Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Marco Elver | bd0ccc4 | 2021-01-15 18:09:53 +0100 | [diff] [blame] | 2 | /* |
| 3 | * KCSAN core runtime. |
| 4 | * |
| 5 | * Copyright (C) 2019, Google LLC. |
| 6 | */ |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 7 | |
Marco Elver | 2778793 | 2020-07-31 10:17:22 +0200 | [diff] [blame] | 8 | #define pr_fmt(fmt) "kcsan: " fmt |
| 9 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 10 | #include <linux/atomic.h> |
| 11 | #include <linux/bug.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/export.h> |
| 14 | #include <linux/init.h> |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 15 | #include <linux/kernel.h> |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 16 | #include <linux/list.h> |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 17 | #include <linux/moduleparam.h> |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 18 | #include <linux/percpu.h> |
| 19 | #include <linux/preempt.h> |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 20 | #include <linux/sched.h> |
| 21 | #include <linux/uaccess.h> |
| 22 | |
| 23 | #include "atomic.h" |
| 24 | #include "encoding.h" |
| 25 | #include "kcsan.h" |
| 26 | |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 27 | static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); |
Marco Elver | 2402d0e | 2020-02-22 00:10:27 +0100 | [diff] [blame] | 28 | unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; |
| 29 | unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 30 | static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 31 | static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER); |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 32 | |
| 33 | #ifdef MODULE_PARAM_PREFIX |
| 34 | #undef MODULE_PARAM_PREFIX |
| 35 | #endif |
| 36 | #define MODULE_PARAM_PREFIX "kcsan." |
| 37 | module_param_named(early_enable, kcsan_early_enable, bool, 0); |
| 38 | module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); |
| 39 | module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); |
| 40 | module_param_named(skip_watch, kcsan_skip_watch, long, 0644); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 41 | module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444); |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 42 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 43 | bool kcsan_enabled; |
| 44 | |
| 45 | /* Per-CPU kcsan_ctx for interrupts */ |
| 46 | static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 47 | .disable_count = 0, |
| 48 | .atomic_next = 0, |
| 49 | .atomic_nest_count = 0, |
| 50 | .in_flat_atomic = false, |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 51 | .access_mask = 0, |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 52 | .scoped_accesses = {LIST_POISON1, NULL}, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 53 | }; |
| 54 | |
| 55 | /* |
Qiujun Huang | e7b3410 | 2020-03-05 15:21:07 +0100 | [diff] [blame] | 56 | * Helper macros to index into adjacent slots, starting from address slot |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 57 | * itself, followed by the right and left slots. |
| 58 | * |
| 59 | * The purpose is 2-fold: |
| 60 | * |
| 61 | * 1. if during insertion the address slot is already occupied, check if |
| 62 | * any adjacent slots are free; |
| 63 | * 2. accesses that straddle a slot boundary due to size that exceeds a |
| 64 | * slot's range may check adjacent slots if any watchpoint matches. |
| 65 | * |
| 66 | * Note that accesses with very large size may still miss a watchpoint; however, |
| 67 | * given this should be rare, this is a reasonable trade-off to make, since this |
| 68 | * will avoid: |
| 69 | * |
| 70 | * 1. excessive contention between watchpoint checks and setup; |
| 71 | * 2. larger number of simultaneous watchpoints without sacrificing |
| 72 | * performance. |
| 73 | * |
| 74 | * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: |
| 75 | * |
| 76 | * slot=0: [ 1, 2, 0] |
| 77 | * slot=9: [10, 11, 9] |
| 78 | * slot=63: [64, 65, 63] |
| 79 | */ |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 80 | #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) |
| 81 | |
| 82 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 83 | * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 84 | * slot (middle) is fine if we assume that races occur rarely. The set of |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 85 | * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to |
| 86 | * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. |
| 87 | */ |
| 88 | #define SLOT_IDX_FAST(slot, i) (slot + i) |
| 89 | |
| 90 | /* |
| 91 | * Watchpoints, with each entry encoded as defined in encoding.h: in order to be |
| 92 | * able to safely update and access a watchpoint without introducing locking |
| 93 | * overhead, we encode each watchpoint as a single atomic long. The initial |
| 94 | * zero-initialized state matches INVALID_WATCHPOINT. |
| 95 | * |
| 96 | * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 97 | * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 98 | */ |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 99 | static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 100 | |
| 101 | /* |
| 102 | * Instructions to skip watching counter, used in should_watch(). We use a |
| 103 | * per-CPU counter to avoid excessive contention. |
| 104 | */ |
| 105 | static DEFINE_PER_CPU(long, kcsan_skip); |
| 106 | |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 107 | /* For kcsan_prandom_u32_max(). */ |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 108 | static DEFINE_PER_CPU(u32, kcsan_rand_state); |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 109 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 110 | static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, |
| 111 | size_t size, |
| 112 | bool expect_write, |
| 113 | long *encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 114 | { |
| 115 | const int slot = watchpoint_slot(addr); |
| 116 | const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; |
| 117 | atomic_long_t *watchpoint; |
| 118 | unsigned long wp_addr_masked; |
| 119 | size_t wp_size; |
| 120 | bool is_write; |
| 121 | int i; |
| 122 | |
| 123 | BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); |
| 124 | |
| 125 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 126 | watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; |
| 127 | *encoded_watchpoint = atomic_long_read(watchpoint); |
| 128 | if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, |
| 129 | &wp_size, &is_write)) |
| 130 | continue; |
| 131 | |
| 132 | if (expect_write && !is_write) |
| 133 | continue; |
| 134 | |
| 135 | /* Check if the watchpoint matches the access. */ |
| 136 | if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) |
| 137 | return watchpoint; |
| 138 | } |
| 139 | |
| 140 | return NULL; |
| 141 | } |
| 142 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 143 | static inline atomic_long_t * |
| 144 | insert_watchpoint(unsigned long addr, size_t size, bool is_write) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 145 | { |
| 146 | const int slot = watchpoint_slot(addr); |
| 147 | const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); |
| 148 | atomic_long_t *watchpoint; |
| 149 | int i; |
| 150 | |
| 151 | /* Check slot index logic, ensuring we stay within array bounds. */ |
| 152 | BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 153 | BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); |
| 154 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); |
| 155 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 156 | |
| 157 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 158 | long expect_val = INVALID_WATCHPOINT; |
| 159 | |
| 160 | /* Try to acquire this slot. */ |
| 161 | watchpoint = &watchpoints[SLOT_IDX(slot, i)]; |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 162 | if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 163 | return watchpoint; |
| 164 | } |
| 165 | |
| 166 | return NULL; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Return true if watchpoint was successfully consumed, false otherwise. |
| 171 | * |
| 172 | * This may return false if: |
| 173 | * |
| 174 | * 1. another thread already consumed the watchpoint; |
| 175 | * 2. the thread that set up the watchpoint already removed it; |
| 176 | * 3. the watchpoint was removed and then re-used. |
| 177 | */ |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 178 | static __always_inline bool |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 179 | try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 180 | { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 181 | return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 182 | } |
| 183 | |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 184 | /* Return true if watchpoint was not touched, false if already consumed. */ |
| 185 | static inline bool consume_watchpoint(atomic_long_t *watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 186 | { |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 187 | return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT; |
| 188 | } |
| 189 | |
| 190 | /* Remove the watchpoint -- its slot may be reused after. */ |
| 191 | static inline void remove_watchpoint(atomic_long_t *watchpoint) |
| 192 | { |
| 193 | atomic_long_set(watchpoint, INVALID_WATCHPOINT); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 194 | } |
| 195 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 196 | static __always_inline struct kcsan_ctx *get_ctx(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 197 | { |
| 198 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 199 | * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 200 | * also result in calls that generate warnings in uaccess regions. |
| 201 | */ |
| 202 | return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); |
| 203 | } |
| 204 | |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 205 | /* Check scoped accesses; never inline because this is a slow-path! */ |
| 206 | static noinline void kcsan_check_scoped_accesses(void) |
| 207 | { |
| 208 | struct kcsan_ctx *ctx = get_ctx(); |
| 209 | struct list_head *prev_save = ctx->scoped_accesses.prev; |
| 210 | struct kcsan_scoped_access *scoped_access; |
| 211 | |
| 212 | ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */ |
| 213 | list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) |
| 214 | __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type); |
| 215 | ctx->scoped_accesses.prev = prev_save; |
| 216 | } |
| 217 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 218 | /* Rules for generic atomic accesses. Called from fast-path. */ |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 219 | static __always_inline bool |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 220 | is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 221 | { |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 222 | if (type & KCSAN_ACCESS_ATOMIC) |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 223 | return true; |
| 224 | |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 225 | /* |
| 226 | * Unless explicitly declared atomic, never consider an assertion access |
| 227 | * as atomic. This allows using them also in atomic regions, such as |
| 228 | * seqlocks, without implicitly changing their semantics. |
| 229 | */ |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 230 | if (type & KCSAN_ACCESS_ASSERT) |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 231 | return false; |
| 232 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 233 | if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 234 | (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) && |
Marco Elver | 14e2ac8 | 2020-07-24 09:00:01 +0200 | [diff] [blame] | 235 | !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size)) |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 236 | return true; /* Assume aligned writes up to word size are atomic. */ |
| 237 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 238 | if (ctx->atomic_next > 0) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 239 | /* |
| 240 | * Because we do not have separate contexts for nested |
| 241 | * interrupts, in case atomic_next is set, we simply assume that |
| 242 | * the outer interrupt set atomic_next. In the worst case, we |
| 243 | * will conservatively consider operations as atomic. This is a |
| 244 | * reasonable trade-off to make, since this case should be |
| 245 | * extremely rare; however, even if extremely rare, it could |
| 246 | * lead to false positives otherwise. |
| 247 | */ |
| 248 | if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) |
| 249 | --ctx->atomic_next; /* in task, or outer interrupt */ |
| 250 | return true; |
| 251 | } |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 252 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 253 | return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 254 | } |
| 255 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 256 | static __always_inline bool |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 257 | should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 258 | { |
| 259 | /* |
| 260 | * Never set up watchpoints when memory operations are atomic. |
| 261 | * |
| 262 | * Need to check this first, before kcsan_skip check below: (1) atomics |
| 263 | * should not count towards skipped instructions, and (2) to actually |
| 264 | * decrement kcsan_atomic_next for consecutive instruction stream. |
| 265 | */ |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 266 | if (is_atomic(ptr, size, type, ctx)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 267 | return false; |
| 268 | |
| 269 | if (this_cpu_dec_return(kcsan_skip) >= 0) |
| 270 | return false; |
| 271 | |
| 272 | /* |
| 273 | * NOTE: If we get here, kcsan_skip must always be reset in slow path |
| 274 | * via reset_kcsan_skip() to avoid underflow. |
| 275 | */ |
| 276 | |
| 277 | /* this operation should be watched */ |
| 278 | return true; |
| 279 | } |
| 280 | |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 281 | /* |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 282 | * Returns a pseudo-random number in interval [0, ep_ro). Simple linear |
| 283 | * congruential generator, using constants from "Numerical Recipes". |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 284 | */ |
| 285 | static u32 kcsan_prandom_u32_max(u32 ep_ro) |
| 286 | { |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 287 | u32 state = this_cpu_read(kcsan_rand_state); |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 288 | |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 289 | state = 1664525 * state + 1013904223; |
| 290 | this_cpu_write(kcsan_rand_state, state); |
| 291 | |
| 292 | return state % ep_ro; |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 293 | } |
| 294 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 295 | static inline void reset_kcsan_skip(void) |
| 296 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 297 | long skip_count = kcsan_skip_watch - |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 298 | (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 299 | kcsan_prandom_u32_max(kcsan_skip_watch) : |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 300 | 0); |
| 301 | this_cpu_write(kcsan_skip, skip_count); |
| 302 | } |
| 303 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 304 | static __always_inline bool kcsan_is_enabled(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 305 | { |
| 306 | return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0; |
| 307 | } |
| 308 | |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 309 | /* Introduce delay depending on context and configuration. */ |
| 310 | static void delay_access(int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 311 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 312 | unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; |
Marco Elver | 106a307 | 2020-07-24 09:00:03 +0200 | [diff] [blame] | 313 | /* For certain access types, skew the random delay to be longer. */ |
| 314 | unsigned int skew_delay_order = |
| 315 | (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0; |
| 316 | |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 317 | delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? |
| 318 | kcsan_prandom_u32_max(delay >> skew_delay_order) : |
| 319 | 0; |
| 320 | udelay(delay); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 321 | } |
| 322 | |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame] | 323 | void kcsan_save_irqtrace(struct task_struct *task) |
| 324 | { |
| 325 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 326 | task->kcsan_save_irqtrace = task->irqtrace; |
| 327 | #endif |
| 328 | } |
| 329 | |
| 330 | void kcsan_restore_irqtrace(struct task_struct *task) |
| 331 | { |
| 332 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 333 | task->irqtrace = task->kcsan_save_irqtrace; |
| 334 | #endif |
| 335 | } |
| 336 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 337 | /* |
| 338 | * Pull everything together: check_access() below contains the performance |
| 339 | * critical operations; the fast-path (including check_access) functions should |
| 340 | * all be inlinable by the instrumentation functions. |
| 341 | * |
| 342 | * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are |
| 343 | * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can |
| 344 | * be filtered from the stacktrace, as well as give them unique names for the |
| 345 | * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), |
| 346 | * since they do not access any user memory, but instrumentation is still |
| 347 | * emitted in UACCESS regions. |
| 348 | */ |
| 349 | |
| 350 | static noinline void kcsan_found_watchpoint(const volatile void *ptr, |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 351 | size_t size, |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 352 | int type, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 353 | atomic_long_t *watchpoint, |
| 354 | long encoded_watchpoint) |
| 355 | { |
| 356 | unsigned long flags; |
| 357 | bool consumed; |
| 358 | |
| 359 | if (!kcsan_is_enabled()) |
| 360 | return; |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 361 | |
| 362 | /* |
| 363 | * The access_mask check relies on value-change comparison. To avoid |
| 364 | * reporting a race where e.g. the writer set up the watchpoint, but the |
| 365 | * reader has access_mask!=0, we have to ignore the found watchpoint. |
| 366 | */ |
| 367 | if (get_ctx()->access_mask != 0) |
| 368 | return; |
| 369 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 370 | /* |
| 371 | * Consume the watchpoint as soon as possible, to minimize the chances |
| 372 | * of !consumed. Consuming the watchpoint must always be guarded by |
| 373 | * kcsan_is_enabled() check, as otherwise we might erroneously |
| 374 | * triggering reports when disabled. |
| 375 | */ |
| 376 | consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); |
| 377 | |
| 378 | /* keep this after try_consume_watchpoint */ |
| 379 | flags = user_access_save(); |
| 380 | |
| 381 | if (consumed) { |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame] | 382 | kcsan_save_irqtrace(current); |
Mark Rutland | 793c257 | 2021-04-14 13:28:18 +0200 | [diff] [blame] | 383 | kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints); |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame] | 384 | kcsan_restore_irqtrace(current); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 385 | } else { |
| 386 | /* |
| 387 | * The other thread may not print any diagnostics, as it has |
| 388 | * already removed the watchpoint, or another thread consumed |
| 389 | * the watchpoint before this thread. |
| 390 | */ |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 391 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 392 | } |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 393 | |
| 394 | if ((type & KCSAN_ACCESS_ASSERT) != 0) |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 395 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 396 | else |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 397 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 398 | |
| 399 | user_access_restore(flags); |
| 400 | } |
| 401 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 402 | static noinline void |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 403 | kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 404 | { |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 405 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 406 | const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 407 | atomic_long_t *watchpoint; |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 408 | u64 old, new, diff; |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 409 | unsigned long access_mask; |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 410 | enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 411 | unsigned long ua_flags = user_access_save(); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 412 | unsigned long irq_flags = 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 413 | |
| 414 | /* |
| 415 | * Always reset kcsan_skip counter in slow-path to avoid underflow; see |
| 416 | * should_watch(). |
| 417 | */ |
| 418 | reset_kcsan_skip(); |
| 419 | |
| 420 | if (!kcsan_is_enabled()) |
| 421 | goto out; |
| 422 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 423 | /* |
| 424 | * Special atomic rules: unlikely to be true, so we check them here in |
| 425 | * the slow-path, and not in the fast-path in is_atomic(). Call after |
| 426 | * kcsan_is_enabled(), as we may access memory that is not yet |
| 427 | * initialized during early boot. |
| 428 | */ |
| 429 | if (!is_assert && kcsan_is_atomic_special(ptr)) |
| 430 | goto out; |
| 431 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 432 | if (!check_encodable((unsigned long)ptr, size)) { |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 433 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 434 | goto out; |
| 435 | } |
| 436 | |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame] | 437 | /* |
| 438 | * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's |
| 439 | * runtime is entered for every memory access, and potentially useful |
| 440 | * information is lost if dirtied by KCSAN. |
| 441 | */ |
| 442 | kcsan_save_irqtrace(current); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 443 | if (!kcsan_interrupt_watcher) |
Marco Elver | 248591f | 2020-06-24 13:32:46 +0200 | [diff] [blame] | 444 | local_irq_save(irq_flags); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 445 | |
| 446 | watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); |
| 447 | if (watchpoint == NULL) { |
| 448 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 449 | * Out of capacity: the size of 'watchpoints', and the frequency |
| 450 | * with which should_watch() returns true should be tweaked so |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 451 | * that this case happens very rarely. |
| 452 | */ |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 453 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 454 | goto out_unlock; |
| 455 | } |
| 456 | |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 457 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]); |
| 458 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 459 | |
| 460 | /* |
| 461 | * Read the current value, to later check and infer a race if the data |
| 462 | * was modified via a non-instrumented access, e.g. from a device. |
| 463 | */ |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 464 | old = 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 465 | switch (size) { |
| 466 | case 1: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 467 | old = READ_ONCE(*(const u8 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 468 | break; |
| 469 | case 2: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 470 | old = READ_ONCE(*(const u16 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 471 | break; |
| 472 | case 4: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 473 | old = READ_ONCE(*(const u32 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 474 | break; |
| 475 | case 8: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 476 | old = READ_ONCE(*(const u64 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 477 | break; |
| 478 | default: |
| 479 | break; /* ignore; we do not diff the values */ |
| 480 | } |
| 481 | |
| 482 | if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) { |
| 483 | kcsan_disable_current(); |
Marco Elver | 2778793 | 2020-07-31 10:17:22 +0200 | [diff] [blame] | 484 | pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n", |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 485 | is_write ? "write" : "read", size, ptr, |
| 486 | watchpoint_slot((unsigned long)ptr), |
| 487 | encode_watchpoint((unsigned long)ptr, size, is_write)); |
| 488 | kcsan_enable_current(); |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Delay this thread, to increase probability of observing a racy |
| 493 | * conflicting access. |
| 494 | */ |
Marco Elver | cd290ec | 2020-08-21 14:31:26 +0200 | [diff] [blame] | 495 | delay_access(type); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 496 | |
| 497 | /* |
| 498 | * Re-read value, and check if it is as expected; if not, we infer a |
| 499 | * racy access. |
| 500 | */ |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 501 | access_mask = get_ctx()->access_mask; |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 502 | new = 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 503 | switch (size) { |
| 504 | case 1: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 505 | new = READ_ONCE(*(const u8 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 506 | break; |
| 507 | case 2: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 508 | new = READ_ONCE(*(const u16 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 509 | break; |
| 510 | case 4: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 511 | new = READ_ONCE(*(const u32 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 512 | break; |
| 513 | case 8: |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 514 | new = READ_ONCE(*(const u64 *)ptr); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 515 | break; |
| 516 | default: |
| 517 | break; /* ignore; we do not diff the values */ |
| 518 | } |
| 519 | |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 520 | diff = old ^ new; |
| 521 | if (access_mask) |
| 522 | diff &= access_mask; |
| 523 | |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 524 | /* Were we able to observe a value-change? */ |
Mark Rutland | 6f2d981 | 2021-04-14 13:28:17 +0200 | [diff] [blame] | 525 | if (diff != 0) |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 526 | value_change = KCSAN_VALUE_CHANGE_TRUE; |
| 527 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 528 | /* Check if this access raced with another. */ |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 529 | if (!consume_watchpoint(watchpoint)) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 530 | /* |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 531 | * Depending on the access type, map a value_change of MAYBE to |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 532 | * TRUE (always report) or FALSE (never report). |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 533 | */ |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 534 | if (value_change == KCSAN_VALUE_CHANGE_MAYBE) { |
| 535 | if (access_mask != 0) { |
| 536 | /* |
| 537 | * For access with access_mask, we require a |
| 538 | * value-change, as it is likely that races on |
| 539 | * ~access_mask bits are expected. |
| 540 | */ |
| 541 | value_change = KCSAN_VALUE_CHANGE_FALSE; |
| 542 | } else if (size > 8 || is_assert) { |
| 543 | /* Always assume a value-change. */ |
| 544 | value_change = KCSAN_VALUE_CHANGE_TRUE; |
| 545 | } |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 546 | } |
| 547 | |
| 548 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 549 | * No need to increment 'data_races' counter, as the racing |
| 550 | * thread already did. |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 551 | * |
| 552 | * Count 'assert_failures' for each failed ASSERT access, |
| 553 | * therefore both this thread and the racing thread may |
| 554 | * increment this counter. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 555 | */ |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 556 | if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE) |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 557 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 558 | |
Mark Rutland | 793c257 | 2021-04-14 13:28:18 +0200 | [diff] [blame] | 559 | kcsan_report_known_origin(ptr, size, type, value_change, |
Mark Rutland | 7bbe6dc | 2021-04-14 13:28:24 +0200 | [diff] [blame] | 560 | watchpoint - watchpoints, |
| 561 | old, new, access_mask); |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 562 | } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 563 | /* Inferring a race, since the value should not have changed. */ |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 564 | |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 565 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 566 | if (is_assert) |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 567 | atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 568 | |
| 569 | if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) |
Mark Rutland | 7bbe6dc | 2021-04-14 13:28:24 +0200 | [diff] [blame] | 570 | kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 571 | } |
| 572 | |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 573 | /* |
| 574 | * Remove watchpoint; must be after reporting, since the slot may be |
| 575 | * reused after this point. |
| 576 | */ |
| 577 | remove_watchpoint(watchpoint); |
Marco Elver | 2e986b8 | 2020-08-10 10:06:25 +0200 | [diff] [blame] | 578 | atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 579 | out_unlock: |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 580 | if (!kcsan_interrupt_watcher) |
Marco Elver | 248591f | 2020-06-24 13:32:46 +0200 | [diff] [blame] | 581 | local_irq_restore(irq_flags); |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame] | 582 | kcsan_restore_irqtrace(current); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 583 | out: |
| 584 | user_access_restore(ua_flags); |
| 585 | } |
| 586 | |
| 587 | static __always_inline void check_access(const volatile void *ptr, size_t size, |
| 588 | int type) |
| 589 | { |
| 590 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
| 591 | atomic_long_t *watchpoint; |
| 592 | long encoded_watchpoint; |
| 593 | |
| 594 | /* |
Marco Elver | ed95f95 | 2020-02-05 11:14:19 +0100 | [diff] [blame] | 595 | * Do nothing for 0 sized check; this comparison will be optimized out |
| 596 | * for constant sized instrumentation (__tsan_{read,write}N). |
| 597 | */ |
| 598 | if (unlikely(size == 0)) |
| 599 | return; |
| 600 | |
| 601 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 602 | * Avoid user_access_save in fast-path: find_watchpoint is safe without |
| 603 | * user_access_save, as the address that ptr points to is only used to |
| 604 | * check if a watchpoint exists; ptr is never dereferenced. |
| 605 | */ |
| 606 | watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write, |
| 607 | &encoded_watchpoint); |
| 608 | /* |
| 609 | * It is safe to check kcsan_is_enabled() after find_watchpoint in the |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 610 | * slow-path, as long as no state changes that cause a race to be |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 611 | * detected and reported have occurred until kcsan_is_enabled() is |
| 612 | * checked. |
| 613 | */ |
| 614 | |
| 615 | if (unlikely(watchpoint != NULL)) |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 616 | kcsan_found_watchpoint(ptr, size, type, watchpoint, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 617 | encoded_watchpoint); |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 618 | else { |
| 619 | struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */ |
| 620 | |
| 621 | if (unlikely(should_watch(ptr, size, type, ctx))) |
| 622 | kcsan_setup_watchpoint(ptr, size, type); |
| 623 | else if (unlikely(ctx->scoped_accesses.prev)) |
| 624 | kcsan_check_scoped_accesses(); |
| 625 | } |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 626 | } |
| 627 | |
| 628 | /* === Public interface ===================================================== */ |
| 629 | |
| 630 | void __init kcsan_init(void) |
| 631 | { |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 632 | int cpu; |
| 633 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 634 | BUG_ON(!in_task()); |
| 635 | |
Marco Elver | 71a076f | 2020-11-24 12:02:09 +0100 | [diff] [blame] | 636 | for_each_possible_cpu(cpu) |
| 637 | per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles(); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 638 | |
| 639 | /* |
| 640 | * We are in the init task, and no other tasks should be running; |
| 641 | * WRITE_ONCE without memory barrier is sufficient. |
| 642 | */ |
Marco Elver | 2778793 | 2020-07-31 10:17:22 +0200 | [diff] [blame] | 643 | if (kcsan_early_enable) { |
| 644 | pr_info("enabled early\n"); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 645 | WRITE_ONCE(kcsan_enabled, true); |
Marco Elver | 2778793 | 2020-07-31 10:17:22 +0200 | [diff] [blame] | 646 | } |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 647 | } |
| 648 | |
| 649 | /* === Exported interface =================================================== */ |
| 650 | |
| 651 | void kcsan_disable_current(void) |
| 652 | { |
| 653 | ++get_ctx()->disable_count; |
| 654 | } |
| 655 | EXPORT_SYMBOL(kcsan_disable_current); |
| 656 | |
| 657 | void kcsan_enable_current(void) |
| 658 | { |
| 659 | if (get_ctx()->disable_count-- == 0) { |
| 660 | /* |
| 661 | * Warn if kcsan_enable_current() calls are unbalanced with |
| 662 | * kcsan_disable_current() calls, which causes disable_count to |
| 663 | * become negative and should not happen. |
| 664 | */ |
| 665 | kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ |
| 666 | kcsan_disable_current(); /* disable to generate warning */ |
| 667 | WARN(1, "Unbalanced %s()", __func__); |
| 668 | kcsan_enable_current(); |
| 669 | } |
| 670 | } |
| 671 | EXPORT_SYMBOL(kcsan_enable_current); |
| 672 | |
Marco Elver | 19acd03 | 2020-04-24 17:47:29 +0200 | [diff] [blame] | 673 | void kcsan_enable_current_nowarn(void) |
| 674 | { |
| 675 | if (get_ctx()->disable_count-- == 0) |
| 676 | kcsan_disable_current(); |
| 677 | } |
| 678 | EXPORT_SYMBOL(kcsan_enable_current_nowarn); |
| 679 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 680 | void kcsan_nestable_atomic_begin(void) |
| 681 | { |
| 682 | /* |
| 683 | * Do *not* check and warn if we are in a flat atomic region: nestable |
| 684 | * and flat atomic regions are independent from each other. |
| 685 | * See include/linux/kcsan.h: struct kcsan_ctx comments for more |
| 686 | * comments. |
| 687 | */ |
| 688 | |
| 689 | ++get_ctx()->atomic_nest_count; |
| 690 | } |
| 691 | EXPORT_SYMBOL(kcsan_nestable_atomic_begin); |
| 692 | |
| 693 | void kcsan_nestable_atomic_end(void) |
| 694 | { |
| 695 | if (get_ctx()->atomic_nest_count-- == 0) { |
| 696 | /* |
| 697 | * Warn if kcsan_nestable_atomic_end() calls are unbalanced with |
| 698 | * kcsan_nestable_atomic_begin() calls, which causes |
| 699 | * atomic_nest_count to become negative and should not happen. |
| 700 | */ |
| 701 | kcsan_nestable_atomic_begin(); /* restore to 0 */ |
| 702 | kcsan_disable_current(); /* disable to generate warning */ |
| 703 | WARN(1, "Unbalanced %s()", __func__); |
| 704 | kcsan_enable_current(); |
| 705 | } |
| 706 | } |
| 707 | EXPORT_SYMBOL(kcsan_nestable_atomic_end); |
| 708 | |
| 709 | void kcsan_flat_atomic_begin(void) |
| 710 | { |
| 711 | get_ctx()->in_flat_atomic = true; |
| 712 | } |
| 713 | EXPORT_SYMBOL(kcsan_flat_atomic_begin); |
| 714 | |
| 715 | void kcsan_flat_atomic_end(void) |
| 716 | { |
| 717 | get_ctx()->in_flat_atomic = false; |
| 718 | } |
| 719 | EXPORT_SYMBOL(kcsan_flat_atomic_end); |
| 720 | |
| 721 | void kcsan_atomic_next(int n) |
| 722 | { |
| 723 | get_ctx()->atomic_next = n; |
| 724 | } |
| 725 | EXPORT_SYMBOL(kcsan_atomic_next); |
| 726 | |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 727 | void kcsan_set_access_mask(unsigned long mask) |
| 728 | { |
| 729 | get_ctx()->access_mask = mask; |
| 730 | } |
| 731 | EXPORT_SYMBOL(kcsan_set_access_mask); |
| 732 | |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 733 | struct kcsan_scoped_access * |
| 734 | kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, |
| 735 | struct kcsan_scoped_access *sa) |
| 736 | { |
| 737 | struct kcsan_ctx *ctx = get_ctx(); |
| 738 | |
| 739 | __kcsan_check_access(ptr, size, type); |
| 740 | |
| 741 | ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| 742 | |
| 743 | INIT_LIST_HEAD(&sa->list); |
| 744 | sa->ptr = ptr; |
| 745 | sa->size = size; |
| 746 | sa->type = type; |
| 747 | |
| 748 | if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */ |
| 749 | INIT_LIST_HEAD(&ctx->scoped_accesses); |
| 750 | list_add(&sa->list, &ctx->scoped_accesses); |
| 751 | |
| 752 | ctx->disable_count--; |
| 753 | return sa; |
| 754 | } |
| 755 | EXPORT_SYMBOL(kcsan_begin_scoped_access); |
| 756 | |
| 757 | void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) |
| 758 | { |
| 759 | struct kcsan_ctx *ctx = get_ctx(); |
| 760 | |
| 761 | if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__)) |
| 762 | return; |
| 763 | |
| 764 | ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| 765 | |
| 766 | list_del(&sa->list); |
| 767 | if (list_empty(&ctx->scoped_accesses)) |
| 768 | /* |
| 769 | * Ensure we do not enter kcsan_check_scoped_accesses() |
| 770 | * slow-path if unnecessary, and avoids requiring list_empty() |
| 771 | * in the fast-path (to avoid a READ_ONCE() and potential |
| 772 | * uaccess warning). |
| 773 | */ |
| 774 | ctx->scoped_accesses.prev = NULL; |
| 775 | |
| 776 | ctx->disable_count--; |
| 777 | |
| 778 | __kcsan_check_access(sa->ptr, sa->size, sa->type); |
| 779 | } |
| 780 | EXPORT_SYMBOL(kcsan_end_scoped_access); |
| 781 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 782 | void __kcsan_check_access(const volatile void *ptr, size_t size, int type) |
| 783 | { |
| 784 | check_access(ptr, size, type); |
| 785 | } |
| 786 | EXPORT_SYMBOL(__kcsan_check_access); |
| 787 | |
| 788 | /* |
| 789 | * KCSAN uses the same instrumentation that is emitted by supported compilers |
| 790 | * for ThreadSanitizer (TSAN). |
| 791 | * |
| 792 | * When enabled, the compiler emits instrumentation calls (the functions |
| 793 | * prefixed with "__tsan" below) for all loads and stores that it generated; |
| 794 | * inline asm is not instrumented. |
| 795 | * |
| 796 | * Note that, not all supported compiler versions distinguish aligned/unaligned |
| 797 | * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned |
| 798 | * version to the generic version, which can handle both. |
| 799 | */ |
| 800 | |
| 801 | #define DEFINE_TSAN_READ_WRITE(size) \ |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 802 | void __tsan_read##size(void *ptr); \ |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 803 | void __tsan_read##size(void *ptr) \ |
| 804 | { \ |
| 805 | check_access(ptr, size, 0); \ |
| 806 | } \ |
| 807 | EXPORT_SYMBOL(__tsan_read##size); \ |
| 808 | void __tsan_unaligned_read##size(void *ptr) \ |
| 809 | __alias(__tsan_read##size); \ |
| 810 | EXPORT_SYMBOL(__tsan_unaligned_read##size); \ |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 811 | void __tsan_write##size(void *ptr); \ |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 812 | void __tsan_write##size(void *ptr) \ |
| 813 | { \ |
| 814 | check_access(ptr, size, KCSAN_ACCESS_WRITE); \ |
| 815 | } \ |
| 816 | EXPORT_SYMBOL(__tsan_write##size); \ |
| 817 | void __tsan_unaligned_write##size(void *ptr) \ |
| 818 | __alias(__tsan_write##size); \ |
Marco Elver | 14e2ac8 | 2020-07-24 09:00:01 +0200 | [diff] [blame] | 819 | EXPORT_SYMBOL(__tsan_unaligned_write##size); \ |
| 820 | void __tsan_read_write##size(void *ptr); \ |
| 821 | void __tsan_read_write##size(void *ptr) \ |
| 822 | { \ |
| 823 | check_access(ptr, size, \ |
| 824 | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE); \ |
| 825 | } \ |
| 826 | EXPORT_SYMBOL(__tsan_read_write##size); \ |
| 827 | void __tsan_unaligned_read_write##size(void *ptr) \ |
| 828 | __alias(__tsan_read_write##size); \ |
| 829 | EXPORT_SYMBOL(__tsan_unaligned_read_write##size) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 830 | |
| 831 | DEFINE_TSAN_READ_WRITE(1); |
| 832 | DEFINE_TSAN_READ_WRITE(2); |
| 833 | DEFINE_TSAN_READ_WRITE(4); |
| 834 | DEFINE_TSAN_READ_WRITE(8); |
| 835 | DEFINE_TSAN_READ_WRITE(16); |
| 836 | |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 837 | void __tsan_read_range(void *ptr, size_t size); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 838 | void __tsan_read_range(void *ptr, size_t size) |
| 839 | { |
| 840 | check_access(ptr, size, 0); |
| 841 | } |
| 842 | EXPORT_SYMBOL(__tsan_read_range); |
| 843 | |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 844 | void __tsan_write_range(void *ptr, size_t size); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 845 | void __tsan_write_range(void *ptr, size_t size) |
| 846 | { |
| 847 | check_access(ptr, size, KCSAN_ACCESS_WRITE); |
| 848 | } |
| 849 | EXPORT_SYMBOL(__tsan_write_range); |
| 850 | |
| 851 | /* |
Marco Elver | 75d75b7 | 2020-05-21 16:20:39 +0200 | [diff] [blame] | 852 | * Use of explicit volatile is generally disallowed [1], however, volatile is |
| 853 | * still used in various concurrent context, whether in low-level |
| 854 | * synchronization primitives or for legacy reasons. |
| 855 | * [1] https://lwn.net/Articles/233479/ |
| 856 | * |
| 857 | * We only consider volatile accesses atomic if they are aligned and would pass |
| 858 | * the size-check of compiletime_assert_rwonce_type(). |
| 859 | */ |
| 860 | #define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \ |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 861 | void __tsan_volatile_read##size(void *ptr); \ |
Marco Elver | 75d75b7 | 2020-05-21 16:20:39 +0200 | [diff] [blame] | 862 | void __tsan_volatile_read##size(void *ptr) \ |
| 863 | { \ |
| 864 | const bool is_atomic = size <= sizeof(long long) && \ |
| 865 | IS_ALIGNED((unsigned long)ptr, size); \ |
| 866 | if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| 867 | return; \ |
| 868 | check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0); \ |
| 869 | } \ |
| 870 | EXPORT_SYMBOL(__tsan_volatile_read##size); \ |
| 871 | void __tsan_unaligned_volatile_read##size(void *ptr) \ |
| 872 | __alias(__tsan_volatile_read##size); \ |
| 873 | EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \ |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 874 | void __tsan_volatile_write##size(void *ptr); \ |
Marco Elver | 75d75b7 | 2020-05-21 16:20:39 +0200 | [diff] [blame] | 875 | void __tsan_volatile_write##size(void *ptr) \ |
| 876 | { \ |
| 877 | const bool is_atomic = size <= sizeof(long long) && \ |
| 878 | IS_ALIGNED((unsigned long)ptr, size); \ |
| 879 | if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| 880 | return; \ |
| 881 | check_access(ptr, size, \ |
| 882 | KCSAN_ACCESS_WRITE | \ |
| 883 | (is_atomic ? KCSAN_ACCESS_ATOMIC : 0)); \ |
| 884 | } \ |
| 885 | EXPORT_SYMBOL(__tsan_volatile_write##size); \ |
| 886 | void __tsan_unaligned_volatile_write##size(void *ptr) \ |
| 887 | __alias(__tsan_volatile_write##size); \ |
| 888 | EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size) |
| 889 | |
| 890 | DEFINE_TSAN_VOLATILE_READ_WRITE(1); |
| 891 | DEFINE_TSAN_VOLATILE_READ_WRITE(2); |
| 892 | DEFINE_TSAN_VOLATILE_READ_WRITE(4); |
| 893 | DEFINE_TSAN_VOLATILE_READ_WRITE(8); |
| 894 | DEFINE_TSAN_VOLATILE_READ_WRITE(16); |
| 895 | |
| 896 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 897 | * The below are not required by KCSAN, but can still be emitted by the |
| 898 | * compiler. |
| 899 | */ |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 900 | void __tsan_func_entry(void *call_pc); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 901 | void __tsan_func_entry(void *call_pc) |
| 902 | { |
| 903 | } |
| 904 | EXPORT_SYMBOL(__tsan_func_entry); |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 905 | void __tsan_func_exit(void); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 906 | void __tsan_func_exit(void) |
| 907 | { |
| 908 | } |
| 909 | EXPORT_SYMBOL(__tsan_func_exit); |
Marco Elver | 9dd979b | 2020-06-16 14:36:22 +0200 | [diff] [blame] | 910 | void __tsan_init(void); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 911 | void __tsan_init(void) |
| 912 | { |
| 913 | } |
| 914 | EXPORT_SYMBOL(__tsan_init); |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 915 | |
| 916 | /* |
| 917 | * Instrumentation for atomic builtins (__atomic_*, __sync_*). |
| 918 | * |
| 919 | * Normal kernel code _should not_ be using them directly, but some |
| 920 | * architectures may implement some or all atomics using the compilers' |
| 921 | * builtins. |
| 922 | * |
| 923 | * Note: If an architecture decides to fully implement atomics using the |
| 924 | * builtins, because they are implicitly instrumented by KCSAN (and KASAN, |
| 925 | * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via |
| 926 | * atomic-instrumented) is no longer necessary. |
| 927 | * |
| 928 | * TSAN instrumentation replaces atomic accesses with calls to any of the below |
| 929 | * functions, whose job is to also execute the operation itself. |
| 930 | */ |
| 931 | |
| 932 | #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \ |
| 933 | u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \ |
| 934 | u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \ |
| 935 | { \ |
Marco Elver | 9d1335c | 2020-07-24 09:00:04 +0200 | [diff] [blame] | 936 | if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| 937 | check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC); \ |
| 938 | } \ |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 939 | return __atomic_load_n(ptr, memorder); \ |
| 940 | } \ |
| 941 | EXPORT_SYMBOL(__tsan_atomic##bits##_load); \ |
| 942 | void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \ |
| 943 | void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \ |
| 944 | { \ |
Marco Elver | 9d1335c | 2020-07-24 09:00:04 +0200 | [diff] [blame] | 945 | if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| 946 | check_access(ptr, bits / BITS_PER_BYTE, \ |
| 947 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC); \ |
| 948 | } \ |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 949 | __atomic_store_n(ptr, v, memorder); \ |
| 950 | } \ |
| 951 | EXPORT_SYMBOL(__tsan_atomic##bits##_store) |
| 952 | |
| 953 | #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \ |
| 954 | u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \ |
| 955 | u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \ |
| 956 | { \ |
Marco Elver | 9d1335c | 2020-07-24 09:00:04 +0200 | [diff] [blame] | 957 | if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| 958 | check_access(ptr, bits / BITS_PER_BYTE, \ |
| 959 | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| 960 | KCSAN_ACCESS_ATOMIC); \ |
| 961 | } \ |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 962 | return __atomic_##op##suffix(ptr, v, memorder); \ |
| 963 | } \ |
| 964 | EXPORT_SYMBOL(__tsan_atomic##bits##_##op) |
| 965 | |
| 966 | /* |
| 967 | * Note: CAS operations are always classified as write, even in case they |
| 968 | * fail. We cannot perform check_access() after a write, as it might lead to |
| 969 | * false positives, in cases such as: |
| 970 | * |
| 971 | * T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...) |
| 972 | * |
| 973 | * T1: if (__atomic_load_n(&p->flag, ...)) { |
| 974 | * modify *p; |
| 975 | * p->flag = 0; |
| 976 | * } |
| 977 | * |
| 978 | * The only downside is that, if there are 3 threads, with one CAS that |
| 979 | * succeeds, another CAS that fails, and an unmarked racing operation, we may |
| 980 | * point at the wrong CAS as the source of the race. However, if we assume that |
| 981 | * all CAS can succeed in some other execution, the data race is still valid. |
| 982 | */ |
| 983 | #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \ |
| 984 | int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ |
| 985 | u##bits val, int mo, int fail_mo); \ |
| 986 | int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ |
| 987 | u##bits val, int mo, int fail_mo) \ |
| 988 | { \ |
Marco Elver | 9d1335c | 2020-07-24 09:00:04 +0200 | [diff] [blame] | 989 | if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| 990 | check_access(ptr, bits / BITS_PER_BYTE, \ |
| 991 | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| 992 | KCSAN_ACCESS_ATOMIC); \ |
| 993 | } \ |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 994 | return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \ |
| 995 | } \ |
| 996 | EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength) |
| 997 | |
| 998 | #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \ |
| 999 | u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ |
| 1000 | int mo, int fail_mo); \ |
| 1001 | u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ |
| 1002 | int mo, int fail_mo) \ |
| 1003 | { \ |
Marco Elver | 9d1335c | 2020-07-24 09:00:04 +0200 | [diff] [blame] | 1004 | if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| 1005 | check_access(ptr, bits / BITS_PER_BYTE, \ |
| 1006 | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| 1007 | KCSAN_ACCESS_ATOMIC); \ |
| 1008 | } \ |
Marco Elver | 0f8ad5f | 2020-07-03 15:40:29 +0200 | [diff] [blame] | 1009 | __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \ |
| 1010 | return exp; \ |
| 1011 | } \ |
| 1012 | EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val) |
| 1013 | |
| 1014 | #define DEFINE_TSAN_ATOMIC_OPS(bits) \ |
| 1015 | DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \ |
| 1016 | DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \ |
| 1017 | DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \ |
| 1018 | DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \ |
| 1019 | DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \ |
| 1020 | DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \ |
| 1021 | DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \ |
| 1022 | DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \ |
| 1023 | DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \ |
| 1024 | DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \ |
| 1025 | DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) |
| 1026 | |
| 1027 | DEFINE_TSAN_ATOMIC_OPS(8); |
| 1028 | DEFINE_TSAN_ATOMIC_OPS(16); |
| 1029 | DEFINE_TSAN_ATOMIC_OPS(32); |
| 1030 | DEFINE_TSAN_ATOMIC_OPS(64); |
| 1031 | |
| 1032 | void __tsan_atomic_thread_fence(int memorder); |
| 1033 | void __tsan_atomic_thread_fence(int memorder) |
| 1034 | { |
| 1035 | __atomic_thread_fence(memorder); |
| 1036 | } |
| 1037 | EXPORT_SYMBOL(__tsan_atomic_thread_fence); |
| 1038 | |
| 1039 | void __tsan_atomic_signal_fence(int memorder); |
| 1040 | void __tsan_atomic_signal_fence(int memorder) { } |
| 1041 | EXPORT_SYMBOL(__tsan_atomic_signal_fence); |