blob: ef6b6bb3e0b21084eb1aa43877a01f6bfe993784 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020025#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020056#include <linux/unistd.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057
Eric Dumazet5517d862007-05-08 00:32:57 -070058#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070059
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
Peter Williams2dd73a42006-06-27 02:54:34 -0700106
Eric Dumazet5517d862007-05-08 00:32:57 -0700107#ifdef CONFIG_SMP
108/*
109 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
110 * Since cpu_power is a 'constant', we can use a reciprocal divide.
111 */
112static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
113{
114 return reciprocal_divide(load, sg->reciprocal_cpu_power);
115}
116
117/*
118 * Each time a sched group cpu_power is changed,
119 * we must compute its reciprocal value
120 */
121static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
122{
123 sg->__cpu_power += val;
124 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
125}
126#endif
127
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200128#define SCALE_PRIO(x, prio) \
129 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700130
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200131/*
132 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
133 * to time slice values: [800ms ... 100ms ... 5ms]
134 */
135static unsigned int static_prio_timeslice(int static_prio)
Peter Williams2dd73a42006-06-27 02:54:34 -0700136{
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200137 if (static_prio == NICE_TO_PRIO(19))
138 return 1;
139
140 if (static_prio < NICE_TO_PRIO(0))
141 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
142 else
143 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Peter Williams2dd73a42006-06-27 02:54:34 -0700144}
145
Ingo Molnare05606d2007-07-09 18:51:59 +0200146static inline int rt_policy(int policy)
147{
148 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
149 return 1;
150 return 0;
151}
152
153static inline int task_has_rt_policy(struct task_struct *p)
154{
155 return rt_policy(p->policy);
156}
157
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200159 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200161struct rt_prio_array {
162 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
163 struct list_head queue[MAX_RT_PRIO];
164};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200166struct load_stat {
167 struct load_weight load;
168 u64 load_update_start, load_update_last;
169 unsigned long delta_fair, delta_exec, delta_stat;
170};
171
172/* CFS-related fields in a runqueue */
173struct cfs_rq {
174 struct load_weight load;
175 unsigned long nr_running;
176
177 s64 fair_clock;
178 u64 exec_clock;
179 s64 wait_runtime;
180 u64 sleeper_bonus;
181 unsigned long wait_runtime_overruns, wait_runtime_underruns;
182
183 struct rb_root tasks_timeline;
184 struct rb_node *rb_leftmost;
185 struct rb_node *rb_load_balance_curr;
186#ifdef CONFIG_FAIR_GROUP_SCHED
187 /* 'curr' points to currently running entity on this cfs_rq.
188 * It is set to NULL otherwise (i.e when none are currently running).
189 */
190 struct sched_entity *curr;
191 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
192
193 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
194 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
195 * (like users, containers etc.)
196 *
197 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
198 * list is used during load balance.
199 */
200 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
201#endif
202};
203
204/* Real-Time classes' related field in a runqueue: */
205struct rt_rq {
206 struct rt_prio_array active;
207 int rt_load_balance_idx;
208 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
209};
210
211/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212 * This is the main, per-CPU runqueue data structure.
213 *
214 * Locking rule: those places that want to lock multiple runqueues
215 * (such as the load balancing or the thread migration code), lock
216 * acquire operations must be ordered by ascending &runqueue.
217 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700218struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200219 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220
221 /*
222 * nr_running and cpu_load should be in the same cacheline because
223 * remote CPUs use both these fields when doing load calculation.
224 */
225 unsigned long nr_running;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226 #define CPU_LOAD_IDX_MAX 5
227 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700228 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700229#ifdef CONFIG_NO_HZ
230 unsigned char in_nohz_recently;
231#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200232 struct load_stat ls; /* capture load from *all* tasks on this cpu */
233 unsigned long nr_load_updates;
234 u64 nr_switches;
235
236 struct cfs_rq cfs;
237#ifdef CONFIG_FAIR_GROUP_SCHED
238 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200240 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241
242 /*
243 * This is part of a global counter where only the total sum
244 * over all CPUs matters. A task can increase this counter on
245 * one CPU and if it got migrated afterwards it may decrease
246 * it on another CPU. Always updated under the runqueue lock:
247 */
248 unsigned long nr_uninterruptible;
249
Ingo Molnar36c8b582006-07-03 00:25:41 -0700250 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800251 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200253
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200254 u64 clock, prev_clock_raw;
255 s64 clock_max_delta;
256
257 unsigned int clock_warps, clock_overflows;
258 unsigned int clock_unstable_events;
259
260 struct sched_class *load_balance_class;
261
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262 atomic_t nr_iowait;
263
264#ifdef CONFIG_SMP
265 struct sched_domain *sd;
266
267 /* For active balancing */
268 int active_balance;
269 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700270 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271
Ingo Molnar36c8b582006-07-03 00:25:41 -0700272 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273 struct list_head migration_queue;
274#endif
275
276#ifdef CONFIG_SCHEDSTATS
277 /* latency stats */
278 struct sched_info rq_sched_info;
279
280 /* sys_sched_yield() stats */
281 unsigned long yld_exp_empty;
282 unsigned long yld_act_empty;
283 unsigned long yld_both_empty;
284 unsigned long yld_cnt;
285
286 /* schedule() stats */
287 unsigned long sched_switch;
288 unsigned long sched_cnt;
289 unsigned long sched_goidle;
290
291 /* try_to_wake_up() stats */
292 unsigned long ttwu_cnt;
293 unsigned long ttwu_local;
294#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700295 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700296};
297
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700298static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700299static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300
Ingo Molnardd41f592007-07-09 18:51:59 +0200301static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
302{
303 rq->curr->sched_class->check_preempt_curr(rq, p);
304}
305
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700306static inline int cpu_of(struct rq *rq)
307{
308#ifdef CONFIG_SMP
309 return rq->cpu;
310#else
311 return 0;
312#endif
313}
314
Nick Piggin674311d2005-06-25 14:57:27 -0700315/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200316 * Per-runqueue clock, as finegrained as the platform can give us:
317 */
318static unsigned long long __rq_clock(struct rq *rq)
319{
320 u64 prev_raw = rq->prev_clock_raw;
321 u64 now = sched_clock();
322 s64 delta = now - prev_raw;
323 u64 clock = rq->clock;
324
325 /*
326 * Protect against sched_clock() occasionally going backwards:
327 */
328 if (unlikely(delta < 0)) {
329 clock++;
330 rq->clock_warps++;
331 } else {
332 /*
333 * Catch too large forward jumps too:
334 */
335 if (unlikely(delta > 2*TICK_NSEC)) {
336 clock++;
337 rq->clock_overflows++;
338 } else {
339 if (unlikely(delta > rq->clock_max_delta))
340 rq->clock_max_delta = delta;
341 clock += delta;
342 }
343 }
344
345 rq->prev_clock_raw = now;
346 rq->clock = clock;
347
348 return clock;
349}
350
351static inline unsigned long long rq_clock(struct rq *rq)
352{
353 int this_cpu = smp_processor_id();
354
355 if (this_cpu == cpu_of(rq))
356 return __rq_clock(rq);
357
358 return rq->clock;
359}
360
361/*
Nick Piggin674311d2005-06-25 14:57:27 -0700362 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700363 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700364 *
365 * The domain tree of any CPU may only be accessed from within
366 * preempt-disabled sections.
367 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700368#define for_each_domain(cpu, __sd) \
369 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370
371#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
372#define this_rq() (&__get_cpu_var(runqueues))
373#define task_rq(p) cpu_rq(task_cpu(p))
374#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
375
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200376#ifdef CONFIG_FAIR_GROUP_SCHED
377/* Change a task's ->cfs_rq if it moves across CPUs */
378static inline void set_task_cfs_rq(struct task_struct *p)
379{
380 p->se.cfs_rq = &task_rq(p)->cfs;
381}
382#else
383static inline void set_task_cfs_rq(struct task_struct *p)
384{
385}
386#endif
387
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700389# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700391#ifndef finish_arch_switch
392# define finish_arch_switch(prev) do { } while (0)
393#endif
394
395#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700396static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700397{
398 return rq->curr == p;
399}
400
Ingo Molnar70b97a72006-07-03 00:25:42 -0700401static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700402{
403}
404
Ingo Molnar70b97a72006-07-03 00:25:42 -0700405static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700406{
Ingo Molnarda04c032005-09-13 11:17:59 +0200407#ifdef CONFIG_DEBUG_SPINLOCK
408 /* this is a valid case when another task releases the spinlock */
409 rq->lock.owner = current;
410#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700411 /*
412 * If we are tracking spinlock dependencies then we have to
413 * fix up the runqueue lock - which gets 'carried over' from
414 * prev into current:
415 */
416 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
417
Nick Piggin4866cde2005-06-25 14:57:23 -0700418 spin_unlock_irq(&rq->lock);
419}
420
421#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700422static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700423{
424#ifdef CONFIG_SMP
425 return p->oncpu;
426#else
427 return rq->curr == p;
428#endif
429}
430
Ingo Molnar70b97a72006-07-03 00:25:42 -0700431static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700432{
433#ifdef CONFIG_SMP
434 /*
435 * We can optimise this out completely for !SMP, because the
436 * SMP rebalancing from interrupt is the only thing that cares
437 * here.
438 */
439 next->oncpu = 1;
440#endif
441#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
442 spin_unlock_irq(&rq->lock);
443#else
444 spin_unlock(&rq->lock);
445#endif
446}
447
Ingo Molnar70b97a72006-07-03 00:25:42 -0700448static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700449{
450#ifdef CONFIG_SMP
451 /*
452 * After ->oncpu is cleared, the task can be moved to a different CPU.
453 * We must ensure this doesn't happen until the switch is completely
454 * finished.
455 */
456 smp_wmb();
457 prev->oncpu = 0;
458#endif
459#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
460 local_irq_enable();
461#endif
462}
463#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464
465/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700466 * __task_rq_lock - lock the runqueue a given task resides on.
467 * Must be called interrupts disabled.
468 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700469static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700470 __acquires(rq->lock)
471{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700472 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700473
474repeat_lock_task:
475 rq = task_rq(p);
476 spin_lock(&rq->lock);
477 if (unlikely(rq != task_rq(p))) {
478 spin_unlock(&rq->lock);
479 goto repeat_lock_task;
480 }
481 return rq;
482}
483
484/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485 * task_rq_lock - lock the runqueue a given task resides on and disable
486 * interrupts. Note the ordering: we can safely lookup the task_rq without
487 * explicitly disabling preemption.
488 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700489static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490 __acquires(rq->lock)
491{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700492 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493
494repeat_lock_task:
495 local_irq_save(*flags);
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock_irqrestore(&rq->lock, *flags);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
Ingo Molnar70b97a72006-07-03 00:25:42 -0700505static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700506 __releases(rq->lock)
507{
508 spin_unlock(&rq->lock);
509}
510
Ingo Molnar70b97a72006-07-03 00:25:42 -0700511static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 __releases(rq->lock)
513{
514 spin_unlock_irqrestore(&rq->lock, *flags);
515}
516
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800518 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700520static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521 __acquires(rq->lock)
522{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700523 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524
525 local_irq_disable();
526 rq = this_rq();
527 spin_lock(&rq->lock);
528
529 return rq;
530}
531
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200532/*
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200533 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
534 */
535void sched_clock_unstable_event(void)
536{
537 unsigned long flags;
538 struct rq *rq;
539
540 rq = task_rq_lock(current, &flags);
541 rq->prev_clock_raw = sched_clock();
542 rq->clock_unstable_events++;
543 task_rq_unlock(rq, &flags);
544}
545
546/*
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200547 * resched_task - mark a task 'to be rescheduled now'.
548 *
549 * On UP this means the setting of the need_resched flag, on SMP it
550 * might also involve a cross-CPU call to trigger the scheduler on
551 * the target CPU.
552 */
553#ifdef CONFIG_SMP
554
555#ifndef tsk_is_polling
556#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
557#endif
558
559static void resched_task(struct task_struct *p)
560{
561 int cpu;
562
563 assert_spin_locked(&task_rq(p)->lock);
564
565 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
566 return;
567
568 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
569
570 cpu = task_cpu(p);
571 if (cpu == smp_processor_id())
572 return;
573
574 /* NEED_RESCHED must be visible before we test polling */
575 smp_mb();
576 if (!tsk_is_polling(p))
577 smp_send_reschedule(cpu);
578}
579
580static void resched_cpu(int cpu)
581{
582 struct rq *rq = cpu_rq(cpu);
583 unsigned long flags;
584
585 if (!spin_trylock_irqsave(&rq->lock, flags))
586 return;
587 resched_task(cpu_curr(cpu));
588 spin_unlock_irqrestore(&rq->lock, flags);
589}
590#else
591static inline void resched_task(struct task_struct *p)
592{
593 assert_spin_locked(&task_rq(p)->lock);
594 set_tsk_need_resched(p);
595}
596#endif
597
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200598static u64 div64_likely32(u64 divident, unsigned long divisor)
599{
600#if BITS_PER_LONG == 32
601 if (likely(divident <= 0xffffffffULL))
602 return (u32)divident / divisor;
603 do_div(divident, divisor);
604
605 return divident;
606#else
607 return divident / divisor;
608#endif
609}
610
611#if BITS_PER_LONG == 32
612# define WMULT_CONST (~0UL)
613#else
614# define WMULT_CONST (1UL << 32)
615#endif
616
617#define WMULT_SHIFT 32
618
619static inline unsigned long
620calc_delta_mine(unsigned long delta_exec, unsigned long weight,
621 struct load_weight *lw)
622{
623 u64 tmp;
624
625 if (unlikely(!lw->inv_weight))
626 lw->inv_weight = WMULT_CONST / lw->weight;
627
628 tmp = (u64)delta_exec * weight;
629 /*
630 * Check whether we'd overflow the 64-bit multiplication:
631 */
632 if (unlikely(tmp > WMULT_CONST)) {
633 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
634 >> (WMULT_SHIFT/2);
635 } else {
636 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
637 }
638
639 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
640}
641
642static inline unsigned long
643calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
644{
645 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
646}
647
648static void update_load_add(struct load_weight *lw, unsigned long inc)
649{
650 lw->weight += inc;
651 lw->inv_weight = 0;
652}
653
654static void update_load_sub(struct load_weight *lw, unsigned long dec)
655{
656 lw->weight -= dec;
657 lw->inv_weight = 0;
658}
659
660static void __update_curr_load(struct rq *rq, struct load_stat *ls)
661{
662 if (rq->curr != rq->idle && ls->load.weight) {
663 ls->delta_exec += ls->delta_stat;
664 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
665 ls->delta_stat = 0;
666 }
667}
668
669/*
670 * Update delta_exec, delta_fair fields for rq.
671 *
672 * delta_fair clock advances at a rate inversely proportional to
673 * total load (rq->ls.load.weight) on the runqueue, while
674 * delta_exec advances at the same rate as wall-clock (provided
675 * cpu is not idle).
676 *
677 * delta_exec / delta_fair is a measure of the (smoothened) load on this
678 * runqueue over any given interval. This (smoothened) load is used
679 * during load balance.
680 *
681 * This function is called /before/ updating rq->ls.load
682 * and when switching tasks.
683 */
684static void update_curr_load(struct rq *rq, u64 now)
685{
686 struct load_stat *ls = &rq->ls;
687 u64 start;
688
689 start = ls->load_update_start;
690 ls->load_update_start = now;
691 ls->delta_stat += now - start;
692 /*
693 * Stagger updates to ls->delta_fair. Very frequent updates
694 * can be expensive.
695 */
696 if (ls->delta_stat >= sysctl_sched_stat_granularity)
697 __update_curr_load(rq, ls);
698}
699
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700701 * To aid in avoiding the subversion of "niceness" due to uneven distribution
702 * of tasks with abnormal "nice" values across CPUs the contribution that
703 * each task makes to its run queue's load is weighted according to its
704 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
705 * scaled version of the new time slice allocation that they receive on time
706 * slice expiry etc.
707 */
708
709/*
710 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
711 * If static_prio_timeslice() is ever changed to break this assumption then
712 * this code will need modification
713 */
714#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
Ingo Molnardd41f592007-07-09 18:51:59 +0200715#define load_weight(lp) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700716 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
717#define PRIO_TO_LOAD_WEIGHT(prio) \
Ingo Molnardd41f592007-07-09 18:51:59 +0200718 load_weight(static_prio_timeslice(prio))
Peter Williams2dd73a42006-06-27 02:54:34 -0700719#define RTPRIO_TO_LOAD_WEIGHT(rp) \
Ingo Molnardd41f592007-07-09 18:51:59 +0200720 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
721
722#define WEIGHT_IDLEPRIO 2
723#define WMULT_IDLEPRIO (1 << 31)
724
725/*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 * it's +10% CPU usage.
734 */
735static const int prio_to_weight[40] = {
736/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
737/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
738/* 0 */ NICE_0_LOAD /* 1024 */,
739/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
740/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
741};
742
743static const u32 prio_to_wmult[40] = {
744 48356, 60446, 75558, 94446, 118058, 147573,
745 184467, 230589, 288233, 360285, 450347,
746 562979, 703746, 879575, 1099582, 1374389,
747 717986, 2147483, 2684354, 3355443, 4194304,
748 244160, 6557201, 8196502, 10250518, 12782640,
749 16025997, 19976592, 24970740, 31350126, 39045157,
750 49367440, 61356675, 76695844, 95443717, 119304647,
751 148102320, 186737708, 238609294, 286331153,
752};
Peter Williams2dd73a42006-06-27 02:54:34 -0700753
Ingo Molnar36c8b582006-07-03 00:25:41 -0700754static inline void
Ingo Molnardd41f592007-07-09 18:51:59 +0200755inc_load(struct rq *rq, const struct task_struct *p, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700756{
Ingo Molnardd41f592007-07-09 18:51:59 +0200757 update_curr_load(rq, now);
758 update_load_add(&rq->ls.load, p->se.load.weight);
Peter Williams2dd73a42006-06-27 02:54:34 -0700759}
760
Ingo Molnar36c8b582006-07-03 00:25:41 -0700761static inline void
Ingo Molnardd41f592007-07-09 18:51:59 +0200762dec_load(struct rq *rq, const struct task_struct *p, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700763{
Ingo Molnardd41f592007-07-09 18:51:59 +0200764 update_curr_load(rq, now);
765 update_load_sub(&rq->ls.load, p->se.load.weight);
Peter Williams2dd73a42006-06-27 02:54:34 -0700766}
767
Ingo Molnardd41f592007-07-09 18:51:59 +0200768static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700769{
770 rq->nr_running++;
Ingo Molnardd41f592007-07-09 18:51:59 +0200771 inc_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -0700772}
773
Ingo Molnardd41f592007-07-09 18:51:59 +0200774static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700775{
776 rq->nr_running--;
Ingo Molnardd41f592007-07-09 18:51:59 +0200777 dec_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -0700778}
779
Ingo Molnardd41f592007-07-09 18:51:59 +0200780static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
781
782/*
783 * runqueue iterator, to support SMP load-balancing between different
784 * scheduling classes, without having to expose their internal data
785 * structures to the load-balancing proper:
786 */
787struct rq_iterator {
788 void *arg;
789 struct task_struct *(*start)(void *);
790 struct task_struct *(*next)(void *);
791};
792
793static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
794 unsigned long max_nr_move, unsigned long max_load_move,
795 struct sched_domain *sd, enum cpu_idle_type idle,
796 int *all_pinned, unsigned long *load_moved,
797 int this_best_prio, int best_prio, int best_prio_seen,
798 struct rq_iterator *iterator);
799
800#include "sched_stats.h"
801#include "sched_rt.c"
802#include "sched_fair.c"
803#include "sched_idletask.c"
804#ifdef CONFIG_SCHED_DEBUG
805# include "sched_debug.c"
806#endif
807
808#define sched_class_highest (&rt_sched_class)
809
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200810static void set_load_weight(struct task_struct *p)
811{
Ingo Molnardd41f592007-07-09 18:51:59 +0200812 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
813 p->se.wait_runtime = 0;
814
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200815 if (task_has_rt_policy(p)) {
Ingo Molnardd41f592007-07-09 18:51:59 +0200816 p->se.load.weight = prio_to_weight[0] * 2;
817 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
818 return;
819 }
820
821 /*
822 * SCHED_IDLE tasks get minimal weight:
823 */
824 if (p->policy == SCHED_IDLE) {
825 p->se.load.weight = WEIGHT_IDLEPRIO;
826 p->se.load.inv_weight = WMULT_IDLEPRIO;
827 return;
828 }
829
830 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
831 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200832}
833
Ingo Molnardd41f592007-07-09 18:51:59 +0200834static void
835enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200836{
837 sched_info_queued(p);
Ingo Molnardd41f592007-07-09 18:51:59 +0200838 p->sched_class->enqueue_task(rq, p, wakeup, now);
839 p->se.on_rq = 1;
840}
841
842static void
843dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
844{
845 p->sched_class->dequeue_task(rq, p, sleep, now);
846 p->se.on_rq = 0;
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200847}
848
849/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200850 * __normal_prio - return the priority that is based on the static prio
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200851 */
Ingo Molnar14531182007-07-09 18:51:59 +0200852static inline int __normal_prio(struct task_struct *p)
853{
Ingo Molnardd41f592007-07-09 18:51:59 +0200854 return p->static_prio;
Ingo Molnar14531182007-07-09 18:51:59 +0200855}
856
857/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700858 * Calculate the expected normal priority: i.e. priority
859 * without taking RT-inheritance into account. Might be
860 * boosted by interactivity modifiers. Changes upon fork,
861 * setprio syscalls, and whenever the interactivity
862 * estimator recalculates.
863 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700864static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700865{
866 int prio;
867
Ingo Molnare05606d2007-07-09 18:51:59 +0200868 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700869 prio = MAX_RT_PRIO-1 - p->rt_priority;
870 else
871 prio = __normal_prio(p);
872 return prio;
873}
874
875/*
876 * Calculate the current priority, i.e. the priority
877 * taken into account by the scheduler. This value might
878 * be boosted by RT tasks, or might be boosted by
879 * interactivity modifiers. Will be RT if the task got
880 * RT-boosted. If not then it returns p->normal_prio.
881 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700882static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700883{
884 p->normal_prio = normal_prio(p);
885 /*
886 * If we are RT tasks or we were boosted to RT priority,
887 * keep the priority unchanged. Otherwise, update priority
888 * to the normal priority:
889 */
890 if (!rt_prio(p->prio))
891 return p->normal_prio;
892 return p->prio;
893}
894
895/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200896 * activate_task - move a task to the runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200898static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899{
Ingo Molnardd41f592007-07-09 18:51:59 +0200900 u64 now = rq_clock(rq);
Con Kolivasd425b272006-03-31 02:31:29 -0800901
Ingo Molnardd41f592007-07-09 18:51:59 +0200902 if (p->state == TASK_UNINTERRUPTIBLE)
903 rq->nr_uninterruptible--;
904
905 enqueue_task(rq, p, wakeup, now);
906 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907}
908
909/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200910 * activate_idle_task - move idle task to the _front_ of runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200912static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913{
Ingo Molnardd41f592007-07-09 18:51:59 +0200914 u64 now = rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915
Ingo Molnardd41f592007-07-09 18:51:59 +0200916 if (p->state == TASK_UNINTERRUPTIBLE)
917 rq->nr_uninterruptible--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918
Ingo Molnardd41f592007-07-09 18:51:59 +0200919 enqueue_task(rq, p, 0, now);
920 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921}
922
923/*
924 * deactivate_task - remove a task from the runqueue.
925 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200926static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927{
Ingo Molnardd41f592007-07-09 18:51:59 +0200928 u64 now = rq_clock(rq);
929
930 if (p->state == TASK_UNINTERRUPTIBLE)
931 rq->nr_uninterruptible++;
932
933 dequeue_task(rq, p, sleep, now);
934 dec_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700935}
936
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937/**
938 * task_curr - is this task currently executing on a CPU?
939 * @p: the task in question.
940 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700941inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942{
943 return cpu_curr(task_cpu(p)) == p;
944}
945
Peter Williams2dd73a42006-06-27 02:54:34 -0700946/* Used instead of source_load when we know the type == 0 */
947unsigned long weighted_cpuload(const int cpu)
948{
Ingo Molnardd41f592007-07-09 18:51:59 +0200949 return cpu_rq(cpu)->ls.load.weight;
950}
951
952static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
953{
954#ifdef CONFIG_SMP
955 task_thread_info(p)->cpu = cpu;
956 set_task_cfs_rq(p);
957#endif
Peter Williams2dd73a42006-06-27 02:54:34 -0700958}
959
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +0200961
Ingo Molnardd41f592007-07-09 18:51:59 +0200962void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnarc65cc872007-07-09 18:51:58 +0200963{
Ingo Molnardd41f592007-07-09 18:51:59 +0200964 int old_cpu = task_cpu(p);
965 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
966 u64 clock_offset, fair_clock_offset;
967
968 clock_offset = old_rq->clock - new_rq->clock;
969 fair_clock_offset = old_rq->cfs.fair_clock -
970 new_rq->cfs.fair_clock;
971 if (p->se.wait_start)
972 p->se.wait_start -= clock_offset;
973 if (p->se.wait_start_fair)
974 p->se.wait_start_fair -= fair_clock_offset;
975 if (p->se.sleep_start)
976 p->se.sleep_start -= clock_offset;
977 if (p->se.block_start)
978 p->se.block_start -= clock_offset;
979 if (p->se.sleep_start_fair)
980 p->se.sleep_start_fair -= fair_clock_offset;
981
982 __set_task_cpu(p, new_cpu);
Ingo Molnarc65cc872007-07-09 18:51:58 +0200983}
984
Ingo Molnar70b97a72006-07-03 00:25:42 -0700985struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700986 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987
Ingo Molnar36c8b582006-07-03 00:25:41 -0700988 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989 int dest_cpu;
990
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -0700992};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993
994/*
995 * The task's runqueue lock must be held.
996 * Returns true if you have to wait for migration thread.
997 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700998static int
Ingo Molnar70b97a72006-07-03 00:25:42 -0700999migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001001 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002
1003 /*
1004 * If the task is not on a runqueue (and not running), then
1005 * it is sufficient to simply update the task's cpu field.
1006 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001007 if (!p->se.on_rq && !task_running(rq, p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008 set_task_cpu(p, dest_cpu);
1009 return 0;
1010 }
1011
1012 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 req->task = p;
1014 req->dest_cpu = dest_cpu;
1015 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001016
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017 return 1;
1018}
1019
1020/*
1021 * wait_task_inactive - wait for a thread to unschedule.
1022 *
1023 * The caller must ensure that the task *will* unschedule sometime soon,
1024 * else this function might spin for a *long* time. This function can't
1025 * be called with interrupts off, or it may introduce deadlock with
1026 * smp_call_function() if an IPI is sent by the same process we are
1027 * waiting to become inactive.
1028 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001029void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030{
1031 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001032 int running, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001033 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034
1035repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001036 /*
1037 * We do the initial early heuristics without holding
1038 * any task-queue locks at all. We'll only try to get
1039 * the runqueue lock when things look like they will
1040 * work out!
1041 */
1042 rq = task_rq(p);
1043
1044 /*
1045 * If the task is actively running on another CPU
1046 * still, just relax and busy-wait without holding
1047 * any locks.
1048 *
1049 * NOTE! Since we don't hold any locks, it's not
1050 * even sure that "rq" stays as the right runqueue!
1051 * But we don't care, since "task_running()" will
1052 * return false if the runqueue has changed and p
1053 * is actually now running somewhere else!
1054 */
1055 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001057
1058 /*
1059 * Ok, time to look more closely! We need the rq
1060 * lock now, to be *sure*. If we're wrong, we'll
1061 * just go back and repeat.
1062 */
1063 rq = task_rq_lock(p, &flags);
1064 running = task_running(rq, p);
Ingo Molnardd41f592007-07-09 18:51:59 +02001065 on_rq = p->se.on_rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001066 task_rq_unlock(rq, &flags);
1067
1068 /*
1069 * Was it really running after all now that we
1070 * checked with the proper locks actually held?
1071 *
1072 * Oops. Go back and try again..
1073 */
1074 if (unlikely(running)) {
1075 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 goto repeat;
1077 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001078
1079 /*
1080 * It's not enough that it's not actively running,
1081 * it must be off the runqueue _entirely_, and not
1082 * preempted!
1083 *
1084 * So if it wa still runnable (but just not actively
1085 * running right now), it's preempted, and we should
1086 * yield - it could be a while.
1087 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001088 if (unlikely(on_rq)) {
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001089 yield();
1090 goto repeat;
1091 }
1092
1093 /*
1094 * Ahh, all good. It wasn't running, and it wasn't
1095 * runnable, which means that it will never become
1096 * running in the future either. We're all done!
1097 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098}
1099
1100/***
1101 * kick_process - kick a running thread to enter/exit the kernel
1102 * @p: the to-be-kicked thread
1103 *
1104 * Cause a process which is running on another CPU to enter
1105 * kernel-mode, without any delay. (to get signals handled.)
1106 *
1107 * NOTE: this function doesnt have to take the runqueue lock,
1108 * because all it wants to ensure is that the remote task enters
1109 * the kernel. If the IPI races and the task has been migrated
1110 * to another CPU then no harm is done and the purpose has been
1111 * achieved as well.
1112 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001113void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114{
1115 int cpu;
1116
1117 preempt_disable();
1118 cpu = task_cpu(p);
1119 if ((cpu != smp_processor_id()) && task_curr(p))
1120 smp_send_reschedule(cpu);
1121 preempt_enable();
1122}
1123
1124/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001125 * Return a low guess at the load of a migration-source cpu weighted
1126 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001127 *
1128 * We want to under-estimate the load of migration sources, to
1129 * balance conservatively.
1130 */
Con Kolivasb9104722005-11-08 21:38:55 -08001131static inline unsigned long source_load(int cpu, int type)
1132{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001133 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001134 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001135
Peter Williams2dd73a42006-06-27 02:54:34 -07001136 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001137 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001138
Ingo Molnardd41f592007-07-09 18:51:59 +02001139 return min(rq->cpu_load[type-1], total);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140}
1141
1142/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001143 * Return a high guess at the load of a migration-target cpu weighted
1144 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145 */
Con Kolivasb9104722005-11-08 21:38:55 -08001146static inline unsigned long target_load(int cpu, int type)
1147{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001148 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001149 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001150
Peter Williams2dd73a42006-06-27 02:54:34 -07001151 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001152 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001153
Ingo Molnardd41f592007-07-09 18:51:59 +02001154 return max(rq->cpu_load[type-1], total);
Peter Williams2dd73a42006-06-27 02:54:34 -07001155}
1156
1157/*
1158 * Return the average load per task on the cpu's run queue
1159 */
1160static inline unsigned long cpu_avg_load_per_task(int cpu)
1161{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001162 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001163 unsigned long total = weighted_cpuload(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001164 unsigned long n = rq->nr_running;
1165
Ingo Molnardd41f592007-07-09 18:51:59 +02001166 return n ? total / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167}
1168
Nick Piggin147cbb42005-06-25 14:57:19 -07001169/*
1170 * find_idlest_group finds and returns the least busy CPU group within the
1171 * domain.
1172 */
1173static struct sched_group *
1174find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1175{
1176 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1177 unsigned long min_load = ULONG_MAX, this_load = 0;
1178 int load_idx = sd->forkexec_idx;
1179 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1180
1181 do {
1182 unsigned long load, avg_load;
1183 int local_group;
1184 int i;
1185
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001186 /* Skip over this group if it has no CPUs allowed */
1187 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1188 goto nextgroup;
1189
Nick Piggin147cbb42005-06-25 14:57:19 -07001190 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001191
1192 /* Tally up the load of all CPUs in the group */
1193 avg_load = 0;
1194
1195 for_each_cpu_mask(i, group->cpumask) {
1196 /* Bias balancing toward cpus of our domain */
1197 if (local_group)
1198 load = source_load(i, load_idx);
1199 else
1200 load = target_load(i, load_idx);
1201
1202 avg_load += load;
1203 }
1204
1205 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001206 avg_load = sg_div_cpu_power(group,
1207 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001208
1209 if (local_group) {
1210 this_load = avg_load;
1211 this = group;
1212 } else if (avg_load < min_load) {
1213 min_load = avg_load;
1214 idlest = group;
1215 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001216nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001217 group = group->next;
1218 } while (group != sd->groups);
1219
1220 if (!idlest || 100*this_load < imbalance*min_load)
1221 return NULL;
1222 return idlest;
1223}
1224
1225/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001226 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001227 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001228static int
1229find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001230{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001231 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001232 unsigned long load, min_load = ULONG_MAX;
1233 int idlest = -1;
1234 int i;
1235
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001236 /* Traverse only the allowed CPUs */
1237 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1238
1239 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001240 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001241
1242 if (load < min_load || (load == min_load && i == this_cpu)) {
1243 min_load = load;
1244 idlest = i;
1245 }
1246 }
1247
1248 return idlest;
1249}
1250
Nick Piggin476d1392005-06-25 14:57:29 -07001251/*
1252 * sched_balance_self: balance the current task (running on cpu) in domains
1253 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1254 * SD_BALANCE_EXEC.
1255 *
1256 * Balance, ie. select the least loaded group.
1257 *
1258 * Returns the target CPU number, or the same CPU if no balancing is needed.
1259 *
1260 * preempt must be disabled.
1261 */
1262static int sched_balance_self(int cpu, int flag)
1263{
1264 struct task_struct *t = current;
1265 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001266
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001267 for_each_domain(cpu, tmp) {
Ingo Molnar9761eea2007-07-09 18:52:00 +02001268 /*
1269 * If power savings logic is enabled for a domain, stop there.
1270 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001271 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1272 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001273 if (tmp->flags & flag)
1274 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001275 }
Nick Piggin476d1392005-06-25 14:57:29 -07001276
1277 while (sd) {
1278 cpumask_t span;
1279 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001280 int new_cpu, weight;
1281
1282 if (!(sd->flags & flag)) {
1283 sd = sd->child;
1284 continue;
1285 }
Nick Piggin476d1392005-06-25 14:57:29 -07001286
1287 span = sd->span;
1288 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001289 if (!group) {
1290 sd = sd->child;
1291 continue;
1292 }
Nick Piggin476d1392005-06-25 14:57:29 -07001293
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001294 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001295 if (new_cpu == -1 || new_cpu == cpu) {
1296 /* Now try balancing at a lower domain level of cpu */
1297 sd = sd->child;
1298 continue;
1299 }
Nick Piggin476d1392005-06-25 14:57:29 -07001300
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001301 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001302 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001303 sd = NULL;
1304 weight = cpus_weight(span);
1305 for_each_domain(cpu, tmp) {
1306 if (weight <= cpus_weight(tmp->span))
1307 break;
1308 if (tmp->flags & flag)
1309 sd = tmp;
1310 }
1311 /* while loop will break here if sd == NULL */
1312 }
1313
1314 return cpu;
1315}
1316
1317#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318
1319/*
1320 * wake_idle() will wake a task on an idle cpu if task->cpu is
1321 * not idle and an idle cpu is available. The span of cpus to
1322 * search starts with cpus closest then further out as needed,
1323 * so we always favor a closer, idle cpu.
1324 *
1325 * Returns the CPU we should wake onto.
1326 */
1327#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001328static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329{
1330 cpumask_t tmp;
1331 struct sched_domain *sd;
1332 int i;
1333
Siddha, Suresh B49531982007-05-08 00:33:01 -07001334 /*
1335 * If it is idle, then it is the best cpu to run this task.
1336 *
1337 * This cpu is also the best, if it has more than one task already.
1338 * Siblings must be also busy(in most cases) as they didn't already
1339 * pickup the extra load from this cpu and hence we need not check
1340 * sibling runqueue info. This will avoid the checks and cache miss
1341 * penalities associated with that.
1342 */
1343 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 return cpu;
1345
1346 for_each_domain(cpu, sd) {
1347 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001348 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349 for_each_cpu_mask(i, tmp) {
1350 if (idle_cpu(i))
1351 return i;
1352 }
Ingo Molnar9761eea2007-07-09 18:52:00 +02001353 } else {
Nick Piggine0f364f2005-06-25 14:57:06 -07001354 break;
Ingo Molnar9761eea2007-07-09 18:52:00 +02001355 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 }
1357 return cpu;
1358}
1359#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001360static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001361{
1362 return cpu;
1363}
1364#endif
1365
1366/***
1367 * try_to_wake_up - wake up a thread
1368 * @p: the to-be-woken-up thread
1369 * @state: the mask of task states that can be woken
1370 * @sync: do a synchronous wakeup?
1371 *
1372 * Put it on the run-queue if it's not already there. The "current"
1373 * thread is always on the run-queue (except when the actual
1374 * re-schedule is in progress), and as such you're allowed to do
1375 * the simpler "current->state = TASK_RUNNING" to mark yourself
1376 * runnable without the overhead of this.
1377 *
1378 * returns failure only if the task is already active.
1379 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001380static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381{
1382 int cpu, this_cpu, success = 0;
1383 unsigned long flags;
1384 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001385 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001387 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001388 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389 int new_cpu;
1390#endif
1391
1392 rq = task_rq_lock(p, &flags);
1393 old_state = p->state;
1394 if (!(old_state & state))
1395 goto out;
1396
Ingo Molnardd41f592007-07-09 18:51:59 +02001397 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398 goto out_running;
1399
1400 cpu = task_cpu(p);
1401 this_cpu = smp_processor_id();
1402
1403#ifdef CONFIG_SMP
1404 if (unlikely(task_running(rq, p)))
1405 goto out_activate;
1406
Nick Piggin78979862005-06-25 14:57:13 -07001407 new_cpu = cpu;
1408
Linus Torvalds1da177e2005-04-16 15:20:36 -07001409 schedstat_inc(rq, ttwu_cnt);
1410 if (cpu == this_cpu) {
1411 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001412 goto out_set_cpu;
1413 }
1414
1415 for_each_domain(this_cpu, sd) {
1416 if (cpu_isset(cpu, sd->span)) {
1417 schedstat_inc(sd, ttwu_wake_remote);
1418 this_sd = sd;
1419 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 }
1421 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422
Nick Piggin78979862005-06-25 14:57:13 -07001423 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424 goto out_set_cpu;
1425
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 /*
Nick Piggin78979862005-06-25 14:57:13 -07001427 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 */
Nick Piggin78979862005-06-25 14:57:13 -07001429 if (this_sd) {
1430 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432
Nick Piggina3f21bc2005-06-25 14:57:15 -07001433 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1434
Nick Piggin78979862005-06-25 14:57:13 -07001435 load = source_load(cpu, idx);
1436 this_load = target_load(this_cpu, idx);
1437
Nick Piggin78979862005-06-25 14:57:13 -07001438 new_cpu = this_cpu; /* Wake to this CPU if we can */
1439
Nick Piggina3f21bc2005-06-25 14:57:15 -07001440 if (this_sd->flags & SD_WAKE_AFFINE) {
1441 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001442 unsigned long tl_per_task;
1443
1444 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001445
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001447 * If sync wakeup then subtract the (maximum possible)
1448 * effect of the currently running task from the load
1449 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001451 if (sync)
Ingo Molnardd41f592007-07-09 18:51:59 +02001452 tl -= current->se.load.weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001453
1454 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001455 tl + target_load(cpu, idx) <= tl_per_task) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02001456 100*(tl + p->se.load.weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001457 /*
1458 * This domain has SD_WAKE_AFFINE and
1459 * p is cache cold in this domain, and
1460 * there is no bad imbalance.
1461 */
1462 schedstat_inc(this_sd, ttwu_move_affine);
1463 goto out_set_cpu;
1464 }
1465 }
1466
1467 /*
1468 * Start passive balancing when half the imbalance_pct
1469 * limit is reached.
1470 */
1471 if (this_sd->flags & SD_WAKE_BALANCE) {
1472 if (imbalance*this_load <= 100*load) {
1473 schedstat_inc(this_sd, ttwu_move_balance);
1474 goto out_set_cpu;
1475 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476 }
1477 }
1478
1479 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1480out_set_cpu:
1481 new_cpu = wake_idle(new_cpu, p);
1482 if (new_cpu != cpu) {
1483 set_task_cpu(p, new_cpu);
1484 task_rq_unlock(rq, &flags);
1485 /* might preempt at this point */
1486 rq = task_rq_lock(p, &flags);
1487 old_state = p->state;
1488 if (!(old_state & state))
1489 goto out;
Ingo Molnardd41f592007-07-09 18:51:59 +02001490 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001491 goto out_running;
1492
1493 this_cpu = smp_processor_id();
1494 cpu = task_cpu(p);
1495 }
1496
1497out_activate:
1498#endif /* CONFIG_SMP */
Ingo Molnardd41f592007-07-09 18:51:59 +02001499 activate_task(rq, p, 1);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001500 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501 * Sync wakeups (i.e. those types of wakeups where the waker
1502 * has indicated that it will leave the CPU in short order)
1503 * don't trigger a preemption, if the woken up task will run on
1504 * this cpu. (in this case the 'I will reschedule' promise of
1505 * the waker guarantees that the freshly woken up task is going
1506 * to be considered on this CPU.)
1507 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001508 if (!sync || cpu != this_cpu)
1509 check_preempt_curr(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510 success = 1;
1511
1512out_running:
1513 p->state = TASK_RUNNING;
1514out:
1515 task_rq_unlock(rq, &flags);
1516
1517 return success;
1518}
1519
Ingo Molnar36c8b582006-07-03 00:25:41 -07001520int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521{
1522 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1523 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1524}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525EXPORT_SYMBOL(wake_up_process);
1526
Ingo Molnar36c8b582006-07-03 00:25:41 -07001527int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528{
1529 return try_to_wake_up(p, state, 0);
1530}
1531
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532/*
1533 * Perform scheduler related setup for a newly forked process p.
1534 * p is forked by current.
Ingo Molnardd41f592007-07-09 18:51:59 +02001535 *
1536 * __sched_fork() is basic setup used by init_idle() too:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001538static void __sched_fork(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539{
Ingo Molnardd41f592007-07-09 18:51:59 +02001540 p->se.wait_start_fair = 0;
1541 p->se.wait_start = 0;
1542 p->se.exec_start = 0;
1543 p->se.sum_exec_runtime = 0;
1544 p->se.delta_exec = 0;
1545 p->se.delta_fair_run = 0;
1546 p->se.delta_fair_sleep = 0;
1547 p->se.wait_runtime = 0;
1548 p->se.sum_wait_runtime = 0;
1549 p->se.sum_sleep_runtime = 0;
1550 p->se.sleep_start = 0;
1551 p->se.sleep_start_fair = 0;
1552 p->se.block_start = 0;
1553 p->se.sleep_max = 0;
1554 p->se.block_max = 0;
1555 p->se.exec_max = 0;
1556 p->se.wait_max = 0;
1557 p->se.wait_runtime_overruns = 0;
1558 p->se.wait_runtime_underruns = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001559
Ingo Molnardd41f592007-07-09 18:51:59 +02001560 INIT_LIST_HEAD(&p->run_list);
1561 p->se.on_rq = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001562
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563 /*
1564 * We mark the process as running here, but have not actually
1565 * inserted it onto the runqueue yet. This guarantees that
1566 * nobody will actually run it, and a signal or other external
1567 * event cannot wake it up and insert it on the runqueue either.
1568 */
1569 p->state = TASK_RUNNING;
Ingo Molnardd41f592007-07-09 18:51:59 +02001570}
1571
1572/*
1573 * fork()/clone()-time setup:
1574 */
1575void sched_fork(struct task_struct *p, int clone_flags)
1576{
1577 int cpu = get_cpu();
1578
1579 __sched_fork(p);
1580
1581#ifdef CONFIG_SMP
1582 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1583#endif
1584 __set_task_cpu(p, cpu);
Ingo Molnarb29739f2006-06-27 02:54:51 -07001585
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child:
1588 */
1589 p->prio = current->normal_prio;
1590
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001591#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnardd41f592007-07-09 18:51:59 +02001592 if (likely(sched_info_on()))
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001593 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001595#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001596 p->oncpu = 0;
1597#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001599 /* Want to start with kernel preemption disabled. */
Al Viroa1261f542005-11-13 16:06:55 -08001600 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001602 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603}
1604
1605/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001606 * After fork, child runs first. (default) If set to 0 then
1607 * parent will (try to) run first.
1608 */
1609unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1610
1611/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612 * wake_up_new_task - wake up a newly created task for the first time.
1613 *
1614 * This function will do some initial scheduler statistics housekeeping
1615 * that must be done for every newly created context, then puts the task
1616 * on the runqueue and wakes it.
1617 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001618void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619{
1620 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001621 struct rq *rq;
1622 int this_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623
1624 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625 BUG_ON(p->state != TASK_RUNNING);
Ingo Molnardd41f592007-07-09 18:51:59 +02001626 this_cpu = smp_processor_id(); /* parent's CPU */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627
1628 p->prio = effective_prio(p);
1629
Ingo Molnardd41f592007-07-09 18:51:59 +02001630 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1631 task_cpu(p) != this_cpu || !current->se.on_rq) {
1632 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02001635 * Let the scheduling class do new task startup
1636 * management (if any):
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001638 p->sched_class->task_new(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639 }
Ingo Molnardd41f592007-07-09 18:51:59 +02001640 check_preempt_curr(rq, p);
1641 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001642}
1643
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001645 * prepare_task_switch - prepare to switch tasks
1646 * @rq: the runqueue preparing to switch
1647 * @next: the task we are going to switch to.
1648 *
1649 * This is called with the rq lock held and interrupts off. It must
1650 * be paired with a subsequent finish_task_switch after the context
1651 * switch.
1652 *
1653 * prepare_task_switch sets up locking and calls architecture specific
1654 * hooks.
1655 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001656static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001657{
1658 prepare_lock_switch(rq, next);
1659 prepare_arch_switch(next);
1660}
1661
1662/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001664 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665 * @prev: the thread we just switched away from.
1666 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001667 * finish_task_switch must be called after the context switch, paired
1668 * with a prepare_task_switch call before the context switch.
1669 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1670 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 *
1672 * Note that we may have delayed dropping an mm in context_switch(). If
1673 * so, we finish that here outside of the runqueue lock. (Doing it
1674 * with the lock held can cause deadlocks; see schedule() for
1675 * details.)
1676 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001677static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678 __releases(rq->lock)
1679{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001681 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682
1683 rq->prev_mm = NULL;
1684
1685 /*
1686 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001687 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001688 * schedule one last time. The schedule call will never return, and
1689 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001690 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691 * still held, otherwise prev could be scheduled on another cpu, die
1692 * there before we look at prev->state, and then the reference would
1693 * be dropped twice.
1694 * Manfred Spraul <manfred@colorfullife.com>
1695 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001696 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001697 finish_arch_switch(prev);
1698 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699 if (mm)
1700 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001701 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001702 /*
1703 * Remove function-return probe instances associated with this
1704 * task and put them back on the free list.
Ingo Molnar9761eea2007-07-09 18:52:00 +02001705 */
bibo maoc6fd91f2006-03-26 01:38:20 -08001706 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001708 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709}
1710
1711/**
1712 * schedule_tail - first thing a freshly forked thread must call.
1713 * @prev: the thread we just switched away from.
1714 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001715asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 __releases(rq->lock)
1717{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001718 struct rq *rq = this_rq();
1719
Nick Piggin4866cde2005-06-25 14:57:23 -07001720 finish_task_switch(rq, prev);
1721#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1722 /* In this case, finish_task_switch does not reenable preemption */
1723 preempt_enable();
1724#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725 if (current->set_child_tid)
1726 put_user(current->pid, current->set_child_tid);
1727}
1728
1729/*
1730 * context_switch - switch to the new MM and the new
1731 * thread's register state.
1732 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001733static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07001734context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001735 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736{
Ingo Molnardd41f592007-07-09 18:51:59 +02001737 struct mm_struct *mm, *oldmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001738
Ingo Molnardd41f592007-07-09 18:51:59 +02001739 prepare_task_switch(rq, next);
1740 mm = next->mm;
1741 oldmm = prev->active_mm;
Zachary Amsden9226d122007-02-13 13:26:21 +01001742 /*
1743 * For paravirt, this is coupled with an exit in switch_to to
1744 * combine the page table reload and the switch backend into
1745 * one hypercall.
1746 */
1747 arch_enter_lazy_cpu_mode();
1748
Ingo Molnardd41f592007-07-09 18:51:59 +02001749 if (unlikely(!mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750 next->active_mm = oldmm;
1751 atomic_inc(&oldmm->mm_count);
1752 enter_lazy_tlb(oldmm, next);
1753 } else
1754 switch_mm(oldmm, mm, next);
1755
Ingo Molnardd41f592007-07-09 18:51:59 +02001756 if (unlikely(!prev->mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 prev->active_mm = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758 rq->prev_mm = oldmm;
1759 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001760 /*
1761 * Since the runqueue lock will be released by the next
1762 * task (which is an invalid locking op but in the case
1763 * of the scheduler it's an obvious special-case), so we
1764 * do an early lockdep release here:
1765 */
1766#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001767 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001768#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001769
1770 /* Here we just switch the register state and the stack. */
1771 switch_to(prev, next, prev);
1772
Ingo Molnardd41f592007-07-09 18:51:59 +02001773 barrier();
1774 /*
1775 * this_rq must be evaluated again because prev may have moved
1776 * CPUs since it called schedule(), thus the 'rq' on its stack
1777 * frame will be invalid.
1778 */
1779 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780}
1781
1782/*
1783 * nr_running, nr_uninterruptible and nr_context_switches:
1784 *
1785 * externally visible scheduler statistics: current number of runnable
1786 * threads, current number of uninterruptible-sleeping threads, total
1787 * number of context switches performed since bootup.
1788 */
1789unsigned long nr_running(void)
1790{
1791 unsigned long i, sum = 0;
1792
1793 for_each_online_cpu(i)
1794 sum += cpu_rq(i)->nr_running;
1795
1796 return sum;
1797}
1798
1799unsigned long nr_uninterruptible(void)
1800{
1801 unsigned long i, sum = 0;
1802
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001803 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 sum += cpu_rq(i)->nr_uninterruptible;
1805
1806 /*
1807 * Since we read the counters lockless, it might be slightly
1808 * inaccurate. Do not allow it to go below zero though:
1809 */
1810 if (unlikely((long)sum < 0))
1811 sum = 0;
1812
1813 return sum;
1814}
1815
1816unsigned long long nr_context_switches(void)
1817{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001818 int i;
1819 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001821 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 sum += cpu_rq(i)->nr_switches;
1823
1824 return sum;
1825}
1826
1827unsigned long nr_iowait(void)
1828{
1829 unsigned long i, sum = 0;
1830
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001831 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1833
1834 return sum;
1835}
1836
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001837unsigned long nr_active(void)
1838{
1839 unsigned long i, running = 0, uninterruptible = 0;
1840
1841 for_each_online_cpu(i) {
1842 running += cpu_rq(i)->nr_running;
1843 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1844 }
1845
1846 if (unlikely((long)uninterruptible < 0))
1847 uninterruptible = 0;
1848
1849 return running + uninterruptible;
1850}
1851
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001853 * Update rq->cpu_load[] statistics. This function is usually called every
1854 * scheduler tick (TICK_NSEC).
Ingo Molnar48f24c42006-07-03 00:25:40 -07001855 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001856static void update_cpu_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07001857{
Ingo Molnardd41f592007-07-09 18:51:59 +02001858 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1859 unsigned long total_load = this_rq->ls.load.weight;
1860 unsigned long this_load = total_load;
1861 struct load_stat *ls = &this_rq->ls;
1862 u64 now = __rq_clock(this_rq);
1863 int i, scale;
1864
1865 this_rq->nr_load_updates++;
1866 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1867 goto do_avg;
1868
1869 /* Update delta_fair/delta_exec fields first */
1870 update_curr_load(this_rq, now);
1871
1872 fair_delta64 = ls->delta_fair + 1;
1873 ls->delta_fair = 0;
1874
1875 exec_delta64 = ls->delta_exec + 1;
1876 ls->delta_exec = 0;
1877
1878 sample_interval64 = now - ls->load_update_last;
1879 ls->load_update_last = now;
1880
1881 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1882 sample_interval64 = TICK_NSEC;
1883
1884 if (exec_delta64 > sample_interval64)
1885 exec_delta64 = sample_interval64;
1886
1887 idle_delta64 = sample_interval64 - exec_delta64;
1888
1889 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1890 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1891
1892 this_load = (unsigned long)tmp64;
1893
1894do_avg:
1895
1896 /* Update our load: */
1897 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1898 unsigned long old_load, new_load;
1899
1900 /* scale is effectively 1 << i now, and >> i divides by scale */
1901
1902 old_load = this_rq->cpu_load[i];
1903 new_load = this_load;
1904
1905 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1906 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07001907}
1908
Ingo Molnardd41f592007-07-09 18:51:59 +02001909#ifdef CONFIG_SMP
1910
Ingo Molnar48f24c42006-07-03 00:25:40 -07001911/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 * double_rq_lock - safely lock two runqueues
1913 *
1914 * Note this does not disable interrupts like task_rq_lock,
1915 * you need to do so manually before calling.
1916 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001917static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 __acquires(rq1->lock)
1919 __acquires(rq2->lock)
1920{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001921 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 if (rq1 == rq2) {
1923 spin_lock(&rq1->lock);
1924 __acquire(rq2->lock); /* Fake it out ;) */
1925 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001926 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 spin_lock(&rq1->lock);
1928 spin_lock(&rq2->lock);
1929 } else {
1930 spin_lock(&rq2->lock);
1931 spin_lock(&rq1->lock);
1932 }
1933 }
1934}
1935
1936/*
1937 * double_rq_unlock - safely unlock two runqueues
1938 *
1939 * Note this does not restore interrupts like task_rq_unlock,
1940 * you need to do so manually after calling.
1941 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001942static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 __releases(rq1->lock)
1944 __releases(rq2->lock)
1945{
1946 spin_unlock(&rq1->lock);
1947 if (rq1 != rq2)
1948 spin_unlock(&rq2->lock);
1949 else
1950 __release(rq2->lock);
1951}
1952
1953/*
1954 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1955 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001956static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957 __releases(this_rq->lock)
1958 __acquires(busiest->lock)
1959 __acquires(this_rq->lock)
1960{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001961 if (unlikely(!irqs_disabled())) {
1962 /* printk() doesn't work good under rq->lock */
1963 spin_unlock(&this_rq->lock);
1964 BUG_ON(1);
1965 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001967 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001968 spin_unlock(&this_rq->lock);
1969 spin_lock(&busiest->lock);
1970 spin_lock(&this_rq->lock);
1971 } else
1972 spin_lock(&busiest->lock);
1973 }
1974}
1975
1976/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977 * If dest_cpu is allowed for this process, migrate the task to it.
1978 * This is accomplished by forcing the cpu_allowed mask to only
1979 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1980 * the cpu_allowed mask is restored.
1981 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001982static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001984 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001986 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987
1988 rq = task_rq_lock(p, &flags);
1989 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1990 || unlikely(cpu_is_offline(dest_cpu)))
1991 goto out;
1992
1993 /* force the process onto the specified CPU */
1994 if (migrate_task(p, dest_cpu, &req)) {
1995 /* Need to wait for migration thread (might exit: take ref). */
1996 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07001997
Linus Torvalds1da177e2005-04-16 15:20:36 -07001998 get_task_struct(mt);
1999 task_rq_unlock(rq, &flags);
2000 wake_up_process(mt);
2001 put_task_struct(mt);
2002 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002003
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004 return;
2005 }
2006out:
2007 task_rq_unlock(rq, &flags);
2008}
2009
2010/*
Nick Piggin476d1392005-06-25 14:57:29 -07002011 * sched_exec - execve() is a valuable balancing opportunity, because at
2012 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013 */
2014void sched_exec(void)
2015{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002017 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002019 if (new_cpu != this_cpu)
2020 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002021}
2022
2023/*
2024 * pull_task - move a task from a remote runqueue to the local runqueue.
2025 * Both runqueues must be locked.
2026 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002027static void pull_task(struct rq *src_rq, struct task_struct *p,
2028 struct rq *this_rq, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029{
Ingo Molnardd41f592007-07-09 18:51:59 +02002030 deactivate_task(src_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 set_task_cpu(p, this_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002032 activate_task(this_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002033 /*
2034 * Note that idle threads have a prio of MAX_PRIO, for this test
2035 * to be always true for them.
2036 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002037 check_preempt_curr(this_rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002038}
2039
2040/*
2041 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2042 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002043static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002044int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002045 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002046 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002047{
2048 /*
2049 * We do not migrate tasks that are:
2050 * 1) running (obviously), or
2051 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2052 * 3) are cache-hot on their current CPU.
2053 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054 if (!cpu_isset(this_cpu, p->cpus_allowed))
2055 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002056 *all_pinned = 0;
2057
2058 if (task_running(rq, p))
2059 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002060
2061 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02002062 * Aggressive migration if too many balance attempts have failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002064 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 return 1;
2066
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 return 1;
2068}
2069
Ingo Molnardd41f592007-07-09 18:51:59 +02002070static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2071 unsigned long max_nr_move, unsigned long max_load_move,
2072 struct sched_domain *sd, enum cpu_idle_type idle,
2073 int *all_pinned, unsigned long *load_moved,
2074 int this_best_prio, int best_prio, int best_prio_seen,
2075 struct rq_iterator *iterator)
2076{
2077 int pulled = 0, pinned = 0, skip_for_load;
2078 struct task_struct *p;
2079 long rem_load_move = max_load_move;
2080
2081 if (max_nr_move == 0 || max_load_move == 0)
2082 goto out;
2083
2084 pinned = 1;
2085
2086 /*
2087 * Start the load-balancing iterator:
2088 */
2089 p = iterator->start(iterator->arg);
2090next:
2091 if (!p)
2092 goto out;
2093 /*
2094 * To help distribute high priority tasks accross CPUs we don't
2095 * skip a task if it will be the highest priority task (i.e. smallest
2096 * prio value) on its new queue regardless of its load weight
2097 */
2098 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2099 SCHED_LOAD_SCALE_FUZZ;
2100 if (skip_for_load && p->prio < this_best_prio)
2101 skip_for_load = !best_prio_seen && p->prio == best_prio;
2102 if (skip_for_load ||
2103 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2104
2105 best_prio_seen |= p->prio == best_prio;
2106 p = iterator->next(iterator->arg);
2107 goto next;
2108 }
2109
2110 pull_task(busiest, p, this_rq, this_cpu);
2111 pulled++;
2112 rem_load_move -= p->se.load.weight;
2113
2114 /*
2115 * We only want to steal up to the prescribed number of tasks
2116 * and the prescribed amount of weighted load.
2117 */
2118 if (pulled < max_nr_move && rem_load_move > 0) {
2119 if (p->prio < this_best_prio)
2120 this_best_prio = p->prio;
2121 p = iterator->next(iterator->arg);
2122 goto next;
2123 }
2124out:
2125 /*
2126 * Right now, this is the only place pull_task() is called,
2127 * so we can safely collect pull_task() stats here rather than
2128 * inside pull_task().
2129 */
2130 schedstat_add(sd, lb_gained[idle], pulled);
2131
2132 if (all_pinned)
2133 *all_pinned = pinned;
2134 *load_moved = max_load_move - rem_load_move;
2135 return pulled;
2136}
Ingo Molnar48f24c42006-07-03 00:25:40 -07002137
Linus Torvalds1da177e2005-04-16 15:20:36 -07002138/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002139 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2140 * load from busiest to this_rq, as part of a balancing operation within
2141 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142 *
2143 * Called with both runqueues locked.
2144 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002145static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002146 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002147 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002148 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149{
Ingo Molnardd41f592007-07-09 18:51:59 +02002150 struct sched_class *class = sched_class_highest;
2151 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2152 long rem_load_move = max_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153
Ingo Molnardd41f592007-07-09 18:51:59 +02002154 do {
2155 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2156 max_nr_move, (unsigned long)rem_load_move,
2157 sd, idle, all_pinned, &load_moved);
2158 total_nr_moved += nr_moved;
2159 max_nr_move -= nr_moved;
2160 rem_load_move -= load_moved;
2161 class = class->next;
2162 } while (class && max_nr_move && rem_load_move > 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163
Ingo Molnardd41f592007-07-09 18:51:59 +02002164 return total_nr_moved;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165}
2166
2167/*
2168 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002169 * domain. It calculates and returns the amount of weighted load which
2170 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171 */
2172static struct sched_group *
2173find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnardd41f592007-07-09 18:51:59 +02002174 unsigned long *imbalance, enum cpu_idle_type idle,
2175 int *sd_idle, cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002176{
2177 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2178 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002179 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002180 unsigned long busiest_load_per_task, busiest_nr_running;
2181 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002182 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002183#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2184 int power_savings_balance = 1;
2185 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2186 unsigned long min_nr_running = ULONG_MAX;
2187 struct sched_group *group_min = NULL, *group_leader = NULL;
2188#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002189
2190 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002191 busiest_load_per_task = busiest_nr_running = 0;
2192 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002193 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002194 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002195 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002196 load_idx = sd->newidle_idx;
2197 else
2198 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199
2200 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002201 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 int local_group;
2203 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002204 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002205 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206
2207 local_group = cpu_isset(this_cpu, group->cpumask);
2208
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002209 if (local_group)
2210 balance_cpu = first_cpu(group->cpumask);
2211
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002213 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214
2215 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002216 struct rq *rq;
2217
2218 if (!cpu_isset(i, *cpus))
2219 continue;
2220
2221 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002222
Nick Piggin5969fe02005-09-10 00:26:19 -07002223 if (*sd_idle && !idle_cpu(i))
2224 *sd_idle = 0;
2225
Linus Torvalds1da177e2005-04-16 15:20:36 -07002226 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002227 if (local_group) {
2228 if (idle_cpu(i) && !first_idle_cpu) {
2229 first_idle_cpu = 1;
2230 balance_cpu = i;
2231 }
2232
Nick Piggina2000572006-02-10 01:51:02 -08002233 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002234 } else
Nick Piggina2000572006-02-10 01:51:02 -08002235 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236
2237 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002238 sum_nr_running += rq->nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002239 sum_weighted_load += weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 }
2241
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002242 /*
2243 * First idle cpu or the first cpu(busiest) in this sched group
2244 * is eligible for doing load balancing at this and above
2245 * domains.
2246 */
2247 if (local_group && balance_cpu != this_cpu && balance) {
2248 *balance = 0;
2249 goto ret;
2250 }
2251
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002253 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254
2255 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002256 avg_load = sg_div_cpu_power(group,
2257 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258
Eric Dumazet5517d862007-05-08 00:32:57 -07002259 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002260
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 if (local_group) {
2262 this_load = avg_load;
2263 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002264 this_nr_running = sum_nr_running;
2265 this_load_per_task = sum_weighted_load;
2266 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002267 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 max_load = avg_load;
2269 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002270 busiest_nr_running = sum_nr_running;
2271 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002273
2274#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2275 /*
2276 * Busy processors will not participate in power savings
2277 * balance.
2278 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002279 if (idle == CPU_NOT_IDLE ||
2280 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2281 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002282
2283 /*
2284 * If the local group is idle or completely loaded
2285 * no need to do power savings balance at this domain
2286 */
2287 if (local_group && (this_nr_running >= group_capacity ||
2288 !this_nr_running))
2289 power_savings_balance = 0;
2290
Ingo Molnardd41f592007-07-09 18:51:59 +02002291 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002292 * If a group is already running at full capacity or idle,
2293 * don't include that group in power savings calculations
Ingo Molnardd41f592007-07-09 18:51:59 +02002294 */
2295 if (!power_savings_balance || sum_nr_running >= group_capacity
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002296 || !sum_nr_running)
Ingo Molnardd41f592007-07-09 18:51:59 +02002297 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002298
Ingo Molnardd41f592007-07-09 18:51:59 +02002299 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002300 * Calculate the group which has the least non-idle load.
Ingo Molnardd41f592007-07-09 18:51:59 +02002301 * This is the group from where we need to pick up the load
2302 * for saving power
2303 */
2304 if ((sum_nr_running < min_nr_running) ||
2305 (sum_nr_running == min_nr_running &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002306 first_cpu(group->cpumask) <
2307 first_cpu(group_min->cpumask))) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002308 group_min = group;
2309 min_nr_running = sum_nr_running;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002310 min_load_per_task = sum_weighted_load /
2311 sum_nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002312 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002313
Ingo Molnardd41f592007-07-09 18:51:59 +02002314 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002315 * Calculate the group which is almost near its
Ingo Molnardd41f592007-07-09 18:51:59 +02002316 * capacity but still has some space to pick up some load
2317 * from other group and save more power
2318 */
2319 if (sum_nr_running <= group_capacity - 1) {
2320 if (sum_nr_running > leader_nr_running ||
2321 (sum_nr_running == leader_nr_running &&
2322 first_cpu(group->cpumask) >
2323 first_cpu(group_leader->cpumask))) {
2324 group_leader = group;
2325 leader_nr_running = sum_nr_running;
2326 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002327 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002328group_next:
2329#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 group = group->next;
2331 } while (group != sd->groups);
2332
Peter Williams2dd73a42006-06-27 02:54:34 -07002333 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334 goto out_balanced;
2335
2336 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2337
2338 if (this_load >= avg_load ||
2339 100*max_load <= sd->imbalance_pct*this_load)
2340 goto out_balanced;
2341
Peter Williams2dd73a42006-06-27 02:54:34 -07002342 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 /*
2344 * We're trying to get all the cpus to the average_load, so we don't
2345 * want to push ourselves above the average load, nor do we wish to
2346 * reduce the max loaded cpu below the average load, as either of these
2347 * actions would just result in more rebalancing later, and ping-pong
2348 * tasks around. Thus we look for the minimum possible imbalance.
2349 * Negative imbalances (*we* are more loaded than anyone else) will
2350 * be counted as no imbalance for these purposes -- we can't fix that
2351 * by pulling tasks to us. Be careful of negative numbers as they'll
2352 * appear as very large values with unsigned longs.
2353 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002354 if (max_load <= busiest_load_per_task)
2355 goto out_balanced;
2356
2357 /*
2358 * In the presence of smp nice balancing, certain scenarios can have
2359 * max load less than avg load(as we skip the groups at or below
2360 * its cpu_power, while calculating max_load..)
2361 */
2362 if (max_load < avg_load) {
2363 *imbalance = 0;
2364 goto small_imbalance;
2365 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002366
2367 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002368 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002369
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002371 *imbalance = min(max_pull * busiest->__cpu_power,
2372 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002373 / SCHED_LOAD_SCALE;
2374
Peter Williams2dd73a42006-06-27 02:54:34 -07002375 /*
2376 * if *imbalance is less than the average load per runnable task
2377 * there is no gaurantee that any tasks will be moved so we'll have
2378 * a think about bumping its value to force at least one task to be
2379 * moved
2380 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002381 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002382 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002383 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384
Peter Williams2dd73a42006-06-27 02:54:34 -07002385small_imbalance:
2386 pwr_move = pwr_now = 0;
2387 imbn = 2;
2388 if (this_nr_running) {
2389 this_load_per_task /= this_nr_running;
2390 if (busiest_load_per_task > this_load_per_task)
2391 imbn = 1;
2392 } else
2393 this_load_per_task = SCHED_LOAD_SCALE;
2394
Ingo Molnardd41f592007-07-09 18:51:59 +02002395 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2396 busiest_load_per_task * imbn) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002397 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398 return busiest;
2399 }
2400
2401 /*
2402 * OK, we don't have enough imbalance to justify moving tasks,
2403 * however we may be able to increase total CPU power used by
2404 * moving them.
2405 */
2406
Eric Dumazet5517d862007-05-08 00:32:57 -07002407 pwr_now += busiest->__cpu_power *
2408 min(busiest_load_per_task, max_load);
2409 pwr_now += this->__cpu_power *
2410 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411 pwr_now /= SCHED_LOAD_SCALE;
2412
2413 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002414 tmp = sg_div_cpu_power(busiest,
2415 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002416 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002417 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002418 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419
2420 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002421 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002422 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002423 tmp = sg_div_cpu_power(this,
2424 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002426 tmp = sg_div_cpu_power(this,
2427 busiest_load_per_task * SCHED_LOAD_SCALE);
2428 pwr_move += this->__cpu_power *
2429 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 pwr_move /= SCHED_LOAD_SCALE;
2431
2432 /* Move if we gain throughput */
2433 if (pwr_move <= pwr_now)
2434 goto out_balanced;
2435
Peter Williams2dd73a42006-06-27 02:54:34 -07002436 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437 }
2438
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439 return busiest;
2440
2441out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002442#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002443 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002444 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002446 if (this == group_leader && group_leader != group_min) {
2447 *imbalance = min_load_per_task;
2448 return group_min;
2449 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002450#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002451ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452 *imbalance = 0;
2453 return NULL;
2454}
2455
2456/*
2457 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2458 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002459static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002460find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002461 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002463 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002464 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465 int i;
2466
2467 for_each_cpu_mask(i, group->cpumask) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002468 unsigned long wl;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002469
2470 if (!cpu_isset(i, *cpus))
2471 continue;
2472
Ingo Molnar48f24c42006-07-03 00:25:40 -07002473 rq = cpu_rq(i);
Ingo Molnardd41f592007-07-09 18:51:59 +02002474 wl = weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475
Ingo Molnardd41f592007-07-09 18:51:59 +02002476 if (rq->nr_running == 1 && wl > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002477 continue;
2478
Ingo Molnardd41f592007-07-09 18:51:59 +02002479 if (wl > max_load) {
2480 max_load = wl;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002481 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 }
2483 }
2484
2485 return busiest;
2486}
2487
2488/*
Nick Piggin77391d72005-06-25 14:57:30 -07002489 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2490 * so long as it is large enough.
2491 */
2492#define MAX_PINNED_INTERVAL 512
2493
Ingo Molnar48f24c42006-07-03 00:25:40 -07002494static inline unsigned long minus_1_or_zero(unsigned long n)
2495{
2496 return n > 0 ? n - 1 : 0;
2497}
2498
Nick Piggin77391d72005-06-25 14:57:30 -07002499/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002500 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2501 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002502 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002503static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002504 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002505 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002507 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002510 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002511 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002512 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002513
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002514 /*
2515 * When power savings policy is enabled for the parent domain, idle
2516 * sibling can pick up load irrespective of busy siblings. In this case,
Ingo Molnardd41f592007-07-09 18:51:59 +02002517 * let the state of idle sibling percolate up as CPU_IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002518 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002519 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002520 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002521 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002522 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 schedstat_inc(sd, lb_cnt[idle]);
2525
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002526redo:
2527 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002528 &cpus, balance);
2529
Chen, Kenneth W06066712006-12-10 02:20:35 -08002530 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002531 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002532
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 if (!group) {
2534 schedstat_inc(sd, lb_nobusyg[idle]);
2535 goto out_balanced;
2536 }
2537
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002538 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539 if (!busiest) {
2540 schedstat_inc(sd, lb_nobusyq[idle]);
2541 goto out_balanced;
2542 }
2543
Nick Piggindb935db2005-06-25 14:57:11 -07002544 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545
2546 schedstat_add(sd, lb_imbalance[idle], imbalance);
2547
2548 nr_moved = 0;
2549 if (busiest->nr_running > 1) {
2550 /*
2551 * Attempt to move tasks. If find_busiest_group has found
2552 * an imbalance but busiest->nr_running <= 1, the group is
2553 * still unbalanced. nr_moved simply stays zero, so it is
2554 * correctly treated as an imbalance.
2555 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002556 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002557 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002559 minus_1_or_zero(busiest->nr_running),
2560 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002561 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002562 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002563
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002564 /*
2565 * some other cpu did the load balance for us.
2566 */
2567 if (nr_moved && this_cpu != smp_processor_id())
2568 resched_cpu(this_cpu);
2569
Nick Piggin81026792005-06-25 14:57:07 -07002570 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002571 if (unlikely(all_pinned)) {
2572 cpu_clear(cpu_of(busiest), cpus);
2573 if (!cpus_empty(cpus))
2574 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002575 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002576 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577 }
Nick Piggin81026792005-06-25 14:57:07 -07002578
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 if (!nr_moved) {
2580 schedstat_inc(sd, lb_failed[idle]);
2581 sd->nr_balance_failed++;
2582
2583 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002585 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002586
2587 /* don't kick the migration_thread, if the curr
2588 * task on busiest cpu can't be moved to this_cpu
2589 */
2590 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002591 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002592 all_pinned = 1;
2593 goto out_one_pinned;
2594 }
2595
Linus Torvalds1da177e2005-04-16 15:20:36 -07002596 if (!busiest->active_balance) {
2597 busiest->active_balance = 1;
2598 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002599 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002601 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002602 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 wake_up_process(busiest->migration_thread);
2604
2605 /*
2606 * We've kicked active balancing, reset the failure
2607 * counter.
2608 */
Nick Piggin39507452005-06-25 14:57:09 -07002609 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610 }
Nick Piggin81026792005-06-25 14:57:07 -07002611 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002612 sd->nr_balance_failed = 0;
2613
Nick Piggin81026792005-06-25 14:57:07 -07002614 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615 /* We were unbalanced, so reset the balancing interval */
2616 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002617 } else {
2618 /*
2619 * If we've begun active balancing, start to back off. This
2620 * case may not be covered by the all_pinned logic if there
2621 * is only 1 task on the busy runqueue (because we don't call
2622 * move_tasks).
2623 */
2624 if (sd->balance_interval < sd->max_interval)
2625 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002626 }
2627
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002628 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002630 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631 return nr_moved;
2632
2633out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634 schedstat_inc(sd, lb_balanced[idle]);
2635
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002636 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002637
2638out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002640 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2641 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642 sd->balance_interval *= 2;
2643
Ingo Molnar48f24c42006-07-03 00:25:40 -07002644 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002646 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 return 0;
2648}
2649
2650/*
2651 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2652 * tasks if there is an imbalance.
2653 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002654 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 * this_rq is locked.
2656 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002657static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002658load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659{
2660 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002661 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 unsigned long imbalance;
2663 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002664 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002665 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002666
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002667 /*
2668 * When power savings policy is enabled for the parent domain, idle
2669 * sibling can pick up load irrespective of busy siblings. In this case,
2670 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002671 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002672 */
2673 if (sd->flags & SD_SHARE_CPUPOWER &&
2674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002675 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002677 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002678redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002679 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002680 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002682 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002683 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 }
2685
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002686 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002687 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002688 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002689 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002690 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002691 }
2692
Nick Piggindb935db2005-06-25 14:57:11 -07002693 BUG_ON(busiest == this_rq);
2694
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002695 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002696
2697 nr_moved = 0;
2698 if (busiest->nr_running > 1) {
2699 /* Attempt to move tasks */
2700 double_lock_balance(this_rq, busiest);
2701 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002702 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002703 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002704 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002705
2706 if (!nr_moved) {
2707 cpu_clear(cpu_of(busiest), cpus);
2708 if (!cpus_empty(cpus))
2709 goto redo;
2710 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002711 }
2712
Nick Piggin5969fe02005-09-10 00:26:19 -07002713 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002714 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002715 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2716 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002717 return -1;
2718 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002719 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002722
2723out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002724 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002725 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002727 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002728 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002729
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002730 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731}
2732
2733/*
2734 * idle_balance is called by schedule() if this_cpu is about to become
2735 * idle. Attempts to pull tasks from other CPUs.
2736 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002737static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738{
2739 struct sched_domain *sd;
Ingo Molnardd41f592007-07-09 18:51:59 +02002740 int pulled_task = -1;
2741 unsigned long next_balance = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742
2743 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002744 unsigned long interval;
2745
2746 if (!(sd->flags & SD_LOAD_BALANCE))
2747 continue;
2748
2749 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002750 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002751 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002752 this_rq, sd);
2753
2754 interval = msecs_to_jiffies(sd->balance_interval);
2755 if (time_after(next_balance, sd->last_balance + interval))
2756 next_balance = sd->last_balance + interval;
2757 if (pulled_task)
2758 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759 }
Ingo Molnardd41f592007-07-09 18:51:59 +02002760 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002761 /*
2762 * We are going idle. next_balance may be set based on
2763 * a busy processor. So reset next_balance.
2764 */
2765 this_rq->next_balance = next_balance;
Ingo Molnardd41f592007-07-09 18:51:59 +02002766 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767}
2768
2769/*
2770 * active_load_balance is run by migration threads. It pushes running tasks
2771 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2772 * running on each physical CPU where possible, and avoids physical /
2773 * logical imbalances.
2774 *
2775 * Called with busiest_rq locked.
2776 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002777static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778{
Nick Piggin39507452005-06-25 14:57:09 -07002779 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002780 struct sched_domain *sd;
2781 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002782
Ingo Molnar48f24c42006-07-03 00:25:40 -07002783 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002784 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002785 return;
2786
2787 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788
2789 /*
Nick Piggin39507452005-06-25 14:57:09 -07002790 * This condition is "impossible", if it occurs
2791 * we need to fix it. Originally reported by
2792 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 */
Nick Piggin39507452005-06-25 14:57:09 -07002794 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002795
Nick Piggin39507452005-06-25 14:57:09 -07002796 /* move a task from busiest_rq to target_rq */
2797 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002798
Nick Piggin39507452005-06-25 14:57:09 -07002799 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002800 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002801 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002802 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002803 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002804 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805
Ingo Molnar48f24c42006-07-03 00:25:40 -07002806 if (likely(sd)) {
2807 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808
Ingo Molnar48f24c42006-07-03 00:25:40 -07002809 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002810 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002811 NULL))
2812 schedstat_inc(sd, alb_pushed);
2813 else
2814 schedstat_inc(sd, alb_failed);
2815 }
Nick Piggin39507452005-06-25 14:57:09 -07002816 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817}
2818
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002819#ifdef CONFIG_NO_HZ
2820static struct {
2821 atomic_t load_balancer;
2822 cpumask_t cpu_mask;
2823} nohz ____cacheline_aligned = {
2824 .load_balancer = ATOMIC_INIT(-1),
2825 .cpu_mask = CPU_MASK_NONE,
2826};
2827
Christoph Lameter7835b982006-12-10 02:20:22 -08002828/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002829 * This routine will try to nominate the ilb (idle load balancing)
2830 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2831 * load balancing on behalf of all those cpus. If all the cpus in the system
2832 * go into this tickless mode, then there will be no ilb owner (as there is
2833 * no need for one) and all the cpus will sleep till the next wakeup event
2834 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002835 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002836 * For the ilb owner, tick is not stopped. And this tick will be used
2837 * for idle load balancing. ilb owner will still be part of
2838 * nohz.cpu_mask..
2839 *
2840 * While stopping the tick, this cpu will become the ilb owner if there
2841 * is no other owner. And will be the owner till that cpu becomes busy
2842 * or if all cpus in the system stop their ticks at which point
2843 * there is no need for ilb owner.
2844 *
2845 * When the ilb owner becomes busy, it nominates another owner, during the
2846 * next busy scheduler_tick()
2847 */
2848int select_nohz_load_balancer(int stop_tick)
2849{
2850 int cpu = smp_processor_id();
2851
2852 if (stop_tick) {
2853 cpu_set(cpu, nohz.cpu_mask);
2854 cpu_rq(cpu)->in_nohz_recently = 1;
2855
2856 /*
2857 * If we are going offline and still the leader, give up!
2858 */
2859 if (cpu_is_offline(cpu) &&
2860 atomic_read(&nohz.load_balancer) == cpu) {
2861 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2862 BUG();
2863 return 0;
2864 }
2865
2866 /* time for ilb owner also to sleep */
2867 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2868 if (atomic_read(&nohz.load_balancer) == cpu)
2869 atomic_set(&nohz.load_balancer, -1);
2870 return 0;
2871 }
2872
2873 if (atomic_read(&nohz.load_balancer) == -1) {
2874 /* make me the ilb owner */
2875 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2876 return 1;
2877 } else if (atomic_read(&nohz.load_balancer) == cpu)
2878 return 1;
2879 } else {
2880 if (!cpu_isset(cpu, nohz.cpu_mask))
2881 return 0;
2882
2883 cpu_clear(cpu, nohz.cpu_mask);
2884
2885 if (atomic_read(&nohz.load_balancer) == cpu)
2886 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2887 BUG();
2888 }
2889 return 0;
2890}
2891#endif
2892
2893static DEFINE_SPINLOCK(balancing);
2894
2895/*
Christoph Lameter7835b982006-12-10 02:20:22 -08002896 * It checks each scheduling domain to see if it is due to be balanced,
2897 * and initiates a balancing operation if so.
2898 *
2899 * Balancing parameters are set up in arch_init_sched_domains.
2900 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002901static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08002902{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002903 int balance = 1;
2904 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08002905 unsigned long interval;
2906 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002907 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08002908 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002909
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002910 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911 if (!(sd->flags & SD_LOAD_BALANCE))
2912 continue;
2913
2914 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002915 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916 interval *= sd->busy_factor;
2917
2918 /* scale ms to jiffies */
2919 interval = msecs_to_jiffies(interval);
2920 if (unlikely(!interval))
2921 interval = 1;
Ingo Molnardd41f592007-07-09 18:51:59 +02002922 if (interval > HZ*NR_CPUS/10)
2923 interval = HZ*NR_CPUS/10;
2924
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925
Christoph Lameter08c183f2006-12-10 02:20:29 -08002926 if (sd->flags & SD_SERIALIZE) {
2927 if (!spin_trylock(&balancing))
2928 goto out;
2929 }
2930
Christoph Lameterc9819f42006-12-10 02:20:25 -08002931 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002932 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002933 /*
2934 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002935 * longer idle, or one of our SMT siblings is
2936 * not idle.
2937 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002938 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002939 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002940 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08002942 if (sd->flags & SD_SERIALIZE)
2943 spin_unlock(&balancing);
2944out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08002945 if (time_after(next_balance, sd->last_balance + interval))
2946 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002947
2948 /*
2949 * Stop the load balance at this level. There is another
2950 * CPU in our sched group which is doing load balancing more
2951 * actively.
2952 */
2953 if (!balance)
2954 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002955 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002956 rq->next_balance = next_balance;
2957}
2958
2959/*
2960 * run_rebalance_domains is triggered when needed from the scheduler tick.
2961 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2962 * rebalancing for all the cpus for whom scheduler ticks are stopped.
2963 */
2964static void run_rebalance_domains(struct softirq_action *h)
2965{
Ingo Molnardd41f592007-07-09 18:51:59 +02002966 int this_cpu = smp_processor_id();
2967 struct rq *this_rq = cpu_rq(this_cpu);
2968 enum cpu_idle_type idle = this_rq->idle_at_tick ?
2969 CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002970
Ingo Molnardd41f592007-07-09 18:51:59 +02002971 rebalance_domains(this_cpu, idle);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002972
2973#ifdef CONFIG_NO_HZ
2974 /*
2975 * If this cpu is the owner for idle load balancing, then do the
2976 * balancing on behalf of the other idle cpus whose ticks are
2977 * stopped.
2978 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002979 if (this_rq->idle_at_tick &&
2980 atomic_read(&nohz.load_balancer) == this_cpu) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002981 cpumask_t cpus = nohz.cpu_mask;
2982 struct rq *rq;
2983 int balance_cpu;
2984
Ingo Molnardd41f592007-07-09 18:51:59 +02002985 cpu_clear(this_cpu, cpus);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002986 for_each_cpu_mask(balance_cpu, cpus) {
2987 /*
2988 * If this cpu gets work to do, stop the load balancing
2989 * work being done for other cpus. Next load
2990 * balancing owner will pick it up.
2991 */
2992 if (need_resched())
2993 break;
2994
Ingo Molnardd41f592007-07-09 18:51:59 +02002995 rebalance_domains(balance_cpu, SCHED_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002996
2997 rq = cpu_rq(balance_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002998 if (time_after(this_rq->next_balance, rq->next_balance))
2999 this_rq->next_balance = rq->next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003000 }
3001 }
3002#endif
3003}
3004
3005/*
3006 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3007 *
3008 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3009 * idle load balancing owner or decide to stop the periodic load balancing,
3010 * if the whole system is idle.
3011 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003012static inline void trigger_load_balance(struct rq *rq, int cpu)
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003013{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003014#ifdef CONFIG_NO_HZ
3015 /*
3016 * If we were in the nohz mode recently and busy at the current
3017 * scheduler tick, then check if we need to nominate new idle
3018 * load balancer.
3019 */
3020 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3021 rq->in_nohz_recently = 0;
3022
3023 if (atomic_read(&nohz.load_balancer) == cpu) {
3024 cpu_clear(cpu, nohz.cpu_mask);
3025 atomic_set(&nohz.load_balancer, -1);
3026 }
3027
3028 if (atomic_read(&nohz.load_balancer) == -1) {
3029 /*
3030 * simple selection for now: Nominate the
3031 * first cpu in the nohz list to be the next
3032 * ilb owner.
3033 *
3034 * TBD: Traverse the sched domains and nominate
3035 * the nearest cpu in the nohz.cpu_mask.
3036 */
3037 int ilb = first_cpu(nohz.cpu_mask);
3038
3039 if (ilb != NR_CPUS)
3040 resched_cpu(ilb);
3041 }
3042 }
3043
3044 /*
3045 * If this cpu is idle and doing idle load balancing for all the
3046 * cpus with ticks stopped, is it time for that to stop?
3047 */
3048 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3049 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3050 resched_cpu(cpu);
3051 return;
3052 }
3053
3054 /*
3055 * If this cpu is idle and the idle load balancing is done by
3056 * someone else, then no need raise the SCHED_SOFTIRQ
3057 */
3058 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3059 cpu_isset(cpu, nohz.cpu_mask))
3060 return;
3061#endif
3062 if (time_after_eq(jiffies, rq->next_balance))
3063 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003064}
Ingo Molnardd41f592007-07-09 18:51:59 +02003065
3066#else /* CONFIG_SMP */
3067
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068/*
3069 * on UP we do not need to balance between CPUs:
3070 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003071static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003072{
3073}
Ingo Molnardd41f592007-07-09 18:51:59 +02003074
3075/* Avoid "used but not defined" warning on UP */
3076static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3077 unsigned long max_nr_move, unsigned long max_load_move,
3078 struct sched_domain *sd, enum cpu_idle_type idle,
3079 int *all_pinned, unsigned long *load_moved,
3080 int this_best_prio, int best_prio, int best_prio_seen,
3081 struct rq_iterator *iterator)
3082{
3083 *load_moved = 0;
3084
3085 return 0;
3086}
3087
Linus Torvalds1da177e2005-04-16 15:20:36 -07003088#endif
3089
Linus Torvalds1da177e2005-04-16 15:20:36 -07003090DEFINE_PER_CPU(struct kernel_stat, kstat);
3091
3092EXPORT_PER_CPU_SYMBOL(kstat);
3093
3094/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003095 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3096 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003097 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003098unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003099{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003100 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003101 u64 ns, delta_exec;
3102 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003103
Ingo Molnar41b86e92007-07-09 18:51:58 +02003104 rq = task_rq_lock(p, &flags);
3105 ns = p->se.sum_exec_runtime;
3106 if (rq->curr == p) {
3107 delta_exec = rq_clock(rq) - p->se.exec_start;
3108 if ((s64)delta_exec > 0)
3109 ns += delta_exec;
3110 }
3111 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003112
Linus Torvalds1da177e2005-04-16 15:20:36 -07003113 return ns;
3114}
3115
3116/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003117 * Account user cpu time to a process.
3118 * @p: the process that the cpu time gets accounted to
3119 * @hardirq_offset: the offset to subtract from hardirq_count()
3120 * @cputime: the cpu time spent in user space since the last update
3121 */
3122void account_user_time(struct task_struct *p, cputime_t cputime)
3123{
3124 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3125 cputime64_t tmp;
3126
3127 p->utime = cputime_add(p->utime, cputime);
3128
3129 /* Add user time to cpustat. */
3130 tmp = cputime_to_cputime64(cputime);
3131 if (TASK_NICE(p) > 0)
3132 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3133 else
3134 cpustat->user = cputime64_add(cpustat->user, tmp);
3135}
3136
3137/*
3138 * Account system cpu time to a process.
3139 * @p: the process that the cpu time gets accounted to
3140 * @hardirq_offset: the offset to subtract from hardirq_count()
3141 * @cputime: the cpu time spent in kernel space since the last update
3142 */
3143void account_system_time(struct task_struct *p, int hardirq_offset,
3144 cputime_t cputime)
3145{
3146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003147 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003148 cputime64_t tmp;
3149
3150 p->stime = cputime_add(p->stime, cputime);
3151
3152 /* Add system time to cpustat. */
3153 tmp = cputime_to_cputime64(cputime);
3154 if (hardirq_count() - hardirq_offset)
3155 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3156 else if (softirq_count())
3157 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3158 else if (p != rq->idle)
3159 cpustat->system = cputime64_add(cpustat->system, tmp);
3160 else if (atomic_read(&rq->nr_iowait) > 0)
3161 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3162 else
3163 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3164 /* Account for system time used */
3165 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166}
3167
3168/*
3169 * Account for involuntary wait time.
3170 * @p: the process from which the cpu time has been stolen
3171 * @steal: the cpu time spent in involuntary wait
3172 */
3173void account_steal_time(struct task_struct *p, cputime_t steal)
3174{
3175 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3176 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003177 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178
3179 if (p == rq->idle) {
3180 p->stime = cputime_add(p->stime, steal);
3181 if (atomic_read(&rq->nr_iowait) > 0)
3182 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3183 else
3184 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3185 } else
3186 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3187}
3188
Christoph Lameter7835b982006-12-10 02:20:22 -08003189/*
3190 * This function gets called by the timer code, with HZ frequency.
3191 * We call it with interrupts disabled.
3192 *
3193 * It also gets called by the fork code, when changing the parent's
3194 * timeslices.
3195 */
3196void scheduler_tick(void)
3197{
Christoph Lameter7835b982006-12-10 02:20:22 -08003198 int cpu = smp_processor_id();
3199 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003200 struct task_struct *curr = rq->curr;
Christoph Lameter7835b982006-12-10 02:20:22 -08003201
Ingo Molnardd41f592007-07-09 18:51:59 +02003202 spin_lock(&rq->lock);
3203 if (curr != rq->idle) /* FIXME: needed? */
3204 curr->sched_class->task_tick(rq, curr);
3205 update_cpu_load(rq);
3206 spin_unlock(&rq->lock);
3207
Christoph Lametere418e1c2006-12-10 02:20:23 -08003208#ifdef CONFIG_SMP
Ingo Molnardd41f592007-07-09 18:51:59 +02003209 rq->idle_at_tick = idle_cpu(cpu);
3210 trigger_load_balance(rq, cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003211#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212}
3213
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3215
3216void fastcall add_preempt_count(int val)
3217{
3218 /*
3219 * Underflow?
3220 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003221 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3222 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003223 preempt_count() += val;
3224 /*
3225 * Spinlock count overflowing soon?
3226 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003227 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3228 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229}
3230EXPORT_SYMBOL(add_preempt_count);
3231
3232void fastcall sub_preempt_count(int val)
3233{
3234 /*
3235 * Underflow?
3236 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003237 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3238 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239 /*
3240 * Is the spinlock portion underflowing?
3241 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003242 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3243 !(preempt_count() & PREEMPT_MASK)))
3244 return;
3245
Linus Torvalds1da177e2005-04-16 15:20:36 -07003246 preempt_count() -= val;
3247}
3248EXPORT_SYMBOL(sub_preempt_count);
3249
3250#endif
3251
3252/*
Ingo Molnardd41f592007-07-09 18:51:59 +02003253 * Print scheduling while atomic bug:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003254 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003255static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003256{
Ingo Molnardd41f592007-07-09 18:51:59 +02003257 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3258 prev->comm, preempt_count(), prev->pid);
3259 debug_show_held_locks(prev);
3260 if (irqs_disabled())
3261 print_irqtrace_events(prev);
3262 dump_stack();
3263}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264
Ingo Molnardd41f592007-07-09 18:51:59 +02003265/*
3266 * Various schedule()-time debugging checks and statistics:
3267 */
3268static inline void schedule_debug(struct task_struct *prev)
3269{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270 /*
3271 * Test if we are atomic. Since do_exit() needs to call into
3272 * schedule() atomically, we ignore that path for now.
3273 * Otherwise, whine if we are scheduling when we should not be.
3274 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003275 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3276 __schedule_bug(prev);
3277
Linus Torvalds1da177e2005-04-16 15:20:36 -07003278 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3279
Ingo Molnardd41f592007-07-09 18:51:59 +02003280 schedstat_inc(this_rq(), sched_cnt);
3281}
3282
3283/*
3284 * Pick up the highest-prio task:
3285 */
3286static inline struct task_struct *
3287pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3288{
3289 struct sched_class *class;
3290 struct task_struct *p;
3291
3292 /*
3293 * Optimization: we know that if all tasks are in
3294 * the fair class we can call that function directly:
3295 */
3296 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3297 p = fair_sched_class.pick_next_task(rq, now);
3298 if (likely(p))
3299 return p;
3300 }
3301
3302 class = sched_class_highest;
3303 for ( ; ; ) {
3304 p = class->pick_next_task(rq, now);
3305 if (p)
3306 return p;
3307 /*
3308 * Will never be NULL as the idle class always
3309 * returns a non-NULL p:
3310 */
3311 class = class->next;
3312 }
3313}
3314
3315/*
3316 * schedule() is the main scheduler function.
3317 */
3318asmlinkage void __sched schedule(void)
3319{
3320 struct task_struct *prev, *next;
3321 long *switch_count;
3322 struct rq *rq;
3323 u64 now;
3324 int cpu;
3325
Linus Torvalds1da177e2005-04-16 15:20:36 -07003326need_resched:
3327 preempt_disable();
Ingo Molnardd41f592007-07-09 18:51:59 +02003328 cpu = smp_processor_id();
3329 rq = cpu_rq(cpu);
3330 rcu_qsctr_inc(cpu);
3331 prev = rq->curr;
3332 switch_count = &prev->nivcsw;
3333
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334 release_kernel_lock(prev);
3335need_resched_nonpreemptible:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003336
Ingo Molnardd41f592007-07-09 18:51:59 +02003337 schedule_debug(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338
3339 spin_lock_irq(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340 clear_tsk_need_resched(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003341
Ingo Molnardd41f592007-07-09 18:51:59 +02003342 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3343 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3344 unlikely(signal_pending(prev)))) {
3345 prev->state = TASK_RUNNING;
3346 } else {
3347 deactivate_task(rq, prev, 1);
3348 }
3349 switch_count = &prev->nvcsw;
3350 }
3351
3352 if (unlikely(!rq->nr_running))
3353 idle_balance(cpu, rq);
3354
3355 now = __rq_clock(rq);
3356 prev->sched_class->put_prev_task(rq, prev, now);
3357 next = pick_next_task(rq, prev, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003358
3359 sched_info_switch(prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02003360
Linus Torvalds1da177e2005-04-16 15:20:36 -07003361 if (likely(prev != next)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003362 rq->nr_switches++;
3363 rq->curr = next;
3364 ++*switch_count;
3365
Ingo Molnardd41f592007-07-09 18:51:59 +02003366 context_switch(rq, prev, next); /* unlocks the rq */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367 } else
3368 spin_unlock_irq(&rq->lock);
3369
Ingo Molnardd41f592007-07-09 18:51:59 +02003370 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3371 cpu = smp_processor_id();
3372 rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373 goto need_resched_nonpreemptible;
Ingo Molnardd41f592007-07-09 18:51:59 +02003374 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375 preempt_enable_no_resched();
3376 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3377 goto need_resched;
3378}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379EXPORT_SYMBOL(schedule);
3380
3381#ifdef CONFIG_PREEMPT
3382/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003383 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003384 * off of preempt_enable. Kernel preemptions off return from interrupt
3385 * occur there and call schedule directly.
3386 */
3387asmlinkage void __sched preempt_schedule(void)
3388{
3389 struct thread_info *ti = current_thread_info();
3390#ifdef CONFIG_PREEMPT_BKL
3391 struct task_struct *task = current;
3392 int saved_lock_depth;
3393#endif
3394 /*
3395 * If there is a non-zero preempt_count or interrupts are disabled,
3396 * we do not want to preempt the current task. Just return..
3397 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003398 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399 return;
3400
3401need_resched:
3402 add_preempt_count(PREEMPT_ACTIVE);
3403 /*
3404 * We keep the big kernel semaphore locked, but we
3405 * clear ->lock_depth so that schedule() doesnt
3406 * auto-release the semaphore:
3407 */
3408#ifdef CONFIG_PREEMPT_BKL
3409 saved_lock_depth = task->lock_depth;
3410 task->lock_depth = -1;
3411#endif
3412 schedule();
3413#ifdef CONFIG_PREEMPT_BKL
3414 task->lock_depth = saved_lock_depth;
3415#endif
3416 sub_preempt_count(PREEMPT_ACTIVE);
3417
3418 /* we could miss a preemption opportunity between schedule and now */
3419 barrier();
3420 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3421 goto need_resched;
3422}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003423EXPORT_SYMBOL(preempt_schedule);
3424
3425/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003426 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427 * off of irq context.
3428 * Note, that this is called and return with irqs disabled. This will
3429 * protect us against recursive calling from irq.
3430 */
3431asmlinkage void __sched preempt_schedule_irq(void)
3432{
3433 struct thread_info *ti = current_thread_info();
3434#ifdef CONFIG_PREEMPT_BKL
3435 struct task_struct *task = current;
3436 int saved_lock_depth;
3437#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003438 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439 BUG_ON(ti->preempt_count || !irqs_disabled());
3440
3441need_resched:
3442 add_preempt_count(PREEMPT_ACTIVE);
3443 /*
3444 * We keep the big kernel semaphore locked, but we
3445 * clear ->lock_depth so that schedule() doesnt
3446 * auto-release the semaphore:
3447 */
3448#ifdef CONFIG_PREEMPT_BKL
3449 saved_lock_depth = task->lock_depth;
3450 task->lock_depth = -1;
3451#endif
3452 local_irq_enable();
3453 schedule();
3454 local_irq_disable();
3455#ifdef CONFIG_PREEMPT_BKL
3456 task->lock_depth = saved_lock_depth;
3457#endif
3458 sub_preempt_count(PREEMPT_ACTIVE);
3459
3460 /* we could miss a preemption opportunity between schedule and now */
3461 barrier();
3462 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3463 goto need_resched;
3464}
3465
3466#endif /* CONFIG_PREEMPT */
3467
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003468int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3469 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003470{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003471 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003472}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473EXPORT_SYMBOL(default_wake_function);
3474
3475/*
3476 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3477 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3478 * number) then we wake all the non-exclusive tasks and one exclusive task.
3479 *
3480 * There are circumstances in which we can try to wake a task which has already
3481 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3482 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3483 */
3484static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3485 int nr_exclusive, int sync, void *key)
3486{
3487 struct list_head *tmp, *next;
3488
3489 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003490 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3491 unsigned flags = curr->flags;
3492
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003494 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003495 break;
3496 }
3497}
3498
3499/**
3500 * __wake_up - wake up threads blocked on a waitqueue.
3501 * @q: the waitqueue
3502 * @mode: which threads
3503 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003504 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505 */
3506void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003507 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508{
3509 unsigned long flags;
3510
3511 spin_lock_irqsave(&q->lock, flags);
3512 __wake_up_common(q, mode, nr_exclusive, 0, key);
3513 spin_unlock_irqrestore(&q->lock, flags);
3514}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515EXPORT_SYMBOL(__wake_up);
3516
3517/*
3518 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3519 */
3520void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3521{
3522 __wake_up_common(q, mode, 1, 0, NULL);
3523}
3524
3525/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003526 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 * @q: the waitqueue
3528 * @mode: which threads
3529 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3530 *
3531 * The sync wakeup differs that the waker knows that it will schedule
3532 * away soon, so while the target thread will be woken up, it will not
3533 * be migrated to another CPU - ie. the two threads are 'synchronized'
3534 * with each other. This can prevent needless bouncing between CPUs.
3535 *
3536 * On UP it can prevent extra preemption.
3537 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003538void fastcall
3539__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540{
3541 unsigned long flags;
3542 int sync = 1;
3543
3544 if (unlikely(!q))
3545 return;
3546
3547 if (unlikely(!nr_exclusive))
3548 sync = 0;
3549
3550 spin_lock_irqsave(&q->lock, flags);
3551 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3552 spin_unlock_irqrestore(&q->lock, flags);
3553}
3554EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3555
3556void fastcall complete(struct completion *x)
3557{
3558 unsigned long flags;
3559
3560 spin_lock_irqsave(&x->wait.lock, flags);
3561 x->done++;
3562 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3563 1, 0, NULL);
3564 spin_unlock_irqrestore(&x->wait.lock, flags);
3565}
3566EXPORT_SYMBOL(complete);
3567
3568void fastcall complete_all(struct completion *x)
3569{
3570 unsigned long flags;
3571
3572 spin_lock_irqsave(&x->wait.lock, flags);
3573 x->done += UINT_MAX/2;
3574 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3575 0, 0, NULL);
3576 spin_unlock_irqrestore(&x->wait.lock, flags);
3577}
3578EXPORT_SYMBOL(complete_all);
3579
3580void fastcall __sched wait_for_completion(struct completion *x)
3581{
3582 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003583
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 spin_lock_irq(&x->wait.lock);
3585 if (!x->done) {
3586 DECLARE_WAITQUEUE(wait, current);
3587
3588 wait.flags |= WQ_FLAG_EXCLUSIVE;
3589 __add_wait_queue_tail(&x->wait, &wait);
3590 do {
3591 __set_current_state(TASK_UNINTERRUPTIBLE);
3592 spin_unlock_irq(&x->wait.lock);
3593 schedule();
3594 spin_lock_irq(&x->wait.lock);
3595 } while (!x->done);
3596 __remove_wait_queue(&x->wait, &wait);
3597 }
3598 x->done--;
3599 spin_unlock_irq(&x->wait.lock);
3600}
3601EXPORT_SYMBOL(wait_for_completion);
3602
3603unsigned long fastcall __sched
3604wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3605{
3606 might_sleep();
3607
3608 spin_lock_irq(&x->wait.lock);
3609 if (!x->done) {
3610 DECLARE_WAITQUEUE(wait, current);
3611
3612 wait.flags |= WQ_FLAG_EXCLUSIVE;
3613 __add_wait_queue_tail(&x->wait, &wait);
3614 do {
3615 __set_current_state(TASK_UNINTERRUPTIBLE);
3616 spin_unlock_irq(&x->wait.lock);
3617 timeout = schedule_timeout(timeout);
3618 spin_lock_irq(&x->wait.lock);
3619 if (!timeout) {
3620 __remove_wait_queue(&x->wait, &wait);
3621 goto out;
3622 }
3623 } while (!x->done);
3624 __remove_wait_queue(&x->wait, &wait);
3625 }
3626 x->done--;
3627out:
3628 spin_unlock_irq(&x->wait.lock);
3629 return timeout;
3630}
3631EXPORT_SYMBOL(wait_for_completion_timeout);
3632
3633int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3634{
3635 int ret = 0;
3636
3637 might_sleep();
3638
3639 spin_lock_irq(&x->wait.lock);
3640 if (!x->done) {
3641 DECLARE_WAITQUEUE(wait, current);
3642
3643 wait.flags |= WQ_FLAG_EXCLUSIVE;
3644 __add_wait_queue_tail(&x->wait, &wait);
3645 do {
3646 if (signal_pending(current)) {
3647 ret = -ERESTARTSYS;
3648 __remove_wait_queue(&x->wait, &wait);
3649 goto out;
3650 }
3651 __set_current_state(TASK_INTERRUPTIBLE);
3652 spin_unlock_irq(&x->wait.lock);
3653 schedule();
3654 spin_lock_irq(&x->wait.lock);
3655 } while (!x->done);
3656 __remove_wait_queue(&x->wait, &wait);
3657 }
3658 x->done--;
3659out:
3660 spin_unlock_irq(&x->wait.lock);
3661
3662 return ret;
3663}
3664EXPORT_SYMBOL(wait_for_completion_interruptible);
3665
3666unsigned long fastcall __sched
3667wait_for_completion_interruptible_timeout(struct completion *x,
3668 unsigned long timeout)
3669{
3670 might_sleep();
3671
3672 spin_lock_irq(&x->wait.lock);
3673 if (!x->done) {
3674 DECLARE_WAITQUEUE(wait, current);
3675
3676 wait.flags |= WQ_FLAG_EXCLUSIVE;
3677 __add_wait_queue_tail(&x->wait, &wait);
3678 do {
3679 if (signal_pending(current)) {
3680 timeout = -ERESTARTSYS;
3681 __remove_wait_queue(&x->wait, &wait);
3682 goto out;
3683 }
3684 __set_current_state(TASK_INTERRUPTIBLE);
3685 spin_unlock_irq(&x->wait.lock);
3686 timeout = schedule_timeout(timeout);
3687 spin_lock_irq(&x->wait.lock);
3688 if (!timeout) {
3689 __remove_wait_queue(&x->wait, &wait);
3690 goto out;
3691 }
3692 } while (!x->done);
3693 __remove_wait_queue(&x->wait, &wait);
3694 }
3695 x->done--;
3696out:
3697 spin_unlock_irq(&x->wait.lock);
3698 return timeout;
3699}
3700EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3701
3702
3703#define SLEEP_ON_VAR \
3704 unsigned long flags; \
3705 wait_queue_t wait; \
3706 init_waitqueue_entry(&wait, current);
3707
3708#define SLEEP_ON_HEAD \
3709 spin_lock_irqsave(&q->lock,flags); \
3710 __add_wait_queue(q, &wait); \
3711 spin_unlock(&q->lock);
3712
3713#define SLEEP_ON_TAIL \
3714 spin_lock_irq(&q->lock); \
3715 __remove_wait_queue(q, &wait); \
3716 spin_unlock_irqrestore(&q->lock, flags);
3717
3718void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3719{
3720 SLEEP_ON_VAR
3721
3722 current->state = TASK_INTERRUPTIBLE;
3723
3724 SLEEP_ON_HEAD
3725 schedule();
3726 SLEEP_ON_TAIL
3727}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728EXPORT_SYMBOL(interruptible_sleep_on);
3729
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003730long fastcall __sched
3731interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003732{
3733 SLEEP_ON_VAR
3734
3735 current->state = TASK_INTERRUPTIBLE;
3736
3737 SLEEP_ON_HEAD
3738 timeout = schedule_timeout(timeout);
3739 SLEEP_ON_TAIL
3740
3741 return timeout;
3742}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3744
3745void fastcall __sched sleep_on(wait_queue_head_t *q)
3746{
3747 SLEEP_ON_VAR
3748
3749 current->state = TASK_UNINTERRUPTIBLE;
3750
3751 SLEEP_ON_HEAD
3752 schedule();
3753 SLEEP_ON_TAIL
3754}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003755EXPORT_SYMBOL(sleep_on);
3756
3757long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3758{
3759 SLEEP_ON_VAR
3760
3761 current->state = TASK_UNINTERRUPTIBLE;
3762
3763 SLEEP_ON_HEAD
3764 timeout = schedule_timeout(timeout);
3765 SLEEP_ON_TAIL
3766
3767 return timeout;
3768}
3769
3770EXPORT_SYMBOL(sleep_on_timeout);
3771
Ingo Molnarb29739f2006-06-27 02:54:51 -07003772#ifdef CONFIG_RT_MUTEXES
3773
3774/*
3775 * rt_mutex_setprio - set the current priority of a task
3776 * @p: task
3777 * @prio: prio value (kernel-internal form)
3778 *
3779 * This function changes the 'effective' priority of a task. It does
3780 * not touch ->normal_prio like __setscheduler().
3781 *
3782 * Used by the rt_mutex code to implement priority inheritance logic.
3783 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003784void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003785{
3786 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02003787 int oldprio, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003788 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003789 u64 now;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003790
3791 BUG_ON(prio < 0 || prio > MAX_PRIO);
3792
3793 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02003794 now = rq_clock(rq);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003795
Andrew Mortond5f9f942007-05-08 20:27:06 -07003796 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02003797 on_rq = p->se.on_rq;
3798 if (on_rq)
3799 dequeue_task(rq, p, 0, now);
3800
3801 if (rt_prio(prio))
3802 p->sched_class = &rt_sched_class;
3803 else
3804 p->sched_class = &fair_sched_class;
3805
Ingo Molnarb29739f2006-06-27 02:54:51 -07003806 p->prio = prio;
3807
Ingo Molnardd41f592007-07-09 18:51:59 +02003808 if (on_rq) {
3809 enqueue_task(rq, p, 0, now);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003810 /*
3811 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003812 * our priority decreased, or if we are not currently running on
3813 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003814 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003815 if (task_running(rq, p)) {
3816 if (p->prio > oldprio)
3817 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003818 } else {
3819 check_preempt_curr(rq, p);
3820 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07003821 }
3822 task_rq_unlock(rq, &flags);
3823}
3824
3825#endif
3826
Ingo Molnar36c8b582006-07-03 00:25:41 -07003827void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828{
Ingo Molnardd41f592007-07-09 18:51:59 +02003829 int old_prio, delta, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003831 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003832 u64 now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833
3834 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3835 return;
3836 /*
3837 * We have to be careful, if called from sys_setpriority(),
3838 * the task might be in the middle of scheduling on another CPU.
3839 */
3840 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02003841 now = rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003842 /*
3843 * The RT priorities are set via sched_setscheduler(), but we still
3844 * allow the 'normal' nice value to be set - but as expected
3845 * it wont have any effect on scheduling until the task is
Ingo Molnardd41f592007-07-09 18:51:59 +02003846 * SCHED_FIFO/SCHED_RR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003847 */
Ingo Molnare05606d2007-07-09 18:51:59 +02003848 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003849 p->static_prio = NICE_TO_PRIO(nice);
3850 goto out_unlock;
3851 }
Ingo Molnardd41f592007-07-09 18:51:59 +02003852 on_rq = p->se.on_rq;
3853 if (on_rq) {
3854 dequeue_task(rq, p, 0, now);
3855 dec_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -07003856 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003859 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003860 old_prio = p->prio;
3861 p->prio = effective_prio(p);
3862 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863
Ingo Molnardd41f592007-07-09 18:51:59 +02003864 if (on_rq) {
3865 enqueue_task(rq, p, 0, now);
3866 inc_load(rq, p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003867 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07003868 * If the task increased its priority or is running and
3869 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003870 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003871 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003872 resched_task(rq->curr);
3873 }
3874out_unlock:
3875 task_rq_unlock(rq, &flags);
3876}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003877EXPORT_SYMBOL(set_user_nice);
3878
Matt Mackalle43379f2005-05-01 08:59:00 -07003879/*
3880 * can_nice - check if a task can reduce its nice value
3881 * @p: task
3882 * @nice: nice value
3883 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003884int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07003885{
Matt Mackall024f4742005-08-18 11:24:19 -07003886 /* convert nice value [19,-20] to rlimit style value [1,40] */
3887 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003888
Matt Mackalle43379f2005-05-01 08:59:00 -07003889 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3890 capable(CAP_SYS_NICE));
3891}
3892
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893#ifdef __ARCH_WANT_SYS_NICE
3894
3895/*
3896 * sys_nice - change the priority of the current process.
3897 * @increment: priority increment
3898 *
3899 * sys_setpriority is a more generic, but much slower function that
3900 * does similar things.
3901 */
3902asmlinkage long sys_nice(int increment)
3903{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003904 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003905
3906 /*
3907 * Setpriority might change our priority at the same moment.
3908 * We don't have to worry. Conceptually one call occurs first
3909 * and we have a single winner.
3910 */
Matt Mackalle43379f2005-05-01 08:59:00 -07003911 if (increment < -40)
3912 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003913 if (increment > 40)
3914 increment = 40;
3915
3916 nice = PRIO_TO_NICE(current->static_prio) + increment;
3917 if (nice < -20)
3918 nice = -20;
3919 if (nice > 19)
3920 nice = 19;
3921
Matt Mackalle43379f2005-05-01 08:59:00 -07003922 if (increment < 0 && !can_nice(current, nice))
3923 return -EPERM;
3924
Linus Torvalds1da177e2005-04-16 15:20:36 -07003925 retval = security_task_setnice(current, nice);
3926 if (retval)
3927 return retval;
3928
3929 set_user_nice(current, nice);
3930 return 0;
3931}
3932
3933#endif
3934
3935/**
3936 * task_prio - return the priority value of a given task.
3937 * @p: the task in question.
3938 *
3939 * This is the priority value as seen by users in /proc.
3940 * RT tasks are offset by -200. Normal tasks are centered
3941 * around 0, value goes from -16 to +15.
3942 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003943int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944{
3945 return p->prio - MAX_RT_PRIO;
3946}
3947
3948/**
3949 * task_nice - return the nice value of a given task.
3950 * @p: the task in question.
3951 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003952int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003953{
3954 return TASK_NICE(p);
3955}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003956EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003957
3958/**
3959 * idle_cpu - is a given cpu idle currently?
3960 * @cpu: the processor in question.
3961 */
3962int idle_cpu(int cpu)
3963{
3964 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3965}
3966
Linus Torvalds1da177e2005-04-16 15:20:36 -07003967/**
3968 * idle_task - return the idle task for a given cpu.
3969 * @cpu: the processor in question.
3970 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003971struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003972{
3973 return cpu_rq(cpu)->idle;
3974}
3975
3976/**
3977 * find_process_by_pid - find a process with a matching PID value.
3978 * @pid: the pid in question.
3979 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003980static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003981{
3982 return pid ? find_task_by_pid(pid) : current;
3983}
3984
3985/* Actually do priority change: must hold rq lock. */
Ingo Molnardd41f592007-07-09 18:51:59 +02003986static void
3987__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988{
Ingo Molnardd41f592007-07-09 18:51:59 +02003989 BUG_ON(p->se.on_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003990
Linus Torvalds1da177e2005-04-16 15:20:36 -07003991 p->policy = policy;
Ingo Molnardd41f592007-07-09 18:51:59 +02003992 switch (p->policy) {
3993 case SCHED_NORMAL:
3994 case SCHED_BATCH:
3995 case SCHED_IDLE:
3996 p->sched_class = &fair_sched_class;
3997 break;
3998 case SCHED_FIFO:
3999 case SCHED_RR:
4000 p->sched_class = &rt_sched_class;
4001 break;
4002 }
4003
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004005 p->normal_prio = normal_prio(p);
4006 /* we are holding p->pi_lock already */
4007 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004008 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004009}
4010
4011/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004012 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004013 * @p: the task in question.
4014 * @policy: new policy.
4015 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004016 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004017 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004018 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004019int sched_setscheduler(struct task_struct *p, int policy,
4020 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004021{
Ingo Molnardd41f592007-07-09 18:51:59 +02004022 int retval, oldprio, oldpolicy = -1, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004024 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025
Steven Rostedt66e53932006-06-27 02:54:44 -07004026 /* may grab non-irq protected spin_locks */
4027 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028recheck:
4029 /* double check policy once rq lock held */
4030 if (policy < 0)
4031 policy = oldpolicy = p->policy;
4032 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnardd41f592007-07-09 18:51:59 +02004033 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4034 policy != SCHED_IDLE)
Ingo Molnarb0a94992006-01-14 13:20:41 -08004035 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036 /*
4037 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnardd41f592007-07-09 18:51:59 +02004038 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4039 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040 */
4041 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004042 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004043 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004044 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004045 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004046 return -EINVAL;
4047
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004048 /*
4049 * Allow unprivileged RT tasks to decrease priority:
4050 */
4051 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004052 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004053 unsigned long rlim_rtprio;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004054
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004055 if (!lock_task_sighand(p, &flags))
4056 return -ESRCH;
4057 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4058 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004059
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004060 /* can't set/change the rt policy */
4061 if (policy != p->policy && !rlim_rtprio)
4062 return -EPERM;
4063
4064 /* can't increase priority */
4065 if (param->sched_priority > p->rt_priority &&
4066 param->sched_priority > rlim_rtprio)
4067 return -EPERM;
4068 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004069 /*
4070 * Like positive nice levels, dont allow tasks to
4071 * move out of SCHED_IDLE either:
4072 */
4073 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4074 return -EPERM;
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004075
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004076 /* can't change other user's priorities */
4077 if ((current->euid != p->euid) &&
4078 (current->euid != p->uid))
4079 return -EPERM;
4080 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004081
4082 retval = security_task_setscheduler(p, policy, param);
4083 if (retval)
4084 return retval;
4085 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004086 * make sure no PI-waiters arrive (or leave) while we are
4087 * changing the priority of the task:
4088 */
4089 spin_lock_irqsave(&p->pi_lock, flags);
4090 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004091 * To be able to change p->policy safely, the apropriate
4092 * runqueue lock must be held.
4093 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004094 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095 /* recheck policy now with rq lock held */
4096 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4097 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004098 __task_rq_unlock(rq);
4099 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100 goto recheck;
4101 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004102 on_rq = p->se.on_rq;
4103 if (on_rq)
4104 deactivate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004105 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02004106 __setscheduler(rq, p, policy, param->sched_priority);
4107 if (on_rq) {
4108 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 /*
4110 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004111 * our priority decreased, or if we are not currently running on
4112 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004113 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004114 if (task_running(rq, p)) {
4115 if (p->prio > oldprio)
4116 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02004117 } else {
4118 check_preempt_curr(rq, p);
4119 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004121 __task_rq_unlock(rq);
4122 spin_unlock_irqrestore(&p->pi_lock, flags);
4123
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004124 rt_mutex_adjust_pi(p);
4125
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126 return 0;
4127}
4128EXPORT_SYMBOL_GPL(sched_setscheduler);
4129
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004130static int
4131do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004132{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133 struct sched_param lparam;
4134 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004135 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004136
4137 if (!param || pid < 0)
4138 return -EINVAL;
4139 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4140 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004141
4142 rcu_read_lock();
4143 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004144 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004145 if (p != NULL)
4146 retval = sched_setscheduler(p, policy, &lparam);
4147 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004148
Linus Torvalds1da177e2005-04-16 15:20:36 -07004149 return retval;
4150}
4151
4152/**
4153 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4154 * @pid: the pid in question.
4155 * @policy: new policy.
4156 * @param: structure containing the new RT priority.
4157 */
4158asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4159 struct sched_param __user *param)
4160{
Jason Baronc21761f2006-01-18 17:43:03 -08004161 /* negative values for policy are not valid */
4162 if (policy < 0)
4163 return -EINVAL;
4164
Linus Torvalds1da177e2005-04-16 15:20:36 -07004165 return do_sched_setscheduler(pid, policy, param);
4166}
4167
4168/**
4169 * sys_sched_setparam - set/change the RT priority of a thread
4170 * @pid: the pid in question.
4171 * @param: structure containing the new RT priority.
4172 */
4173asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4174{
4175 return do_sched_setscheduler(pid, -1, param);
4176}
4177
4178/**
4179 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4180 * @pid: the pid in question.
4181 */
4182asmlinkage long sys_sched_getscheduler(pid_t pid)
4183{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004184 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004185 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004186
4187 if (pid < 0)
4188 goto out_nounlock;
4189
4190 retval = -ESRCH;
4191 read_lock(&tasklist_lock);
4192 p = find_process_by_pid(pid);
4193 if (p) {
4194 retval = security_task_getscheduler(p);
4195 if (!retval)
4196 retval = p->policy;
4197 }
4198 read_unlock(&tasklist_lock);
4199
4200out_nounlock:
4201 return retval;
4202}
4203
4204/**
4205 * sys_sched_getscheduler - get the RT priority of a thread
4206 * @pid: the pid in question.
4207 * @param: structure containing the RT priority.
4208 */
4209asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4210{
4211 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004212 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004214
4215 if (!param || pid < 0)
4216 goto out_nounlock;
4217
4218 read_lock(&tasklist_lock);
4219 p = find_process_by_pid(pid);
4220 retval = -ESRCH;
4221 if (!p)
4222 goto out_unlock;
4223
4224 retval = security_task_getscheduler(p);
4225 if (retval)
4226 goto out_unlock;
4227
4228 lp.sched_priority = p->rt_priority;
4229 read_unlock(&tasklist_lock);
4230
4231 /*
4232 * This one might sleep, we cannot do it with a spinlock held ...
4233 */
4234 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4235
4236out_nounlock:
4237 return retval;
4238
4239out_unlock:
4240 read_unlock(&tasklist_lock);
4241 return retval;
4242}
4243
4244long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4245{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004247 struct task_struct *p;
4248 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004250 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004251 read_lock(&tasklist_lock);
4252
4253 p = find_process_by_pid(pid);
4254 if (!p) {
4255 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004256 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257 return -ESRCH;
4258 }
4259
4260 /*
4261 * It is not safe to call set_cpus_allowed with the
4262 * tasklist_lock held. We will bump the task_struct's
4263 * usage count and then drop tasklist_lock.
4264 */
4265 get_task_struct(p);
4266 read_unlock(&tasklist_lock);
4267
4268 retval = -EPERM;
4269 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4270 !capable(CAP_SYS_NICE))
4271 goto out_unlock;
4272
David Quigleye7834f82006-06-23 02:03:59 -07004273 retval = security_task_setscheduler(p, 0, NULL);
4274 if (retval)
4275 goto out_unlock;
4276
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 cpus_allowed = cpuset_cpus_allowed(p);
4278 cpus_and(new_mask, new_mask, cpus_allowed);
4279 retval = set_cpus_allowed(p, new_mask);
4280
4281out_unlock:
4282 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004283 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284 return retval;
4285}
4286
4287static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4288 cpumask_t *new_mask)
4289{
4290 if (len < sizeof(cpumask_t)) {
4291 memset(new_mask, 0, sizeof(cpumask_t));
4292 } else if (len > sizeof(cpumask_t)) {
4293 len = sizeof(cpumask_t);
4294 }
4295 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4296}
4297
4298/**
4299 * sys_sched_setaffinity - set the cpu affinity of a process
4300 * @pid: pid of the process
4301 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4302 * @user_mask_ptr: user-space pointer to the new cpu mask
4303 */
4304asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4305 unsigned long __user *user_mask_ptr)
4306{
4307 cpumask_t new_mask;
4308 int retval;
4309
4310 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4311 if (retval)
4312 return retval;
4313
4314 return sched_setaffinity(pid, new_mask);
4315}
4316
4317/*
4318 * Represents all cpu's present in the system
4319 * In systems capable of hotplug, this map could dynamically grow
4320 * as new cpu's are detected in the system via any platform specific
4321 * method, such as ACPI for e.g.
4322 */
4323
Andi Kleen4cef0c62006-01-11 22:44:57 +01004324cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325EXPORT_SYMBOL(cpu_present_map);
4326
4327#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004328cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004329EXPORT_SYMBOL(cpu_online_map);
4330
Andi Kleen4cef0c62006-01-11 22:44:57 +01004331cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004332EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004333#endif
4334
4335long sched_getaffinity(pid_t pid, cpumask_t *mask)
4336{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004337 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004338 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004339
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004340 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341 read_lock(&tasklist_lock);
4342
4343 retval = -ESRCH;
4344 p = find_process_by_pid(pid);
4345 if (!p)
4346 goto out_unlock;
4347
David Quigleye7834f82006-06-23 02:03:59 -07004348 retval = security_task_getscheduler(p);
4349 if (retval)
4350 goto out_unlock;
4351
Jack Steiner2f7016d2006-02-01 03:05:18 -08004352 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004353
4354out_unlock:
4355 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004356 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357 if (retval)
4358 return retval;
4359
4360 return 0;
4361}
4362
4363/**
4364 * sys_sched_getaffinity - get the cpu affinity of a process
4365 * @pid: pid of the process
4366 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4367 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4368 */
4369asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4370 unsigned long __user *user_mask_ptr)
4371{
4372 int ret;
4373 cpumask_t mask;
4374
4375 if (len < sizeof(cpumask_t))
4376 return -EINVAL;
4377
4378 ret = sched_getaffinity(pid, &mask);
4379 if (ret < 0)
4380 return ret;
4381
4382 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4383 return -EFAULT;
4384
4385 return sizeof(cpumask_t);
4386}
4387
4388/**
4389 * sys_sched_yield - yield the current processor to other threads.
4390 *
Ingo Molnardd41f592007-07-09 18:51:59 +02004391 * This function yields the current CPU to other tasks. If there are no
4392 * other threads running on this CPU then this function will return.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004393 */
4394asmlinkage long sys_sched_yield(void)
4395{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004396 struct rq *rq = this_rq_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004397
4398 schedstat_inc(rq, yld_cnt);
Ingo Molnardd41f592007-07-09 18:51:59 +02004399 if (unlikely(rq->nr_running == 1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004400 schedstat_inc(rq, yld_act_empty);
Ingo Molnardd41f592007-07-09 18:51:59 +02004401 else
4402 current->sched_class->yield_task(rq, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004403
4404 /*
4405 * Since we are going to call schedule() anyway, there's
4406 * no need to preempt or enable interrupts:
4407 */
4408 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004409 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004410 _raw_spin_unlock(&rq->lock);
4411 preempt_enable_no_resched();
4412
4413 schedule();
4414
4415 return 0;
4416}
4417
Andrew Mortone7b38402006-06-30 01:56:00 -07004418static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004419{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004420#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4421 __might_sleep(__FILE__, __LINE__);
4422#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004423 /*
4424 * The BKS might be reacquired before we have dropped
4425 * PREEMPT_ACTIVE, which could trigger a second
4426 * cond_resched() call.
4427 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004428 do {
4429 add_preempt_count(PREEMPT_ACTIVE);
4430 schedule();
4431 sub_preempt_count(PREEMPT_ACTIVE);
4432 } while (need_resched());
4433}
4434
4435int __sched cond_resched(void)
4436{
Ingo Molnar94142322006-12-29 16:48:13 -08004437 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4438 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004439 __cond_resched();
4440 return 1;
4441 }
4442 return 0;
4443}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004444EXPORT_SYMBOL(cond_resched);
4445
4446/*
4447 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4448 * call schedule, and on return reacquire the lock.
4449 *
4450 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4451 * operations here to prevent schedule() from being called twice (once via
4452 * spin_unlock(), once by hand).
4453 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004454int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004455{
Jan Kara6df3cec2005-06-13 15:52:32 -07004456 int ret = 0;
4457
Linus Torvalds1da177e2005-04-16 15:20:36 -07004458 if (need_lockbreak(lock)) {
4459 spin_unlock(lock);
4460 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004461 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004462 spin_lock(lock);
4463 }
Ingo Molnar94142322006-12-29 16:48:13 -08004464 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004465 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004466 _raw_spin_unlock(lock);
4467 preempt_enable_no_resched();
4468 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004469 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004470 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004471 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004472 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004473}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004474EXPORT_SYMBOL(cond_resched_lock);
4475
4476int __sched cond_resched_softirq(void)
4477{
4478 BUG_ON(!in_softirq());
4479
Ingo Molnar94142322006-12-29 16:48:13 -08004480 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004481 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004482 __cond_resched();
4483 local_bh_disable();
4484 return 1;
4485 }
4486 return 0;
4487}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004488EXPORT_SYMBOL(cond_resched_softirq);
4489
Linus Torvalds1da177e2005-04-16 15:20:36 -07004490/**
4491 * yield - yield the current processor to other threads.
4492 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004493 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004494 * thread runnable and calls sys_sched_yield().
4495 */
4496void __sched yield(void)
4497{
4498 set_current_state(TASK_RUNNING);
4499 sys_sched_yield();
4500}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004501EXPORT_SYMBOL(yield);
4502
4503/*
4504 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4505 * that process accounting knows that this is a task in IO wait state.
4506 *
4507 * But don't do that if it is a deliberate, throttling IO wait (this task
4508 * has set its backing_dev_info: the queue against which it should throttle)
4509 */
4510void __sched io_schedule(void)
4511{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004512 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004513
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004514 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004515 atomic_inc(&rq->nr_iowait);
4516 schedule();
4517 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004518 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004519}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520EXPORT_SYMBOL(io_schedule);
4521
4522long __sched io_schedule_timeout(long timeout)
4523{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004524 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004525 long ret;
4526
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004527 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004528 atomic_inc(&rq->nr_iowait);
4529 ret = schedule_timeout(timeout);
4530 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004531 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004532 return ret;
4533}
4534
4535/**
4536 * sys_sched_get_priority_max - return maximum RT priority.
4537 * @policy: scheduling class.
4538 *
4539 * this syscall returns the maximum rt_priority that can be used
4540 * by a given scheduling class.
4541 */
4542asmlinkage long sys_sched_get_priority_max(int policy)
4543{
4544 int ret = -EINVAL;
4545
4546 switch (policy) {
4547 case SCHED_FIFO:
4548 case SCHED_RR:
4549 ret = MAX_USER_RT_PRIO-1;
4550 break;
4551 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004552 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004553 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004554 ret = 0;
4555 break;
4556 }
4557 return ret;
4558}
4559
4560/**
4561 * sys_sched_get_priority_min - return minimum RT priority.
4562 * @policy: scheduling class.
4563 *
4564 * this syscall returns the minimum rt_priority that can be used
4565 * by a given scheduling class.
4566 */
4567asmlinkage long sys_sched_get_priority_min(int policy)
4568{
4569 int ret = -EINVAL;
4570
4571 switch (policy) {
4572 case SCHED_FIFO:
4573 case SCHED_RR:
4574 ret = 1;
4575 break;
4576 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004577 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004578 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004579 ret = 0;
4580 }
4581 return ret;
4582}
4583
4584/**
4585 * sys_sched_rr_get_interval - return the default timeslice of a process.
4586 * @pid: pid of the process.
4587 * @interval: userspace pointer to the timeslice value.
4588 *
4589 * this syscall writes the default timeslice value of a given process
4590 * into the user-space timespec buffer. A value of '0' means infinity.
4591 */
4592asmlinkage
4593long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4594{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004595 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004596 int retval = -EINVAL;
4597 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004598
4599 if (pid < 0)
4600 goto out_nounlock;
4601
4602 retval = -ESRCH;
4603 read_lock(&tasklist_lock);
4604 p = find_process_by_pid(pid);
4605 if (!p)
4606 goto out_unlock;
4607
4608 retval = security_task_getscheduler(p);
4609 if (retval)
4610 goto out_unlock;
4611
Peter Williamsb78709c2006-06-26 16:58:00 +10004612 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Ingo Molnardd41f592007-07-09 18:51:59 +02004613 0 : static_prio_timeslice(p->static_prio), &t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004614 read_unlock(&tasklist_lock);
4615 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4616out_nounlock:
4617 return retval;
4618out_unlock:
4619 read_unlock(&tasklist_lock);
4620 return retval;
4621}
4622
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004623static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004624
4625static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004626{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004627 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004628 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004629
Linus Torvalds1da177e2005-04-16 15:20:36 -07004630 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004631 printk("%-13.13s %c", p->comm,
4632 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004633#if (BITS_PER_LONG == 32)
4634 if (state == TASK_RUNNING)
4635 printk(" running ");
4636 else
4637 printk(" %08lX ", thread_saved_pc(p));
4638#else
4639 if (state == TASK_RUNNING)
4640 printk(" running task ");
4641 else
4642 printk(" %016lx ", thread_saved_pc(p));
4643#endif
4644#ifdef CONFIG_DEBUG_STACK_USAGE
4645 {
Al Viro10ebffd2005-11-13 16:06:56 -08004646 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004647 while (!*n)
4648 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004649 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004650 }
4651#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004652 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004653 if (!p->mm)
4654 printk(" (L-TLB)\n");
4655 else
4656 printk(" (NOTLB)\n");
4657
4658 if (state != TASK_RUNNING)
4659 show_stack(p, NULL);
4660}
4661
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004662void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004663{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004664 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004665
4666#if (BITS_PER_LONG == 32)
4667 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004668 " free sibling\n");
4669 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004670#else
4671 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004672 " free sibling\n");
4673 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004674#endif
4675 read_lock(&tasklist_lock);
4676 do_each_thread(g, p) {
4677 /*
4678 * reset the NMI-timeout, listing all files on a slow
4679 * console might take alot of time:
4680 */
4681 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004682 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004683 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004684 } while_each_thread(g, p);
4685
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004686 touch_all_softlockup_watchdogs();
4687
Ingo Molnardd41f592007-07-09 18:51:59 +02004688#ifdef CONFIG_SCHED_DEBUG
4689 sysrq_sched_debug_show();
4690#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004692 /*
4693 * Only show locks if all tasks are dumped:
4694 */
4695 if (state_filter == -1)
4696 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697}
4698
Ingo Molnar1df21052007-07-09 18:51:58 +02004699void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4700{
Ingo Molnardd41f592007-07-09 18:51:59 +02004701 idle->sched_class = &idle_sched_class;
Ingo Molnar1df21052007-07-09 18:51:58 +02004702}
4703
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004704/**
4705 * init_idle - set up an idle thread for a given CPU
4706 * @idle: task in question
4707 * @cpu: cpu the idle task belongs to
4708 *
4709 * NOTE: this function does not set the idle thread's NEED_RESCHED
4710 * flag, to make booting more robust.
4711 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004712void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004713{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004714 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004715 unsigned long flags;
4716
Ingo Molnardd41f592007-07-09 18:51:59 +02004717 __sched_fork(idle);
4718 idle->se.exec_start = sched_clock();
4719
Ingo Molnarb29739f2006-06-27 02:54:51 -07004720 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004721 idle->cpus_allowed = cpumask_of_cpu(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004722 __set_task_cpu(idle, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004723
4724 spin_lock_irqsave(&rq->lock, flags);
4725 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004726#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4727 idle->oncpu = 1;
4728#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004729 spin_unlock_irqrestore(&rq->lock, flags);
4730
4731 /* Set the preempt count _outside_ the spinlocks! */
4732#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f542005-11-13 16:06:55 -08004733 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004734#else
Al Viroa1261f542005-11-13 16:06:55 -08004735 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02004737 /*
4738 * The idle tasks have their own, simple scheduling class:
4739 */
4740 idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004741}
4742
4743/*
4744 * In a system that switches off the HZ timer nohz_cpu_mask
4745 * indicates which cpus entered this state. This is used
4746 * in the rcu update to wait only for active cpus. For system
4747 * which do not switch off the HZ timer nohz_cpu_mask should
4748 * always be CPU_MASK_NONE.
4749 */
4750cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4751
Ingo Molnardd41f592007-07-09 18:51:59 +02004752/*
4753 * Increase the granularity value when there are more CPUs,
4754 * because with more CPUs the 'effective latency' as visible
4755 * to users decreases. But the relationship is not linear,
4756 * so pick a second-best guess by going with the log2 of the
4757 * number of CPUs.
4758 *
4759 * This idea comes from the SD scheduler of Con Kolivas:
4760 */
4761static inline void sched_init_granularity(void)
4762{
4763 unsigned int factor = 1 + ilog2(num_online_cpus());
4764 const unsigned long gran_limit = 10000000;
4765
4766 sysctl_sched_granularity *= factor;
4767 if (sysctl_sched_granularity > gran_limit)
4768 sysctl_sched_granularity = gran_limit;
4769
4770 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4771 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4772}
4773
Linus Torvalds1da177e2005-04-16 15:20:36 -07004774#ifdef CONFIG_SMP
4775/*
4776 * This is how migration works:
4777 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004778 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779 * runqueue and wake up that CPU's migration thread.
4780 * 2) we down() the locked semaphore => thread blocks.
4781 * 3) migration thread wakes up (implicitly it forces the migrated
4782 * thread off the CPU)
4783 * 4) it gets the migration request and checks whether the migrated
4784 * task is still in the wrong runqueue.
4785 * 5) if it's in the wrong runqueue then the migration thread removes
4786 * it and puts it into the right queue.
4787 * 6) migration thread up()s the semaphore.
4788 * 7) we wake up and the migration is done.
4789 */
4790
4791/*
4792 * Change a given task's CPU affinity. Migrate the thread to a
4793 * proper CPU and schedule it away if the CPU it's executing on
4794 * is removed from the allowed bitmask.
4795 *
4796 * NOTE: the caller must have a valid reference to the task, the
4797 * task must not exit() & deallocate itself prematurely. The
4798 * call is not atomic; no spinlocks may be held.
4799 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004800int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004801{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004802 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004803 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004804 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004805 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004806
4807 rq = task_rq_lock(p, &flags);
4808 if (!cpus_intersects(new_mask, cpu_online_map)) {
4809 ret = -EINVAL;
4810 goto out;
4811 }
4812
4813 p->cpus_allowed = new_mask;
4814 /* Can the task run on the task's current CPU? If so, we're done */
4815 if (cpu_isset(task_cpu(p), new_mask))
4816 goto out;
4817
4818 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4819 /* Need help from migration thread: drop lock and wait. */
4820 task_rq_unlock(rq, &flags);
4821 wake_up_process(rq->migration_thread);
4822 wait_for_completion(&req.done);
4823 tlb_migrate_finish(p->mm);
4824 return 0;
4825 }
4826out:
4827 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004828
Linus Torvalds1da177e2005-04-16 15:20:36 -07004829 return ret;
4830}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004831EXPORT_SYMBOL_GPL(set_cpus_allowed);
4832
4833/*
4834 * Move (not current) task off this cpu, onto dest cpu. We're doing
4835 * this because either it can't run here any more (set_cpus_allowed()
4836 * away from this CPU, or CPU going down), or because we're
4837 * attempting to rebalance this task on exec (sched_exec).
4838 *
4839 * So we race with normal scheduler movements, but that's OK, as long
4840 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004841 *
4842 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004843 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004844static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004845{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004846 struct rq *rq_dest, *rq_src;
Ingo Molnardd41f592007-07-09 18:51:59 +02004847 int ret = 0, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848
4849 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004850 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004851
4852 rq_src = cpu_rq(src_cpu);
4853 rq_dest = cpu_rq(dest_cpu);
4854
4855 double_rq_lock(rq_src, rq_dest);
4856 /* Already moved. */
4857 if (task_cpu(p) != src_cpu)
4858 goto out;
4859 /* Affinity changed (again). */
4860 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4861 goto out;
4862
Ingo Molnardd41f592007-07-09 18:51:59 +02004863 on_rq = p->se.on_rq;
4864 if (on_rq)
4865 deactivate_task(rq_src, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004866 set_task_cpu(p, dest_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004867 if (on_rq) {
4868 activate_task(rq_dest, p, 0);
4869 check_preempt_curr(rq_dest, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004870 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07004871 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004872out:
4873 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004874 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004875}
4876
4877/*
4878 * migration_thread - this is a highprio system thread that performs
4879 * thread migration by bumping thread off CPU then 'pushing' onto
4880 * another runqueue.
4881 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004882static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004883{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004884 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004885 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004886
4887 rq = cpu_rq(cpu);
4888 BUG_ON(rq->migration_thread != current);
4889
4890 set_current_state(TASK_INTERRUPTIBLE);
4891 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07004892 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004893 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004894
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07004895 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004896
4897 spin_lock_irq(&rq->lock);
4898
4899 if (cpu_is_offline(cpu)) {
4900 spin_unlock_irq(&rq->lock);
4901 goto wait_to_die;
4902 }
4903
4904 if (rq->active_balance) {
4905 active_load_balance(rq, cpu);
4906 rq->active_balance = 0;
4907 }
4908
4909 head = &rq->migration_queue;
4910
4911 if (list_empty(head)) {
4912 spin_unlock_irq(&rq->lock);
4913 schedule();
4914 set_current_state(TASK_INTERRUPTIBLE);
4915 continue;
4916 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07004917 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004918 list_del_init(head->next);
4919
Nick Piggin674311d2005-06-25 14:57:27 -07004920 spin_unlock(&rq->lock);
4921 __migrate_task(req->task, cpu, req->dest_cpu);
4922 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923
4924 complete(&req->done);
4925 }
4926 __set_current_state(TASK_RUNNING);
4927 return 0;
4928
4929wait_to_die:
4930 /* Wait for kthread_stop */
4931 set_current_state(TASK_INTERRUPTIBLE);
4932 while (!kthread_should_stop()) {
4933 schedule();
4934 set_current_state(TASK_INTERRUPTIBLE);
4935 }
4936 __set_current_state(TASK_RUNNING);
4937 return 0;
4938}
4939
4940#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08004941/*
4942 * Figure out where task on dead CPU should go, use force if neccessary.
4943 * NOTE: interrupts should be disabled by the caller
4944 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07004945static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004946{
Kirill Korotaevefc30812006-06-27 02:54:32 -07004947 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004948 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004949 struct rq *rq;
4950 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004951
Kirill Korotaevefc30812006-06-27 02:54:32 -07004952restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953 /* On same node? */
4954 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07004955 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004956 dest_cpu = any_online_cpu(mask);
4957
4958 /* On any allowed CPU? */
4959 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07004960 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004961
4962 /* No more Mr. Nice Guy. */
4963 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07004964 rq = task_rq_lock(p, &flags);
4965 cpus_setall(p->cpus_allowed);
4966 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004967 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004968
4969 /*
4970 * Don't tell them about moving exiting tasks or
4971 * kernel threads (both mm NULL), since they never
4972 * leave kernel.
4973 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07004974 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07004975 printk(KERN_INFO "process %d (%s) no "
4976 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07004977 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07004979 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004980 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004981}
4982
4983/*
4984 * While a dead CPU has no uninterruptible tasks queued at this point,
4985 * it might still have a nonzero ->nr_uninterruptible counter, because
4986 * for performance reasons the counter is not stricly tracking tasks to
4987 * their home CPUs. So we just add the counter to another CPU's counter,
4988 * to keep the global sum constant after CPU-down:
4989 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07004990static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004992 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004993 unsigned long flags;
4994
4995 local_irq_save(flags);
4996 double_rq_lock(rq_src, rq_dest);
4997 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4998 rq_src->nr_uninterruptible = 0;
4999 double_rq_unlock(rq_src, rq_dest);
5000 local_irq_restore(flags);
5001}
5002
5003/* Run through task list and migrate tasks from the dead cpu. */
5004static void migrate_live_tasks(int src_cpu)
5005{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005006 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005007
5008 write_lock_irq(&tasklist_lock);
5009
Ingo Molnar48f24c42006-07-03 00:25:40 -07005010 do_each_thread(t, p) {
5011 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005012 continue;
5013
Ingo Molnar48f24c42006-07-03 00:25:40 -07005014 if (task_cpu(p) == src_cpu)
5015 move_task_off_dead_cpu(src_cpu, p);
5016 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005017
5018 write_unlock_irq(&tasklist_lock);
5019}
5020
Ingo Molnardd41f592007-07-09 18:51:59 +02005021/*
5022 * Schedules idle task to be the next runnable task on current CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005023 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005024 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005025 */
5026void sched_idle_next(void)
5027{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005028 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005029 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030 struct task_struct *p = rq->idle;
5031 unsigned long flags;
5032
5033 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005034 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005035
Ingo Molnar48f24c42006-07-03 00:25:40 -07005036 /*
5037 * Strictly not necessary since rest of the CPUs are stopped by now
5038 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005039 */
5040 spin_lock_irqsave(&rq->lock, flags);
5041
Ingo Molnardd41f592007-07-09 18:51:59 +02005042 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005043
5044 /* Add idle task to the _front_ of its priority queue: */
Ingo Molnardd41f592007-07-09 18:51:59 +02005045 activate_idle_task(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005046
5047 spin_unlock_irqrestore(&rq->lock, flags);
5048}
5049
Ingo Molnar48f24c42006-07-03 00:25:40 -07005050/*
5051 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005052 * offline.
5053 */
5054void idle_task_exit(void)
5055{
5056 struct mm_struct *mm = current->active_mm;
5057
5058 BUG_ON(cpu_online(smp_processor_id()));
5059
5060 if (mm != &init_mm)
5061 switch_mm(mm, &init_mm, current);
5062 mmdrop(mm);
5063}
5064
Kirill Korotaev054b9102006-12-10 02:20:11 -08005065/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005066static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005067{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005068 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005069
5070 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005071 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072
5073 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005074 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005075
Ingo Molnar48f24c42006-07-03 00:25:40 -07005076 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005077
5078 /*
5079 * Drop lock around migration; if someone else moves it,
5080 * that's OK. No task can be added to this CPU, so iteration is
5081 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005082 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005083 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005084 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005085 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005086 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005087
Ingo Molnar48f24c42006-07-03 00:25:40 -07005088 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005089}
5090
5091/* release_task() removes task from tasklist, so we won't find dead tasks. */
5092static void migrate_dead_tasks(unsigned int dead_cpu)
5093{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005094 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005095 struct task_struct *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005096
Ingo Molnardd41f592007-07-09 18:51:59 +02005097 for ( ; ; ) {
5098 if (!rq->nr_running)
5099 break;
5100 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5101 if (!next)
5102 break;
5103 migrate_dead(dead_cpu, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005104 }
5105}
5106#endif /* CONFIG_HOTPLUG_CPU */
5107
5108/*
5109 * migration_call - callback that gets triggered when a CPU is added.
5110 * Here we can start up the necessary migration thread for the new CPU.
5111 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005112static int __cpuinit
5113migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005114{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005115 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005116 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005117 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005118 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005119
5120 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005121 case CPU_LOCK_ACQUIRE:
5122 mutex_lock(&sched_hotcpu_mutex);
5123 break;
5124
Linus Torvalds1da177e2005-04-16 15:20:36 -07005125 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005126 case CPU_UP_PREPARE_FROZEN:
Ingo Molnardd41f592007-07-09 18:51:59 +02005127 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128 if (IS_ERR(p))
5129 return NOTIFY_BAD;
5130 p->flags |= PF_NOFREEZE;
5131 kthread_bind(p, cpu);
5132 /* Must be high prio: stop_machine expects to yield to it. */
5133 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005134 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005135 task_rq_unlock(rq, &flags);
5136 cpu_rq(cpu)->migration_thread = p;
5137 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005138
Linus Torvalds1da177e2005-04-16 15:20:36 -07005139 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005140 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005141 /* Strictly unneccessary, as first user will wake it. */
5142 wake_up_process(cpu_rq(cpu)->migration_thread);
5143 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005144
Linus Torvalds1da177e2005-04-16 15:20:36 -07005145#ifdef CONFIG_HOTPLUG_CPU
5146 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005147 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005148 if (!cpu_rq(cpu)->migration_thread)
5149 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005151 kthread_bind(cpu_rq(cpu)->migration_thread,
5152 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005153 kthread_stop(cpu_rq(cpu)->migration_thread);
5154 cpu_rq(cpu)->migration_thread = NULL;
5155 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005156
Linus Torvalds1da177e2005-04-16 15:20:36 -07005157 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005158 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005159 migrate_live_tasks(cpu);
5160 rq = cpu_rq(cpu);
5161 kthread_stop(rq->migration_thread);
5162 rq->migration_thread = NULL;
5163 /* Idle task back to normal (off runqueue, low prio) */
5164 rq = task_rq_lock(rq->idle, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005165 deactivate_task(rq, rq->idle, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005166 rq->idle->static_prio = MAX_PRIO;
Ingo Molnardd41f592007-07-09 18:51:59 +02005167 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5168 rq->idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005169 migrate_dead_tasks(cpu);
5170 task_rq_unlock(rq, &flags);
5171 migrate_nr_uninterruptible(rq);
5172 BUG_ON(rq->nr_running != 0);
5173
5174 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005175 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005176 * the requestors. */
5177 spin_lock_irq(&rq->lock);
5178 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005179 struct migration_req *req;
5180
Linus Torvalds1da177e2005-04-16 15:20:36 -07005181 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005182 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005183 list_del_init(&req->list);
5184 complete(&req->done);
5185 }
5186 spin_unlock_irq(&rq->lock);
5187 break;
5188#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005189 case CPU_LOCK_RELEASE:
5190 mutex_unlock(&sched_hotcpu_mutex);
5191 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005192 }
5193 return NOTIFY_OK;
5194}
5195
5196/* Register at highest priority so that task migration (migrate_all_tasks)
5197 * happens before everything else.
5198 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005199static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200 .notifier_call = migration_call,
5201 .priority = 10
5202};
5203
5204int __init migration_init(void)
5205{
5206 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005207 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005208
5209 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005210 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5211 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005212 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5213 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005214
Linus Torvalds1da177e2005-04-16 15:20:36 -07005215 return 0;
5216}
5217#endif
5218
5219#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005220
5221/* Number of possible processor ids */
5222int nr_cpu_ids __read_mostly = NR_CPUS;
5223EXPORT_SYMBOL(nr_cpu_ids);
5224
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005225#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005226#ifdef SCHED_DOMAIN_DEBUG
5227static void sched_domain_debug(struct sched_domain *sd, int cpu)
5228{
5229 int level = 0;
5230
Nick Piggin41c7ce92005-06-25 14:57:24 -07005231 if (!sd) {
5232 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5233 return;
5234 }
5235
Linus Torvalds1da177e2005-04-16 15:20:36 -07005236 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5237
5238 do {
5239 int i;
5240 char str[NR_CPUS];
5241 struct sched_group *group = sd->groups;
5242 cpumask_t groupmask;
5243
5244 cpumask_scnprintf(str, NR_CPUS, sd->span);
5245 cpus_clear(groupmask);
5246
5247 printk(KERN_DEBUG);
5248 for (i = 0; i < level + 1; i++)
5249 printk(" ");
5250 printk("domain %d: ", level);
5251
5252 if (!(sd->flags & SD_LOAD_BALANCE)) {
5253 printk("does not load-balance\n");
5254 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005255 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5256 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005257 break;
5258 }
5259
5260 printk("span %s\n", str);
5261
5262 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005263 printk(KERN_ERR "ERROR: domain->span does not contain "
5264 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005265 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005266 printk(KERN_ERR "ERROR: domain->groups does not contain"
5267 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005268
5269 printk(KERN_DEBUG);
5270 for (i = 0; i < level + 2; i++)
5271 printk(" ");
5272 printk("groups:");
5273 do {
5274 if (!group) {
5275 printk("\n");
5276 printk(KERN_ERR "ERROR: group is NULL\n");
5277 break;
5278 }
5279
Eric Dumazet5517d862007-05-08 00:32:57 -07005280 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005281 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005282 printk(KERN_ERR "ERROR: domain->cpu_power not "
5283 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005284 }
5285
5286 if (!cpus_weight(group->cpumask)) {
5287 printk("\n");
5288 printk(KERN_ERR "ERROR: empty group\n");
5289 }
5290
5291 if (cpus_intersects(groupmask, group->cpumask)) {
5292 printk("\n");
5293 printk(KERN_ERR "ERROR: repeated CPUs\n");
5294 }
5295
5296 cpus_or(groupmask, groupmask, group->cpumask);
5297
5298 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5299 printk(" %s", str);
5300
5301 group = group->next;
5302 } while (group != sd->groups);
5303 printk("\n");
5304
5305 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005306 printk(KERN_ERR "ERROR: groups don't span "
5307 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005308
5309 level++;
5310 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005311 if (!sd)
5312 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005313
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005314 if (!cpus_subset(groupmask, sd->span))
5315 printk(KERN_ERR "ERROR: parent span is not a superset "
5316 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005317
5318 } while (sd);
5319}
5320#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005321# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005322#endif
5323
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005324static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005325{
5326 if (cpus_weight(sd->span) == 1)
5327 return 1;
5328
5329 /* Following flags need at least 2 groups */
5330 if (sd->flags & (SD_LOAD_BALANCE |
5331 SD_BALANCE_NEWIDLE |
5332 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005333 SD_BALANCE_EXEC |
5334 SD_SHARE_CPUPOWER |
5335 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005336 if (sd->groups != sd->groups->next)
5337 return 0;
5338 }
5339
5340 /* Following flags don't use groups */
5341 if (sd->flags & (SD_WAKE_IDLE |
5342 SD_WAKE_AFFINE |
5343 SD_WAKE_BALANCE))
5344 return 0;
5345
5346 return 1;
5347}
5348
Ingo Molnar48f24c42006-07-03 00:25:40 -07005349static int
5350sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005351{
5352 unsigned long cflags = sd->flags, pflags = parent->flags;
5353
5354 if (sd_degenerate(parent))
5355 return 1;
5356
5357 if (!cpus_equal(sd->span, parent->span))
5358 return 0;
5359
5360 /* Does parent contain flags not in child? */
5361 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5362 if (cflags & SD_WAKE_AFFINE)
5363 pflags &= ~SD_WAKE_BALANCE;
5364 /* Flags needing groups don't count if only 1 group in parent */
5365 if (parent->groups == parent->groups->next) {
5366 pflags &= ~(SD_LOAD_BALANCE |
5367 SD_BALANCE_NEWIDLE |
5368 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005369 SD_BALANCE_EXEC |
5370 SD_SHARE_CPUPOWER |
5371 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005372 }
5373 if (~cflags & pflags)
5374 return 0;
5375
5376 return 1;
5377}
5378
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379/*
5380 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5381 * hold the hotplug lock.
5382 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005383static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005384{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005385 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005386 struct sched_domain *tmp;
5387
5388 /* Remove the sched domains which do not contribute to scheduling. */
5389 for (tmp = sd; tmp; tmp = tmp->parent) {
5390 struct sched_domain *parent = tmp->parent;
5391 if (!parent)
5392 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005393 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005394 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005395 if (parent->parent)
5396 parent->parent->child = tmp;
5397 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005398 }
5399
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005400 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005401 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005402 if (sd)
5403 sd->child = NULL;
5404 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005405
5406 sched_domain_debug(sd, cpu);
5407
Nick Piggin674311d2005-06-25 14:57:27 -07005408 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409}
5410
5411/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005412static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005413
5414/* Setup the mask of cpus configured for isolated domains */
5415static int __init isolated_cpu_setup(char *str)
5416{
5417 int ints[NR_CPUS], i;
5418
5419 str = get_options(str, ARRAY_SIZE(ints), ints);
5420 cpus_clear(cpu_isolated_map);
5421 for (i = 1; i <= ints[0]; i++)
5422 if (ints[i] < NR_CPUS)
5423 cpu_set(ints[i], cpu_isolated_map);
5424 return 1;
5425}
5426
5427__setup ("isolcpus=", isolated_cpu_setup);
5428
5429/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005430 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5431 * to a function which identifies what group(along with sched group) a CPU
5432 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5433 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005434 *
5435 * init_sched_build_groups will build a circular linked list of the groups
5436 * covered by the given span, and will set each group's ->cpumask correctly,
5437 * and ->cpu_power to 0.
5438 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005439static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005440init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5441 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5442 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005443{
5444 struct sched_group *first = NULL, *last = NULL;
5445 cpumask_t covered = CPU_MASK_NONE;
5446 int i;
5447
5448 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005449 struct sched_group *sg;
5450 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005451 int j;
5452
5453 if (cpu_isset(i, covered))
5454 continue;
5455
5456 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005457 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005458
5459 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005460 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005461 continue;
5462
5463 cpu_set(j, covered);
5464 cpu_set(j, sg->cpumask);
5465 }
5466 if (!first)
5467 first = sg;
5468 if (last)
5469 last->next = sg;
5470 last = sg;
5471 }
5472 last->next = first;
5473}
5474
John Hawkes9c1cfda2005-09-06 15:18:14 -07005475#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005476
John Hawkes9c1cfda2005-09-06 15:18:14 -07005477#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005478
John Hawkes9c1cfda2005-09-06 15:18:14 -07005479/**
5480 * find_next_best_node - find the next node to include in a sched_domain
5481 * @node: node whose sched_domain we're building
5482 * @used_nodes: nodes already in the sched_domain
5483 *
5484 * Find the next node to include in a given scheduling domain. Simply
5485 * finds the closest node not already in the @used_nodes map.
5486 *
5487 * Should use nodemask_t.
5488 */
5489static int find_next_best_node(int node, unsigned long *used_nodes)
5490{
5491 int i, n, val, min_val, best_node = 0;
5492
5493 min_val = INT_MAX;
5494
5495 for (i = 0; i < MAX_NUMNODES; i++) {
5496 /* Start at @node */
5497 n = (node + i) % MAX_NUMNODES;
5498
5499 if (!nr_cpus_node(n))
5500 continue;
5501
5502 /* Skip already used nodes */
5503 if (test_bit(n, used_nodes))
5504 continue;
5505
5506 /* Simple min distance search */
5507 val = node_distance(node, n);
5508
5509 if (val < min_val) {
5510 min_val = val;
5511 best_node = n;
5512 }
5513 }
5514
5515 set_bit(best_node, used_nodes);
5516 return best_node;
5517}
5518
5519/**
5520 * sched_domain_node_span - get a cpumask for a node's sched_domain
5521 * @node: node whose cpumask we're constructing
5522 * @size: number of nodes to include in this span
5523 *
5524 * Given a node, construct a good cpumask for its sched_domain to span. It
5525 * should be one that prevents unnecessary balancing, but also spreads tasks
5526 * out optimally.
5527 */
5528static cpumask_t sched_domain_node_span(int node)
5529{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005530 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005531 cpumask_t span, nodemask;
5532 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005533
5534 cpus_clear(span);
5535 bitmap_zero(used_nodes, MAX_NUMNODES);
5536
5537 nodemask = node_to_cpumask(node);
5538 cpus_or(span, span, nodemask);
5539 set_bit(node, used_nodes);
5540
5541 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5542 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005543
John Hawkes9c1cfda2005-09-06 15:18:14 -07005544 nodemask = node_to_cpumask(next_node);
5545 cpus_or(span, span, nodemask);
5546 }
5547
5548 return span;
5549}
5550#endif
5551
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005552int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005553
John Hawkes9c1cfda2005-09-06 15:18:14 -07005554/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005555 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005556 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005557#ifdef CONFIG_SCHED_SMT
5558static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005559static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005560
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005561static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5562 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005564 if (sg)
5565 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005566 return cpu;
5567}
5568#endif
5569
Ingo Molnar48f24c42006-07-03 00:25:40 -07005570/*
5571 * multi-core sched-domains:
5572 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005573#ifdef CONFIG_SCHED_MC
5574static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005575static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005576#endif
5577
5578#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005579static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5580 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005581{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005582 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005583 cpumask_t mask = cpu_sibling_map[cpu];
5584 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005585 group = first_cpu(mask);
5586 if (sg)
5587 *sg = &per_cpu(sched_group_core, group);
5588 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005589}
5590#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005591static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5592 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005593{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005594 if (sg)
5595 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005596 return cpu;
5597}
5598#endif
5599
Linus Torvalds1da177e2005-04-16 15:20:36 -07005600static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005601static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005602
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005603static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5604 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005605{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005606 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005607#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005608 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005609 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005610 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005611#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005612 cpumask_t mask = cpu_sibling_map[cpu];
5613 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005614 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005615#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005616 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005617#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005618 if (sg)
5619 *sg = &per_cpu(sched_group_phys, group);
5620 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005621}
5622
5623#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005624/*
5625 * The init_sched_build_groups can't handle what we want to do with node
5626 * groups, so roll our own. Now each node has its own list of groups which
5627 * gets dynamically allocated.
5628 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005629static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005630static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005631
5632static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005633static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005634
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005635static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5636 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005637{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005638 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5639 int group;
5640
5641 cpus_and(nodemask, nodemask, *cpu_map);
5642 group = first_cpu(nodemask);
5643
5644 if (sg)
5645 *sg = &per_cpu(sched_group_allnodes, group);
5646 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005647}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005648
Siddha, Suresh B08069032006-03-27 01:15:23 -08005649static void init_numa_sched_groups_power(struct sched_group *group_head)
5650{
5651 struct sched_group *sg = group_head;
5652 int j;
5653
5654 if (!sg)
5655 return;
5656next_sg:
5657 for_each_cpu_mask(j, sg->cpumask) {
5658 struct sched_domain *sd;
5659
5660 sd = &per_cpu(phys_domains, j);
5661 if (j != first_cpu(sd->groups->cpumask)) {
5662 /*
5663 * Only add "power" once for each
5664 * physical package.
5665 */
5666 continue;
5667 }
5668
Eric Dumazet5517d862007-05-08 00:32:57 -07005669 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005670 }
5671 sg = sg->next;
5672 if (sg != group_head)
5673 goto next_sg;
5674}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005675#endif
5676
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005677#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005678/* Free memory allocated for various sched_group structures */
5679static void free_sched_groups(const cpumask_t *cpu_map)
5680{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005681 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005682
5683 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005684 struct sched_group **sched_group_nodes
5685 = sched_group_nodes_bycpu[cpu];
5686
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005687 if (!sched_group_nodes)
5688 continue;
5689
5690 for (i = 0; i < MAX_NUMNODES; i++) {
5691 cpumask_t nodemask = node_to_cpumask(i);
5692 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5693
5694 cpus_and(nodemask, nodemask, *cpu_map);
5695 if (cpus_empty(nodemask))
5696 continue;
5697
5698 if (sg == NULL)
5699 continue;
5700 sg = sg->next;
5701next_sg:
5702 oldsg = sg;
5703 sg = sg->next;
5704 kfree(oldsg);
5705 if (oldsg != sched_group_nodes[i])
5706 goto next_sg;
5707 }
5708 kfree(sched_group_nodes);
5709 sched_group_nodes_bycpu[cpu] = NULL;
5710 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005711}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005712#else
5713static void free_sched_groups(const cpumask_t *cpu_map)
5714{
5715}
5716#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005717
Linus Torvalds1da177e2005-04-16 15:20:36 -07005718/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005719 * Initialize sched groups cpu_power.
5720 *
5721 * cpu_power indicates the capacity of sched group, which is used while
5722 * distributing the load between different sched groups in a sched domain.
5723 * Typically cpu_power for all the groups in a sched domain will be same unless
5724 * there are asymmetries in the topology. If there are asymmetries, group
5725 * having more cpu_power will pickup more load compared to the group having
5726 * less cpu_power.
5727 *
5728 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5729 * the maximum number of tasks a group can handle in the presence of other idle
5730 * or lightly loaded groups in the same sched domain.
5731 */
5732static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5733{
5734 struct sched_domain *child;
5735 struct sched_group *group;
5736
5737 WARN_ON(!sd || !sd->groups);
5738
5739 if (cpu != first_cpu(sd->groups->cpumask))
5740 return;
5741
5742 child = sd->child;
5743
Eric Dumazet5517d862007-05-08 00:32:57 -07005744 sd->groups->__cpu_power = 0;
5745
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005746 /*
5747 * For perf policy, if the groups in child domain share resources
5748 * (for example cores sharing some portions of the cache hierarchy
5749 * or SMT), then set this domain groups cpu_power such that each group
5750 * can handle only one task, when there are other idle groups in the
5751 * same sched domain.
5752 */
5753 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5754 (child->flags &
5755 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005756 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005757 return;
5758 }
5759
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005760 /*
5761 * add cpu_power of each child group to this groups cpu_power
5762 */
5763 group = child->groups;
5764 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005765 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005766 group = group->next;
5767 } while (group != child->groups);
5768}
5769
5770/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005771 * Build sched domains for a given set of cpus and attach the sched domains
5772 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005773 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005774static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005775{
5776 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005777#ifdef CONFIG_NUMA
5778 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005779 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07005780
5781 /*
5782 * Allocate the per-node list of sched groups
5783 */
Ingo Molnardd41f592007-07-09 18:51:59 +02005784 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07005785 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07005786 if (!sched_group_nodes) {
5787 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005788 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07005789 }
5790 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5791#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005792
5793 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005794 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005795 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005796 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005797 struct sched_domain *sd = NULL, *p;
5798 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5799
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005800 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005801
5802#ifdef CONFIG_NUMA
Ingo Molnardd41f592007-07-09 18:51:59 +02005803 if (cpus_weight(*cpu_map) >
5804 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkes9c1cfda2005-09-06 15:18:14 -07005805 sd = &per_cpu(allnodes_domains, i);
5806 *sd = SD_ALLNODES_INIT;
5807 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005808 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005809 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005810 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005811 } else
5812 p = NULL;
5813
Linus Torvalds1da177e2005-04-16 15:20:36 -07005814 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005815 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005816 sd->span = sched_domain_node_span(cpu_to_node(i));
5817 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005818 if (p)
5819 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005820 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005821#endif
5822
5823 p = sd;
5824 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005825 *sd = SD_CPU_INIT;
5826 sd->span = nodemask;
5827 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005828 if (p)
5829 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005830 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005831
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005832#ifdef CONFIG_SCHED_MC
5833 p = sd;
5834 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005835 *sd = SD_MC_INIT;
5836 sd->span = cpu_coregroup_map(i);
5837 cpus_and(sd->span, sd->span, *cpu_map);
5838 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005839 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005840 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005841#endif
5842
Linus Torvalds1da177e2005-04-16 15:20:36 -07005843#ifdef CONFIG_SCHED_SMT
5844 p = sd;
5845 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005846 *sd = SD_SIBLING_INIT;
5847 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005848 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005849 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005850 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005851 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005852#endif
5853 }
5854
5855#ifdef CONFIG_SCHED_SMT
5856 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005857 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005858 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005859 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005860 if (i != first_cpu(this_sibling_map))
5861 continue;
5862
Ingo Molnardd41f592007-07-09 18:51:59 +02005863 init_sched_build_groups(this_sibling_map, cpu_map,
5864 &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005865 }
5866#endif
5867
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005868#ifdef CONFIG_SCHED_MC
5869 /* Set up multi-core groups */
5870 for_each_cpu_mask(i, *cpu_map) {
5871 cpumask_t this_core_map = cpu_coregroup_map(i);
5872 cpus_and(this_core_map, this_core_map, *cpu_map);
5873 if (i != first_cpu(this_core_map))
5874 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02005875 init_sched_build_groups(this_core_map, cpu_map,
5876 &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005877 }
5878#endif
5879
Linus Torvalds1da177e2005-04-16 15:20:36 -07005880 /* Set up physical groups */
5881 for (i = 0; i < MAX_NUMNODES; i++) {
5882 cpumask_t nodemask = node_to_cpumask(i);
5883
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005884 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005885 if (cpus_empty(nodemask))
5886 continue;
5887
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005888 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005889 }
5890
5891#ifdef CONFIG_NUMA
5892 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005893 if (sd_allnodes)
Ingo Molnardd41f592007-07-09 18:51:59 +02005894 init_sched_build_groups(*cpu_map, cpu_map,
5895 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005896
5897 for (i = 0; i < MAX_NUMNODES; i++) {
5898 /* Set up node groups */
5899 struct sched_group *sg, *prev;
5900 cpumask_t nodemask = node_to_cpumask(i);
5901 cpumask_t domainspan;
5902 cpumask_t covered = CPU_MASK_NONE;
5903 int j;
5904
5905 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07005906 if (cpus_empty(nodemask)) {
5907 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005908 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07005909 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005910
5911 domainspan = sched_domain_node_span(i);
5912 cpus_and(domainspan, domainspan, *cpu_map);
5913
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07005914 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005915 if (!sg) {
5916 printk(KERN_WARNING "Can not alloc domain group for "
5917 "node %d\n", i);
5918 goto error;
5919 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005920 sched_group_nodes[i] = sg;
5921 for_each_cpu_mask(j, nodemask) {
5922 struct sched_domain *sd;
Ingo Molnar9761eea2007-07-09 18:52:00 +02005923
John Hawkes9c1cfda2005-09-06 15:18:14 -07005924 sd = &per_cpu(node_domains, j);
5925 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005926 }
Eric Dumazet5517d862007-05-08 00:32:57 -07005927 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005928 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005929 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005930 cpus_or(covered, covered, nodemask);
5931 prev = sg;
5932
5933 for (j = 0; j < MAX_NUMNODES; j++) {
5934 cpumask_t tmp, notcovered;
5935 int n = (i + j) % MAX_NUMNODES;
5936
5937 cpus_complement(notcovered, covered);
5938 cpus_and(tmp, notcovered, *cpu_map);
5939 cpus_and(tmp, tmp, domainspan);
5940 if (cpus_empty(tmp))
5941 break;
5942
5943 nodemask = node_to_cpumask(n);
5944 cpus_and(tmp, tmp, nodemask);
5945 if (cpus_empty(tmp))
5946 continue;
5947
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07005948 sg = kmalloc_node(sizeof(struct sched_group),
5949 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005950 if (!sg) {
5951 printk(KERN_WARNING
5952 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005953 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005954 }
Eric Dumazet5517d862007-05-08 00:32:57 -07005955 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005956 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005957 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005958 cpus_or(covered, covered, tmp);
5959 prev->next = sg;
5960 prev = sg;
5961 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005962 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005963#endif
5964
5965 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005966#ifdef CONFIG_SCHED_SMT
5967 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02005968 struct sched_domain *sd = &per_cpu(cpu_domains, i);
5969
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005970 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005971 }
5972#endif
5973#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005974 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02005975 struct sched_domain *sd = &per_cpu(core_domains, i);
5976
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005977 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005978 }
5979#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005980
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005981 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02005982 struct sched_domain *sd = &per_cpu(phys_domains, i);
5983
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005984 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005985 }
5986
John Hawkes9c1cfda2005-09-06 15:18:14 -07005987#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08005988 for (i = 0; i < MAX_NUMNODES; i++)
5989 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005990
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005991 if (sd_allnodes) {
5992 struct sched_group *sg;
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07005993
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005994 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07005995 init_numa_sched_groups_power(sg);
5996 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005997#endif
5998
Linus Torvalds1da177e2005-04-16 15:20:36 -07005999 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006000 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006001 struct sched_domain *sd;
6002#ifdef CONFIG_SCHED_SMT
6003 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006004#elif defined(CONFIG_SCHED_MC)
6005 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006006#else
6007 sd = &per_cpu(phys_domains, i);
6008#endif
6009 cpu_attach_domain(sd, i);
6010 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006011
6012 return 0;
6013
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006014#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006015error:
6016 free_sched_groups(cpu_map);
6017 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006018#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006019}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006020/*
6021 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6022 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006023static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006024{
6025 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006026 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006027
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006028 /*
6029 * Setup mask for cpus without special case scheduling requirements.
6030 * For now this just excludes isolated cpus, but could be used to
6031 * exclude other special cases in the future.
6032 */
6033 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6034
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006035 err = build_sched_domains(&cpu_default_map);
6036
6037 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006038}
6039
6040static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006041{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006042 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006043}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006045/*
6046 * Detach sched domains from a group of cpus specified in cpu_map
6047 * These cpus will now be attached to the NULL domain
6048 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006049static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006050{
6051 int i;
6052
6053 for_each_cpu_mask(i, *cpu_map)
6054 cpu_attach_domain(NULL, i);
6055 synchronize_sched();
6056 arch_destroy_sched_domains(cpu_map);
6057}
6058
6059/*
6060 * Partition sched domains as specified by the cpumasks below.
6061 * This attaches all cpus from the cpumasks to the NULL domain,
6062 * waits for a RCU quiescent period, recalculates sched
6063 * domain information and then attaches them back to the
6064 * correct sched domains
6065 * Call with hotplug lock held
6066 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006067int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006068{
6069 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006070 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006071
6072 cpus_and(*partition1, *partition1, cpu_online_map);
6073 cpus_and(*partition2, *partition2, cpu_online_map);
6074 cpus_or(change_map, *partition1, *partition2);
6075
6076 /* Detach sched domains from all of the affected cpus */
6077 detach_destroy_domains(&change_map);
6078 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006079 err = build_sched_domains(partition1);
6080 if (!err && !cpus_empty(*partition2))
6081 err = build_sched_domains(partition2);
6082
6083 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006084}
6085
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006086#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6087int arch_reinit_sched_domains(void)
6088{
6089 int err;
6090
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006091 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006092 detach_destroy_domains(&cpu_online_map);
6093 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006094 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006095
6096 return err;
6097}
6098
6099static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6100{
6101 int ret;
6102
6103 if (buf[0] != '0' && buf[0] != '1')
6104 return -EINVAL;
6105
6106 if (smt)
6107 sched_smt_power_savings = (buf[0] == '1');
6108 else
6109 sched_mc_power_savings = (buf[0] == '1');
6110
6111 ret = arch_reinit_sched_domains();
6112
6113 return ret ? ret : count;
6114}
6115
6116int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6117{
6118 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006119
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006120#ifdef CONFIG_SCHED_SMT
6121 if (smt_capable())
6122 err = sysfs_create_file(&cls->kset.kobj,
6123 &attr_sched_smt_power_savings.attr);
6124#endif
6125#ifdef CONFIG_SCHED_MC
6126 if (!err && mc_capable())
6127 err = sysfs_create_file(&cls->kset.kobj,
6128 &attr_sched_mc_power_savings.attr);
6129#endif
6130 return err;
6131}
6132#endif
6133
6134#ifdef CONFIG_SCHED_MC
6135static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6136{
6137 return sprintf(page, "%u\n", sched_mc_power_savings);
6138}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006139static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6140 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006141{
6142 return sched_power_savings_store(buf, count, 0);
6143}
6144SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6145 sched_mc_power_savings_store);
6146#endif
6147
6148#ifdef CONFIG_SCHED_SMT
6149static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6150{
6151 return sprintf(page, "%u\n", sched_smt_power_savings);
6152}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006153static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6154 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006155{
6156 return sched_power_savings_store(buf, count, 1);
6157}
6158SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6159 sched_smt_power_savings_store);
6160#endif
6161
Linus Torvalds1da177e2005-04-16 15:20:36 -07006162/*
6163 * Force a reinitialization of the sched domains hierarchy. The domains
6164 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006165 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006166 * which will prevent rebalancing while the sched domains are recalculated.
6167 */
6168static int update_sched_domains(struct notifier_block *nfb,
6169 unsigned long action, void *hcpu)
6170{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006171 switch (action) {
6172 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006173 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006174 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006175 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006176 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006177 return NOTIFY_OK;
6178
6179 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006180 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006181 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006182 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006183 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006184 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006185 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006186 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006187 /*
6188 * Fall through and re-initialise the domains.
6189 */
6190 break;
6191 default:
6192 return NOTIFY_DONE;
6193 }
6194
6195 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006196 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006197
6198 return NOTIFY_OK;
6199}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006200
6201void __init sched_init_smp(void)
6202{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006203 cpumask_t non_isolated_cpus;
6204
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006205 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006206 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006207 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006208 if (cpus_empty(non_isolated_cpus))
6209 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006210 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006211 /* XXX: Theoretical race here - CPU may be hotplugged now */
6212 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006213
6214 /* Move init over to a non-isolated CPU */
6215 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6216 BUG();
Ingo Molnardd41f592007-07-09 18:51:59 +02006217 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006218}
6219#else
6220void __init sched_init_smp(void)
6221{
Ingo Molnardd41f592007-07-09 18:51:59 +02006222 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006223}
6224#endif /* CONFIG_SMP */
6225
6226int in_sched_functions(unsigned long addr)
6227{
6228 /* Linker adds these: start and end of __sched functions */
6229 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006230
Linus Torvalds1da177e2005-04-16 15:20:36 -07006231 return in_lock_functions(addr) ||
6232 (addr >= (unsigned long)__sched_text_start
6233 && addr < (unsigned long)__sched_text_end);
6234}
6235
Ingo Molnardd41f592007-07-09 18:51:59 +02006236static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6237{
6238 cfs_rq->tasks_timeline = RB_ROOT;
6239 cfs_rq->fair_clock = 1;
6240#ifdef CONFIG_FAIR_GROUP_SCHED
6241 cfs_rq->rq = rq;
6242#endif
6243}
6244
Linus Torvalds1da177e2005-04-16 15:20:36 -07006245void __init sched_init(void)
6246{
Ingo Molnardd41f592007-07-09 18:51:59 +02006247 u64 now = sched_clock();
Christoph Lameter476f3532007-05-06 14:48:58 -07006248 int highest_cpu = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006249 int i, j;
6250
6251 /*
6252 * Link up the scheduling class hierarchy:
6253 */
6254 rt_sched_class.next = &fair_sched_class;
6255 fair_sched_class.next = &idle_sched_class;
6256 idle_sched_class.next = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006257
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006258 for_each_possible_cpu(i) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006259 struct rt_prio_array *array;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006260 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006261
6262 rq = cpu_rq(i);
6263 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006264 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006265 rq->nr_running = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006266 rq->clock = 1;
6267 init_cfs_rq(&rq->cfs, rq);
6268#ifdef CONFIG_FAIR_GROUP_SCHED
6269 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6270 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6271#endif
6272 rq->ls.load_update_last = now;
6273 rq->ls.load_update_start = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006274
Ingo Molnardd41f592007-07-09 18:51:59 +02006275 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6276 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006277#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006278 rq->sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006279 rq->active_balance = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006280 rq->next_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006281 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006282 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006283 rq->migration_thread = NULL;
6284 INIT_LIST_HEAD(&rq->migration_queue);
6285#endif
6286 atomic_set(&rq->nr_iowait, 0);
6287
Ingo Molnardd41f592007-07-09 18:51:59 +02006288 array = &rq->rt.active;
6289 for (j = 0; j < MAX_RT_PRIO; j++) {
6290 INIT_LIST_HEAD(array->queue + j);
6291 __clear_bit(j, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006292 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006293 highest_cpu = i;
Ingo Molnardd41f592007-07-09 18:51:59 +02006294 /* delimiter for bitsearch: */
6295 __set_bit(MAX_RT_PRIO, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006296 }
6297
Peter Williams2dd73a42006-06-27 02:54:34 -07006298 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006299
Christoph Lameterc9819f42006-12-10 02:20:25 -08006300#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006301 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006302 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6303#endif
6304
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006305#ifdef CONFIG_RT_MUTEXES
6306 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6307#endif
6308
Linus Torvalds1da177e2005-04-16 15:20:36 -07006309 /*
6310 * The boot idle thread does lazy MMU switching as well:
6311 */
6312 atomic_inc(&init_mm.mm_count);
6313 enter_lazy_tlb(&init_mm, current);
6314
6315 /*
6316 * Make us the idle thread. Technically, schedule() should not be
6317 * called from this thread, however somewhere below it might be,
6318 * but because we are the idle thread, we just pick up running again
6319 * when this runqueue becomes "idle".
6320 */
6321 init_idle(current, smp_processor_id());
Ingo Molnardd41f592007-07-09 18:51:59 +02006322 /*
6323 * During early bootup we pretend to be a normal task:
6324 */
6325 current->sched_class = &fair_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006326}
6327
6328#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6329void __might_sleep(char *file, int line)
6330{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006331#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006332 static unsigned long prev_jiffy; /* ratelimiting */
6333
6334 if ((in_atomic() || irqs_disabled()) &&
6335 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6336 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6337 return;
6338 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006339 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006340 " context at %s:%d\n", file, line);
6341 printk("in_atomic():%d, irqs_disabled():%d\n",
6342 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006343 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006344 if (irqs_disabled())
6345 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006346 dump_stack();
6347 }
6348#endif
6349}
6350EXPORT_SYMBOL(__might_sleep);
6351#endif
6352
6353#ifdef CONFIG_MAGIC_SYSRQ
6354void normalize_rt_tasks(void)
6355{
Ingo Molnara0f98a12007-06-17 18:37:45 +02006356 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006357 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006358 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02006359 int on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006360
6361 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006362 do_each_thread(g, p) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006363 p->se.fair_key = 0;
6364 p->se.wait_runtime = 0;
6365 p->se.wait_start_fair = 0;
6366 p->se.wait_start = 0;
6367 p->se.exec_start = 0;
6368 p->se.sleep_start = 0;
6369 p->se.sleep_start_fair = 0;
6370 p->se.block_start = 0;
6371 task_rq(p)->cfs.fair_clock = 0;
6372 task_rq(p)->clock = 0;
6373
6374 if (!rt_task(p)) {
6375 /*
6376 * Renice negative nice level userspace
6377 * tasks back to 0:
6378 */
6379 if (TASK_NICE(p) < 0 && p->mm)
6380 set_user_nice(p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006381 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006382 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006383
Ingo Molnarb29739f2006-06-27 02:54:51 -07006384 spin_lock_irqsave(&p->pi_lock, flags);
6385 rq = __task_rq_lock(p);
Ingo Molnardd41f592007-07-09 18:51:59 +02006386#ifdef CONFIG_SMP
6387 /*
6388 * Do not touch the migration thread:
6389 */
6390 if (p == rq->migration_thread)
6391 goto out_unlock;
6392#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006393
Ingo Molnardd41f592007-07-09 18:51:59 +02006394 on_rq = p->se.on_rq;
6395 if (on_rq)
6396 deactivate_task(task_rq(p), p, 0);
6397 __setscheduler(rq, p, SCHED_NORMAL, 0);
6398 if (on_rq) {
6399 activate_task(task_rq(p), p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006400 resched_task(rq->curr);
6401 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006402#ifdef CONFIG_SMP
6403 out_unlock:
6404#endif
Ingo Molnarb29739f2006-06-27 02:54:51 -07006405 __task_rq_unlock(rq);
6406 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006407 } while_each_thread(g, p);
6408
Linus Torvalds1da177e2005-04-16 15:20:36 -07006409 read_unlock_irq(&tasklist_lock);
6410}
6411
6412#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006413
6414#ifdef CONFIG_IA64
6415/*
6416 * These functions are only useful for the IA64 MCA handling.
6417 *
6418 * They can only be called when the whole system has been
6419 * stopped - every CPU needs to be quiescent, and no scheduling
6420 * activity can take place. Using them for anything else would
6421 * be a serious bug, and as a result, they aren't even visible
6422 * under any other configuration.
6423 */
6424
6425/**
6426 * curr_task - return the current task for a given cpu.
6427 * @cpu: the processor in question.
6428 *
6429 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6430 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006431struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006432{
6433 return cpu_curr(cpu);
6434}
6435
6436/**
6437 * set_curr_task - set the current task for a given cpu.
6438 * @cpu: the processor in question.
6439 * @p: the task pointer to set.
6440 *
6441 * Description: This function must only be used when non-maskable interrupts
6442 * are serviced on a separate stack. It allows the architecture to switch the
6443 * notion of the current task on a cpu in a non-blocking manner. This function
6444 * must be called with all CPU's synchronized, and interrupts disabled, the
6445 * and caller must save the original value of the current task (see
6446 * curr_task() above) and restore that value before reenabling interrupts and
6447 * re-starting the system.
6448 *
6449 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6450 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006451void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006452{
6453 cpu_curr(cpu) = p;
6454}
6455
6456#endif