decay(se);
6991 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006992 }
6993#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006994}
6995
Steven Rostedtcb469842008-01-25 21:08:22 +01006996/*
6997 * We switched to the sched_fair class.
6998 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006999static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007000{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007001 if (!p->se.on_rq)
7002 return;
7003
Steven Rostedtcb469842008-01-25 21:08:22 +01007004 /*
7005 * We were most likely switched from sched_rt, so
7006 * kick off the schedule if running, otherwise just see
7007 * if we can still preempt the current task.
7008 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007009 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007010 resched_task(rq->curr);
7011 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007012 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007013}
7014
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007015/* Account for a task changing its policy or group.
7016 *
7017 * This routine is mostly called to set cfs_rq->curr field when a task
7018 * migrates between groups/classes.
7019 */
7020static void set_curr_task_fair(struct rq *rq)
7021{
7022 struct sched_entity *se = &rq->curr->se;
7023
Paul Turnerec12cb72011-07-21 09:43:30 -07007024 for_each_sched_entity(se) {
7025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7026
7027 set_next_entity(cfs_rq, se);
7028 /* ensure bandwidth has been allocated on our new cfs_rq */
7029 account_cfs_rq_runtime(cfs_rq, 0);
7030 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007031}
7032
Peter Zijlstra029632f2011-10-25 10:00:11 +02007033void init_cfs_rq(struct cfs_rq *cfs_rq)
7034{
7035 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007036 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7037#ifndef CONFIG_64BIT
7038 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7039#endif
Alex Shi141965c2013-06-26 13:05:39 +08007040#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007041 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007042 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007043#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007044}
7045
Peter Zijlstra810b3812008-02-29 15:21:01 -05007046#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007047static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007048{
Paul Turneraff3e492012-10-04 13:18:30 +02007049 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007050 /*
7051 * If the task was not on the rq at the time of this cgroup movement
7052 * it must have been asleep, sleeping tasks keep their ->vruntime
7053 * absolute on their old rq until wakeup (needed for the fair sleeper
7054 * bonus in place_entity()).
7055 *
7056 * If it was on the rq, we've just 'preempted' it, which does convert
7057 * ->vruntime to a relative base.
7058 *
7059 * Make sure both cases convert their relative position when migrating
7060 * to another cgroup's rq. This does somewhat interfere with the
7061 * fair sleeper stuff for the first placement, but who cares.
7062 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007063 /*
7064 * When !on_rq, vruntime of the task has usually NOT been normalized.
7065 * But there are some cases where it has already been normalized:
7066 *
7067 * - Moving a forked child which is waiting for being woken up by
7068 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007069 * - Moving a task which has been woken up by try_to_wake_up() and
7070 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007071 *
7072 * To prevent boost or penalty in the new cfs_rq caused by delta
7073 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7074 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007075 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007076 on_rq = 1;
7077
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007078 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007079 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7080 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007081 if (!on_rq) {
7082 cfs_rq = cfs_rq_of(&p->se);
7083 p->se.vruntime += cfs_rq->min_vruntime;
7084#ifdef CONFIG_SMP
7085 /*
7086 * migrate_task_rq_fair() will have removed our previous
7087 * contribution, but we must synchronize for ongoing future
7088 * decay.
7089 */
7090 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7091 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7092#endif
7093 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007094}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007095
7096void free_fair_sched_group(struct task_group *tg)
7097{
7098 int i;
7099
7100 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7101
7102 for_each_possible_cpu(i) {
7103 if (tg->cfs_rq)
7104 kfree(tg->cfs_rq[i]);
7105 if (tg->se)
7106 kfree(tg->se[i]);
7107 }
7108
7109 kfree(tg->cfs_rq);
7110 kfree(tg->se);
7111}
7112
7113int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7114{
7115 struct cfs_rq *cfs_rq;
7116 struct sched_entity *se;
7117 int i;
7118
7119 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7120 if (!tg->cfs_rq)
7121 goto err;
7122 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7123 if (!tg->se)
7124 goto err;
7125
7126 tg->shares = NICE_0_LOAD;
7127
7128 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7129
7130 for_each_possible_cpu(i) {
7131 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7132 GFP_KERNEL, cpu_to_node(i));
7133 if (!cfs_rq)
7134 goto err;
7135
7136 se = kzalloc_node(sizeof(struct sched_entity),
7137 GFP_KERNEL, cpu_to_node(i));
7138 if (!se)
7139 goto err_free_rq;
7140
7141 init_cfs_rq(cfs_rq);
7142 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7143 }
7144
7145 return 1;
7146
7147err_free_rq:
7148 kfree(cfs_rq);
7149err:
7150 return 0;
7151}
7152
7153void unregister_fair_sched_group(struct task_group *tg, int cpu)
7154{
7155 struct rq *rq = cpu_rq(cpu);
7156 unsigned long flags;
7157
7158 /*
7159 * Only empty task groups can be destroyed; so we can speculatively
7160 * check on_list without danger of it being re-added.
7161 */
7162 if (!tg->cfs_rq[cpu]->on_list)
7163 return;
7164
7165 raw_spin_lock_irqsave(&rq->lock, flags);
7166 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7167 raw_spin_unlock_irqrestore(&rq->lock, flags);
7168}
7169
7170void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7171 struct sched_entity *se, int cpu,
7172 struct sched_entity *parent)
7173{
7174 struct rq *rq = cpu_rq(cpu);
7175
7176 cfs_rq->tg = tg;
7177 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007178 init_cfs_rq_runtime(cfs_rq);
7179
7180 tg->cfs_rq[cpu] = cfs_rq;
7181 tg->se[cpu] = se;
7182
7183 /* se could be NULL for root_task_group */
7184 if (!se)
7185 return;
7186
7187 if (!parent)
7188 se->cfs_rq = &rq->cfs;
7189 else
7190 se->cfs_rq = parent->my_q;
7191
7192 se->my_q = cfs_rq;
7193 update_load_set(&se->load, 0);
7194 se->parent = parent;
7195}
7196
7197static DEFINE_MUTEX(shares_mutex);
7198
7199int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7200{
7201 int i;
7202 unsigned long flags;
7203
7204 /*
7205 * We can't change the weight of the root cgroup.
7206 */
7207 if (!tg->se[0])
7208 return -EINVAL;
7209
7210 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7211
7212 mutex_lock(&shares_mutex);
7213 if (tg->shares == shares)
7214 goto done;
7215
7216 tg->shares = shares;
7217 for_each_possible_cpu(i) {
7218 struct rq *rq = cpu_rq(i);
7219 struct sched_entity *se;
7220
7221 se = tg->se[i];
7222 /* Propagate contribution to hierarchy */
7223 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007224
7225 /* Possible calls to update_curr() need rq clock */
7226 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007227 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007228 update_cfs_shares(group_cfs_rq(se));
7229 raw_spin_unlock_irqrestore(&rq->lock, flags);
7230 }
7231
7232done:
7233 mutex_unlock(&shares_mutex);
7234 return 0;
7235}
7236#else /* CONFIG_FAIR_GROUP_SCHED */
7237
7238void free_fair_sched_group(struct task_group *tg) { }
7239
7240int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7241{
7242 return 1;
7243}
7244
7245void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7246
7247#endif /* CONFIG_FAIR_GROUP_SCHED */
7248
Peter Zijlstra810b3812008-02-29 15:21:01 -05007249
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007250static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007251{
7252 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007253 unsigned int rr_interval = 0;
7254
7255 /*
7256 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7257 * idle runqueue:
7258 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007259 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007260 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007261
7262 return rr_interval;
7263}
7264
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007265/*
7266 * All the scheduling class methods:
7267 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007268const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007269 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007270 .enqueue_task = enqueue_task_fair,
7271 .dequeue_task = dequeue_task_fair,
7272 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007273 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007274
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007275 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007276
7277 .pick_next_task = pick_next_task_fair,
7278 .put_prev_task = put_prev_task_fair,
7279
Peter Williams681f3e62007-10-24 18:23:51 +02007280#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007281 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007282 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007283
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007284 .rq_online = rq_online_fair,
7285 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007286
7287 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007288#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007289
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007290 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007291 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007292 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007293
7294 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007295 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007296 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007297
Peter Williams0d721ce2009-09-21 01:31:53 +00007298 .get_rr_interval = get_rr_interval_fair,
7299
Peter Zijlstra810b3812008-02-29 15:21:01 -05007300#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007301 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007302#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007303};
7304
7305#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007306void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007307{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007308 struct cfs_rq *cfs_rq;
7309
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007310 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007311 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007312 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007313 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007314}
7315#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007316
7317__init void init_sched_fair_class(void)
7318{
7319#ifdef CONFIG_SMP
7320 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7321
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007322#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007323 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007324 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007325 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007326#endif
7327#endif /* SMP */
7328
7329}