Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | #include <linux/atomic.h> |
| 4 | #include <linux/bug.h> |
| 5 | #include <linux/delay.h> |
| 6 | #include <linux/export.h> |
| 7 | #include <linux/init.h> |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 8 | #include <linux/kernel.h> |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 9 | #include <linux/list.h> |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 10 | #include <linux/moduleparam.h> |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 11 | #include <linux/percpu.h> |
| 12 | #include <linux/preempt.h> |
| 13 | #include <linux/random.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/uaccess.h> |
| 16 | |
| 17 | #include "atomic.h" |
| 18 | #include "encoding.h" |
| 19 | #include "kcsan.h" |
| 20 | |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 21 | static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); |
Marco Elver | 2402d0e | 2020-02-22 00:10:27 +0100 | [diff] [blame] | 22 | unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; |
| 23 | unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 24 | static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 25 | static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER); |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 26 | |
| 27 | #ifdef MODULE_PARAM_PREFIX |
| 28 | #undef MODULE_PARAM_PREFIX |
| 29 | #endif |
| 30 | #define MODULE_PARAM_PREFIX "kcsan." |
| 31 | module_param_named(early_enable, kcsan_early_enable, bool, 0); |
| 32 | module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); |
| 33 | module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); |
| 34 | module_param_named(skip_watch, kcsan_skip_watch, long, 0644); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 35 | module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444); |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 36 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 37 | bool kcsan_enabled; |
| 38 | |
| 39 | /* Per-CPU kcsan_ctx for interrupts */ |
| 40 | static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 41 | .disable_count = 0, |
| 42 | .atomic_next = 0, |
| 43 | .atomic_nest_count = 0, |
| 44 | .in_flat_atomic = false, |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 45 | .access_mask = 0, |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 46 | .scoped_accesses = {LIST_POISON1, NULL}, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 47 | }; |
| 48 | |
| 49 | /* |
Qiujun Huang | e7b3410 | 2020-03-05 15:21:07 +0100 | [diff] [blame] | 50 | * Helper macros to index into adjacent slots, starting from address slot |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 51 | * itself, followed by the right and left slots. |
| 52 | * |
| 53 | * The purpose is 2-fold: |
| 54 | * |
| 55 | * 1. if during insertion the address slot is already occupied, check if |
| 56 | * any adjacent slots are free; |
| 57 | * 2. accesses that straddle a slot boundary due to size that exceeds a |
| 58 | * slot's range may check adjacent slots if any watchpoint matches. |
| 59 | * |
| 60 | * Note that accesses with very large size may still miss a watchpoint; however, |
| 61 | * given this should be rare, this is a reasonable trade-off to make, since this |
| 62 | * will avoid: |
| 63 | * |
| 64 | * 1. excessive contention between watchpoint checks and setup; |
| 65 | * 2. larger number of simultaneous watchpoints without sacrificing |
| 66 | * performance. |
| 67 | * |
| 68 | * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: |
| 69 | * |
| 70 | * slot=0: [ 1, 2, 0] |
| 71 | * slot=9: [10, 11, 9] |
| 72 | * slot=63: [64, 65, 63] |
| 73 | */ |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 74 | #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) |
| 75 | |
| 76 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 77 | * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 78 | * slot (middle) is fine if we assume that races occur rarely. The set of |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 79 | * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to |
| 80 | * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. |
| 81 | */ |
| 82 | #define SLOT_IDX_FAST(slot, i) (slot + i) |
| 83 | |
| 84 | /* |
| 85 | * Watchpoints, with each entry encoded as defined in encoding.h: in order to be |
| 86 | * able to safely update and access a watchpoint without introducing locking |
| 87 | * overhead, we encode each watchpoint as a single atomic long. The initial |
| 88 | * zero-initialized state matches INVALID_WATCHPOINT. |
| 89 | * |
| 90 | * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 91 | * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 92 | */ |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 93 | static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 94 | |
| 95 | /* |
| 96 | * Instructions to skip watching counter, used in should_watch(). We use a |
| 97 | * per-CPU counter to avoid excessive contention. |
| 98 | */ |
| 99 | static DEFINE_PER_CPU(long, kcsan_skip); |
| 100 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 101 | static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, |
| 102 | size_t size, |
| 103 | bool expect_write, |
| 104 | long *encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 105 | { |
| 106 | const int slot = watchpoint_slot(addr); |
| 107 | const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; |
| 108 | atomic_long_t *watchpoint; |
| 109 | unsigned long wp_addr_masked; |
| 110 | size_t wp_size; |
| 111 | bool is_write; |
| 112 | int i; |
| 113 | |
| 114 | BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); |
| 115 | |
| 116 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 117 | watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; |
| 118 | *encoded_watchpoint = atomic_long_read(watchpoint); |
| 119 | if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, |
| 120 | &wp_size, &is_write)) |
| 121 | continue; |
| 122 | |
| 123 | if (expect_write && !is_write) |
| 124 | continue; |
| 125 | |
| 126 | /* Check if the watchpoint matches the access. */ |
| 127 | if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) |
| 128 | return watchpoint; |
| 129 | } |
| 130 | |
| 131 | return NULL; |
| 132 | } |
| 133 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 134 | static inline atomic_long_t * |
| 135 | insert_watchpoint(unsigned long addr, size_t size, bool is_write) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 136 | { |
| 137 | const int slot = watchpoint_slot(addr); |
| 138 | const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); |
| 139 | atomic_long_t *watchpoint; |
| 140 | int i; |
| 141 | |
| 142 | /* Check slot index logic, ensuring we stay within array bounds. */ |
| 143 | BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 144 | BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); |
| 145 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); |
| 146 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 147 | |
| 148 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 149 | long expect_val = INVALID_WATCHPOINT; |
| 150 | |
| 151 | /* Try to acquire this slot. */ |
| 152 | watchpoint = &watchpoints[SLOT_IDX(slot, i)]; |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 153 | if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 154 | return watchpoint; |
| 155 | } |
| 156 | |
| 157 | return NULL; |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Return true if watchpoint was successfully consumed, false otherwise. |
| 162 | * |
| 163 | * This may return false if: |
| 164 | * |
| 165 | * 1. another thread already consumed the watchpoint; |
| 166 | * 2. the thread that set up the watchpoint already removed it; |
| 167 | * 3. the watchpoint was removed and then re-used. |
| 168 | */ |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 169 | static __always_inline bool |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 170 | try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 171 | { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 172 | return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 173 | } |
| 174 | |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 175 | /* Return true if watchpoint was not touched, false if already consumed. */ |
| 176 | static inline bool consume_watchpoint(atomic_long_t *watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 177 | { |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 178 | return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT; |
| 179 | } |
| 180 | |
| 181 | /* Remove the watchpoint -- its slot may be reused after. */ |
| 182 | static inline void remove_watchpoint(atomic_long_t *watchpoint) |
| 183 | { |
| 184 | atomic_long_set(watchpoint, INVALID_WATCHPOINT); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 185 | } |
| 186 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 187 | static __always_inline struct kcsan_ctx *get_ctx(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 188 | { |
| 189 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 190 | * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 191 | * also result in calls that generate warnings in uaccess regions. |
| 192 | */ |
| 193 | return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); |
| 194 | } |
| 195 | |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 196 | /* Check scoped accesses; never inline because this is a slow-path! */ |
| 197 | static noinline void kcsan_check_scoped_accesses(void) |
| 198 | { |
| 199 | struct kcsan_ctx *ctx = get_ctx(); |
| 200 | struct list_head *prev_save = ctx->scoped_accesses.prev; |
| 201 | struct kcsan_scoped_access *scoped_access; |
| 202 | |
| 203 | ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */ |
| 204 | list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) |
| 205 | __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type); |
| 206 | ctx->scoped_accesses.prev = prev_save; |
| 207 | } |
| 208 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 209 | /* Rules for generic atomic accesses. Called from fast-path. */ |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 210 | static __always_inline bool |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 211 | is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 212 | { |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 213 | if (type & KCSAN_ACCESS_ATOMIC) |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 214 | return true; |
| 215 | |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 216 | /* |
| 217 | * Unless explicitly declared atomic, never consider an assertion access |
| 218 | * as atomic. This allows using them also in atomic regions, such as |
| 219 | * seqlocks, without implicitly changing their semantics. |
| 220 | */ |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 221 | if (type & KCSAN_ACCESS_ASSERT) |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 222 | return false; |
| 223 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 224 | if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 225 | (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) && |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 226 | IS_ALIGNED((unsigned long)ptr, size)) |
| 227 | return true; /* Assume aligned writes up to word size are atomic. */ |
| 228 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 229 | if (ctx->atomic_next > 0) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 230 | /* |
| 231 | * Because we do not have separate contexts for nested |
| 232 | * interrupts, in case atomic_next is set, we simply assume that |
| 233 | * the outer interrupt set atomic_next. In the worst case, we |
| 234 | * will conservatively consider operations as atomic. This is a |
| 235 | * reasonable trade-off to make, since this case should be |
| 236 | * extremely rare; however, even if extremely rare, it could |
| 237 | * lead to false positives otherwise. |
| 238 | */ |
| 239 | if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) |
| 240 | --ctx->atomic_next; /* in task, or outer interrupt */ |
| 241 | return true; |
| 242 | } |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 243 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 244 | return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 245 | } |
| 246 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 247 | static __always_inline bool |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 248 | should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 249 | { |
| 250 | /* |
| 251 | * Never set up watchpoints when memory operations are atomic. |
| 252 | * |
| 253 | * Need to check this first, before kcsan_skip check below: (1) atomics |
| 254 | * should not count towards skipped instructions, and (2) to actually |
| 255 | * decrement kcsan_atomic_next for consecutive instruction stream. |
| 256 | */ |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 257 | if (is_atomic(ptr, size, type, ctx)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 258 | return false; |
| 259 | |
| 260 | if (this_cpu_dec_return(kcsan_skip) >= 0) |
| 261 | return false; |
| 262 | |
| 263 | /* |
| 264 | * NOTE: If we get here, kcsan_skip must always be reset in slow path |
| 265 | * via reset_kcsan_skip() to avoid underflow. |
| 266 | */ |
| 267 | |
| 268 | /* this operation should be watched */ |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | static inline void reset_kcsan_skip(void) |
| 273 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 274 | long skip_count = kcsan_skip_watch - |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 275 | (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 276 | prandom_u32_max(kcsan_skip_watch) : |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 277 | 0); |
| 278 | this_cpu_write(kcsan_skip, skip_count); |
| 279 | } |
| 280 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 281 | static __always_inline bool kcsan_is_enabled(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 282 | { |
| 283 | return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0; |
| 284 | } |
| 285 | |
| 286 | static inline unsigned int get_delay(void) |
| 287 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 288 | unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 289 | return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? |
| 290 | prandom_u32_max(delay) : |
| 291 | 0); |
| 292 | } |
| 293 | |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame^] | 294 | void kcsan_save_irqtrace(struct task_struct *task) |
| 295 | { |
| 296 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 297 | task->kcsan_save_irqtrace = task->irqtrace; |
| 298 | #endif |
| 299 | } |
| 300 | |
| 301 | void kcsan_restore_irqtrace(struct task_struct *task) |
| 302 | { |
| 303 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 304 | task->irqtrace = task->kcsan_save_irqtrace; |
| 305 | #endif |
| 306 | } |
| 307 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 308 | /* |
| 309 | * Pull everything together: check_access() below contains the performance |
| 310 | * critical operations; the fast-path (including check_access) functions should |
| 311 | * all be inlinable by the instrumentation functions. |
| 312 | * |
| 313 | * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are |
| 314 | * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can |
| 315 | * be filtered from the stacktrace, as well as give them unique names for the |
| 316 | * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), |
| 317 | * since they do not access any user memory, but instrumentation is still |
| 318 | * emitted in UACCESS regions. |
| 319 | */ |
| 320 | |
| 321 | static noinline void kcsan_found_watchpoint(const volatile void *ptr, |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 322 | size_t size, |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 323 | int type, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 324 | atomic_long_t *watchpoint, |
| 325 | long encoded_watchpoint) |
| 326 | { |
| 327 | unsigned long flags; |
| 328 | bool consumed; |
| 329 | |
| 330 | if (!kcsan_is_enabled()) |
| 331 | return; |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 332 | |
| 333 | /* |
| 334 | * The access_mask check relies on value-change comparison. To avoid |
| 335 | * reporting a race where e.g. the writer set up the watchpoint, but the |
| 336 | * reader has access_mask!=0, we have to ignore the found watchpoint. |
| 337 | */ |
| 338 | if (get_ctx()->access_mask != 0) |
| 339 | return; |
| 340 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 341 | /* |
| 342 | * Consume the watchpoint as soon as possible, to minimize the chances |
| 343 | * of !consumed. Consuming the watchpoint must always be guarded by |
| 344 | * kcsan_is_enabled() check, as otherwise we might erroneously |
| 345 | * triggering reports when disabled. |
| 346 | */ |
| 347 | consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); |
| 348 | |
| 349 | /* keep this after try_consume_watchpoint */ |
| 350 | flags = user_access_save(); |
| 351 | |
| 352 | if (consumed) { |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame^] | 353 | kcsan_save_irqtrace(current); |
Marco Elver | 135c087 | 2020-03-18 18:38:44 +0100 | [diff] [blame] | 354 | kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE, |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 355 | KCSAN_REPORT_CONSUMED_WATCHPOINT, |
| 356 | watchpoint - watchpoints); |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame^] | 357 | kcsan_restore_irqtrace(current); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 358 | } else { |
| 359 | /* |
| 360 | * The other thread may not print any diagnostics, as it has |
| 361 | * already removed the watchpoint, or another thread consumed |
| 362 | * the watchpoint before this thread. |
| 363 | */ |
| 364 | kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES); |
| 365 | } |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 366 | |
| 367 | if ((type & KCSAN_ACCESS_ASSERT) != 0) |
| 368 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 369 | else |
| 370 | kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 371 | |
| 372 | user_access_restore(flags); |
| 373 | } |
| 374 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 375 | static noinline void |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 376 | kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 377 | { |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 378 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 379 | const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 380 | atomic_long_t *watchpoint; |
| 381 | union { |
| 382 | u8 _1; |
| 383 | u16 _2; |
| 384 | u32 _4; |
| 385 | u64 _8; |
| 386 | } expect_value; |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 387 | unsigned long access_mask; |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 388 | enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 389 | unsigned long ua_flags = user_access_save(); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 390 | unsigned long irq_flags = 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 391 | |
| 392 | /* |
| 393 | * Always reset kcsan_skip counter in slow-path to avoid underflow; see |
| 394 | * should_watch(). |
| 395 | */ |
| 396 | reset_kcsan_skip(); |
| 397 | |
| 398 | if (!kcsan_is_enabled()) |
| 399 | goto out; |
| 400 | |
Marco Elver | 44656d3 | 2020-02-25 15:32:58 +0100 | [diff] [blame] | 401 | /* |
| 402 | * Special atomic rules: unlikely to be true, so we check them here in |
| 403 | * the slow-path, and not in the fast-path in is_atomic(). Call after |
| 404 | * kcsan_is_enabled(), as we may access memory that is not yet |
| 405 | * initialized during early boot. |
| 406 | */ |
| 407 | if (!is_assert && kcsan_is_atomic_special(ptr)) |
| 408 | goto out; |
| 409 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 410 | if (!check_encodable((unsigned long)ptr, size)) { |
| 411 | kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES); |
| 412 | goto out; |
| 413 | } |
| 414 | |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame^] | 415 | /* |
| 416 | * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's |
| 417 | * runtime is entered for every memory access, and potentially useful |
| 418 | * information is lost if dirtied by KCSAN. |
| 419 | */ |
| 420 | kcsan_save_irqtrace(current); |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 421 | if (!kcsan_interrupt_watcher) |
Marco Elver | 248591f | 2020-06-24 13:32:46 +0200 | [diff] [blame] | 422 | local_irq_save(irq_flags); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 423 | |
| 424 | watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); |
| 425 | if (watchpoint == NULL) { |
| 426 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 427 | * Out of capacity: the size of 'watchpoints', and the frequency |
| 428 | * with which should_watch() returns true should be tweaked so |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 429 | * that this case happens very rarely. |
| 430 | */ |
| 431 | kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY); |
| 432 | goto out_unlock; |
| 433 | } |
| 434 | |
| 435 | kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS); |
| 436 | kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS); |
| 437 | |
| 438 | /* |
| 439 | * Read the current value, to later check and infer a race if the data |
| 440 | * was modified via a non-instrumented access, e.g. from a device. |
| 441 | */ |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 442 | expect_value._8 = 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 443 | switch (size) { |
| 444 | case 1: |
| 445 | expect_value._1 = READ_ONCE(*(const u8 *)ptr); |
| 446 | break; |
| 447 | case 2: |
| 448 | expect_value._2 = READ_ONCE(*(const u16 *)ptr); |
| 449 | break; |
| 450 | case 4: |
| 451 | expect_value._4 = READ_ONCE(*(const u32 *)ptr); |
| 452 | break; |
| 453 | case 8: |
| 454 | expect_value._8 = READ_ONCE(*(const u64 *)ptr); |
| 455 | break; |
| 456 | default: |
| 457 | break; /* ignore; we do not diff the values */ |
| 458 | } |
| 459 | |
| 460 | if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) { |
| 461 | kcsan_disable_current(); |
| 462 | pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n", |
| 463 | is_write ? "write" : "read", size, ptr, |
| 464 | watchpoint_slot((unsigned long)ptr), |
| 465 | encode_watchpoint((unsigned long)ptr, size, is_write)); |
| 466 | kcsan_enable_current(); |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * Delay this thread, to increase probability of observing a racy |
| 471 | * conflicting access. |
| 472 | */ |
| 473 | udelay(get_delay()); |
| 474 | |
| 475 | /* |
| 476 | * Re-read value, and check if it is as expected; if not, we infer a |
| 477 | * racy access. |
| 478 | */ |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 479 | access_mask = get_ctx()->access_mask; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 480 | switch (size) { |
| 481 | case 1: |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 482 | expect_value._1 ^= READ_ONCE(*(const u8 *)ptr); |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 483 | if (access_mask) |
| 484 | expect_value._1 &= (u8)access_mask; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 485 | break; |
| 486 | case 2: |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 487 | expect_value._2 ^= READ_ONCE(*(const u16 *)ptr); |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 488 | if (access_mask) |
| 489 | expect_value._2 &= (u16)access_mask; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 490 | break; |
| 491 | case 4: |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 492 | expect_value._4 ^= READ_ONCE(*(const u32 *)ptr); |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 493 | if (access_mask) |
| 494 | expect_value._4 &= (u32)access_mask; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 495 | break; |
| 496 | case 8: |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 497 | expect_value._8 ^= READ_ONCE(*(const u64 *)ptr); |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 498 | if (access_mask) |
| 499 | expect_value._8 &= (u64)access_mask; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 500 | break; |
| 501 | default: |
| 502 | break; /* ignore; we do not diff the values */ |
| 503 | } |
| 504 | |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 505 | /* Were we able to observe a value-change? */ |
| 506 | if (expect_value._8 != 0) |
| 507 | value_change = KCSAN_VALUE_CHANGE_TRUE; |
| 508 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 509 | /* Check if this access raced with another. */ |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 510 | if (!consume_watchpoint(watchpoint)) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 511 | /* |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 512 | * Depending on the access type, map a value_change of MAYBE to |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 513 | * TRUE (always report) or FALSE (never report). |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 514 | */ |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 515 | if (value_change == KCSAN_VALUE_CHANGE_MAYBE) { |
| 516 | if (access_mask != 0) { |
| 517 | /* |
| 518 | * For access with access_mask, we require a |
| 519 | * value-change, as it is likely that races on |
| 520 | * ~access_mask bits are expected. |
| 521 | */ |
| 522 | value_change = KCSAN_VALUE_CHANGE_FALSE; |
| 523 | } else if (size > 8 || is_assert) { |
| 524 | /* Always assume a value-change. */ |
| 525 | value_change = KCSAN_VALUE_CHANGE_TRUE; |
| 526 | } |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 527 | } |
| 528 | |
| 529 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 530 | * No need to increment 'data_races' counter, as the racing |
| 531 | * thread already did. |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 532 | * |
| 533 | * Count 'assert_failures' for each failed ASSERT access, |
| 534 | * therefore both this thread and the racing thread may |
| 535 | * increment this counter. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 536 | */ |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 537 | if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE) |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 538 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 539 | |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 540 | kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL, |
| 541 | watchpoint - watchpoints); |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 542 | } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) { |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 543 | /* Inferring a race, since the value should not have changed. */ |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 544 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 545 | kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 546 | if (is_assert) |
| 547 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 548 | |
| 549 | if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) |
Marco Elver | b738f61 | 2020-02-11 17:04:21 +0100 | [diff] [blame] | 550 | kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE, |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 551 | KCSAN_REPORT_RACE_UNKNOWN_ORIGIN, |
| 552 | watchpoint - watchpoints); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 553 | } |
| 554 | |
Marco Elver | 6119418 | 2020-03-18 18:38:45 +0100 | [diff] [blame] | 555 | /* |
| 556 | * Remove watchpoint; must be after reporting, since the slot may be |
| 557 | * reused after this point. |
| 558 | */ |
| 559 | remove_watchpoint(watchpoint); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 560 | kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS); |
| 561 | out_unlock: |
Marco Elver | 48b1fc1 | 2020-02-21 23:02:09 +0100 | [diff] [blame] | 562 | if (!kcsan_interrupt_watcher) |
Marco Elver | 248591f | 2020-06-24 13:32:46 +0200 | [diff] [blame] | 563 | local_irq_restore(irq_flags); |
Marco Elver | 92c209a | 2020-07-29 13:09:16 +0200 | [diff] [blame^] | 564 | kcsan_restore_irqtrace(current); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 565 | out: |
| 566 | user_access_restore(ua_flags); |
| 567 | } |
| 568 | |
| 569 | static __always_inline void check_access(const volatile void *ptr, size_t size, |
| 570 | int type) |
| 571 | { |
| 572 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
| 573 | atomic_long_t *watchpoint; |
| 574 | long encoded_watchpoint; |
| 575 | |
| 576 | /* |
Marco Elver | ed95f95 | 2020-02-05 11:14:19 +0100 | [diff] [blame] | 577 | * Do nothing for 0 sized check; this comparison will be optimized out |
| 578 | * for constant sized instrumentation (__tsan_{read,write}N). |
| 579 | */ |
| 580 | if (unlikely(size == 0)) |
| 581 | return; |
| 582 | |
| 583 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 584 | * Avoid user_access_save in fast-path: find_watchpoint is safe without |
| 585 | * user_access_save, as the address that ptr points to is only used to |
| 586 | * check if a watchpoint exists; ptr is never dereferenced. |
| 587 | */ |
| 588 | watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write, |
| 589 | &encoded_watchpoint); |
| 590 | /* |
| 591 | * It is safe to check kcsan_is_enabled() after find_watchpoint in the |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 592 | * slow-path, as long as no state changes that cause a race to be |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 593 | * detected and reported have occurred until kcsan_is_enabled() is |
| 594 | * checked. |
| 595 | */ |
| 596 | |
| 597 | if (unlikely(watchpoint != NULL)) |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 598 | kcsan_found_watchpoint(ptr, size, type, watchpoint, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 599 | encoded_watchpoint); |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 600 | else { |
| 601 | struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */ |
| 602 | |
| 603 | if (unlikely(should_watch(ptr, size, type, ctx))) |
| 604 | kcsan_setup_watchpoint(ptr, size, type); |
| 605 | else if (unlikely(ctx->scoped_accesses.prev)) |
| 606 | kcsan_check_scoped_accesses(); |
| 607 | } |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 608 | } |
| 609 | |
| 610 | /* === Public interface ===================================================== */ |
| 611 | |
| 612 | void __init kcsan_init(void) |
| 613 | { |
| 614 | BUG_ON(!in_task()); |
| 615 | |
| 616 | kcsan_debugfs_init(); |
| 617 | |
| 618 | /* |
| 619 | * We are in the init task, and no other tasks should be running; |
| 620 | * WRITE_ONCE without memory barrier is sufficient. |
| 621 | */ |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame] | 622 | if (kcsan_early_enable) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 623 | WRITE_ONCE(kcsan_enabled, true); |
| 624 | } |
| 625 | |
| 626 | /* === Exported interface =================================================== */ |
| 627 | |
| 628 | void kcsan_disable_current(void) |
| 629 | { |
| 630 | ++get_ctx()->disable_count; |
| 631 | } |
| 632 | EXPORT_SYMBOL(kcsan_disable_current); |
| 633 | |
| 634 | void kcsan_enable_current(void) |
| 635 | { |
| 636 | if (get_ctx()->disable_count-- == 0) { |
| 637 | /* |
| 638 | * Warn if kcsan_enable_current() calls are unbalanced with |
| 639 | * kcsan_disable_current() calls, which causes disable_count to |
| 640 | * become negative and should not happen. |
| 641 | */ |
| 642 | kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ |
| 643 | kcsan_disable_current(); /* disable to generate warning */ |
| 644 | WARN(1, "Unbalanced %s()", __func__); |
| 645 | kcsan_enable_current(); |
| 646 | } |
| 647 | } |
| 648 | EXPORT_SYMBOL(kcsan_enable_current); |
| 649 | |
Marco Elver | 19acd03 | 2020-04-24 17:47:29 +0200 | [diff] [blame] | 650 | void kcsan_enable_current_nowarn(void) |
| 651 | { |
| 652 | if (get_ctx()->disable_count-- == 0) |
| 653 | kcsan_disable_current(); |
| 654 | } |
| 655 | EXPORT_SYMBOL(kcsan_enable_current_nowarn); |
| 656 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 657 | void kcsan_nestable_atomic_begin(void) |
| 658 | { |
| 659 | /* |
| 660 | * Do *not* check and warn if we are in a flat atomic region: nestable |
| 661 | * and flat atomic regions are independent from each other. |
| 662 | * See include/linux/kcsan.h: struct kcsan_ctx comments for more |
| 663 | * comments. |
| 664 | */ |
| 665 | |
| 666 | ++get_ctx()->atomic_nest_count; |
| 667 | } |
| 668 | EXPORT_SYMBOL(kcsan_nestable_atomic_begin); |
| 669 | |
| 670 | void kcsan_nestable_atomic_end(void) |
| 671 | { |
| 672 | if (get_ctx()->atomic_nest_count-- == 0) { |
| 673 | /* |
| 674 | * Warn if kcsan_nestable_atomic_end() calls are unbalanced with |
| 675 | * kcsan_nestable_atomic_begin() calls, which causes |
| 676 | * atomic_nest_count to become negative and should not happen. |
| 677 | */ |
| 678 | kcsan_nestable_atomic_begin(); /* restore to 0 */ |
| 679 | kcsan_disable_current(); /* disable to generate warning */ |
| 680 | WARN(1, "Unbalanced %s()", __func__); |
| 681 | kcsan_enable_current(); |
| 682 | } |
| 683 | } |
| 684 | EXPORT_SYMBOL(kcsan_nestable_atomic_end); |
| 685 | |
| 686 | void kcsan_flat_atomic_begin(void) |
| 687 | { |
| 688 | get_ctx()->in_flat_atomic = true; |
| 689 | } |
| 690 | EXPORT_SYMBOL(kcsan_flat_atomic_begin); |
| 691 | |
| 692 | void kcsan_flat_atomic_end(void) |
| 693 | { |
| 694 | get_ctx()->in_flat_atomic = false; |
| 695 | } |
| 696 | EXPORT_SYMBOL(kcsan_flat_atomic_end); |
| 697 | |
| 698 | void kcsan_atomic_next(int n) |
| 699 | { |
| 700 | get_ctx()->atomic_next = n; |
| 701 | } |
| 702 | EXPORT_SYMBOL(kcsan_atomic_next); |
| 703 | |
Marco Elver | 81af89e | 2020-02-11 17:04:22 +0100 | [diff] [blame] | 704 | void kcsan_set_access_mask(unsigned long mask) |
| 705 | { |
| 706 | get_ctx()->access_mask = mask; |
| 707 | } |
| 708 | EXPORT_SYMBOL(kcsan_set_access_mask); |
| 709 | |
Marco Elver | 757a4ce | 2020-03-25 17:41:56 +0100 | [diff] [blame] | 710 | struct kcsan_scoped_access * |
| 711 | kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, |
| 712 | struct kcsan_scoped_access *sa) |
| 713 | { |
| 714 | struct kcsan_ctx *ctx = get_ctx(); |
| 715 | |
| 716 | __kcsan_check_access(ptr, size, type); |
| 717 | |
| 718 | ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| 719 | |
| 720 | INIT_LIST_HEAD(&sa->list); |
| 721 | sa->ptr = ptr; |
| 722 | sa->size = size; |
| 723 | sa->type = type; |
| 724 | |
| 725 | if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */ |
| 726 | INIT_LIST_HEAD(&ctx->scoped_accesses); |
| 727 | list_add(&sa->list, &ctx->scoped_accesses); |
| 728 | |
| 729 | ctx->disable_count--; |
| 730 | return sa; |
| 731 | } |
| 732 | EXPORT_SYMBOL(kcsan_begin_scoped_access); |
| 733 | |
| 734 | void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) |
| 735 | { |
| 736 | struct kcsan_ctx *ctx = get_ctx(); |
| 737 | |
| 738 | if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__)) |
| 739 | return; |
| 740 | |
| 741 | ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| 742 | |
| 743 | list_del(&sa->list); |
| 744 | if (list_empty(&ctx->scoped_accesses)) |
| 745 | /* |
| 746 | * Ensure we do not enter kcsan_check_scoped_accesses() |
| 747 | * slow-path if unnecessary, and avoids requiring list_empty() |
| 748 | * in the fast-path (to avoid a READ_ONCE() and potential |
| 749 | * uaccess warning). |
| 750 | */ |
| 751 | ctx->scoped_accesses.prev = NULL; |
| 752 | |
| 753 | ctx->disable_count--; |
| 754 | |
| 755 | __kcsan_check_access(sa->ptr, sa->size, sa->type); |
| 756 | } |
| 757 | EXPORT_SYMBOL(kcsan_end_scoped_access); |
| 758 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 759 | void __kcsan_check_access(const volatile void *ptr, size_t size, int type) |
| 760 | { |
| 761 | check_access(ptr, size, type); |
| 762 | } |
| 763 | EXPORT_SYMBOL(__kcsan_check_access); |
| 764 | |
| 765 | /* |
| 766 | * KCSAN uses the same instrumentation that is emitted by supported compilers |
| 767 | * for ThreadSanitizer (TSAN). |
| 768 | * |
| 769 | * When enabled, the compiler emits instrumentation calls (the functions |
| 770 | * prefixed with "__tsan" below) for all loads and stores that it generated; |
| 771 | * inline asm is not instrumented. |
| 772 | * |
| 773 | * Note that, not all supported compiler versions distinguish aligned/unaligned |
| 774 | * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned |
| 775 | * version to the generic version, which can handle both. |
| 776 | */ |
| 777 | |
| 778 | #define DEFINE_TSAN_READ_WRITE(size) \ |
| 779 | void __tsan_read##size(void *ptr) \ |
| 780 | { \ |
| 781 | check_access(ptr, size, 0); \ |
| 782 | } \ |
| 783 | EXPORT_SYMBOL(__tsan_read##size); \ |
| 784 | void __tsan_unaligned_read##size(void *ptr) \ |
| 785 | __alias(__tsan_read##size); \ |
| 786 | EXPORT_SYMBOL(__tsan_unaligned_read##size); \ |
| 787 | void __tsan_write##size(void *ptr) \ |
| 788 | { \ |
| 789 | check_access(ptr, size, KCSAN_ACCESS_WRITE); \ |
| 790 | } \ |
| 791 | EXPORT_SYMBOL(__tsan_write##size); \ |
| 792 | void __tsan_unaligned_write##size(void *ptr) \ |
| 793 | __alias(__tsan_write##size); \ |
| 794 | EXPORT_SYMBOL(__tsan_unaligned_write##size) |
| 795 | |
| 796 | DEFINE_TSAN_READ_WRITE(1); |
| 797 | DEFINE_TSAN_READ_WRITE(2); |
| 798 | DEFINE_TSAN_READ_WRITE(4); |
| 799 | DEFINE_TSAN_READ_WRITE(8); |
| 800 | DEFINE_TSAN_READ_WRITE(16); |
| 801 | |
| 802 | void __tsan_read_range(void *ptr, size_t size) |
| 803 | { |
| 804 | check_access(ptr, size, 0); |
| 805 | } |
| 806 | EXPORT_SYMBOL(__tsan_read_range); |
| 807 | |
| 808 | void __tsan_write_range(void *ptr, size_t size) |
| 809 | { |
| 810 | check_access(ptr, size, KCSAN_ACCESS_WRITE); |
| 811 | } |
| 812 | EXPORT_SYMBOL(__tsan_write_range); |
| 813 | |
| 814 | /* |
Marco Elver | 75d75b7 | 2020-05-21 16:20:39 +0200 | [diff] [blame] | 815 | * Use of explicit volatile is generally disallowed [1], however, volatile is |
| 816 | * still used in various concurrent context, whether in low-level |
| 817 | * synchronization primitives or for legacy reasons. |
| 818 | * [1] https://lwn.net/Articles/233479/ |
| 819 | * |
| 820 | * We only consider volatile accesses atomic if they are aligned and would pass |
| 821 | * the size-check of compiletime_assert_rwonce_type(). |
| 822 | */ |
| 823 | #define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \ |
| 824 | void __tsan_volatile_read##size(void *ptr) \ |
| 825 | { \ |
| 826 | const bool is_atomic = size <= sizeof(long long) && \ |
| 827 | IS_ALIGNED((unsigned long)ptr, size); \ |
| 828 | if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| 829 | return; \ |
| 830 | check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0); \ |
| 831 | } \ |
| 832 | EXPORT_SYMBOL(__tsan_volatile_read##size); \ |
| 833 | void __tsan_unaligned_volatile_read##size(void *ptr) \ |
| 834 | __alias(__tsan_volatile_read##size); \ |
| 835 | EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \ |
| 836 | void __tsan_volatile_write##size(void *ptr) \ |
| 837 | { \ |
| 838 | const bool is_atomic = size <= sizeof(long long) && \ |
| 839 | IS_ALIGNED((unsigned long)ptr, size); \ |
| 840 | if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| 841 | return; \ |
| 842 | check_access(ptr, size, \ |
| 843 | KCSAN_ACCESS_WRITE | \ |
| 844 | (is_atomic ? KCSAN_ACCESS_ATOMIC : 0)); \ |
| 845 | } \ |
| 846 | EXPORT_SYMBOL(__tsan_volatile_write##size); \ |
| 847 | void __tsan_unaligned_volatile_write##size(void *ptr) \ |
| 848 | __alias(__tsan_volatile_write##size); \ |
| 849 | EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size) |
| 850 | |
| 851 | DEFINE_TSAN_VOLATILE_READ_WRITE(1); |
| 852 | DEFINE_TSAN_VOLATILE_READ_WRITE(2); |
| 853 | DEFINE_TSAN_VOLATILE_READ_WRITE(4); |
| 854 | DEFINE_TSAN_VOLATILE_READ_WRITE(8); |
| 855 | DEFINE_TSAN_VOLATILE_READ_WRITE(16); |
| 856 | |
| 857 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 858 | * The below are not required by KCSAN, but can still be emitted by the |
| 859 | * compiler. |
| 860 | */ |
| 861 | void __tsan_func_entry(void *call_pc) |
| 862 | { |
| 863 | } |
| 864 | EXPORT_SYMBOL(__tsan_func_entry); |
| 865 | void __tsan_func_exit(void) |
| 866 | { |
| 867 | } |
| 868 | EXPORT_SYMBOL(__tsan_func_exit); |
| 869 | void __tsan_init(void) |
| 870 | { |
| 871 | } |
| 872 | EXPORT_SYMBOL(__tsan_init); |