blob: c9617b73bcc00d6ac8b275f47f130afd15749dcd [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100181#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200182#define WMULT_SHIFT 32
183
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100184static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200185{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100186 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200187
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200197 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100198 lw->inv_weight = WMULT_CONST / w;
199}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200200
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200225 }
226
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200229
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200236}
237
238
239const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200240
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
Peter Zijlstra8f488942009-07-24 12:25:30 +0200256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
Peter Zijlstrab7581492008-04-19 19:45:00 +0200264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
Paul Turneraff3e492012-10-04 13:18:30 +0200285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200287
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800305
306 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200307 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200308 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
Peter Zijlstrab7581492008-04-19 19:45:00 +0200320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100325static inline struct cfs_rq *
Peter Zijlstrab7581492008-04-19 19:45:00 +0200326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100329 return se->cfs_rq;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200330
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100331 return NULL;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
Peter Zijlstra464b7522008-10-24 11:06:15 +0200339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
Peter Zijlstra464b7522008-10-24 11:06:15 +0200354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
Peter Zijlstra8f488942009-07-24 12:25:30 +0200371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
381}
382
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200383#define entity_is_task(se) 1
384
Peter Zijlstrab7581492008-04-19 19:45:00 +0200385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200387
Peter Zijlstrab7581492008-04-19 19:45:00 +0200388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200389{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200390 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200391}
392
Peter Zijlstrab7581492008-04-19 19:45:00 +0200393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
Peter Zijlstrab7581492008-04-19 19:45:00 +0200415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
Peter Zijlstrab7581492008-04-19 19:45:00 +0200418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
Peter Zijlstra464b7522008-10-24 11:06:15 +0200423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
Peter Zijlstrab7581492008-04-19 19:45:00 +0200428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700430static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
Andrei Epure1bf08232013-03-12 21:12:24 +0200437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200438{
Andrei Epure1bf08232013-03-12 21:12:24 +0200439 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200440 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200441 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200442
Andrei Epure1bf08232013-03-12 21:12:24 +0200443 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200444}
445
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
Fabio Checconi54fdc582009-07-16 12:32:27 +0200455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100473 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
Andrei Epure1bf08232013-03-12 21:12:24 +0200479 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200485}
486
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200487/*
488 * Enqueue an entity into the rb-tree:
489 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200507 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200519 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200520 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200524}
525
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200527{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100533 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200534
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536}
537
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200546}
547
Rik van Rielac53db52011-02-01 09:51:03 -0500548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200560{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200562
Balbir Singh70eee742008-02-22 13:25:53 +0530563 if (!last)
564 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100565
566 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200567}
568
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100573int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700574 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100575 loff_t *ppos)
576{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100578 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100591#undef WRT_SYSCTL
592
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100593 return 0;
594}
595#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200596
597/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200598 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200599 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200601{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200602 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200604
605 return delta;
606}
607
608/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200609 * The idea is to set a period in which each task runs once.
610 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200611 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100619 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200620
621 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100622 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200623 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200624 }
625
626 return period;
627}
628
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200633 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200634 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200636{
Mike Galbraith0a582442009-01-02 12:16:42 +0100637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200638
Mike Galbraith0a582442009-01-02 12:16:42 +0100639 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100640 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200641 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200645
Mike Galbraith0a582442009-01-02 12:16:42 +0100646 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200647 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100652 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 }
654 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655}
656
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200657/*
Andrei Epure660cc002013-03-11 12:03:20 +0200658 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200659 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200660 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200661 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200663{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200665}
666
Alex Shia75cdaa2013-06-20 10:18:47 +0800667#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100668static unsigned long task_h_load(struct task_struct *p);
669
Alex Shia75cdaa2013-06-20 10:18:47 +0800670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200689/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100690 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200691 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200692static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200693{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200694 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200695 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100696 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200697
698 if (unlikely(!curr))
699 return;
700
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100703 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200704
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200705 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100706
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
Ingo Molnarf977bb42009-09-13 18:15:54 +0200719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100720 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700721 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100722 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725}
726
727static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200729{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200731}
732
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200733/*
734 * Task is being enqueued - update stats:
735 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200742 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200743 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200744}
745
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200748{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200758 }
759#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300760 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200761}
762
763static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200765{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200770 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200771 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
780 /*
781 * We are starting a new run period:
782 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200784}
785
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200790#ifdef CONFIG_NUMA_BALANCING
791/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200795 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200801
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
Mel Gorman598f0ec2013-10-07 11:28:55 +0100805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100867 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100868 struct list_head task_list;
869
870 struct rcu_head rcu;
Rik van Riel20e07de2014-01-27 17:03:43 -0500871 nodemask_t active_nodes;
Mel Gorman989348b2013-10-07 11:29:40 +0100872 unsigned long total_faults;
Rik van Riel7e2703e2014-01-27 17:03:45 -0500873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
Rik van Riel50ec8a42014-01-27 17:03:42 -0500878 unsigned long *faults_cpu;
Mel Gorman989348b2013-10-07 11:29:40 +0100879 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100880};
881
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
Mel Gormane29cf082013-10-07 11:29:22 +0100891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
Mel Gormanac8e8952013-10-07 11:29:03 +0100896static inline int task_faults_idx(int nid, int priv)
897{
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
Mel Gormanac8e8952013-10-07 11:29:03 +0100899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
Rik van Rielff1df892014-01-27 17:03:41 -0500903 if (!p->numa_faults_memory)
Mel Gormanac8e8952013-10-07 11:29:03 +0100904 return 0;
905
Rik van Rielff1df892014-01-27 17:03:41 -0500906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
Mel Gormanac8e8952013-10-07 11:29:03 +0100908}
909
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
Wanpeng Li82897b42013-12-12 15:23:25 +0800915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100917}
918
Rik van Riel20e07de2014-01-27 17:03:43 -0500919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
Rik van Rielff1df892014-01-27 17:03:41 -0500935 if (!p->numa_faults_memory)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
Mel Gorman989348b2013-10-07 11:29:40 +0100948 if (!p->numa_group || !p->numa_group->total_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100949 return 0;
950
Mel Gorman989348b2013-10-07 11:29:40 +0100951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100952}
953
Rik van Riel10f39042014-01-27 17:03:44 -0500954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
Mel Gormane6628d52013-10-07 11:29:02 +01001017static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +01001022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +01001024struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001025 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +01001026 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001034};
Mel Gormane6628d52013-10-07 11:29:02 +01001035
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001041 int cpu, cpus = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001050
1051 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001052 }
1053
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
Mel Gorman58d081b2013-10-07 11:29:10 +01001070struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
Wanpeng Li40ea2b42013-12-05 19:10:17 +08001078 int imbalance_pct;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001079
1080 struct task_struct *best_task;
1081 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001082 int best_cpu;
1083};
1084
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
Rik van Riele63da032014-05-14 13:22:21 -04001098static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1099 long src_load, long dst_load,
1100 struct task_numa_env *env)
1101{
1102 long imb, old_imb;
1103
1104 /* We care about the slope of the imbalance, not the direction. */
1105 if (dst_load < src_load)
1106 swap(dst_load, src_load);
1107
1108 /* Is the difference below the threshold? */
1109 imb = dst_load * 100 - src_load * env->imbalance_pct;
1110 if (imb <= 0)
1111 return false;
1112
1113 /*
1114 * The imbalance is above the allowed threshold.
1115 * Compare it with the old imbalance.
1116 */
1117 if (orig_dst_load < orig_src_load)
1118 swap(orig_dst_load, orig_src_load);
1119
1120 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1121
1122 /* Would this change make things worse? */
1123 return (old_imb > imb);
1124}
1125
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001126/*
1127 * This checks if the overall compute and NUMA accesses of the system would
1128 * be improved if the source tasks was migrated to the target dst_cpu taking
1129 * into account that it might be best if task running on the dst_cpu should
1130 * be exchanged with the source task
1131 */
Rik van Riel887c2902013-10-07 11:29:31 +01001132static void task_numa_compare(struct task_numa_env *env,
1133 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001134{
1135 struct rq *src_rq = cpu_rq(env->src_cpu);
1136 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1137 struct task_struct *cur;
Rik van Riele63da032014-05-14 13:22:21 -04001138 long orig_src_load, src_load;
1139 long orig_dst_load, dst_load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001140 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001141 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001142
1143 rcu_read_lock();
1144 cur = ACCESS_ONCE(dst_rq->curr);
1145 if (cur->pid == 0) /* idle */
1146 cur = NULL;
1147
1148 /*
1149 * "imp" is the fault differential for the source task between the
1150 * source and destination node. Calculate the total differential for
1151 * the source task and potential destination task. The more negative
1152 * the value is, the more rmeote accesses that would be expected to
1153 * be incurred if the tasks were swapped.
1154 */
1155 if (cur) {
1156 /* Skip this swap candidate if cannot move to the source cpu */
1157 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1158 goto unlock;
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160 /*
1161 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa532013-10-07 11:29:32 +01001162 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001163 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001164 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001165 imp = taskimp + task_weight(cur, env->src_nid) -
1166 task_weight(cur, env->dst_nid);
Rik van Rielca28aa532013-10-07 11:29:32 +01001167 /*
1168 * Add some hysteresis to prevent swapping the
1169 * tasks within a group over tiny differences.
1170 */
1171 if (cur->numa_group)
1172 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001173 } else {
Rik van Rielca28aa532013-10-07 11:29:32 +01001174 /*
1175 * Compare the group weights. If a task is all by
1176 * itself (not part of a group), use the task weight
1177 * instead.
1178 */
1179 if (env->p->numa_group)
1180 imp = groupimp;
1181 else
1182 imp = taskimp;
1183
1184 if (cur->numa_group)
1185 imp += group_weight(cur, env->src_nid) -
1186 group_weight(cur, env->dst_nid);
1187 else
1188 imp += task_weight(cur, env->src_nid) -
1189 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001190 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001191 }
1192
1193 if (imp < env->best_imp)
1194 goto unlock;
1195
1196 if (!cur) {
1197 /* Is there capacity at our destination? */
1198 if (env->src_stats.has_capacity &&
1199 !env->dst_stats.has_capacity)
1200 goto unlock;
1201
1202 goto balance;
1203 }
1204
1205 /* Balance doesn't matter much if we're running a task per cpu */
1206 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1207 goto assign;
1208
1209 /*
1210 * In the overloaded case, try and keep the load balanced.
1211 */
1212balance:
Rik van Riele63da032014-05-14 13:22:21 -04001213 orig_dst_load = env->dst_stats.load;
1214 orig_src_load = env->src_stats.load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001215
1216 /* XXX missing power terms */
1217 load = task_h_load(env->p);
Rik van Riele63da032014-05-14 13:22:21 -04001218 dst_load = orig_dst_load + load;
1219 src_load = orig_src_load - load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001220
1221 if (cur) {
1222 load = task_h_load(cur);
1223 dst_load -= load;
1224 src_load += load;
1225 }
1226
Rik van Riele63da032014-05-14 13:22:21 -04001227 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1228 src_load, dst_load, env))
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001229 goto unlock;
1230
1231assign:
1232 task_numa_assign(env, cur, imp);
1233unlock:
1234 rcu_read_unlock();
1235}
1236
Rik van Riel887c2902013-10-07 11:29:31 +01001237static void task_numa_find_cpu(struct task_numa_env *env,
1238 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001239{
1240 int cpu;
1241
1242 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1243 /* Skip this CPU if the source task cannot migrate */
1244 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1245 continue;
1246
1247 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001248 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001249 }
1250}
1251
Mel Gorman58d081b2013-10-07 11:29:10 +01001252static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001253{
Mel Gorman58d081b2013-10-07 11:29:10 +01001254 struct task_numa_env env = {
1255 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001256
Mel Gorman58d081b2013-10-07 11:29:10 +01001257 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001258 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001259
1260 .imbalance_pct = 112,
1261
1262 .best_task = NULL,
1263 .best_imp = 0,
1264 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001265 };
1266 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001267 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001268 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001269 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001270
Mel Gorman58d081b2013-10-07 11:29:10 +01001271 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001272 * Pick the lowest SD_NUMA domain, as that would have the smallest
1273 * imbalance and would be the first to start moving tasks about.
1274 *
1275 * And we want to avoid any moving of tasks about, as that would create
1276 * random movement of tasks -- counter the numa conditions we're trying
1277 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001278 */
Mel Gormane6628d52013-10-07 11:29:02 +01001279 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001280 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001281 if (sd)
1282 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001283 rcu_read_unlock();
1284
Rik van Riel46a73e82013-11-11 19:29:25 -05001285 /*
1286 * Cpusets can break the scheduler domain tree into smaller
1287 * balance domains, some of which do not cross NUMA boundaries.
1288 * Tasks that are "trapped" in such domains cannot be migrated
1289 * elsewhere, so there is no point in (re)trying.
1290 */
1291 if (unlikely(!sd)) {
Wanpeng Lide1b3012013-12-12 15:23:24 +08001292 p->numa_preferred_nid = task_node(p);
Rik van Riel46a73e82013-11-11 19:29:25 -05001293 return -EINVAL;
1294 }
1295
Rik van Riel887c2902013-10-07 11:29:31 +01001296 taskweight = task_weight(p, env.src_nid);
1297 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001298 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001299 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001300 taskimp = task_weight(p, env.dst_nid) - taskweight;
1301 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001302 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001303
Rik van Riele1dda8a2013-10-07 11:29:19 +01001304 /* If the preferred nid has capacity, try to use it. */
1305 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001306 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001307
1308 /* No space available on the preferred nid. Look elsewhere. */
1309 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001310 for_each_online_node(nid) {
1311 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001312 continue;
1313
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001314 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001315 taskimp = task_weight(p, nid) - taskweight;
1316 groupimp = group_weight(p, nid) - groupweight;
1317 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001318 continue;
1319
1320 env.dst_nid = nid;
1321 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001322 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001323 }
1324 }
1325
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001326 /* No better CPU than the current one was found. */
1327 if (env.best_cpu == -1)
1328 return -EAGAIN;
1329
Rik van Riel68d1b022014-04-11 13:00:29 -04001330 /*
1331 * If the task is part of a workload that spans multiple NUMA nodes,
1332 * and is migrating into one of the workload's active nodes, remember
1333 * this node as the task's preferred numa node, so the workload can
1334 * settle down.
1335 * A task that migrated to a second choice node will be better off
1336 * trying for a better one later. Do not set the preferred node here.
1337 */
1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 sched_setnuma(p, env.dst_nid);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001340
Rik van Riel04bb2f92013-10-07 11:29:36 +01001341 /*
1342 * Reset the scan period if the task is being rescheduled on an
1343 * alternative node to recheck if the tasks is now properly placed.
1344 */
1345 p->numa_scan_period = task_scan_min(p);
1346
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001347 if (env.best_task == NULL) {
Mel Gorman286549d2014-01-21 15:51:03 -08001348 ret = migrate_task_to(p, env.best_cpu);
1349 if (ret != 0)
1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001351 return ret;
1352 }
1353
1354 ret = migrate_swap(p, env.best_task);
Mel Gorman286549d2014-01-21 15:51:03 -08001355 if (ret != 0)
1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001357 put_task_struct(env.best_task);
1358 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001359}
1360
Mel Gorman6b9a7462013-10-07 11:29:11 +01001361/* Attempt to migrate a task to a CPU on the preferred node. */
1362static void numa_migrate_preferred(struct task_struct *p)
1363{
Rik van Riel5085e2a2014-04-11 13:00:28 -04001364 unsigned long interval = HZ;
1365
Rik van Riel2739d3e2013-10-07 11:29:41 +01001366 /* This task has no NUMA fault statistics yet */
Rik van Rielff1df892014-01-27 17:03:41 -05001367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
Rik van Riel2739d3e2013-10-07 11:29:41 +01001368 return;
1369
1370 /* Periodically retry migrating the task to the preferred node */
Rik van Riel5085e2a2014-04-11 13:00:28 -04001371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 p->numa_migrate_retry = jiffies + interval;
Rik van Riel2739d3e2013-10-07 11:29:41 +01001373
Mel Gorman6b9a7462013-10-07 11:29:11 +01001374 /* Success if task is already running on preferred CPU */
Wanpeng Lide1b3012013-12-12 15:23:24 +08001375 if (task_node(p) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001376 return;
1377
Mel Gorman6b9a7462013-10-07 11:29:11 +01001378 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001379 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001380}
1381
Rik van Riel04bb2f92013-10-07 11:29:36 +01001382/*
Rik van Riel20e07de2014-01-27 17:03:43 -05001383 * Find the nodes on which the workload is actively running. We do this by
1384 * tracking the nodes from which NUMA hinting faults are triggered. This can
1385 * be different from the set of nodes where the workload's memory is currently
1386 * located.
1387 *
1388 * The bitmask is used to make smarter decisions on when to do NUMA page
1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390 * are added when they cause over 6/16 of the maximum number of faults, but
1391 * only removed when they drop below 3/16.
1392 */
1393static void update_numa_active_node_mask(struct numa_group *numa_group)
1394{
1395 unsigned long faults, max_faults = 0;
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 faults = group_faults_cpu(numa_group, nid);
1400 if (faults > max_faults)
1401 max_faults = faults;
1402 }
1403
1404 for_each_online_node(nid) {
1405 faults = group_faults_cpu(numa_group, nid);
1406 if (!node_isset(nid, numa_group->active_nodes)) {
1407 if (faults > max_faults * 6 / 16)
1408 node_set(nid, numa_group->active_nodes);
1409 } else if (faults < max_faults * 3 / 16)
1410 node_clear(nid, numa_group->active_nodes);
1411 }
1412}
1413
1414/*
Rik van Riel04bb2f92013-10-07 11:29:36 +01001415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416 * increments. The more local the fault statistics are, the higher the scan
1417 * period will be for the next scan window. If local/remote ratio is below
1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419 * scan period will decrease
1420 */
1421#define NUMA_PERIOD_SLOTS 10
1422#define NUMA_PERIOD_THRESHOLD 3
1423
1424/*
1425 * Increase the scan period (slow down scanning) if the majority of
1426 * our memory is already on our local node, or if the majority of
1427 * the page accesses are shared with other processes.
1428 * Otherwise, decrease the scan period.
1429 */
1430static void update_task_scan_period(struct task_struct *p,
1431 unsigned long shared, unsigned long private)
1432{
1433 unsigned int period_slot;
1434 int ratio;
1435 int diff;
1436
1437 unsigned long remote = p->numa_faults_locality[0];
1438 unsigned long local = p->numa_faults_locality[1];
1439
1440 /*
1441 * If there were no record hinting faults then either the task is
1442 * completely idle or all activity is areas that are not of interest
1443 * to automatic numa balancing. Scan slower
1444 */
1445 if (local + shared == 0) {
1446 p->numa_scan_period = min(p->numa_scan_period_max,
1447 p->numa_scan_period << 1);
1448
1449 p->mm->numa_next_scan = jiffies +
1450 msecs_to_jiffies(p->numa_scan_period);
1451
1452 return;
1453 }
1454
1455 /*
1456 * Prepare to scale scan period relative to the current period.
1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 */
1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 if (!slot)
1466 slot = 1;
1467 diff = slot * period_slot;
1468 } else {
1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470
1471 /*
1472 * Scale scan rate increases based on sharing. There is an
1473 * inverse relationship between the degree of sharing and
1474 * the adjustment made to the scanning period. Broadly
1475 * speaking the intent is that there is little point
1476 * scanning faster if shared accesses dominate as it may
1477 * simply bounce migrations uselessly
1478 */
Rik van Riel04bb2f92013-10-07 11:29:36 +01001479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 }
1482
1483 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 task_scan_min(p), task_scan_max(p));
1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486}
1487
Rik van Riel7e2703e2014-01-27 17:03:45 -05001488/*
1489 * Get the fraction of time the task has been running since the last
1490 * NUMA placement cycle. The scheduler keeps similar statistics, but
1491 * decays those on a 32ms period, which is orders of magnitude off
1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493 * stats only if the task is so new there are no NUMA statistics yet.
1494 */
1495static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496{
1497 u64 runtime, delta, now;
1498 /* Use the start of this time slice to avoid calculations. */
1499 now = p->se.exec_start;
1500 runtime = p->se.sum_exec_runtime;
1501
1502 if (p->last_task_numa_placement) {
1503 delta = runtime - p->last_sum_exec_runtime;
1504 *period = now - p->last_task_numa_placement;
1505 } else {
1506 delta = p->se.avg.runnable_avg_sum;
1507 *period = p->se.avg.runnable_avg_period;
1508 }
1509
1510 p->last_sum_exec_runtime = runtime;
1511 p->last_task_numa_placement = now;
1512
1513 return delta;
1514}
1515
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001516static void task_numa_placement(struct task_struct *p)
1517{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001518 int seq, nid, max_nid = -1, max_group_nid = -1;
1519 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001520 unsigned long fault_types[2] = { 0, 0 };
Rik van Riel7e2703e2014-01-27 17:03:45 -05001521 unsigned long total_faults;
1522 u64 runtime, period;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001523 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001524
Hugh Dickins2832bc12012-12-19 17:42:16 -08001525 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001526 if (p->numa_scan_seq == seq)
1527 return;
1528 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001529 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001530
Rik van Riel7e2703e2014-01-27 17:03:45 -05001531 total_faults = p->numa_faults_locality[0] +
1532 p->numa_faults_locality[1];
1533 runtime = numa_get_avg_runtime(p, &period);
1534
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001535 /* If the task is part of a group prevent parallel updates to group stats */
1536 if (p->numa_group) {
1537 group_lock = &p->numa_group->lock;
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001538 spin_lock_irq(group_lock);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001539 }
1540
Mel Gorman688b7582013-10-07 11:28:58 +01001541 /* Find the node with the highest number of faults */
1542 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001543 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001544 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001545
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
Rik van Riel7e2703e2014-01-27 17:03:45 -05001547 long diff, f_diff, f_weight;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001548
Mel Gormanac8e8952013-10-07 11:29:03 +01001549 i = task_faults_idx(nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001550
Mel Gormanac8e8952013-10-07 11:29:03 +01001551 /* Decay existing window, copy faults since last scan */
Rik van Riel35664fd2014-01-27 17:03:46 -05001552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
Rik van Rielff1df892014-01-27 17:03:41 -05001553 fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 p->numa_faults_buffer_memory[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001555
Rik van Riel7e2703e2014-01-27 17:03:45 -05001556 /*
1557 * Normalize the faults_from, so all tasks in a group
1558 * count according to CPU use, instead of by the raw
1559 * number of faults. Tasks with little runtime have
1560 * little over-all impact on throughput, and thus their
1561 * faults are less important.
1562 */
1563 f_weight = div64_u64(runtime << 16, period + 1);
1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 (total_faults + 1);
Rik van Riel35664fd2014-01-27 17:03:46 -05001566 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001567 p->numa_faults_buffer_cpu[i] = 0;
1568
Rik van Riel35664fd2014-01-27 17:03:46 -05001569 p->numa_faults_memory[i] += diff;
1570 p->numa_faults_cpu[i] += f_diff;
Rik van Rielff1df892014-01-27 17:03:41 -05001571 faults += p->numa_faults_memory[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001572 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001573 if (p->numa_group) {
1574 /* safe because we can only change our own group */
Mel Gorman989348b2013-10-07 11:29:40 +01001575 p->numa_group->faults[i] += diff;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001576 p->numa_group->faults_cpu[i] += f_diff;
Mel Gorman989348b2013-10-07 11:29:40 +01001577 p->numa_group->total_faults += diff;
1578 group_faults += p->numa_group->faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001579 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001580 }
1581
Mel Gorman688b7582013-10-07 11:28:58 +01001582 if (faults > max_faults) {
1583 max_faults = faults;
1584 max_nid = nid;
1585 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001586
1587 if (group_faults > max_group_faults) {
1588 max_group_faults = group_faults;
1589 max_group_nid = nid;
1590 }
1591 }
1592
Rik van Riel04bb2f92013-10-07 11:29:36 +01001593 update_task_scan_period(p, fault_types[0], fault_types[1]);
1594
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001595 if (p->numa_group) {
Rik van Riel20e07de2014-01-27 17:03:43 -05001596 update_numa_active_node_mask(p->numa_group);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001597 /*
1598 * If the preferred task and group nids are different,
1599 * iterate over the nodes again to find the best place.
1600 */
1601 if (max_nid != max_group_nid) {
1602 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001603
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001604 for_each_online_node(nid) {
1605 weight = task_weight(p, nid) + group_weight(p, nid);
1606 if (weight > max_weight) {
1607 max_weight = weight;
1608 max_nid = nid;
1609 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001610 }
1611 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001612
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001613 spin_unlock_irq(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001614 }
1615
Mel Gorman6b9a7462013-10-07 11:29:11 +01001616 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001617 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001618 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001619 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001620 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001621 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001622}
1623
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001624static inline int get_numa_group(struct numa_group *grp)
1625{
1626 return atomic_inc_not_zero(&grp->refcount);
1627}
1628
1629static inline void put_numa_group(struct numa_group *grp)
1630{
1631 if (atomic_dec_and_test(&grp->refcount))
1632 kfree_rcu(grp, rcu);
1633}
1634
Mel Gorman3e6a9412013-10-07 11:29:35 +01001635static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1636 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001637{
1638 struct numa_group *grp, *my_grp;
1639 struct task_struct *tsk;
1640 bool join = false;
1641 int cpu = cpupid_to_cpu(cpupid);
1642 int i;
1643
1644 if (unlikely(!p->numa_group)) {
1645 unsigned int size = sizeof(struct numa_group) +
Rik van Riel50ec8a42014-01-27 17:03:42 -05001646 4*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001647
1648 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1649 if (!grp)
1650 return;
1651
1652 atomic_set(&grp->refcount, 1);
1653 spin_lock_init(&grp->lock);
1654 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001655 grp->gid = p->pid;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001656 /* Second half of the array tracks nids where faults happen */
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001657 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1658 nr_node_ids;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001659
Rik van Riel20e07de2014-01-27 17:03:43 -05001660 node_set(task_node(current), grp->active_nodes);
1661
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001662 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001663 grp->faults[i] = p->numa_faults_memory[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001664
Mel Gorman989348b2013-10-07 11:29:40 +01001665 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001666
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001667 list_add(&p->numa_entry, &grp->task_list);
1668 grp->nr_tasks++;
1669 rcu_assign_pointer(p->numa_group, grp);
1670 }
1671
1672 rcu_read_lock();
1673 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1674
1675 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001676 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001677
1678 grp = rcu_dereference(tsk->numa_group);
1679 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001680 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001681
1682 my_grp = p->numa_group;
1683 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001684 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001685
1686 /*
1687 * Only join the other group if its bigger; if we're the bigger group,
1688 * the other task will join us.
1689 */
1690 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001691 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001692
1693 /*
1694 * Tie-break on the grp address.
1695 */
1696 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001697 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001698
Rik van Rieldabe1d92013-10-07 11:29:34 +01001699 /* Always join threads in the same process. */
1700 if (tsk->mm == current->mm)
1701 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001702
Rik van Rieldabe1d92013-10-07 11:29:34 +01001703 /* Simple filter to avoid false positives due to PID collisions */
1704 if (flags & TNF_SHARED)
1705 join = true;
1706
Mel Gorman3e6a9412013-10-07 11:29:35 +01001707 /* Update priv based on whether false sharing was detected */
1708 *priv = !join;
1709
Rik van Rieldabe1d92013-10-07 11:29:34 +01001710 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001711 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001712
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001713 rcu_read_unlock();
1714
1715 if (!join)
1716 return;
1717
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001718 BUG_ON(irqs_disabled());
1719 double_lock_irq(&my_grp->lock, &grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001720
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
Rik van Rielff1df892014-01-27 17:03:41 -05001722 my_grp->faults[i] -= p->numa_faults_memory[i];
1723 grp->faults[i] += p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001724 }
1725 my_grp->total_faults -= p->total_numa_faults;
1726 grp->total_faults += p->total_numa_faults;
1727
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001728 list_move(&p->numa_entry, &grp->task_list);
1729 my_grp->nr_tasks--;
1730 grp->nr_tasks++;
1731
1732 spin_unlock(&my_grp->lock);
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001733 spin_unlock_irq(&grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001734
1735 rcu_assign_pointer(p->numa_group, grp);
1736
1737 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02001738 return;
1739
1740no_join:
1741 rcu_read_unlock();
1742 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001743}
1744
1745void task_numa_free(struct task_struct *p)
1746{
1747 struct numa_group *grp = p->numa_group;
1748 int i;
Rik van Rielff1df892014-01-27 17:03:41 -05001749 void *numa_faults = p->numa_faults_memory;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001750
1751 if (grp) {
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001752 spin_lock_irq(&grp->lock);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001753 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Rik van Rielff1df892014-01-27 17:03:41 -05001754 grp->faults[i] -= p->numa_faults_memory[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001755 grp->total_faults -= p->total_numa_faults;
1756
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001757 list_del(&p->numa_entry);
1758 grp->nr_tasks--;
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001759 spin_unlock_irq(&grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001760 rcu_assign_pointer(p->numa_group, NULL);
1761 put_numa_group(grp);
1762 }
1763
Rik van Rielff1df892014-01-27 17:03:41 -05001764 p->numa_faults_memory = NULL;
1765 p->numa_faults_buffer_memory = NULL;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001766 p->numa_faults_cpu= NULL;
1767 p->numa_faults_buffer_cpu = NULL;
Rik van Riel82727012013-10-07 11:29:28 +01001768 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001769}
1770
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001771/*
1772 * Got a PROT_NONE fault for a page on @node.
1773 */
Rik van Riel58b46da2014-01-27 17:03:47 -05001774void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001775{
1776 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001777 bool migrated = flags & TNF_MIGRATED;
Rik van Riel58b46da2014-01-27 17:03:47 -05001778 int cpu_node = task_node(current);
Rik van Riel792568e2014-04-11 13:00:27 -04001779 int local = !!(flags & TNF_FAULT_LOCAL);
Mel Gormanac8e8952013-10-07 11:29:03 +01001780 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001781
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001782 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001783 return;
1784
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001785 /* for example, ksmd faulting in a user's mm */
1786 if (!p->mm)
1787 return;
1788
Rik van Riel82727012013-10-07 11:29:28 +01001789 /* Do not worry about placement if exiting */
1790 if (p->state == TASK_DEAD)
1791 return;
1792
Mel Gormanf809ca92013-10-07 11:28:57 +01001793 /* Allocate buffer to track faults on a per-node basis */
Rik van Rielff1df892014-01-27 17:03:41 -05001794 if (unlikely(!p->numa_faults_memory)) {
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001795 int size = sizeof(*p->numa_faults_memory) *
1796 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001797
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001798 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
Rik van Rielff1df892014-01-27 17:03:41 -05001799 if (!p->numa_faults_memory)
Mel Gormanf809ca92013-10-07 11:28:57 +01001800 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001801
Rik van Rielff1df892014-01-27 17:03:41 -05001802 BUG_ON(p->numa_faults_buffer_memory);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001803 /*
1804 * The averaged statistics, shared & private, memory & cpu,
1805 * occupy the first half of the array. The second half of the
1806 * array is for current counters, which are averaged into the
1807 * first set by task_numa_placement.
1808 */
Rik van Riel50ec8a42014-01-27 17:03:42 -05001809 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1810 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1811 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001812 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001814 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001815
Mel Gormanfb003b82012-11-15 09:01:14 +00001816 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001817 * First accesses are treated as private, otherwise consider accesses
1818 * to be private if the accessing pid has not changed
1819 */
1820 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1821 priv = 1;
1822 } else {
1823 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001824 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001825 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001826 }
1827
Rik van Riel792568e2014-04-11 13:00:27 -04001828 /*
1829 * If a workload spans multiple NUMA nodes, a shared fault that
1830 * occurs wholly within the set of nodes that the workload is
1831 * actively using should be counted as local. This allows the
1832 * scan rate to slow down when a workload has settled down.
1833 */
1834 if (!priv && !local && p->numa_group &&
1835 node_isset(cpu_node, p->numa_group->active_nodes) &&
1836 node_isset(mem_node, p->numa_group->active_nodes))
1837 local = 1;
1838
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001839 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001840
Rik van Riel2739d3e2013-10-07 11:29:41 +01001841 /*
1842 * Retry task to preferred node migration periodically, in case it
1843 * case it previously failed, or the scheduler moved us.
1844 */
1845 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01001846 numa_migrate_preferred(p);
1847
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001848 if (migrated)
1849 p->numa_pages_migrated += pages;
1850
Rik van Riel58b46da2014-01-27 17:03:47 -05001851 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1852 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
Rik van Riel792568e2014-04-11 13:00:27 -04001853 p->numa_faults_locality[local] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001854}
1855
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001856static void reset_ptenuma_scan(struct task_struct *p)
1857{
1858 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1859 p->mm->numa_scan_offset = 0;
1860}
1861
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001862/*
1863 * The expensive part of numa migration is done from task_work context.
1864 * Triggered from task_tick_numa().
1865 */
1866void task_numa_work(struct callback_head *work)
1867{
1868 unsigned long migrate, next_scan, now = jiffies;
1869 struct task_struct *p = current;
1870 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001871 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001872 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001873 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001874 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001875
1876 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1877
1878 work->next = work; /* protect against double add */
1879 /*
1880 * Who cares about NUMA placement when they're dying.
1881 *
1882 * NOTE: make sure not to dereference p->mm before this check,
1883 * exit_task_work() happens _after_ exit_mm() so we could be called
1884 * without p->mm even though we still had it when we enqueued this
1885 * work.
1886 */
1887 if (p->flags & PF_EXITING)
1888 return;
1889
Mel Gorman930aa172013-10-07 11:29:37 +01001890 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001891 mm->numa_next_scan = now +
1892 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001893 }
1894
1895 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001896 * Enforce maximal scan/migration frequency..
1897 */
1898 migrate = mm->numa_next_scan;
1899 if (time_before(now, migrate))
1900 return;
1901
Mel Gorman598f0ec2013-10-07 11:28:55 +01001902 if (p->numa_scan_period == 0) {
1903 p->numa_scan_period_max = task_scan_max(p);
1904 p->numa_scan_period = task_scan_min(p);
1905 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001906
Mel Gormanfb003b82012-11-15 09:01:14 +00001907 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001908 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1909 return;
1910
Mel Gormane14808b2012-11-19 10:59:15 +00001911 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001912 * Delay this task enough that another task of this mm will likely win
1913 * the next time around.
1914 */
1915 p->node_stamp += 2 * TICK_NSEC;
1916
Mel Gorman9f406042012-11-14 18:34:32 +00001917 start = mm->numa_scan_offset;
1918 pages = sysctl_numa_balancing_scan_size;
1919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1920 if (!pages)
1921 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001922
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001923 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001924 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001925 if (!vma) {
1926 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001927 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001928 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001929 }
Mel Gorman9f406042012-11-14 18:34:32 +00001930 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001931 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001932 continue;
1933
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001934 /*
1935 * Shared library pages mapped by multiple processes are not
1936 * migrated as it is expected they are cache replicated. Avoid
1937 * hinting faults in read-only file-backed mappings or the vdso
1938 * as migrating the pages will be of marginal benefit.
1939 */
1940 if (!vma->vm_mm ||
1941 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1942 continue;
1943
Mel Gorman3c67f472013-12-18 17:08:40 -08001944 /*
1945 * Skip inaccessible VMAs to avoid any confusion between
1946 * PROT_NONE and NUMA hinting ptes
1947 */
1948 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1949 continue;
1950
Mel Gorman9f406042012-11-14 18:34:32 +00001951 do {
1952 start = max(start, vma->vm_start);
1953 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1954 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001955 nr_pte_updates += change_prot_numa(vma, start, end);
1956
1957 /*
1958 * Scan sysctl_numa_balancing_scan_size but ensure that
1959 * at least one PTE is updated so that unused virtual
1960 * address space is quickly skipped.
1961 */
1962 if (nr_pte_updates)
1963 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001964
Mel Gorman9f406042012-11-14 18:34:32 +00001965 start = end;
1966 if (pages <= 0)
1967 goto out;
Rik van Riel3cf19622014-02-18 17:12:44 -05001968
1969 cond_resched();
Mel Gorman9f406042012-11-14 18:34:32 +00001970 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001971 }
1972
Mel Gorman9f406042012-11-14 18:34:32 +00001973out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001974 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001975 * It is possible to reach the end of the VMA list but the last few
1976 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1977 * would find the !migratable VMA on the next scan but not reset the
1978 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001979 */
1980 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001981 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001982 else
1983 reset_ptenuma_scan(p);
1984 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001985}
1986
1987/*
1988 * Drive the periodic memory faults..
1989 */
1990void task_tick_numa(struct rq *rq, struct task_struct *curr)
1991{
1992 struct callback_head *work = &curr->numa_work;
1993 u64 period, now;
1994
1995 /*
1996 * We don't care about NUMA placement if we don't have memory.
1997 */
1998 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1999 return;
2000
2001 /*
2002 * Using runtime rather than walltime has the dual advantage that
2003 * we (mostly) drive the selection from busy threads and that the
2004 * task needs to have done some actual work before we bother with
2005 * NUMA placement.
2006 */
2007 now = curr->se.sum_exec_runtime;
2008 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2009
2010 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02002011 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01002012 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01002013 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002014
2015 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2016 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2017 task_work_add(curr, work, true);
2018 }
2019 }
2020}
2021#else
2022static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2023{
2024}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002025
2026static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2027{
2028}
2029
2030static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2031{
2032}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002033#endif /* CONFIG_NUMA_BALANCING */
2034
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002035static void
2036account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2037{
2038 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002039 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002040 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01002041#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002042 if (entity_is_task(se)) {
2043 struct rq *rq = rq_of(cfs_rq);
2044
2045 account_numa_enqueue(rq, task_of(se));
2046 list_add(&se->group_node, &rq->cfs_tasks);
2047 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01002048#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002049 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002050}
2051
2052static void
2053account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2054{
2055 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002056 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002057 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002058 if (entity_is_task(se)) {
2059 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05302060 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002061 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002062 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002063}
2064
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002065#ifdef CONFIG_FAIR_GROUP_SCHED
2066# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002067static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2068{
2069 long tg_weight;
2070
2071 /*
2072 * Use this CPU's actual weight instead of the last load_contribution
2073 * to gain a more accurate current total weight. See
2074 * update_cfs_rq_load_contribution().
2075 */
Alex Shibf5b9862013-06-20 10:18:54 +08002076 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02002077 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002078 tg_weight += cfs_rq->load.weight;
2079
2080 return tg_weight;
2081}
2082
Paul Turner6d5ab292011-01-21 20:45:01 -08002083static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002084{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002085 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002086
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002087 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08002088 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002089
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002090 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002091 if (tg_weight)
2092 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002093
2094 if (shares < MIN_SHARES)
2095 shares = MIN_SHARES;
2096 if (shares > tg->shares)
2097 shares = tg->shares;
2098
2099 return shares;
2100}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002101# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08002102static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002103{
2104 return tg->shares;
2105}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002106# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002107static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2108 unsigned long weight)
2109{
Paul Turner19e5eeb2010-12-15 19:10:18 -08002110 if (se->on_rq) {
2111 /* commit outstanding execution time */
2112 if (cfs_rq->curr == se)
2113 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002114 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08002115 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002116
2117 update_load_set(&se->load, weight);
2118
2119 if (se->on_rq)
2120 account_entity_enqueue(cfs_rq, se);
2121}
2122
Paul Turner82958362012-10-04 13:18:31 +02002123static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2124
Paul Turner6d5ab292011-01-21 20:45:01 -08002125static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002126{
2127 struct task_group *tg;
2128 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002129 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002130
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002131 tg = cfs_rq->tg;
2132 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07002133 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002134 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002135#ifndef CONFIG_SMP
2136 if (likely(se->load.weight == tg->shares))
2137 return;
2138#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08002139 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002140
2141 reweight_entity(cfs_rq_of(se), se, shares);
2142}
2143#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08002144static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002145{
2146}
2147#endif /* CONFIG_FAIR_GROUP_SCHED */
2148
Alex Shi141965c2013-06-26 13:05:39 +08002149#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02002150/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02002151 * We choose a half-life close to 1 scheduling period.
2152 * Note: The tables below are dependent on this value.
2153 */
2154#define LOAD_AVG_PERIOD 32
2155#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2156#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2157
2158/* Precomputed fixed inverse multiplies for multiplication by y^n */
2159static const u32 runnable_avg_yN_inv[] = {
2160 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2161 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2162 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2163 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2164 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2165 0x85aac367, 0x82cd8698,
2166};
2167
2168/*
2169 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2170 * over-estimates when re-combining.
2171 */
2172static const u32 runnable_avg_yN_sum[] = {
2173 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2174 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2175 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2176};
2177
2178/*
Paul Turner9d85f212012-10-04 13:18:29 +02002179 * Approximate:
2180 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2181 */
2182static __always_inline u64 decay_load(u64 val, u64 n)
2183{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002184 unsigned int local_n;
2185
2186 if (!n)
2187 return val;
2188 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2189 return 0;
2190
2191 /* after bounds checking we can collapse to 32-bit */
2192 local_n = n;
2193
2194 /*
2195 * As y^PERIOD = 1/2, we can combine
2196 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2197 * With a look-up table which covers k^n (n<PERIOD)
2198 *
2199 * To achieve constant time decay_load.
2200 */
2201 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2202 val >>= local_n / LOAD_AVG_PERIOD;
2203 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02002204 }
2205
Paul Turner5b51f2f2012-10-04 13:18:32 +02002206 val *= runnable_avg_yN_inv[local_n];
2207 /* We don't use SRR here since we always want to round down. */
2208 return val >> 32;
2209}
2210
2211/*
2212 * For updates fully spanning n periods, the contribution to runnable
2213 * average will be: \Sum 1024*y^n
2214 *
2215 * We can compute this reasonably efficiently by combining:
2216 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2217 */
2218static u32 __compute_runnable_contrib(u64 n)
2219{
2220 u32 contrib = 0;
2221
2222 if (likely(n <= LOAD_AVG_PERIOD))
2223 return runnable_avg_yN_sum[n];
2224 else if (unlikely(n >= LOAD_AVG_MAX_N))
2225 return LOAD_AVG_MAX;
2226
2227 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2228 do {
2229 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2230 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2231
2232 n -= LOAD_AVG_PERIOD;
2233 } while (n > LOAD_AVG_PERIOD);
2234
2235 contrib = decay_load(contrib, n);
2236 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002237}
2238
2239/*
2240 * We can represent the historical contribution to runnable average as the
2241 * coefficients of a geometric series. To do this we sub-divide our runnable
2242 * history into segments of approximately 1ms (1024us); label the segment that
2243 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2244 *
2245 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2246 * p0 p1 p2
2247 * (now) (~1ms ago) (~2ms ago)
2248 *
2249 * Let u_i denote the fraction of p_i that the entity was runnable.
2250 *
2251 * We then designate the fractions u_i as our co-efficients, yielding the
2252 * following representation of historical load:
2253 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2254 *
2255 * We choose y based on the with of a reasonably scheduling period, fixing:
2256 * y^32 = 0.5
2257 *
2258 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2259 * approximately half as much as the contribution to load within the last ms
2260 * (u_0).
2261 *
2262 * When a period "rolls over" and we have new u_0`, multiplying the previous
2263 * sum again by y is sufficient to update:
2264 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2265 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2266 */
2267static __always_inline int __update_entity_runnable_avg(u64 now,
2268 struct sched_avg *sa,
2269 int runnable)
2270{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002271 u64 delta, periods;
2272 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002273 int delta_w, decayed = 0;
2274
2275 delta = now - sa->last_runnable_update;
2276 /*
2277 * This should only happen when time goes backwards, which it
2278 * unfortunately does during sched clock init when we swap over to TSC.
2279 */
2280 if ((s64)delta < 0) {
2281 sa->last_runnable_update = now;
2282 return 0;
2283 }
2284
2285 /*
2286 * Use 1024ns as the unit of measurement since it's a reasonable
2287 * approximation of 1us and fast to compute.
2288 */
2289 delta >>= 10;
2290 if (!delta)
2291 return 0;
2292 sa->last_runnable_update = now;
2293
2294 /* delta_w is the amount already accumulated against our next period */
2295 delta_w = sa->runnable_avg_period % 1024;
2296 if (delta + delta_w >= 1024) {
2297 /* period roll-over */
2298 decayed = 1;
2299
2300 /*
2301 * Now that we know we're crossing a period boundary, figure
2302 * out how much from delta we need to complete the current
2303 * period and accrue it.
2304 */
2305 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002306 if (runnable)
2307 sa->runnable_avg_sum += delta_w;
2308 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002309
Paul Turner5b51f2f2012-10-04 13:18:32 +02002310 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002311
Paul Turner5b51f2f2012-10-04 13:18:32 +02002312 /* Figure out how many additional periods this update spans */
2313 periods = delta / 1024;
2314 delta %= 1024;
2315
2316 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2317 periods + 1);
2318 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2319 periods + 1);
2320
2321 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2322 runnable_contrib = __compute_runnable_contrib(periods);
2323 if (runnable)
2324 sa->runnable_avg_sum += runnable_contrib;
2325 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002326 }
2327
2328 /* Remainder of delta accrued against u_0` */
2329 if (runnable)
2330 sa->runnable_avg_sum += delta;
2331 sa->runnable_avg_period += delta;
2332
2333 return decayed;
2334}
2335
Paul Turner9ee474f2012-10-04 13:18:30 +02002336/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002337static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002338{
2339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2340 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2341
2342 decays -= se->avg.decay_count;
2343 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002344 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002345
2346 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2347 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002348
2349 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002350}
2351
Paul Turnerc566e8e2012-10-04 13:18:30 +02002352#ifdef CONFIG_FAIR_GROUP_SCHED
2353static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2354 int force_update)
2355{
2356 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002357 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002358
2359 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2360 tg_contrib -= cfs_rq->tg_load_contrib;
2361
Alex Shibf5b9862013-06-20 10:18:54 +08002362 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2363 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002364 cfs_rq->tg_load_contrib += tg_contrib;
2365 }
2366}
Paul Turner8165e142012-10-04 13:18:31 +02002367
Paul Turnerbb17f652012-10-04 13:18:31 +02002368/*
2369 * Aggregate cfs_rq runnable averages into an equivalent task_group
2370 * representation for computing load contributions.
2371 */
2372static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2373 struct cfs_rq *cfs_rq)
2374{
2375 struct task_group *tg = cfs_rq->tg;
2376 long contrib;
2377
2378 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002379 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Paul Turnerbb17f652012-10-04 13:18:31 +02002380 sa->runnable_avg_period + 1);
2381 contrib -= cfs_rq->tg_runnable_contrib;
2382
2383 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2384 atomic_add(contrib, &tg->runnable_avg);
2385 cfs_rq->tg_runnable_contrib += contrib;
2386 }
2387}
2388
Paul Turner8165e142012-10-04 13:18:31 +02002389static inline void __update_group_entity_contrib(struct sched_entity *se)
2390{
2391 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2392 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002393 int runnable_avg;
2394
Paul Turner8165e142012-10-04 13:18:31 +02002395 u64 contrib;
2396
2397 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002398 se->avg.load_avg_contrib = div_u64(contrib,
2399 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002400
2401 /*
2402 * For group entities we need to compute a correction term in the case
2403 * that they are consuming <1 cpu so that we would contribute the same
2404 * load as a task of equal weight.
2405 *
2406 * Explicitly co-ordinating this measurement would be expensive, but
2407 * fortunately the sum of each cpus contribution forms a usable
2408 * lower-bound on the true value.
2409 *
2410 * Consider the aggregate of 2 contributions. Either they are disjoint
2411 * (and the sum represents true value) or they are disjoint and we are
2412 * understating by the aggregate of their overlap.
2413 *
2414 * Extending this to N cpus, for a given overlap, the maximum amount we
2415 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2416 * cpus that overlap for this interval and w_i is the interval width.
2417 *
2418 * On a small machine; the first term is well-bounded which bounds the
2419 * total error since w_i is a subset of the period. Whereas on a
2420 * larger machine, while this first term can be larger, if w_i is the
2421 * of consequential size guaranteed to see n_i*w_i quickly converge to
2422 * our upper bound of 1-cpu.
2423 */
2424 runnable_avg = atomic_read(&tg->runnable_avg);
2425 if (runnable_avg < NICE_0_LOAD) {
2426 se->avg.load_avg_contrib *= runnable_avg;
2427 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2428 }
Paul Turner8165e142012-10-04 13:18:31 +02002429}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002430
2431static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2432{
2433 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2434 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2435}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002436#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002437static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2438 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002439static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2440 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002441static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002442static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002443#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002444
Paul Turner8165e142012-10-04 13:18:31 +02002445static inline void __update_task_entity_contrib(struct sched_entity *se)
2446{
2447 u32 contrib;
2448
2449 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2450 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2451 contrib /= (se->avg.runnable_avg_period + 1);
2452 se->avg.load_avg_contrib = scale_load(contrib);
2453}
2454
Paul Turner2dac7542012-10-04 13:18:30 +02002455/* Compute the current contribution to load_avg by se, return any delta */
2456static long __update_entity_load_avg_contrib(struct sched_entity *se)
2457{
2458 long old_contrib = se->avg.load_avg_contrib;
2459
Paul Turner8165e142012-10-04 13:18:31 +02002460 if (entity_is_task(se)) {
2461 __update_task_entity_contrib(se);
2462 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002463 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002464 __update_group_entity_contrib(se);
2465 }
Paul Turner2dac7542012-10-04 13:18:30 +02002466
2467 return se->avg.load_avg_contrib - old_contrib;
2468}
2469
Paul Turner9ee474f2012-10-04 13:18:30 +02002470static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2471 long load_contrib)
2472{
2473 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2474 cfs_rq->blocked_load_avg -= load_contrib;
2475 else
2476 cfs_rq->blocked_load_avg = 0;
2477}
2478
Paul Turnerf1b17282012-10-04 13:18:31 +02002479static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2480
Paul Turner9d85f212012-10-04 13:18:29 +02002481/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002482static inline void update_entity_load_avg(struct sched_entity *se,
2483 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002484{
Paul Turner2dac7542012-10-04 13:18:30 +02002485 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2486 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002487 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002488
Paul Turnerf1b17282012-10-04 13:18:31 +02002489 /*
2490 * For a group entity we need to use their owned cfs_rq_clock_task() in
2491 * case they are the parent of a throttled hierarchy.
2492 */
2493 if (entity_is_task(se))
2494 now = cfs_rq_clock_task(cfs_rq);
2495 else
2496 now = cfs_rq_clock_task(group_cfs_rq(se));
2497
2498 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002499 return;
2500
2501 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002502
2503 if (!update_cfs_rq)
2504 return;
2505
Paul Turner2dac7542012-10-04 13:18:30 +02002506 if (se->on_rq)
2507 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002508 else
2509 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2510}
2511
2512/*
2513 * Decay the load contributed by all blocked children and account this so that
2514 * their contribution may appropriately discounted when they wake up.
2515 */
Paul Turneraff3e492012-10-04 13:18:30 +02002516static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002517{
Paul Turnerf1b17282012-10-04 13:18:31 +02002518 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002519 u64 decays;
2520
2521 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002522 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002523 return;
2524
Alex Shi25099402013-06-20 10:18:55 +08002525 if (atomic_long_read(&cfs_rq->removed_load)) {
2526 unsigned long removed_load;
2527 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002528 subtract_blocked_load_contrib(cfs_rq, removed_load);
2529 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002530
Paul Turneraff3e492012-10-04 13:18:30 +02002531 if (decays) {
2532 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2533 decays);
2534 atomic64_add(decays, &cfs_rq->decay_counter);
2535 cfs_rq->last_decay = now;
2536 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002537
2538 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002539}
Ben Segall18bf2802012-10-04 12:51:20 +02002540
Paul Turner2dac7542012-10-04 13:18:30 +02002541/* Add the load generated by se into cfs_rq's child load-average */
2542static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002543 struct sched_entity *se,
2544 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002545{
Paul Turneraff3e492012-10-04 13:18:30 +02002546 /*
2547 * We track migrations using entity decay_count <= 0, on a wake-up
2548 * migration we use a negative decay count to track the remote decays
2549 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002550 *
2551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2552 * are seen by enqueue_entity_load_avg() as a migration with an already
2553 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002554 */
2555 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002557 if (se->avg.decay_count) {
2558 /*
2559 * In a wake-up migration we have to approximate the
2560 * time sleeping. This is because we can't synchronize
2561 * clock_task between the two cpus, and it is not
2562 * guaranteed to be read-safe. Instead, we can
2563 * approximate this using our carried decays, which are
2564 * explicitly atomically readable.
2565 */
2566 se->avg.last_runnable_update -= (-se->avg.decay_count)
2567 << 20;
2568 update_entity_load_avg(se, 0);
2569 /* Indicate that we're now synchronized and on-rq */
2570 se->avg.decay_count = 0;
2571 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002572 wakeup = 0;
2573 } else {
Vincent Guittot93906752014-01-22 08:45:34 +01002574 __synchronize_entity_decay(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002575 }
2576
Paul Turneraff3e492012-10-04 13:18:30 +02002577 /* migrated tasks did not contribute to our blocked load */
2578 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002579 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002580 update_entity_load_avg(se, 0);
2581 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002582
Paul Turner2dac7542012-10-04 13:18:30 +02002583 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002584 /* we force update consideration on load-balancer moves */
2585 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002586}
2587
Paul Turner9ee474f2012-10-04 13:18:30 +02002588/*
2589 * Remove se's load from this cfs_rq child load-average, if the entity is
2590 * transitioning to a blocked state we track its projected decay using
2591 * blocked_load_avg.
2592 */
Paul Turner2dac7542012-10-04 13:18:30 +02002593static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002594 struct sched_entity *se,
2595 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002596{
Paul Turner9ee474f2012-10-04 13:18:30 +02002597 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002598 /* we force update consideration on load-balancer moves */
2599 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002600
Paul Turner2dac7542012-10-04 13:18:30 +02002601 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002602 if (sleep) {
2603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2604 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2605 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002606}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002607
2608/*
2609 * Update the rq's load with the elapsed running time before entering
2610 * idle. if the last scheduled task is not a CFS task, idle_enter will
2611 * be the only way to update the runnable statistic.
2612 */
2613void idle_enter_fair(struct rq *this_rq)
2614{
2615 update_rq_runnable_avg(this_rq, 1);
2616}
2617
2618/*
2619 * Update the rq's load with the elapsed idle time before a task is
2620 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2621 * be the only way to update the runnable statistic.
2622 */
2623void idle_exit_fair(struct rq *this_rq)
2624{
2625 update_rq_runnable_avg(this_rq, 0);
2626}
2627
Peter Zijlstra6e831252014-02-11 16:11:48 +01002628static int idle_balance(struct rq *this_rq);
2629
Peter Zijlstra38033c32014-01-23 20:32:21 +01002630#else /* CONFIG_SMP */
2631
Paul Turner9ee474f2012-10-04 13:18:30 +02002632static inline void update_entity_load_avg(struct sched_entity *se,
2633 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002634static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002635static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002636 struct sched_entity *se,
2637 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002638static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002639 struct sched_entity *se,
2640 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002641static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2642 int force_update) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002643
2644static inline int idle_balance(struct rq *rq)
2645{
2646 return 0;
2647}
2648
Peter Zijlstra38033c32014-01-23 20:32:21 +01002649#endif /* CONFIG_SMP */
Paul Turner9d85f212012-10-04 13:18:29 +02002650
Ingo Molnar2396af62007-08-09 11:16:48 +02002651static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002652{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002653#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002654 struct task_struct *tsk = NULL;
2655
2656 if (entity_is_task(se))
2657 tsk = task_of(se);
2658
Lucas De Marchi41acab82010-03-10 23:37:45 -03002659 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002660 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002661
2662 if ((s64)delta < 0)
2663 delta = 0;
2664
Lucas De Marchi41acab82010-03-10 23:37:45 -03002665 if (unlikely(delta > se->statistics.sleep_max))
2666 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002667
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002668 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002669 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002670
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002671 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002672 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002673 trace_sched_stat_sleep(tsk, delta);
2674 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002675 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002676 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002677 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002678
2679 if ((s64)delta < 0)
2680 delta = 0;
2681
Lucas De Marchi41acab82010-03-10 23:37:45 -03002682 if (unlikely(delta > se->statistics.block_max))
2683 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002684
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002685 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002686 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002687
Peter Zijlstrae4143142009-07-23 20:13:26 +02002688 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002689 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002690 se->statistics.iowait_sum += delta;
2691 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002692 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002693 }
2694
Andrew Vaginb781a602011-11-28 12:03:35 +03002695 trace_sched_stat_blocked(tsk, delta);
2696
Peter Zijlstrae4143142009-07-23 20:13:26 +02002697 /*
2698 * Blocking time is in units of nanosecs, so shift by
2699 * 20 to get a milliseconds-range estimation of the
2700 * amount of time that the task spent sleeping:
2701 */
2702 if (unlikely(prof_on == SLEEP_PROFILING)) {
2703 profile_hits(SLEEP_PROFILING,
2704 (void *)get_wchan(tsk),
2705 delta >> 20);
2706 }
2707 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002708 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002709 }
2710#endif
2711}
2712
Peter Zijlstraddc97292007-10-15 17:00:10 +02002713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2714{
2715#ifdef CONFIG_SCHED_DEBUG
2716 s64 d = se->vruntime - cfs_rq->min_vruntime;
2717
2718 if (d < 0)
2719 d = -d;
2720
2721 if (d > 3*sysctl_sched_latency)
2722 schedstat_inc(cfs_rq, nr_spread_over);
2723#endif
2724}
2725
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002726static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2728{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002729 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002730
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002731 /*
2732 * The 'current' period is already promised to the current tasks,
2733 * however the extra weight of the new task will slow them down a
2734 * little, place the new task so that it fits in the slot that
2735 * stays open at the end.
2736 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002737 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002738 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002739
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002740 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002741 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002742 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002743
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002744 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002745 * Halve their sleep time's effect, to allow
2746 * for a gentler effect of sleepers:
2747 */
2748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2749 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002750
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002751 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002752 }
2753
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002754 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302755 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002756}
2757
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002758static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2759
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002760static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002762{
2763 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002764 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302765 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002766 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002768 se->vruntime += cfs_rq->min_vruntime;
2769
2770 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002771 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002772 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002773 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002774 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002775 account_entity_enqueue(cfs_rq, se);
2776 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002777
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002778 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002779 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002780 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002781 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002782
Ingo Molnard2417e52007-08-09 11:16:47 +02002783 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002784 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002785 if (se != cfs_rq->curr)
2786 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002787 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002788
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002789 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002790 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002791 check_enqueue_throttle(cfs_rq);
2792 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002793}
2794
Rik van Riel2c13c9192011-02-01 09:48:37 -05002795static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002796{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002797 for_each_sched_entity(se) {
2798 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002799 if (cfs_rq->last != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002800 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002801
2802 cfs_rq->last = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002803 }
2804}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002805
Rik van Riel2c13c9192011-02-01 09:48:37 -05002806static void __clear_buddies_next(struct sched_entity *se)
2807{
2808 for_each_sched_entity(se) {
2809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002810 if (cfs_rq->next != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05002811 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002812
2813 cfs_rq->next = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05002814 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002815}
2816
Rik van Rielac53db52011-02-01 09:51:03 -05002817static void __clear_buddies_skip(struct sched_entity *se)
2818{
2819 for_each_sched_entity(se) {
2820 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01002821 if (cfs_rq->skip != se)
Rik van Rielac53db52011-02-01 09:51:03 -05002822 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01002823
2824 cfs_rq->skip = NULL;
Rik van Rielac53db52011-02-01 09:51:03 -05002825 }
2826}
2827
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002828static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2829{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002830 if (cfs_rq->last == se)
2831 __clear_buddies_last(se);
2832
2833 if (cfs_rq->next == se)
2834 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002835
2836 if (cfs_rq->skip == se)
2837 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002838}
2839
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002840static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002841
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002842static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002843dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002844{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002845 /*
2846 * Update run-time statistics of the 'current'.
2847 */
2848 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002849 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002850
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002851 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002852 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002853#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002854 if (entity_is_task(se)) {
2855 struct task_struct *tsk = task_of(se);
2856
2857 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002858 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002859 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002860 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002861 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002862#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002863 }
2864
Peter Zijlstra2002c692008-11-11 11:52:33 +01002865 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002866
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002867 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002868 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002869 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002870 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002871
2872 /*
2873 * Normalize the entity after updating the min_vruntime because the
2874 * update can refer to the ->curr item and we need to reflect this
2875 * movement in our normalized position.
2876 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002877 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002878 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002879
Paul Turnerd8b49862011-07-21 09:43:41 -07002880 /* return excess runtime on last dequeue */
2881 return_cfs_rq_runtime(cfs_rq);
2882
Peter Zijlstra1e876232011-05-17 16:21:10 -07002883 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002884 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002885}
2886
2887/*
2888 * Preempt the current task with a newly woken task if needed:
2889 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002890static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002891check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002892{
Peter Zijlstra11697832007-09-05 14:32:49 +02002893 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002894 struct sched_entity *se;
2895 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002896
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002897 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002898 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002899 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002900 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002901 /*
2902 * The current task ran long enough, ensure it doesn't get
2903 * re-elected due to buddy favours.
2904 */
2905 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002906 return;
2907 }
2908
2909 /*
2910 * Ensure that a task that missed wakeup preemption by a
2911 * narrow margin doesn't have to wait for a full slice.
2912 * This also mitigates buddy induced latencies under load.
2913 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002914 if (delta_exec < sysctl_sched_min_granularity)
2915 return;
2916
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002917 se = __pick_first_entity(cfs_rq);
2918 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002919
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002920 if (delta < 0)
2921 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002922
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002923 if (delta > ideal_runtime)
2924 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002925}
2926
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002927static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002928set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002929{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002930 /* 'current' is not kept within the tree. */
2931 if (se->on_rq) {
2932 /*
2933 * Any task has to be enqueued before it get to execute on
2934 * a CPU. So account for the time it spent waiting on the
2935 * runqueue.
2936 */
2937 update_stats_wait_end(cfs_rq, se);
2938 __dequeue_entity(cfs_rq, se);
2939 }
2940
Ingo Molnar79303e92007-08-09 11:16:47 +02002941 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002942 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002943#ifdef CONFIG_SCHEDSTATS
2944 /*
2945 * Track our maximum slice length, if the CPU's load is at
2946 * least twice that of our own weight (i.e. dont track it
2947 * when there are only lesser-weight tasks around):
2948 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002949 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002950 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002951 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2952 }
2953#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002954 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002955}
2956
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002957static int
2958wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2959
Rik van Rielac53db52011-02-01 09:51:03 -05002960/*
2961 * Pick the next process, keeping these things in mind, in this order:
2962 * 1) keep things fair between processes/task groups
2963 * 2) pick the "next" process, since someone really wants that to run
2964 * 3) pick the "last" process, for cache locality
2965 * 4) do not run the "skip" process, if something else is available
2966 */
Peter Zijlstra678d5712012-02-11 06:05:00 +01002967static struct sched_entity *
2968pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002969{
Peter Zijlstra678d5712012-02-11 06:05:00 +01002970 struct sched_entity *left = __pick_first_entity(cfs_rq);
2971 struct sched_entity *se;
2972
2973 /*
2974 * If curr is set we have to see if its left of the leftmost entity
2975 * still in the tree, provided there was anything in the tree at all.
2976 */
2977 if (!left || (curr && entity_before(curr, left)))
2978 left = curr;
2979
2980 se = left; /* ideally we run the leftmost entity */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002981
Rik van Rielac53db52011-02-01 09:51:03 -05002982 /*
2983 * Avoid running the skip buddy, if running something else can
2984 * be done without getting too unfair.
2985 */
2986 if (cfs_rq->skip == se) {
Peter Zijlstra678d5712012-02-11 06:05:00 +01002987 struct sched_entity *second;
2988
2989 if (se == curr) {
2990 second = __pick_first_entity(cfs_rq);
2991 } else {
2992 second = __pick_next_entity(se);
2993 if (!second || (curr && entity_before(curr, second)))
2994 second = curr;
2995 }
2996
Rik van Rielac53db52011-02-01 09:51:03 -05002997 if (second && wakeup_preempt_entity(second, left) < 1)
2998 se = second;
2999 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003000
Mike Galbraithf685cea2009-10-23 23:09:22 +02003001 /*
3002 * Prefer last buddy, try to return the CPU to a preempted task.
3003 */
3004 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3005 se = cfs_rq->last;
3006
Rik van Rielac53db52011-02-01 09:51:03 -05003007 /*
3008 * Someone really wants this to run. If it's not unfair, run it.
3009 */
3010 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3011 se = cfs_rq->next;
3012
Mike Galbraithf685cea2009-10-23 23:09:22 +02003013 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01003014
3015 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003016}
3017
Peter Zijlstra678d5712012-02-11 06:05:00 +01003018static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003019
Ingo Molnarab6cde22007-08-09 11:16:48 +02003020static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003021{
3022 /*
3023 * If still on the runqueue then deactivate_task()
3024 * was not called and update_curr() has to be done:
3025 */
3026 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02003027 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003028
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003029 /* throttle cfs_rqs exceeding runtime */
3030 check_cfs_rq_runtime(cfs_rq);
3031
Peter Zijlstraddc97292007-10-15 17:00:10 +02003032 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003033 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02003034 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003035 /* Put 'current' back into the tree. */
3036 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02003037 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02003038 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003039 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02003040 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003041}
3042
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003043static void
3044entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003045{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003046 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003047 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003048 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003049 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003050
Paul Turner43365bd2010-12-15 19:10:17 -08003051 /*
Paul Turner9d85f212012-10-04 13:18:29 +02003052 * Ensure that runnable average is periodically updated.
3053 */
Paul Turner9ee474f2012-10-04 13:18:30 +02003054 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02003055 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02003056 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02003057
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003058#ifdef CONFIG_SCHED_HRTICK
3059 /*
3060 * queued ticks are scheduled to match the slice, so don't bother
3061 * validating it and just reschedule.
3062 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003063 if (queued) {
3064 resched_task(rq_of(cfs_rq)->curr);
3065 return;
3066 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003067 /*
3068 * don't let the period tick interfere with the hrtick preemption
3069 */
3070 if (!sched_feat(DOUBLE_TICK) &&
3071 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3072 return;
3073#endif
3074
Yong Zhang2c2efae2011-07-29 16:20:33 +08003075 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003076 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003077}
3078
Paul Turnerab84d312011-07-21 09:43:28 -07003079
3080/**************************************************
3081 * CFS bandwidth control machinery
3082 */
3083
3084#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02003085
3086#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01003087static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003088
3089static inline bool cfs_bandwidth_used(void)
3090{
Ingo Molnarc5905af2012-02-24 08:31:31 +01003091 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003092}
3093
Ben Segall1ee14e62013-10-16 11:16:12 -07003094void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003095{
Ben Segall1ee14e62013-10-16 11:16:12 -07003096 static_key_slow_inc(&__cfs_bandwidth_used);
3097}
3098
3099void cfs_bandwidth_usage_dec(void)
3100{
3101 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003102}
3103#else /* HAVE_JUMP_LABEL */
3104static bool cfs_bandwidth_used(void)
3105{
3106 return true;
3107}
3108
Ben Segall1ee14e62013-10-16 11:16:12 -07003109void cfs_bandwidth_usage_inc(void) {}
3110void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003111#endif /* HAVE_JUMP_LABEL */
3112
Paul Turnerab84d312011-07-21 09:43:28 -07003113/*
3114 * default period for cfs group bandwidth.
3115 * default: 0.1s, units: nanoseconds
3116 */
3117static inline u64 default_cfs_period(void)
3118{
3119 return 100000000ULL;
3120}
Paul Turnerec12cb72011-07-21 09:43:30 -07003121
3122static inline u64 sched_cfs_bandwidth_slice(void)
3123{
3124 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3125}
3126
Paul Turnera9cf55b2011-07-21 09:43:32 -07003127/*
3128 * Replenish runtime according to assigned quota and update expiration time.
3129 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3130 * additional synchronization around rq->lock.
3131 *
3132 * requires cfs_b->lock
3133 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003134void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07003135{
3136 u64 now;
3137
3138 if (cfs_b->quota == RUNTIME_INF)
3139 return;
3140
3141 now = sched_clock_cpu(smp_processor_id());
3142 cfs_b->runtime = cfs_b->quota;
3143 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3144}
3145
Peter Zijlstra029632f2011-10-25 10:00:11 +02003146static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3147{
3148 return &tg->cfs_bandwidth;
3149}
3150
Paul Turnerf1b17282012-10-04 13:18:31 +02003151/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3152static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3153{
3154 if (unlikely(cfs_rq->throttle_count))
3155 return cfs_rq->throttled_clock_task;
3156
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003157 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02003158}
3159
Paul Turner85dac902011-07-21 09:43:33 -07003160/* returns 0 on failure to allocate runtime */
3161static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07003162{
3163 struct task_group *tg = cfs_rq->tg;
3164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003165 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003166
3167 /* note: this is a positive sum as runtime_remaining <= 0 */
3168 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3169
3170 raw_spin_lock(&cfs_b->lock);
3171 if (cfs_b->quota == RUNTIME_INF)
3172 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07003173 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003174 /*
3175 * If the bandwidth pool has become inactive, then at least one
3176 * period must have elapsed since the last consumption.
3177 * Refresh the global state and ensure bandwidth timer becomes
3178 * active.
3179 */
3180 if (!cfs_b->timer_active) {
3181 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07003182 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003183 }
Paul Turner58088ad2011-07-21 09:43:31 -07003184
3185 if (cfs_b->runtime > 0) {
3186 amount = min(cfs_b->runtime, min_amount);
3187 cfs_b->runtime -= amount;
3188 cfs_b->idle = 0;
3189 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003190 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07003191 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003192 raw_spin_unlock(&cfs_b->lock);
3193
3194 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003195 /*
3196 * we may have advanced our local expiration to account for allowed
3197 * spread between our sched_clock and the one on which runtime was
3198 * issued.
3199 */
3200 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3201 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07003202
3203 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003204}
3205
3206/*
3207 * Note: This depends on the synchronization provided by sched_clock and the
3208 * fact that rq->clock snapshots this value.
3209 */
3210static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3211{
3212 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003213
3214 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003215 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07003216 return;
3217
3218 if (cfs_rq->runtime_remaining < 0)
3219 return;
3220
3221 /*
3222 * If the local deadline has passed we have to consider the
3223 * possibility that our sched_clock is 'fast' and the global deadline
3224 * has not truly expired.
3225 *
3226 * Fortunately we can check determine whether this the case by checking
3227 * whether the global deadline has advanced.
3228 */
3229
3230 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3231 /* extend local deadline, drift is bounded above by 2 ticks */
3232 cfs_rq->runtime_expires += TICK_NSEC;
3233 } else {
3234 /* global deadline is ahead, expiration has passed */
3235 cfs_rq->runtime_remaining = 0;
3236 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003237}
3238
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003239static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003240{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003241 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003242 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003243 expire_cfs_rq_runtime(cfs_rq);
3244
3245 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003246 return;
3247
Paul Turner85dac902011-07-21 09:43:33 -07003248 /*
3249 * if we're unable to extend our runtime we resched so that the active
3250 * hierarchy can be throttled
3251 */
3252 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3253 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003254}
3255
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003256static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003257void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003258{
Paul Turner56f570e2011-11-07 20:26:33 -08003259 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003260 return;
3261
3262 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3263}
3264
Paul Turner85dac902011-07-21 09:43:33 -07003265static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3266{
Paul Turner56f570e2011-11-07 20:26:33 -08003267 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003268}
3269
Paul Turner64660c82011-07-21 09:43:36 -07003270/* check whether cfs_rq, or any parent, is throttled */
3271static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3272{
Paul Turner56f570e2011-11-07 20:26:33 -08003273 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003274}
3275
3276/*
3277 * Ensure that neither of the group entities corresponding to src_cpu or
3278 * dest_cpu are members of a throttled hierarchy when performing group
3279 * load-balance operations.
3280 */
3281static inline int throttled_lb_pair(struct task_group *tg,
3282 int src_cpu, int dest_cpu)
3283{
3284 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3285
3286 src_cfs_rq = tg->cfs_rq[src_cpu];
3287 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3288
3289 return throttled_hierarchy(src_cfs_rq) ||
3290 throttled_hierarchy(dest_cfs_rq);
3291}
3292
3293/* updated child weight may affect parent so we have to do this bottom up */
3294static int tg_unthrottle_up(struct task_group *tg, void *data)
3295{
3296 struct rq *rq = data;
3297 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3298
3299 cfs_rq->throttle_count--;
3300#ifdef CONFIG_SMP
3301 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003302 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003303 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003304 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003305 }
3306#endif
3307
3308 return 0;
3309}
3310
3311static int tg_throttle_down(struct task_group *tg, void *data)
3312{
3313 struct rq *rq = data;
3314 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3315
Paul Turner82958362012-10-04 13:18:31 +02003316 /* group is entering throttled state, stop time */
3317 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003318 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003319 cfs_rq->throttle_count++;
3320
3321 return 0;
3322}
3323
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003324static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003325{
3326 struct rq *rq = rq_of(cfs_rq);
3327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3328 struct sched_entity *se;
3329 long task_delta, dequeue = 1;
3330
3331 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3332
Paul Turnerf1b17282012-10-04 13:18:31 +02003333 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003334 rcu_read_lock();
3335 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3336 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003337
3338 task_delta = cfs_rq->h_nr_running;
3339 for_each_sched_entity(se) {
3340 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3341 /* throttled entity or throttle-on-deactivate */
3342 if (!se->on_rq)
3343 break;
3344
3345 if (dequeue)
3346 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3347 qcfs_rq->h_nr_running -= task_delta;
3348
3349 if (qcfs_rq->load.weight)
3350 dequeue = 0;
3351 }
3352
3353 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003354 sub_nr_running(rq, task_delta);
Paul Turner85dac902011-07-21 09:43:33 -07003355
3356 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003357 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003358 raw_spin_lock(&cfs_b->lock);
3359 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003360 if (!cfs_b->timer_active)
3361 __start_cfs_bandwidth(cfs_b);
Paul Turner85dac902011-07-21 09:43:33 -07003362 raw_spin_unlock(&cfs_b->lock);
3363}
3364
Peter Zijlstra029632f2011-10-25 10:00:11 +02003365void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003366{
3367 struct rq *rq = rq_of(cfs_rq);
3368 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3369 struct sched_entity *se;
3370 int enqueue = 1;
3371 long task_delta;
3372
Michael Wang22b958d2013-06-04 14:23:39 +08003373 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003374
3375 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003376
3377 update_rq_clock(rq);
3378
Paul Turner671fd9d2011-07-21 09:43:34 -07003379 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003380 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003381 list_del_rcu(&cfs_rq->throttled_list);
3382 raw_spin_unlock(&cfs_b->lock);
3383
Paul Turner64660c82011-07-21 09:43:36 -07003384 /* update hierarchical throttle state */
3385 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3386
Paul Turner671fd9d2011-07-21 09:43:34 -07003387 if (!cfs_rq->load.weight)
3388 return;
3389
3390 task_delta = cfs_rq->h_nr_running;
3391 for_each_sched_entity(se) {
3392 if (se->on_rq)
3393 enqueue = 0;
3394
3395 cfs_rq = cfs_rq_of(se);
3396 if (enqueue)
3397 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3398 cfs_rq->h_nr_running += task_delta;
3399
3400 if (cfs_rq_throttled(cfs_rq))
3401 break;
3402 }
3403
3404 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003405 add_nr_running(rq, task_delta);
Paul Turner671fd9d2011-07-21 09:43:34 -07003406
3407 /* determine whether we need to wake up potentially idle cpu */
3408 if (rq->curr == rq->idle && rq->cfs.nr_running)
3409 resched_task(rq->curr);
3410}
3411
3412static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3413 u64 remaining, u64 expires)
3414{
3415 struct cfs_rq *cfs_rq;
3416 u64 runtime = remaining;
3417
3418 rcu_read_lock();
3419 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3420 throttled_list) {
3421 struct rq *rq = rq_of(cfs_rq);
3422
3423 raw_spin_lock(&rq->lock);
3424 if (!cfs_rq_throttled(cfs_rq))
3425 goto next;
3426
3427 runtime = -cfs_rq->runtime_remaining + 1;
3428 if (runtime > remaining)
3429 runtime = remaining;
3430 remaining -= runtime;
3431
3432 cfs_rq->runtime_remaining += runtime;
3433 cfs_rq->runtime_expires = expires;
3434
3435 /* we check whether we're throttled above */
3436 if (cfs_rq->runtime_remaining > 0)
3437 unthrottle_cfs_rq(cfs_rq);
3438
3439next:
3440 raw_spin_unlock(&rq->lock);
3441
3442 if (!remaining)
3443 break;
3444 }
3445 rcu_read_unlock();
3446
3447 return remaining;
3448}
3449
Paul Turner58088ad2011-07-21 09:43:31 -07003450/*
3451 * Responsible for refilling a task_group's bandwidth and unthrottling its
3452 * cfs_rqs as appropriate. If there has been no activity within the last
3453 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3454 * used to track this state.
3455 */
3456static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3457{
Paul Turner671fd9d2011-07-21 09:43:34 -07003458 u64 runtime, runtime_expires;
3459 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003460
3461 raw_spin_lock(&cfs_b->lock);
3462 /* no need to continue the timer with no bandwidth constraint */
3463 if (cfs_b->quota == RUNTIME_INF)
3464 goto out_unlock;
3465
Paul Turner671fd9d2011-07-21 09:43:34 -07003466 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 /* idle depends on !throttled (for the case of a large deficit) */
3468 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003469 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003470
Paul Turnera9cf55b2011-07-21 09:43:32 -07003471 /* if we're going inactive then everything else can be deferred */
3472 if (idle)
3473 goto out_unlock;
3474
Ben Segall927b54f2013-10-16 11:16:22 -07003475 /*
3476 * if we have relooped after returning idle once, we need to update our
3477 * status as actually running, so that other cpus doing
3478 * __start_cfs_bandwidth will stop trying to cancel us.
3479 */
3480 cfs_b->timer_active = 1;
3481
Paul Turnera9cf55b2011-07-21 09:43:32 -07003482 __refill_cfs_bandwidth_runtime(cfs_b);
3483
Paul Turner671fd9d2011-07-21 09:43:34 -07003484 if (!throttled) {
3485 /* mark as potentially idle for the upcoming period */
3486 cfs_b->idle = 1;
3487 goto out_unlock;
3488 }
Paul Turner58088ad2011-07-21 09:43:31 -07003489
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003490 /* account preceding periods in which throttling occurred */
3491 cfs_b->nr_throttled += overrun;
3492
Paul Turner671fd9d2011-07-21 09:43:34 -07003493 /*
3494 * There are throttled entities so we must first use the new bandwidth
3495 * to unthrottle them before making it generally available. This
3496 * ensures that all existing debts will be paid before a new cfs_rq is
3497 * allowed to run.
3498 */
3499 runtime = cfs_b->runtime;
3500 runtime_expires = cfs_b->runtime_expires;
3501 cfs_b->runtime = 0;
3502
3503 /*
3504 * This check is repeated as we are holding onto the new bandwidth
3505 * while we unthrottle. This can potentially race with an unthrottled
3506 * group trying to acquire new bandwidth from the global pool.
3507 */
3508 while (throttled && runtime > 0) {
3509 raw_spin_unlock(&cfs_b->lock);
3510 /* we can't nest cfs_b->lock while distributing bandwidth */
3511 runtime = distribute_cfs_runtime(cfs_b, runtime,
3512 runtime_expires);
3513 raw_spin_lock(&cfs_b->lock);
3514
3515 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3516 }
3517
3518 /* return (any) remaining runtime */
3519 cfs_b->runtime = runtime;
3520 /*
3521 * While we are ensured activity in the period following an
3522 * unthrottle, this also covers the case in which the new bandwidth is
3523 * insufficient to cover the existing bandwidth deficit. (Forcing the
3524 * timer to remain active while there are any throttled entities.)
3525 */
3526 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003527out_unlock:
3528 if (idle)
3529 cfs_b->timer_active = 0;
3530 raw_spin_unlock(&cfs_b->lock);
3531
3532 return idle;
3533}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003534
Paul Turnerd8b49862011-07-21 09:43:41 -07003535/* a cfs_rq won't donate quota below this amount */
3536static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3537/* minimum remaining period time to redistribute slack quota */
3538static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3539/* how long we wait to gather additional slack before distributing */
3540static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3541
Ben Segalldb06e782013-10-16 11:16:17 -07003542/*
3543 * Are we near the end of the current quota period?
3544 *
3545 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3546 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3547 * migrate_hrtimers, base is never cleared, so we are fine.
3548 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003549static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3550{
3551 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3552 u64 remaining;
3553
3554 /* if the call-back is running a quota refresh is already occurring */
3555 if (hrtimer_callback_running(refresh_timer))
3556 return 1;
3557
3558 /* is a quota refresh about to occur? */
3559 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3560 if (remaining < min_expire)
3561 return 1;
3562
3563 return 0;
3564}
3565
3566static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3567{
3568 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3569
3570 /* if there's a quota refresh soon don't bother with slack */
3571 if (runtime_refresh_within(cfs_b, min_left))
3572 return;
3573
3574 start_bandwidth_timer(&cfs_b->slack_timer,
3575 ns_to_ktime(cfs_bandwidth_slack_period));
3576}
3577
3578/* we know any runtime found here is valid as update_curr() precedes return */
3579static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3580{
3581 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3582 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3583
3584 if (slack_runtime <= 0)
3585 return;
3586
3587 raw_spin_lock(&cfs_b->lock);
3588 if (cfs_b->quota != RUNTIME_INF &&
3589 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3590 cfs_b->runtime += slack_runtime;
3591
3592 /* we are under rq->lock, defer unthrottling using a timer */
3593 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3594 !list_empty(&cfs_b->throttled_cfs_rq))
3595 start_cfs_slack_bandwidth(cfs_b);
3596 }
3597 raw_spin_unlock(&cfs_b->lock);
3598
3599 /* even if it's not valid for return we don't want to try again */
3600 cfs_rq->runtime_remaining -= slack_runtime;
3601}
3602
3603static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3604{
Paul Turner56f570e2011-11-07 20:26:33 -08003605 if (!cfs_bandwidth_used())
3606 return;
3607
Paul Turnerfccfdc62011-11-07 20:26:34 -08003608 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003609 return;
3610
3611 __return_cfs_rq_runtime(cfs_rq);
3612}
3613
3614/*
3615 * This is done with a timer (instead of inline with bandwidth return) since
3616 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3617 */
3618static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3619{
3620 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3621 u64 expires;
3622
3623 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003624 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003625 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3626 raw_spin_unlock(&cfs_b->lock);
3627 return;
3628 }
3629
Paul Turnerd8b49862011-07-21 09:43:41 -07003630 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3631 runtime = cfs_b->runtime;
3632 cfs_b->runtime = 0;
3633 }
3634 expires = cfs_b->runtime_expires;
3635 raw_spin_unlock(&cfs_b->lock);
3636
3637 if (!runtime)
3638 return;
3639
3640 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3641
3642 raw_spin_lock(&cfs_b->lock);
3643 if (expires == cfs_b->runtime_expires)
3644 cfs_b->runtime = runtime;
3645 raw_spin_unlock(&cfs_b->lock);
3646}
3647
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003648/*
3649 * When a group wakes up we want to make sure that its quota is not already
3650 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3651 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3652 */
3653static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3654{
Paul Turner56f570e2011-11-07 20:26:33 -08003655 if (!cfs_bandwidth_used())
3656 return;
3657
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003658 /* an active group must be handled by the update_curr()->put() path */
3659 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3660 return;
3661
3662 /* ensure the group is not already throttled */
3663 if (cfs_rq_throttled(cfs_rq))
3664 return;
3665
3666 /* update runtime allocation */
3667 account_cfs_rq_runtime(cfs_rq, 0);
3668 if (cfs_rq->runtime_remaining <= 0)
3669 throttle_cfs_rq(cfs_rq);
3670}
3671
3672/* conditionally throttle active cfs_rq's from put_prev_entity() */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003673static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003674{
Paul Turner56f570e2011-11-07 20:26:33 -08003675 if (!cfs_bandwidth_used())
Peter Zijlstra678d5712012-02-11 06:05:00 +01003676 return false;
Paul Turner56f570e2011-11-07 20:26:33 -08003677
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003678 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003679 return false;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003680
3681 /*
3682 * it's possible for a throttled entity to be forced into a running
3683 * state (e.g. set_curr_task), in this case we're finished.
3684 */
3685 if (cfs_rq_throttled(cfs_rq))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003686 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003687
3688 throttle_cfs_rq(cfs_rq);
Peter Zijlstra678d5712012-02-11 06:05:00 +01003689 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003690}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003691
Peter Zijlstra029632f2011-10-25 10:00:11 +02003692static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3693{
3694 struct cfs_bandwidth *cfs_b =
3695 container_of(timer, struct cfs_bandwidth, slack_timer);
3696 do_sched_cfs_slack_timer(cfs_b);
3697
3698 return HRTIMER_NORESTART;
3699}
3700
3701static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3702{
3703 struct cfs_bandwidth *cfs_b =
3704 container_of(timer, struct cfs_bandwidth, period_timer);
3705 ktime_t now;
3706 int overrun;
3707 int idle = 0;
3708
3709 for (;;) {
3710 now = hrtimer_cb_get_time(timer);
3711 overrun = hrtimer_forward(timer, now, cfs_b->period);
3712
3713 if (!overrun)
3714 break;
3715
3716 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3717 }
3718
3719 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3720}
3721
3722void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3723{
3724 raw_spin_lock_init(&cfs_b->lock);
3725 cfs_b->runtime = 0;
3726 cfs_b->quota = RUNTIME_INF;
3727 cfs_b->period = ns_to_ktime(default_cfs_period());
3728
3729 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3730 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3731 cfs_b->period_timer.function = sched_cfs_period_timer;
3732 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3733 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3734}
3735
3736static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3737{
3738 cfs_rq->runtime_enabled = 0;
3739 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3740}
3741
3742/* requires cfs_b->lock, may release to reprogram timer */
3743void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744{
3745 /*
3746 * The timer may be active because we're trying to set a new bandwidth
3747 * period or because we're racing with the tear-down path
3748 * (timer_active==0 becomes visible before the hrtimer call-back
3749 * terminates). In either case we ensure that it's re-programmed
3750 */
Ben Segall927b54f2013-10-16 11:16:22 -07003751 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3752 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3753 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003754 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07003755 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02003756 raw_spin_lock(&cfs_b->lock);
3757 /* if someone else restarted the timer then we're done */
3758 if (cfs_b->timer_active)
3759 return;
3760 }
3761
3762 cfs_b->timer_active = 1;
3763 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3764}
3765
3766static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767{
3768 hrtimer_cancel(&cfs_b->period_timer);
3769 hrtimer_cancel(&cfs_b->slack_timer);
3770}
3771
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003772static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003773{
3774 struct cfs_rq *cfs_rq;
3775
3776 for_each_leaf_cfs_rq(rq, cfs_rq) {
3777 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3778
3779 if (!cfs_rq->runtime_enabled)
3780 continue;
3781
3782 /*
3783 * clock_task is not advancing so we just need to make sure
3784 * there's some valid quota amount
3785 */
3786 cfs_rq->runtime_remaining = cfs_b->quota;
3787 if (cfs_rq_throttled(cfs_rq))
3788 unthrottle_cfs_rq(cfs_rq);
3789 }
3790}
3791
3792#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003793static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3794{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003795 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003796}
3797
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003798static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Peter Zijlstra678d5712012-02-11 06:05:00 +01003799static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003800static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003801static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003802
3803static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3804{
3805 return 0;
3806}
Paul Turner64660c82011-07-21 09:43:36 -07003807
3808static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3809{
3810 return 0;
3811}
3812
3813static inline int throttled_lb_pair(struct task_group *tg,
3814 int src_cpu, int dest_cpu)
3815{
3816 return 0;
3817}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003818
3819void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3820
3821#ifdef CONFIG_FAIR_GROUP_SCHED
3822static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003823#endif
3824
Peter Zijlstra029632f2011-10-25 10:00:11 +02003825static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3826{
3827 return NULL;
3828}
3829static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003830static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003831
3832#endif /* CONFIG_CFS_BANDWIDTH */
3833
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003834/**************************************************
3835 * CFS operations on tasks:
3836 */
3837
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003838#ifdef CONFIG_SCHED_HRTICK
3839static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3840{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003841 struct sched_entity *se = &p->se;
3842 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3843
3844 WARN_ON(task_rq(p) != rq);
3845
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003846 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003847 u64 slice = sched_slice(cfs_rq, se);
3848 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3849 s64 delta = slice - ran;
3850
3851 if (delta < 0) {
3852 if (rq->curr == p)
3853 resched_task(p);
3854 return;
3855 }
3856
3857 /*
3858 * Don't schedule slices shorter than 10000ns, that just
3859 * doesn't make sense. Rely on vruntime for fairness.
3860 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003861 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003862 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003863
Peter Zijlstra31656512008-07-18 18:01:23 +02003864 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003865 }
3866}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003867
3868/*
3869 * called from enqueue/dequeue and updates the hrtick when the
3870 * current task is from our class and nr_running is low enough
3871 * to matter.
3872 */
3873static void hrtick_update(struct rq *rq)
3874{
3875 struct task_struct *curr = rq->curr;
3876
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003877 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003878 return;
3879
3880 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3881 hrtick_start_fair(rq, curr);
3882}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303883#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003884static inline void
3885hrtick_start_fair(struct rq *rq, struct task_struct *p)
3886{
3887}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003888
3889static inline void hrtick_update(struct rq *rq)
3890{
3891}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003892#endif
3893
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003894/*
3895 * The enqueue_task method is called before nr_running is
3896 * increased. Here we update the fair scheduling stats and
3897 * then put the task into the rbtree:
3898 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003899static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003900enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003901{
3902 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003903 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003904
3905 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003906 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003907 break;
3908 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003909 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003910
3911 /*
3912 * end evaluation on encountering a throttled cfs_rq
3913 *
3914 * note: in the case of encountering a throttled cfs_rq we will
3915 * post the final h_nr_running increment below.
3916 */
3917 if (cfs_rq_throttled(cfs_rq))
3918 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003919 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003920
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003921 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003922 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003923
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003924 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003925 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003926 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003927
Paul Turner85dac902011-07-21 09:43:33 -07003928 if (cfs_rq_throttled(cfs_rq))
3929 break;
3930
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003931 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003932 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003933 }
3934
Ben Segall18bf2802012-10-04 12:51:20 +02003935 if (!se) {
3936 update_rq_runnable_avg(rq, rq->nr_running);
Kirill Tkhai72465442014-05-09 03:00:14 +04003937 add_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02003938 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003939 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003940}
3941
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003942static void set_next_buddy(struct sched_entity *se);
3943
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003944/*
3945 * The dequeue_task method is called before nr_running is
3946 * decreased. We remove the task from the rbtree and
3947 * update the fair scheduling stats:
3948 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003949static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003950{
3951 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003952 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003953 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003954
3955 for_each_sched_entity(se) {
3956 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003957 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003958
3959 /*
3960 * end evaluation on encountering a throttled cfs_rq
3961 *
3962 * note: in the case of encountering a throttled cfs_rq we will
3963 * post the final h_nr_running decrement below.
3964 */
3965 if (cfs_rq_throttled(cfs_rq))
3966 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003967 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003968
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003969 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003970 if (cfs_rq->load.weight) {
3971 /*
3972 * Bias pick_next to pick a task from this cfs_rq, as
3973 * p is sleeping when it is within its sched_slice.
3974 */
3975 if (task_sleep && parent_entity(se))
3976 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003977
3978 /* avoid re-evaluating load for this entity */
3979 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003980 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003981 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003982 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003983 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003984
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003985 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003986 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003987 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003988
Paul Turner85dac902011-07-21 09:43:33 -07003989 if (cfs_rq_throttled(cfs_rq))
3990 break;
3991
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003992 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003993 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003994 }
3995
Ben Segall18bf2802012-10-04 12:51:20 +02003996 if (!se) {
Kirill Tkhai72465442014-05-09 03:00:14 +04003997 sub_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02003998 update_rq_runnable_avg(rq, 1);
3999 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004000 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004001}
4002
Gregory Haskinse7693a32008-01-25 21:08:09 +01004003#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02004004/* Used instead of source_load when we know the type == 0 */
4005static unsigned long weighted_cpuload(const int cpu)
4006{
Alex Shib92486c2013-06-20 10:18:50 +08004007 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004008}
4009
4010/*
4011 * Return a low guess at the load of a migration-source cpu weighted
4012 * according to the scheduling class and "nice" value.
4013 *
4014 * We want to under-estimate the load of migration sources, to
4015 * balance conservatively.
4016 */
4017static unsigned long source_load(int cpu, int type)
4018{
4019 struct rq *rq = cpu_rq(cpu);
4020 unsigned long total = weighted_cpuload(cpu);
4021
4022 if (type == 0 || !sched_feat(LB_BIAS))
4023 return total;
4024
4025 return min(rq->cpu_load[type-1], total);
4026}
4027
4028/*
4029 * Return a high guess at the load of a migration-target cpu weighted
4030 * according to the scheduling class and "nice" value.
4031 */
4032static unsigned long target_load(int cpu, int type)
4033{
4034 struct rq *rq = cpu_rq(cpu);
4035 unsigned long total = weighted_cpuload(cpu);
4036
4037 if (type == 0 || !sched_feat(LB_BIAS))
4038 return total;
4039
4040 return max(rq->cpu_load[type-1], total);
4041}
4042
4043static unsigned long power_of(int cpu)
4044{
4045 return cpu_rq(cpu)->cpu_power;
4046}
4047
4048static unsigned long cpu_avg_load_per_task(int cpu)
4049{
4050 struct rq *rq = cpu_rq(cpu);
4051 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08004052 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004053
4054 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08004055 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004056
4057 return 0;
4058}
4059
Michael Wang62470412013-07-04 12:55:51 +08004060static void record_wakee(struct task_struct *p)
4061{
4062 /*
4063 * Rough decay (wiping) for cost saving, don't worry
4064 * about the boundary, really active task won't care
4065 * about the loss.
4066 */
4067 if (jiffies > current->wakee_flip_decay_ts + HZ) {
Rik van Riel096aa332014-05-16 00:13:32 -04004068 current->wakee_flips >>= 1;
Michael Wang62470412013-07-04 12:55:51 +08004069 current->wakee_flip_decay_ts = jiffies;
4070 }
4071
4072 if (current->last_wakee != p) {
4073 current->last_wakee = p;
4074 current->wakee_flips++;
4075 }
4076}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004077
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004078static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004079{
4080 struct sched_entity *se = &p->se;
4081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004082 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004083
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004084#ifndef CONFIG_64BIT
4085 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004086
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004087 do {
4088 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4089 smp_rmb();
4090 min_vruntime = cfs_rq->min_vruntime;
4091 } while (min_vruntime != min_vruntime_copy);
4092#else
4093 min_vruntime = cfs_rq->min_vruntime;
4094#endif
4095
4096 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08004097 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004098}
4099
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004100#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004101/*
4102 * effective_load() calculates the load change as seen from the root_task_group
4103 *
4104 * Adding load to a group doesn't make a group heavier, but can cause movement
4105 * of group shares between cpus. Assuming the shares were perfectly aligned one
4106 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004107 *
4108 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4109 * on this @cpu and results in a total addition (subtraction) of @wg to the
4110 * total group weight.
4111 *
4112 * Given a runqueue weight distribution (rw_i) we can compute a shares
4113 * distribution (s_i) using:
4114 *
4115 * s_i = rw_i / \Sum rw_j (1)
4116 *
4117 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4118 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4119 * shares distribution (s_i):
4120 *
4121 * rw_i = { 2, 4, 1, 0 }
4122 * s_i = { 2/7, 4/7, 1/7, 0 }
4123 *
4124 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4125 * task used to run on and the CPU the waker is running on), we need to
4126 * compute the effect of waking a task on either CPU and, in case of a sync
4127 * wakeup, compute the effect of the current task going to sleep.
4128 *
4129 * So for a change of @wl to the local @cpu with an overall group weight change
4130 * of @wl we can compute the new shares distribution (s'_i) using:
4131 *
4132 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4133 *
4134 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4135 * differences in waking a task to CPU 0. The additional task changes the
4136 * weight and shares distributions like:
4137 *
4138 * rw'_i = { 3, 4, 1, 0 }
4139 * s'_i = { 3/8, 4/8, 1/8, 0 }
4140 *
4141 * We can then compute the difference in effective weight by using:
4142 *
4143 * dw_i = S * (s'_i - s_i) (3)
4144 *
4145 * Where 'S' is the group weight as seen by its parent.
4146 *
4147 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4148 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4149 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004150 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004151static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004152{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004153 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004154
Rik van Riel9722c2d2014-01-06 11:39:12 +00004155 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004156 return wl;
4157
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004158 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004159 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004160
Paul Turner977dda72011-01-14 17:57:50 -08004161 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004162
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004163 /*
4164 * W = @wg + \Sum rw_j
4165 */
4166 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004167
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004168 /*
4169 * w = rw_i + @wl
4170 */
4171 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004172
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004173 /*
4174 * wl = S * s'_i; see (2)
4175 */
4176 if (W > 0 && w < W)
4177 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08004178 else
4179 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004180
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004181 /*
4182 * Per the above, wl is the new se->load.weight value; since
4183 * those are clipped to [MIN_SHARES, ...) do so now. See
4184 * calc_cfs_shares().
4185 */
Paul Turner977dda72011-01-14 17:57:50 -08004186 if (wl < MIN_SHARES)
4187 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004188
4189 /*
4190 * wl = dw_i = S * (s'_i - s_i); see (3)
4191 */
Paul Turner977dda72011-01-14 17:57:50 -08004192 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004193
4194 /*
4195 * Recursively apply this logic to all parent groups to compute
4196 * the final effective load change on the root group. Since
4197 * only the @tg group gets extra weight, all parent groups can
4198 * only redistribute existing shares. @wl is the shift in shares
4199 * resulting from this level per the above.
4200 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004201 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004202 }
4203
4204 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004205}
4206#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004207
Mel Gorman58d081b2013-10-07 11:29:10 +01004208static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004209{
Peter Zijlstra83378262008-06-27 13:41:37 +02004210 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004211}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004212
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004213#endif
4214
Michael Wang62470412013-07-04 12:55:51 +08004215static int wake_wide(struct task_struct *p)
4216{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08004217 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08004218
4219 /*
4220 * Yeah, it's the switching-frequency, could means many wakee or
4221 * rapidly switch, use factor here will just help to automatically
4222 * adjust the loose-degree, so bigger node will lead to more pull.
4223 */
4224 if (p->wakee_flips > factor) {
4225 /*
4226 * wakee is somewhat hot, it needs certain amount of cpu
4227 * resource, so if waker is far more hot, prefer to leave
4228 * it alone.
4229 */
4230 if (current->wakee_flips > (factor * p->wakee_flips))
4231 return 1;
4232 }
4233
4234 return 0;
4235}
4236
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004237static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004238{
Paul Turnere37b6a72011-01-21 20:44:59 -08004239 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004240 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004241 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004242 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004243 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004244 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004245
Michael Wang62470412013-07-04 12:55:51 +08004246 /*
4247 * If we wake multiple tasks be careful to not bounce
4248 * ourselves around too much.
4249 */
4250 if (wake_wide(p))
4251 return 0;
4252
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004253 idx = sd->wake_idx;
4254 this_cpu = smp_processor_id();
4255 prev_cpu = task_cpu(p);
4256 load = source_load(prev_cpu, idx);
4257 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004258
4259 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004260 * If sync wakeup then subtract the (maximum possible)
4261 * effect of the currently running task from the load
4262 * of the current CPU:
4263 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004264 if (sync) {
4265 tg = task_group(current);
4266 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004267
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004268 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004269 load += effective_load(tg, prev_cpu, 0, -weight);
4270 }
4271
4272 tg = task_group(p);
4273 weight = p->se.load.weight;
4274
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004275 /*
4276 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004277 * due to the sync cause above having dropped this_load to 0, we'll
4278 * always have an imbalance, but there's really nothing you can do
4279 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004280 *
4281 * Otherwise check if either cpus are near enough in load to allow this
4282 * task to be woken on this_cpu.
4283 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004284 if (this_load > 0) {
4285 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004286
4287 this_eff_load = 100;
4288 this_eff_load *= power_of(prev_cpu);
4289 this_eff_load *= this_load +
4290 effective_load(tg, this_cpu, weight, weight);
4291
4292 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4293 prev_eff_load *= power_of(this_cpu);
4294 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4295
4296 balanced = this_eff_load <= prev_eff_load;
4297 } else
4298 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004299
4300 /*
4301 * If the currently running task will sleep within
4302 * a reasonable amount of time then attract this newly
4303 * woken task:
4304 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004305 if (sync && balanced)
4306 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004307
Lucas De Marchi41acab82010-03-10 23:37:45 -03004308 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004309 tl_per_task = cpu_avg_load_per_task(this_cpu);
4310
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004311 if (balanced ||
4312 (this_load <= load &&
4313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004314 /*
4315 * This domain has SD_WAKE_AFFINE and
4316 * p is cache cold in this domain, and
4317 * there is no bad imbalance.
4318 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004319 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004320 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004321
4322 return 1;
4323 }
4324 return 0;
4325}
4326
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004327/*
4328 * find_idlest_group finds and returns the least busy CPU group within the
4329 * domain.
4330 */
4331static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004332find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004333 int this_cpu, int sd_flag)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004334{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004335 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004336 unsigned long min_load = ULONG_MAX, this_load = 0;
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004337 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004338 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004339
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004340 if (sd_flag & SD_BALANCE_WAKE)
4341 load_idx = sd->wake_idx;
4342
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004343 do {
4344 unsigned long load, avg_load;
4345 int local_group;
4346 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004347
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004348 /* Skip over this group if it has no CPUs allowed */
4349 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004350 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004351 continue;
4352
4353 local_group = cpumask_test_cpu(this_cpu,
4354 sched_group_cpus(group));
4355
4356 /* Tally up the load of all CPUs in the group */
4357 avg_load = 0;
4358
4359 for_each_cpu(i, sched_group_cpus(group)) {
4360 /* Bias balancing toward cpus of our domain */
4361 if (local_group)
4362 load = source_load(i, load_idx);
4363 else
4364 load = target_load(i, load_idx);
4365
4366 avg_load += load;
4367 }
4368
4369 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004370 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004371
4372 if (local_group) {
4373 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004374 } else if (avg_load < min_load) {
4375 min_load = avg_load;
4376 idlest = group;
4377 }
4378 } while (group = group->next, group != sd->groups);
4379
4380 if (!idlest || 100*this_load < imbalance*min_load)
4381 return NULL;
4382 return idlest;
4383}
4384
4385/*
4386 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4387 */
4388static int
4389find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4390{
4391 unsigned long load, min_load = ULONG_MAX;
4392 int idlest = -1;
4393 int i;
4394
4395 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004396 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004397 load = weighted_cpuload(i);
4398
4399 if (load < min_load || (load == min_load && i == this_cpu)) {
4400 min_load = load;
4401 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004402 }
4403 }
4404
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004405 return idlest;
4406}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004407
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004408/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004409 * Try and locate an idle CPU in the sched_domain.
4410 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004411static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004412{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004413 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004414 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004415 int i = task_cpu(p);
4416
4417 if (idle_cpu(target))
4418 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004419
4420 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004421 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004422 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004423 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4424 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004425
4426 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004427 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004428 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004429 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004430 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004431 sg = sd->groups;
4432 do {
4433 if (!cpumask_intersects(sched_group_cpus(sg),
4434 tsk_cpus_allowed(p)))
4435 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004436
Linus Torvalds37407ea2012-09-16 12:29:43 -07004437 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004438 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004439 goto next;
4440 }
4441
4442 target = cpumask_first_and(sched_group_cpus(sg),
4443 tsk_cpus_allowed(p));
4444 goto done;
4445next:
4446 sg = sg->next;
4447 } while (sg != sd->groups);
4448 }
4449done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004450 return target;
4451}
4452
4453/*
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004454 * select_task_rq_fair: Select target runqueue for the waking task in domains
4455 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4456 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004457 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004458 * Balances load by selecting the idlest cpu in the idlest group, or under
4459 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004460 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00004461 * Returns the target cpu number.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004462 *
4463 * preempt must be disabled.
4464 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004465static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004466select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004467{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004468 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004469 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004470 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004471 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004472 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004473
Peter Zijlstra29baa742012-04-23 12:11:21 +02004474 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004475 return prev_cpu;
4476
Peter Zijlstra0763a662009-09-14 19:37:39 +02004477 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004478 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004479 want_affine = 1;
4480 new_cpu = prev_cpu;
4481 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004482
Peter Zijlstradce840a2011-04-07 14:09:50 +02004483 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004484 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004485 if (!(tmp->flags & SD_LOAD_BALANCE))
4486 continue;
4487
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004488 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004489 * If both cpu and prev_cpu are part of this domain,
4490 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004491 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004492 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4493 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4494 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004495 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004496 }
4497
Alex Shif03542a2012-07-26 08:55:34 +08004498 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004499 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004500 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004501
Rik van Riel8bf21432014-05-14 11:40:37 -04004502 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4503 prev_cpu = cpu;
Peter Zijlstradce840a2011-04-07 14:09:50 +02004504
Rik van Riel8bf21432014-05-14 11:40:37 -04004505 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstradce840a2011-04-07 14:09:50 +02004506 new_cpu = select_idle_sibling(p, prev_cpu);
4507 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004508 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004509
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004510 while (sd) {
4511 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004512 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004513
Peter Zijlstra0763a662009-09-14 19:37:39 +02004514 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004515 sd = sd->child;
4516 continue;
4517 }
4518
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004519 group = find_idlest_group(sd, p, cpu, sd_flag);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004520 if (!group) {
4521 sd = sd->child;
4522 continue;
4523 }
4524
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004525 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004526 if (new_cpu == -1 || new_cpu == cpu) {
4527 /* Now try balancing at a lower domain level of cpu */
4528 sd = sd->child;
4529 continue;
4530 }
4531
4532 /* Now try balancing at a lower domain level of new_cpu */
4533 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004534 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004535 sd = NULL;
4536 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004537 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004538 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004539 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004540 sd = tmp;
4541 }
4542 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004543 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004544unlock:
4545 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004546
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004547 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004548}
Paul Turner0a74bef2012-10-04 13:18:30 +02004549
4550/*
4551 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4552 * cfs_rq_of(p) references at time of call are still valid and identify the
4553 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4554 * other assumptions, including the state of rq->lock, should be made.
4555 */
4556static void
4557migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4558{
Paul Turneraff3e492012-10-04 13:18:30 +02004559 struct sched_entity *se = &p->se;
4560 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4561
4562 /*
4563 * Load tracking: accumulate removed load so that it can be processed
4564 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4565 * to blocked load iff they have a positive decay-count. It can never
4566 * be negative here since on-rq tasks have decay-count == 0.
4567 */
4568 if (se->avg.decay_count) {
4569 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004570 atomic_long_add(se->avg.load_avg_contrib,
4571 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004572 }
Ben Segall3944a922014-05-15 15:59:20 -07004573
4574 /* We have migrated, no longer consider this task hot */
4575 se->exec_start = 0;
Paul Turner0a74bef2012-10-04 13:18:30 +02004576}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004577#endif /* CONFIG_SMP */
4578
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004579static unsigned long
4580wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004581{
4582 unsigned long gran = sysctl_sched_wakeup_granularity;
4583
4584 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004585 * Since its curr running now, convert the gran from real-time
4586 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004587 *
4588 * By using 'se' instead of 'curr' we penalize light tasks, so
4589 * they get preempted easier. That is, if 'se' < 'curr' then
4590 * the resulting gran will be larger, therefore penalizing the
4591 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4592 * be smaller, again penalizing the lighter task.
4593 *
4594 * This is especially important for buddies when the leftmost
4595 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004596 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004597 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004598}
4599
4600/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004601 * Should 'se' preempt 'curr'.
4602 *
4603 * |s1
4604 * |s2
4605 * |s3
4606 * g
4607 * |<--->|c
4608 *
4609 * w(c, s1) = -1
4610 * w(c, s2) = 0
4611 * w(c, s3) = 1
4612 *
4613 */
4614static int
4615wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4616{
4617 s64 gran, vdiff = curr->vruntime - se->vruntime;
4618
4619 if (vdiff <= 0)
4620 return -1;
4621
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004622 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004623 if (vdiff > gran)
4624 return 1;
4625
4626 return 0;
4627}
4628
Peter Zijlstra02479092008-11-04 21:25:10 +01004629static void set_last_buddy(struct sched_entity *se)
4630{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004631 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4632 return;
4633
4634 for_each_sched_entity(se)
4635 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004636}
4637
4638static void set_next_buddy(struct sched_entity *se)
4639{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004640 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4641 return;
4642
4643 for_each_sched_entity(se)
4644 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004645}
4646
Rik van Rielac53db52011-02-01 09:51:03 -05004647static void set_skip_buddy(struct sched_entity *se)
4648{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004649 for_each_sched_entity(se)
4650 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004651}
4652
Peter Zijlstra464b7522008-10-24 11:06:15 +02004653/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004654 * Preempt the current task with a newly woken task if needed:
4655 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004656static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004657{
4658 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004659 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004660 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004661 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004662 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004663
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004664 if (unlikely(se == pse))
4665 return;
4666
Paul Turner5238cdd2011-07-21 09:43:37 -07004667 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004668 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004669 * unconditionally check_prempt_curr() after an enqueue (which may have
4670 * lead to a throttle). This both saves work and prevents false
4671 * next-buddy nomination below.
4672 */
4673 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4674 return;
4675
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004676 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004677 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004678 next_buddy_marked = 1;
4679 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004680
Bharata B Raoaec0a512008-08-28 14:42:49 +05304681 /*
4682 * We can come here with TIF_NEED_RESCHED already set from new task
4683 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004684 *
4685 * Note: this also catches the edge-case of curr being in a throttled
4686 * group (e.g. via set_curr_task), since update_curr() (in the
4687 * enqueue of curr) will have resulted in resched being set. This
4688 * prevents us from potentially nominating it as a false LAST_BUDDY
4689 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304690 */
4691 if (test_tsk_need_resched(curr))
4692 return;
4693
Darren Harta2f5c9a2011-02-22 13:04:33 -08004694 /* Idle tasks are by definition preempted by non-idle tasks. */
4695 if (unlikely(curr->policy == SCHED_IDLE) &&
4696 likely(p->policy != SCHED_IDLE))
4697 goto preempt;
4698
Ingo Molnar91c234b2007-10-15 17:00:18 +02004699 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004700 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4701 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004702 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004703 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004704 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004705
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004706 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004707 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004708 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004709 if (wakeup_preempt_entity(se, pse) == 1) {
4710 /*
4711 * Bias pick_next to pick the sched entity that is
4712 * triggering this preemption.
4713 */
4714 if (!next_buddy_marked)
4715 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004716 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004717 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004718
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004719 return;
4720
4721preempt:
4722 resched_task(curr);
4723 /*
4724 * Only set the backward buddy when the current task is still
4725 * on the rq. This can happen when a wakeup gets interleaved
4726 * with schedule on the ->pre_schedule() or idle_balance()
4727 * point, either of which can * drop the rq lock.
4728 *
4729 * Also, during early boot the idle thread is in the fair class,
4730 * for obvious reasons its a bad idea to schedule back to it.
4731 */
4732 if (unlikely(!se->on_rq || curr == rq->idle))
4733 return;
4734
4735 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4736 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004737}
4738
Peter Zijlstra606dba22012-02-11 06:05:00 +01004739static struct task_struct *
4740pick_next_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004741{
4742 struct cfs_rq *cfs_rq = &rq->cfs;
4743 struct sched_entity *se;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004744 struct task_struct *p;
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004745 int new_tasks;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004746
Peter Zijlstra6e831252014-02-11 16:11:48 +01004747again:
Peter Zijlstra678d5712012-02-11 06:05:00 +01004748#ifdef CONFIG_FAIR_GROUP_SCHED
4749 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004750 goto idle;
Peter Zijlstra678d5712012-02-11 06:05:00 +01004751
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004752 if (prev->sched_class != &fair_sched_class)
Peter Zijlstra678d5712012-02-11 06:05:00 +01004753 goto simple;
4754
4755 /*
4756 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4757 * likely that a next task is from the same cgroup as the current.
4758 *
4759 * Therefore attempt to avoid putting and setting the entire cgroup
4760 * hierarchy, only change the part that actually changes.
4761 */
4762
4763 do {
4764 struct sched_entity *curr = cfs_rq->curr;
4765
4766 /*
4767 * Since we got here without doing put_prev_entity() we also
4768 * have to consider cfs_rq->curr. If it is still a runnable
4769 * entity, update_curr() will update its vruntime, otherwise
4770 * forget we've ever seen it.
4771 */
4772 if (curr && curr->on_rq)
4773 update_curr(cfs_rq);
4774 else
4775 curr = NULL;
4776
4777 /*
4778 * This call to check_cfs_rq_runtime() will do the throttle and
4779 * dequeue its entity in the parent(s). Therefore the 'simple'
4780 * nr_running test will indeed be correct.
4781 */
4782 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4783 goto simple;
4784
4785 se = pick_next_entity(cfs_rq, curr);
4786 cfs_rq = group_cfs_rq(se);
4787 } while (cfs_rq);
4788
4789 p = task_of(se);
4790
4791 /*
4792 * Since we haven't yet done put_prev_entity and if the selected task
4793 * is a different task than we started out with, try and touch the
4794 * least amount of cfs_rqs.
4795 */
4796 if (prev != p) {
4797 struct sched_entity *pse = &prev->se;
4798
4799 while (!(cfs_rq = is_same_group(se, pse))) {
4800 int se_depth = se->depth;
4801 int pse_depth = pse->depth;
4802
4803 if (se_depth <= pse_depth) {
4804 put_prev_entity(cfs_rq_of(pse), pse);
4805 pse = parent_entity(pse);
4806 }
4807 if (se_depth >= pse_depth) {
4808 set_next_entity(cfs_rq_of(se), se);
4809 se = parent_entity(se);
4810 }
4811 }
4812
4813 put_prev_entity(cfs_rq, pse);
4814 set_next_entity(cfs_rq, se);
4815 }
4816
4817 if (hrtick_enabled(rq))
4818 hrtick_start_fair(rq, p);
4819
4820 return p;
4821simple:
4822 cfs_rq = &rq->cfs;
4823#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004824
Tim Blechmann36ace272009-11-24 11:55:45 +01004825 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004826 goto idle;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004827
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01004828 put_prev_task(rq, prev);
Peter Zijlstra606dba22012-02-11 06:05:00 +01004829
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004830 do {
Peter Zijlstra678d5712012-02-11 06:05:00 +01004831 se = pick_next_entity(cfs_rq, NULL);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004832 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004833 cfs_rq = group_cfs_rq(se);
4834 } while (cfs_rq);
4835
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004836 p = task_of(se);
Peter Zijlstra678d5712012-02-11 06:05:00 +01004837
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004838 if (hrtick_enabled(rq))
4839 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004840
4841 return p;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004842
4843idle:
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004844 new_tasks = idle_balance(rq);
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004845 /*
4846 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4847 * possible for any higher priority task to appear. In that case we
4848 * must re-start the pick_next_entity() loop.
4849 */
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004850 if (new_tasks < 0)
Peter Zijlstra37e117c2014-02-14 12:25:08 +01004851 return RETRY_TASK;
4852
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04004853 if (new_tasks > 0)
Peter Zijlstra38033c32014-01-23 20:32:21 +01004854 goto again;
Peter Zijlstra38033c32014-01-23 20:32:21 +01004855
4856 return NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004857}
4858
4859/*
4860 * Account for a descheduled task:
4861 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004862static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004863{
4864 struct sched_entity *se = &prev->se;
4865 struct cfs_rq *cfs_rq;
4866
4867 for_each_sched_entity(se) {
4868 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004869 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004870 }
4871}
4872
Rik van Rielac53db52011-02-01 09:51:03 -05004873/*
4874 * sched_yield() is very simple
4875 *
4876 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4877 */
4878static void yield_task_fair(struct rq *rq)
4879{
4880 struct task_struct *curr = rq->curr;
4881 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4882 struct sched_entity *se = &curr->se;
4883
4884 /*
4885 * Are we the only task in the tree?
4886 */
4887 if (unlikely(rq->nr_running == 1))
4888 return;
4889
4890 clear_buddies(cfs_rq, se);
4891
4892 if (curr->policy != SCHED_BATCH) {
4893 update_rq_clock(rq);
4894 /*
4895 * Update run-time statistics of the 'current'.
4896 */
4897 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004898 /*
4899 * Tell update_rq_clock() that we've just updated,
4900 * so we don't do microscopic update in schedule()
4901 * and double the fastpath cost.
4902 */
4903 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004904 }
4905
4906 set_skip_buddy(se);
4907}
4908
Mike Galbraithd95f4122011-02-01 09:50:51 -05004909static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4910{
4911 struct sched_entity *se = &p->se;
4912
Paul Turner5238cdd2011-07-21 09:43:37 -07004913 /* throttled hierarchies are not runnable */
4914 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004915 return false;
4916
4917 /* Tell the scheduler that we'd really like pse to run next. */
4918 set_next_buddy(se);
4919
Mike Galbraithd95f4122011-02-01 09:50:51 -05004920 yield_task_fair(rq);
4921
4922 return true;
4923}
4924
Peter Williams681f3e62007-10-24 18:23:51 +02004925#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004926/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004927 * Fair scheduling class load-balancing methods.
4928 *
4929 * BASICS
4930 *
4931 * The purpose of load-balancing is to achieve the same basic fairness the
4932 * per-cpu scheduler provides, namely provide a proportional amount of compute
4933 * time to each task. This is expressed in the following equation:
4934 *
4935 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4936 *
4937 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4938 * W_i,0 is defined as:
4939 *
4940 * W_i,0 = \Sum_j w_i,j (2)
4941 *
4942 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4943 * is derived from the nice value as per prio_to_weight[].
4944 *
4945 * The weight average is an exponential decay average of the instantaneous
4946 * weight:
4947 *
4948 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4949 *
4950 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4951 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4952 * can also include other factors [XXX].
4953 *
4954 * To achieve this balance we define a measure of imbalance which follows
4955 * directly from (1):
4956 *
4957 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4958 *
4959 * We them move tasks around to minimize the imbalance. In the continuous
4960 * function space it is obvious this converges, in the discrete case we get
4961 * a few fun cases generally called infeasible weight scenarios.
4962 *
4963 * [XXX expand on:
4964 * - infeasible weights;
4965 * - local vs global optima in the discrete case. ]
4966 *
4967 *
4968 * SCHED DOMAINS
4969 *
4970 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4971 * for all i,j solution, we create a tree of cpus that follows the hardware
4972 * topology where each level pairs two lower groups (or better). This results
4973 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4974 * tree to only the first of the previous level and we decrease the frequency
4975 * of load-balance at each level inv. proportional to the number of cpus in
4976 * the groups.
4977 *
4978 * This yields:
4979 *
4980 * log_2 n 1 n
4981 * \Sum { --- * --- * 2^i } = O(n) (5)
4982 * i = 0 2^i 2^i
4983 * `- size of each group
4984 * | | `- number of cpus doing load-balance
4985 * | `- freq
4986 * `- sum over all levels
4987 *
4988 * Coupled with a limit on how many tasks we can migrate every balance pass,
4989 * this makes (5) the runtime complexity of the balancer.
4990 *
4991 * An important property here is that each CPU is still (indirectly) connected
4992 * to every other cpu in at most O(log n) steps:
4993 *
4994 * The adjacency matrix of the resulting graph is given by:
4995 *
4996 * log_2 n
4997 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4998 * k = 0
4999 *
5000 * And you'll find that:
5001 *
5002 * A^(log_2 n)_i,j != 0 for all i,j (7)
5003 *
5004 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5005 * The task movement gives a factor of O(m), giving a convergence complexity
5006 * of:
5007 *
5008 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5009 *
5010 *
5011 * WORK CONSERVING
5012 *
5013 * In order to avoid CPUs going idle while there's still work to do, new idle
5014 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5015 * tree itself instead of relying on other CPUs to bring it work.
5016 *
5017 * This adds some complexity to both (5) and (8) but it reduces the total idle
5018 * time.
5019 *
5020 * [XXX more?]
5021 *
5022 *
5023 * CGROUPS
5024 *
5025 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5026 *
5027 * s_k,i
5028 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5029 * S_k
5030 *
5031 * Where
5032 *
5033 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5034 *
5035 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5036 *
5037 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5038 * property.
5039 *
5040 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5041 * rewrite all of this once again.]
5042 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005043
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09005044static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5045
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005046enum fbq_type { regular, remote, all };
5047
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005048#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01005049#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02005050#define LBF_DST_PINNED 0x04
5051#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005052
5053struct lb_env {
5054 struct sched_domain *sd;
5055
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005056 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05305057 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005058
5059 int dst_cpu;
5060 struct rq *dst_rq;
5061
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305062 struct cpumask *dst_grpmask;
5063 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005064 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005065 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08005066 /* The set of CPUs under consideration for load-balancing */
5067 struct cpumask *cpus;
5068
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005069 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005070
5071 unsigned int loop;
5072 unsigned int loop_break;
5073 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005074
5075 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005076};
5077
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005078/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005079 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005080 * Both runqueues must be locked.
5081 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005082static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005083{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005084 deactivate_task(env->src_rq, p, 0);
5085 set_task_cpu(p, env->dst_cpu);
5086 activate_task(env->dst_rq, p, 0);
5087 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005088}
5089
5090/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02005091 * Is this task likely cache-hot:
5092 */
5093static int
Alex Shi6037dd12014-03-12 14:51:51 +08005094task_hot(struct task_struct *p, u64 now)
Peter Zijlstra029632f2011-10-25 10:00:11 +02005095{
5096 s64 delta;
5097
5098 if (p->sched_class != &fair_sched_class)
5099 return 0;
5100
5101 if (unlikely(p->policy == SCHED_IDLE))
5102 return 0;
5103
5104 /*
5105 * Buddy candidates are cache hot:
5106 */
5107 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5108 (&p->se == cfs_rq_of(&p->se)->next ||
5109 &p->se == cfs_rq_of(&p->se)->last))
5110 return 1;
5111
5112 if (sysctl_sched_migration_cost == -1)
5113 return 1;
5114 if (sysctl_sched_migration_cost == 0)
5115 return 0;
5116
5117 delta = now - p->se.exec_start;
5118
5119 return delta < (s64)sysctl_sched_migration_cost;
5120}
5121
Mel Gorman3a7053b2013-10-07 11:29:00 +01005122#ifdef CONFIG_NUMA_BALANCING
5123/* Returns true if the destination node has incurred more faults */
5124static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5125{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005126 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005127 int src_nid, dst_nid;
5128
Rik van Rielff1df892014-01-27 17:03:41 -05005129 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
Mel Gorman3a7053b2013-10-07 11:29:00 +01005130 !(env->sd->flags & SD_NUMA)) {
5131 return false;
5132 }
5133
5134 src_nid = cpu_to_node(env->src_cpu);
5135 dst_nid = cpu_to_node(env->dst_cpu);
5136
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005137 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01005138 return false;
5139
Rik van Rielb1ad0652014-05-15 13:03:06 -04005140 if (numa_group) {
5141 /* Task is already in the group's interleave set. */
5142 if (node_isset(src_nid, numa_group->active_nodes))
5143 return false;
5144
5145 /* Task is moving into the group's interleave set. */
5146 if (node_isset(dst_nid, numa_group->active_nodes))
5147 return true;
5148
5149 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5150 }
5151
5152 /* Encourage migration to the preferred node. */
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005153 if (dst_nid == p->numa_preferred_nid)
5154 return true;
5155
Rik van Rielb1ad0652014-05-15 13:03:06 -04005156 return task_faults(p, dst_nid) > task_faults(p, src_nid);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005157}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005158
5159
5160static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5161{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005162 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005163 int src_nid, dst_nid;
5164
5165 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5166 return false;
5167
Rik van Rielff1df892014-01-27 17:03:41 -05005168 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005169 return false;
5170
5171 src_nid = cpu_to_node(env->src_cpu);
5172 dst_nid = cpu_to_node(env->dst_cpu);
5173
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005174 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01005175 return false;
5176
Rik van Rielb1ad0652014-05-15 13:03:06 -04005177 if (numa_group) {
5178 /* Task is moving within/into the group's interleave set. */
5179 if (node_isset(dst_nid, numa_group->active_nodes))
5180 return false;
5181
5182 /* Task is moving out of the group's interleave set. */
5183 if (node_isset(src_nid, numa_group->active_nodes))
5184 return true;
5185
5186 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5187 }
5188
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005189 /* Migrating away from the preferred node is always bad. */
5190 if (src_nid == p->numa_preferred_nid)
5191 return true;
5192
Rik van Rielb1ad0652014-05-15 13:03:06 -04005193 return task_faults(p, dst_nid) < task_faults(p, src_nid);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005194}
5195
Mel Gorman3a7053b2013-10-07 11:29:00 +01005196#else
5197static inline bool migrate_improves_locality(struct task_struct *p,
5198 struct lb_env *env)
5199{
5200 return false;
5201}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005202
5203static inline bool migrate_degrades_locality(struct task_struct *p,
5204 struct lb_env *env)
5205{
5206 return false;
5207}
Mel Gorman3a7053b2013-10-07 11:29:00 +01005208#endif
5209
Peter Zijlstra029632f2011-10-25 10:00:11 +02005210/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005211 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5212 */
5213static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005214int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005215{
5216 int tsk_cache_hot = 0;
5217 /*
5218 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09005219 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005220 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09005221 * 3) running (obviously), or
5222 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005223 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09005224 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5225 return 0;
5226
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005227 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005228 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305229
Lucas De Marchi41acab82010-03-10 23:37:45 -03005230 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305231
Peter Zijlstra62633222013-08-19 12:41:09 +02005232 env->flags |= LBF_SOME_PINNED;
5233
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305234 /*
5235 * Remember if this task can be migrated to any other cpu in
5236 * our sched_group. We may want to revisit it if we couldn't
5237 * meet load balance goals by pulling other tasks on src_cpu.
5238 *
5239 * Also avoid computing new_dst_cpu if we have already computed
5240 * one in current iteration.
5241 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005242 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305243 return 0;
5244
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005245 /* Prevent to re-select dst_cpu via env's cpus */
5246 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5247 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02005248 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005249 env->new_dst_cpu = cpu;
5250 break;
5251 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305252 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005253
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005254 return 0;
5255 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305256
5257 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005258 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005260 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03005261 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262 return 0;
5263 }
5264
5265 /*
5266 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01005267 * 1) destination numa is preferred
5268 * 2) task is cache cold, or
5269 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005270 */
Alex Shi6037dd12014-03-12 14:51:51 +08005271 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
Mel Gorman7a0f3082013-10-07 11:29:01 +01005272 if (!tsk_cache_hot)
5273 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005274
5275 if (migrate_improves_locality(p, env)) {
5276#ifdef CONFIG_SCHEDSTATS
5277 if (tsk_cache_hot) {
5278 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5279 schedstat_inc(p, se.statistics.nr_forced_migrations);
5280 }
5281#endif
5282 return 1;
5283 }
5284
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005285 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005286 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005287
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005288 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005289 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03005290 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005291 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005292
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293 return 1;
5294 }
5295
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005296 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5297 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005298}
5299
Peter Zijlstra897c3952009-12-17 17:45:42 +01005300/*
5301 * move_one_task tries to move exactly one task from busiest to this_rq, as
5302 * part of active balancing operations within "domain".
5303 * Returns 1 if successful and 0 otherwise.
5304 *
5305 * Called with both runqueues locked.
5306 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005307static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01005308{
5309 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005310
Peter Zijlstra367456c2012-02-20 21:49:09 +01005311 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01005312 if (!can_migrate_task(p, env))
5313 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005314
Peter Zijlstra367456c2012-02-20 21:49:09 +01005315 move_task(p, env);
5316 /*
5317 * Right now, this is only the second place move_task()
5318 * is called, so we can safely collect move_task()
5319 * stats here rather than inside move_task().
5320 */
5321 schedstat_inc(env->sd, lb_gained[env->idle]);
5322 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005323 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01005324 return 0;
5325}
5326
Peter Zijlstraeb953082012-04-17 13:38:40 +02005327static const unsigned int sched_nr_migrate_break = 32;
5328
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005329/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005330 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005331 * this_rq, as part of a balancing operation within domain "sd".
5332 * Returns 1 if successful and 0 otherwise.
5333 *
5334 * Called with both runqueues locked.
5335 */
5336static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005337{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005338 struct list_head *tasks = &env->src_rq->cfs_tasks;
5339 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005340 unsigned long load;
5341 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005342
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005343 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005344 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005345
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005346 while (!list_empty(tasks)) {
5347 p = list_first_entry(tasks, struct task_struct, se.group_node);
5348
Peter Zijlstra367456c2012-02-20 21:49:09 +01005349 env->loop++;
5350 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005351 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005352 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005353
5354 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005355 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005356 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005357 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005358 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005359 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005360
Joonsoo Kimd3198082013-04-23 17:27:40 +09005361 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005362 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005363
Peter Zijlstra367456c2012-02-20 21:49:09 +01005364 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005365
Peter Zijlstraeb953082012-04-17 13:38:40 +02005366 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005367 goto next;
5368
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005369 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005370 goto next;
5371
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005372 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005373 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005374 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005375
5376#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005377 /*
5378 * NEWIDLE balancing is a source of latency, so preemptible
5379 * kernels will stop after the first task is pulled to minimize
5380 * the critical section.
5381 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005382 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005383 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005384#endif
5385
Peter Zijlstraee00e662009-12-17 17:25:20 +01005386 /*
5387 * We only want to steal up to the prescribed amount of
5388 * weighted load.
5389 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005390 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005391 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005392
Peter Zijlstra367456c2012-02-20 21:49:09 +01005393 continue;
5394next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005395 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005396 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005397
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005398 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005399 * Right now, this is one of only two places move_task() is called,
5400 * so we can safely collect move_task() stats here rather than
5401 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005402 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005403 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005404
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005405 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005406}
5407
Peter Zijlstra230059de2009-12-17 17:47:12 +01005408#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005409/*
5410 * update tg->load_weight by folding this cpu's load_avg
5411 */
Paul Turner48a16752012-10-04 13:18:31 +02005412static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005413{
Paul Turner48a16752012-10-04 13:18:31 +02005414 struct sched_entity *se = tg->se[cpu];
5415 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005416
Paul Turner48a16752012-10-04 13:18:31 +02005417 /* throttled entities do not contribute to load */
5418 if (throttled_hierarchy(cfs_rq))
5419 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005420
Paul Turneraff3e492012-10-04 13:18:30 +02005421 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005422
Paul Turner82958362012-10-04 13:18:31 +02005423 if (se) {
5424 update_entity_load_avg(se, 1);
5425 /*
5426 * We pivot on our runnable average having decayed to zero for
5427 * list removal. This generally implies that all our children
5428 * have also been removed (modulo rounding error or bandwidth
5429 * control); however, such cases are rare and we can fix these
5430 * at enqueue.
5431 *
5432 * TODO: fix up out-of-order children on enqueue.
5433 */
5434 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5435 list_del_leaf_cfs_rq(cfs_rq);
5436 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005437 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005438 update_rq_runnable_avg(rq, rq->nr_running);
5439 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005440}
5441
Paul Turner48a16752012-10-04 13:18:31 +02005442static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005443{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005444 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005445 struct cfs_rq *cfs_rq;
5446 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005447
Paul Turner48a16752012-10-04 13:18:31 +02005448 raw_spin_lock_irqsave(&rq->lock, flags);
5449 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005450 /*
5451 * Iterates the task_group tree in a bottom up fashion, see
5452 * list_add_leaf_cfs_rq() for details.
5453 */
Paul Turner64660c82011-07-21 09:43:36 -07005454 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005455 /*
5456 * Note: We may want to consider periodically releasing
5457 * rq->lock about these updates so that creating many task
5458 * groups does not result in continually extending hold time.
5459 */
5460 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005461 }
Paul Turner48a16752012-10-04 13:18:31 +02005462
5463 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005464}
5465
Peter Zijlstra9763b672011-07-13 13:09:25 +02005466/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005467 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005468 * This needs to be done in a top-down fashion because the load of a child
5469 * group is a fraction of its parents load.
5470 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005471static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005472{
Vladimir Davydov68520792013-07-15 17:49:19 +04005473 struct rq *rq = rq_of(cfs_rq);
5474 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005475 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005476 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005477
Vladimir Davydov68520792013-07-15 17:49:19 +04005478 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005479 return;
5480
Vladimir Davydov68520792013-07-15 17:49:19 +04005481 cfs_rq->h_load_next = NULL;
5482 for_each_sched_entity(se) {
5483 cfs_rq = cfs_rq_of(se);
5484 cfs_rq->h_load_next = se;
5485 if (cfs_rq->last_h_load_update == now)
5486 break;
5487 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005488
Vladimir Davydov68520792013-07-15 17:49:19 +04005489 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005490 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005491 cfs_rq->last_h_load_update = now;
5492 }
5493
5494 while ((se = cfs_rq->h_load_next) != NULL) {
5495 load = cfs_rq->h_load;
5496 load = div64_ul(load * se->avg.load_avg_contrib,
5497 cfs_rq->runnable_load_avg + 1);
5498 cfs_rq = group_cfs_rq(se);
5499 cfs_rq->h_load = load;
5500 cfs_rq->last_h_load_update = now;
5501 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005502}
5503
Peter Zijlstra367456c2012-02-20 21:49:09 +01005504static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005505{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005506 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005507
Vladimir Davydov68520792013-07-15 17:49:19 +04005508 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005509 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5510 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005511}
5512#else
Paul Turner48a16752012-10-04 13:18:31 +02005513static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005514{
5515}
5516
Peter Zijlstra367456c2012-02-20 21:49:09 +01005517static unsigned long task_h_load(struct task_struct *p)
5518{
Alex Shia003a252013-06-20 10:18:51 +08005519 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005520}
5521#endif
5522
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005523/********** Helpers for find_busiest_group ************************/
5524/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005525 * sg_lb_stats - stats of a sched_group required for load_balancing
5526 */
5527struct sg_lb_stats {
5528 unsigned long avg_load; /*Avg load across the CPUs of the group */
5529 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005530 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005531 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005532 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005533 unsigned int sum_nr_running; /* Nr tasks running in the group */
5534 unsigned int group_capacity;
5535 unsigned int idle_cpus;
5536 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005537 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005538 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005539#ifdef CONFIG_NUMA_BALANCING
5540 unsigned int nr_numa_running;
5541 unsigned int nr_preferred_running;
5542#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005543};
5544
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005545/*
5546 * sd_lb_stats - Structure to store the statistics of a sched_domain
5547 * during load balancing.
5548 */
5549struct sd_lb_stats {
5550 struct sched_group *busiest; /* Busiest group in this sd */
5551 struct sched_group *local; /* Local group in this sd */
5552 unsigned long total_load; /* Total load of all groups in sd */
5553 unsigned long total_pwr; /* Total power of all groups in sd */
5554 unsigned long avg_load; /* Average load across all groups in sd */
5555
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005556 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005557 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005558};
5559
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005560static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5561{
5562 /*
5563 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5564 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5565 * We must however clear busiest_stat::avg_load because
5566 * update_sd_pick_busiest() reads this before assignment.
5567 */
5568 *sds = (struct sd_lb_stats){
5569 .busiest = NULL,
5570 .local = NULL,
5571 .total_load = 0UL,
5572 .total_pwr = 0UL,
5573 .busiest_stat = {
5574 .avg_load = 0UL,
5575 },
5576 };
5577}
5578
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005579/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005580 * get_sd_load_idx - Obtain the load index for a given sched domain.
5581 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305582 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005583 *
5584 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005585 */
5586static inline int get_sd_load_idx(struct sched_domain *sd,
5587 enum cpu_idle_type idle)
5588{
5589 int load_idx;
5590
5591 switch (idle) {
5592 case CPU_NOT_IDLE:
5593 load_idx = sd->busy_idx;
5594 break;
5595
5596 case CPU_NEWLY_IDLE:
5597 load_idx = sd->newidle_idx;
5598 break;
5599 default:
5600 load_idx = sd->idle_idx;
5601 break;
5602 }
5603
5604 return load_idx;
5605}
5606
Li Zefan15f803c2013-03-05 16:07:11 +08005607static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005608{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005609 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005610}
5611
5612unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5613{
5614 return default_scale_freq_power(sd, cpu);
5615}
5616
Li Zefan15f803c2013-03-05 16:07:11 +08005617static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005618{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005619 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005620 unsigned long smt_gain = sd->smt_gain;
5621
5622 smt_gain /= weight;
5623
5624 return smt_gain;
5625}
5626
5627unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5628{
5629 return default_scale_smt_power(sd, cpu);
5630}
5631
Li Zefan15f803c2013-03-05 16:07:11 +08005632static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005633{
5634 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005635 u64 total, available, age_stamp, avg;
Peter Zijlstracadefd32014-02-27 10:40:35 +01005636 s64 delta;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005637
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005638 /*
5639 * Since we're reading these variables without serialization make sure
5640 * we read them once before doing sanity checks on them.
5641 */
5642 age_stamp = ACCESS_ONCE(rq->age_stamp);
5643 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005644
Peter Zijlstracadefd32014-02-27 10:40:35 +01005645 delta = rq_clock(rq) - age_stamp;
5646 if (unlikely(delta < 0))
5647 delta = 0;
5648
5649 total = sched_avg_period() + delta;
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005650
5651 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005652 /* Ensures that power won't end up being negative */
5653 available = 0;
5654 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005655 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005656 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005657
Nikhil Rao1399fa72011-05-18 10:09:39 -07005658 if (unlikely((s64)total < SCHED_POWER_SCALE))
5659 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005660
Nikhil Rao1399fa72011-05-18 10:09:39 -07005661 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005662
5663 return div_u64(available, total);
5664}
5665
5666static void update_cpu_power(struct sched_domain *sd, int cpu)
5667{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005668 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005669 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005670 struct sched_group *sdg = sd->groups;
5671
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005672 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5673 if (sched_feat(ARCH_POWER))
5674 power *= arch_scale_smt_power(sd, cpu);
5675 else
5676 power *= default_scale_smt_power(sd, cpu);
5677
Nikhil Rao1399fa72011-05-18 10:09:39 -07005678 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005679 }
5680
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005681 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005682
5683 if (sched_feat(ARCH_POWER))
5684 power *= arch_scale_freq_power(sd, cpu);
5685 else
5686 power *= default_scale_freq_power(sd, cpu);
5687
Nikhil Rao1399fa72011-05-18 10:09:39 -07005688 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005689
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005690 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005691 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005692
5693 if (!power)
5694 power = 1;
5695
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005696 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005697 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005698}
5699
Peter Zijlstra029632f2011-10-25 10:00:11 +02005700void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005701{
5702 struct sched_domain *child = sd->child;
5703 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005704 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005705 unsigned long interval;
5706
5707 interval = msecs_to_jiffies(sd->balance_interval);
5708 interval = clamp(interval, 1UL, max_load_balance_interval);
5709 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005710
5711 if (!child) {
5712 update_cpu_power(sd, cpu);
5713 return;
5714 }
5715
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005716 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005717
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005718 if (child->flags & SD_OVERLAP) {
5719 /*
5720 * SD_OVERLAP domains cannot assume that child groups
5721 * span the current group.
5722 */
5723
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005724 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305725 struct sched_group_power *sgp;
5726 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005727
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05305728 /*
5729 * build_sched_domains() -> init_sched_groups_power()
5730 * gets here before we've attached the domains to the
5731 * runqueues.
5732 *
5733 * Use power_of(), which is set irrespective of domains
5734 * in update_cpu_power().
5735 *
5736 * This avoids power/power_orig from being 0 and
5737 * causing divide-by-zero issues on boot.
5738 *
5739 * Runtime updates will correct power_orig.
5740 */
5741 if (unlikely(!rq->sd)) {
5742 power_orig += power_of(cpu);
5743 power += power_of(cpu);
5744 continue;
5745 }
5746
5747 sgp = rq->sd->groups->sgp;
5748 power_orig += sgp->power_orig;
5749 power += sgp->power;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005750 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005751 } else {
5752 /*
5753 * !SD_OVERLAP domains can assume that child groups
5754 * span the current group.
5755 */
5756
5757 group = child->groups;
5758 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005759 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005760 power += group->sgp->power;
5761 group = group->next;
5762 } while (group != child->groups);
5763 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005764
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005765 sdg->sgp->power_orig = power_orig;
5766 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767}
5768
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005769/*
5770 * Try and fix up capacity for tiny siblings, this is needed when
5771 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5772 * which on its own isn't powerful enough.
5773 *
5774 * See update_sd_pick_busiest() and check_asym_packing().
5775 */
5776static inline int
5777fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5778{
5779 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005780 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005781 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005782 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005783 return 0;
5784
5785 /*
5786 * If ~90% of the cpu_power is still there, we're good.
5787 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005788 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005789 return 1;
5790
5791 return 0;
5792}
5793
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005794/*
5795 * Group imbalance indicates (and tries to solve) the problem where balancing
5796 * groups is inadequate due to tsk_cpus_allowed() constraints.
5797 *
5798 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5799 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5800 * Something like:
5801 *
5802 * { 0 1 2 3 } { 4 5 6 7 }
5803 * * * * *
5804 *
5805 * If we were to balance group-wise we'd place two tasks in the first group and
5806 * two tasks in the second group. Clearly this is undesired as it will overload
5807 * cpu 3 and leave one of the cpus in the second group unused.
5808 *
5809 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005810 * by noticing the lower domain failed to reach balance and had difficulty
5811 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005812 *
5813 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05305814 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005815 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005816 * to create an effective group imbalance.
5817 *
5818 * This is a somewhat tricky proposition since the next run might not find the
5819 * group imbalance and decide the groups need to be balanced again. A most
5820 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005821 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005822
Peter Zijlstra62633222013-08-19 12:41:09 +02005823static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005824{
Peter Zijlstra62633222013-08-19 12:41:09 +02005825 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005826}
5827
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005828/*
5829 * Compute the group capacity.
5830 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005831 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5832 * first dividing out the smt factor and computing the actual number of cores
5833 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005834 */
5835static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5836{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005837 unsigned int capacity, smt, cpus;
5838 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005839
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005840 power = group->sgp->power;
5841 power_orig = group->sgp->power_orig;
5842 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005843
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005844 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5845 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5846 capacity = cpus / smt; /* cores */
5847
5848 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005849 if (!capacity)
5850 capacity = fix_small_capacity(env->sd, group);
5851
5852 return capacity;
5853}
5854
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005855/**
5856 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5857 * @env: The load balancing environment.
5858 * @group: sched_group whose statistics are to be updated.
5859 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5860 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005861 * @sgs: variable to hold the statistics for this group.
5862 */
5863static inline void update_sg_lb_stats(struct lb_env *env,
5864 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005865 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005866{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005867 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005868 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005869
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005870 memset(sgs, 0, sizeof(*sgs));
5871
Michael Wangb94031302012-07-12 16:10:13 +08005872 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005873 struct rq *rq = cpu_rq(i);
5874
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005875 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005876 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005877 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005878 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005879 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005880
5881 sgs->group_load += load;
Kamalesh Babulal380c9072013-11-15 15:06:52 +05305882 sgs->sum_nr_running += rq->nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005883#ifdef CONFIG_NUMA_BALANCING
5884 sgs->nr_numa_running += rq->nr_numa_running;
5885 sgs->nr_preferred_running += rq->nr_preferred_running;
5886#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005887 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005888 if (idle_cpu(i))
5889 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005890 }
5891
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005892 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005893 sgs->group_power = group->sgp->power;
5894 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005895
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005896 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005897 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005898
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005899 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005900
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005901 sgs->group_imb = sg_imbalanced(group);
5902 sgs->group_capacity = sg_capacity(env, group);
5903
Nikhil Raofab47622010-10-15 13:12:29 -07005904 if (sgs->group_capacity > sgs->sum_nr_running)
5905 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005906}
5907
5908/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005909 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005910 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005911 * @sds: sched_domain statistics
5912 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005913 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005914 *
5915 * Determine if @sg is a busier group than the previously selected
5916 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005917 *
5918 * Return: %true if @sg is a busier group than the previously selected
5919 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005920 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005921static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005922 struct sd_lb_stats *sds,
5923 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005924 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005925{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005926 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005927 return false;
5928
5929 if (sgs->sum_nr_running > sgs->group_capacity)
5930 return true;
5931
5932 if (sgs->group_imb)
5933 return true;
5934
5935 /*
5936 * ASYM_PACKING needs to move all the work to the lowest
5937 * numbered CPUs in the group, therefore mark all groups
5938 * higher than ourself as busy.
5939 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005940 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5941 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005942 if (!sds->busiest)
5943 return true;
5944
5945 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5946 return true;
5947 }
5948
5949 return false;
5950}
5951
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005952#ifdef CONFIG_NUMA_BALANCING
5953static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5954{
5955 if (sgs->sum_nr_running > sgs->nr_numa_running)
5956 return regular;
5957 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5958 return remote;
5959 return all;
5960}
5961
5962static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5963{
5964 if (rq->nr_running > rq->nr_numa_running)
5965 return regular;
5966 if (rq->nr_running > rq->nr_preferred_running)
5967 return remote;
5968 return all;
5969}
5970#else
5971static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5972{
5973 return all;
5974}
5975
5976static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5977{
5978 return regular;
5979}
5980#endif /* CONFIG_NUMA_BALANCING */
5981
Michael Neuling532cb4c2010-06-08 14:57:02 +10005982/**
Hui Kang461819a2011-10-11 23:00:59 -04005983 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005984 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005985 * @sds: variable to hold the statistics for this sched_domain.
5986 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005987static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005988{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005989 struct sched_domain *child = env->sd->child;
5990 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005991 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005992 int load_idx, prefer_sibling = 0;
5993
5994 if (child && child->flags & SD_PREFER_SIBLING)
5995 prefer_sibling = 1;
5996
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005997 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005998
5999 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006000 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006001 int local_group;
6002
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006003 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006004 if (local_group) {
6005 sds->local = sg;
6006 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006007
6008 if (env->idle != CPU_NEWLY_IDLE ||
6009 time_after_eq(jiffies, sg->sgp->next_update))
6010 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006011 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006012
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006013 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006014
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006015 if (local_group)
6016 goto next_group;
6017
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006018 /*
6019 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10006020 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07006021 * and move all the excess tasks away. We lower the capacity
6022 * of a group only if the local group has the capacity to fit
6023 * these excess tasks, i.e. nr_running < group_capacity. The
6024 * extra check prevents the case where you always pull from the
6025 * heaviest group when it is already under-utilized (possible
6026 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006027 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006028 if (prefer_sibling && sds->local &&
6029 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006030 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006031
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006032 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006033 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006034 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006035 }
6036
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006037next_group:
6038 /* Now, start updating sd_lb_stats */
6039 sds->total_load += sgs->group_load;
6040 sds->total_pwr += sgs->group_power;
6041
Michael Neuling532cb4c2010-06-08 14:57:02 +10006042 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006043 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006044
6045 if (env->sd->flags & SD_NUMA)
6046 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10006047}
6048
Michael Neuling532cb4c2010-06-08 14:57:02 +10006049/**
6050 * check_asym_packing - Check to see if the group is packed into the
6051 * sched doman.
6052 *
6053 * This is primarily intended to used at the sibling level. Some
6054 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6055 * case of POWER7, it can move to lower SMT modes only when higher
6056 * threads are idle. When in lower SMT modes, the threads will
6057 * perform better since they share less core resources. Hence when we
6058 * have idle threads, we want them to be the higher ones.
6059 *
6060 * This packing function is run on idle threads. It checks to see if
6061 * the busiest CPU in this domain (core in the P7 case) has a higher
6062 * CPU number than the packing function is being run on. Here we are
6063 * assuming lower CPU number will be equivalent to lower a SMT thread
6064 * number.
6065 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006066 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10006067 * this CPU. The amount of the imbalance is returned in *imbalance.
6068 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006069 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10006070 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10006071 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006072static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006073{
6074 int busiest_cpu;
6075
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006076 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006077 return 0;
6078
6079 if (!sds->busiest)
6080 return 0;
6081
6082 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006083 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006084 return 0;
6085
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006086 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006087 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6088 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006089
Michael Neuling532cb4c2010-06-08 14:57:02 +10006090 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091}
6092
6093/**
6094 * fix_small_imbalance - Calculate the minor imbalance that exists
6095 * amongst the groups of a sched_domain, during
6096 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006097 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006098 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006099 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006100static inline
6101void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006102{
6103 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6104 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006105 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006106 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006107
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006108 local = &sds->local_stat;
6109 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006110
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006111 if (!local->sum_nr_running)
6112 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6113 else if (busiest->load_per_task > local->load_per_task)
6114 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006115
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006116 scaled_busy_load_per_task =
6117 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006118 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006119
Vladimir Davydov3029ede2013-09-15 17:49:14 +04006120 if (busiest->avg_load + scaled_busy_load_per_task >=
6121 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006122 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006123 return;
6124 }
6125
6126 /*
6127 * OK, we don't have enough imbalance to justify moving tasks,
6128 * however we may be able to increase total CPU power used by
6129 * moving them.
6130 */
6131
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006132 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006133 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006134 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006135 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006136 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006137
6138 /* Amount of load we'd subtract */
Vincent Guittota2cd4262014-03-11 17:26:06 +01006139 if (busiest->avg_load > scaled_busy_load_per_task) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006140 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006141 min(busiest->load_per_task,
Vincent Guittota2cd4262014-03-11 17:26:06 +01006142 busiest->avg_load - scaled_busy_load_per_task);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006143 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006144
6145 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006146 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006147 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006148 tmp = (busiest->avg_load * busiest->group_power) /
6149 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006150 } else {
6151 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006152 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006153 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006154 pwr_move += local->group_power *
6155 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07006156 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006157
6158 /* Move if we gain throughput */
6159 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006160 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006161}
6162
6163/**
6164 * calculate_imbalance - Calculate the amount of imbalance present within the
6165 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006166 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006167 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006168 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006169static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006170{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006171 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006172 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006173
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006174 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006175 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006176
6177 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006178 /*
6179 * In the group_imb case we cannot rely on group-wide averages
6180 * to ensure cpu-load equilibrium, look at wider averages. XXX
6181 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006182 busiest->load_per_task =
6183 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006184 }
6185
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006186 /*
6187 * In the presence of smp nice balancing, certain scenarios can have
6188 * max load less than avg load(as we skip the groups at or below
6189 * its cpu_power, while calculating max_load..)
6190 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04006191 if (busiest->avg_load <= sds->avg_load ||
6192 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006193 env->imbalance = 0;
6194 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006195 }
6196
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006197 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006198 /*
6199 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006200 * Except of course for the group_imb case, since then we might
6201 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006202 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006203 load_above_capacity =
6204 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006205
Nikhil Rao1399fa72011-05-18 10:09:39 -07006206 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006207 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006208 }
6209
6210 /*
6211 * We're trying to get all the cpus to the average_load, so we don't
6212 * want to push ourselves above the average load, nor do we wish to
6213 * reduce the max loaded cpu below the average load. At the same time,
6214 * we also don't want to reduce the group load below the group capacity
6215 * (so that we can implement power-savings policies etc). Thus we look
6216 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006217 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006218 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006219
6220 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006221 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006222 max_pull * busiest->group_power,
6223 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006224 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006225
6226 /*
6227 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03006228 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006229 * a think about bumping its value to force at least one task to be
6230 * moved
6231 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006232 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006233 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006234}
Nikhil Raofab47622010-10-15 13:12:29 -07006235
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006236/******* find_busiest_group() helpers end here *********************/
6237
6238/**
6239 * find_busiest_group - Returns the busiest group within the sched_domain
6240 * if there is an imbalance. If there isn't an imbalance, and
6241 * the user has opted for power-savings, it returns a group whose
6242 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6243 * such a group exists.
6244 *
6245 * Also calculates the amount of weighted load which should be moved
6246 * to restore balance.
6247 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006248 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006249 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006250 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006251 * - If no imbalance and user has opted for power-savings balance,
6252 * return the least loaded group whose CPUs can be
6253 * put to idle by rebalancing its tasks onto our group.
6254 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006255static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006256{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006257 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006258 struct sd_lb_stats sds;
6259
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006260 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006261
6262 /*
6263 * Compute the various statistics relavent for load balancing at
6264 * this level.
6265 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006266 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006267 local = &sds.local_stat;
6268 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006269
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006270 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6271 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006272 return sds.busiest;
6273
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006274 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006275 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006276 goto out_balanced;
6277
Nikhil Rao1399fa72011-05-18 10:09:39 -07006278 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07006279
Peter Zijlstra866ab432011-02-21 18:56:47 +01006280 /*
6281 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006282 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01006283 * isn't true due to cpus_allowed constraints and the like.
6284 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006285 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01006286 goto force_balance;
6287
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006288 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006289 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6290 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07006291 goto force_balance;
6292
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006293 /*
6294 * If the local group is more busy than the selected busiest group
6295 * don't try and pull any tasks.
6296 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006297 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006298 goto out_balanced;
6299
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006300 /*
6301 * Don't pull any tasks if this group is already above the domain
6302 * average load.
6303 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006304 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006305 goto out_balanced;
6306
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006307 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006308 /*
6309 * This cpu is idle. If the busiest group load doesn't
6310 * have more tasks than the number of available cpu's and
6311 * there is no imbalance between this and busiest group
6312 * wrt to idle cpu's, it is balanced.
6313 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006314 if ((local->idle_cpus < busiest->idle_cpus) &&
6315 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006316 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006317 } else {
6318 /*
6319 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6320 * imbalance_pct to be conservative.
6321 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006322 if (100 * busiest->avg_load <=
6323 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006324 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006325 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006326
Nikhil Raofab47622010-10-15 13:12:29 -07006327force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006328 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006329 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006330 return sds.busiest;
6331
6332out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006333 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006334 return NULL;
6335}
6336
6337/*
6338 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6339 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006340static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08006341 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006342{
6343 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006344 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006345 int i;
6346
Peter Zijlstra6906a402013-08-19 15:20:21 +02006347 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006348 unsigned long power, capacity, wl;
6349 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006350
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006351 rq = cpu_rq(i);
6352 rt = fbq_classify_rq(rq);
6353
6354 /*
6355 * We classify groups/runqueues into three groups:
6356 * - regular: there are !numa tasks
6357 * - remote: there are numa tasks that run on the 'wrong' node
6358 * - all: there is no distinction
6359 *
6360 * In order to avoid migrating ideally placed numa tasks,
6361 * ignore those when there's better options.
6362 *
6363 * If we ignore the actual busiest queue to migrate another
6364 * task, the next balance pass can still reduce the busiest
6365 * queue by moving tasks around inside the node.
6366 *
6367 * If we cannot move enough load due to this classification
6368 * the next pass will adjust the group classification and
6369 * allow migration of more tasks.
6370 *
6371 * Both cases only affect the total convergence complexity.
6372 */
6373 if (rt > env->fbq_type)
6374 continue;
6375
6376 power = power_of(i);
6377 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006378 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006379 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006380
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006381 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006382
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006383 /*
6384 * When comparing with imbalance, use weighted_cpuload()
6385 * which is not scaled with the cpu power.
6386 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006387 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006388 continue;
6389
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006390 /*
6391 * For the load comparisons with the other cpu's, consider
6392 * the weighted_cpuload() scaled with the cpu power, so that
6393 * the load can be moved away from the cpu that is potentially
6394 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006395 *
6396 * Thus we're looking for max(wl_i / power_i), crosswise
6397 * multiplication to rid ourselves of the division works out
6398 * to: wl_i * power_j > wl_j * power_i; where j is our
6399 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006400 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006401 if (wl * busiest_power > busiest_load * power) {
6402 busiest_load = wl;
6403 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006404 busiest = rq;
6405 }
6406 }
6407
6408 return busiest;
6409}
6410
6411/*
6412 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6413 * so long as it is large enough.
6414 */
6415#define MAX_PINNED_INTERVAL 512
6416
6417/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006418DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006419
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006420static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006421{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006422 struct sched_domain *sd = env->sd;
6423
6424 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006425
6426 /*
6427 * ASYM_PACKING needs to force migrate tasks from busy but
6428 * higher numbered CPUs in order to pack all tasks in the
6429 * lowest numbered CPUs.
6430 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006431 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006432 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006433 }
6434
6435 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6436}
6437
Tejun Heo969c7922010-05-06 18:49:21 +02006438static int active_load_balance_cpu_stop(void *data);
6439
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006440static int should_we_balance(struct lb_env *env)
6441{
6442 struct sched_group *sg = env->sd->groups;
6443 struct cpumask *sg_cpus, *sg_mask;
6444 int cpu, balance_cpu = -1;
6445
6446 /*
6447 * In the newly idle case, we will allow all the cpu's
6448 * to do the newly idle load balance.
6449 */
6450 if (env->idle == CPU_NEWLY_IDLE)
6451 return 1;
6452
6453 sg_cpus = sched_group_cpus(sg);
6454 sg_mask = sched_group_mask(sg);
6455 /* Try to find first idle cpu */
6456 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6457 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6458 continue;
6459
6460 balance_cpu = cpu;
6461 break;
6462 }
6463
6464 if (balance_cpu == -1)
6465 balance_cpu = group_balance_cpu(sg);
6466
6467 /*
6468 * First idle cpu or the first cpu(busiest) in this sched group
6469 * is eligible for doing load balancing at this and above domains.
6470 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006471 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006472}
6473
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006474/*
6475 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6476 * tasks if there is an imbalance.
6477 */
6478static int load_balance(int this_cpu, struct rq *this_rq,
6479 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006480 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006481{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306482 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006483 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006485 struct rq *busiest;
6486 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006487 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006488
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006489 struct lb_env env = {
6490 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006491 .dst_cpu = this_cpu,
6492 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306493 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006494 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006495 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08006496 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006497 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006498 };
6499
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006500 /*
6501 * For NEWLY_IDLE load_balancing, we don't need to consider
6502 * other cpus in our group
6503 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006504 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006505 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006506
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006507 cpumask_copy(cpus, cpu_active_mask);
6508
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006509 schedstat_inc(sd, lb_count[idle]);
6510
6511redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006512 if (!should_we_balance(&env)) {
6513 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006514 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006515 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006516
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006517 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006518 if (!group) {
6519 schedstat_inc(sd, lb_nobusyg[idle]);
6520 goto out_balanced;
6521 }
6522
Michael Wangb94031302012-07-12 16:10:13 +08006523 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006524 if (!busiest) {
6525 schedstat_inc(sd, lb_nobusyq[idle]);
6526 goto out_balanced;
6527 }
6528
Michael Wang78feefc2012-08-06 16:41:59 +08006529 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006530
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006531 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006532
6533 ld_moved = 0;
6534 if (busiest->nr_running > 1) {
6535 /*
6536 * Attempt to move tasks. If find_busiest_group has found
6537 * an imbalance but busiest->nr_running <= 1, the group is
6538 * still unbalanced. ld_moved simply stays zero, so it is
6539 * correctly treated as an imbalance.
6540 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006541 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006542 env.src_cpu = busiest->cpu;
6543 env.src_rq = busiest;
6544 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006545
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006546more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006547 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006548 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306549
6550 /*
6551 * cur_ld_moved - load moved in current iteration
6552 * ld_moved - cumulative load moved across iterations
6553 */
6554 cur_ld_moved = move_tasks(&env);
6555 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006556 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006557 local_irq_restore(flags);
6558
6559 /*
6560 * some other cpu did the load balance for us.
6561 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306562 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6563 resched_cpu(env.dst_cpu);
6564
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006565 if (env.flags & LBF_NEED_BREAK) {
6566 env.flags &= ~LBF_NEED_BREAK;
6567 goto more_balance;
6568 }
6569
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306570 /*
6571 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6572 * us and move them to an alternate dst_cpu in our sched_group
6573 * where they can run. The upper limit on how many times we
6574 * iterate on same src_cpu is dependent on number of cpus in our
6575 * sched_group.
6576 *
6577 * This changes load balance semantics a bit on who can move
6578 * load to a given_cpu. In addition to the given_cpu itself
6579 * (or a ilb_cpu acting on its behalf where given_cpu is
6580 * nohz-idle), we now have balance_cpu in a position to move
6581 * load to given_cpu. In rare situations, this may cause
6582 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6583 * _independently_ and at _same_ time to move some load to
6584 * given_cpu) causing exceess load to be moved to given_cpu.
6585 * This however should not happen so much in practice and
6586 * moreover subsequent load balance cycles should correct the
6587 * excess load moved.
6588 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006589 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306590
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006591 /* Prevent to re-select dst_cpu via env's cpus */
6592 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6593
Michael Wang78feefc2012-08-06 16:41:59 +08006594 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306595 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006596 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306597 env.loop = 0;
6598 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006599
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306600 /*
6601 * Go back to "more_balance" rather than "redo" since we
6602 * need to continue with same src_cpu.
6603 */
6604 goto more_balance;
6605 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006606
Peter Zijlstra62633222013-08-19 12:41:09 +02006607 /*
6608 * We failed to reach balance because of affinity.
6609 */
6610 if (sd_parent) {
6611 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6612
6613 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6614 *group_imbalance = 1;
6615 } else if (*group_imbalance)
6616 *group_imbalance = 0;
6617 }
6618
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006619 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006620 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006621 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306622 if (!cpumask_empty(cpus)) {
6623 env.loop = 0;
6624 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006625 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306626 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006627 goto out_balanced;
6628 }
6629 }
6630
6631 if (!ld_moved) {
6632 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006633 /*
6634 * Increment the failure counter only on periodic balance.
6635 * We do not want newidle balance, which can be very
6636 * frequent, pollute the failure counter causing
6637 * excessive cache_hot migrations and active balances.
6638 */
6639 if (idle != CPU_NEWLY_IDLE)
6640 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006641
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006642 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006643 raw_spin_lock_irqsave(&busiest->lock, flags);
6644
Tejun Heo969c7922010-05-06 18:49:21 +02006645 /* don't kick the active_load_balance_cpu_stop,
6646 * if the curr task on busiest cpu can't be
6647 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006648 */
6649 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006650 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006651 raw_spin_unlock_irqrestore(&busiest->lock,
6652 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006653 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654 goto out_one_pinned;
6655 }
6656
Tejun Heo969c7922010-05-06 18:49:21 +02006657 /*
6658 * ->active_balance synchronizes accesses to
6659 * ->active_balance_work. Once set, it's cleared
6660 * only after active load balance is finished.
6661 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006662 if (!busiest->active_balance) {
6663 busiest->active_balance = 1;
6664 busiest->push_cpu = this_cpu;
6665 active_balance = 1;
6666 }
6667 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006668
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006669 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006670 stop_one_cpu_nowait(cpu_of(busiest),
6671 active_load_balance_cpu_stop, busiest,
6672 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006673 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006674
6675 /*
6676 * We've kicked active balancing, reset the failure
6677 * counter.
6678 */
6679 sd->nr_balance_failed = sd->cache_nice_tries+1;
6680 }
6681 } else
6682 sd->nr_balance_failed = 0;
6683
6684 if (likely(!active_balance)) {
6685 /* We were unbalanced, so reset the balancing interval */
6686 sd->balance_interval = sd->min_interval;
6687 } else {
6688 /*
6689 * If we've begun active balancing, start to back off. This
6690 * case may not be covered by the all_pinned logic if there
6691 * is only 1 task on the busy runqueue (because we don't call
6692 * move_tasks).
6693 */
6694 if (sd->balance_interval < sd->max_interval)
6695 sd->balance_interval *= 2;
6696 }
6697
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006698 goto out;
6699
6700out_balanced:
6701 schedstat_inc(sd, lb_balanced[idle]);
6702
6703 sd->nr_balance_failed = 0;
6704
6705out_one_pinned:
6706 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006707 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006708 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006709 (sd->balance_interval < sd->max_interval))
6710 sd->balance_interval *= 2;
6711
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006712 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006713out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006714 return ld_moved;
6715}
6716
Jason Low52a08ef2014-05-08 17:49:22 -07006717static inline unsigned long
6718get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6719{
6720 unsigned long interval = sd->balance_interval;
6721
6722 if (cpu_busy)
6723 interval *= sd->busy_factor;
6724
6725 /* scale ms to jiffies */
6726 interval = msecs_to_jiffies(interval);
6727 interval = clamp(interval, 1UL, max_load_balance_interval);
6728
6729 return interval;
6730}
6731
6732static inline void
6733update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6734{
6735 unsigned long interval, next;
6736
6737 interval = get_sd_balance_interval(sd, cpu_busy);
6738 next = sd->last_balance + interval;
6739
6740 if (time_after(*next_balance, next))
6741 *next_balance = next;
6742}
6743
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006744/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006745 * idle_balance is called by schedule() if this_cpu is about to become
6746 * idle. Attempts to pull tasks from other CPUs.
6747 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01006748static int idle_balance(struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006749{
Jason Low52a08ef2014-05-08 17:49:22 -07006750 unsigned long next_balance = jiffies + HZ;
6751 int this_cpu = this_rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006752 struct sched_domain *sd;
6753 int pulled_task = 0;
Jason Low9bd721c2013-09-13 11:26:52 -07006754 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006755
Peter Zijlstra6e831252014-02-11 16:11:48 +01006756 idle_enter_fair(this_rq);
Jason Low0e5b5332014-04-28 15:45:54 -07006757
Peter Zijlstra6e831252014-02-11 16:11:48 +01006758 /*
6759 * We must set idle_stamp _before_ calling idle_balance(), such that we
6760 * measure the duration of idle_balance() as idle time.
6761 */
6762 this_rq->idle_stamp = rq_clock(this_rq);
6763
Jason Low52a08ef2014-05-08 17:49:22 -07006764 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6765 rcu_read_lock();
6766 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6767 if (sd)
6768 update_next_balance(sd, 0, &next_balance);
6769 rcu_read_unlock();
6770
Peter Zijlstra6e831252014-02-11 16:11:48 +01006771 goto out;
Jason Low52a08ef2014-05-08 17:49:22 -07006772 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006773
Peter Zijlstraf492e122009-12-23 15:29:42 +01006774 /*
6775 * Drop the rq->lock, but keep IRQ/preempt disabled.
6776 */
6777 raw_spin_unlock(&this_rq->lock);
6778
Paul Turner48a16752012-10-04 13:18:31 +02006779 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006780 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006781 for_each_domain(this_cpu, sd) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006782 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006783 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006784
6785 if (!(sd->flags & SD_LOAD_BALANCE))
6786 continue;
6787
Jason Low52a08ef2014-05-08 17:49:22 -07006788 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6789 update_next_balance(sd, 0, &next_balance);
Jason Low9bd721c2013-09-13 11:26:52 -07006790 break;
Jason Low52a08ef2014-05-08 17:49:22 -07006791 }
Jason Low9bd721c2013-09-13 11:26:52 -07006792
Peter Zijlstraf492e122009-12-23 15:29:42 +01006793 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006794 t0 = sched_clock_cpu(this_cpu);
6795
Peter Zijlstraf492e122009-12-23 15:29:42 +01006796 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006797 sd, CPU_NEWLY_IDLE,
6798 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006799
6800 domain_cost = sched_clock_cpu(this_cpu) - t0;
6801 if (domain_cost > sd->max_newidle_lb_cost)
6802 sd->max_newidle_lb_cost = domain_cost;
6803
6804 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006805 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006806
Jason Low52a08ef2014-05-08 17:49:22 -07006807 update_next_balance(sd, 0, &next_balance);
Jason Low39a4d9c2014-04-23 18:30:35 -07006808
6809 /*
6810 * Stop searching for tasks to pull if there are
6811 * now runnable tasks on this rq.
6812 */
6813 if (pulled_task || this_rq->nr_running > 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006814 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006815 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006816 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006817
6818 raw_spin_lock(&this_rq->lock);
6819
Jason Low0e5b5332014-04-28 15:45:54 -07006820 if (curr_cost > this_rq->max_idle_balance_cost)
6821 this_rq->max_idle_balance_cost = curr_cost;
6822
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006823 /*
Jason Low0e5b5332014-04-28 15:45:54 -07006824 * While browsing the domains, we released the rq lock, a task could
6825 * have been enqueued in the meantime. Since we're not going idle,
6826 * pretend we pulled a task.
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006827 */
Jason Low0e5b5332014-04-28 15:45:54 -07006828 if (this_rq->cfs.h_nr_running && !pulled_task)
Peter Zijlstra6e831252014-02-11 16:11:48 +01006829 pulled_task = 1;
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01006830
Peter Zijlstra6e831252014-02-11 16:11:48 +01006831out:
Jason Low52a08ef2014-05-08 17:49:22 -07006832 /* Move the next balance forward */
6833 if (time_after(this_rq->next_balance, next_balance))
6834 this_rq->next_balance = next_balance;
6835
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006836 /* Is there a task of a high priority class? */
Kirill Tkhai46383642014-03-15 02:15:07 +04006837 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006838 pulled_task = -1;
6839
6840 if (pulled_task) {
6841 idle_exit_fair(this_rq);
Peter Zijlstra6e831252014-02-11 16:11:48 +01006842 this_rq->idle_stamp = 0;
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04006843 }
Peter Zijlstra6e831252014-02-11 16:11:48 +01006844
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01006845 return pulled_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006846}
6847
6848/*
Tejun Heo969c7922010-05-06 18:49:21 +02006849 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6850 * running tasks off the busiest CPU onto idle CPUs. It requires at
6851 * least 1 task to be running on each physical CPU where possible, and
6852 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006853 */
Tejun Heo969c7922010-05-06 18:49:21 +02006854static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006855{
Tejun Heo969c7922010-05-06 18:49:21 +02006856 struct rq *busiest_rq = data;
6857 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006858 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006859 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006860 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006861
6862 raw_spin_lock_irq(&busiest_rq->lock);
6863
6864 /* make sure the requested cpu hasn't gone down in the meantime */
6865 if (unlikely(busiest_cpu != smp_processor_id() ||
6866 !busiest_rq->active_balance))
6867 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006868
6869 /* Is there any task to move? */
6870 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006871 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006872
6873 /*
6874 * This condition is "impossible", if it occurs
6875 * we need to fix it. Originally reported by
6876 * Bjorn Helgaas on a 128-cpu setup.
6877 */
6878 BUG_ON(busiest_rq == target_rq);
6879
6880 /* move a task from busiest_rq to target_rq */
6881 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006882
6883 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006884 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006885 for_each_domain(target_cpu, sd) {
6886 if ((sd->flags & SD_LOAD_BALANCE) &&
6887 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6888 break;
6889 }
6890
6891 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006892 struct lb_env env = {
6893 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006894 .dst_cpu = target_cpu,
6895 .dst_rq = target_rq,
6896 .src_cpu = busiest_rq->cpu,
6897 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006898 .idle = CPU_IDLE,
6899 };
6900
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006901 schedstat_inc(sd, alb_count);
6902
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006903 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006904 schedstat_inc(sd, alb_pushed);
6905 else
6906 schedstat_inc(sd, alb_failed);
6907 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006908 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006909 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006910out_unlock:
6911 busiest_rq->active_balance = 0;
6912 raw_spin_unlock_irq(&busiest_rq->lock);
6913 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006914}
6915
Mike Galbraithd987fc72011-12-05 10:01:47 +01006916static inline int on_null_domain(struct rq *rq)
6917{
6918 return unlikely(!rcu_dereference_sched(rq->sd));
6919}
6920
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006921#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006922/*
6923 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006924 * - When one of the busy CPUs notice that there may be an idle rebalancing
6925 * needed, they will kick the idle load balancer, which then does idle
6926 * load balancing for all the idle CPUs.
6927 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006928static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006929 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006930 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006931 unsigned long next_balance; /* in jiffy units */
6932} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006933
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006934static inline int find_new_ilb(void)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006935{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006936 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006937
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006938 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6939 return ilb;
6940
6941 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006942}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006943
6944/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006945 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6946 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6947 * CPU (if there is one).
6948 */
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01006949static void nohz_balancer_kick(void)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006950{
6951 int ilb_cpu;
6952
6953 nohz.next_balance++;
6954
Daniel Lezcano3dd03372014-01-06 12:34:41 +01006955 ilb_cpu = find_new_ilb();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006956
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006957 if (ilb_cpu >= nr_cpu_ids)
6958 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006959
Suresh Siddhacd490c52011-12-06 11:26:34 -08006960 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006961 return;
6962 /*
6963 * Use smp_send_reschedule() instead of resched_cpu().
6964 * This way we generate a sched IPI on the target cpu which
6965 * is idle. And the softirq performing nohz idle load balance
6966 * will be run before returning from the IPI.
6967 */
6968 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006969 return;
6970}
6971
Alex Shic1cc0172012-09-10 15:10:58 +08006972static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006973{
6974 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
Mike Galbraithd987fc72011-12-05 10:01:47 +01006975 /*
6976 * Completely isolated CPUs don't ever set, so we must test.
6977 */
6978 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6979 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6980 atomic_dec(&nohz.nr_cpus);
6981 }
Suresh Siddha71325962012-01-19 18:28:57 -08006982 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6983 }
6984}
6985
Suresh Siddha69e1e812011-12-01 17:07:33 -08006986static inline void set_cpu_sd_state_busy(void)
6987{
6988 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306989 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08006990
Suresh Siddha69e1e812011-12-01 17:07:33 -08006991 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306992 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02006993
6994 if (!sd || !sd->nohz_idle)
6995 goto unlock;
6996 sd->nohz_idle = 0;
6997
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05306998 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006999unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007000 rcu_read_unlock();
7001}
7002
7003void set_cpu_sd_state_idle(void)
7004{
7005 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307006 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08007007
Suresh Siddha69e1e812011-12-01 17:07:33 -08007008 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307009 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02007010
7011 if (!sd || sd->nohz_idle)
7012 goto unlock;
7013 sd->nohz_idle = 1;
7014
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307015 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02007016unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007017 rcu_read_unlock();
7018}
7019
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007020/*
Alex Shic1cc0172012-09-10 15:10:58 +08007021 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007022 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007023 */
Alex Shic1cc0172012-09-10 15:10:58 +08007024void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007025{
Suresh Siddha71325962012-01-19 18:28:57 -08007026 /*
7027 * If this cpu is going down, then nothing needs to be done.
7028 */
7029 if (!cpu_active(cpu))
7030 return;
7031
Alex Shic1cc0172012-09-10 15:10:58 +08007032 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7033 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007034
Mike Galbraithd987fc72011-12-05 10:01:47 +01007035 /*
7036 * If we're a completely isolated CPU, we don't play.
7037 */
7038 if (on_null_domain(cpu_rq(cpu)))
7039 return;
7040
Alex Shic1cc0172012-09-10 15:10:58 +08007041 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7042 atomic_inc(&nohz.nr_cpus);
7043 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007044}
Suresh Siddha71325962012-01-19 18:28:57 -08007045
Paul Gortmaker0db06282013-06-19 14:53:51 -04007046static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08007047 unsigned long action, void *hcpu)
7048{
7049 switch (action & ~CPU_TASKS_FROZEN) {
7050 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08007051 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08007052 return NOTIFY_OK;
7053 default:
7054 return NOTIFY_DONE;
7055 }
7056}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007057#endif
7058
7059static DEFINE_SPINLOCK(balancing);
7060
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007061/*
7062 * Scale the max load_balance interval with the number of CPUs in the system.
7063 * This trades load-balance latency on larger machines for less cross talk.
7064 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007065void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007066{
7067 max_load_balance_interval = HZ*num_online_cpus()/10;
7068}
7069
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007070/*
7071 * It checks each scheduling domain to see if it is due to be balanced,
7072 * and initiates a balancing operation if so.
7073 *
Libinb9b08532013-04-01 19:14:01 +08007074 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007075 */
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007076static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007077{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007078 int continue_balancing = 1;
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007079 int cpu = rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007080 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02007081 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007082 /* Earliest time when we have to do rebalance again */
7083 unsigned long next_balance = jiffies + 60*HZ;
7084 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07007085 int need_serialize, need_decay = 0;
7086 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007087
Paul Turner48a16752012-10-04 13:18:31 +02007088 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08007089
Peter Zijlstradce840a2011-04-07 14:09:50 +02007090 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007091 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07007092 /*
7093 * Decay the newidle max times here because this is a regular
7094 * visit to all the domains. Decay ~1% per second.
7095 */
7096 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7097 sd->max_newidle_lb_cost =
7098 (sd->max_newidle_lb_cost * 253) / 256;
7099 sd->next_decay_max_lb_cost = jiffies + HZ;
7100 need_decay = 1;
7101 }
7102 max_cost += sd->max_newidle_lb_cost;
7103
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007104 if (!(sd->flags & SD_LOAD_BALANCE))
7105 continue;
7106
Jason Lowf48627e2013-09-13 11:26:53 -07007107 /*
7108 * Stop the load balance at this level. There is another
7109 * CPU in our sched group which is doing load balancing more
7110 * actively.
7111 */
7112 if (!continue_balancing) {
7113 if (need_decay)
7114 continue;
7115 break;
7116 }
7117
Jason Low52a08ef2014-05-08 17:49:22 -07007118 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007119
7120 need_serialize = sd->flags & SD_SERIALIZE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007121 if (need_serialize) {
7122 if (!spin_trylock(&balancing))
7123 goto out;
7124 }
7125
7126 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007127 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007128 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02007129 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007130 * env->dst_cpu, so we can't know our idle
7131 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007132 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007133 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007134 }
7135 sd->last_balance = jiffies;
Jason Low52a08ef2014-05-08 17:49:22 -07007136 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007137 }
7138 if (need_serialize)
7139 spin_unlock(&balancing);
7140out:
7141 if (time_after(next_balance, sd->last_balance + interval)) {
7142 next_balance = sd->last_balance + interval;
7143 update_next_balance = 1;
7144 }
Jason Lowf48627e2013-09-13 11:26:53 -07007145 }
7146 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007147 /*
Jason Lowf48627e2013-09-13 11:26:53 -07007148 * Ensure the rq-wide value also decays but keep it at a
7149 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007150 */
Jason Lowf48627e2013-09-13 11:26:53 -07007151 rq->max_idle_balance_cost =
7152 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007153 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007154 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007155
7156 /*
7157 * next_balance will be updated only when there is a need.
7158 * When the cpu is attached to null domain for ex, it will not be
7159 * updated.
7160 */
7161 if (likely(update_next_balance))
7162 rq->next_balance = next_balance;
7163}
7164
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007165#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007166/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007167 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007168 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7169 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007170static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007171{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007172 int this_cpu = this_rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007173 struct rq *rq;
7174 int balance_cpu;
7175
Suresh Siddha1c792db2011-12-01 17:07:32 -08007176 if (idle != CPU_IDLE ||
7177 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7178 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007179
7180 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08007181 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007182 continue;
7183
7184 /*
7185 * If this cpu gets work to do, stop the load balancing
7186 * work being done for other cpus. Next load
7187 * balancing owner will pick it up.
7188 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08007189 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007190 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007191
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02007192 rq = cpu_rq(balance_cpu);
7193
7194 raw_spin_lock_irq(&rq->lock);
7195 update_rq_clock(rq);
7196 update_idle_cpu_load(rq);
7197 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007198
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007199 rebalance_domains(rq, CPU_IDLE);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007200
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007201 if (time_after(this_rq->next_balance, rq->next_balance))
7202 this_rq->next_balance = rq->next_balance;
7203 }
7204 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007205end:
7206 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007207}
7208
7209/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007210 * Current heuristic for kicking the idle load balancer in the presence
7211 * of an idle cpu is the system.
7212 * - This rq has more than one task.
7213 * - At any scheduler domain level, this cpu's scheduler group has multiple
7214 * busy cpu's exceeding the group's power.
7215 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7216 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007217 */
Daniel Lezcano4a725622014-01-06 12:34:39 +01007218static inline int nohz_kick_needed(struct rq *rq)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007219{
7220 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007221 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307222 struct sched_group_power *sgp;
Daniel Lezcano4a725622014-01-06 12:34:39 +01007223 int nr_busy, cpu = rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007224
Daniel Lezcano4a725622014-01-06 12:34:39 +01007225 if (unlikely(rq->idle_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007226 return 0;
7227
Suresh Siddha1c792db2011-12-01 17:07:32 -08007228 /*
7229 * We may be recently in ticked or tickless idle mode. At the first
7230 * busy tick after returning from idle, we will update the busy stats.
7231 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08007232 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08007233 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007234
7235 /*
7236 * None are in tickless mode and hence no need for NOHZ idle load
7237 * balancing.
7238 */
7239 if (likely(!atomic_read(&nohz.nr_cpus)))
7240 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007241
7242 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007243 return 0;
7244
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007245 if (rq->nr_running >= 2)
7246 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007247
Peter Zijlstra067491b2011-12-07 14:32:08 +01007248 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307249 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007250
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307251 if (sd) {
7252 sgp = sd->groups->sgp;
7253 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7254
7255 if (nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01007256 goto need_kick_unlock;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007257 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307258
7259 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7260
7261 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7262 sched_domain_span(sd)) < cpu))
7263 goto need_kick_unlock;
7264
Peter Zijlstra067491b2011-12-07 14:32:08 +01007265 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007266 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01007267
7268need_kick_unlock:
7269 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007270need_kick:
7271 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007272}
7273#else
Daniel Lezcano208cb162014-01-06 12:34:44 +01007274static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007275#endif
7276
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007277/*
7278 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007279 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007280 */
7281static void run_rebalance_domains(struct softirq_action *h)
7282{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007283 struct rq *this_rq = this_rq();
Suresh Siddha6eb57e02011-10-03 15:09:01 -07007284 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007285 CPU_IDLE : CPU_NOT_IDLE;
7286
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007287 rebalance_domains(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007288
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007289 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007290 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007291 * balancing on behalf of the other idle cpus whose ticks are
7292 * stopped.
7293 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007294 nohz_idle_balance(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007295}
7296
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007297/*
7298 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007299 */
Daniel Lezcano7caff662014-01-06 12:34:38 +01007300void trigger_load_balance(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007301{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007302 /* Don't need to rebalance while attached to NULL domain */
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007303 if (unlikely(on_null_domain(rq)))
7304 return;
7305
7306 if (time_after_eq(jiffies, rq->next_balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007307 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007308#ifdef CONFIG_NO_HZ_COMMON
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007309 if (nohz_kick_needed(rq))
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007310 nohz_balancer_kick();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007311#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007312}
7313
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007314static void rq_online_fair(struct rq *rq)
7315{
7316 update_sysctl();
7317}
7318
7319static void rq_offline_fair(struct rq *rq)
7320{
7321 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07007322
7323 /* Ensure any throttled groups are reachable by pick_next_task */
7324 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007325}
7326
Dhaval Giani55e12e52008-06-24 23:39:43 +05307327#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02007328
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007329/*
7330 * scheduler tick hitting a task of our scheduling class:
7331 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007332static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007333{
7334 struct cfs_rq *cfs_rq;
7335 struct sched_entity *se = &curr->se;
7336
7337 for_each_sched_entity(se) {
7338 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01007339 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007340 }
Ben Segall18bf2802012-10-04 12:51:20 +02007341
Dave Kleikamp10e84b92013-07-31 13:53:35 -07007342 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02007343 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08007344
Ben Segall18bf2802012-10-04 12:51:20 +02007345 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007346}
7347
7348/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007349 * called on fork with the child task as argument from the parent's context
7350 * - child not yet on the tasklist
7351 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007352 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007353static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007354{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007355 struct cfs_rq *cfs_rq;
7356 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02007357 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007358 struct rq *rq = this_rq();
7359 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007360
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007361 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007362
Peter Zijlstra861d0342010-08-19 13:31:43 +02007363 update_rq_clock(rq);
7364
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09007365 cfs_rq = task_cfs_rq(current);
7366 curr = cfs_rq->curr;
7367
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09007368 /*
7369 * Not only the cpu but also the task_group of the parent might have
7370 * been changed after parent->se.parent,cfs_rq were copied to
7371 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7372 * of child point to valid ones.
7373 */
7374 rcu_read_lock();
7375 __set_task_cpu(p, this_cpu);
7376 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007377
Ting Yang7109c4422007-08-28 12:53:24 +02007378 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007379
Mike Galbraithb5d9d732009-09-08 11:12:28 +02007380 if (curr)
7381 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02007382 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007383
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007384 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02007385 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02007386 * Upon rescheduling, sched_class::put_prev_task() will place
7387 * 'current' within the tree based on its new key value.
7388 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007389 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05307390 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02007391 }
7392
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007393 se->vruntime -= cfs_rq->min_vruntime;
7394
Thomas Gleixner05fa7852009-11-17 14:28:38 +01007395 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007396}
7397
Steven Rostedtcb469842008-01-25 21:08:22 +01007398/*
7399 * Priority of the task has changed. Check to see if we preempt
7400 * the current task.
7401 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007402static void
7403prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01007404{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007405 if (!p->se.on_rq)
7406 return;
7407
Steven Rostedtcb469842008-01-25 21:08:22 +01007408 /*
7409 * Reschedule if we are currently running on this runqueue and
7410 * our priority decreased, or if we are not currently running on
7411 * this runqueue and our priority is higher than the current's
7412 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007413 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01007414 if (p->prio > oldprio)
7415 resched_task(rq->curr);
7416 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007417 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007418}
7419
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007420static void switched_from_fair(struct rq *rq, struct task_struct *p)
7421{
7422 struct sched_entity *se = &p->se;
7423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7424
7425 /*
George McCollister791c9e02014-02-18 17:56:51 -06007426 * Ensure the task's vruntime is normalized, so that when it's
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007427 * switched back to the fair class the enqueue_entity(.flags=0) will
7428 * do the right thing.
7429 *
George McCollister791c9e02014-02-18 17:56:51 -06007430 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7431 * have normalized the vruntime, if it's !on_rq, then only when
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007432 * the task is sleeping will it still have non-normalized vruntime.
7433 */
George McCollister791c9e02014-02-18 17:56:51 -06007434 if (!p->on_rq && p->state != TASK_RUNNING) {
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007435 /*
7436 * Fix up our vruntime so that the current sleep doesn't
7437 * cause 'unlimited' sleep bonus.
7438 */
7439 place_entity(cfs_rq, se, 0);
7440 se->vruntime -= cfs_rq->min_vruntime;
7441 }
Paul Turner9ee474f2012-10-04 13:18:30 +02007442
Alex Shi141965c2013-06-26 13:05:39 +08007443#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007444 /*
7445 * Remove our load from contribution when we leave sched_fair
7446 * and ensure we don't carry in an old decay_count if we
7447 * switch back.
7448 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007449 if (se->avg.decay_count) {
7450 __synchronize_entity_decay(se);
7451 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007452 }
7453#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007454}
7455
Steven Rostedtcb469842008-01-25 21:08:22 +01007456/*
7457 * We switched to the sched_fair class.
7458 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007459static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007460{
Michael wangeb7a59b2014-02-20 11:14:53 +08007461 struct sched_entity *se = &p->se;
7462#ifdef CONFIG_FAIR_GROUP_SCHED
7463 /*
7464 * Since the real-depth could have been changed (only FAIR
7465 * class maintain depth value), reset depth properly.
7466 */
7467 se->depth = se->parent ? se->parent->depth + 1 : 0;
7468#endif
7469 if (!se->on_rq)
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007470 return;
7471
Steven Rostedtcb469842008-01-25 21:08:22 +01007472 /*
7473 * We were most likely switched from sched_rt, so
7474 * kick off the schedule if running, otherwise just see
7475 * if we can still preempt the current task.
7476 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007477 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007478 resched_task(rq->curr);
7479 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007480 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007481}
7482
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007483/* Account for a task changing its policy or group.
7484 *
7485 * This routine is mostly called to set cfs_rq->curr field when a task
7486 * migrates between groups/classes.
7487 */
7488static void set_curr_task_fair(struct rq *rq)
7489{
7490 struct sched_entity *se = &rq->curr->se;
7491
Paul Turnerec12cb72011-07-21 09:43:30 -07007492 for_each_sched_entity(se) {
7493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7494
7495 set_next_entity(cfs_rq, se);
7496 /* ensure bandwidth has been allocated on our new cfs_rq */
7497 account_cfs_rq_runtime(cfs_rq, 0);
7498 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007499}
7500
Peter Zijlstra029632f2011-10-25 10:00:11 +02007501void init_cfs_rq(struct cfs_rq *cfs_rq)
7502{
7503 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007504 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7505#ifndef CONFIG_64BIT
7506 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7507#endif
Alex Shi141965c2013-06-26 13:05:39 +08007508#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007509 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007510 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007511#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007512}
7513
Peter Zijlstra810b3812008-02-29 15:21:01 -05007514#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007515static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007516{
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007517 struct sched_entity *se = &p->se;
Paul Turneraff3e492012-10-04 13:18:30 +02007518 struct cfs_rq *cfs_rq;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007519
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007520 /*
7521 * If the task was not on the rq at the time of this cgroup movement
7522 * it must have been asleep, sleeping tasks keep their ->vruntime
7523 * absolute on their old rq until wakeup (needed for the fair sleeper
7524 * bonus in place_entity()).
7525 *
7526 * If it was on the rq, we've just 'preempted' it, which does convert
7527 * ->vruntime to a relative base.
7528 *
7529 * Make sure both cases convert their relative position when migrating
7530 * to another cgroup's rq. This does somewhat interfere with the
7531 * fair sleeper stuff for the first placement, but who cares.
7532 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007533 /*
7534 * When !on_rq, vruntime of the task has usually NOT been normalized.
7535 * But there are some cases where it has already been normalized:
7536 *
7537 * - Moving a forked child which is waiting for being woken up by
7538 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007539 * - Moving a task which has been woken up by try_to_wake_up() and
7540 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007541 *
7542 * To prevent boost or penalty in the new cfs_rq caused by delta
7543 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7544 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007545 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007546 on_rq = 1;
7547
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007548 if (!on_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007549 se->vruntime -= cfs_rq_of(se)->min_vruntime;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007550 set_task_rq(p, task_cpu(p));
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007551 se->depth = se->parent ? se->parent->depth + 1 : 0;
Paul Turneraff3e492012-10-04 13:18:30 +02007552 if (!on_rq) {
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007553 cfs_rq = cfs_rq_of(se);
7554 se->vruntime += cfs_rq->min_vruntime;
Paul Turneraff3e492012-10-04 13:18:30 +02007555#ifdef CONFIG_SMP
7556 /*
7557 * migrate_task_rq_fair() will have removed our previous
7558 * contribution, but we must synchronize for ongoing future
7559 * decay.
7560 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007561 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02007563#endif
7564 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007565}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007566
7567void free_fair_sched_group(struct task_group *tg)
7568{
7569 int i;
7570
7571 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7572
7573 for_each_possible_cpu(i) {
7574 if (tg->cfs_rq)
7575 kfree(tg->cfs_rq[i]);
7576 if (tg->se)
7577 kfree(tg->se[i]);
7578 }
7579
7580 kfree(tg->cfs_rq);
7581 kfree(tg->se);
7582}
7583
7584int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7585{
7586 struct cfs_rq *cfs_rq;
7587 struct sched_entity *se;
7588 int i;
7589
7590 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7591 if (!tg->cfs_rq)
7592 goto err;
7593 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7594 if (!tg->se)
7595 goto err;
7596
7597 tg->shares = NICE_0_LOAD;
7598
7599 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7600
7601 for_each_possible_cpu(i) {
7602 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7603 GFP_KERNEL, cpu_to_node(i));
7604 if (!cfs_rq)
7605 goto err;
7606
7607 se = kzalloc_node(sizeof(struct sched_entity),
7608 GFP_KERNEL, cpu_to_node(i));
7609 if (!se)
7610 goto err_free_rq;
7611
7612 init_cfs_rq(cfs_rq);
7613 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7614 }
7615
7616 return 1;
7617
7618err_free_rq:
7619 kfree(cfs_rq);
7620err:
7621 return 0;
7622}
7623
7624void unregister_fair_sched_group(struct task_group *tg, int cpu)
7625{
7626 struct rq *rq = cpu_rq(cpu);
7627 unsigned long flags;
7628
7629 /*
7630 * Only empty task groups can be destroyed; so we can speculatively
7631 * check on_list without danger of it being re-added.
7632 */
7633 if (!tg->cfs_rq[cpu]->on_list)
7634 return;
7635
7636 raw_spin_lock_irqsave(&rq->lock, flags);
7637 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7638 raw_spin_unlock_irqrestore(&rq->lock, flags);
7639}
7640
7641void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7642 struct sched_entity *se, int cpu,
7643 struct sched_entity *parent)
7644{
7645 struct rq *rq = cpu_rq(cpu);
7646
7647 cfs_rq->tg = tg;
7648 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007649 init_cfs_rq_runtime(cfs_rq);
7650
7651 tg->cfs_rq[cpu] = cfs_rq;
7652 tg->se[cpu] = se;
7653
7654 /* se could be NULL for root_task_group */
7655 if (!se)
7656 return;
7657
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007658 if (!parent) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007659 se->cfs_rq = &rq->cfs;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007660 se->depth = 0;
7661 } else {
Peter Zijlstra029632f2011-10-25 10:00:11 +02007662 se->cfs_rq = parent->my_q;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01007663 se->depth = parent->depth + 1;
7664 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02007665
7666 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07007667 /* guarantee group entities always have weight */
7668 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007669 se->parent = parent;
7670}
7671
7672static DEFINE_MUTEX(shares_mutex);
7673
7674int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7675{
7676 int i;
7677 unsigned long flags;
7678
7679 /*
7680 * We can't change the weight of the root cgroup.
7681 */
7682 if (!tg->se[0])
7683 return -EINVAL;
7684
7685 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7686
7687 mutex_lock(&shares_mutex);
7688 if (tg->shares == shares)
7689 goto done;
7690
7691 tg->shares = shares;
7692 for_each_possible_cpu(i) {
7693 struct rq *rq = cpu_rq(i);
7694 struct sched_entity *se;
7695
7696 se = tg->se[i];
7697 /* Propagate contribution to hierarchy */
7698 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007699
7700 /* Possible calls to update_curr() need rq clock */
7701 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007702 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007703 update_cfs_shares(group_cfs_rq(se));
7704 raw_spin_unlock_irqrestore(&rq->lock, flags);
7705 }
7706
7707done:
7708 mutex_unlock(&shares_mutex);
7709 return 0;
7710}
7711#else /* CONFIG_FAIR_GROUP_SCHED */
7712
7713void free_fair_sched_group(struct task_group *tg) { }
7714
7715int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7716{
7717 return 1;
7718}
7719
7720void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7721
7722#endif /* CONFIG_FAIR_GROUP_SCHED */
7723
Peter Zijlstra810b3812008-02-29 15:21:01 -05007724
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007725static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007726{
7727 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007728 unsigned int rr_interval = 0;
7729
7730 /*
7731 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7732 * idle runqueue:
7733 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007734 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007735 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007736
7737 return rr_interval;
7738}
7739
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007740/*
7741 * All the scheduling class methods:
7742 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007743const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007744 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007745 .enqueue_task = enqueue_task_fair,
7746 .dequeue_task = dequeue_task_fair,
7747 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007748 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007749
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007750 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007751
7752 .pick_next_task = pick_next_task_fair,
7753 .put_prev_task = put_prev_task_fair,
7754
Peter Williams681f3e62007-10-24 18:23:51 +02007755#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007756 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007757 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007758
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007759 .rq_online = rq_online_fair,
7760 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007761
7762 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007763#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007764
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007765 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007766 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007767 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007768
7769 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007770 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007771 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007772
Peter Williams0d721ce2009-09-21 01:31:53 +00007773 .get_rr_interval = get_rr_interval_fair,
7774
Peter Zijlstra810b3812008-02-29 15:21:01 -05007775#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007776 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007777#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007778};
7779
7780#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007781void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007782{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007783 struct cfs_rq *cfs_rq;
7784
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007785 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007786 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007787 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007788 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007789}
7790#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007791
7792__init void init_sched_fair_class(void)
7793{
7794#ifdef CONFIG_SMP
7795 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7796
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007797#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007798 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007799 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007800 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007801#endif
7802#endif /* SMP */
7803
7804}