blob: f76ca21711bb7740a0667016fd3ba1a49c286a58 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
683/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200684 * Update the current task's runtime statistics. Skip current tasks that
685 * are not in our scheduling class.
686 */
687static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200688__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
689 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200690{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200691 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200692
Lucas De Marchi41acab82010-03-10 23:37:45 -0300693 schedstat_set(curr->statistics.exec_max,
694 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200695
696 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200697 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200698 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100699
Ingo Molnare9acbff2007-10-15 17:00:04 +0200700 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200701 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200702}
703
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200704static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200705{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200706 struct sched_entity *curr = cfs_rq->curr;
Venkatesh Pallipadi305e6832010-10-04 17:03:21 -0700707 u64 now = rq_of(cfs_rq)->clock_task;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200708 unsigned long delta_exec;
709
710 if (unlikely(!curr))
711 return;
712
713 /*
714 * Get the amount of time the current task was running
715 * since the last time we changed load (this cannot
716 * overflow on 32 bits):
717 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200718 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100719 if (!delta_exec)
720 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200721
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200722 __update_curr(cfs_rq, curr, delta_exec);
723 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
Ingo Molnarf977bb42009-09-13 18:15:54 +0200728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100729 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700730 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100731 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200734}
735
736static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200737update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200738{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300739 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200740}
741
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200742/*
743 * Task is being enqueued - update stats:
744 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200745static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200747 /*
748 * Are we enqueueing a waiting task? (for current tasks
749 * a dequeue/enqueue event is a NOP)
750 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200751 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200752 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200753}
754
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200755static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200756update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200757{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300758 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
759 rq_of(cfs_rq)->clock - se->statistics.wait_start));
760 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
761 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
762 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200763#ifdef CONFIG_SCHEDSTATS
764 if (entity_is_task(se)) {
765 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300766 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200767 }
768#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300769 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200770}
771
772static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200773update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200774{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775 /*
776 * Mark the end of the wait period if dequeueing a
777 * waiting task:
778 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200779 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200780 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200781}
782
783/*
784 * We are picking a new current task - update its stats:
785 */
786static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200787update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200788{
789 /*
790 * We are starting a new run period:
791 */
Venkatesh Pallipadi305e6832010-10-04 17:03:21 -0700792 se->exec_start = rq_of(cfs_rq)->clock_task;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200793}
794
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200795/**************************************************
796 * Scheduling class queueing methods:
797 */
798
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200799#ifdef CONFIG_NUMA_BALANCING
800/*
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200801 * numa task sample period in ms
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200802 */
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200803unsigned int sysctl_numa_balancing_scan_period_min = 100;
Mel Gormanb8593bf2012-11-21 01:18:23 +0000804unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
805unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200809
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200813static void task_numa_placement(struct task_struct *p)
814{
Hugh Dickins2832bc12012-12-19 17:42:16 -0800815 int seq;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200816
Hugh Dickins2832bc12012-12-19 17:42:16 -0800817 if (!p->mm) /* for example, ksmd faulting in a user's mm */
818 return;
819 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200820 if (p->numa_scan_seq == seq)
821 return;
822 p->numa_scan_seq = seq;
823
824 /* FIXME: Scheduling placement policy hints go here */
825}
826
827/*
828 * Got a PROT_NONE fault for a page on @node.
829 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000830void task_numa_fault(int node, int pages, bool migrated)
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200831{
832 struct task_struct *p = current;
833
Mel Gorman1a687c22012-11-22 11:16:36 +0000834 if (!sched_feat_numa(NUMA))
835 return;
836
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200837 /* FIXME: Allocate task-specific structure for placement policy here */
838
Mel Gormanfb003b82012-11-15 09:01:14 +0000839 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000840 * If pages are properly placed (did not migrate) then scan slower.
841 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +0000842 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000843 if (!migrated)
844 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
845 p->numa_scan_period + jiffies_to_msecs(10));
Mel Gormanfb003b82012-11-15 09:01:14 +0000846
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200847 task_numa_placement(p);
848}
849
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200850static void reset_ptenuma_scan(struct task_struct *p)
851{
852 ACCESS_ONCE(p->mm->numa_scan_seq)++;
853 p->mm->numa_scan_offset = 0;
854}
855
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200856/*
857 * The expensive part of numa migration is done from task_work context.
858 * Triggered from task_tick_numa().
859 */
860void task_numa_work(struct callback_head *work)
861{
862 unsigned long migrate, next_scan, now = jiffies;
863 struct task_struct *p = current;
864 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200865 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +0000866 unsigned long start, end;
867 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200868
869 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
870
871 work->next = work; /* protect against double add */
872 /*
873 * Who cares about NUMA placement when they're dying.
874 *
875 * NOTE: make sure not to dereference p->mm before this check,
876 * exit_task_work() happens _after_ exit_mm() so we could be called
877 * without p->mm even though we still had it when we enqueued this
878 * work.
879 */
880 if (p->flags & PF_EXITING)
881 return;
882
883 /*
Mel Gorman5bca2302012-11-22 14:40:03 +0000884 * We do not care about task placement until a task runs on a node
885 * other than the first one used by the address space. This is
886 * largely because migrations are driven by what CPU the task
887 * is running on. If it's never scheduled on another node, it'll
888 * not migrate so why bother trapping the fault.
889 */
890 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
891 mm->first_nid = numa_node_id();
892 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
893 /* Are we running on a new node yet? */
894 if (numa_node_id() == mm->first_nid &&
895 !sched_feat_numa(NUMA_FORCE))
896 return;
897
898 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
899 }
900
901 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000902 * Reset the scan period if enough time has gone by. Objective is that
903 * scanning will be reduced if pages are properly placed. As tasks
904 * can enter different phases this needs to be re-examined. Lacking
905 * proper tracking of reference behaviour, this blunt hammer is used.
906 */
907 migrate = mm->numa_next_reset;
908 if (time_after(now, migrate)) {
909 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
910 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
911 xchg(&mm->numa_next_reset, next_scan);
912 }
913
914 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200915 * Enforce maximal scan/migration frequency..
916 */
917 migrate = mm->numa_next_scan;
918 if (time_before(now, migrate))
919 return;
920
921 if (p->numa_scan_period == 0)
922 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
923
Mel Gormanfb003b82012-11-15 09:01:14 +0000924 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200925 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
926 return;
927
Mel Gormane14808b2012-11-19 10:59:15 +0000928 /*
929 * Do not set pte_numa if the current running node is rate-limited.
930 * This loses statistics on the fault but if we are unwilling to
931 * migrate to this node, it is less likely we can do useful work
932 */
933 if (migrate_ratelimited(numa_node_id()))
934 return;
935
Mel Gorman9f406042012-11-14 18:34:32 +0000936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200941
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200942 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +0000943 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200944 if (!vma) {
945 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +0000946 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200947 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200948 }
Mel Gorman9f406042012-11-14 18:34:32 +0000949 for (; vma; vma = vma->vm_next) {
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
Mel Gorman221392c2012-12-17 14:05:53 +0000954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200955 continue;
956
Mel Gorman9f406042012-11-14 18:34:32 +0000957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200962
Mel Gorman9f406042012-11-14 18:34:32 +0000963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200967 }
968
Mel Gorman9f406042012-11-14 18:34:32 +0000969out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200970 /*
971 * It is possible to reach the end of the VMA list but the last few VMAs are
972 * not guaranteed to the vma_migratable. If they are not, we would find the
973 * !migratable VMA on the next scan but not reset the scanner to the start
974 * so check it now.
975 */
976 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +0000977 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001009 curr->node_stamp = now;
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001027 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001032#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001033 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001040 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001042 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301043 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001044 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001045}
1046
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
Paul Turner82958362012-10-04 13:18:31 +02001058 tg_weight = atomic64_read(&tg->load_avg);
1059 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
Paul Turner6d5ab292011-01-21 20:45:01 -08001065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001066{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001067 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001068
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001069 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001070 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001071
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001072 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001073 if (tg_weight)
1074 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001083# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001085{
1086 return tg->shares;
1087}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001088# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001096 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001097 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
Paul Turner82958362012-10-04 13:18:31 +02001105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
Paul Turner6d5ab292011-01-21 20:45:01 -08001107static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001111 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001112
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001115 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001116 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001121 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
Paul Turnerf4e26b12012-10-04 13:18:32 +02001131/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1132#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
Paul Turner9d85f212012-10-04 13:18:29 +02001133/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001134 * We choose a half-life close to 1 scheduling period.
1135 * Note: The tables below are dependent on this value.
1136 */
1137#define LOAD_AVG_PERIOD 32
1138#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1139#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1140
1141/* Precomputed fixed inverse multiplies for multiplication by y^n */
1142static const u32 runnable_avg_yN_inv[] = {
1143 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1144 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1145 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1146 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1147 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1148 0x85aac367, 0x82cd8698,
1149};
1150
1151/*
1152 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1153 * over-estimates when re-combining.
1154 */
1155static const u32 runnable_avg_yN_sum[] = {
1156 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1157 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1158 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1159};
1160
1161/*
Paul Turner9d85f212012-10-04 13:18:29 +02001162 * Approximate:
1163 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1164 */
1165static __always_inline u64 decay_load(u64 val, u64 n)
1166{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001167 unsigned int local_n;
1168
1169 if (!n)
1170 return val;
1171 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1172 return 0;
1173
1174 /* after bounds checking we can collapse to 32-bit */
1175 local_n = n;
1176
1177 /*
1178 * As y^PERIOD = 1/2, we can combine
1179 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1180 * With a look-up table which covers k^n (n<PERIOD)
1181 *
1182 * To achieve constant time decay_load.
1183 */
1184 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1185 val >>= local_n / LOAD_AVG_PERIOD;
1186 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001187 }
1188
Paul Turner5b51f2f2012-10-04 13:18:32 +02001189 val *= runnable_avg_yN_inv[local_n];
1190 /* We don't use SRR here since we always want to round down. */
1191 return val >> 32;
1192}
1193
1194/*
1195 * For updates fully spanning n periods, the contribution to runnable
1196 * average will be: \Sum 1024*y^n
1197 *
1198 * We can compute this reasonably efficiently by combining:
1199 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1200 */
1201static u32 __compute_runnable_contrib(u64 n)
1202{
1203 u32 contrib = 0;
1204
1205 if (likely(n <= LOAD_AVG_PERIOD))
1206 return runnable_avg_yN_sum[n];
1207 else if (unlikely(n >= LOAD_AVG_MAX_N))
1208 return LOAD_AVG_MAX;
1209
1210 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1211 do {
1212 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1213 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1214
1215 n -= LOAD_AVG_PERIOD;
1216 } while (n > LOAD_AVG_PERIOD);
1217
1218 contrib = decay_load(contrib, n);
1219 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001220}
1221
1222/*
1223 * We can represent the historical contribution to runnable average as the
1224 * coefficients of a geometric series. To do this we sub-divide our runnable
1225 * history into segments of approximately 1ms (1024us); label the segment that
1226 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1227 *
1228 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1229 * p0 p1 p2
1230 * (now) (~1ms ago) (~2ms ago)
1231 *
1232 * Let u_i denote the fraction of p_i that the entity was runnable.
1233 *
1234 * We then designate the fractions u_i as our co-efficients, yielding the
1235 * following representation of historical load:
1236 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1237 *
1238 * We choose y based on the with of a reasonably scheduling period, fixing:
1239 * y^32 = 0.5
1240 *
1241 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1242 * approximately half as much as the contribution to load within the last ms
1243 * (u_0).
1244 *
1245 * When a period "rolls over" and we have new u_0`, multiplying the previous
1246 * sum again by y is sufficient to update:
1247 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1248 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1249 */
1250static __always_inline int __update_entity_runnable_avg(u64 now,
1251 struct sched_avg *sa,
1252 int runnable)
1253{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001254 u64 delta, periods;
1255 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001256 int delta_w, decayed = 0;
1257
1258 delta = now - sa->last_runnable_update;
1259 /*
1260 * This should only happen when time goes backwards, which it
1261 * unfortunately does during sched clock init when we swap over to TSC.
1262 */
1263 if ((s64)delta < 0) {
1264 sa->last_runnable_update = now;
1265 return 0;
1266 }
1267
1268 /*
1269 * Use 1024ns as the unit of measurement since it's a reasonable
1270 * approximation of 1us and fast to compute.
1271 */
1272 delta >>= 10;
1273 if (!delta)
1274 return 0;
1275 sa->last_runnable_update = now;
1276
1277 /* delta_w is the amount already accumulated against our next period */
1278 delta_w = sa->runnable_avg_period % 1024;
1279 if (delta + delta_w >= 1024) {
1280 /* period roll-over */
1281 decayed = 1;
1282
1283 /*
1284 * Now that we know we're crossing a period boundary, figure
1285 * out how much from delta we need to complete the current
1286 * period and accrue it.
1287 */
1288 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001289 if (runnable)
1290 sa->runnable_avg_sum += delta_w;
1291 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001292
Paul Turner5b51f2f2012-10-04 13:18:32 +02001293 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001294
Paul Turner5b51f2f2012-10-04 13:18:32 +02001295 /* Figure out how many additional periods this update spans */
1296 periods = delta / 1024;
1297 delta %= 1024;
1298
1299 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1300 periods + 1);
1301 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1302 periods + 1);
1303
1304 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1305 runnable_contrib = __compute_runnable_contrib(periods);
1306 if (runnable)
1307 sa->runnable_avg_sum += runnable_contrib;
1308 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001309 }
1310
1311 /* Remainder of delta accrued against u_0` */
1312 if (runnable)
1313 sa->runnable_avg_sum += delta;
1314 sa->runnable_avg_period += delta;
1315
1316 return decayed;
1317}
1318
Paul Turner9ee474f2012-10-04 13:18:30 +02001319/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001320static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001321{
1322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1323 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1324
1325 decays -= se->avg.decay_count;
1326 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001327 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001328
1329 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1330 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001331
1332 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001333}
1334
Paul Turnerc566e8e2012-10-04 13:18:30 +02001335#ifdef CONFIG_FAIR_GROUP_SCHED
1336static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1337 int force_update)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 s64 tg_contrib;
1341
1342 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1343 tg_contrib -= cfs_rq->tg_load_contrib;
1344
1345 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1346 atomic64_add(tg_contrib, &tg->load_avg);
1347 cfs_rq->tg_load_contrib += tg_contrib;
1348 }
1349}
Paul Turner8165e142012-10-04 13:18:31 +02001350
Paul Turnerbb17f652012-10-04 13:18:31 +02001351/*
1352 * Aggregate cfs_rq runnable averages into an equivalent task_group
1353 * representation for computing load contributions.
1354 */
1355static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1356 struct cfs_rq *cfs_rq)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 long contrib;
1360
1361 /* The fraction of a cpu used by this cfs_rq */
1362 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1363 sa->runnable_avg_period + 1);
1364 contrib -= cfs_rq->tg_runnable_contrib;
1365
1366 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1367 atomic_add(contrib, &tg->runnable_avg);
1368 cfs_rq->tg_runnable_contrib += contrib;
1369 }
1370}
1371
Paul Turner8165e142012-10-04 13:18:31 +02001372static inline void __update_group_entity_contrib(struct sched_entity *se)
1373{
1374 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1375 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001376 int runnable_avg;
1377
Paul Turner8165e142012-10-04 13:18:31 +02001378 u64 contrib;
1379
1380 contrib = cfs_rq->tg_load_contrib * tg->shares;
1381 se->avg.load_avg_contrib = div64_u64(contrib,
1382 atomic64_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001383
1384 /*
1385 * For group entities we need to compute a correction term in the case
1386 * that they are consuming <1 cpu so that we would contribute the same
1387 * load as a task of equal weight.
1388 *
1389 * Explicitly co-ordinating this measurement would be expensive, but
1390 * fortunately the sum of each cpus contribution forms a usable
1391 * lower-bound on the true value.
1392 *
1393 * Consider the aggregate of 2 contributions. Either they are disjoint
1394 * (and the sum represents true value) or they are disjoint and we are
1395 * understating by the aggregate of their overlap.
1396 *
1397 * Extending this to N cpus, for a given overlap, the maximum amount we
1398 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1399 * cpus that overlap for this interval and w_i is the interval width.
1400 *
1401 * On a small machine; the first term is well-bounded which bounds the
1402 * total error since w_i is a subset of the period. Whereas on a
1403 * larger machine, while this first term can be larger, if w_i is the
1404 * of consequential size guaranteed to see n_i*w_i quickly converge to
1405 * our upper bound of 1-cpu.
1406 */
1407 runnable_avg = atomic_read(&tg->runnable_avg);
1408 if (runnable_avg < NICE_0_LOAD) {
1409 se->avg.load_avg_contrib *= runnable_avg;
1410 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1411 }
Paul Turner8165e142012-10-04 13:18:31 +02001412}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001413#else
1414static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1415 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02001416static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1417 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02001418static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001419#endif
1420
Paul Turner8165e142012-10-04 13:18:31 +02001421static inline void __update_task_entity_contrib(struct sched_entity *se)
1422{
1423 u32 contrib;
1424
1425 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1426 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1427 contrib /= (se->avg.runnable_avg_period + 1);
1428 se->avg.load_avg_contrib = scale_load(contrib);
1429}
1430
Paul Turner2dac7542012-10-04 13:18:30 +02001431/* Compute the current contribution to load_avg by se, return any delta */
1432static long __update_entity_load_avg_contrib(struct sched_entity *se)
1433{
1434 long old_contrib = se->avg.load_avg_contrib;
1435
Paul Turner8165e142012-10-04 13:18:31 +02001436 if (entity_is_task(se)) {
1437 __update_task_entity_contrib(se);
1438 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02001439 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02001440 __update_group_entity_contrib(se);
1441 }
Paul Turner2dac7542012-10-04 13:18:30 +02001442
1443 return se->avg.load_avg_contrib - old_contrib;
1444}
1445
Paul Turner9ee474f2012-10-04 13:18:30 +02001446static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1447 long load_contrib)
1448{
1449 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1450 cfs_rq->blocked_load_avg -= load_contrib;
1451 else
1452 cfs_rq->blocked_load_avg = 0;
1453}
1454
Paul Turnerf1b17282012-10-04 13:18:31 +02001455static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1456
Paul Turner9d85f212012-10-04 13:18:29 +02001457/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02001458static inline void update_entity_load_avg(struct sched_entity *se,
1459 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02001460{
Paul Turner2dac7542012-10-04 13:18:30 +02001461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1462 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02001463 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02001464
Paul Turnerf1b17282012-10-04 13:18:31 +02001465 /*
1466 * For a group entity we need to use their owned cfs_rq_clock_task() in
1467 * case they are the parent of a throttled hierarchy.
1468 */
1469 if (entity_is_task(se))
1470 now = cfs_rq_clock_task(cfs_rq);
1471 else
1472 now = cfs_rq_clock_task(group_cfs_rq(se));
1473
1474 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02001475 return;
1476
1477 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02001478
1479 if (!update_cfs_rq)
1480 return;
1481
Paul Turner2dac7542012-10-04 13:18:30 +02001482 if (se->on_rq)
1483 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02001484 else
1485 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1486}
1487
1488/*
1489 * Decay the load contributed by all blocked children and account this so that
1490 * their contribution may appropriately discounted when they wake up.
1491 */
Paul Turneraff3e492012-10-04 13:18:30 +02001492static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001493{
Paul Turnerf1b17282012-10-04 13:18:31 +02001494 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001495 u64 decays;
1496
1497 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02001498 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001499 return;
1500
Paul Turneraff3e492012-10-04 13:18:30 +02001501 if (atomic64_read(&cfs_rq->removed_load)) {
1502 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1503 subtract_blocked_load_contrib(cfs_rq, removed_load);
1504 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001505
Paul Turneraff3e492012-10-04 13:18:30 +02001506 if (decays) {
1507 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1508 decays);
1509 atomic64_add(decays, &cfs_rq->decay_counter);
1510 cfs_rq->last_decay = now;
1511 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02001512
1513 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02001514}
Ben Segall18bf2802012-10-04 12:51:20 +02001515
1516static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1517{
1518 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02001519 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02001520}
Paul Turner2dac7542012-10-04 13:18:30 +02001521
1522/* Add the load generated by se into cfs_rq's child load-average */
1523static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001524 struct sched_entity *se,
1525 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02001526{
Paul Turneraff3e492012-10-04 13:18:30 +02001527 /*
1528 * We track migrations using entity decay_count <= 0, on a wake-up
1529 * migration we use a negative decay count to track the remote decays
1530 * accumulated while sleeping.
1531 */
1532 if (unlikely(se->avg.decay_count <= 0)) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001533 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
Paul Turneraff3e492012-10-04 13:18:30 +02001534 if (se->avg.decay_count) {
1535 /*
1536 * In a wake-up migration we have to approximate the
1537 * time sleeping. This is because we can't synchronize
1538 * clock_task between the two cpus, and it is not
1539 * guaranteed to be read-safe. Instead, we can
1540 * approximate this using our carried decays, which are
1541 * explicitly atomically readable.
1542 */
1543 se->avg.last_runnable_update -= (-se->avg.decay_count)
1544 << 20;
1545 update_entity_load_avg(se, 0);
1546 /* Indicate that we're now synchronized and on-rq */
1547 se->avg.decay_count = 0;
1548 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001549 wakeup = 0;
1550 } else {
1551 __synchronize_entity_decay(se);
1552 }
1553
Paul Turneraff3e492012-10-04 13:18:30 +02001554 /* migrated tasks did not contribute to our blocked load */
1555 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001556 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02001557 update_entity_load_avg(se, 0);
1558 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001559
Paul Turner2dac7542012-10-04 13:18:30 +02001560 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02001561 /* we force update consideration on load-balancer moves */
1562 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02001563}
1564
Paul Turner9ee474f2012-10-04 13:18:30 +02001565/*
1566 * Remove se's load from this cfs_rq child load-average, if the entity is
1567 * transitioning to a blocked state we track its projected decay using
1568 * blocked_load_avg.
1569 */
Paul Turner2dac7542012-10-04 13:18:30 +02001570static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001571 struct sched_entity *se,
1572 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02001573{
Paul Turner9ee474f2012-10-04 13:18:30 +02001574 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02001575 /* we force update consideration on load-balancer moves */
1576 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02001577
Paul Turner2dac7542012-10-04 13:18:30 +02001578 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02001579 if (sleep) {
1580 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1581 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1582 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02001583}
Vincent Guittot642dbc32013-04-18 18:34:26 +02001584
1585/*
1586 * Update the rq's load with the elapsed running time before entering
1587 * idle. if the last scheduled task is not a CFS task, idle_enter will
1588 * be the only way to update the runnable statistic.
1589 */
1590void idle_enter_fair(struct rq *this_rq)
1591{
1592 update_rq_runnable_avg(this_rq, 1);
1593}
1594
1595/*
1596 * Update the rq's load with the elapsed idle time before a task is
1597 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1598 * be the only way to update the runnable statistic.
1599 */
1600void idle_exit_fair(struct rq *this_rq)
1601{
1602 update_rq_runnable_avg(this_rq, 0);
1603}
1604
Paul Turner9d85f212012-10-04 13:18:29 +02001605#else
Paul Turner9ee474f2012-10-04 13:18:30 +02001606static inline void update_entity_load_avg(struct sched_entity *se,
1607 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02001608static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001609static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001610 struct sched_entity *se,
1611 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001612static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001613 struct sched_entity *se,
1614 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02001615static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1616 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02001617#endif
1618
Ingo Molnar2396af62007-08-09 11:16:48 +02001619static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001620{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001621#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02001622 struct task_struct *tsk = NULL;
1623
1624 if (entity_is_task(se))
1625 tsk = task_of(se);
1626
Lucas De Marchi41acab82010-03-10 23:37:45 -03001627 if (se->statistics.sleep_start) {
1628 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001629
1630 if ((s64)delta < 0)
1631 delta = 0;
1632
Lucas De Marchi41acab82010-03-10 23:37:45 -03001633 if (unlikely(delta > se->statistics.sleep_max))
1634 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001635
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001636 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001637 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01001638
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001639 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02001640 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001641 trace_sched_stat_sleep(tsk, delta);
1642 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001643 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03001644 if (se->statistics.block_start) {
1645 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001646
1647 if ((s64)delta < 0)
1648 delta = 0;
1649
Lucas De Marchi41acab82010-03-10 23:37:45 -03001650 if (unlikely(delta > se->statistics.block_max))
1651 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001652
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001653 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001654 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02001655
Peter Zijlstrae4143142009-07-23 20:13:26 +02001656 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001657 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001658 se->statistics.iowait_sum += delta;
1659 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001660 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001661 }
1662
Andrew Vaginb781a602011-11-28 12:03:35 +03001663 trace_sched_stat_blocked(tsk, delta);
1664
Peter Zijlstrae4143142009-07-23 20:13:26 +02001665 /*
1666 * Blocking time is in units of nanosecs, so shift by
1667 * 20 to get a milliseconds-range estimation of the
1668 * amount of time that the task spent sleeping:
1669 */
1670 if (unlikely(prof_on == SLEEP_PROFILING)) {
1671 profile_hits(SLEEP_PROFILING,
1672 (void *)get_wchan(tsk),
1673 delta >> 20);
1674 }
1675 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02001676 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001677 }
1678#endif
1679}
1680
Peter Zijlstraddc97292007-10-15 17:00:10 +02001681static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1682{
1683#ifdef CONFIG_SCHED_DEBUG
1684 s64 d = se->vruntime - cfs_rq->min_vruntime;
1685
1686 if (d < 0)
1687 d = -d;
1688
1689 if (d > 3*sysctl_sched_latency)
1690 schedstat_inc(cfs_rq, nr_spread_over);
1691#endif
1692}
1693
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001694static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001695place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1696{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02001697 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001698
Peter Zijlstra2cb86002007-11-09 22:39:37 +01001699 /*
1700 * The 'current' period is already promised to the current tasks,
1701 * however the extra weight of the new task will slow them down a
1702 * little, place the new task so that it fits in the slot that
1703 * stays open at the end.
1704 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001705 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02001706 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001707
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001708 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01001709 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001710 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02001711
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001712 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001713 * Halve their sleep time's effect, to allow
1714 * for a gentler effect of sleepers:
1715 */
1716 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1717 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02001718
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001719 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001720 }
1721
Mike Galbraithb5d9d732009-09-08 11:12:28 +02001722 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05301723 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001724}
1725
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001726static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1727
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001728static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001729enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001730{
1731 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001732 * Update the normalized vruntime before updating min_vruntime
1733 * through callig update_curr().
1734 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001735 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001736 se->vruntime += cfs_rq->min_vruntime;
1737
1738 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001739 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001740 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02001741 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02001742 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001743 account_entity_enqueue(cfs_rq, se);
1744 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001745
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001746 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001747 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02001748 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02001749 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001750
Ingo Molnard2417e52007-08-09 11:16:47 +02001751 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02001752 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001753 if (se != cfs_rq->curr)
1754 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001755 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001756
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001757 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001758 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001759 check_enqueue_throttle(cfs_rq);
1760 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001761}
1762
Rik van Riel2c13c9192011-02-01 09:48:37 -05001763static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01001764{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001765 for_each_sched_entity(se) {
1766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1767 if (cfs_rq->last == se)
1768 cfs_rq->last = NULL;
1769 else
1770 break;
1771 }
1772}
Peter Zijlstra2002c692008-11-11 11:52:33 +01001773
Rik van Riel2c13c9192011-02-01 09:48:37 -05001774static void __clear_buddies_next(struct sched_entity *se)
1775{
1776 for_each_sched_entity(se) {
1777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1778 if (cfs_rq->next == se)
1779 cfs_rq->next = NULL;
1780 else
1781 break;
1782 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01001783}
1784
Rik van Rielac53db52011-02-01 09:51:03 -05001785static void __clear_buddies_skip(struct sched_entity *se)
1786{
1787 for_each_sched_entity(se) {
1788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1789 if (cfs_rq->skip == se)
1790 cfs_rq->skip = NULL;
1791 else
1792 break;
1793 }
1794}
1795
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1797{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001798 if (cfs_rq->last == se)
1799 __clear_buddies_last(se);
1800
1801 if (cfs_rq->next == se)
1802 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05001803
1804 if (cfs_rq->skip == se)
1805 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001806}
1807
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07001808static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07001809
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001810static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001811dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001812{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001813 /*
1814 * Update run-time statistics of the 'current'.
1815 */
1816 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001817 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001818
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02001819 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001820 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001821#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001822 if (entity_is_task(se)) {
1823 struct task_struct *tsk = task_of(se);
1824
1825 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -03001826 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001827 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -03001828 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001829 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02001830#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001831 }
1832
Peter Zijlstra2002c692008-11-11 11:52:33 +01001833 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001834
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001835 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001836 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001837 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001838 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001839
1840 /*
1841 * Normalize the entity after updating the min_vruntime because the
1842 * update can refer to the ->curr item and we need to reflect this
1843 * movement in our normalized position.
1844 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001845 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001846 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07001847
Paul Turnerd8b49862011-07-21 09:43:41 -07001848 /* return excess runtime on last dequeue */
1849 return_cfs_rq_runtime(cfs_rq);
1850
Peter Zijlstra1e876232011-05-17 16:21:10 -07001851 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001852 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001853}
1854
1855/*
1856 * Preempt the current task with a newly woken task if needed:
1857 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02001858static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02001859check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001860{
Peter Zijlstra11697832007-09-05 14:32:49 +02001861 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001862 struct sched_entity *se;
1863 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02001864
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02001865 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02001866 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001867 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001868 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001869 /*
1870 * The current task ran long enough, ensure it doesn't get
1871 * re-elected due to buddy favours.
1872 */
1873 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001874 return;
1875 }
1876
1877 /*
1878 * Ensure that a task that missed wakeup preemption by a
1879 * narrow margin doesn't have to wait for a full slice.
1880 * This also mitigates buddy induced latencies under load.
1881 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02001882 if (delta_exec < sysctl_sched_min_granularity)
1883 return;
1884
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001885 se = __pick_first_entity(cfs_rq);
1886 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001887
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001888 if (delta < 0)
1889 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01001890
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001891 if (delta > ideal_runtime)
1892 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001893}
1894
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001895static void
Ingo Molnar8494f412007-08-09 11:16:48 +02001896set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001897{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001898 /* 'current' is not kept within the tree. */
1899 if (se->on_rq) {
1900 /*
1901 * Any task has to be enqueued before it get to execute on
1902 * a CPU. So account for the time it spent waiting on the
1903 * runqueue.
1904 */
1905 update_stats_wait_end(cfs_rq, se);
1906 __dequeue_entity(cfs_rq, se);
1907 }
1908
Ingo Molnar79303e92007-08-09 11:16:47 +02001909 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02001910 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02001911#ifdef CONFIG_SCHEDSTATS
1912 /*
1913 * Track our maximum slice length, if the CPU's load is at
1914 * least twice that of our own weight (i.e. dont track it
1915 * when there are only lesser-weight tasks around):
1916 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02001917 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001918 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02001919 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1920 }
1921#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02001922 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001923}
1924
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02001925static int
1926wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1927
Rik van Rielac53db52011-02-01 09:51:03 -05001928/*
1929 * Pick the next process, keeping these things in mind, in this order:
1930 * 1) keep things fair between processes/task groups
1931 * 2) pick the "next" process, since someone really wants that to run
1932 * 3) pick the "last" process, for cache locality
1933 * 4) do not run the "skip" process, if something else is available
1934 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001935static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001936{
Rik van Rielac53db52011-02-01 09:51:03 -05001937 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001938 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001939
Rik van Rielac53db52011-02-01 09:51:03 -05001940 /*
1941 * Avoid running the skip buddy, if running something else can
1942 * be done without getting too unfair.
1943 */
1944 if (cfs_rq->skip == se) {
1945 struct sched_entity *second = __pick_next_entity(se);
1946 if (second && wakeup_preempt_entity(second, left) < 1)
1947 se = second;
1948 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001949
Mike Galbraithf685cea2009-10-23 23:09:22 +02001950 /*
1951 * Prefer last buddy, try to return the CPU to a preempted task.
1952 */
1953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1954 se = cfs_rq->last;
1955
Rik van Rielac53db52011-02-01 09:51:03 -05001956 /*
1957 * Someone really wants this to run. If it's not unfair, run it.
1958 */
1959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1960 se = cfs_rq->next;
1961
Mike Galbraithf685cea2009-10-23 23:09:22 +02001962 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001963
1964 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001965}
1966
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001967static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1968
Ingo Molnarab6cde22007-08-09 11:16:48 +02001969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001970{
1971 /*
1972 * If still on the runqueue then deactivate_task()
1973 * was not called and update_curr() has to be done:
1974 */
1975 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02001976 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001977
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001978 /* throttle cfs_rqs exceeding runtime */
1979 check_cfs_rq_runtime(cfs_rq);
1980
Peter Zijlstraddc97292007-10-15 17:00:10 +02001981 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001982 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02001983 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001984 /* Put 'current' back into the tree. */
1985 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02001986 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02001987 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001988 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02001989 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001990}
1991
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001992static void
1993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001994{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001995 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001996 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001997 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001998 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001999
Paul Turner43365bd2010-12-15 19:10:17 -08002000 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002001 * Ensure that runnable average is periodically updated.
2002 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002003 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002004 update_cfs_rq_blocked_load(cfs_rq, 1);
Paul Turner9d85f212012-10-04 13:18:29 +02002005
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002006#ifdef CONFIG_SCHED_HRTICK
2007 /*
2008 * queued ticks are scheduled to match the slice, so don't bother
2009 * validating it and just reschedule.
2010 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002011 if (queued) {
2012 resched_task(rq_of(cfs_rq)->curr);
2013 return;
2014 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002015 /*
2016 * don't let the period tick interfere with the hrtick preemption
2017 */
2018 if (!sched_feat(DOUBLE_TICK) &&
2019 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2020 return;
2021#endif
2022
Yong Zhang2c2efae2011-07-29 16:20:33 +08002023 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002024 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002025}
2026
Paul Turnerab84d312011-07-21 09:43:28 -07002027
2028/**************************************************
2029 * CFS bandwidth control machinery
2030 */
2031
2032#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002033
2034#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002035static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002036
2037static inline bool cfs_bandwidth_used(void)
2038{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002039 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002040}
2041
2042void account_cfs_bandwidth_used(int enabled, int was_enabled)
2043{
2044 /* only need to count groups transitioning between enabled/!enabled */
2045 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002046 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002047 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002048 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002049}
2050#else /* HAVE_JUMP_LABEL */
2051static bool cfs_bandwidth_used(void)
2052{
2053 return true;
2054}
2055
2056void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2057#endif /* HAVE_JUMP_LABEL */
2058
Paul Turnerab84d312011-07-21 09:43:28 -07002059/*
2060 * default period for cfs group bandwidth.
2061 * default: 0.1s, units: nanoseconds
2062 */
2063static inline u64 default_cfs_period(void)
2064{
2065 return 100000000ULL;
2066}
Paul Turnerec12cb72011-07-21 09:43:30 -07002067
2068static inline u64 sched_cfs_bandwidth_slice(void)
2069{
2070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2071}
2072
Paul Turnera9cf55b2011-07-21 09:43:32 -07002073/*
2074 * Replenish runtime according to assigned quota and update expiration time.
2075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2076 * additional synchronization around rq->lock.
2077 *
2078 * requires cfs_b->lock
2079 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002081{
2082 u64 now;
2083
2084 if (cfs_b->quota == RUNTIME_INF)
2085 return;
2086
2087 now = sched_clock_cpu(smp_processor_id());
2088 cfs_b->runtime = cfs_b->quota;
2089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2090}
2091
Peter Zijlstra029632f2011-10-25 10:00:11 +02002092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2093{
2094 return &tg->cfs_bandwidth;
2095}
2096
Paul Turnerf1b17282012-10-04 13:18:31 +02002097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2099{
2100 if (unlikely(cfs_rq->throttle_count))
2101 return cfs_rq->throttled_clock_task;
2102
2103 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2104}
2105
Paul Turner85dac902011-07-21 09:43:33 -07002106/* returns 0 on failure to allocate runtime */
2107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002108{
2109 struct task_group *tg = cfs_rq->tg;
2110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002111 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002112
2113 /* note: this is a positive sum as runtime_remaining <= 0 */
2114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2115
2116 raw_spin_lock(&cfs_b->lock);
2117 if (cfs_b->quota == RUNTIME_INF)
2118 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002119 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002120 /*
2121 * If the bandwidth pool has become inactive, then at least one
2122 * period must have elapsed since the last consumption.
2123 * Refresh the global state and ensure bandwidth timer becomes
2124 * active.
2125 */
2126 if (!cfs_b->timer_active) {
2127 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002128 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002129 }
Paul Turner58088ad2011-07-21 09:43:31 -07002130
2131 if (cfs_b->runtime > 0) {
2132 amount = min(cfs_b->runtime, min_amount);
2133 cfs_b->runtime -= amount;
2134 cfs_b->idle = 0;
2135 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002136 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002137 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002138 raw_spin_unlock(&cfs_b->lock);
2139
2140 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002141 /*
2142 * we may have advanced our local expiration to account for allowed
2143 * spread between our sched_clock and the one on which runtime was
2144 * issued.
2145 */
2146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2147 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002148
2149 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002150}
2151
2152/*
2153 * Note: This depends on the synchronization provided by sched_clock and the
2154 * fact that rq->clock snapshots this value.
2155 */
2156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2157{
2158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2159 struct rq *rq = rq_of(cfs_rq);
2160
2161 /* if the deadline is ahead of our clock, nothing to do */
2162 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2163 return;
2164
2165 if (cfs_rq->runtime_remaining < 0)
2166 return;
2167
2168 /*
2169 * If the local deadline has passed we have to consider the
2170 * possibility that our sched_clock is 'fast' and the global deadline
2171 * has not truly expired.
2172 *
2173 * Fortunately we can check determine whether this the case by checking
2174 * whether the global deadline has advanced.
2175 */
2176
2177 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2178 /* extend local deadline, drift is bounded above by 2 ticks */
2179 cfs_rq->runtime_expires += TICK_NSEC;
2180 } else {
2181 /* global deadline is ahead, expiration has passed */
2182 cfs_rq->runtime_remaining = 0;
2183 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002184}
2185
2186static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2187 unsigned long delta_exec)
2188{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002189 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002190 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002191 expire_cfs_rq_runtime(cfs_rq);
2192
2193 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002194 return;
2195
Paul Turner85dac902011-07-21 09:43:33 -07002196 /*
2197 * if we're unable to extend our runtime we resched so that the active
2198 * hierarchy can be throttled
2199 */
2200 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2201 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002202}
2203
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002204static __always_inline
2205void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002206{
Paul Turner56f570e2011-11-07 20:26:33 -08002207 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002208 return;
2209
2210 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2211}
2212
Paul Turner85dac902011-07-21 09:43:33 -07002213static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2214{
Paul Turner56f570e2011-11-07 20:26:33 -08002215 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002216}
2217
Paul Turner64660c82011-07-21 09:43:36 -07002218/* check whether cfs_rq, or any parent, is throttled */
2219static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2220{
Paul Turner56f570e2011-11-07 20:26:33 -08002221 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002222}
2223
2224/*
2225 * Ensure that neither of the group entities corresponding to src_cpu or
2226 * dest_cpu are members of a throttled hierarchy when performing group
2227 * load-balance operations.
2228 */
2229static inline int throttled_lb_pair(struct task_group *tg,
2230 int src_cpu, int dest_cpu)
2231{
2232 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2233
2234 src_cfs_rq = tg->cfs_rq[src_cpu];
2235 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2236
2237 return throttled_hierarchy(src_cfs_rq) ||
2238 throttled_hierarchy(dest_cfs_rq);
2239}
2240
2241/* updated child weight may affect parent so we have to do this bottom up */
2242static int tg_unthrottle_up(struct task_group *tg, void *data)
2243{
2244 struct rq *rq = data;
2245 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2246
2247 cfs_rq->throttle_count--;
2248#ifdef CONFIG_SMP
2249 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002250 /* adjust cfs_rq_clock_task() */
2251 cfs_rq->throttled_clock_task_time += rq->clock_task -
2252 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002253 }
2254#endif
2255
2256 return 0;
2257}
2258
2259static int tg_throttle_down(struct task_group *tg, void *data)
2260{
2261 struct rq *rq = data;
2262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2263
Paul Turner82958362012-10-04 13:18:31 +02002264 /* group is entering throttled state, stop time */
2265 if (!cfs_rq->throttle_count)
Paul Turnerf1b17282012-10-04 13:18:31 +02002266 cfs_rq->throttled_clock_task = rq->clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002267 cfs_rq->throttle_count++;
2268
2269 return 0;
2270}
2271
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002272static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002273{
2274 struct rq *rq = rq_of(cfs_rq);
2275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2276 struct sched_entity *se;
2277 long task_delta, dequeue = 1;
2278
2279 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2280
Paul Turnerf1b17282012-10-04 13:18:31 +02002281 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002282 rcu_read_lock();
2283 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2284 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002285
2286 task_delta = cfs_rq->h_nr_running;
2287 for_each_sched_entity(se) {
2288 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2289 /* throttled entity or throttle-on-deactivate */
2290 if (!se->on_rq)
2291 break;
2292
2293 if (dequeue)
2294 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2295 qcfs_rq->h_nr_running -= task_delta;
2296
2297 if (qcfs_rq->load.weight)
2298 dequeue = 0;
2299 }
2300
2301 if (!se)
2302 rq->nr_running -= task_delta;
2303
2304 cfs_rq->throttled = 1;
Paul Turnerf1b17282012-10-04 13:18:31 +02002305 cfs_rq->throttled_clock = rq->clock;
Paul Turner85dac902011-07-21 09:43:33 -07002306 raw_spin_lock(&cfs_b->lock);
2307 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2308 raw_spin_unlock(&cfs_b->lock);
2309}
2310
Peter Zijlstra029632f2011-10-25 10:00:11 +02002311void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002312{
2313 struct rq *rq = rq_of(cfs_rq);
2314 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2315 struct sched_entity *se;
2316 int enqueue = 1;
2317 long task_delta;
2318
2319 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2320
2321 cfs_rq->throttled = 0;
2322 raw_spin_lock(&cfs_b->lock);
Paul Turnerf1b17282012-10-04 13:18:31 +02002323 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002324 list_del_rcu(&cfs_rq->throttled_list);
2325 raw_spin_unlock(&cfs_b->lock);
2326
Paul Turner64660c82011-07-21 09:43:36 -07002327 update_rq_clock(rq);
2328 /* update hierarchical throttle state */
2329 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2330
Paul Turner671fd9d2011-07-21 09:43:34 -07002331 if (!cfs_rq->load.weight)
2332 return;
2333
2334 task_delta = cfs_rq->h_nr_running;
2335 for_each_sched_entity(se) {
2336 if (se->on_rq)
2337 enqueue = 0;
2338
2339 cfs_rq = cfs_rq_of(se);
2340 if (enqueue)
2341 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2342 cfs_rq->h_nr_running += task_delta;
2343
2344 if (cfs_rq_throttled(cfs_rq))
2345 break;
2346 }
2347
2348 if (!se)
2349 rq->nr_running += task_delta;
2350
2351 /* determine whether we need to wake up potentially idle cpu */
2352 if (rq->curr == rq->idle && rq->cfs.nr_running)
2353 resched_task(rq->curr);
2354}
2355
2356static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2357 u64 remaining, u64 expires)
2358{
2359 struct cfs_rq *cfs_rq;
2360 u64 runtime = remaining;
2361
2362 rcu_read_lock();
2363 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2364 throttled_list) {
2365 struct rq *rq = rq_of(cfs_rq);
2366
2367 raw_spin_lock(&rq->lock);
2368 if (!cfs_rq_throttled(cfs_rq))
2369 goto next;
2370
2371 runtime = -cfs_rq->runtime_remaining + 1;
2372 if (runtime > remaining)
2373 runtime = remaining;
2374 remaining -= runtime;
2375
2376 cfs_rq->runtime_remaining += runtime;
2377 cfs_rq->runtime_expires = expires;
2378
2379 /* we check whether we're throttled above */
2380 if (cfs_rq->runtime_remaining > 0)
2381 unthrottle_cfs_rq(cfs_rq);
2382
2383next:
2384 raw_spin_unlock(&rq->lock);
2385
2386 if (!remaining)
2387 break;
2388 }
2389 rcu_read_unlock();
2390
2391 return remaining;
2392}
2393
Paul Turner58088ad2011-07-21 09:43:31 -07002394/*
2395 * Responsible for refilling a task_group's bandwidth and unthrottling its
2396 * cfs_rqs as appropriate. If there has been no activity within the last
2397 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2398 * used to track this state.
2399 */
2400static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2401{
Paul Turner671fd9d2011-07-21 09:43:34 -07002402 u64 runtime, runtime_expires;
2403 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07002404
2405 raw_spin_lock(&cfs_b->lock);
2406 /* no need to continue the timer with no bandwidth constraint */
2407 if (cfs_b->quota == RUNTIME_INF)
2408 goto out_unlock;
2409
Paul Turner671fd9d2011-07-21 09:43:34 -07002410 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2411 /* idle depends on !throttled (for the case of a large deficit) */
2412 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002413 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07002414
Paul Turnera9cf55b2011-07-21 09:43:32 -07002415 /* if we're going inactive then everything else can be deferred */
2416 if (idle)
2417 goto out_unlock;
2418
2419 __refill_cfs_bandwidth_runtime(cfs_b);
2420
Paul Turner671fd9d2011-07-21 09:43:34 -07002421 if (!throttled) {
2422 /* mark as potentially idle for the upcoming period */
2423 cfs_b->idle = 1;
2424 goto out_unlock;
2425 }
Paul Turner58088ad2011-07-21 09:43:31 -07002426
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002427 /* account preceding periods in which throttling occurred */
2428 cfs_b->nr_throttled += overrun;
2429
Paul Turner671fd9d2011-07-21 09:43:34 -07002430 /*
2431 * There are throttled entities so we must first use the new bandwidth
2432 * to unthrottle them before making it generally available. This
2433 * ensures that all existing debts will be paid before a new cfs_rq is
2434 * allowed to run.
2435 */
2436 runtime = cfs_b->runtime;
2437 runtime_expires = cfs_b->runtime_expires;
2438 cfs_b->runtime = 0;
2439
2440 /*
2441 * This check is repeated as we are holding onto the new bandwidth
2442 * while we unthrottle. This can potentially race with an unthrottled
2443 * group trying to acquire new bandwidth from the global pool.
2444 */
2445 while (throttled && runtime > 0) {
2446 raw_spin_unlock(&cfs_b->lock);
2447 /* we can't nest cfs_b->lock while distributing bandwidth */
2448 runtime = distribute_cfs_runtime(cfs_b, runtime,
2449 runtime_expires);
2450 raw_spin_lock(&cfs_b->lock);
2451
2452 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2453 }
2454
2455 /* return (any) remaining runtime */
2456 cfs_b->runtime = runtime;
2457 /*
2458 * While we are ensured activity in the period following an
2459 * unthrottle, this also covers the case in which the new bandwidth is
2460 * insufficient to cover the existing bandwidth deficit. (Forcing the
2461 * timer to remain active while there are any throttled entities.)
2462 */
2463 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07002464out_unlock:
2465 if (idle)
2466 cfs_b->timer_active = 0;
2467 raw_spin_unlock(&cfs_b->lock);
2468
2469 return idle;
2470}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002471
Paul Turnerd8b49862011-07-21 09:43:41 -07002472/* a cfs_rq won't donate quota below this amount */
2473static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2474/* minimum remaining period time to redistribute slack quota */
2475static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2476/* how long we wait to gather additional slack before distributing */
2477static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2478
2479/* are we near the end of the current quota period? */
2480static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2481{
2482 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2483 u64 remaining;
2484
2485 /* if the call-back is running a quota refresh is already occurring */
2486 if (hrtimer_callback_running(refresh_timer))
2487 return 1;
2488
2489 /* is a quota refresh about to occur? */
2490 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2491 if (remaining < min_expire)
2492 return 1;
2493
2494 return 0;
2495}
2496
2497static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2498{
2499 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2500
2501 /* if there's a quota refresh soon don't bother with slack */
2502 if (runtime_refresh_within(cfs_b, min_left))
2503 return;
2504
2505 start_bandwidth_timer(&cfs_b->slack_timer,
2506 ns_to_ktime(cfs_bandwidth_slack_period));
2507}
2508
2509/* we know any runtime found here is valid as update_curr() precedes return */
2510static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2511{
2512 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2513 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2514
2515 if (slack_runtime <= 0)
2516 return;
2517
2518 raw_spin_lock(&cfs_b->lock);
2519 if (cfs_b->quota != RUNTIME_INF &&
2520 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2521 cfs_b->runtime += slack_runtime;
2522
2523 /* we are under rq->lock, defer unthrottling using a timer */
2524 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2525 !list_empty(&cfs_b->throttled_cfs_rq))
2526 start_cfs_slack_bandwidth(cfs_b);
2527 }
2528 raw_spin_unlock(&cfs_b->lock);
2529
2530 /* even if it's not valid for return we don't want to try again */
2531 cfs_rq->runtime_remaining -= slack_runtime;
2532}
2533
2534static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2535{
Paul Turner56f570e2011-11-07 20:26:33 -08002536 if (!cfs_bandwidth_used())
2537 return;
2538
Paul Turnerfccfdc62011-11-07 20:26:34 -08002539 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07002540 return;
2541
2542 __return_cfs_rq_runtime(cfs_rq);
2543}
2544
2545/*
2546 * This is done with a timer (instead of inline with bandwidth return) since
2547 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2548 */
2549static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2550{
2551 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2552 u64 expires;
2553
2554 /* confirm we're still not at a refresh boundary */
2555 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2556 return;
2557
2558 raw_spin_lock(&cfs_b->lock);
2559 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2560 runtime = cfs_b->runtime;
2561 cfs_b->runtime = 0;
2562 }
2563 expires = cfs_b->runtime_expires;
2564 raw_spin_unlock(&cfs_b->lock);
2565
2566 if (!runtime)
2567 return;
2568
2569 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2570
2571 raw_spin_lock(&cfs_b->lock);
2572 if (expires == cfs_b->runtime_expires)
2573 cfs_b->runtime = runtime;
2574 raw_spin_unlock(&cfs_b->lock);
2575}
2576
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002577/*
2578 * When a group wakes up we want to make sure that its quota is not already
2579 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2580 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2581 */
2582static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2583{
Paul Turner56f570e2011-11-07 20:26:33 -08002584 if (!cfs_bandwidth_used())
2585 return;
2586
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002587 /* an active group must be handled by the update_curr()->put() path */
2588 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2589 return;
2590
2591 /* ensure the group is not already throttled */
2592 if (cfs_rq_throttled(cfs_rq))
2593 return;
2594
2595 /* update runtime allocation */
2596 account_cfs_rq_runtime(cfs_rq, 0);
2597 if (cfs_rq->runtime_remaining <= 0)
2598 throttle_cfs_rq(cfs_rq);
2599}
2600
2601/* conditionally throttle active cfs_rq's from put_prev_entity() */
2602static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2603{
Paul Turner56f570e2011-11-07 20:26:33 -08002604 if (!cfs_bandwidth_used())
2605 return;
2606
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002607 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2608 return;
2609
2610 /*
2611 * it's possible for a throttled entity to be forced into a running
2612 * state (e.g. set_curr_task), in this case we're finished.
2613 */
2614 if (cfs_rq_throttled(cfs_rq))
2615 return;
2616
2617 throttle_cfs_rq(cfs_rq);
2618}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002619
2620static inline u64 default_cfs_period(void);
2621static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2622static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2623
2624static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2625{
2626 struct cfs_bandwidth *cfs_b =
2627 container_of(timer, struct cfs_bandwidth, slack_timer);
2628 do_sched_cfs_slack_timer(cfs_b);
2629
2630 return HRTIMER_NORESTART;
2631}
2632
2633static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2634{
2635 struct cfs_bandwidth *cfs_b =
2636 container_of(timer, struct cfs_bandwidth, period_timer);
2637 ktime_t now;
2638 int overrun;
2639 int idle = 0;
2640
2641 for (;;) {
2642 now = hrtimer_cb_get_time(timer);
2643 overrun = hrtimer_forward(timer, now, cfs_b->period);
2644
2645 if (!overrun)
2646 break;
2647
2648 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2649 }
2650
2651 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2652}
2653
2654void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2655{
2656 raw_spin_lock_init(&cfs_b->lock);
2657 cfs_b->runtime = 0;
2658 cfs_b->quota = RUNTIME_INF;
2659 cfs_b->period = ns_to_ktime(default_cfs_period());
2660
2661 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2662 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2663 cfs_b->period_timer.function = sched_cfs_period_timer;
2664 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2665 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2666}
2667
2668static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2669{
2670 cfs_rq->runtime_enabled = 0;
2671 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2672}
2673
2674/* requires cfs_b->lock, may release to reprogram timer */
2675void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2676{
2677 /*
2678 * The timer may be active because we're trying to set a new bandwidth
2679 * period or because we're racing with the tear-down path
2680 * (timer_active==0 becomes visible before the hrtimer call-back
2681 * terminates). In either case we ensure that it's re-programmed
2682 */
2683 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2684 raw_spin_unlock(&cfs_b->lock);
2685 /* ensure cfs_b->lock is available while we wait */
2686 hrtimer_cancel(&cfs_b->period_timer);
2687
2688 raw_spin_lock(&cfs_b->lock);
2689 /* if someone else restarted the timer then we're done */
2690 if (cfs_b->timer_active)
2691 return;
2692 }
2693
2694 cfs_b->timer_active = 1;
2695 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2696}
2697
2698static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2699{
2700 hrtimer_cancel(&cfs_b->period_timer);
2701 hrtimer_cancel(&cfs_b->slack_timer);
2702}
2703
Arnd Bergmann38dc3342013-01-25 14:14:22 +00002704static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02002705{
2706 struct cfs_rq *cfs_rq;
2707
2708 for_each_leaf_cfs_rq(rq, cfs_rq) {
2709 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2710
2711 if (!cfs_rq->runtime_enabled)
2712 continue;
2713
2714 /*
2715 * clock_task is not advancing so we just need to make sure
2716 * there's some valid quota amount
2717 */
2718 cfs_rq->runtime_remaining = cfs_b->quota;
2719 if (cfs_rq_throttled(cfs_rq))
2720 unthrottle_cfs_rq(cfs_rq);
2721 }
2722}
2723
2724#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02002725static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2726{
2727 return rq_of(cfs_rq)->clock_task;
2728}
2729
2730static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2731 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002732static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2733static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002734static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07002735
2736static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2737{
2738 return 0;
2739}
Paul Turner64660c82011-07-21 09:43:36 -07002740
2741static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2742{
2743 return 0;
2744}
2745
2746static inline int throttled_lb_pair(struct task_group *tg,
2747 int src_cpu, int dest_cpu)
2748{
2749 return 0;
2750}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002751
2752void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2753
2754#ifdef CONFIG_FAIR_GROUP_SCHED
2755static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07002756#endif
2757
Peter Zijlstra029632f2011-10-25 10:00:11 +02002758static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2759{
2760 return NULL;
2761}
2762static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07002763static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002764
2765#endif /* CONFIG_CFS_BANDWIDTH */
2766
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002767/**************************************************
2768 * CFS operations on tasks:
2769 */
2770
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002771#ifdef CONFIG_SCHED_HRTICK
2772static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2773{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002774 struct sched_entity *se = &p->se;
2775 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2776
2777 WARN_ON(task_rq(p) != rq);
2778
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002779 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002780 u64 slice = sched_slice(cfs_rq, se);
2781 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2782 s64 delta = slice - ran;
2783
2784 if (delta < 0) {
2785 if (rq->curr == p)
2786 resched_task(p);
2787 return;
2788 }
2789
2790 /*
2791 * Don't schedule slices shorter than 10000ns, that just
2792 * doesn't make sense. Rely on vruntime for fairness.
2793 */
Peter Zijlstra31656512008-07-18 18:01:23 +02002794 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02002795 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002796
Peter Zijlstra31656512008-07-18 18:01:23 +02002797 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002798 }
2799}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002800
2801/*
2802 * called from enqueue/dequeue and updates the hrtick when the
2803 * current task is from our class and nr_running is low enough
2804 * to matter.
2805 */
2806static void hrtick_update(struct rq *rq)
2807{
2808 struct task_struct *curr = rq->curr;
2809
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002810 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002811 return;
2812
2813 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2814 hrtick_start_fair(rq, curr);
2815}
Dhaval Giani55e12e52008-06-24 23:39:43 +05302816#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002817static inline void
2818hrtick_start_fair(struct rq *rq, struct task_struct *p)
2819{
2820}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002821
2822static inline void hrtick_update(struct rq *rq)
2823{
2824}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002825#endif
2826
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002827/*
2828 * The enqueue_task method is called before nr_running is
2829 * increased. Here we update the fair scheduling stats and
2830 * then put the task into the rbtree:
2831 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00002832static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002833enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002834{
2835 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002836 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002837
2838 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002839 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002840 break;
2841 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002842 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002843
2844 /*
2845 * end evaluation on encountering a throttled cfs_rq
2846 *
2847 * note: in the case of encountering a throttled cfs_rq we will
2848 * post the final h_nr_running increment below.
2849 */
2850 if (cfs_rq_throttled(cfs_rq))
2851 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002852 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07002853
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002854 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002855 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002856
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002857 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002858 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002859 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002860
Paul Turner85dac902011-07-21 09:43:33 -07002861 if (cfs_rq_throttled(cfs_rq))
2862 break;
2863
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002864 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002865 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002866 }
2867
Ben Segall18bf2802012-10-04 12:51:20 +02002868 if (!se) {
2869 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07002870 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002871 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002872 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002873}
2874
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002875static void set_next_buddy(struct sched_entity *se);
2876
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002877/*
2878 * The dequeue_task method is called before nr_running is
2879 * decreased. We remove the task from the rbtree and
2880 * update the fair scheduling stats:
2881 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002882static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002883{
2884 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002885 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002886 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002887
2888 for_each_sched_entity(se) {
2889 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002890 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002891
2892 /*
2893 * end evaluation on encountering a throttled cfs_rq
2894 *
2895 * note: in the case of encountering a throttled cfs_rq we will
2896 * post the final h_nr_running decrement below.
2897 */
2898 if (cfs_rq_throttled(cfs_rq))
2899 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002900 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002901
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002902 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002903 if (cfs_rq->load.weight) {
2904 /*
2905 * Bias pick_next to pick a task from this cfs_rq, as
2906 * p is sleeping when it is within its sched_slice.
2907 */
2908 if (task_sleep && parent_entity(se))
2909 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07002910
2911 /* avoid re-evaluating load for this entity */
2912 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002913 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002914 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002915 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002916 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002917
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002918 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002919 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002920 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002921
Paul Turner85dac902011-07-21 09:43:33 -07002922 if (cfs_rq_throttled(cfs_rq))
2923 break;
2924
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002925 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002926 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002927 }
2928
Ben Segall18bf2802012-10-04 12:51:20 +02002929 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07002930 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002931 update_rq_runnable_avg(rq, 1);
2932 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002933 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002934}
2935
Gregory Haskinse7693a32008-01-25 21:08:09 +01002936#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02002937/* Used instead of source_load when we know the type == 0 */
2938static unsigned long weighted_cpuload(const int cpu)
2939{
2940 return cpu_rq(cpu)->load.weight;
2941}
2942
2943/*
2944 * Return a low guess at the load of a migration-source cpu weighted
2945 * according to the scheduling class and "nice" value.
2946 *
2947 * We want to under-estimate the load of migration sources, to
2948 * balance conservatively.
2949 */
2950static unsigned long source_load(int cpu, int type)
2951{
2952 struct rq *rq = cpu_rq(cpu);
2953 unsigned long total = weighted_cpuload(cpu);
2954
2955 if (type == 0 || !sched_feat(LB_BIAS))
2956 return total;
2957
2958 return min(rq->cpu_load[type-1], total);
2959}
2960
2961/*
2962 * Return a high guess at the load of a migration-target cpu weighted
2963 * according to the scheduling class and "nice" value.
2964 */
2965static unsigned long target_load(int cpu, int type)
2966{
2967 struct rq *rq = cpu_rq(cpu);
2968 unsigned long total = weighted_cpuload(cpu);
2969
2970 if (type == 0 || !sched_feat(LB_BIAS))
2971 return total;
2972
2973 return max(rq->cpu_load[type-1], total);
2974}
2975
2976static unsigned long power_of(int cpu)
2977{
2978 return cpu_rq(cpu)->cpu_power;
2979}
2980
2981static unsigned long cpu_avg_load_per_task(int cpu)
2982{
2983 struct rq *rq = cpu_rq(cpu);
2984 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2985
2986 if (nr_running)
2987 return rq->load.weight / nr_running;
2988
2989 return 0;
2990}
2991
Ingo Molnar098fb9d2008-03-16 20:36:10 +01002992
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02002993static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002994{
2995 struct sched_entity *se = &p->se;
2996 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02002997 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002998
Peter Zijlstra3fe16982011-04-05 17:23:48 +02002999#ifndef CONFIG_64BIT
3000 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003001
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003002 do {
3003 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3004 smp_rmb();
3005 min_vruntime = cfs_rq->min_vruntime;
3006 } while (min_vruntime != min_vruntime_copy);
3007#else
3008 min_vruntime = cfs_rq->min_vruntime;
3009#endif
3010
3011 se->vruntime -= min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003012}
3013
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003014#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003015/*
3016 * effective_load() calculates the load change as seen from the root_task_group
3017 *
3018 * Adding load to a group doesn't make a group heavier, but can cause movement
3019 * of group shares between cpus. Assuming the shares were perfectly aligned one
3020 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003021 *
3022 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3023 * on this @cpu and results in a total addition (subtraction) of @wg to the
3024 * total group weight.
3025 *
3026 * Given a runqueue weight distribution (rw_i) we can compute a shares
3027 * distribution (s_i) using:
3028 *
3029 * s_i = rw_i / \Sum rw_j (1)
3030 *
3031 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3032 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3033 * shares distribution (s_i):
3034 *
3035 * rw_i = { 2, 4, 1, 0 }
3036 * s_i = { 2/7, 4/7, 1/7, 0 }
3037 *
3038 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3039 * task used to run on and the CPU the waker is running on), we need to
3040 * compute the effect of waking a task on either CPU and, in case of a sync
3041 * wakeup, compute the effect of the current task going to sleep.
3042 *
3043 * So for a change of @wl to the local @cpu with an overall group weight change
3044 * of @wl we can compute the new shares distribution (s'_i) using:
3045 *
3046 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3047 *
3048 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3049 * differences in waking a task to CPU 0. The additional task changes the
3050 * weight and shares distributions like:
3051 *
3052 * rw'_i = { 3, 4, 1, 0 }
3053 * s'_i = { 3/8, 4/8, 1/8, 0 }
3054 *
3055 * We can then compute the difference in effective weight by using:
3056 *
3057 * dw_i = S * (s'_i - s_i) (3)
3058 *
3059 * Where 'S' is the group weight as seen by its parent.
3060 *
3061 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3062 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3063 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003064 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003065static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003066{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003067 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003068
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003069 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003070 return wl;
3071
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003072 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003073 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003074
Paul Turner977dda72011-01-14 17:57:50 -08003075 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003076
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003077 /*
3078 * W = @wg + \Sum rw_j
3079 */
3080 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003081
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003082 /*
3083 * w = rw_i + @wl
3084 */
3085 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003086
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003087 /*
3088 * wl = S * s'_i; see (2)
3089 */
3090 if (W > 0 && w < W)
3091 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003092 else
3093 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003094
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003095 /*
3096 * Per the above, wl is the new se->load.weight value; since
3097 * those are clipped to [MIN_SHARES, ...) do so now. See
3098 * calc_cfs_shares().
3099 */
Paul Turner977dda72011-01-14 17:57:50 -08003100 if (wl < MIN_SHARES)
3101 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003102
3103 /*
3104 * wl = dw_i = S * (s'_i - s_i); see (3)
3105 */
Paul Turner977dda72011-01-14 17:57:50 -08003106 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003107
3108 /*
3109 * Recursively apply this logic to all parent groups to compute
3110 * the final effective load change on the root group. Since
3111 * only the @tg group gets extra weight, all parent groups can
3112 * only redistribute existing shares. @wl is the shift in shares
3113 * resulting from this level per the above.
3114 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003115 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003116 }
3117
3118 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003119}
3120#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003121
Peter Zijlstra83378262008-06-27 13:41:37 +02003122static inline unsigned long effective_load(struct task_group *tg, int cpu,
3123 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003124{
Peter Zijlstra83378262008-06-27 13:41:37 +02003125 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003126}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003127
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003128#endif
3129
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003130static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003131{
Paul Turnere37b6a72011-01-21 20:44:59 -08003132 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003133 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003134 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003135 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003136 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003137 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003138
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003139 idx = sd->wake_idx;
3140 this_cpu = smp_processor_id();
3141 prev_cpu = task_cpu(p);
3142 load = source_load(prev_cpu, idx);
3143 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003144
3145 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003146 * If sync wakeup then subtract the (maximum possible)
3147 * effect of the currently running task from the load
3148 * of the current CPU:
3149 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003150 if (sync) {
3151 tg = task_group(current);
3152 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003153
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003154 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003155 load += effective_load(tg, prev_cpu, 0, -weight);
3156 }
3157
3158 tg = task_group(p);
3159 weight = p->se.load.weight;
3160
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003161 /*
3162 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003163 * due to the sync cause above having dropped this_load to 0, we'll
3164 * always have an imbalance, but there's really nothing you can do
3165 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003166 *
3167 * Otherwise check if either cpus are near enough in load to allow this
3168 * task to be woken on this_cpu.
3169 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003170 if (this_load > 0) {
3171 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003172
3173 this_eff_load = 100;
3174 this_eff_load *= power_of(prev_cpu);
3175 this_eff_load *= this_load +
3176 effective_load(tg, this_cpu, weight, weight);
3177
3178 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3179 prev_eff_load *= power_of(this_cpu);
3180 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3181
3182 balanced = this_eff_load <= prev_eff_load;
3183 } else
3184 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003185
3186 /*
3187 * If the currently running task will sleep within
3188 * a reasonable amount of time then attract this newly
3189 * woken task:
3190 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003191 if (sync && balanced)
3192 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003193
Lucas De Marchi41acab82010-03-10 23:37:45 -03003194 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003195 tl_per_task = cpu_avg_load_per_task(this_cpu);
3196
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003197 if (balanced ||
3198 (this_load <= load &&
3199 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003200 /*
3201 * This domain has SD_WAKE_AFFINE and
3202 * p is cache cold in this domain, and
3203 * there is no bad imbalance.
3204 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003205 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003206 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003207
3208 return 1;
3209 }
3210 return 0;
3211}
3212
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003213/*
3214 * find_idlest_group finds and returns the least busy CPU group within the
3215 * domain.
3216 */
3217static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003218find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003219 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003220{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003221 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003222 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003223 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003224
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003225 do {
3226 unsigned long load, avg_load;
3227 int local_group;
3228 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003229
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003230 /* Skip over this group if it has no CPUs allowed */
3231 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003232 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003233 continue;
3234
3235 local_group = cpumask_test_cpu(this_cpu,
3236 sched_group_cpus(group));
3237
3238 /* Tally up the load of all CPUs in the group */
3239 avg_load = 0;
3240
3241 for_each_cpu(i, sched_group_cpus(group)) {
3242 /* Bias balancing toward cpus of our domain */
3243 if (local_group)
3244 load = source_load(i, load_idx);
3245 else
3246 load = target_load(i, load_idx);
3247
3248 avg_load += load;
3249 }
3250
3251 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003252 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003253
3254 if (local_group) {
3255 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003256 } else if (avg_load < min_load) {
3257 min_load = avg_load;
3258 idlest = group;
3259 }
3260 } while (group = group->next, group != sd->groups);
3261
3262 if (!idlest || 100*this_load < imbalance*min_load)
3263 return NULL;
3264 return idlest;
3265}
3266
3267/*
3268 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3269 */
3270static int
3271find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3272{
3273 unsigned long load, min_load = ULONG_MAX;
3274 int idlest = -1;
3275 int i;
3276
3277 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003278 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003279 load = weighted_cpuload(i);
3280
3281 if (load < min_load || (load == min_load && i == this_cpu)) {
3282 min_load = load;
3283 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003284 }
3285 }
3286
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003287 return idlest;
3288}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003289
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003290/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003291 * Try and locate an idle CPU in the sched_domain.
3292 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003293static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003294{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003295 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003296 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003297 int i = task_cpu(p);
3298
3299 if (idle_cpu(target))
3300 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003301
3302 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003303 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003304 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003305 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3306 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003307
3308 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003309 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003310 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003311 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003312 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003313 sg = sd->groups;
3314 do {
3315 if (!cpumask_intersects(sched_group_cpus(sg),
3316 tsk_cpus_allowed(p)))
3317 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003318
Linus Torvalds37407ea2012-09-16 12:29:43 -07003319 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003320 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003321 goto next;
3322 }
3323
3324 target = cpumask_first_and(sched_group_cpus(sg),
3325 tsk_cpus_allowed(p));
3326 goto done;
3327next:
3328 sg = sg->next;
3329 } while (sg != sd->groups);
3330 }
3331done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003332 return target;
3333}
3334
3335/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003336 * sched_balance_self: balance the current task (running on cpu) in domains
3337 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3338 * SD_BALANCE_EXEC.
3339 *
3340 * Balance, ie. select the least loaded group.
3341 *
3342 * Returns the target CPU number, or the same CPU if no balancing is needed.
3343 *
3344 * preempt must be disabled.
3345 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003346static int
Peter Zijlstra7608dec2011-04-05 17:23:46 +02003347select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003348{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003349 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003350 int cpu = smp_processor_id();
3351 int prev_cpu = task_cpu(p);
3352 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003353 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003354 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003355
Peter Zijlstra29baa742012-04-23 12:11:21 +02003356 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01003357 return prev_cpu;
3358
Peter Zijlstra0763a662009-09-14 19:37:39 +02003359 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003360 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003361 want_affine = 1;
3362 new_cpu = prev_cpu;
3363 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01003364
Peter Zijlstradce840a2011-04-07 14:09:50 +02003365 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003366 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01003367 if (!(tmp->flags & SD_LOAD_BALANCE))
3368 continue;
3369
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003370 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003371 * If both cpu and prev_cpu are part of this domain,
3372 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01003373 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003374 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3375 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3376 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08003377 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003378 }
3379
Alex Shif03542a2012-07-26 08:55:34 +08003380 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003381 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003382 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003383
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003384 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08003385 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02003386 prev_cpu = cpu;
3387
3388 new_cpu = select_idle_sibling(p, prev_cpu);
3389 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003390 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02003391
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003392 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003393 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003394 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003395 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003396
Peter Zijlstra0763a662009-09-14 19:37:39 +02003397 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003398 sd = sd->child;
3399 continue;
3400 }
3401
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003402 if (sd_flag & SD_BALANCE_WAKE)
3403 load_idx = sd->wake_idx;
3404
3405 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003406 if (!group) {
3407 sd = sd->child;
3408 continue;
3409 }
3410
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02003411 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003412 if (new_cpu == -1 || new_cpu == cpu) {
3413 /* Now try balancing at a lower domain level of cpu */
3414 sd = sd->child;
3415 continue;
3416 }
3417
3418 /* Now try balancing at a lower domain level of new_cpu */
3419 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003420 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003421 sd = NULL;
3422 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003423 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003424 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02003425 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003426 sd = tmp;
3427 }
3428 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01003429 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02003430unlock:
3431 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01003432
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003433 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003434}
Paul Turner0a74bef2012-10-04 13:18:30 +02003435
3436/*
Paul Turnerf4e26b12012-10-04 13:18:32 +02003437 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3438 * removed when useful for applications beyond shares distribution (e.g.
3439 * load-balance).
3440 */
3441#ifdef CONFIG_FAIR_GROUP_SCHED
3442/*
Paul Turner0a74bef2012-10-04 13:18:30 +02003443 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3444 * cfs_rq_of(p) references at time of call are still valid and identify the
3445 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3446 * other assumptions, including the state of rq->lock, should be made.
3447 */
3448static void
3449migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3450{
Paul Turneraff3e492012-10-04 13:18:30 +02003451 struct sched_entity *se = &p->se;
3452 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3453
3454 /*
3455 * Load tracking: accumulate removed load so that it can be processed
3456 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3457 * to blocked load iff they have a positive decay-count. It can never
3458 * be negative here since on-rq tasks have decay-count == 0.
3459 */
3460 if (se->avg.decay_count) {
3461 se->avg.decay_count = -__synchronize_entity_decay(se);
3462 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3463 }
Paul Turner0a74bef2012-10-04 13:18:30 +02003464}
Paul Turnerf4e26b12012-10-04 13:18:32 +02003465#endif
Gregory Haskinse7693a32008-01-25 21:08:09 +01003466#endif /* CONFIG_SMP */
3467
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003468static unsigned long
3469wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003470{
3471 unsigned long gran = sysctl_sched_wakeup_granularity;
3472
3473 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003474 * Since its curr running now, convert the gran from real-time
3475 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01003476 *
3477 * By using 'se' instead of 'curr' we penalize light tasks, so
3478 * they get preempted easier. That is, if 'se' < 'curr' then
3479 * the resulting gran will be larger, therefore penalizing the
3480 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3481 * be smaller, again penalizing the lighter task.
3482 *
3483 * This is especially important for buddies when the leftmost
3484 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003485 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08003486 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003487}
3488
3489/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02003490 * Should 'se' preempt 'curr'.
3491 *
3492 * |s1
3493 * |s2
3494 * |s3
3495 * g
3496 * |<--->|c
3497 *
3498 * w(c, s1) = -1
3499 * w(c, s2) = 0
3500 * w(c, s3) = 1
3501 *
3502 */
3503static int
3504wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3505{
3506 s64 gran, vdiff = curr->vruntime - se->vruntime;
3507
3508 if (vdiff <= 0)
3509 return -1;
3510
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003511 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02003512 if (vdiff > gran)
3513 return 1;
3514
3515 return 0;
3516}
3517
Peter Zijlstra02479092008-11-04 21:25:10 +01003518static void set_last_buddy(struct sched_entity *se)
3519{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003520 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3521 return;
3522
3523 for_each_sched_entity(se)
3524 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003525}
3526
3527static void set_next_buddy(struct sched_entity *se)
3528{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003529 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3530 return;
3531
3532 for_each_sched_entity(se)
3533 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003534}
3535
Rik van Rielac53db52011-02-01 09:51:03 -05003536static void set_skip_buddy(struct sched_entity *se)
3537{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003538 for_each_sched_entity(se)
3539 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05003540}
3541
Peter Zijlstra464b7522008-10-24 11:06:15 +02003542/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003543 * Preempt the current task with a newly woken task if needed:
3544 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02003545static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003546{
3547 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02003548 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003549 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02003550 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003551 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003552
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01003553 if (unlikely(se == pse))
3554 return;
3555
Paul Turner5238cdd2011-07-21 09:43:37 -07003556 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003557 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07003558 * unconditionally check_prempt_curr() after an enqueue (which may have
3559 * lead to a throttle). This both saves work and prevents false
3560 * next-buddy nomination below.
3561 */
3562 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3563 return;
3564
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003565 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02003566 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003567 next_buddy_marked = 1;
3568 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02003569
Bharata B Raoaec0a512008-08-28 14:42:49 +05303570 /*
3571 * We can come here with TIF_NEED_RESCHED already set from new task
3572 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07003573 *
3574 * Note: this also catches the edge-case of curr being in a throttled
3575 * group (e.g. via set_curr_task), since update_curr() (in the
3576 * enqueue of curr) will have resulted in resched being set. This
3577 * prevents us from potentially nominating it as a false LAST_BUDDY
3578 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05303579 */
3580 if (test_tsk_need_resched(curr))
3581 return;
3582
Darren Harta2f5c9a2011-02-22 13:04:33 -08003583 /* Idle tasks are by definition preempted by non-idle tasks. */
3584 if (unlikely(curr->policy == SCHED_IDLE) &&
3585 likely(p->policy != SCHED_IDLE))
3586 goto preempt;
3587
Ingo Molnar91c234b2007-10-15 17:00:18 +02003588 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08003589 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3590 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02003591 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02003592 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02003593 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003594
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003595 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07003596 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003597 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003598 if (wakeup_preempt_entity(se, pse) == 1) {
3599 /*
3600 * Bias pick_next to pick the sched entity that is
3601 * triggering this preemption.
3602 */
3603 if (!next_buddy_marked)
3604 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003605 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003606 }
Jupyung Leea65ac742009-11-17 18:51:40 +09003607
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003608 return;
3609
3610preempt:
3611 resched_task(curr);
3612 /*
3613 * Only set the backward buddy when the current task is still
3614 * on the rq. This can happen when a wakeup gets interleaved
3615 * with schedule on the ->pre_schedule() or idle_balance()
3616 * point, either of which can * drop the rq lock.
3617 *
3618 * Also, during early boot the idle thread is in the fair class,
3619 * for obvious reasons its a bad idea to schedule back to it.
3620 */
3621 if (unlikely(!se->on_rq || curr == rq->idle))
3622 return;
3623
3624 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3625 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003626}
3627
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003628static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003629{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003630 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003631 struct cfs_rq *cfs_rq = &rq->cfs;
3632 struct sched_entity *se;
3633
Tim Blechmann36ace272009-11-24 11:55:45 +01003634 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003635 return NULL;
3636
3637 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02003638 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01003639 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003640 cfs_rq = group_cfs_rq(se);
3641 } while (cfs_rq);
3642
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003643 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003644 if (hrtick_enabled(rq))
3645 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003646
3647 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648}
3649
3650/*
3651 * Account for a descheduled task:
3652 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02003653static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003654{
3655 struct sched_entity *se = &prev->se;
3656 struct cfs_rq *cfs_rq;
3657
3658 for_each_sched_entity(se) {
3659 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02003660 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003661 }
3662}
3663
Rik van Rielac53db52011-02-01 09:51:03 -05003664/*
3665 * sched_yield() is very simple
3666 *
3667 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3668 */
3669static void yield_task_fair(struct rq *rq)
3670{
3671 struct task_struct *curr = rq->curr;
3672 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3673 struct sched_entity *se = &curr->se;
3674
3675 /*
3676 * Are we the only task in the tree?
3677 */
3678 if (unlikely(rq->nr_running == 1))
3679 return;
3680
3681 clear_buddies(cfs_rq, se);
3682
3683 if (curr->policy != SCHED_BATCH) {
3684 update_rq_clock(rq);
3685 /*
3686 * Update run-time statistics of the 'current'.
3687 */
3688 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01003689 /*
3690 * Tell update_rq_clock() that we've just updated,
3691 * so we don't do microscopic update in schedule()
3692 * and double the fastpath cost.
3693 */
3694 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05003695 }
3696
3697 set_skip_buddy(se);
3698}
3699
Mike Galbraithd95f4122011-02-01 09:50:51 -05003700static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3701{
3702 struct sched_entity *se = &p->se;
3703
Paul Turner5238cdd2011-07-21 09:43:37 -07003704 /* throttled hierarchies are not runnable */
3705 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05003706 return false;
3707
3708 /* Tell the scheduler that we'd really like pse to run next. */
3709 set_next_buddy(se);
3710
Mike Galbraithd95f4122011-02-01 09:50:51 -05003711 yield_task_fair(rq);
3712
3713 return true;
3714}
3715
Peter Williams681f3e62007-10-24 18:23:51 +02003716#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003717/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02003718 * Fair scheduling class load-balancing methods.
3719 *
3720 * BASICS
3721 *
3722 * The purpose of load-balancing is to achieve the same basic fairness the
3723 * per-cpu scheduler provides, namely provide a proportional amount of compute
3724 * time to each task. This is expressed in the following equation:
3725 *
3726 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3727 *
3728 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3729 * W_i,0 is defined as:
3730 *
3731 * W_i,0 = \Sum_j w_i,j (2)
3732 *
3733 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3734 * is derived from the nice value as per prio_to_weight[].
3735 *
3736 * The weight average is an exponential decay average of the instantaneous
3737 * weight:
3738 *
3739 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3740 *
3741 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3742 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3743 * can also include other factors [XXX].
3744 *
3745 * To achieve this balance we define a measure of imbalance which follows
3746 * directly from (1):
3747 *
3748 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3749 *
3750 * We them move tasks around to minimize the imbalance. In the continuous
3751 * function space it is obvious this converges, in the discrete case we get
3752 * a few fun cases generally called infeasible weight scenarios.
3753 *
3754 * [XXX expand on:
3755 * - infeasible weights;
3756 * - local vs global optima in the discrete case. ]
3757 *
3758 *
3759 * SCHED DOMAINS
3760 *
3761 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3762 * for all i,j solution, we create a tree of cpus that follows the hardware
3763 * topology where each level pairs two lower groups (or better). This results
3764 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3765 * tree to only the first of the previous level and we decrease the frequency
3766 * of load-balance at each level inv. proportional to the number of cpus in
3767 * the groups.
3768 *
3769 * This yields:
3770 *
3771 * log_2 n 1 n
3772 * \Sum { --- * --- * 2^i } = O(n) (5)
3773 * i = 0 2^i 2^i
3774 * `- size of each group
3775 * | | `- number of cpus doing load-balance
3776 * | `- freq
3777 * `- sum over all levels
3778 *
3779 * Coupled with a limit on how many tasks we can migrate every balance pass,
3780 * this makes (5) the runtime complexity of the balancer.
3781 *
3782 * An important property here is that each CPU is still (indirectly) connected
3783 * to every other cpu in at most O(log n) steps:
3784 *
3785 * The adjacency matrix of the resulting graph is given by:
3786 *
3787 * log_2 n
3788 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3789 * k = 0
3790 *
3791 * And you'll find that:
3792 *
3793 * A^(log_2 n)_i,j != 0 for all i,j (7)
3794 *
3795 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3796 * The task movement gives a factor of O(m), giving a convergence complexity
3797 * of:
3798 *
3799 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3800 *
3801 *
3802 * WORK CONSERVING
3803 *
3804 * In order to avoid CPUs going idle while there's still work to do, new idle
3805 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3806 * tree itself instead of relying on other CPUs to bring it work.
3807 *
3808 * This adds some complexity to both (5) and (8) but it reduces the total idle
3809 * time.
3810 *
3811 * [XXX more?]
3812 *
3813 *
3814 * CGROUPS
3815 *
3816 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3817 *
3818 * s_k,i
3819 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3820 * S_k
3821 *
3822 * Where
3823 *
3824 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3825 *
3826 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3827 *
3828 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3829 * property.
3830 *
3831 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3832 * rewrite all of this once again.]
3833 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003834
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09003835static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3836
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003837#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01003838#define LBF_NEED_BREAK 0x02
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303839#define LBF_SOME_PINNED 0x04
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003840
3841struct lb_env {
3842 struct sched_domain *sd;
3843
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003844 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05303845 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003846
3847 int dst_cpu;
3848 struct rq *dst_rq;
3849
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303850 struct cpumask *dst_grpmask;
3851 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003852 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02003853 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08003854 /* The set of CPUs under consideration for load-balancing */
3855 struct cpumask *cpus;
3856
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003857 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01003858
3859 unsigned int loop;
3860 unsigned int loop_break;
3861 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003862};
3863
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003864/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003865 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003866 * Both runqueues must be locked.
3867 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003868static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003869{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003870 deactivate_task(env->src_rq, p, 0);
3871 set_task_cpu(p, env->dst_cpu);
3872 activate_task(env->dst_rq, p, 0);
3873 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003874}
3875
3876/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02003877 * Is this task likely cache-hot:
3878 */
3879static int
3880task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3881{
3882 s64 delta;
3883
3884 if (p->sched_class != &fair_sched_class)
3885 return 0;
3886
3887 if (unlikely(p->policy == SCHED_IDLE))
3888 return 0;
3889
3890 /*
3891 * Buddy candidates are cache hot:
3892 */
3893 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3894 (&p->se == cfs_rq_of(&p->se)->next ||
3895 &p->se == cfs_rq_of(&p->se)->last))
3896 return 1;
3897
3898 if (sysctl_sched_migration_cost == -1)
3899 return 1;
3900 if (sysctl_sched_migration_cost == 0)
3901 return 0;
3902
3903 delta = now - p->se.exec_start;
3904
3905 return delta < (s64)sysctl_sched_migration_cost;
3906}
3907
3908/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3910 */
3911static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003912int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003913{
3914 int tsk_cache_hot = 0;
3915 /*
3916 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09003917 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003918 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09003919 * 3) running (obviously), or
3920 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003921 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09003922 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3923 return 0;
3924
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003925 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003926 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303927
Lucas De Marchi41acab82010-03-10 23:37:45 -03003928 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303929
3930 /*
3931 * Remember if this task can be migrated to any other cpu in
3932 * our sched_group. We may want to revisit it if we couldn't
3933 * meet load balance goals by pulling other tasks on src_cpu.
3934 *
3935 * Also avoid computing new_dst_cpu if we have already computed
3936 * one in current iteration.
3937 */
3938 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3939 return 0;
3940
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003941 /* Prevent to re-select dst_cpu via env's cpus */
3942 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3943 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3944 env->flags |= LBF_SOME_PINNED;
3945 env->new_dst_cpu = cpu;
3946 break;
3947 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303948 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003949
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003950 return 0;
3951 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303952
3953 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003954 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003955
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003956 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03003957 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003958 return 0;
3959 }
3960
3961 /*
3962 * Aggressive migration if:
3963 * 1) task is cache cold, or
3964 * 2) too many balance attempts have failed.
3965 */
3966
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003967 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003968 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003969 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003970
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003971 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003972 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003973 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003974 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003975
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003976 return 1;
3977 }
3978
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003979 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3980 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003981}
3982
Peter Zijlstra897c3952009-12-17 17:45:42 +01003983/*
3984 * move_one_task tries to move exactly one task from busiest to this_rq, as
3985 * part of active balancing operations within "domain".
3986 * Returns 1 if successful and 0 otherwise.
3987 *
3988 * Called with both runqueues locked.
3989 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003990static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01003991{
3992 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01003993
Peter Zijlstra367456c2012-02-20 21:49:09 +01003994 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01003995 if (!can_migrate_task(p, env))
3996 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01003997
Peter Zijlstra367456c2012-02-20 21:49:09 +01003998 move_task(p, env);
3999 /*
4000 * Right now, this is only the second place move_task()
4001 * is called, so we can safely collect move_task()
4002 * stats here rather than inside move_task().
4003 */
4004 schedstat_inc(env->sd, lb_gained[env->idle]);
4005 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004006 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004007 return 0;
4008}
4009
Peter Zijlstra367456c2012-02-20 21:49:09 +01004010static unsigned long task_h_load(struct task_struct *p);
4011
Peter Zijlstraeb953082012-04-17 13:38:40 +02004012static const unsigned int sched_nr_migrate_break = 32;
4013
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004014/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004015 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004016 * this_rq, as part of a balancing operation within domain "sd".
4017 * Returns 1 if successful and 0 otherwise.
4018 *
4019 * Called with both runqueues locked.
4020 */
4021static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004022{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004023 struct list_head *tasks = &env->src_rq->cfs_tasks;
4024 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004025 unsigned long load;
4026 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004027
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004028 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004029 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004030
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004031 while (!list_empty(tasks)) {
4032 p = list_first_entry(tasks, struct task_struct, se.group_node);
4033
Peter Zijlstra367456c2012-02-20 21:49:09 +01004034 env->loop++;
4035 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004036 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004037 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004038
4039 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004040 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004041 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004042 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004043 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004044 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004045
Joonsoo Kimd3198082013-04-23 17:27:40 +09004046 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004047 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004048
Peter Zijlstra367456c2012-02-20 21:49:09 +01004049 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004050
Peter Zijlstraeb953082012-04-17 13:38:40 +02004051 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004052 goto next;
4053
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004054 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004055 goto next;
4056
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004057 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004058 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004059 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004060
4061#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004062 /*
4063 * NEWIDLE balancing is a source of latency, so preemptible
4064 * kernels will stop after the first task is pulled to minimize
4065 * the critical section.
4066 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004067 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004068 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004069#endif
4070
Peter Zijlstraee00e662009-12-17 17:25:20 +01004071 /*
4072 * We only want to steal up to the prescribed amount of
4073 * weighted load.
4074 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004075 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004076 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004077
Peter Zijlstra367456c2012-02-20 21:49:09 +01004078 continue;
4079next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004080 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004081 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004082
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004083 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004084 * Right now, this is one of only two places move_task() is called,
4085 * so we can safely collect move_task() stats here rather than
4086 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004087 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004088 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004089
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004090 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004091}
4092
Peter Zijlstra230059de2009-12-17 17:47:12 +01004093#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004094/*
4095 * update tg->load_weight by folding this cpu's load_avg
4096 */
Paul Turner48a16752012-10-04 13:18:31 +02004097static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004098{
Paul Turner48a16752012-10-04 13:18:31 +02004099 struct sched_entity *se = tg->se[cpu];
4100 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004101
Paul Turner48a16752012-10-04 13:18:31 +02004102 /* throttled entities do not contribute to load */
4103 if (throttled_hierarchy(cfs_rq))
4104 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004105
Paul Turneraff3e492012-10-04 13:18:30 +02004106 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004107
Paul Turner82958362012-10-04 13:18:31 +02004108 if (se) {
4109 update_entity_load_avg(se, 1);
4110 /*
4111 * We pivot on our runnable average having decayed to zero for
4112 * list removal. This generally implies that all our children
4113 * have also been removed (modulo rounding error or bandwidth
4114 * control); however, such cases are rare and we can fix these
4115 * at enqueue.
4116 *
4117 * TODO: fix up out-of-order children on enqueue.
4118 */
4119 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4120 list_del_leaf_cfs_rq(cfs_rq);
4121 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004122 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004123 update_rq_runnable_avg(rq, rq->nr_running);
4124 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004125}
4126
Paul Turner48a16752012-10-04 13:18:31 +02004127static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004128{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004129 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004130 struct cfs_rq *cfs_rq;
4131 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004132
Paul Turner48a16752012-10-04 13:18:31 +02004133 raw_spin_lock_irqsave(&rq->lock, flags);
4134 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004135 /*
4136 * Iterates the task_group tree in a bottom up fashion, see
4137 * list_add_leaf_cfs_rq() for details.
4138 */
Paul Turner64660c82011-07-21 09:43:36 -07004139 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004140 /*
4141 * Note: We may want to consider periodically releasing
4142 * rq->lock about these updates so that creating many task
4143 * groups does not result in continually extending hold time.
4144 */
4145 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004146 }
Paul Turner48a16752012-10-04 13:18:31 +02004147
4148 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004149}
4150
Peter Zijlstra9763b672011-07-13 13:09:25 +02004151/*
4152 * Compute the cpu's hierarchical load factor for each task group.
4153 * This needs to be done in a top-down fashion because the load of a child
4154 * group is a fraction of its parents load.
4155 */
4156static int tg_load_down(struct task_group *tg, void *data)
4157{
4158 unsigned long load;
4159 long cpu = (long)data;
4160
4161 if (!tg->parent) {
4162 load = cpu_rq(cpu)->load.weight;
4163 } else {
4164 load = tg->parent->cfs_rq[cpu]->h_load;
4165 load *= tg->se[cpu]->load.weight;
4166 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4167 }
4168
4169 tg->cfs_rq[cpu]->h_load = load;
4170
4171 return 0;
4172}
4173
4174static void update_h_load(long cpu)
4175{
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004176 struct rq *rq = cpu_rq(cpu);
4177 unsigned long now = jiffies;
4178
4179 if (rq->h_load_throttle == now)
4180 return;
4181
4182 rq->h_load_throttle = now;
4183
Peter Zijlstra367456c2012-02-20 21:49:09 +01004184 rcu_read_lock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004185 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
Peter Zijlstra367456c2012-02-20 21:49:09 +01004186 rcu_read_unlock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004187}
4188
Peter Zijlstra367456c2012-02-20 21:49:09 +01004189static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004190{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004191 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4192 unsigned long load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004193
Peter Zijlstra367456c2012-02-20 21:49:09 +01004194 load = p->se.load.weight;
4195 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004196
Peter Zijlstra367456c2012-02-20 21:49:09 +01004197 return load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004198}
4199#else
Paul Turner48a16752012-10-04 13:18:31 +02004200static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004201{
4202}
4203
Peter Zijlstra367456c2012-02-20 21:49:09 +01004204static inline void update_h_load(long cpu)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004205{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004206}
4207
4208static unsigned long task_h_load(struct task_struct *p)
4209{
4210 return p->se.load.weight;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004211}
4212#endif
4213
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004214/********** Helpers for find_busiest_group ************************/
4215/*
4216 * sd_lb_stats - Structure to store the statistics of a sched_domain
4217 * during load balancing.
4218 */
4219struct sd_lb_stats {
4220 struct sched_group *busiest; /* Busiest group in this sd */
4221 struct sched_group *this; /* Local group in this sd */
4222 unsigned long total_load; /* Total load of all groups in sd */
4223 unsigned long total_pwr; /* Total power of all groups in sd */
4224 unsigned long avg_load; /* Average load across all groups in sd */
4225
4226 /** Statistics of this group */
4227 unsigned long this_load;
4228 unsigned long this_load_per_task;
4229 unsigned long this_nr_running;
Nikhil Raofab47622010-10-15 13:12:29 -07004230 unsigned long this_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004231 unsigned int this_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004232
4233 /* Statistics of the busiest group */
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004234 unsigned int busiest_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004235 unsigned long max_load;
4236 unsigned long busiest_load_per_task;
4237 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004238 unsigned long busiest_group_capacity;
Nikhil Raofab47622010-10-15 13:12:29 -07004239 unsigned long busiest_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004240 unsigned int busiest_group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004241
4242 int group_imb; /* Is there imbalance in this sd */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004243};
4244
4245/*
4246 * sg_lb_stats - stats of a sched_group required for load_balancing
4247 */
4248struct sg_lb_stats {
4249 unsigned long avg_load; /*Avg load across the CPUs of the group */
4250 unsigned long group_load; /* Total load over the CPUs of the group */
4251 unsigned long sum_nr_running; /* Nr tasks running in the group */
4252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4253 unsigned long group_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004254 unsigned long idle_cpus;
4255 unsigned long group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004256 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004257 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004258};
4259
4260/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004261 * get_sd_load_idx - Obtain the load index for a given sched domain.
4262 * @sd: The sched_domain whose load_idx is to be obtained.
4263 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4264 */
4265static inline int get_sd_load_idx(struct sched_domain *sd,
4266 enum cpu_idle_type idle)
4267{
4268 int load_idx;
4269
4270 switch (idle) {
4271 case CPU_NOT_IDLE:
4272 load_idx = sd->busy_idx;
4273 break;
4274
4275 case CPU_NEWLY_IDLE:
4276 load_idx = sd->newidle_idx;
4277 break;
4278 default:
4279 load_idx = sd->idle_idx;
4280 break;
4281 }
4282
4283 return load_idx;
4284}
4285
Li Zefan15f803c2013-03-05 16:07:11 +08004286static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004287{
Nikhil Rao1399fa72011-05-18 10:09:39 -07004288 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004289}
4290
4291unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4292{
4293 return default_scale_freq_power(sd, cpu);
4294}
4295
Li Zefan15f803c2013-03-05 16:07:11 +08004296static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004297{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004298 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004299 unsigned long smt_gain = sd->smt_gain;
4300
4301 smt_gain /= weight;
4302
4303 return smt_gain;
4304}
4305
4306unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4307{
4308 return default_scale_smt_power(sd, cpu);
4309}
4310
Li Zefan15f803c2013-03-05 16:07:11 +08004311static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004312{
4313 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004314 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004315
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004316 /*
4317 * Since we're reading these variables without serialization make sure
4318 * we read them once before doing sanity checks on them.
4319 */
4320 age_stamp = ACCESS_ONCE(rq->age_stamp);
4321 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004322
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004323 total = sched_avg_period() + (rq->clock - age_stamp);
4324
4325 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004326 /* Ensures that power won't end up being negative */
4327 available = 0;
4328 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004329 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004330 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004331
Nikhil Rao1399fa72011-05-18 10:09:39 -07004332 if (unlikely((s64)total < SCHED_POWER_SCALE))
4333 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004334
Nikhil Rao1399fa72011-05-18 10:09:39 -07004335 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004336
4337 return div_u64(available, total);
4338}
4339
4340static void update_cpu_power(struct sched_domain *sd, int cpu)
4341{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004342 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07004343 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004344 struct sched_group *sdg = sd->groups;
4345
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004346 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4347 if (sched_feat(ARCH_POWER))
4348 power *= arch_scale_smt_power(sd, cpu);
4349 else
4350 power *= default_scale_smt_power(sd, cpu);
4351
Nikhil Rao1399fa72011-05-18 10:09:39 -07004352 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004353 }
4354
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004355 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004356
4357 if (sched_feat(ARCH_POWER))
4358 power *= arch_scale_freq_power(sd, cpu);
4359 else
4360 power *= default_scale_freq_power(sd, cpu);
4361
Nikhil Rao1399fa72011-05-18 10:09:39 -07004362 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004363
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004364 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004365 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004366
4367 if (!power)
4368 power = 1;
4369
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004370 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004371 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004372}
4373
Peter Zijlstra029632f2011-10-25 10:00:11 +02004374void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004375{
4376 struct sched_domain *child = sd->child;
4377 struct sched_group *group, *sdg = sd->groups;
4378 unsigned long power;
Vincent Guittot4ec44122011-12-12 20:21:08 +01004379 unsigned long interval;
4380
4381 interval = msecs_to_jiffies(sd->balance_interval);
4382 interval = clamp(interval, 1UL, max_load_balance_interval);
4383 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004384
4385 if (!child) {
4386 update_cpu_power(sd, cpu);
4387 return;
4388 }
4389
4390 power = 0;
4391
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004392 if (child->flags & SD_OVERLAP) {
4393 /*
4394 * SD_OVERLAP domains cannot assume that child groups
4395 * span the current group.
4396 */
4397
4398 for_each_cpu(cpu, sched_group_cpus(sdg))
4399 power += power_of(cpu);
4400 } else {
4401 /*
4402 * !SD_OVERLAP domains can assume that child groups
4403 * span the current group.
4404 */
4405
4406 group = child->groups;
4407 do {
4408 power += group->sgp->power;
4409 group = group->next;
4410 } while (group != child->groups);
4411 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004412
Peter Zijlstrac3decf02012-05-31 12:05:32 +02004413 sdg->sgp->power_orig = sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004414}
4415
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004416/*
4417 * Try and fix up capacity for tiny siblings, this is needed when
4418 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4419 * which on its own isn't powerful enough.
4420 *
4421 * See update_sd_pick_busiest() and check_asym_packing().
4422 */
4423static inline int
4424fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4425{
4426 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07004427 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004428 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02004429 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004430 return 0;
4431
4432 /*
4433 * If ~90% of the cpu_power is still there, we're good.
4434 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004435 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004436 return 1;
4437
4438 return 0;
4439}
4440
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004441/**
4442 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004443 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004444 * @group: sched_group whose statistics are to be updated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004445 * @load_idx: Load index of sched_domain of this_cpu for load calc.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004446 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004447 * @balance: Should we balance.
4448 * @sgs: variable to hold the statistics for this group.
4449 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004450static inline void update_sg_lb_stats(struct lb_env *env,
4451 struct sched_group *group, int load_idx,
Michael Wangb94031302012-07-12 16:10:13 +08004452 int local_group, int *balance, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004453{
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004454 unsigned long nr_running, max_nr_running, min_nr_running;
4455 unsigned long load, max_cpu_load, min_cpu_load;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004456 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004457 unsigned long avg_load_per_task = 0;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004458 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004459
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06004460 if (local_group)
Peter Zijlstrac1174872012-05-31 14:47:33 +02004461 balance_cpu = group_balance_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004462
4463 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004464 max_cpu_load = 0;
4465 min_cpu_load = ~0UL;
Nikhil Rao2582f0e2010-10-13 12:09:36 -07004466 max_nr_running = 0;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004467 min_nr_running = ~0UL;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004468
Michael Wangb94031302012-07-12 16:10:13 +08004469 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004470 struct rq *rq = cpu_rq(i);
4471
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004472 nr_running = rq->nr_running;
4473
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004474 /* Bias balancing toward cpus of our domain */
4475 if (local_group) {
Peter Zijlstrac1174872012-05-31 14:47:33 +02004476 if (idle_cpu(i) && !first_idle_cpu &&
4477 cpumask_test_cpu(i, sched_group_mask(group))) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004478 first_idle_cpu = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004479 balance_cpu = i;
4480 }
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004481
4482 load = target_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004483 } else {
4484 load = source_load(i, load_idx);
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004485 if (load > max_cpu_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004486 max_cpu_load = load;
4487 if (min_cpu_load > load)
4488 min_cpu_load = load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004489
4490 if (nr_running > max_nr_running)
4491 max_nr_running = nr_running;
4492 if (min_nr_running > nr_running)
4493 min_nr_running = nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004494 }
4495
4496 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004497 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004498 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004499 if (idle_cpu(i))
4500 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004501 }
4502
4503 /*
4504 * First idle cpu or the first cpu(busiest) in this sched group
4505 * is eligible for doing load balancing at this and above
4506 * domains. In the newly idle case, we will allow all the cpu's
4507 * to do the newly idle load balance.
4508 */
Vincent Guittot4ec44122011-12-12 20:21:08 +01004509 if (local_group) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004510 if (env->idle != CPU_NEWLY_IDLE) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004511 if (balance_cpu != env->dst_cpu) {
Vincent Guittot4ec44122011-12-12 20:21:08 +01004512 *balance = 0;
4513 return;
4514 }
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004515 update_group_power(env->sd, env->dst_cpu);
Vincent Guittot4ec44122011-12-12 20:21:08 +01004516 } else if (time_after_eq(jiffies, group->sgp->next_update))
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004517 update_group_power(env->sd, env->dst_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004518 }
4519
4520 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004521 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004522
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004523 /*
4524 * Consider the group unbalanced when the imbalance is larger
Peter Zijlstra866ab432011-02-21 18:56:47 +01004525 * than the average weight of a task.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004526 *
4527 * APZ: with cgroup the avg task weight can vary wildly and
4528 * might not be a suitable number - should we keep a
4529 * normalized nr_running number somewhere that negates
4530 * the hierarchy?
4531 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004532 if (sgs->sum_nr_running)
4533 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004534
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004535 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4536 (max_nr_running - min_nr_running) > 1)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004537 sgs->group_imb = 1;
4538
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004539 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
Nikhil Rao1399fa72011-05-18 10:09:39 -07004540 SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004541 if (!sgs->group_capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004542 sgs->group_capacity = fix_small_capacity(env->sd, group);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004543 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07004544
4545 if (sgs->group_capacity > sgs->sum_nr_running)
4546 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004547}
4548
4549/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10004550 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07004551 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004552 * @sds: sched_domain statistics
4553 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10004554 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10004555 *
4556 * Determine if @sg is a busier group than the previously selected
4557 * busiest group.
4558 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004559static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10004560 struct sd_lb_stats *sds,
4561 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004562 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004563{
4564 if (sgs->avg_load <= sds->max_load)
4565 return false;
4566
4567 if (sgs->sum_nr_running > sgs->group_capacity)
4568 return true;
4569
4570 if (sgs->group_imb)
4571 return true;
4572
4573 /*
4574 * ASYM_PACKING needs to move all the work to the lowest
4575 * numbered CPUs in the group, therefore mark all groups
4576 * higher than ourself as busy.
4577 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004578 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4579 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10004580 if (!sds->busiest)
4581 return true;
4582
4583 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4584 return true;
4585 }
4586
4587 return false;
4588}
4589
4590/**
Hui Kang461819a2011-10-11 23:00:59 -04004591 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004592 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004593 * @balance: Should we balance.
4594 * @sds: variable to hold the statistics for this sched_domain.
4595 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004596static inline void update_sd_lb_stats(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08004597 int *balance, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004598{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004599 struct sched_domain *child = env->sd->child;
4600 struct sched_group *sg = env->sd->groups;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004601 struct sg_lb_stats sgs;
4602 int load_idx, prefer_sibling = 0;
4603
4604 if (child && child->flags & SD_PREFER_SIBLING)
4605 prefer_sibling = 1;
4606
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004607 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004608
4609 do {
4610 int local_group;
4611
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004612 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004613 memset(&sgs, 0, sizeof(sgs));
Michael Wangb94031302012-07-12 16:10:13 +08004614 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004615
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004616 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004617 return;
4618
4619 sds->total_load += sgs.group_load;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004620 sds->total_pwr += sg->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004621
4622 /*
4623 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10004624 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07004625 * and move all the excess tasks away. We lower the capacity
4626 * of a group only if the local group has the capacity to fit
4627 * these excess tasks, i.e. nr_running < group_capacity. The
4628 * extra check prevents the case where you always pull from the
4629 * heaviest group when it is already under-utilized (possible
4630 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004631 */
Nikhil Rao75dd3212010-10-15 13:12:30 -07004632 if (prefer_sibling && !local_group && sds->this_has_capacity)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004633 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4634
4635 if (local_group) {
4636 sds->this_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004637 sds->this = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004638 sds->this_nr_running = sgs.sum_nr_running;
4639 sds->this_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004640 sds->this_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004641 sds->this_idle_cpus = sgs.idle_cpus;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004642 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004643 sds->max_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004644 sds->busiest = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004645 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004646 sds->busiest_idle_cpus = sgs.idle_cpus;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004647 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004648 sds->busiest_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004649 sds->busiest_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004650 sds->busiest_group_weight = sgs.group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004651 sds->group_imb = sgs.group_imb;
4652 }
4653
Michael Neuling532cb4c2010-06-08 14:57:02 +10004654 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004655 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10004656}
4657
Michael Neuling532cb4c2010-06-08 14:57:02 +10004658/**
4659 * check_asym_packing - Check to see if the group is packed into the
4660 * sched doman.
4661 *
4662 * This is primarily intended to used at the sibling level. Some
4663 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4664 * case of POWER7, it can move to lower SMT modes only when higher
4665 * threads are idle. When in lower SMT modes, the threads will
4666 * perform better since they share less core resources. Hence when we
4667 * have idle threads, we want them to be the higher ones.
4668 *
4669 * This packing function is run on idle threads. It checks to see if
4670 * the busiest CPU in this domain (core in the P7 case) has a higher
4671 * CPU number than the packing function is being run on. Here we are
4672 * assuming lower CPU number will be equivalent to lower a SMT thread
4673 * number.
4674 *
Michael Neulingb6b12292010-06-10 12:06:21 +10004675 * Returns 1 when packing is required and a task should be moved to
4676 * this CPU. The amount of the imbalance is returned in *imbalance.
4677 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004678 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004679 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10004680 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004681static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004682{
4683 int busiest_cpu;
4684
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004685 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004686 return 0;
4687
4688 if (!sds->busiest)
4689 return 0;
4690
4691 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004692 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004693 return 0;
4694
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004695 env->imbalance = DIV_ROUND_CLOSEST(
4696 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4697
Michael Neuling532cb4c2010-06-08 14:57:02 +10004698 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004699}
4700
4701/**
4702 * fix_small_imbalance - Calculate the minor imbalance that exists
4703 * amongst the groups of a sched_domain, during
4704 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004705 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004706 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004707 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004708static inline
4709void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004710{
4711 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4712 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004713 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004714
4715 if (sds->this_nr_running) {
4716 sds->this_load_per_task /= sds->this_nr_running;
4717 if (sds->busiest_load_per_task >
4718 sds->this_load_per_task)
4719 imbn = 1;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004720 } else {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004721 sds->this_load_per_task =
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004722 cpu_avg_load_per_task(env->dst_cpu);
4723 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004724
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004725 scaled_busy_load_per_task = sds->busiest_load_per_task
Nikhil Rao1399fa72011-05-18 10:09:39 -07004726 * SCHED_POWER_SCALE;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004727 scaled_busy_load_per_task /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004728
4729 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4730 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004731 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004732 return;
4733 }
4734
4735 /*
4736 * OK, we don't have enough imbalance to justify moving tasks,
4737 * however we may be able to increase total CPU power used by
4738 * moving them.
4739 */
4740
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004741 pwr_now += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004742 min(sds->busiest_load_per_task, sds->max_load);
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004743 pwr_now += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004744 min(sds->this_load_per_task, sds->this_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004745 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004746
4747 /* Amount of load we'd subtract */
Nikhil Rao1399fa72011-05-18 10:09:39 -07004748 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004749 sds->busiest->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004750 if (sds->max_load > tmp)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004751 pwr_move += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004752 min(sds->busiest_load_per_task, sds->max_load - tmp);
4753
4754 /* Amount of load we'd add */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004755 if (sds->max_load * sds->busiest->sgp->power <
Nikhil Rao1399fa72011-05-18 10:09:39 -07004756 sds->busiest_load_per_task * SCHED_POWER_SCALE)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004757 tmp = (sds->max_load * sds->busiest->sgp->power) /
4758 sds->this->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004759 else
Nikhil Rao1399fa72011-05-18 10:09:39 -07004760 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004761 sds->this->sgp->power;
4762 pwr_move += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004763 min(sds->this_load_per_task, sds->this_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004764 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004765
4766 /* Move if we gain throughput */
4767 if (pwr_move > pwr_now)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004768 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004769}
4770
4771/**
4772 * calculate_imbalance - Calculate the amount of imbalance present within the
4773 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004774 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004775 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004776 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004777static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004778{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004779 unsigned long max_pull, load_above_capacity = ~0UL;
4780
4781 sds->busiest_load_per_task /= sds->busiest_nr_running;
4782 if (sds->group_imb) {
4783 sds->busiest_load_per_task =
4784 min(sds->busiest_load_per_task, sds->avg_load);
4785 }
4786
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004787 /*
4788 * In the presence of smp nice balancing, certain scenarios can have
4789 * max load less than avg load(as we skip the groups at or below
4790 * its cpu_power, while calculating max_load..)
4791 */
4792 if (sds->max_load < sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004793 env->imbalance = 0;
4794 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004795 }
4796
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004797 if (!sds->group_imb) {
4798 /*
4799 * Don't want to pull so many tasks that a group would go idle.
4800 */
4801 load_above_capacity = (sds->busiest_nr_running -
4802 sds->busiest_group_capacity);
4803
Nikhil Rao1399fa72011-05-18 10:09:39 -07004804 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004805
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004806 load_above_capacity /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004807 }
4808
4809 /*
4810 * We're trying to get all the cpus to the average_load, so we don't
4811 * want to push ourselves above the average load, nor do we wish to
4812 * reduce the max loaded cpu below the average load. At the same time,
4813 * we also don't want to reduce the group load below the group capacity
4814 * (so that we can implement power-savings policies etc). Thus we look
4815 * for the minimum possible imbalance.
4816 * Be careful of negative numbers as they'll appear as very large values
4817 * with unsigned longs.
4818 */
4819 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004820
4821 /* How much load to actually move to equalise the imbalance */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004822 env->imbalance = min(max_pull * sds->busiest->sgp->power,
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004823 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
Nikhil Rao1399fa72011-05-18 10:09:39 -07004824 / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004825
4826 /*
4827 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03004828 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004829 * a think about bumping its value to force at least one task to be
4830 * moved
4831 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004832 if (env->imbalance < sds->busiest_load_per_task)
4833 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004834
4835}
Nikhil Raofab47622010-10-15 13:12:29 -07004836
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004837/******* find_busiest_group() helpers end here *********************/
4838
4839/**
4840 * find_busiest_group - Returns the busiest group within the sched_domain
4841 * if there is an imbalance. If there isn't an imbalance, and
4842 * the user has opted for power-savings, it returns a group whose
4843 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4844 * such a group exists.
4845 *
4846 * Also calculates the amount of weighted load which should be moved
4847 * to restore balance.
4848 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004849 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004850 * @balance: Pointer to a variable indicating if this_cpu
4851 * is the appropriate cpu to perform load balancing at this_level.
4852 *
4853 * Returns: - the busiest group if imbalance exists.
4854 * - If no imbalance and user has opted for power-savings balance,
4855 * return the least loaded group whose CPUs can be
4856 * put to idle by rebalancing its tasks onto our group.
4857 */
4858static struct sched_group *
Michael Wangb94031302012-07-12 16:10:13 +08004859find_busiest_group(struct lb_env *env, int *balance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004860{
4861 struct sd_lb_stats sds;
4862
4863 memset(&sds, 0, sizeof(sds));
4864
4865 /*
4866 * Compute the various statistics relavent for load balancing at
4867 * this level.
4868 */
Michael Wangb94031302012-07-12 16:10:13 +08004869 update_sd_lb_stats(env, balance, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004870
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004871 /*
4872 * this_cpu is not the appropriate cpu to perform load balancing at
4873 * this level.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004874 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004875 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004876 goto ret;
4877
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004878 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4879 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004880 return sds.busiest;
4881
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004882 /* There is no busy sibling group to pull tasks from */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004883 if (!sds.busiest || sds.busiest_nr_running == 0)
4884 goto out_balanced;
4885
Nikhil Rao1399fa72011-05-18 10:09:39 -07004886 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07004887
Peter Zijlstra866ab432011-02-21 18:56:47 +01004888 /*
4889 * If the busiest group is imbalanced the below checks don't
4890 * work because they assumes all things are equal, which typically
4891 * isn't true due to cpus_allowed constraints and the like.
4892 */
4893 if (sds.group_imb)
4894 goto force_balance;
4895
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004896 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004897 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
Nikhil Raofab47622010-10-15 13:12:29 -07004898 !sds.busiest_has_capacity)
4899 goto force_balance;
4900
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004901 /*
4902 * If the local group is more busy than the selected busiest group
4903 * don't try and pull any tasks.
4904 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004905 if (sds.this_load >= sds.max_load)
4906 goto out_balanced;
4907
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004908 /*
4909 * Don't pull any tasks if this group is already above the domain
4910 * average load.
4911 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004912 if (sds.this_load >= sds.avg_load)
4913 goto out_balanced;
4914
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004915 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004916 /*
4917 * This cpu is idle. If the busiest group load doesn't
4918 * have more tasks than the number of available cpu's and
4919 * there is no imbalance between this and busiest group
4920 * wrt to idle cpu's, it is balanced.
4921 */
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004922 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004923 sds.busiest_nr_running <= sds.busiest_group_weight)
4924 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004925 } else {
4926 /*
4927 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4928 * imbalance_pct to be conservative.
4929 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004930 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004931 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004932 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004933
Nikhil Raofab47622010-10-15 13:12:29 -07004934force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004935 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004936 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004937 return sds.busiest;
4938
4939out_balanced:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004940ret:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004941 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004942 return NULL;
4943}
4944
4945/*
4946 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4947 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004948static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08004949 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004950{
4951 struct rq *busiest = NULL, *rq;
4952 unsigned long max_load = 0;
4953 int i;
4954
4955 for_each_cpu(i, sched_group_cpus(group)) {
4956 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004957 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4958 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004959 unsigned long wl;
4960
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004961 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004962 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004963
Michael Wangb94031302012-07-12 16:10:13 +08004964 if (!cpumask_test_cpu(i, env->cpus))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004965 continue;
4966
4967 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004968 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004969
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004970 /*
4971 * When comparing with imbalance, use weighted_cpuload()
4972 * which is not scaled with the cpu power.
4973 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004974 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004975 continue;
4976
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004977 /*
4978 * For the load comparisons with the other cpu's, consider
4979 * the weighted_cpuload() scaled with the cpu power, so that
4980 * the load can be moved away from the cpu that is potentially
4981 * running at a lower capacity.
4982 */
Nikhil Rao1399fa72011-05-18 10:09:39 -07004983 wl = (wl * SCHED_POWER_SCALE) / power;
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004984
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004985 if (wl > max_load) {
4986 max_load = wl;
4987 busiest = rq;
4988 }
4989 }
4990
4991 return busiest;
4992}
4993
4994/*
4995 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4996 * so long as it is large enough.
4997 */
4998#define MAX_PINNED_INTERVAL 512
4999
5000/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005001DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005002
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005003static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005004{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005005 struct sched_domain *sd = env->sd;
5006
5007 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005008
5009 /*
5010 * ASYM_PACKING needs to force migrate tasks from busy but
5011 * higher numbered CPUs in order to pack all tasks in the
5012 * lowest numbered CPUs.
5013 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005014 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005015 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005016 }
5017
5018 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5019}
5020
Tejun Heo969c7922010-05-06 18:49:21 +02005021static int active_load_balance_cpu_stop(void *data);
5022
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005023/*
5024 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5025 * tasks if there is an imbalance.
5026 */
5027static int load_balance(int this_cpu, struct rq *this_rq,
5028 struct sched_domain *sd, enum cpu_idle_type idle,
5029 int *balance)
5030{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305031 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005032 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005033 struct rq *busiest;
5034 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005035 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005036
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005037 struct lb_env env = {
5038 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005039 .dst_cpu = this_cpu,
5040 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305041 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005042 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005043 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08005044 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005045 };
5046
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005047 /*
5048 * For NEWLY_IDLE load_balancing, we don't need to consider
5049 * other cpus in our group
5050 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005051 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005052 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005053
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005054 cpumask_copy(cpus, cpu_active_mask);
5055
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005056 schedstat_inc(sd, lb_count[idle]);
5057
5058redo:
Michael Wangb94031302012-07-12 16:10:13 +08005059 group = find_busiest_group(&env, balance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005060
5061 if (*balance == 0)
5062 goto out_balanced;
5063
5064 if (!group) {
5065 schedstat_inc(sd, lb_nobusyg[idle]);
5066 goto out_balanced;
5067 }
5068
Michael Wangb94031302012-07-12 16:10:13 +08005069 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005070 if (!busiest) {
5071 schedstat_inc(sd, lb_nobusyq[idle]);
5072 goto out_balanced;
5073 }
5074
Michael Wang78feefc2012-08-06 16:41:59 +08005075 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005076
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005077 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005078
5079 ld_moved = 0;
5080 if (busiest->nr_running > 1) {
5081 /*
5082 * Attempt to move tasks. If find_busiest_group has found
5083 * an imbalance but busiest->nr_running <= 1, the group is
5084 * still unbalanced. ld_moved simply stays zero, so it is
5085 * correctly treated as an imbalance.
5086 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005087 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005088 env.src_cpu = busiest->cpu;
5089 env.src_rq = busiest;
5090 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005091
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005092 update_h_load(env.src_cpu);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005093more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005094 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005095 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305096
5097 /*
5098 * cur_ld_moved - load moved in current iteration
5099 * ld_moved - cumulative load moved across iterations
5100 */
5101 cur_ld_moved = move_tasks(&env);
5102 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005103 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005104 local_irq_restore(flags);
5105
5106 /*
5107 * some other cpu did the load balance for us.
5108 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305109 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5110 resched_cpu(env.dst_cpu);
5111
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005112 if (env.flags & LBF_NEED_BREAK) {
5113 env.flags &= ~LBF_NEED_BREAK;
5114 goto more_balance;
5115 }
5116
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305117 /*
5118 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5119 * us and move them to an alternate dst_cpu in our sched_group
5120 * where they can run. The upper limit on how many times we
5121 * iterate on same src_cpu is dependent on number of cpus in our
5122 * sched_group.
5123 *
5124 * This changes load balance semantics a bit on who can move
5125 * load to a given_cpu. In addition to the given_cpu itself
5126 * (or a ilb_cpu acting on its behalf where given_cpu is
5127 * nohz-idle), we now have balance_cpu in a position to move
5128 * load to given_cpu. In rare situations, this may cause
5129 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5130 * _independently_ and at _same_ time to move some load to
5131 * given_cpu) causing exceess load to be moved to given_cpu.
5132 * This however should not happen so much in practice and
5133 * moreover subsequent load balance cycles should correct the
5134 * excess load moved.
5135 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005136 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305137
Michael Wang78feefc2012-08-06 16:41:59 +08005138 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305139 env.dst_cpu = env.new_dst_cpu;
5140 env.flags &= ~LBF_SOME_PINNED;
5141 env.loop = 0;
5142 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005143
5144 /* Prevent to re-select dst_cpu via env's cpus */
5145 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5146
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305147 /*
5148 * Go back to "more_balance" rather than "redo" since we
5149 * need to continue with same src_cpu.
5150 */
5151 goto more_balance;
5152 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005153
5154 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005155 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005156 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305157 if (!cpumask_empty(cpus)) {
5158 env.loop = 0;
5159 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005160 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305161 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005162 goto out_balanced;
5163 }
5164 }
5165
5166 if (!ld_moved) {
5167 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005168 /*
5169 * Increment the failure counter only on periodic balance.
5170 * We do not want newidle balance, which can be very
5171 * frequent, pollute the failure counter causing
5172 * excessive cache_hot migrations and active balances.
5173 */
5174 if (idle != CPU_NEWLY_IDLE)
5175 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005176
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005177 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005178 raw_spin_lock_irqsave(&busiest->lock, flags);
5179
Tejun Heo969c7922010-05-06 18:49:21 +02005180 /* don't kick the active_load_balance_cpu_stop,
5181 * if the curr task on busiest cpu can't be
5182 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005183 */
5184 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005185 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005186 raw_spin_unlock_irqrestore(&busiest->lock,
5187 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005188 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005189 goto out_one_pinned;
5190 }
5191
Tejun Heo969c7922010-05-06 18:49:21 +02005192 /*
5193 * ->active_balance synchronizes accesses to
5194 * ->active_balance_work. Once set, it's cleared
5195 * only after active load balance is finished.
5196 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005197 if (!busiest->active_balance) {
5198 busiest->active_balance = 1;
5199 busiest->push_cpu = this_cpu;
5200 active_balance = 1;
5201 }
5202 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005203
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005204 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005205 stop_one_cpu_nowait(cpu_of(busiest),
5206 active_load_balance_cpu_stop, busiest,
5207 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005208 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005209
5210 /*
5211 * We've kicked active balancing, reset the failure
5212 * counter.
5213 */
5214 sd->nr_balance_failed = sd->cache_nice_tries+1;
5215 }
5216 } else
5217 sd->nr_balance_failed = 0;
5218
5219 if (likely(!active_balance)) {
5220 /* We were unbalanced, so reset the balancing interval */
5221 sd->balance_interval = sd->min_interval;
5222 } else {
5223 /*
5224 * If we've begun active balancing, start to back off. This
5225 * case may not be covered by the all_pinned logic if there
5226 * is only 1 task on the busy runqueue (because we don't call
5227 * move_tasks).
5228 */
5229 if (sd->balance_interval < sd->max_interval)
5230 sd->balance_interval *= 2;
5231 }
5232
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005233 goto out;
5234
5235out_balanced:
5236 schedstat_inc(sd, lb_balanced[idle]);
5237
5238 sd->nr_balance_failed = 0;
5239
5240out_one_pinned:
5241 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005242 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02005243 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005244 (sd->balance_interval < sd->max_interval))
5245 sd->balance_interval *= 2;
5246
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08005247 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005248out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005249 return ld_moved;
5250}
5251
5252/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005253 * idle_balance is called by schedule() if this_cpu is about to become
5254 * idle. Attempts to pull tasks from other CPUs.
5255 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005256void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005257{
5258 struct sched_domain *sd;
5259 int pulled_task = 0;
5260 unsigned long next_balance = jiffies + HZ;
5261
5262 this_rq->idle_stamp = this_rq->clock;
5263
5264 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5265 return;
5266
Peter Zijlstraf492e122009-12-23 15:29:42 +01005267 /*
5268 * Drop the rq->lock, but keep IRQ/preempt disabled.
5269 */
5270 raw_spin_unlock(&this_rq->lock);
5271
Paul Turner48a16752012-10-04 13:18:31 +02005272 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02005273 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005274 for_each_domain(this_cpu, sd) {
5275 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01005276 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005277
5278 if (!(sd->flags & SD_LOAD_BALANCE))
5279 continue;
5280
Peter Zijlstraf492e122009-12-23 15:29:42 +01005281 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005282 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01005283 pulled_task = load_balance(this_cpu, this_rq,
5284 sd, CPU_NEWLY_IDLE, &balance);
5285 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005286
5287 interval = msecs_to_jiffies(sd->balance_interval);
5288 if (time_after(next_balance, sd->last_balance + interval))
5289 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005290 if (pulled_task) {
5291 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005292 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005293 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005294 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005295 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01005296
5297 raw_spin_lock(&this_rq->lock);
5298
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005299 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5300 /*
5301 * We are going idle. next_balance may be set based on
5302 * a busy processor. So reset next_balance.
5303 */
5304 this_rq->next_balance = next_balance;
5305 }
5306}
5307
5308/*
Tejun Heo969c7922010-05-06 18:49:21 +02005309 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5310 * running tasks off the busiest CPU onto idle CPUs. It requires at
5311 * least 1 task to be running on each physical CPU where possible, and
5312 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005313 */
Tejun Heo969c7922010-05-06 18:49:21 +02005314static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005315{
Tejun Heo969c7922010-05-06 18:49:21 +02005316 struct rq *busiest_rq = data;
5317 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005318 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02005319 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005320 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02005321
5322 raw_spin_lock_irq(&busiest_rq->lock);
5323
5324 /* make sure the requested cpu hasn't gone down in the meantime */
5325 if (unlikely(busiest_cpu != smp_processor_id() ||
5326 !busiest_rq->active_balance))
5327 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328
5329 /* Is there any task to move? */
5330 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02005331 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005332
5333 /*
5334 * This condition is "impossible", if it occurs
5335 * we need to fix it. Originally reported by
5336 * Bjorn Helgaas on a 128-cpu setup.
5337 */
5338 BUG_ON(busiest_rq == target_rq);
5339
5340 /* move a task from busiest_rq to target_rq */
5341 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005342
5343 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02005344 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005345 for_each_domain(target_cpu, sd) {
5346 if ((sd->flags & SD_LOAD_BALANCE) &&
5347 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5348 break;
5349 }
5350
5351 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005352 struct lb_env env = {
5353 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005354 .dst_cpu = target_cpu,
5355 .dst_rq = target_rq,
5356 .src_cpu = busiest_rq->cpu,
5357 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005358 .idle = CPU_IDLE,
5359 };
5360
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005361 schedstat_inc(sd, alb_count);
5362
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005363 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005364 schedstat_inc(sd, alb_pushed);
5365 else
5366 schedstat_inc(sd, alb_failed);
5367 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005368 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005369 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02005370out_unlock:
5371 busiest_rq->active_balance = 0;
5372 raw_spin_unlock_irq(&busiest_rq->lock);
5373 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005374}
5375
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005376#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005377/*
5378 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005379 * - When one of the busy CPUs notice that there may be an idle rebalancing
5380 * needed, they will kick the idle load balancer, which then does idle
5381 * load balancing for all the idle CPUs.
5382 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005383static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005384 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005385 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005386 unsigned long next_balance; /* in jiffy units */
5387} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005388
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01005389static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005390{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005391 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005392
Suresh Siddha786d6dc2011-12-01 17:07:35 -08005393 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5394 return ilb;
5395
5396 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005397}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005398
5399/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005400 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5401 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5402 * CPU (if there is one).
5403 */
5404static void nohz_balancer_kick(int cpu)
5405{
5406 int ilb_cpu;
5407
5408 nohz.next_balance++;
5409
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005410 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005411
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005412 if (ilb_cpu >= nr_cpu_ids)
5413 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005414
Suresh Siddhacd490c52011-12-06 11:26:34 -08005415 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08005416 return;
5417 /*
5418 * Use smp_send_reschedule() instead of resched_cpu().
5419 * This way we generate a sched IPI on the target cpu which
5420 * is idle. And the softirq performing nohz idle load balance
5421 * will be run before returning from the IPI.
5422 */
5423 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005424 return;
5425}
5426
Alex Shic1cc0172012-09-10 15:10:58 +08005427static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08005428{
5429 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5430 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5431 atomic_dec(&nohz.nr_cpus);
5432 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5433 }
5434}
5435
Suresh Siddha69e1e812011-12-01 17:07:33 -08005436static inline void set_cpu_sd_state_busy(void)
5437{
5438 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08005439
Suresh Siddha69e1e812011-12-01 17:07:33 -08005440 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05005441 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005442
5443 if (!sd || !sd->nohz_idle)
5444 goto unlock;
5445 sd->nohz_idle = 0;
5446
5447 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005448 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005449unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005450 rcu_read_unlock();
5451}
5452
5453void set_cpu_sd_state_idle(void)
5454{
5455 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08005456
Suresh Siddha69e1e812011-12-01 17:07:33 -08005457 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05005458 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005459
5460 if (!sd || sd->nohz_idle)
5461 goto unlock;
5462 sd->nohz_idle = 1;
5463
5464 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005465 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005466unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005467 rcu_read_unlock();
5468}
5469
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005470/*
Alex Shic1cc0172012-09-10 15:10:58 +08005471 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005472 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005473 */
Alex Shic1cc0172012-09-10 15:10:58 +08005474void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005475{
Suresh Siddha71325962012-01-19 18:28:57 -08005476 /*
5477 * If this cpu is going down, then nothing needs to be done.
5478 */
5479 if (!cpu_active(cpu))
5480 return;
5481
Alex Shic1cc0172012-09-10 15:10:58 +08005482 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5483 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005484
Alex Shic1cc0172012-09-10 15:10:58 +08005485 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5486 atomic_inc(&nohz.nr_cpus);
5487 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005488}
Suresh Siddha71325962012-01-19 18:28:57 -08005489
5490static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5491 unsigned long action, void *hcpu)
5492{
5493 switch (action & ~CPU_TASKS_FROZEN) {
5494 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08005495 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08005496 return NOTIFY_OK;
5497 default:
5498 return NOTIFY_DONE;
5499 }
5500}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005501#endif
5502
5503static DEFINE_SPINLOCK(balancing);
5504
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005505/*
5506 * Scale the max load_balance interval with the number of CPUs in the system.
5507 * This trades load-balance latency on larger machines for less cross talk.
5508 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005509void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005510{
5511 max_load_balance_interval = HZ*num_online_cpus()/10;
5512}
5513
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005514/*
5515 * It checks each scheduling domain to see if it is due to be balanced,
5516 * and initiates a balancing operation if so.
5517 *
Libinb9b08532013-04-01 19:14:01 +08005518 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005519 */
5520static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5521{
5522 int balance = 1;
5523 struct rq *rq = cpu_rq(cpu);
5524 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005525 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005526 /* Earliest time when we have to do rebalance again */
5527 unsigned long next_balance = jiffies + 60*HZ;
5528 int update_next_balance = 0;
5529 int need_serialize;
5530
Paul Turner48a16752012-10-04 13:18:31 +02005531 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08005532
Peter Zijlstradce840a2011-04-07 14:09:50 +02005533 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005534 for_each_domain(cpu, sd) {
5535 if (!(sd->flags & SD_LOAD_BALANCE))
5536 continue;
5537
5538 interval = sd->balance_interval;
5539 if (idle != CPU_IDLE)
5540 interval *= sd->busy_factor;
5541
5542 /* scale ms to jiffies */
5543 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005544 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005545
5546 need_serialize = sd->flags & SD_SERIALIZE;
5547
5548 if (need_serialize) {
5549 if (!spin_trylock(&balancing))
5550 goto out;
5551 }
5552
5553 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5554 if (load_balance(cpu, rq, sd, idle, &balance)) {
5555 /*
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005556 * The LBF_SOME_PINNED logic could have changed
5557 * env->dst_cpu, so we can't know our idle
5558 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005559 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005560 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005561 }
5562 sd->last_balance = jiffies;
5563 }
5564 if (need_serialize)
5565 spin_unlock(&balancing);
5566out:
5567 if (time_after(next_balance, sd->last_balance + interval)) {
5568 next_balance = sd->last_balance + interval;
5569 update_next_balance = 1;
5570 }
5571
5572 /*
5573 * Stop the load balance at this level. There is another
5574 * CPU in our sched group which is doing load balancing more
5575 * actively.
5576 */
5577 if (!balance)
5578 break;
5579 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005580 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005581
5582 /*
5583 * next_balance will be updated only when there is a need.
5584 * When the cpu is attached to null domain for ex, it will not be
5585 * updated.
5586 */
5587 if (likely(update_next_balance))
5588 rq->next_balance = next_balance;
5589}
5590
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005591#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005592/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005593 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005594 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5595 */
5596static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5597{
5598 struct rq *this_rq = cpu_rq(this_cpu);
5599 struct rq *rq;
5600 int balance_cpu;
5601
Suresh Siddha1c792db2011-12-01 17:07:32 -08005602 if (idle != CPU_IDLE ||
5603 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5604 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005605
5606 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08005607 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005608 continue;
5609
5610 /*
5611 * If this cpu gets work to do, stop the load balancing
5612 * work being done for other cpus. Next load
5613 * balancing owner will pick it up.
5614 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08005615 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005616 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005617
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02005618 rq = cpu_rq(balance_cpu);
5619
5620 raw_spin_lock_irq(&rq->lock);
5621 update_rq_clock(rq);
5622 update_idle_cpu_load(rq);
5623 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005624
5625 rebalance_domains(balance_cpu, CPU_IDLE);
5626
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005627 if (time_after(this_rq->next_balance, rq->next_balance))
5628 this_rq->next_balance = rq->next_balance;
5629 }
5630 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005631end:
5632 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005633}
5634
5635/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005636 * Current heuristic for kicking the idle load balancer in the presence
5637 * of an idle cpu is the system.
5638 * - This rq has more than one task.
5639 * - At any scheduler domain level, this cpu's scheduler group has multiple
5640 * busy cpu's exceeding the group's power.
5641 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5642 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005643 */
5644static inline int nohz_kick_needed(struct rq *rq, int cpu)
5645{
5646 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005647 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005648
Suresh Siddha1c792db2011-12-01 17:07:32 -08005649 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005650 return 0;
5651
Suresh Siddha1c792db2011-12-01 17:07:32 -08005652 /*
5653 * We may be recently in ticked or tickless idle mode. At the first
5654 * busy tick after returning from idle, we will update the busy stats.
5655 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08005656 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08005657 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005658
5659 /*
5660 * None are in tickless mode and hence no need for NOHZ idle load
5661 * balancing.
5662 */
5663 if (likely(!atomic_read(&nohz.nr_cpus)))
5664 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005665
5666 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005667 return 0;
5668
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005669 if (rq->nr_running >= 2)
5670 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005671
Peter Zijlstra067491b2011-12-07 14:32:08 +01005672 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005673 for_each_domain(cpu, sd) {
5674 struct sched_group *sg = sd->groups;
5675 struct sched_group_power *sgp = sg->sgp;
5676 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005677
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005678 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01005679 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005680
5681 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5682 && (cpumask_first_and(nohz.idle_cpus_mask,
5683 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01005684 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005685
5686 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5687 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005688 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01005689 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005690 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01005691
5692need_kick_unlock:
5693 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005694need_kick:
5695 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005696}
5697#else
5698static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5699#endif
5700
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005701/*
5702 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005703 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704 */
5705static void run_rebalance_domains(struct softirq_action *h)
5706{
5707 int this_cpu = smp_processor_id();
5708 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07005709 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005710 CPU_IDLE : CPU_NOT_IDLE;
5711
5712 rebalance_domains(this_cpu, idle);
5713
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005714 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005715 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005716 * balancing on behalf of the other idle cpus whose ticks are
5717 * stopped.
5718 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005719 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720}
5721
5722static inline int on_null_domain(int cpu)
5723{
Paul E. McKenney90a65012010-02-28 08:32:18 -08005724 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005725}
5726
5727/*
5728 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005729 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005730void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005731{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005732 /* Don't need to rebalance while attached to NULL domain */
5733 if (time_after_eq(jiffies, rq->next_balance) &&
5734 likely(!on_null_domain(cpu)))
5735 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005736#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08005737 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005738 nohz_balancer_kick(cpu);
5739#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005740}
5741
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005742static void rq_online_fair(struct rq *rq)
5743{
5744 update_sysctl();
5745}
5746
5747static void rq_offline_fair(struct rq *rq)
5748{
5749 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07005750
5751 /* Ensure any throttled groups are reachable by pick_next_task */
5752 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005753}
5754
Dhaval Giani55e12e52008-06-24 23:39:43 +05305755#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02005756
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005757/*
5758 * scheduler tick hitting a task of our scheduling class:
5759 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005760static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005761{
5762 struct cfs_rq *cfs_rq;
5763 struct sched_entity *se = &curr->se;
5764
5765 for_each_sched_entity(se) {
5766 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005767 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005768 }
Ben Segall18bf2802012-10-04 12:51:20 +02005769
Peter Zijlstracbee9f82012-10-25 14:16:43 +02005770 if (sched_feat_numa(NUMA))
5771 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08005772
Ben Segall18bf2802012-10-04 12:51:20 +02005773 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005774}
5775
5776/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005777 * called on fork with the child task as argument from the parent's context
5778 * - child not yet on the tasklist
5779 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005780 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005781static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005782{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005783 struct cfs_rq *cfs_rq;
5784 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02005785 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005786 struct rq *rq = this_rq();
5787 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005788
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005789 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005790
Peter Zijlstra861d0342010-08-19 13:31:43 +02005791 update_rq_clock(rq);
5792
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005793 cfs_rq = task_cfs_rq(current);
5794 curr = cfs_rq->curr;
5795
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005796 if (unlikely(task_cpu(p) != this_cpu)) {
5797 rcu_read_lock();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005798 __set_task_cpu(p, this_cpu);
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005799 rcu_read_unlock();
5800 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005801
Ting Yang7109c4422007-08-28 12:53:24 +02005802 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005803
Mike Galbraithb5d9d732009-09-08 11:12:28 +02005804 if (curr)
5805 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02005806 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005807
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005808 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02005809 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02005810 * Upon rescheduling, sched_class::put_prev_task() will place
5811 * 'current' within the tree based on its new key value.
5812 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005813 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05305814 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005815 }
5816
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005817 se->vruntime -= cfs_rq->min_vruntime;
5818
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005819 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005820}
5821
Steven Rostedtcb469842008-01-25 21:08:22 +01005822/*
5823 * Priority of the task has changed. Check to see if we preempt
5824 * the current task.
5825 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005826static void
5827prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01005828{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005829 if (!p->se.on_rq)
5830 return;
5831
Steven Rostedtcb469842008-01-25 21:08:22 +01005832 /*
5833 * Reschedule if we are currently running on this runqueue and
5834 * our priority decreased, or if we are not currently running on
5835 * this runqueue and our priority is higher than the current's
5836 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005837 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01005838 if (p->prio > oldprio)
5839 resched_task(rq->curr);
5840 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005841 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005842}
5843
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005844static void switched_from_fair(struct rq *rq, struct task_struct *p)
5845{
5846 struct sched_entity *se = &p->se;
5847 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5848
5849 /*
5850 * Ensure the task's vruntime is normalized, so that when its
5851 * switched back to the fair class the enqueue_entity(.flags=0) will
5852 * do the right thing.
5853 *
5854 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5855 * have normalized the vruntime, if it was !on_rq, then only when
5856 * the task is sleeping will it still have non-normalized vruntime.
5857 */
5858 if (!se->on_rq && p->state != TASK_RUNNING) {
5859 /*
5860 * Fix up our vruntime so that the current sleep doesn't
5861 * cause 'unlimited' sleep bonus.
5862 */
5863 place_entity(cfs_rq, se, 0);
5864 se->vruntime -= cfs_rq->min_vruntime;
5865 }
Paul Turner9ee474f2012-10-04 13:18:30 +02005866
5867#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5868 /*
5869 * Remove our load from contribution when we leave sched_fair
5870 * and ensure we don't carry in an old decay_count if we
5871 * switch back.
5872 */
5873 if (p->se.avg.decay_count) {
5874 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5875 __synchronize_entity_decay(&p->se);
5876 subtract_blocked_load_contrib(cfs_rq,
5877 p->se.avg.load_avg_contrib);
5878 }
5879#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005880}
5881
Steven Rostedtcb469842008-01-25 21:08:22 +01005882/*
5883 * We switched to the sched_fair class.
5884 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005885static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005886{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005887 if (!p->se.on_rq)
5888 return;
5889
Steven Rostedtcb469842008-01-25 21:08:22 +01005890 /*
5891 * We were most likely switched from sched_rt, so
5892 * kick off the schedule if running, otherwise just see
5893 * if we can still preempt the current task.
5894 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005895 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005896 resched_task(rq->curr);
5897 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005898 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005899}
5900
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005901/* Account for a task changing its policy or group.
5902 *
5903 * This routine is mostly called to set cfs_rq->curr field when a task
5904 * migrates between groups/classes.
5905 */
5906static void set_curr_task_fair(struct rq *rq)
5907{
5908 struct sched_entity *se = &rq->curr->se;
5909
Paul Turnerec12cb72011-07-21 09:43:30 -07005910 for_each_sched_entity(se) {
5911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5912
5913 set_next_entity(cfs_rq, se);
5914 /* ensure bandwidth has been allocated on our new cfs_rq */
5915 account_cfs_rq_runtime(cfs_rq, 0);
5916 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005917}
5918
Peter Zijlstra029632f2011-10-25 10:00:11 +02005919void init_cfs_rq(struct cfs_rq *cfs_rq)
5920{
5921 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02005922 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5923#ifndef CONFIG_64BIT
5924 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5925#endif
Paul Turner9ee474f2012-10-04 13:18:30 +02005926#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5927 atomic64_set(&cfs_rq->decay_counter, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02005928 atomic64_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02005929#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02005930}
5931
Peter Zijlstra810b3812008-02-29 15:21:01 -05005932#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005933static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05005934{
Paul Turneraff3e492012-10-04 13:18:30 +02005935 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005936 /*
5937 * If the task was not on the rq at the time of this cgroup movement
5938 * it must have been asleep, sleeping tasks keep their ->vruntime
5939 * absolute on their old rq until wakeup (needed for the fair sleeper
5940 * bonus in place_entity()).
5941 *
5942 * If it was on the rq, we've just 'preempted' it, which does convert
5943 * ->vruntime to a relative base.
5944 *
5945 * Make sure both cases convert their relative position when migrating
5946 * to another cgroup's rq. This does somewhat interfere with the
5947 * fair sleeper stuff for the first placement, but who cares.
5948 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005949 /*
5950 * When !on_rq, vruntime of the task has usually NOT been normalized.
5951 * But there are some cases where it has already been normalized:
5952 *
5953 * - Moving a forked child which is waiting for being woken up by
5954 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005955 * - Moving a task which has been woken up by try_to_wake_up() and
5956 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005957 *
5958 * To prevent boost or penalty in the new cfs_rq caused by delta
5959 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5960 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005961 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005962 on_rq = 1;
5963
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005964 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005965 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5966 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02005967 if (!on_rq) {
5968 cfs_rq = cfs_rq_of(&p->se);
5969 p->se.vruntime += cfs_rq->min_vruntime;
5970#ifdef CONFIG_SMP
5971 /*
5972 * migrate_task_rq_fair() will have removed our previous
5973 * contribution, but we must synchronize for ongoing future
5974 * decay.
5975 */
5976 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5977 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5978#endif
5979 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05005980}
Peter Zijlstra029632f2011-10-25 10:00:11 +02005981
5982void free_fair_sched_group(struct task_group *tg)
5983{
5984 int i;
5985
5986 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5987
5988 for_each_possible_cpu(i) {
5989 if (tg->cfs_rq)
5990 kfree(tg->cfs_rq[i]);
5991 if (tg->se)
5992 kfree(tg->se[i]);
5993 }
5994
5995 kfree(tg->cfs_rq);
5996 kfree(tg->se);
5997}
5998
5999int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6000{
6001 struct cfs_rq *cfs_rq;
6002 struct sched_entity *se;
6003 int i;
6004
6005 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6006 if (!tg->cfs_rq)
6007 goto err;
6008 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6009 if (!tg->se)
6010 goto err;
6011
6012 tg->shares = NICE_0_LOAD;
6013
6014 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6015
6016 for_each_possible_cpu(i) {
6017 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6018 GFP_KERNEL, cpu_to_node(i));
6019 if (!cfs_rq)
6020 goto err;
6021
6022 se = kzalloc_node(sizeof(struct sched_entity),
6023 GFP_KERNEL, cpu_to_node(i));
6024 if (!se)
6025 goto err_free_rq;
6026
6027 init_cfs_rq(cfs_rq);
6028 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6029 }
6030
6031 return 1;
6032
6033err_free_rq:
6034 kfree(cfs_rq);
6035err:
6036 return 0;
6037}
6038
6039void unregister_fair_sched_group(struct task_group *tg, int cpu)
6040{
6041 struct rq *rq = cpu_rq(cpu);
6042 unsigned long flags;
6043
6044 /*
6045 * Only empty task groups can be destroyed; so we can speculatively
6046 * check on_list without danger of it being re-added.
6047 */
6048 if (!tg->cfs_rq[cpu]->on_list)
6049 return;
6050
6051 raw_spin_lock_irqsave(&rq->lock, flags);
6052 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6053 raw_spin_unlock_irqrestore(&rq->lock, flags);
6054}
6055
6056void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6057 struct sched_entity *se, int cpu,
6058 struct sched_entity *parent)
6059{
6060 struct rq *rq = cpu_rq(cpu);
6061
6062 cfs_rq->tg = tg;
6063 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006064 init_cfs_rq_runtime(cfs_rq);
6065
6066 tg->cfs_rq[cpu] = cfs_rq;
6067 tg->se[cpu] = se;
6068
6069 /* se could be NULL for root_task_group */
6070 if (!se)
6071 return;
6072
6073 if (!parent)
6074 se->cfs_rq = &rq->cfs;
6075 else
6076 se->cfs_rq = parent->my_q;
6077
6078 se->my_q = cfs_rq;
6079 update_load_set(&se->load, 0);
6080 se->parent = parent;
6081}
6082
6083static DEFINE_MUTEX(shares_mutex);
6084
6085int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6086{
6087 int i;
6088 unsigned long flags;
6089
6090 /*
6091 * We can't change the weight of the root cgroup.
6092 */
6093 if (!tg->se[0])
6094 return -EINVAL;
6095
6096 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6097
6098 mutex_lock(&shares_mutex);
6099 if (tg->shares == shares)
6100 goto done;
6101
6102 tg->shares = shares;
6103 for_each_possible_cpu(i) {
6104 struct rq *rq = cpu_rq(i);
6105 struct sched_entity *se;
6106
6107 se = tg->se[i];
6108 /* Propagate contribution to hierarchy */
6109 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02006110
6111 /* Possible calls to update_curr() need rq clock */
6112 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006113 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006114 update_cfs_shares(group_cfs_rq(se));
6115 raw_spin_unlock_irqrestore(&rq->lock, flags);
6116 }
6117
6118done:
6119 mutex_unlock(&shares_mutex);
6120 return 0;
6121}
6122#else /* CONFIG_FAIR_GROUP_SCHED */
6123
6124void free_fair_sched_group(struct task_group *tg) { }
6125
6126int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6127{
6128 return 1;
6129}
6130
6131void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6132
6133#endif /* CONFIG_FAIR_GROUP_SCHED */
6134
Peter Zijlstra810b3812008-02-29 15:21:01 -05006135
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006136static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006137{
6138 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006139 unsigned int rr_interval = 0;
6140
6141 /*
6142 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6143 * idle runqueue:
6144 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006145 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006146 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006147
6148 return rr_interval;
6149}
6150
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006151/*
6152 * All the scheduling class methods:
6153 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006154const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006155 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006156 .enqueue_task = enqueue_task_fair,
6157 .dequeue_task = dequeue_task_fair,
6158 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006159 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006160
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006161 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006162
6163 .pick_next_task = pick_next_task_fair,
6164 .put_prev_task = put_prev_task_fair,
6165
Peter Williams681f3e62007-10-24 18:23:51 +02006166#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08006167 .select_task_rq = select_task_rq_fair,
Paul Turnerf4e26b12012-10-04 13:18:32 +02006168#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner0a74bef2012-10-04 13:18:30 +02006169 .migrate_task_rq = migrate_task_rq_fair,
Paul Turnerf4e26b12012-10-04 13:18:32 +02006170#endif
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006171 .rq_online = rq_online_fair,
6172 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006173
6174 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02006175#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006176
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006177 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006178 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006179 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006180
6181 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006182 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006183 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006184
Peter Williams0d721ce2009-09-21 01:31:53 +00006185 .get_rr_interval = get_rr_interval_fair,
6186
Peter Zijlstra810b3812008-02-29 15:21:01 -05006187#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006188 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006189#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006190};
6191
6192#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02006193void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006194{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006195 struct cfs_rq *cfs_rq;
6196
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006197 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02006198 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02006199 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006200 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006201}
6202#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006203
6204__init void init_sched_fair_class(void)
6205{
6206#ifdef CONFIG_SMP
6207 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6208
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006209#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08006210 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006211 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08006212 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02006213#endif
6214#endif /* SMP */
6215
6216}