Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | #include <linux/atomic.h> |
| 4 | #include <linux/bug.h> |
| 5 | #include <linux/delay.h> |
| 6 | #include <linux/export.h> |
| 7 | #include <linux/init.h> |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 8 | #include <linux/kernel.h> |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 9 | #include <linux/moduleparam.h> |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 10 | #include <linux/percpu.h> |
| 11 | #include <linux/preempt.h> |
| 12 | #include <linux/random.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/uaccess.h> |
| 15 | |
| 16 | #include "atomic.h" |
| 17 | #include "encoding.h" |
| 18 | #include "kcsan.h" |
| 19 | |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 20 | static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); |
| 21 | static unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; |
| 22 | static unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; |
| 23 | static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; |
| 24 | |
| 25 | #ifdef MODULE_PARAM_PREFIX |
| 26 | #undef MODULE_PARAM_PREFIX |
| 27 | #endif |
| 28 | #define MODULE_PARAM_PREFIX "kcsan." |
| 29 | module_param_named(early_enable, kcsan_early_enable, bool, 0); |
| 30 | module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); |
| 31 | module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); |
| 32 | module_param_named(skip_watch, kcsan_skip_watch, long, 0644); |
| 33 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 34 | bool kcsan_enabled; |
| 35 | |
| 36 | /* Per-CPU kcsan_ctx for interrupts */ |
| 37 | static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 38 | .disable_count = 0, |
| 39 | .atomic_next = 0, |
| 40 | .atomic_nest_count = 0, |
| 41 | .in_flat_atomic = false, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 42 | }; |
| 43 | |
| 44 | /* |
| 45 | * Helper macros to index into adjacent slots slots, starting from address slot |
| 46 | * itself, followed by the right and left slots. |
| 47 | * |
| 48 | * The purpose is 2-fold: |
| 49 | * |
| 50 | * 1. if during insertion the address slot is already occupied, check if |
| 51 | * any adjacent slots are free; |
| 52 | * 2. accesses that straddle a slot boundary due to size that exceeds a |
| 53 | * slot's range may check adjacent slots if any watchpoint matches. |
| 54 | * |
| 55 | * Note that accesses with very large size may still miss a watchpoint; however, |
| 56 | * given this should be rare, this is a reasonable trade-off to make, since this |
| 57 | * will avoid: |
| 58 | * |
| 59 | * 1. excessive contention between watchpoint checks and setup; |
| 60 | * 2. larger number of simultaneous watchpoints without sacrificing |
| 61 | * performance. |
| 62 | * |
| 63 | * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: |
| 64 | * |
| 65 | * slot=0: [ 1, 2, 0] |
| 66 | * slot=9: [10, 11, 9] |
| 67 | * slot=63: [64, 65, 63] |
| 68 | */ |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 69 | #define NUM_SLOTS (1 + 2*KCSAN_CHECK_ADJACENT) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 70 | #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) |
| 71 | |
| 72 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 73 | * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 74 | * slot (middle) is fine if we assume that races occur rarely. The set of |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 75 | * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to |
| 76 | * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. |
| 77 | */ |
| 78 | #define SLOT_IDX_FAST(slot, i) (slot + i) |
| 79 | |
| 80 | /* |
| 81 | * Watchpoints, with each entry encoded as defined in encoding.h: in order to be |
| 82 | * able to safely update and access a watchpoint without introducing locking |
| 83 | * overhead, we encode each watchpoint as a single atomic long. The initial |
| 84 | * zero-initialized state matches INVALID_WATCHPOINT. |
| 85 | * |
| 86 | * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 87 | * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 88 | */ |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 89 | static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 90 | |
| 91 | /* |
| 92 | * Instructions to skip watching counter, used in should_watch(). We use a |
| 93 | * per-CPU counter to avoid excessive contention. |
| 94 | */ |
| 95 | static DEFINE_PER_CPU(long, kcsan_skip); |
| 96 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 97 | static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, |
| 98 | size_t size, |
| 99 | bool expect_write, |
| 100 | long *encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 101 | { |
| 102 | const int slot = watchpoint_slot(addr); |
| 103 | const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; |
| 104 | atomic_long_t *watchpoint; |
| 105 | unsigned long wp_addr_masked; |
| 106 | size_t wp_size; |
| 107 | bool is_write; |
| 108 | int i; |
| 109 | |
| 110 | BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); |
| 111 | |
| 112 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 113 | watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; |
| 114 | *encoded_watchpoint = atomic_long_read(watchpoint); |
| 115 | if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, |
| 116 | &wp_size, &is_write)) |
| 117 | continue; |
| 118 | |
| 119 | if (expect_write && !is_write) |
| 120 | continue; |
| 121 | |
| 122 | /* Check if the watchpoint matches the access. */ |
| 123 | if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) |
| 124 | return watchpoint; |
| 125 | } |
| 126 | |
| 127 | return NULL; |
| 128 | } |
| 129 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 130 | static inline atomic_long_t * |
| 131 | insert_watchpoint(unsigned long addr, size_t size, bool is_write) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 132 | { |
| 133 | const int slot = watchpoint_slot(addr); |
| 134 | const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); |
| 135 | atomic_long_t *watchpoint; |
| 136 | int i; |
| 137 | |
| 138 | /* Check slot index logic, ensuring we stay within array bounds. */ |
| 139 | BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 140 | BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); |
| 141 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); |
| 142 | BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 143 | |
| 144 | for (i = 0; i < NUM_SLOTS; ++i) { |
| 145 | long expect_val = INVALID_WATCHPOINT; |
| 146 | |
| 147 | /* Try to acquire this slot. */ |
| 148 | watchpoint = &watchpoints[SLOT_IDX(slot, i)]; |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 149 | if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 150 | return watchpoint; |
| 151 | } |
| 152 | |
| 153 | return NULL; |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * Return true if watchpoint was successfully consumed, false otherwise. |
| 158 | * |
| 159 | * This may return false if: |
| 160 | * |
| 161 | * 1. another thread already consumed the watchpoint; |
| 162 | * 2. the thread that set up the watchpoint already removed it; |
| 163 | * 3. the watchpoint was removed and then re-used. |
| 164 | */ |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 165 | static __always_inline bool |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 166 | try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 167 | { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 168 | return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Return true if watchpoint was not touched, false if consumed. |
| 173 | */ |
| 174 | static inline bool remove_watchpoint(atomic_long_t *watchpoint) |
| 175 | { |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 176 | return atomic_long_xchg_relaxed(watchpoint, INVALID_WATCHPOINT) != CONSUMED_WATCHPOINT; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 177 | } |
| 178 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 179 | static __always_inline struct kcsan_ctx *get_ctx(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 180 | { |
| 181 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 182 | * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 183 | * also result in calls that generate warnings in uaccess regions. |
| 184 | */ |
| 185 | return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); |
| 186 | } |
| 187 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 188 | static __always_inline bool |
| 189 | is_atomic(const volatile void *ptr, size_t size, int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 190 | { |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 191 | struct kcsan_ctx *ctx; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 192 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 193 | if ((type & KCSAN_ACCESS_ATOMIC) != 0) |
| 194 | return true; |
| 195 | |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 196 | /* |
| 197 | * Unless explicitly declared atomic, never consider an assertion access |
| 198 | * as atomic. This allows using them also in atomic regions, such as |
| 199 | * seqlocks, without implicitly changing their semantics. |
| 200 | */ |
| 201 | if ((type & KCSAN_ACCESS_ASSERT) != 0) |
| 202 | return false; |
| 203 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 204 | if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && |
| 205 | (type & KCSAN_ACCESS_WRITE) != 0 && size <= sizeof(long) && |
| 206 | IS_ALIGNED((unsigned long)ptr, size)) |
| 207 | return true; /* Assume aligned writes up to word size are atomic. */ |
| 208 | |
| 209 | ctx = get_ctx(); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 210 | if (unlikely(ctx->atomic_next > 0)) { |
| 211 | /* |
| 212 | * Because we do not have separate contexts for nested |
| 213 | * interrupts, in case atomic_next is set, we simply assume that |
| 214 | * the outer interrupt set atomic_next. In the worst case, we |
| 215 | * will conservatively consider operations as atomic. This is a |
| 216 | * reasonable trade-off to make, since this case should be |
| 217 | * extremely rare; however, even if extremely rare, it could |
| 218 | * lead to false positives otherwise. |
| 219 | */ |
| 220 | if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) |
| 221 | --ctx->atomic_next; /* in task, or outer interrupt */ |
| 222 | return true; |
| 223 | } |
| 224 | if (unlikely(ctx->atomic_nest_count > 0 || ctx->in_flat_atomic)) |
| 225 | return true; |
| 226 | |
| 227 | return kcsan_is_atomic(ptr); |
| 228 | } |
| 229 | |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 230 | static __always_inline bool |
| 231 | should_watch(const volatile void *ptr, size_t size, int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 232 | { |
| 233 | /* |
| 234 | * Never set up watchpoints when memory operations are atomic. |
| 235 | * |
| 236 | * Need to check this first, before kcsan_skip check below: (1) atomics |
| 237 | * should not count towards skipped instructions, and (2) to actually |
| 238 | * decrement kcsan_atomic_next for consecutive instruction stream. |
| 239 | */ |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 240 | if (is_atomic(ptr, size, type)) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 241 | return false; |
| 242 | |
| 243 | if (this_cpu_dec_return(kcsan_skip) >= 0) |
| 244 | return false; |
| 245 | |
| 246 | /* |
| 247 | * NOTE: If we get here, kcsan_skip must always be reset in slow path |
| 248 | * via reset_kcsan_skip() to avoid underflow. |
| 249 | */ |
| 250 | |
| 251 | /* this operation should be watched */ |
| 252 | return true; |
| 253 | } |
| 254 | |
| 255 | static inline void reset_kcsan_skip(void) |
| 256 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 257 | long skip_count = kcsan_skip_watch - |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 258 | (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 259 | prandom_u32_max(kcsan_skip_watch) : |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 260 | 0); |
| 261 | this_cpu_write(kcsan_skip, skip_count); |
| 262 | } |
| 263 | |
Marco Elver | 5c36142 | 2020-01-07 17:31:04 +0100 | [diff] [blame] | 264 | static __always_inline bool kcsan_is_enabled(void) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 265 | { |
| 266 | return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0; |
| 267 | } |
| 268 | |
| 269 | static inline unsigned int get_delay(void) |
| 270 | { |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 271 | unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 272 | return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? |
| 273 | prandom_u32_max(delay) : |
| 274 | 0); |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * Pull everything together: check_access() below contains the performance |
| 279 | * critical operations; the fast-path (including check_access) functions should |
| 280 | * all be inlinable by the instrumentation functions. |
| 281 | * |
| 282 | * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are |
| 283 | * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can |
| 284 | * be filtered from the stacktrace, as well as give them unique names for the |
| 285 | * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), |
| 286 | * since they do not access any user memory, but instrumentation is still |
| 287 | * emitted in UACCESS regions. |
| 288 | */ |
| 289 | |
| 290 | static noinline void kcsan_found_watchpoint(const volatile void *ptr, |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 291 | size_t size, |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 292 | int type, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 293 | atomic_long_t *watchpoint, |
| 294 | long encoded_watchpoint) |
| 295 | { |
| 296 | unsigned long flags; |
| 297 | bool consumed; |
| 298 | |
| 299 | if (!kcsan_is_enabled()) |
| 300 | return; |
| 301 | /* |
| 302 | * Consume the watchpoint as soon as possible, to minimize the chances |
| 303 | * of !consumed. Consuming the watchpoint must always be guarded by |
| 304 | * kcsan_is_enabled() check, as otherwise we might erroneously |
| 305 | * triggering reports when disabled. |
| 306 | */ |
| 307 | consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); |
| 308 | |
| 309 | /* keep this after try_consume_watchpoint */ |
| 310 | flags = user_access_save(); |
| 311 | |
| 312 | if (consumed) { |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 313 | kcsan_report(ptr, size, type, true, raw_smp_processor_id(), |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 314 | KCSAN_REPORT_CONSUMED_WATCHPOINT); |
| 315 | } else { |
| 316 | /* |
| 317 | * The other thread may not print any diagnostics, as it has |
| 318 | * already removed the watchpoint, or another thread consumed |
| 319 | * the watchpoint before this thread. |
| 320 | */ |
| 321 | kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES); |
| 322 | } |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 323 | |
| 324 | if ((type & KCSAN_ACCESS_ASSERT) != 0) |
| 325 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 326 | else |
| 327 | kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 328 | |
| 329 | user_access_restore(flags); |
| 330 | } |
| 331 | |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 332 | static noinline void |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 333 | kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 334 | { |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 335 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 336 | const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 337 | atomic_long_t *watchpoint; |
| 338 | union { |
| 339 | u8 _1; |
| 340 | u16 _2; |
| 341 | u32 _4; |
| 342 | u64 _8; |
| 343 | } expect_value; |
| 344 | bool value_change = false; |
| 345 | unsigned long ua_flags = user_access_save(); |
| 346 | unsigned long irq_flags; |
| 347 | |
| 348 | /* |
| 349 | * Always reset kcsan_skip counter in slow-path to avoid underflow; see |
| 350 | * should_watch(). |
| 351 | */ |
| 352 | reset_kcsan_skip(); |
| 353 | |
| 354 | if (!kcsan_is_enabled()) |
| 355 | goto out; |
| 356 | |
| 357 | if (!check_encodable((unsigned long)ptr, size)) { |
| 358 | kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES); |
| 359 | goto out; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * Disable interrupts & preemptions to avoid another thread on the same |
| 364 | * CPU accessing memory locations for the set up watchpoint; this is to |
| 365 | * avoid reporting races to e.g. CPU-local data. |
| 366 | * |
| 367 | * An alternative would be adding the source CPU to the watchpoint |
| 368 | * encoding, and checking that watchpoint-CPU != this-CPU. There are |
| 369 | * several problems with this: |
| 370 | * 1. we should avoid stealing more bits from the watchpoint encoding |
| 371 | * as it would affect accuracy, as well as increase performance |
| 372 | * overhead in the fast-path; |
| 373 | * 2. if we are preempted, but there *is* a genuine data race, we |
| 374 | * would *not* report it -- since this is the common case (vs. |
| 375 | * CPU-local data accesses), it makes more sense (from a data race |
| 376 | * detection point of view) to simply disable preemptions to ensure |
| 377 | * as many tasks as possible run on other CPUs. |
Marco Elver | f1bc962 | 2020-01-15 17:25:12 +0100 | [diff] [blame] | 378 | * |
| 379 | * Use raw versions, to avoid lockdep recursion via IRQ flags tracing. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 380 | */ |
Marco Elver | f1bc962 | 2020-01-15 17:25:12 +0100 | [diff] [blame] | 381 | raw_local_irq_save(irq_flags); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 382 | |
| 383 | watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); |
| 384 | if (watchpoint == NULL) { |
| 385 | /* |
Ingo Molnar | 5cbaefe | 2019-11-20 10:41:43 +0100 | [diff] [blame] | 386 | * Out of capacity: the size of 'watchpoints', and the frequency |
| 387 | * with which should_watch() returns true should be tweaked so |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 388 | * that this case happens very rarely. |
| 389 | */ |
| 390 | kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY); |
| 391 | goto out_unlock; |
| 392 | } |
| 393 | |
| 394 | kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS); |
| 395 | kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS); |
| 396 | |
| 397 | /* |
| 398 | * Read the current value, to later check and infer a race if the data |
| 399 | * was modified via a non-instrumented access, e.g. from a device. |
| 400 | */ |
| 401 | switch (size) { |
| 402 | case 1: |
| 403 | expect_value._1 = READ_ONCE(*(const u8 *)ptr); |
| 404 | break; |
| 405 | case 2: |
| 406 | expect_value._2 = READ_ONCE(*(const u16 *)ptr); |
| 407 | break; |
| 408 | case 4: |
| 409 | expect_value._4 = READ_ONCE(*(const u32 *)ptr); |
| 410 | break; |
| 411 | case 8: |
| 412 | expect_value._8 = READ_ONCE(*(const u64 *)ptr); |
| 413 | break; |
| 414 | default: |
| 415 | break; /* ignore; we do not diff the values */ |
| 416 | } |
| 417 | |
| 418 | if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) { |
| 419 | kcsan_disable_current(); |
| 420 | pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n", |
| 421 | is_write ? "write" : "read", size, ptr, |
| 422 | watchpoint_slot((unsigned long)ptr), |
| 423 | encode_watchpoint((unsigned long)ptr, size, is_write)); |
| 424 | kcsan_enable_current(); |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Delay this thread, to increase probability of observing a racy |
| 429 | * conflicting access. |
| 430 | */ |
| 431 | udelay(get_delay()); |
| 432 | |
| 433 | /* |
| 434 | * Re-read value, and check if it is as expected; if not, we infer a |
| 435 | * racy access. |
| 436 | */ |
| 437 | switch (size) { |
| 438 | case 1: |
| 439 | value_change = expect_value._1 != READ_ONCE(*(const u8 *)ptr); |
| 440 | break; |
| 441 | case 2: |
| 442 | value_change = expect_value._2 != READ_ONCE(*(const u16 *)ptr); |
| 443 | break; |
| 444 | case 4: |
| 445 | value_change = expect_value._4 != READ_ONCE(*(const u32 *)ptr); |
| 446 | break; |
| 447 | case 8: |
| 448 | value_change = expect_value._8 != READ_ONCE(*(const u64 *)ptr); |
| 449 | break; |
| 450 | default: |
| 451 | break; /* ignore; we do not diff the values */ |
| 452 | } |
| 453 | |
| 454 | /* Check if this access raced with another. */ |
| 455 | if (!remove_watchpoint(watchpoint)) { |
| 456 | /* |
| 457 | * No need to increment 'data_races' counter, as the racing |
| 458 | * thread already did. |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 459 | * |
| 460 | * Count 'assert_failures' for each failed ASSERT access, |
| 461 | * therefore both this thread and the racing thread may |
| 462 | * increment this counter. |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 463 | */ |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 464 | if (is_assert) |
| 465 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 466 | |
| 467 | /* |
| 468 | * - If we were not able to observe a value change due to size |
| 469 | * constraints, always assume a value change. |
| 470 | * - If the access type is an assertion, we also always assume a |
| 471 | * value change to always report the race. |
| 472 | */ |
| 473 | value_change = value_change || size > 8 || is_assert; |
| 474 | |
| 475 | kcsan_report(ptr, size, type, value_change, smp_processor_id(), |
| 476 | KCSAN_REPORT_RACE_SIGNAL); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 477 | } else if (value_change) { |
| 478 | /* Inferring a race, since the value should not have changed. */ |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 479 | |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 480 | kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN); |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 481 | if (is_assert) |
| 482 | kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES); |
| 483 | |
| 484 | if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 485 | kcsan_report(ptr, size, type, true, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 486 | smp_processor_id(), |
| 487 | KCSAN_REPORT_RACE_UNKNOWN_ORIGIN); |
| 488 | } |
| 489 | |
| 490 | kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS); |
| 491 | out_unlock: |
Marco Elver | f1bc962 | 2020-01-15 17:25:12 +0100 | [diff] [blame] | 492 | raw_local_irq_restore(irq_flags); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 493 | out: |
| 494 | user_access_restore(ua_flags); |
| 495 | } |
| 496 | |
| 497 | static __always_inline void check_access(const volatile void *ptr, size_t size, |
| 498 | int type) |
| 499 | { |
| 500 | const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
| 501 | atomic_long_t *watchpoint; |
| 502 | long encoded_watchpoint; |
| 503 | |
| 504 | /* |
Marco Elver | ed95f95 | 2020-02-05 11:14:19 +0100 | [diff] [blame] | 505 | * Do nothing for 0 sized check; this comparison will be optimized out |
| 506 | * for constant sized instrumentation (__tsan_{read,write}N). |
| 507 | */ |
| 508 | if (unlikely(size == 0)) |
| 509 | return; |
| 510 | |
| 511 | /* |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 512 | * Avoid user_access_save in fast-path: find_watchpoint is safe without |
| 513 | * user_access_save, as the address that ptr points to is only used to |
| 514 | * check if a watchpoint exists; ptr is never dereferenced. |
| 515 | */ |
| 516 | watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write, |
| 517 | &encoded_watchpoint); |
| 518 | /* |
| 519 | * It is safe to check kcsan_is_enabled() after find_watchpoint in the |
Marco Elver | d591ec3 | 2020-02-06 16:46:24 +0100 | [diff] [blame] | 520 | * slow-path, as long as no state changes that cause a race to be |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 521 | * detected and reported have occurred until kcsan_is_enabled() is |
| 522 | * checked. |
| 523 | */ |
| 524 | |
| 525 | if (unlikely(watchpoint != NULL)) |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 526 | kcsan_found_watchpoint(ptr, size, type, watchpoint, |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 527 | encoded_watchpoint); |
Marco Elver | 1e6ee2f | 2020-02-04 18:21:10 +0100 | [diff] [blame] | 528 | else if (unlikely(should_watch(ptr, size, type))) |
Marco Elver | 47144ec | 2020-01-10 19:48:33 +0100 | [diff] [blame] | 529 | kcsan_setup_watchpoint(ptr, size, type); |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 530 | } |
| 531 | |
| 532 | /* === Public interface ===================================================== */ |
| 533 | |
| 534 | void __init kcsan_init(void) |
| 535 | { |
| 536 | BUG_ON(!in_task()); |
| 537 | |
| 538 | kcsan_debugfs_init(); |
| 539 | |
| 540 | /* |
| 541 | * We are in the init task, and no other tasks should be running; |
| 542 | * WRITE_ONCE without memory barrier is sufficient. |
| 543 | */ |
Marco Elver | 80d4c47 | 2020-02-07 19:59:10 +0100 | [diff] [blame^] | 544 | if (kcsan_early_enable) |
Marco Elver | dfd402a | 2019-11-14 19:02:54 +0100 | [diff] [blame] | 545 | WRITE_ONCE(kcsan_enabled, true); |
| 546 | } |
| 547 | |
| 548 | /* === Exported interface =================================================== */ |
| 549 | |
| 550 | void kcsan_disable_current(void) |
| 551 | { |
| 552 | ++get_ctx()->disable_count; |
| 553 | } |
| 554 | EXPORT_SYMBOL(kcsan_disable_current); |
| 555 | |
| 556 | void kcsan_enable_current(void) |
| 557 | { |
| 558 | if (get_ctx()->disable_count-- == 0) { |
| 559 | /* |
| 560 | * Warn if kcsan_enable_current() calls are unbalanced with |
| 561 | * kcsan_disable_current() calls, which causes disable_count to |
| 562 | * become negative and should not happen. |
| 563 | */ |
| 564 | kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ |
| 565 | kcsan_disable_current(); /* disable to generate warning */ |
| 566 | WARN(1, "Unbalanced %s()", __func__); |
| 567 | kcsan_enable_current(); |
| 568 | } |
| 569 | } |
| 570 | EXPORT_SYMBOL(kcsan_enable_current); |
| 571 | |
| 572 | void kcsan_nestable_atomic_begin(void) |
| 573 | { |
| 574 | /* |
| 575 | * Do *not* check and warn if we are in a flat atomic region: nestable |
| 576 | * and flat atomic regions are independent from each other. |
| 577 | * See include/linux/kcsan.h: struct kcsan_ctx comments for more |
| 578 | * comments. |
| 579 | */ |
| 580 | |
| 581 | ++get_ctx()->atomic_nest_count; |
| 582 | } |
| 583 | EXPORT_SYMBOL(kcsan_nestable_atomic_begin); |
| 584 | |
| 585 | void kcsan_nestable_atomic_end(void) |
| 586 | { |
| 587 | if (get_ctx()->atomic_nest_count-- == 0) { |
| 588 | /* |
| 589 | * Warn if kcsan_nestable_atomic_end() calls are unbalanced with |
| 590 | * kcsan_nestable_atomic_begin() calls, which causes |
| 591 | * atomic_nest_count to become negative and should not happen. |
| 592 | */ |
| 593 | kcsan_nestable_atomic_begin(); /* restore to 0 */ |
| 594 | kcsan_disable_current(); /* disable to generate warning */ |
| 595 | WARN(1, "Unbalanced %s()", __func__); |
| 596 | kcsan_enable_current(); |
| 597 | } |
| 598 | } |
| 599 | EXPORT_SYMBOL(kcsan_nestable_atomic_end); |
| 600 | |
| 601 | void kcsan_flat_atomic_begin(void) |
| 602 | { |
| 603 | get_ctx()->in_flat_atomic = true; |
| 604 | } |
| 605 | EXPORT_SYMBOL(kcsan_flat_atomic_begin); |
| 606 | |
| 607 | void kcsan_flat_atomic_end(void) |
| 608 | { |
| 609 | get_ctx()->in_flat_atomic = false; |
| 610 | } |
| 611 | EXPORT_SYMBOL(kcsan_flat_atomic_end); |
| 612 | |
| 613 | void kcsan_atomic_next(int n) |
| 614 | { |
| 615 | get_ctx()->atomic_next = n; |
| 616 | } |
| 617 | EXPORT_SYMBOL(kcsan_atomic_next); |
| 618 | |
| 619 | void __kcsan_check_access(const volatile void *ptr, size_t size, int type) |
| 620 | { |
| 621 | check_access(ptr, size, type); |
| 622 | } |
| 623 | EXPORT_SYMBOL(__kcsan_check_access); |
| 624 | |
| 625 | /* |
| 626 | * KCSAN uses the same instrumentation that is emitted by supported compilers |
| 627 | * for ThreadSanitizer (TSAN). |
| 628 | * |
| 629 | * When enabled, the compiler emits instrumentation calls (the functions |
| 630 | * prefixed with "__tsan" below) for all loads and stores that it generated; |
| 631 | * inline asm is not instrumented. |
| 632 | * |
| 633 | * Note that, not all supported compiler versions distinguish aligned/unaligned |
| 634 | * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned |
| 635 | * version to the generic version, which can handle both. |
| 636 | */ |
| 637 | |
| 638 | #define DEFINE_TSAN_READ_WRITE(size) \ |
| 639 | void __tsan_read##size(void *ptr) \ |
| 640 | { \ |
| 641 | check_access(ptr, size, 0); \ |
| 642 | } \ |
| 643 | EXPORT_SYMBOL(__tsan_read##size); \ |
| 644 | void __tsan_unaligned_read##size(void *ptr) \ |
| 645 | __alias(__tsan_read##size); \ |
| 646 | EXPORT_SYMBOL(__tsan_unaligned_read##size); \ |
| 647 | void __tsan_write##size(void *ptr) \ |
| 648 | { \ |
| 649 | check_access(ptr, size, KCSAN_ACCESS_WRITE); \ |
| 650 | } \ |
| 651 | EXPORT_SYMBOL(__tsan_write##size); \ |
| 652 | void __tsan_unaligned_write##size(void *ptr) \ |
| 653 | __alias(__tsan_write##size); \ |
| 654 | EXPORT_SYMBOL(__tsan_unaligned_write##size) |
| 655 | |
| 656 | DEFINE_TSAN_READ_WRITE(1); |
| 657 | DEFINE_TSAN_READ_WRITE(2); |
| 658 | DEFINE_TSAN_READ_WRITE(4); |
| 659 | DEFINE_TSAN_READ_WRITE(8); |
| 660 | DEFINE_TSAN_READ_WRITE(16); |
| 661 | |
| 662 | void __tsan_read_range(void *ptr, size_t size) |
| 663 | { |
| 664 | check_access(ptr, size, 0); |
| 665 | } |
| 666 | EXPORT_SYMBOL(__tsan_read_range); |
| 667 | |
| 668 | void __tsan_write_range(void *ptr, size_t size) |
| 669 | { |
| 670 | check_access(ptr, size, KCSAN_ACCESS_WRITE); |
| 671 | } |
| 672 | EXPORT_SYMBOL(__tsan_write_range); |
| 673 | |
| 674 | /* |
| 675 | * The below are not required by KCSAN, but can still be emitted by the |
| 676 | * compiler. |
| 677 | */ |
| 678 | void __tsan_func_entry(void *call_pc) |
| 679 | { |
| 680 | } |
| 681 | EXPORT_SYMBOL(__tsan_func_entry); |
| 682 | void __tsan_func_exit(void) |
| 683 | { |
| 684 | } |
| 685 | EXPORT_SYMBOL(__tsan_func_exit); |
| 686 | void __tsan_init(void) |
| 687 | { |
| 688 | } |
| 689 | EXPORT_SYMBOL(__tsan_init); |