blob: d9ed9274bf0a54e38fd0bd46f47f6201beeadb98 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
106#define ON_RUNQUEUE_WEIGHT 30
107#define CHILD_PENALTY 95
108#define PARENT_PENALTY 100
109#define EXIT_WEIGHT 3
110#define PRIO_BONUS_RATIO 25
111#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
112#define INTERACTIVE_DELTA 2
113#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
114#define STARVATION_LIMIT (MAX_SLEEP_AVG)
115#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
116
117/*
118 * If a task is 'interactive' then we reinsert it in the active
119 * array after it has expired its current timeslice. (it will not
120 * continue to run immediately, it will still roundrobin with
121 * other interactive tasks.)
122 *
123 * This part scales the interactivity limit depending on niceness.
124 *
125 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
126 * Here are a few examples of different nice levels:
127 *
128 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
129 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
130 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
131 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
132 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
133 *
134 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
135 * priority range a task can explore, a value of '1' means the
136 * task is rated interactive.)
137 *
138 * Ie. nice +19 tasks can never get 'interactive' enough to be
139 * reinserted into the active array. And only heavily CPU-hog nice -20
140 * tasks will be expired. Default nice 0 tasks are somewhere between,
141 * it takes some effort for them to get interactive, but it's not
142 * too hard.
143 */
144
145#define CURRENT_BONUS(p) \
146 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
147 MAX_SLEEP_AVG)
148
149#define GRANULARITY (10 * HZ / 1000 ? : 1)
150
151#ifdef CONFIG_SMP
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
154 num_online_cpus())
155#else
156#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
157 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
158#endif
159
160#define SCALE(v1,v1_max,v2_max) \
161 (v1) * (v2_max) / (v1_max)
162
163#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800164 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
165 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166
167#define TASK_INTERACTIVE(p) \
168 ((p)->prio <= (p)->static_prio - DELTA(p))
169
170#define INTERACTIVE_SLEEP(p) \
171 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
172 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
173
174#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700175 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179
Peter Williams2dd73a42006-06-27 02:54:34 -0700180static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 if (static_prio < NICE_TO_PRIO(0))
183 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700185 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
Peter Williams2dd73a42006-06-27 02:54:34 -0700187
Eric Dumazet5517d862007-05-08 00:32:57 -0700188#ifdef CONFIG_SMP
189/*
190 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
191 * Since cpu_power is a 'constant', we can use a reciprocal divide.
192 */
193static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
194{
195 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196}
197
198/*
199 * Each time a sched group cpu_power is changed,
200 * we must compute its reciprocal value
201 */
202static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
203{
204 sg->__cpu_power += val;
205 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
206}
207#endif
208
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700209/*
210 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
211 * to time slice values: [800ms ... 100ms ... 5ms]
212 *
213 * The higher a thread's priority, the bigger timeslices
214 * it gets during one round of execution. But even the lowest
215 * priority thread gets MIN_TIMESLICE worth of execution time.
216 */
217
Ingo Molnar36c8b582006-07-03 00:25:41 -0700218static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700219{
220 return static_prio_timeslice(p->static_prio);
221}
222
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200224 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700225 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226struct rt_prio_array {
227 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
228 struct list_head queue[MAX_RT_PRIO];
229};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200231struct load_stat {
232 struct load_weight load;
233 u64 load_update_start, load_update_last;
234 unsigned long delta_fair, delta_exec, delta_stat;
235};
236
237/* CFS-related fields in a runqueue */
238struct cfs_rq {
239 struct load_weight load;
240 unsigned long nr_running;
241
242 s64 fair_clock;
243 u64 exec_clock;
244 s64 wait_runtime;
245 u64 sleeper_bonus;
246 unsigned long wait_runtime_overruns, wait_runtime_underruns;
247
248 struct rb_root tasks_timeline;
249 struct rb_node *rb_leftmost;
250 struct rb_node *rb_load_balance_curr;
251#ifdef CONFIG_FAIR_GROUP_SCHED
252 /* 'curr' points to currently running entity on this cfs_rq.
253 * It is set to NULL otherwise (i.e when none are currently running).
254 */
255 struct sched_entity *curr;
256 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
257
258 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
259 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
260 * (like users, containers etc.)
261 *
262 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
263 * list is used during load balance.
264 */
265 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
266#endif
267};
268
269/* Real-Time classes' related field in a runqueue: */
270struct rt_rq {
271 struct rt_prio_array active;
272 int rt_load_balance_idx;
273 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
274};
275
276/*
277 * The prio-array type of the old scheduler:
278 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279struct prio_array {
280 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700281 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 struct list_head queue[MAX_PRIO];
283};
284
285/*
286 * This is the main, per-CPU runqueue data structure.
287 *
288 * Locking rule: those places that want to lock multiple runqueues
289 * (such as the load balancing or the thread migration code), lock
290 * acquire operations must be ordered by ascending &runqueue.
291 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700292struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200293 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295 /*
296 * nr_running and cpu_load should be in the same cacheline because
297 * remote CPUs use both these fields when doing load calculation.
298 */
299 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700300 unsigned long raw_weighted_load;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200301 #define CPU_LOAD_IDX_MAX 5
302 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700303 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700304#ifdef CONFIG_NO_HZ
305 unsigned char in_nohz_recently;
306#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200307 struct load_stat ls; /* capture load from *all* tasks on this cpu */
308 unsigned long nr_load_updates;
309 u64 nr_switches;
310
311 struct cfs_rq cfs;
312#ifdef CONFIG_FAIR_GROUP_SCHED
313 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200315 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316
317 /*
318 * This is part of a global counter where only the total sum
319 * over all CPUs matters. A task can increase this counter on
320 * one CPU and if it got migrated afterwards it may decrease
321 * it on another CPU. Always updated under the runqueue lock:
322 */
323 unsigned long nr_uninterruptible;
324
325 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800326 unsigned long long most_recent_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200327
Ingo Molnar36c8b582006-07-03 00:25:41 -0700328 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800329 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200331
Ingo Molnar70b97a72006-07-03 00:25:42 -0700332 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 int best_expired_prio;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200334
335 u64 clock, prev_clock_raw;
336 s64 clock_max_delta;
337
338 unsigned int clock_warps, clock_overflows;
339 unsigned int clock_unstable_events;
340
341 struct sched_class *load_balance_class;
342
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343 atomic_t nr_iowait;
344
345#ifdef CONFIG_SMP
346 struct sched_domain *sd;
347
348 /* For active balancing */
349 int active_balance;
350 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700351 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352
Ingo Molnar36c8b582006-07-03 00:25:41 -0700353 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354 struct list_head migration_queue;
355#endif
356
357#ifdef CONFIG_SCHEDSTATS
358 /* latency stats */
359 struct sched_info rq_sched_info;
360
361 /* sys_sched_yield() stats */
362 unsigned long yld_exp_empty;
363 unsigned long yld_act_empty;
364 unsigned long yld_both_empty;
365 unsigned long yld_cnt;
366
367 /* schedule() stats */
368 unsigned long sched_switch;
369 unsigned long sched_cnt;
370 unsigned long sched_goidle;
371
372 /* try_to_wake_up() stats */
373 unsigned long ttwu_cnt;
374 unsigned long ttwu_local;
375#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700376 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377};
378
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700379static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700380static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700382static inline int cpu_of(struct rq *rq)
383{
384#ifdef CONFIG_SMP
385 return rq->cpu;
386#else
387 return 0;
388#endif
389}
390
Nick Piggin674311d2005-06-25 14:57:27 -0700391/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200392 * Per-runqueue clock, as finegrained as the platform can give us:
393 */
394static unsigned long long __rq_clock(struct rq *rq)
395{
396 u64 prev_raw = rq->prev_clock_raw;
397 u64 now = sched_clock();
398 s64 delta = now - prev_raw;
399 u64 clock = rq->clock;
400
401 /*
402 * Protect against sched_clock() occasionally going backwards:
403 */
404 if (unlikely(delta < 0)) {
405 clock++;
406 rq->clock_warps++;
407 } else {
408 /*
409 * Catch too large forward jumps too:
410 */
411 if (unlikely(delta > 2*TICK_NSEC)) {
412 clock++;
413 rq->clock_overflows++;
414 } else {
415 if (unlikely(delta > rq->clock_max_delta))
416 rq->clock_max_delta = delta;
417 clock += delta;
418 }
419 }
420
421 rq->prev_clock_raw = now;
422 rq->clock = clock;
423
424 return clock;
425}
426
427static inline unsigned long long rq_clock(struct rq *rq)
428{
429 int this_cpu = smp_processor_id();
430
431 if (this_cpu == cpu_of(rq))
432 return __rq_clock(rq);
433
434 return rq->clock;
435}
436
437/*
Nick Piggin674311d2005-06-25 14:57:27 -0700438 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700439 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700440 *
441 * The domain tree of any CPU may only be accessed from within
442 * preempt-disabled sections.
443 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700444#define for_each_domain(cpu, __sd) \
445 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446
447#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
448#define this_rq() (&__get_cpu_var(runqueues))
449#define task_rq(p) cpu_rq(task_cpu(p))
450#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
451
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200452#ifdef CONFIG_FAIR_GROUP_SCHED
453/* Change a task's ->cfs_rq if it moves across CPUs */
454static inline void set_task_cfs_rq(struct task_struct *p)
455{
456 p->se.cfs_rq = &task_rq(p)->cfs;
457}
458#else
459static inline void set_task_cfs_rq(struct task_struct *p)
460{
461}
462#endif
463
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700465# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700467#ifndef finish_arch_switch
468# define finish_arch_switch(prev) do { } while (0)
469#endif
470
471#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700472static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700473{
474 return rq->curr == p;
475}
476
Ingo Molnar70b97a72006-07-03 00:25:42 -0700477static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700478{
479}
480
Ingo Molnar70b97a72006-07-03 00:25:42 -0700481static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700482{
Ingo Molnarda04c032005-09-13 11:17:59 +0200483#ifdef CONFIG_DEBUG_SPINLOCK
484 /* this is a valid case when another task releases the spinlock */
485 rq->lock.owner = current;
486#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700487 /*
488 * If we are tracking spinlock dependencies then we have to
489 * fix up the runqueue lock - which gets 'carried over' from
490 * prev into current:
491 */
492 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
493
Nick Piggin4866cde2005-06-25 14:57:23 -0700494 spin_unlock_irq(&rq->lock);
495}
496
497#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700498static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700499{
500#ifdef CONFIG_SMP
501 return p->oncpu;
502#else
503 return rq->curr == p;
504#endif
505}
506
Ingo Molnar70b97a72006-07-03 00:25:42 -0700507static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700508{
509#ifdef CONFIG_SMP
510 /*
511 * We can optimise this out completely for !SMP, because the
512 * SMP rebalancing from interrupt is the only thing that cares
513 * here.
514 */
515 next->oncpu = 1;
516#endif
517#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
518 spin_unlock_irq(&rq->lock);
519#else
520 spin_unlock(&rq->lock);
521#endif
522}
523
Ingo Molnar70b97a72006-07-03 00:25:42 -0700524static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700525{
526#ifdef CONFIG_SMP
527 /*
528 * After ->oncpu is cleared, the task can be moved to a different CPU.
529 * We must ensure this doesn't happen until the switch is completely
530 * finished.
531 */
532 smp_wmb();
533 prev->oncpu = 0;
534#endif
535#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
536 local_irq_enable();
537#endif
538}
539#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540
541/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700542 * __task_rq_lock - lock the runqueue a given task resides on.
543 * Must be called interrupts disabled.
544 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700545static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700546 __acquires(rq->lock)
547{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700548 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700549
550repeat_lock_task:
551 rq = task_rq(p);
552 spin_lock(&rq->lock);
553 if (unlikely(rq != task_rq(p))) {
554 spin_unlock(&rq->lock);
555 goto repeat_lock_task;
556 }
557 return rq;
558}
559
560/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561 * task_rq_lock - lock the runqueue a given task resides on and disable
562 * interrupts. Note the ordering: we can safely lookup the task_rq without
563 * explicitly disabling preemption.
564 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700565static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566 __acquires(rq->lock)
567{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700568 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569
570repeat_lock_task:
571 local_irq_save(*flags);
572 rq = task_rq(p);
573 spin_lock(&rq->lock);
574 if (unlikely(rq != task_rq(p))) {
575 spin_unlock_irqrestore(&rq->lock, *flags);
576 goto repeat_lock_task;
577 }
578 return rq;
579}
580
Ingo Molnar70b97a72006-07-03 00:25:42 -0700581static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700582 __releases(rq->lock)
583{
584 spin_unlock(&rq->lock);
585}
586
Ingo Molnar70b97a72006-07-03 00:25:42 -0700587static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700588 __releases(rq->lock)
589{
590 spin_unlock_irqrestore(&rq->lock, *flags);
591}
592
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800594 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700596static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 __acquires(rq->lock)
598{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700599 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600
601 local_irq_disable();
602 rq = this_rq();
603 spin_lock(&rq->lock);
604
605 return rq;
606}
607
Ingo Molnar425e0962007-07-09 18:51:58 +0200608#include "sched_stats.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609
610/*
611 * Adding/removing a task to/from a priority array:
612 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700613static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614{
615 array->nr_active--;
616 list_del(&p->run_list);
617 if (list_empty(array->queue + p->prio))
618 __clear_bit(p->prio, array->bitmap);
619}
620
Ingo Molnar70b97a72006-07-03 00:25:42 -0700621static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700622{
623 sched_info_queued(p);
624 list_add_tail(&p->run_list, array->queue + p->prio);
625 __set_bit(p->prio, array->bitmap);
626 array->nr_active++;
627 p->array = array;
628}
629
630/*
631 * Put task to the end of the run list without the overhead of dequeue
632 * followed by enqueue.
633 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700634static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635{
636 list_move_tail(&p->run_list, array->queue + p->prio);
637}
638
Ingo Molnar70b97a72006-07-03 00:25:42 -0700639static inline void
640enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641{
642 list_add(&p->run_list, array->queue + p->prio);
643 __set_bit(p->prio, array->bitmap);
644 array->nr_active++;
645 p->array = array;
646}
647
648/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700649 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650 * priority but is modified by bonuses/penalties.
651 *
652 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
653 * into the -5 ... 0 ... +5 bonus/penalty range.
654 *
655 * We use 25% of the full 0...39 priority range so that:
656 *
657 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
658 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
659 *
660 * Both properties are important to certain workloads.
661 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700662
Ingo Molnar36c8b582006-07-03 00:25:41 -0700663static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664{
665 int bonus, prio;
666
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
668
669 prio = p->static_prio - bonus;
670 if (prio < MAX_RT_PRIO)
671 prio = MAX_RT_PRIO;
672 if (prio > MAX_PRIO-1)
673 prio = MAX_PRIO-1;
674 return prio;
675}
676
677/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700678 * To aid in avoiding the subversion of "niceness" due to uneven distribution
679 * of tasks with abnormal "nice" values across CPUs the contribution that
680 * each task makes to its run queue's load is weighted according to its
681 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
682 * scaled version of the new time slice allocation that they receive on time
683 * slice expiry etc.
684 */
685
686/*
687 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
688 * If static_prio_timeslice() is ever changed to break this assumption then
689 * this code will need modification
690 */
691#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
692#define LOAD_WEIGHT(lp) \
693 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
694#define PRIO_TO_LOAD_WEIGHT(prio) \
695 LOAD_WEIGHT(static_prio_timeslice(prio))
696#define RTPRIO_TO_LOAD_WEIGHT(rp) \
697 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
698
Ingo Molnar36c8b582006-07-03 00:25:41 -0700699static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700700{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700701 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700702#ifdef CONFIG_SMP
703 if (p == task_rq(p)->migration_thread)
704 /*
705 * The migration thread does the actual balancing.
706 * Giving its load any weight will skew balancing
707 * adversely.
708 */
709 p->load_weight = 0;
710 else
711#endif
712 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
713 } else
714 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
715}
716
Ingo Molnar36c8b582006-07-03 00:25:41 -0700717static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700718inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700719{
720 rq->raw_weighted_load += p->load_weight;
721}
722
Ingo Molnar36c8b582006-07-03 00:25:41 -0700723static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700724dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700725{
726 rq->raw_weighted_load -= p->load_weight;
727}
728
Ingo Molnar70b97a72006-07-03 00:25:42 -0700729static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700730{
731 rq->nr_running++;
732 inc_raw_weighted_load(rq, p);
733}
734
Ingo Molnar70b97a72006-07-03 00:25:42 -0700735static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700736{
737 rq->nr_running--;
738 dec_raw_weighted_load(rq, p);
739}
740
741/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700742 * Calculate the expected normal priority: i.e. priority
743 * without taking RT-inheritance into account. Might be
744 * boosted by interactivity modifiers. Changes upon fork,
745 * setprio syscalls, and whenever the interactivity
746 * estimator recalculates.
747 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700748static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700749{
750 int prio;
751
752 if (has_rt_policy(p))
753 prio = MAX_RT_PRIO-1 - p->rt_priority;
754 else
755 prio = __normal_prio(p);
756 return prio;
757}
758
759/*
760 * Calculate the current priority, i.e. the priority
761 * taken into account by the scheduler. This value might
762 * be boosted by RT tasks, or might be boosted by
763 * interactivity modifiers. Will be RT if the task got
764 * RT-boosted. If not then it returns p->normal_prio.
765 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700766static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700767{
768 p->normal_prio = normal_prio(p);
769 /*
770 * If we are RT tasks or we were boosted to RT priority,
771 * keep the priority unchanged. Otherwise, update priority
772 * to the normal priority:
773 */
774 if (!rt_prio(p->prio))
775 return p->normal_prio;
776 return p->prio;
777}
778
779/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780 * __activate_task - move a task to the runqueue.
781 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700782static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700784 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800785
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700786 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800787 target = rq->expired;
788 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700789 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700790}
791
792/*
793 * __activate_idle_task - move idle task to the _front_ of runqueue.
794 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700795static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796{
797 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700798 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799}
800
Ingo Molnarb29739f2006-06-27 02:54:51 -0700801/*
802 * Recalculate p->normal_prio and p->prio after having slept,
803 * updating the sleep-average too:
804 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700805static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806{
807 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700808 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809
Con Kolivasd425b272006-03-31 02:31:29 -0800810 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800811 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812
813 if (likely(sleep_time > 0)) {
814 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700815 * This ceiling is set to the lowest priority that would allow
816 * a task to be reinserted into the active array on timeslice
817 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 */
Con Kolivas72d28542006-06-27 02:54:30 -0700819 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800820
Con Kolivas72d28542006-06-27 02:54:30 -0700821 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
822 /*
823 * Prevents user tasks from achieving best priority
824 * with one single large enough sleep.
825 */
826 p->sleep_avg = ceiling;
827 /*
828 * Using INTERACTIVE_SLEEP() as a ceiling places a
829 * nice(0) task 1ms sleep away from promotion, and
830 * gives it 700ms to round-robin with no chance of
831 * being demoted. This is more than generous, so
832 * mark this sleep as non-interactive to prevent the
833 * on-runqueue bonus logic from intervening should
834 * this task not receive cpu immediately.
835 */
836 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837 } else {
838 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839 * Tasks waking from uninterruptible sleep are
840 * limited in their sleep_avg rise as they
841 * are likely to be waiting on I/O
842 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800843 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700844 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700845 sleep_time = 0;
846 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700847 ceiling) {
848 p->sleep_avg = ceiling;
849 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850 }
851 }
852
853 /*
854 * This code gives a bonus to interactive tasks.
855 *
856 * The boost works by updating the 'average sleep time'
857 * value here, based on ->timestamp. The more time a
858 * task spends sleeping, the higher the average gets -
859 * and the higher the priority boost gets as well.
860 */
861 p->sleep_avg += sleep_time;
862
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863 }
Con Kolivas72d28542006-06-27 02:54:30 -0700864 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
865 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866 }
867
Chen Shanga3464a12005-06-25 14:57:31 -0700868 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869}
870
871/*
872 * activate_task - move a task to the runqueue and do priority recalculation
873 *
874 * Update all the scheduling statistics stuff. (sleep average
875 * calculation, priority modifiers, etc.)
876 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700877static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878{
879 unsigned long long now;
880
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800881 if (rt_task(p))
882 goto out;
883
Linus Torvalds1da177e2005-04-16 15:20:36 -0700884 now = sched_clock();
885#ifdef CONFIG_SMP
886 if (!local) {
887 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700888 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800889 now = (now - this_rq->most_recent_timestamp)
890 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891 }
892#endif
893
Ingo Molnarece8a682006-12-06 20:37:24 -0800894 /*
895 * Sleep time is in units of nanosecs, so shift by 20 to get a
896 * milliseconds-range estimation of the amount of time that the task
897 * spent sleeping:
898 */
899 if (unlikely(prof_on == SLEEP_PROFILING)) {
900 if (p->state == TASK_UNINTERRUPTIBLE)
901 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
902 (now - p->timestamp) >> 20);
903 }
904
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800905 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906
907 /*
908 * This checks to make sure it's not an uninterruptible task
909 * that is now waking up.
910 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800911 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700912 /*
913 * Tasks which were woken up by interrupts (ie. hw events)
914 * are most likely of interactive nature. So we give them
915 * the credit of extending their sleep time to the period
916 * of time they spend on the runqueue, waiting for execution
917 * on a CPU, first time around:
918 */
919 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800920 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921 else {
922 /*
923 * Normal first-time wakeups get a credit too for
924 * on-runqueue time, but it will be weighted down:
925 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800926 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 }
928 }
929 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800930out:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700931 __activate_task(p, rq);
932}
933
934/*
935 * deactivate_task - remove a task from the runqueue.
936 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700937static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938{
Peter Williams2dd73a42006-06-27 02:54:34 -0700939 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940 dequeue_task(p, p->array);
941 p->array = NULL;
942}
943
944/*
945 * resched_task - mark a task 'to be rescheduled now'.
946 *
947 * On UP this means the setting of the need_resched flag, on SMP it
948 * might also involve a cross-CPU call to trigger the scheduler on
949 * the target CPU.
950 */
951#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +0200952
953#ifndef tsk_is_polling
954#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
955#endif
956
Ingo Molnar36c8b582006-07-03 00:25:41 -0700957static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800959 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960
961 assert_spin_locked(&task_rq(p)->lock);
962
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800963 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
964 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800966 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
967
968 cpu = task_cpu(p);
969 if (cpu == smp_processor_id())
970 return;
971
Andi Kleen495ab9c2006-06-26 13:59:11 +0200972 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800973 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +0200974 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800975 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976}
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700977
978static void resched_cpu(int cpu)
979{
980 struct rq *rq = cpu_rq(cpu);
981 unsigned long flags;
982
983 if (!spin_trylock_irqsave(&rq->lock, flags))
984 return;
985 resched_task(cpu_curr(cpu));
986 spin_unlock_irqrestore(&rq->lock, flags);
987}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988#else
Ingo Molnar36c8b582006-07-03 00:25:41 -0700989static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800991 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992 set_tsk_need_resched(p);
993}
994#endif
995
996/**
997 * task_curr - is this task currently executing on a CPU?
998 * @p: the task in question.
999 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001000inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
Peter Williams2dd73a42006-06-27 02:54:34 -07001005/* Used instead of source_load when we know the type == 0 */
1006unsigned long weighted_cpuload(const int cpu)
1007{
1008 return cpu_rq(cpu)->raw_weighted_load;
1009}
1010
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001012
1013void set_task_cpu(struct task_struct *p, unsigned int cpu)
1014{
1015 task_thread_info(p)->cpu = cpu;
1016}
1017
Ingo Molnar70b97a72006-07-03 00:25:42 -07001018struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020
Ingo Molnar36c8b582006-07-03 00:25:41 -07001021 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 int dest_cpu;
1023
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001025};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026
1027/*
1028 * The task's runqueue lock must be held.
1029 * Returns true if you have to wait for migration thread.
1030 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001031static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001032migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001034 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035
1036 /*
1037 * If the task is not on a runqueue (and not running), then
1038 * it is sufficient to simply update the task's cpu field.
1039 */
1040 if (!p->array && !task_running(rq, p)) {
1041 set_task_cpu(p, dest_cpu);
1042 return 0;
1043 }
1044
1045 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046 req->task = p;
1047 req->dest_cpu = dest_cpu;
1048 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001049
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050 return 1;
1051}
1052
1053/*
1054 * wait_task_inactive - wait for a thread to unschedule.
1055 *
1056 * The caller must ensure that the task *will* unschedule sometime soon,
1057 * else this function might spin for a *long* time. This function can't
1058 * be called with interrupts off, or it may introduce deadlock with
1059 * smp_call_function() if an IPI is sent by the same process we are
1060 * waiting to become inactive.
1061 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001062void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063{
1064 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001065 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001066 struct prio_array *array;
1067 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068
1069repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001070 /*
1071 * We do the initial early heuristics without holding
1072 * any task-queue locks at all. We'll only try to get
1073 * the runqueue lock when things look like they will
1074 * work out!
1075 */
1076 rq = task_rq(p);
1077
1078 /*
1079 * If the task is actively running on another CPU
1080 * still, just relax and busy-wait without holding
1081 * any locks.
1082 *
1083 * NOTE! Since we don't hold any locks, it's not
1084 * even sure that "rq" stays as the right runqueue!
1085 * But we don't care, since "task_running()" will
1086 * return false if the runqueue has changed and p
1087 * is actually now running somewhere else!
1088 */
1089 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001091
1092 /*
1093 * Ok, time to look more closely! We need the rq
1094 * lock now, to be *sure*. If we're wrong, we'll
1095 * just go back and repeat.
1096 */
1097 rq = task_rq_lock(p, &flags);
1098 running = task_running(rq, p);
1099 array = p->array;
1100 task_rq_unlock(rq, &flags);
1101
1102 /*
1103 * Was it really running after all now that we
1104 * checked with the proper locks actually held?
1105 *
1106 * Oops. Go back and try again..
1107 */
1108 if (unlikely(running)) {
1109 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110 goto repeat;
1111 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001112
1113 /*
1114 * It's not enough that it's not actively running,
1115 * it must be off the runqueue _entirely_, and not
1116 * preempted!
1117 *
1118 * So if it wa still runnable (but just not actively
1119 * running right now), it's preempted, and we should
1120 * yield - it could be a while.
1121 */
1122 if (unlikely(array)) {
1123 yield();
1124 goto repeat;
1125 }
1126
1127 /*
1128 * Ahh, all good. It wasn't running, and it wasn't
1129 * runnable, which means that it will never become
1130 * running in the future either. We're all done!
1131 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132}
1133
1134/***
1135 * kick_process - kick a running thread to enter/exit the kernel
1136 * @p: the to-be-kicked thread
1137 *
1138 * Cause a process which is running on another CPU to enter
1139 * kernel-mode, without any delay. (to get signals handled.)
1140 *
1141 * NOTE: this function doesnt have to take the runqueue lock,
1142 * because all it wants to ensure is that the remote task enters
1143 * the kernel. If the IPI races and the task has been migrated
1144 * to another CPU then no harm is done and the purpose has been
1145 * achieved as well.
1146 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001147void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148{
1149 int cpu;
1150
1151 preempt_disable();
1152 cpu = task_cpu(p);
1153 if ((cpu != smp_processor_id()) && task_curr(p))
1154 smp_send_reschedule(cpu);
1155 preempt_enable();
1156}
1157
1158/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001159 * Return a low guess at the load of a migration-source cpu weighted
1160 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161 *
1162 * We want to under-estimate the load of migration sources, to
1163 * balance conservatively.
1164 */
Con Kolivasb9104722005-11-08 21:38:55 -08001165static inline unsigned long source_load(int cpu, int type)
1166{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001167 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001168
Peter Williams2dd73a42006-06-27 02:54:34 -07001169 if (type == 0)
1170 return rq->raw_weighted_load;
1171
1172 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001173}
1174
1175/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001176 * Return a high guess at the load of a migration-target cpu weighted
1177 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 */
Con Kolivasb9104722005-11-08 21:38:55 -08001179static inline unsigned long target_load(int cpu, int type)
1180{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001181 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001182
Peter Williams2dd73a42006-06-27 02:54:34 -07001183 if (type == 0)
1184 return rq->raw_weighted_load;
1185
1186 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1187}
1188
1189/*
1190 * Return the average load per task on the cpu's run queue
1191 */
1192static inline unsigned long cpu_avg_load_per_task(int cpu)
1193{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001194 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001195 unsigned long n = rq->nr_running;
1196
Ingo Molnar48f24c42006-07-03 00:25:40 -07001197 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198}
1199
Nick Piggin147cbb42005-06-25 14:57:19 -07001200/*
1201 * find_idlest_group finds and returns the least busy CPU group within the
1202 * domain.
1203 */
1204static struct sched_group *
1205find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1206{
1207 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1208 unsigned long min_load = ULONG_MAX, this_load = 0;
1209 int load_idx = sd->forkexec_idx;
1210 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1211
1212 do {
1213 unsigned long load, avg_load;
1214 int local_group;
1215 int i;
1216
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001217 /* Skip over this group if it has no CPUs allowed */
1218 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1219 goto nextgroup;
1220
Nick Piggin147cbb42005-06-25 14:57:19 -07001221 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001222
1223 /* Tally up the load of all CPUs in the group */
1224 avg_load = 0;
1225
1226 for_each_cpu_mask(i, group->cpumask) {
1227 /* Bias balancing toward cpus of our domain */
1228 if (local_group)
1229 load = source_load(i, load_idx);
1230 else
1231 load = target_load(i, load_idx);
1232
1233 avg_load += load;
1234 }
1235
1236 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001237 avg_load = sg_div_cpu_power(group,
1238 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001239
1240 if (local_group) {
1241 this_load = avg_load;
1242 this = group;
1243 } else if (avg_load < min_load) {
1244 min_load = avg_load;
1245 idlest = group;
1246 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001247nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001248 group = group->next;
1249 } while (group != sd->groups);
1250
1251 if (!idlest || 100*this_load < imbalance*min_load)
1252 return NULL;
1253 return idlest;
1254}
1255
1256/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001257 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001258 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001259static int
1260find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001261{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001262 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001263 unsigned long load, min_load = ULONG_MAX;
1264 int idlest = -1;
1265 int i;
1266
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001267 /* Traverse only the allowed CPUs */
1268 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1269
1270 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001271 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001272
1273 if (load < min_load || (load == min_load && i == this_cpu)) {
1274 min_load = load;
1275 idlest = i;
1276 }
1277 }
1278
1279 return idlest;
1280}
1281
Nick Piggin476d1392005-06-25 14:57:29 -07001282/*
1283 * sched_balance_self: balance the current task (running on cpu) in domains
1284 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1285 * SD_BALANCE_EXEC.
1286 *
1287 * Balance, ie. select the least loaded group.
1288 *
1289 * Returns the target CPU number, or the same CPU if no balancing is needed.
1290 *
1291 * preempt must be disabled.
1292 */
1293static int sched_balance_self(int cpu, int flag)
1294{
1295 struct task_struct *t = current;
1296 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001297
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001298 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001299 /*
1300 * If power savings logic is enabled for a domain, stop there.
1301 */
1302 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1303 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001304 if (tmp->flags & flag)
1305 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001306 }
Nick Piggin476d1392005-06-25 14:57:29 -07001307
1308 while (sd) {
1309 cpumask_t span;
1310 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001311 int new_cpu, weight;
1312
1313 if (!(sd->flags & flag)) {
1314 sd = sd->child;
1315 continue;
1316 }
Nick Piggin476d1392005-06-25 14:57:29 -07001317
1318 span = sd->span;
1319 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001320 if (!group) {
1321 sd = sd->child;
1322 continue;
1323 }
Nick Piggin476d1392005-06-25 14:57:29 -07001324
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001325 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001326 if (new_cpu == -1 || new_cpu == cpu) {
1327 /* Now try balancing at a lower domain level of cpu */
1328 sd = sd->child;
1329 continue;
1330 }
Nick Piggin476d1392005-06-25 14:57:29 -07001331
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001332 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001333 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001334 sd = NULL;
1335 weight = cpus_weight(span);
1336 for_each_domain(cpu, tmp) {
1337 if (weight <= cpus_weight(tmp->span))
1338 break;
1339 if (tmp->flags & flag)
1340 sd = tmp;
1341 }
1342 /* while loop will break here if sd == NULL */
1343 }
1344
1345 return cpu;
1346}
1347
1348#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349
1350/*
1351 * wake_idle() will wake a task on an idle cpu if task->cpu is
1352 * not idle and an idle cpu is available. The span of cpus to
1353 * search starts with cpus closest then further out as needed,
1354 * so we always favor a closer, idle cpu.
1355 *
1356 * Returns the CPU we should wake onto.
1357 */
1358#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001359static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360{
1361 cpumask_t tmp;
1362 struct sched_domain *sd;
1363 int i;
1364
Siddha, Suresh B49531982007-05-08 00:33:01 -07001365 /*
1366 * If it is idle, then it is the best cpu to run this task.
1367 *
1368 * This cpu is also the best, if it has more than one task already.
1369 * Siblings must be also busy(in most cases) as they didn't already
1370 * pickup the extra load from this cpu and hence we need not check
1371 * sibling runqueue info. This will avoid the checks and cache miss
1372 * penalities associated with that.
1373 */
1374 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 return cpu;
1376
1377 for_each_domain(cpu, sd) {
1378 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001379 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380 for_each_cpu_mask(i, tmp) {
1381 if (idle_cpu(i))
1382 return i;
1383 }
1384 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001385 else
1386 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 }
1388 return cpu;
1389}
1390#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001391static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392{
1393 return cpu;
1394}
1395#endif
1396
1397/***
1398 * try_to_wake_up - wake up a thread
1399 * @p: the to-be-woken-up thread
1400 * @state: the mask of task states that can be woken
1401 * @sync: do a synchronous wakeup?
1402 *
1403 * Put it on the run-queue if it's not already there. The "current"
1404 * thread is always on the run-queue (except when the actual
1405 * re-schedule is in progress), and as such you're allowed to do
1406 * the simpler "current->state = TASK_RUNNING" to mark yourself
1407 * runnable without the overhead of this.
1408 *
1409 * returns failure only if the task is already active.
1410 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001411static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412{
1413 int cpu, this_cpu, success = 0;
1414 unsigned long flags;
1415 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001416 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001418 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001419 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 int new_cpu;
1421#endif
1422
1423 rq = task_rq_lock(p, &flags);
1424 old_state = p->state;
1425 if (!(old_state & state))
1426 goto out;
1427
1428 if (p->array)
1429 goto out_running;
1430
1431 cpu = task_cpu(p);
1432 this_cpu = smp_processor_id();
1433
1434#ifdef CONFIG_SMP
1435 if (unlikely(task_running(rq, p)))
1436 goto out_activate;
1437
Nick Piggin78979862005-06-25 14:57:13 -07001438 new_cpu = cpu;
1439
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 schedstat_inc(rq, ttwu_cnt);
1441 if (cpu == this_cpu) {
1442 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001443 goto out_set_cpu;
1444 }
1445
1446 for_each_domain(this_cpu, sd) {
1447 if (cpu_isset(cpu, sd->span)) {
1448 schedstat_inc(sd, ttwu_wake_remote);
1449 this_sd = sd;
1450 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 }
1452 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453
Nick Piggin78979862005-06-25 14:57:13 -07001454 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 goto out_set_cpu;
1456
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 /*
Nick Piggin78979862005-06-25 14:57:13 -07001458 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 */
Nick Piggin78979862005-06-25 14:57:13 -07001460 if (this_sd) {
1461 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463
Nick Piggina3f21bc2005-06-25 14:57:15 -07001464 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1465
Nick Piggin78979862005-06-25 14:57:13 -07001466 load = source_load(cpu, idx);
1467 this_load = target_load(this_cpu, idx);
1468
Nick Piggin78979862005-06-25 14:57:13 -07001469 new_cpu = this_cpu; /* Wake to this CPU if we can */
1470
Nick Piggina3f21bc2005-06-25 14:57:15 -07001471 if (this_sd->flags & SD_WAKE_AFFINE) {
1472 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001473 unsigned long tl_per_task;
1474
1475 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001476
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001478 * If sync wakeup then subtract the (maximum possible)
1479 * effect of the currently running task from the load
1480 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001482 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001483 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001484
1485 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001486 tl + target_load(cpu, idx) <= tl_per_task) ||
1487 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001488 /*
1489 * This domain has SD_WAKE_AFFINE and
1490 * p is cache cold in this domain, and
1491 * there is no bad imbalance.
1492 */
1493 schedstat_inc(this_sd, ttwu_move_affine);
1494 goto out_set_cpu;
1495 }
1496 }
1497
1498 /*
1499 * Start passive balancing when half the imbalance_pct
1500 * limit is reached.
1501 */
1502 if (this_sd->flags & SD_WAKE_BALANCE) {
1503 if (imbalance*this_load <= 100*load) {
1504 schedstat_inc(this_sd, ttwu_move_balance);
1505 goto out_set_cpu;
1506 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507 }
1508 }
1509
1510 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1511out_set_cpu:
1512 new_cpu = wake_idle(new_cpu, p);
1513 if (new_cpu != cpu) {
1514 set_task_cpu(p, new_cpu);
1515 task_rq_unlock(rq, &flags);
1516 /* might preempt at this point */
1517 rq = task_rq_lock(p, &flags);
1518 old_state = p->state;
1519 if (!(old_state & state))
1520 goto out;
1521 if (p->array)
1522 goto out_running;
1523
1524 this_cpu = smp_processor_id();
1525 cpu = task_cpu(p);
1526 }
1527
1528out_activate:
1529#endif /* CONFIG_SMP */
1530 if (old_state == TASK_UNINTERRUPTIBLE) {
1531 rq->nr_uninterruptible--;
1532 /*
1533 * Tasks on involuntary sleep don't earn
1534 * sleep_avg beyond just interactive state.
1535 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001536 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001537 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538
1539 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001540 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001541 * woken up with their sleep average not weighted in an
1542 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001543 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001544 if (old_state & TASK_NONINTERACTIVE)
1545 p->sleep_type = SLEEP_NONINTERACTIVE;
1546
1547
1548 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001549 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550 * Sync wakeups (i.e. those types of wakeups where the waker
1551 * has indicated that it will leave the CPU in short order)
1552 * don't trigger a preemption, if the woken up task will run on
1553 * this cpu. (in this case the 'I will reschedule' promise of
1554 * the waker guarantees that the freshly woken up task is going
1555 * to be considered on this CPU.)
1556 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 if (!sync || cpu != this_cpu) {
1558 if (TASK_PREEMPTS_CURR(p, rq))
1559 resched_task(rq->curr);
1560 }
1561 success = 1;
1562
1563out_running:
1564 p->state = TASK_RUNNING;
1565out:
1566 task_rq_unlock(rq, &flags);
1567
1568 return success;
1569}
1570
Ingo Molnar36c8b582006-07-03 00:25:41 -07001571int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572{
1573 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1574 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1575}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576EXPORT_SYMBOL(wake_up_process);
1577
Ingo Molnar36c8b582006-07-03 00:25:41 -07001578int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579{
1580 return try_to_wake_up(p, state, 0);
1581}
1582
Peter Williamsbc947632006-12-19 12:48:50 +10001583static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584/*
1585 * Perform scheduler related setup for a newly forked process p.
1586 * p is forked by current.
1587 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001588void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589{
Nick Piggin476d1392005-06-25 14:57:29 -07001590 int cpu = get_cpu();
1591
1592#ifdef CONFIG_SMP
1593 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1594#endif
1595 set_task_cpu(p, cpu);
1596
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597 /*
1598 * We mark the process as running here, but have not actually
1599 * inserted it onto the runqueue yet. This guarantees that
1600 * nobody will actually run it, and a signal or other external
1601 * event cannot wake it up and insert it on the runqueue either.
1602 */
1603 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001604
1605 /*
1606 * Make sure we do not leak PI boosting priority to the child:
1607 */
1608 p->prio = current->normal_prio;
1609
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610 INIT_LIST_HEAD(&p->run_list);
1611 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001612#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1613 if (unlikely(sched_info_on()))
1614 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001616#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001617 p->oncpu = 0;
1618#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001620 /* Want to start with kernel preemption disabled. */
Al Viroa1261f542005-11-13 16:06:55 -08001621 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622#endif
1623 /*
1624 * Share the timeslice between parent and child, thus the
1625 * total amount of pending timeslices in the system doesn't change,
1626 * resulting in more scheduling fairness.
1627 */
1628 local_irq_disable();
1629 p->time_slice = (current->time_slice + 1) >> 1;
1630 /*
1631 * The remainder of the first timeslice might be recovered by
1632 * the parent if the child exits early enough.
1633 */
1634 p->first_time_slice = 1;
1635 current->time_slice >>= 1;
1636 p->timestamp = sched_clock();
1637 if (unlikely(!current->time_slice)) {
1638 /*
1639 * This case is rare, it happens when the parent has only
1640 * a single jiffy left from its timeslice. Taking the
1641 * runqueue lock is not a problem.
1642 */
1643 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001644 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001645 }
1646 local_irq_enable();
1647 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648}
1649
1650/*
1651 * wake_up_new_task - wake up a newly created task for the first time.
1652 *
1653 * This function will do some initial scheduler statistics housekeeping
1654 * that must be done for every newly created context, then puts the task
1655 * on the runqueue and wakes it.
1656 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001657void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001659 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660 unsigned long flags;
1661 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
1663 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001665 this_cpu = smp_processor_id();
1666 cpu = task_cpu(p);
1667
Linus Torvalds1da177e2005-04-16 15:20:36 -07001668 /*
1669 * We decrease the sleep average of forking parents
1670 * and children as well, to keep max-interactive tasks
1671 * from forking tasks that are max-interactive. The parent
1672 * (current) is done further down, under its lock.
1673 */
1674 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1675 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1676
1677 p->prio = effective_prio(p);
1678
1679 if (likely(cpu == this_cpu)) {
1680 if (!(clone_flags & CLONE_VM)) {
1681 /*
1682 * The VM isn't cloned, so we're in a good position to
1683 * do child-runs-first in anticipation of an exec. This
1684 * usually avoids a lot of COW overhead.
1685 */
1686 if (unlikely(!current->array))
1687 __activate_task(p, rq);
1688 else {
1689 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001690 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691 list_add_tail(&p->run_list, &current->run_list);
1692 p->array = current->array;
1693 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001694 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695 }
1696 set_need_resched();
1697 } else
1698 /* Run child last */
1699 __activate_task(p, rq);
1700 /*
1701 * We skip the following code due to cpu == this_cpu
1702 *
1703 * task_rq_unlock(rq, &flags);
1704 * this_rq = task_rq_lock(current, &flags);
1705 */
1706 this_rq = rq;
1707 } else {
1708 this_rq = cpu_rq(this_cpu);
1709
1710 /*
1711 * Not the local CPU - must adjust timestamp. This should
1712 * get optimised away in the !CONFIG_SMP case.
1713 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001714 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1715 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 __activate_task(p, rq);
1717 if (TASK_PREEMPTS_CURR(p, rq))
1718 resched_task(rq->curr);
1719
1720 /*
1721 * Parent and child are on different CPUs, now get the
1722 * parent runqueue to update the parent's ->sleep_avg:
1723 */
1724 task_rq_unlock(rq, &flags);
1725 this_rq = task_rq_lock(current, &flags);
1726 }
1727 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1728 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1729 task_rq_unlock(this_rq, &flags);
1730}
1731
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001733 * prepare_task_switch - prepare to switch tasks
1734 * @rq: the runqueue preparing to switch
1735 * @next: the task we are going to switch to.
1736 *
1737 * This is called with the rq lock held and interrupts off. It must
1738 * be paired with a subsequent finish_task_switch after the context
1739 * switch.
1740 *
1741 * prepare_task_switch sets up locking and calls architecture specific
1742 * hooks.
1743 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001744static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001745{
1746 prepare_lock_switch(rq, next);
1747 prepare_arch_switch(next);
1748}
1749
1750/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001752 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001753 * @prev: the thread we just switched away from.
1754 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001755 * finish_task_switch must be called after the context switch, paired
1756 * with a prepare_task_switch call before the context switch.
1757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1758 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759 *
1760 * Note that we may have delayed dropping an mm in context_switch(). If
1761 * so, we finish that here outside of the runqueue lock. (Doing it
1762 * with the lock held can cause deadlocks; see schedule() for
1763 * details.)
1764 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001765static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 __releases(rq->lock)
1767{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001769 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
1771 rq->prev_mm = NULL;
1772
1773 /*
1774 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001776 * schedule one last time. The schedule call will never return, and
1777 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001778 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779 * still held, otherwise prev could be scheduled on another cpu, die
1780 * there before we look at prev->state, and then the reference would
1781 * be dropped twice.
1782 * Manfred Spraul <manfred@colorfullife.com>
1783 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001784 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001785 finish_arch_switch(prev);
1786 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787 if (mm)
1788 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001789 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001790 /*
1791 * Remove function-return probe instances associated with this
1792 * task and put them back on the free list.
1793 */
1794 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001796 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797}
1798
1799/**
1800 * schedule_tail - first thing a freshly forked thread must call.
1801 * @prev: the thread we just switched away from.
1802 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001803asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 __releases(rq->lock)
1805{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001806 struct rq *rq = this_rq();
1807
Nick Piggin4866cde2005-06-25 14:57:23 -07001808 finish_task_switch(rq, prev);
1809#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1810 /* In this case, finish_task_switch does not reenable preemption */
1811 preempt_enable();
1812#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 if (current->set_child_tid)
1814 put_user(current->pid, current->set_child_tid);
1815}
1816
1817/*
1818 * context_switch - switch to the new MM and the new
1819 * thread's register state.
1820 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001821static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001822context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001823 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824{
1825 struct mm_struct *mm = next->mm;
1826 struct mm_struct *oldmm = prev->active_mm;
1827
Zachary Amsden9226d122007-02-13 13:26:21 +01001828 /*
1829 * For paravirt, this is coupled with an exit in switch_to to
1830 * combine the page table reload and the switch backend into
1831 * one hypercall.
1832 */
1833 arch_enter_lazy_cpu_mode();
1834
Nick Pigginbeed33a2006-10-11 01:21:52 -07001835 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 next->active_mm = oldmm;
1837 atomic_inc(&oldmm->mm_count);
1838 enter_lazy_tlb(oldmm, next);
1839 } else
1840 switch_mm(oldmm, mm, next);
1841
Nick Pigginbeed33a2006-10-11 01:21:52 -07001842 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843 prev->active_mm = NULL;
1844 WARN_ON(rq->prev_mm);
1845 rq->prev_mm = oldmm;
1846 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001847 /*
1848 * Since the runqueue lock will be released by the next
1849 * task (which is an invalid locking op but in the case
1850 * of the scheduler it's an obvious special-case), so we
1851 * do an early lockdep release here:
1852 */
1853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001855#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856
1857 /* Here we just switch the register state and the stack. */
1858 switch_to(prev, next, prev);
1859
1860 return prev;
1861}
1862
1863/*
1864 * nr_running, nr_uninterruptible and nr_context_switches:
1865 *
1866 * externally visible scheduler statistics: current number of runnable
1867 * threads, current number of uninterruptible-sleeping threads, total
1868 * number of context switches performed since bootup.
1869 */
1870unsigned long nr_running(void)
1871{
1872 unsigned long i, sum = 0;
1873
1874 for_each_online_cpu(i)
1875 sum += cpu_rq(i)->nr_running;
1876
1877 return sum;
1878}
1879
1880unsigned long nr_uninterruptible(void)
1881{
1882 unsigned long i, sum = 0;
1883
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001884 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 sum += cpu_rq(i)->nr_uninterruptible;
1886
1887 /*
1888 * Since we read the counters lockless, it might be slightly
1889 * inaccurate. Do not allow it to go below zero though:
1890 */
1891 if (unlikely((long)sum < 0))
1892 sum = 0;
1893
1894 return sum;
1895}
1896
1897unsigned long long nr_context_switches(void)
1898{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001899 int i;
1900 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001902 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 sum += cpu_rq(i)->nr_switches;
1904
1905 return sum;
1906}
1907
1908unsigned long nr_iowait(void)
1909{
1910 unsigned long i, sum = 0;
1911
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001912 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1914
1915 return sum;
1916}
1917
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001918unsigned long nr_active(void)
1919{
1920 unsigned long i, running = 0, uninterruptible = 0;
1921
1922 for_each_online_cpu(i) {
1923 running += cpu_rq(i)->nr_running;
1924 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1925 }
1926
1927 if (unlikely((long)uninterruptible < 0))
1928 uninterruptible = 0;
1929
1930 return running + uninterruptible;
1931}
1932
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933#ifdef CONFIG_SMP
1934
1935/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001936 * Is this task likely cache-hot:
1937 */
1938static inline int
1939task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1940{
1941 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1942}
1943
1944/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945 * double_rq_lock - safely lock two runqueues
1946 *
1947 * Note this does not disable interrupts like task_rq_lock,
1948 * you need to do so manually before calling.
1949 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001950static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951 __acquires(rq1->lock)
1952 __acquires(rq2->lock)
1953{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001954 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 if (rq1 == rq2) {
1956 spin_lock(&rq1->lock);
1957 __acquire(rq2->lock); /* Fake it out ;) */
1958 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001959 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 spin_lock(&rq1->lock);
1961 spin_lock(&rq2->lock);
1962 } else {
1963 spin_lock(&rq2->lock);
1964 spin_lock(&rq1->lock);
1965 }
1966 }
1967}
1968
1969/*
1970 * double_rq_unlock - safely unlock two runqueues
1971 *
1972 * Note this does not restore interrupts like task_rq_unlock,
1973 * you need to do so manually after calling.
1974 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001975static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 __releases(rq1->lock)
1977 __releases(rq2->lock)
1978{
1979 spin_unlock(&rq1->lock);
1980 if (rq1 != rq2)
1981 spin_unlock(&rq2->lock);
1982 else
1983 __release(rq2->lock);
1984}
1985
1986/*
1987 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1988 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001989static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001990 __releases(this_rq->lock)
1991 __acquires(busiest->lock)
1992 __acquires(this_rq->lock)
1993{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001994 if (unlikely(!irqs_disabled())) {
1995 /* printk() doesn't work good under rq->lock */
1996 spin_unlock(&this_rq->lock);
1997 BUG_ON(1);
1998 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002000 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001 spin_unlock(&this_rq->lock);
2002 spin_lock(&busiest->lock);
2003 spin_lock(&this_rq->lock);
2004 } else
2005 spin_lock(&busiest->lock);
2006 }
2007}
2008
2009/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002010 * If dest_cpu is allowed for this process, migrate the task to it.
2011 * This is accomplished by forcing the cpu_allowed mask to only
2012 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2013 * the cpu_allowed mask is restored.
2014 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002015static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002017 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002019 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020
2021 rq = task_rq_lock(p, &flags);
2022 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2023 || unlikely(cpu_is_offline(dest_cpu)))
2024 goto out;
2025
2026 /* force the process onto the specified CPU */
2027 if (migrate_task(p, dest_cpu, &req)) {
2028 /* Need to wait for migration thread (might exit: take ref). */
2029 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002030
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 get_task_struct(mt);
2032 task_rq_unlock(rq, &flags);
2033 wake_up_process(mt);
2034 put_task_struct(mt);
2035 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002036
Linus Torvalds1da177e2005-04-16 15:20:36 -07002037 return;
2038 }
2039out:
2040 task_rq_unlock(rq, &flags);
2041}
2042
2043/*
Nick Piggin476d1392005-06-25 14:57:29 -07002044 * sched_exec - execve() is a valuable balancing opportunity, because at
2045 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002046 */
2047void sched_exec(void)
2048{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002050 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002052 if (new_cpu != this_cpu)
2053 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054}
2055
2056/*
2057 * pull_task - move a task from a remote runqueue to the local runqueue.
2058 * Both runqueues must be locked.
2059 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002060static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2061 struct task_struct *p, struct rq *this_rq,
2062 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063{
2064 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002065 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002067 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002069 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2070 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071 /*
2072 * Note that idle threads have a prio of MAX_PRIO, for this test
2073 * to be always true for them.
2074 */
2075 if (TASK_PREEMPTS_CURR(p, this_rq))
2076 resched_task(this_rq->curr);
2077}
2078
2079/*
2080 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2081 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002082static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002083int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002084 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002085 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086{
2087 /*
2088 * We do not migrate tasks that are:
2089 * 1) running (obviously), or
2090 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2091 * 3) are cache-hot on their current CPU.
2092 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 if (!cpu_isset(this_cpu, p->cpus_allowed))
2094 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002095 *all_pinned = 0;
2096
2097 if (task_running(rq, p))
2098 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099
2100 /*
2101 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002102 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103 * 2) too many balance attempts have failed.
2104 */
2105
Mike Galbraithb18ec802006-12-10 02:20:31 -08002106 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2107#ifdef CONFIG_SCHEDSTATS
2108 if (task_hot(p, rq->most_recent_timestamp, sd))
2109 schedstat_inc(sd, lb_hot_gained[idle]);
2110#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002111 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002112 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113
Mike Galbraithb18ec802006-12-10 02:20:31 -08002114 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002115 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002116 return 1;
2117}
2118
Peter Williams615052d2006-06-27 02:54:37 -07002119#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002120
Linus Torvalds1da177e2005-04-16 15:20:36 -07002121/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002122 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2123 * load from busiest to this_rq, as part of a balancing operation within
2124 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125 *
2126 * Called with both runqueues locked.
2127 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002128static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002129 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002130 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002131 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002133 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2134 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002135 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002137 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002138 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139
Peter Williams2dd73a42006-06-27 02:54:34 -07002140 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141 goto out;
2142
Peter Williams2dd73a42006-06-27 02:54:34 -07002143 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002144 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002145 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002146 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002147 /*
2148 * Enable handling of the case where there is more than one task
2149 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002150 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002151 * and therefore it's safe to override the skip (based on load) of
2152 * any task we find with that prio.
2153 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002154 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002155
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156 /*
2157 * We first consider expired tasks. Those will likely not be
2158 * executed in the near future, and they are most likely to
2159 * be cache-cold, thus switching CPUs has the least effect
2160 * on them.
2161 */
2162 if (busiest->expired->nr_active) {
2163 array = busiest->expired;
2164 dst_array = this_rq->expired;
2165 } else {
2166 array = busiest->active;
2167 dst_array = this_rq->active;
2168 }
2169
2170new_array:
2171 /* Start searching at priority 0: */
2172 idx = 0;
2173skip_bitmap:
2174 if (!idx)
2175 idx = sched_find_first_bit(array->bitmap);
2176 else
2177 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2178 if (idx >= MAX_PRIO) {
2179 if (array == busiest->expired && busiest->active->nr_active) {
2180 array = busiest->active;
2181 dst_array = this_rq->active;
2182 goto new_array;
2183 }
2184 goto out;
2185 }
2186
2187 head = array->queue + idx;
2188 curr = head->prev;
2189skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002190 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191
2192 curr = curr->prev;
2193
Peter Williams50ddd962006-06-27 02:54:36 -07002194 /*
2195 * To help distribute high priority tasks accross CPUs we don't
2196 * skip a task if it will be the highest priority task (i.e. smallest
2197 * prio value) on its new queue regardless of its load weight
2198 */
Peter Williams615052d2006-06-27 02:54:37 -07002199 skip_for_load = tmp->load_weight > rem_load_move;
2200 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002201 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002202 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002203 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002204
2205 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206 if (curr != head)
2207 goto skip_queue;
2208 idx++;
2209 goto skip_bitmap;
2210 }
2211
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2213 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002214 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215
Peter Williams2dd73a42006-06-27 02:54:34 -07002216 /*
2217 * We only want to steal up to the prescribed number of tasks
2218 * and the prescribed amount of weighted load.
2219 */
2220 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002221 if (idx < this_best_prio)
2222 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 if (curr != head)
2224 goto skip_queue;
2225 idx++;
2226 goto skip_bitmap;
2227 }
2228out:
2229 /*
2230 * Right now, this is the only place pull_task() is called,
2231 * so we can safely collect pull_task() stats here rather than
2232 * inside pull_task().
2233 */
2234 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002235
2236 if (all_pinned)
2237 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002238 return pulled;
2239}
2240
2241/*
2242 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002243 * domain. It calculates and returns the amount of weighted load which
2244 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245 */
2246static struct sched_group *
2247find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002248 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002249 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250{
2251 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2252 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002253 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002254 unsigned long busiest_load_per_task, busiest_nr_running;
2255 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002256 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002257#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2258 int power_savings_balance = 1;
2259 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2260 unsigned long min_nr_running = ULONG_MAX;
2261 struct sched_group *group_min = NULL, *group_leader = NULL;
2262#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263
2264 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002265 busiest_load_per_task = busiest_nr_running = 0;
2266 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002267 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002268 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002269 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002270 load_idx = sd->newidle_idx;
2271 else
2272 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273
2274 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002275 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002276 int local_group;
2277 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002278 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002279 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280
2281 local_group = cpu_isset(this_cpu, group->cpumask);
2282
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002283 if (local_group)
2284 balance_cpu = first_cpu(group->cpumask);
2285
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002287 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288
2289 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002290 struct rq *rq;
2291
2292 if (!cpu_isset(i, *cpus))
2293 continue;
2294
2295 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002296
Nick Piggin5969fe02005-09-10 00:26:19 -07002297 if (*sd_idle && !idle_cpu(i))
2298 *sd_idle = 0;
2299
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002301 if (local_group) {
2302 if (idle_cpu(i) && !first_idle_cpu) {
2303 first_idle_cpu = 1;
2304 balance_cpu = i;
2305 }
2306
Nick Piggina2000572006-02-10 01:51:02 -08002307 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002308 } else
Nick Piggina2000572006-02-10 01:51:02 -08002309 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002310
2311 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002312 sum_nr_running += rq->nr_running;
2313 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314 }
2315
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002316 /*
2317 * First idle cpu or the first cpu(busiest) in this sched group
2318 * is eligible for doing load balancing at this and above
2319 * domains.
2320 */
2321 if (local_group && balance_cpu != this_cpu && balance) {
2322 *balance = 0;
2323 goto ret;
2324 }
2325
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002327 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328
2329 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002330 avg_load = sg_div_cpu_power(group,
2331 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332
Eric Dumazet5517d862007-05-08 00:32:57 -07002333 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002334
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 if (local_group) {
2336 this_load = avg_load;
2337 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002338 this_nr_running = sum_nr_running;
2339 this_load_per_task = sum_weighted_load;
2340 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002341 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342 max_load = avg_load;
2343 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002344 busiest_nr_running = sum_nr_running;
2345 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002347
2348#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2349 /*
2350 * Busy processors will not participate in power savings
2351 * balance.
2352 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002353 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002354 goto group_next;
2355
2356 /*
2357 * If the local group is idle or completely loaded
2358 * no need to do power savings balance at this domain
2359 */
2360 if (local_group && (this_nr_running >= group_capacity ||
2361 !this_nr_running))
2362 power_savings_balance = 0;
2363
2364 /*
2365 * If a group is already running at full capacity or idle,
2366 * don't include that group in power savings calculations
2367 */
2368 if (!power_savings_balance || sum_nr_running >= group_capacity
2369 || !sum_nr_running)
2370 goto group_next;
2371
2372 /*
2373 * Calculate the group which has the least non-idle load.
2374 * This is the group from where we need to pick up the load
2375 * for saving power
2376 */
2377 if ((sum_nr_running < min_nr_running) ||
2378 (sum_nr_running == min_nr_running &&
2379 first_cpu(group->cpumask) <
2380 first_cpu(group_min->cpumask))) {
2381 group_min = group;
2382 min_nr_running = sum_nr_running;
2383 min_load_per_task = sum_weighted_load /
2384 sum_nr_running;
2385 }
2386
2387 /*
2388 * Calculate the group which is almost near its
2389 * capacity but still has some space to pick up some load
2390 * from other group and save more power
2391 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002392 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002393 if (sum_nr_running > leader_nr_running ||
2394 (sum_nr_running == leader_nr_running &&
2395 first_cpu(group->cpumask) >
2396 first_cpu(group_leader->cpumask))) {
2397 group_leader = group;
2398 leader_nr_running = sum_nr_running;
2399 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002400 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002401group_next:
2402#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002403 group = group->next;
2404 } while (group != sd->groups);
2405
Peter Williams2dd73a42006-06-27 02:54:34 -07002406 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002407 goto out_balanced;
2408
2409 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2410
2411 if (this_load >= avg_load ||
2412 100*max_load <= sd->imbalance_pct*this_load)
2413 goto out_balanced;
2414
Peter Williams2dd73a42006-06-27 02:54:34 -07002415 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002416 /*
2417 * We're trying to get all the cpus to the average_load, so we don't
2418 * want to push ourselves above the average load, nor do we wish to
2419 * reduce the max loaded cpu below the average load, as either of these
2420 * actions would just result in more rebalancing later, and ping-pong
2421 * tasks around. Thus we look for the minimum possible imbalance.
2422 * Negative imbalances (*we* are more loaded than anyone else) will
2423 * be counted as no imbalance for these purposes -- we can't fix that
2424 * by pulling tasks to us. Be careful of negative numbers as they'll
2425 * appear as very large values with unsigned longs.
2426 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002427 if (max_load <= busiest_load_per_task)
2428 goto out_balanced;
2429
2430 /*
2431 * In the presence of smp nice balancing, certain scenarios can have
2432 * max load less than avg load(as we skip the groups at or below
2433 * its cpu_power, while calculating max_load..)
2434 */
2435 if (max_load < avg_load) {
2436 *imbalance = 0;
2437 goto small_imbalance;
2438 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002439
2440 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002441 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002442
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002444 *imbalance = min(max_pull * busiest->__cpu_power,
2445 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446 / SCHED_LOAD_SCALE;
2447
Peter Williams2dd73a42006-06-27 02:54:34 -07002448 /*
2449 * if *imbalance is less than the average load per runnable task
2450 * there is no gaurantee that any tasks will be moved so we'll have
2451 * a think about bumping its value to force at least one task to be
2452 * moved
2453 */
2454 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002455 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002456 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457
Peter Williams2dd73a42006-06-27 02:54:34 -07002458small_imbalance:
2459 pwr_move = pwr_now = 0;
2460 imbn = 2;
2461 if (this_nr_running) {
2462 this_load_per_task /= this_nr_running;
2463 if (busiest_load_per_task > this_load_per_task)
2464 imbn = 1;
2465 } else
2466 this_load_per_task = SCHED_LOAD_SCALE;
2467
2468 if (max_load - this_load >= busiest_load_per_task * imbn) {
2469 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002470 return busiest;
2471 }
2472
2473 /*
2474 * OK, we don't have enough imbalance to justify moving tasks,
2475 * however we may be able to increase total CPU power used by
2476 * moving them.
2477 */
2478
Eric Dumazet5517d862007-05-08 00:32:57 -07002479 pwr_now += busiest->__cpu_power *
2480 min(busiest_load_per_task, max_load);
2481 pwr_now += this->__cpu_power *
2482 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483 pwr_now /= SCHED_LOAD_SCALE;
2484
2485 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002486 tmp = sg_div_cpu_power(busiest,
2487 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002489 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002490 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491
2492 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002493 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002494 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002495 tmp = sg_div_cpu_power(this,
2496 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002498 tmp = sg_div_cpu_power(this,
2499 busiest_load_per_task * SCHED_LOAD_SCALE);
2500 pwr_move += this->__cpu_power *
2501 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002502 pwr_move /= SCHED_LOAD_SCALE;
2503
2504 /* Move if we gain throughput */
2505 if (pwr_move <= pwr_now)
2506 goto out_balanced;
2507
Peter Williams2dd73a42006-06-27 02:54:34 -07002508 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509 }
2510
Linus Torvalds1da177e2005-04-16 15:20:36 -07002511 return busiest;
2512
2513out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002514#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002515 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002516 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002518 if (this == group_leader && group_leader != group_min) {
2519 *imbalance = min_load_per_task;
2520 return group_min;
2521 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002522#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002523ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 *imbalance = 0;
2525 return NULL;
2526}
2527
2528/*
2529 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2530 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002531static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002532find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002533 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002535 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002536 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537 int i;
2538
2539 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002540
2541 if (!cpu_isset(i, *cpus))
2542 continue;
2543
Ingo Molnar48f24c42006-07-03 00:25:40 -07002544 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545
Ingo Molnar48f24c42006-07-03 00:25:40 -07002546 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002547 continue;
2548
Ingo Molnar48f24c42006-07-03 00:25:40 -07002549 if (rq->raw_weighted_load > max_load) {
2550 max_load = rq->raw_weighted_load;
2551 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552 }
2553 }
2554
2555 return busiest;
2556}
2557
2558/*
Nick Piggin77391d72005-06-25 14:57:30 -07002559 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2560 * so long as it is large enough.
2561 */
2562#define MAX_PINNED_INTERVAL 512
2563
Ingo Molnar48f24c42006-07-03 00:25:40 -07002564static inline unsigned long minus_1_or_zero(unsigned long n)
2565{
2566 return n > 0 ? n - 1 : 0;
2567}
2568
Nick Piggin77391d72005-06-25 14:57:30 -07002569/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2571 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002573static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002574 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002575 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002576{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002577 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002580 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002581 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002582 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002583
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002584 /*
2585 * When power savings policy is enabled for the parent domain, idle
2586 * sibling can pick up load irrespective of busy siblings. In this case,
2587 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002588 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002589 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002590 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002592 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 schedstat_inc(sd, lb_cnt[idle]);
2595
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002596redo:
2597 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002598 &cpus, balance);
2599
Chen, Kenneth W06066712006-12-10 02:20:35 -08002600 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002601 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002602
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 if (!group) {
2604 schedstat_inc(sd, lb_nobusyg[idle]);
2605 goto out_balanced;
2606 }
2607
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002608 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 if (!busiest) {
2610 schedstat_inc(sd, lb_nobusyq[idle]);
2611 goto out_balanced;
2612 }
2613
Nick Piggindb935db2005-06-25 14:57:11 -07002614 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615
2616 schedstat_add(sd, lb_imbalance[idle], imbalance);
2617
2618 nr_moved = 0;
2619 if (busiest->nr_running > 1) {
2620 /*
2621 * Attempt to move tasks. If find_busiest_group has found
2622 * an imbalance but busiest->nr_running <= 1, the group is
2623 * still unbalanced. nr_moved simply stays zero, so it is
2624 * correctly treated as an imbalance.
2625 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002626 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002627 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002629 minus_1_or_zero(busiest->nr_running),
2630 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002631 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002632 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002633
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002634 /*
2635 * some other cpu did the load balance for us.
2636 */
2637 if (nr_moved && this_cpu != smp_processor_id())
2638 resched_cpu(this_cpu);
2639
Nick Piggin81026792005-06-25 14:57:07 -07002640 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002641 if (unlikely(all_pinned)) {
2642 cpu_clear(cpu_of(busiest), cpus);
2643 if (!cpus_empty(cpus))
2644 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002645 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002646 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 }
Nick Piggin81026792005-06-25 14:57:07 -07002648
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649 if (!nr_moved) {
2650 schedstat_inc(sd, lb_failed[idle]);
2651 sd->nr_balance_failed++;
2652
2653 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002655 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002656
2657 /* don't kick the migration_thread, if the curr
2658 * task on busiest cpu can't be moved to this_cpu
2659 */
2660 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002661 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002662 all_pinned = 1;
2663 goto out_one_pinned;
2664 }
2665
Linus Torvalds1da177e2005-04-16 15:20:36 -07002666 if (!busiest->active_balance) {
2667 busiest->active_balance = 1;
2668 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002669 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002671 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002672 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673 wake_up_process(busiest->migration_thread);
2674
2675 /*
2676 * We've kicked active balancing, reset the failure
2677 * counter.
2678 */
Nick Piggin39507452005-06-25 14:57:09 -07002679 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002680 }
Nick Piggin81026792005-06-25 14:57:07 -07002681 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682 sd->nr_balance_failed = 0;
2683
Nick Piggin81026792005-06-25 14:57:07 -07002684 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 /* We were unbalanced, so reset the balancing interval */
2686 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002687 } else {
2688 /*
2689 * If we've begun active balancing, start to back off. This
2690 * case may not be covered by the all_pinned logic if there
2691 * is only 1 task on the busy runqueue (because we don't call
2692 * move_tasks).
2693 */
2694 if (sd->balance_interval < sd->max_interval)
2695 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696 }
2697
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002698 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002699 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002700 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701 return nr_moved;
2702
2703out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002704 schedstat_inc(sd, lb_balanced[idle]);
2705
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002706 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002707
2708out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002710 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2711 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712 sd->balance_interval *= 2;
2713
Ingo Molnar48f24c42006-07-03 00:25:40 -07002714 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002716 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 return 0;
2718}
2719
2720/*
2721 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2722 * tasks if there is an imbalance.
2723 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002724 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 * this_rq is locked.
2726 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002727static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002728load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729{
2730 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002731 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732 unsigned long imbalance;
2733 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002734 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002735 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002736
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002737 /*
2738 * When power savings policy is enabled for the parent domain, idle
2739 * sibling can pick up load irrespective of busy siblings. In this case,
2740 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002741 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002742 */
2743 if (sd->flags & SD_SHARE_CPUPOWER &&
2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002745 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002747 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002748redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002749 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002750 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002751 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002752 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002753 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754 }
2755
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002756 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002757 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002758 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002759 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002760 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 }
2762
Nick Piggindb935db2005-06-25 14:57:11 -07002763 BUG_ON(busiest == this_rq);
2764
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002765 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002766
2767 nr_moved = 0;
2768 if (busiest->nr_running > 1) {
2769 /* Attempt to move tasks */
2770 double_lock_balance(this_rq, busiest);
2771 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002772 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002773 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002774 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002775
2776 if (!nr_moved) {
2777 cpu_clear(cpu_of(busiest), cpus);
2778 if (!cpus_empty(cpus))
2779 goto redo;
2780 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002781 }
2782
Nick Piggin5969fe02005-09-10 00:26:19 -07002783 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002784 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002785 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2786 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002787 return -1;
2788 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002789 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002792
2793out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002794 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002797 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002798 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002799
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002800 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801}
2802
2803/*
2804 * idle_balance is called by schedule() if this_cpu is about to become
2805 * idle. Attempts to pull tasks from other CPUs.
2806 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002807static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808{
2809 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002810 int pulled_task = 0;
2811 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812
2813 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002814 unsigned long interval;
2815
2816 if (!(sd->flags & SD_LOAD_BALANCE))
2817 continue;
2818
2819 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002820 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002821 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002822 this_rq, sd);
2823
2824 interval = msecs_to_jiffies(sd->balance_interval);
2825 if (time_after(next_balance, sd->last_balance + interval))
2826 next_balance = sd->last_balance + interval;
2827 if (pulled_task)
2828 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002830 if (!pulled_task)
2831 /*
2832 * We are going idle. next_balance may be set based on
2833 * a busy processor. So reset next_balance.
2834 */
2835 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836}
2837
2838/*
2839 * active_load_balance is run by migration threads. It pushes running tasks
2840 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2841 * running on each physical CPU where possible, and avoids physical /
2842 * logical imbalances.
2843 *
2844 * Called with busiest_rq locked.
2845 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002846static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002847{
Nick Piggin39507452005-06-25 14:57:09 -07002848 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002849 struct sched_domain *sd;
2850 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002851
Ingo Molnar48f24c42006-07-03 00:25:40 -07002852 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002853 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002854 return;
2855
2856 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002857
2858 /*
Nick Piggin39507452005-06-25 14:57:09 -07002859 * This condition is "impossible", if it occurs
2860 * we need to fix it. Originally reported by
2861 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862 */
Nick Piggin39507452005-06-25 14:57:09 -07002863 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864
Nick Piggin39507452005-06-25 14:57:09 -07002865 /* move a task from busiest_rq to target_rq */
2866 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867
Nick Piggin39507452005-06-25 14:57:09 -07002868 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002869 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002870 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002871 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002872 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002873 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874
Ingo Molnar48f24c42006-07-03 00:25:40 -07002875 if (likely(sd)) {
2876 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877
Ingo Molnar48f24c42006-07-03 00:25:40 -07002878 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002879 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002880 NULL))
2881 schedstat_inc(sd, alb_pushed);
2882 else
2883 schedstat_inc(sd, alb_failed);
2884 }
Nick Piggin39507452005-06-25 14:57:09 -07002885 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886}
2887
Christoph Lameter7835b982006-12-10 02:20:22 -08002888static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002889{
Christoph Lameter7835b982006-12-10 02:20:22 -08002890 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002891 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892
Peter Williams2dd73a42006-06-27 02:54:34 -07002893 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002894
2895 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002896 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002897 unsigned long old_load, new_load;
2898
Nick Pigginff916912007-02-12 00:53:51 -08002899 /* scale is effectively 1 << i now, and >> i divides by scale */
2900
Nick Piggin78979862005-06-25 14:57:13 -07002901 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002902 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002903 /*
2904 * Round up the averaging division if load is increasing. This
2905 * prevents us from getting stuck on 9 if the load is 10, for
2906 * example.
2907 */
2908 if (new_load > old_load)
2909 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002910 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002911 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002912}
2913
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002914#ifdef CONFIG_NO_HZ
2915static struct {
2916 atomic_t load_balancer;
2917 cpumask_t cpu_mask;
2918} nohz ____cacheline_aligned = {
2919 .load_balancer = ATOMIC_INIT(-1),
2920 .cpu_mask = CPU_MASK_NONE,
2921};
2922
Christoph Lameter7835b982006-12-10 02:20:22 -08002923/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002924 * This routine will try to nominate the ilb (idle load balancing)
2925 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2926 * load balancing on behalf of all those cpus. If all the cpus in the system
2927 * go into this tickless mode, then there will be no ilb owner (as there is
2928 * no need for one) and all the cpus will sleep till the next wakeup event
2929 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002930 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002931 * For the ilb owner, tick is not stopped. And this tick will be used
2932 * for idle load balancing. ilb owner will still be part of
2933 * nohz.cpu_mask..
2934 *
2935 * While stopping the tick, this cpu will become the ilb owner if there
2936 * is no other owner. And will be the owner till that cpu becomes busy
2937 * or if all cpus in the system stop their ticks at which point
2938 * there is no need for ilb owner.
2939 *
2940 * When the ilb owner becomes busy, it nominates another owner, during the
2941 * next busy scheduler_tick()
2942 */
2943int select_nohz_load_balancer(int stop_tick)
2944{
2945 int cpu = smp_processor_id();
2946
2947 if (stop_tick) {
2948 cpu_set(cpu, nohz.cpu_mask);
2949 cpu_rq(cpu)->in_nohz_recently = 1;
2950
2951 /*
2952 * If we are going offline and still the leader, give up!
2953 */
2954 if (cpu_is_offline(cpu) &&
2955 atomic_read(&nohz.load_balancer) == cpu) {
2956 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2957 BUG();
2958 return 0;
2959 }
2960
2961 /* time for ilb owner also to sleep */
2962 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2963 if (atomic_read(&nohz.load_balancer) == cpu)
2964 atomic_set(&nohz.load_balancer, -1);
2965 return 0;
2966 }
2967
2968 if (atomic_read(&nohz.load_balancer) == -1) {
2969 /* make me the ilb owner */
2970 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2971 return 1;
2972 } else if (atomic_read(&nohz.load_balancer) == cpu)
2973 return 1;
2974 } else {
2975 if (!cpu_isset(cpu, nohz.cpu_mask))
2976 return 0;
2977
2978 cpu_clear(cpu, nohz.cpu_mask);
2979
2980 if (atomic_read(&nohz.load_balancer) == cpu)
2981 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2982 BUG();
2983 }
2984 return 0;
2985}
2986#endif
2987
2988static DEFINE_SPINLOCK(balancing);
2989
2990/*
Christoph Lameter7835b982006-12-10 02:20:22 -08002991 * It checks each scheduling domain to see if it is due to be balanced,
2992 * and initiates a balancing operation if so.
2993 *
2994 * Balancing parameters are set up in arch_init_sched_domains.
2995 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002996static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08002997{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002998 int balance = 1;
2999 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003000 unsigned long interval;
3001 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003002 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003003 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003004
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003005 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006 if (!(sd->flags & SD_LOAD_BALANCE))
3007 continue;
3008
3009 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003010 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003011 interval *= sd->busy_factor;
3012
3013 /* scale ms to jiffies */
3014 interval = msecs_to_jiffies(interval);
3015 if (unlikely(!interval))
3016 interval = 1;
3017
Christoph Lameter08c183f2006-12-10 02:20:29 -08003018 if (sd->flags & SD_SERIALIZE) {
3019 if (!spin_trylock(&balancing))
3020 goto out;
3021 }
3022
Christoph Lameterc9819f42006-12-10 02:20:25 -08003023 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003024 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003025 /*
3026 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003027 * longer idle, or one of our SMT siblings is
3028 * not idle.
3029 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003030 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003032 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003033 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003034 if (sd->flags & SD_SERIALIZE)
3035 spin_unlock(&balancing);
3036out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003037 if (time_after(next_balance, sd->last_balance + interval))
3038 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003039
3040 /*
3041 * Stop the load balance at this level. There is another
3042 * CPU in our sched group which is doing load balancing more
3043 * actively.
3044 */
3045 if (!balance)
3046 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003047 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003048 rq->next_balance = next_balance;
3049}
3050
3051/*
3052 * run_rebalance_domains is triggered when needed from the scheduler tick.
3053 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3054 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3055 */
3056static void run_rebalance_domains(struct softirq_action *h)
3057{
3058 int local_cpu = smp_processor_id();
3059 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003060 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003061
3062 rebalance_domains(local_cpu, idle);
3063
3064#ifdef CONFIG_NO_HZ
3065 /*
3066 * If this cpu is the owner for idle load balancing, then do the
3067 * balancing on behalf of the other idle cpus whose ticks are
3068 * stopped.
3069 */
3070 if (local_rq->idle_at_tick &&
3071 atomic_read(&nohz.load_balancer) == local_cpu) {
3072 cpumask_t cpus = nohz.cpu_mask;
3073 struct rq *rq;
3074 int balance_cpu;
3075
3076 cpu_clear(local_cpu, cpus);
3077 for_each_cpu_mask(balance_cpu, cpus) {
3078 /*
3079 * If this cpu gets work to do, stop the load balancing
3080 * work being done for other cpus. Next load
3081 * balancing owner will pick it up.
3082 */
3083 if (need_resched())
3084 break;
3085
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003086 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003087
3088 rq = cpu_rq(balance_cpu);
3089 if (time_after(local_rq->next_balance, rq->next_balance))
3090 local_rq->next_balance = rq->next_balance;
3091 }
3092 }
3093#endif
3094}
3095
3096/*
3097 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3098 *
3099 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3100 * idle load balancing owner or decide to stop the periodic load balancing,
3101 * if the whole system is idle.
3102 */
3103static inline void trigger_load_balance(int cpu)
3104{
3105 struct rq *rq = cpu_rq(cpu);
3106#ifdef CONFIG_NO_HZ
3107 /*
3108 * If we were in the nohz mode recently and busy at the current
3109 * scheduler tick, then check if we need to nominate new idle
3110 * load balancer.
3111 */
3112 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3113 rq->in_nohz_recently = 0;
3114
3115 if (atomic_read(&nohz.load_balancer) == cpu) {
3116 cpu_clear(cpu, nohz.cpu_mask);
3117 atomic_set(&nohz.load_balancer, -1);
3118 }
3119
3120 if (atomic_read(&nohz.load_balancer) == -1) {
3121 /*
3122 * simple selection for now: Nominate the
3123 * first cpu in the nohz list to be the next
3124 * ilb owner.
3125 *
3126 * TBD: Traverse the sched domains and nominate
3127 * the nearest cpu in the nohz.cpu_mask.
3128 */
3129 int ilb = first_cpu(nohz.cpu_mask);
3130
3131 if (ilb != NR_CPUS)
3132 resched_cpu(ilb);
3133 }
3134 }
3135
3136 /*
3137 * If this cpu is idle and doing idle load balancing for all the
3138 * cpus with ticks stopped, is it time for that to stop?
3139 */
3140 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3141 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3142 resched_cpu(cpu);
3143 return;
3144 }
3145
3146 /*
3147 * If this cpu is idle and the idle load balancing is done by
3148 * someone else, then no need raise the SCHED_SOFTIRQ
3149 */
3150 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3151 cpu_isset(cpu, nohz.cpu_mask))
3152 return;
3153#endif
3154 if (time_after_eq(jiffies, rq->next_balance))
3155 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003156}
3157#else
3158/*
3159 * on UP we do not need to balance between CPUs:
3160 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003161static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003162{
3163}
3164#endif
3165
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166DEFINE_PER_CPU(struct kernel_stat, kstat);
3167
3168EXPORT_PER_CPU_SYMBOL(kstat);
3169
3170/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003171 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3172 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003174unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003175{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003177 u64 ns, delta_exec;
3178 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003179
Ingo Molnar41b86e92007-07-09 18:51:58 +02003180 rq = task_rq_lock(p, &flags);
3181 ns = p->se.sum_exec_runtime;
3182 if (rq->curr == p) {
3183 delta_exec = rq_clock(rq) - p->se.exec_start;
3184 if ((s64)delta_exec > 0)
3185 ns += delta_exec;
3186 }
3187 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003188
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189 return ns;
3190}
3191
3192/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003193 * We place interactive tasks back into the active array, if possible.
3194 *
3195 * To guarantee that this does not starve expired tasks we ignore the
3196 * interactivity of a task if the first expired task had to wait more
3197 * than a 'reasonable' amount of time. This deadline timeout is
3198 * load-dependent, as the frequency of array switched decreases with
3199 * increasing number of running tasks. We also ignore the interactivity
3200 * if a better static_prio task has expired:
3201 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003202static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003203{
3204 if (rq->curr->static_prio > rq->best_expired_prio)
3205 return 1;
3206 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3207 return 0;
3208 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3209 return 1;
3210 return 0;
3211}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003212
3213/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214 * Account user cpu time to a process.
3215 * @p: the process that the cpu time gets accounted to
3216 * @hardirq_offset: the offset to subtract from hardirq_count()
3217 * @cputime: the cpu time spent in user space since the last update
3218 */
3219void account_user_time(struct task_struct *p, cputime_t cputime)
3220{
3221 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3222 cputime64_t tmp;
3223
3224 p->utime = cputime_add(p->utime, cputime);
3225
3226 /* Add user time to cpustat. */
3227 tmp = cputime_to_cputime64(cputime);
3228 if (TASK_NICE(p) > 0)
3229 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3230 else
3231 cpustat->user = cputime64_add(cpustat->user, tmp);
3232}
3233
3234/*
3235 * Account system cpu time to a process.
3236 * @p: the process that the cpu time gets accounted to
3237 * @hardirq_offset: the offset to subtract from hardirq_count()
3238 * @cputime: the cpu time spent in kernel space since the last update
3239 */
3240void account_system_time(struct task_struct *p, int hardirq_offset,
3241 cputime_t cputime)
3242{
3243 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003244 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245 cputime64_t tmp;
3246
3247 p->stime = cputime_add(p->stime, cputime);
3248
3249 /* Add system time to cpustat. */
3250 tmp = cputime_to_cputime64(cputime);
3251 if (hardirq_count() - hardirq_offset)
3252 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3253 else if (softirq_count())
3254 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3255 else if (p != rq->idle)
3256 cpustat->system = cputime64_add(cpustat->system, tmp);
3257 else if (atomic_read(&rq->nr_iowait) > 0)
3258 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3259 else
3260 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3261 /* Account for system time used */
3262 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003263}
3264
3265/*
3266 * Account for involuntary wait time.
3267 * @p: the process from which the cpu time has been stolen
3268 * @steal: the cpu time spent in involuntary wait
3269 */
3270void account_steal_time(struct task_struct *p, cputime_t steal)
3271{
3272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3273 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003274 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003275
3276 if (p == rq->idle) {
3277 p->stime = cputime_add(p->stime, steal);
3278 if (atomic_read(&rq->nr_iowait) > 0)
3279 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3280 else
3281 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3282 } else
3283 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3284}
3285
Christoph Lameter7835b982006-12-10 02:20:22 -08003286static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003287{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003288 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003289 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003290 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003291 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292 }
3293 spin_lock(&rq->lock);
3294 /*
3295 * The task was running during this tick - update the
3296 * time slice counter. Note: we do not update a thread's
3297 * priority until it either goes to sleep or uses up its
3298 * timeslice. This makes it possible for interactive tasks
3299 * to use up their timeslices at their highest priority levels.
3300 */
3301 if (rt_task(p)) {
3302 /*
3303 * RR tasks need a special form of timeslice management.
3304 * FIFO tasks have no timeslices.
3305 */
3306 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3307 p->time_slice = task_timeslice(p);
3308 p->first_time_slice = 0;
3309 set_tsk_need_resched(p);
3310
3311 /* put it at the end of the queue: */
3312 requeue_task(p, rq->active);
3313 }
3314 goto out_unlock;
3315 }
3316 if (!--p->time_slice) {
3317 dequeue_task(p, rq->active);
3318 set_tsk_need_resched(p);
3319 p->prio = effective_prio(p);
3320 p->time_slice = task_timeslice(p);
3321 p->first_time_slice = 0;
3322
3323 if (!rq->expired_timestamp)
3324 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003325 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003326 enqueue_task(p, rq->expired);
3327 if (p->static_prio < rq->best_expired_prio)
3328 rq->best_expired_prio = p->static_prio;
3329 } else
3330 enqueue_task(p, rq->active);
3331 } else {
3332 /*
3333 * Prevent a too long timeslice allowing a task to monopolize
3334 * the CPU. We do this by splitting up the timeslice into
3335 * smaller pieces.
3336 *
3337 * Note: this does not mean the task's timeslices expire or
3338 * get lost in any way, they just might be preempted by
3339 * another task of equal priority. (one with higher
3340 * priority would have preempted this task already.) We
3341 * requeue this task to the end of the list on this priority
3342 * level, which is in essence a round-robin of tasks with
3343 * equal priority.
3344 *
3345 * This only applies to tasks in the interactive
3346 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3347 */
3348 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3349 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3350 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3351 (p->array == rq->active)) {
3352
3353 requeue_task(p, rq->active);
3354 set_tsk_need_resched(p);
3355 }
3356 }
3357out_unlock:
3358 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003359}
3360
3361/*
3362 * This function gets called by the timer code, with HZ frequency.
3363 * We call it with interrupts disabled.
3364 *
3365 * It also gets called by the fork code, when changing the parent's
3366 * timeslices.
3367 */
3368void scheduler_tick(void)
3369{
Christoph Lameter7835b982006-12-10 02:20:22 -08003370 struct task_struct *p = current;
3371 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003372 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003373 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003374
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003375 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003376 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003377#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003378 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003379 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003380 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003381#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382}
3383
Linus Torvalds1da177e2005-04-16 15:20:36 -07003384#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3385
3386void fastcall add_preempt_count(int val)
3387{
3388 /*
3389 * Underflow?
3390 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003391 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3392 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393 preempt_count() += val;
3394 /*
3395 * Spinlock count overflowing soon?
3396 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003397 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3398 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399}
3400EXPORT_SYMBOL(add_preempt_count);
3401
3402void fastcall sub_preempt_count(int val)
3403{
3404 /*
3405 * Underflow?
3406 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003407 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3408 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003409 /*
3410 * Is the spinlock portion underflowing?
3411 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003412 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3413 !(preempt_count() & PREEMPT_MASK)))
3414 return;
3415
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 preempt_count() -= val;
3417}
3418EXPORT_SYMBOL(sub_preempt_count);
3419
3420#endif
3421
Con Kolivas3dee3862006-03-31 02:31:23 -08003422static inline int interactive_sleep(enum sleep_type sleep_type)
3423{
3424 return (sleep_type == SLEEP_INTERACTIVE ||
3425 sleep_type == SLEEP_INTERRUPTED);
3426}
3427
Linus Torvalds1da177e2005-04-16 15:20:36 -07003428/*
3429 * schedule() is the main scheduler function.
3430 */
3431asmlinkage void __sched schedule(void)
3432{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003433 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003434 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435 struct list_head *queue;
3436 unsigned long long now;
3437 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003438 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003439 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003440 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441
3442 /*
3443 * Test if we are atomic. Since do_exit() needs to call into
3444 * schedule() atomically, we ignore that path for now.
3445 * Otherwise, whine if we are scheduling when we should not be.
3446 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003447 if (unlikely(in_atomic() && !current->exit_state)) {
3448 printk(KERN_ERR "BUG: scheduling while atomic: "
3449 "%s/0x%08x/%d\n",
3450 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003451 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003452 if (irqs_disabled())
3453 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003454 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003455 }
3456 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3457
3458need_resched:
3459 preempt_disable();
3460 prev = current;
3461 release_kernel_lock(prev);
3462need_resched_nonpreemptible:
3463 rq = this_rq();
3464
3465 /*
3466 * The idle thread is not allowed to schedule!
3467 * Remove this check after it has been exercised a bit.
3468 */
3469 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3470 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3471 dump_stack();
3472 }
3473
3474 schedstat_inc(rq, sched_cnt);
3475 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003476 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003477 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003478 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 run_time = 0;
3480 } else
3481 run_time = NS_MAX_SLEEP_AVG;
3482
3483 /*
3484 * Tasks charged proportionately less run_time at high sleep_avg to
3485 * delay them losing their interactive status
3486 */
3487 run_time /= (CURRENT_BONUS(prev) ? : 1);
3488
3489 spin_lock_irq(&rq->lock);
3490
Linus Torvalds1da177e2005-04-16 15:20:36 -07003491 switch_count = &prev->nivcsw;
3492 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3493 switch_count = &prev->nvcsw;
3494 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3495 unlikely(signal_pending(prev))))
3496 prev->state = TASK_RUNNING;
3497 else {
3498 if (prev->state == TASK_UNINTERRUPTIBLE)
3499 rq->nr_uninterruptible++;
3500 deactivate_task(prev, rq);
3501 }
3502 }
3503
3504 cpu = smp_processor_id();
3505 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506 idle_balance(cpu, rq);
3507 if (!rq->nr_running) {
3508 next = rq->idle;
3509 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003510 goto switch_tasks;
3511 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512 }
3513
3514 array = rq->active;
3515 if (unlikely(!array->nr_active)) {
3516 /*
3517 * Switch the active and expired arrays.
3518 */
3519 schedstat_inc(rq, sched_switch);
3520 rq->active = rq->expired;
3521 rq->expired = array;
3522 array = rq->active;
3523 rq->expired_timestamp = 0;
3524 rq->best_expired_prio = MAX_PRIO;
3525 }
3526
3527 idx = sched_find_first_bit(array->bitmap);
3528 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003529 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530
Con Kolivas3dee3862006-03-31 02:31:23 -08003531 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003533 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534 delta = 0;
3535
Con Kolivas3dee3862006-03-31 02:31:23 -08003536 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3538
3539 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003540 new_prio = recalc_task_prio(next, next->timestamp + delta);
3541
3542 if (unlikely(next->prio != new_prio)) {
3543 dequeue_task(next, array);
3544 next->prio = new_prio;
3545 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003546 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003548 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549switch_tasks:
3550 if (next == rq->idle)
3551 schedstat_inc(rq, sched_goidle);
3552 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003553 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003554 clear_tsk_need_resched(prev);
3555 rcu_qsctr_inc(task_cpu(prev));
3556
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 prev->sleep_avg -= run_time;
3558 if ((long)prev->sleep_avg <= 0)
3559 prev->sleep_avg = 0;
3560 prev->timestamp = prev->last_ran = now;
3561
3562 sched_info_switch(prev, next);
3563 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003564 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565 rq->nr_switches++;
3566 rq->curr = next;
3567 ++*switch_count;
3568
Nick Piggin4866cde2005-06-25 14:57:23 -07003569 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003570 prev = context_switch(rq, prev, next);
3571 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003572 /*
3573 * this_rq must be evaluated again because prev may have moved
3574 * CPUs since it called schedule(), thus the 'rq' on its stack
3575 * frame will be invalid.
3576 */
3577 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578 } else
3579 spin_unlock_irq(&rq->lock);
3580
3581 prev = current;
3582 if (unlikely(reacquire_kernel_lock(prev) < 0))
3583 goto need_resched_nonpreemptible;
3584 preempt_enable_no_resched();
3585 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3586 goto need_resched;
3587}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588EXPORT_SYMBOL(schedule);
3589
3590#ifdef CONFIG_PREEMPT
3591/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003592 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593 * off of preempt_enable. Kernel preemptions off return from interrupt
3594 * occur there and call schedule directly.
3595 */
3596asmlinkage void __sched preempt_schedule(void)
3597{
3598 struct thread_info *ti = current_thread_info();
3599#ifdef CONFIG_PREEMPT_BKL
3600 struct task_struct *task = current;
3601 int saved_lock_depth;
3602#endif
3603 /*
3604 * If there is a non-zero preempt_count or interrupts are disabled,
3605 * we do not want to preempt the current task. Just return..
3606 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003607 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608 return;
3609
3610need_resched:
3611 add_preempt_count(PREEMPT_ACTIVE);
3612 /*
3613 * We keep the big kernel semaphore locked, but we
3614 * clear ->lock_depth so that schedule() doesnt
3615 * auto-release the semaphore:
3616 */
3617#ifdef CONFIG_PREEMPT_BKL
3618 saved_lock_depth = task->lock_depth;
3619 task->lock_depth = -1;
3620#endif
3621 schedule();
3622#ifdef CONFIG_PREEMPT_BKL
3623 task->lock_depth = saved_lock_depth;
3624#endif
3625 sub_preempt_count(PREEMPT_ACTIVE);
3626
3627 /* we could miss a preemption opportunity between schedule and now */
3628 barrier();
3629 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3630 goto need_resched;
3631}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003632EXPORT_SYMBOL(preempt_schedule);
3633
3634/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003635 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003636 * off of irq context.
3637 * Note, that this is called and return with irqs disabled. This will
3638 * protect us against recursive calling from irq.
3639 */
3640asmlinkage void __sched preempt_schedule_irq(void)
3641{
3642 struct thread_info *ti = current_thread_info();
3643#ifdef CONFIG_PREEMPT_BKL
3644 struct task_struct *task = current;
3645 int saved_lock_depth;
3646#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003647 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648 BUG_ON(ti->preempt_count || !irqs_disabled());
3649
3650need_resched:
3651 add_preempt_count(PREEMPT_ACTIVE);
3652 /*
3653 * We keep the big kernel semaphore locked, but we
3654 * clear ->lock_depth so that schedule() doesnt
3655 * auto-release the semaphore:
3656 */
3657#ifdef CONFIG_PREEMPT_BKL
3658 saved_lock_depth = task->lock_depth;
3659 task->lock_depth = -1;
3660#endif
3661 local_irq_enable();
3662 schedule();
3663 local_irq_disable();
3664#ifdef CONFIG_PREEMPT_BKL
3665 task->lock_depth = saved_lock_depth;
3666#endif
3667 sub_preempt_count(PREEMPT_ACTIVE);
3668
3669 /* we could miss a preemption opportunity between schedule and now */
3670 barrier();
3671 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3672 goto need_resched;
3673}
3674
3675#endif /* CONFIG_PREEMPT */
3676
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003677int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3678 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003680 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003682EXPORT_SYMBOL(default_wake_function);
3683
3684/*
3685 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3686 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3687 * number) then we wake all the non-exclusive tasks and one exclusive task.
3688 *
3689 * There are circumstances in which we can try to wake a task which has already
3690 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3691 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3692 */
3693static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3694 int nr_exclusive, int sync, void *key)
3695{
3696 struct list_head *tmp, *next;
3697
3698 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003699 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3700 unsigned flags = curr->flags;
3701
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003703 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704 break;
3705 }
3706}
3707
3708/**
3709 * __wake_up - wake up threads blocked on a waitqueue.
3710 * @q: the waitqueue
3711 * @mode: which threads
3712 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003713 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714 */
3715void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003716 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003717{
3718 unsigned long flags;
3719
3720 spin_lock_irqsave(&q->lock, flags);
3721 __wake_up_common(q, mode, nr_exclusive, 0, key);
3722 spin_unlock_irqrestore(&q->lock, flags);
3723}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003724EXPORT_SYMBOL(__wake_up);
3725
3726/*
3727 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3728 */
3729void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3730{
3731 __wake_up_common(q, mode, 1, 0, NULL);
3732}
3733
3734/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003735 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736 * @q: the waitqueue
3737 * @mode: which threads
3738 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3739 *
3740 * The sync wakeup differs that the waker knows that it will schedule
3741 * away soon, so while the target thread will be woken up, it will not
3742 * be migrated to another CPU - ie. the two threads are 'synchronized'
3743 * with each other. This can prevent needless bouncing between CPUs.
3744 *
3745 * On UP it can prevent extra preemption.
3746 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003747void fastcall
3748__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003749{
3750 unsigned long flags;
3751 int sync = 1;
3752
3753 if (unlikely(!q))
3754 return;
3755
3756 if (unlikely(!nr_exclusive))
3757 sync = 0;
3758
3759 spin_lock_irqsave(&q->lock, flags);
3760 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3761 spin_unlock_irqrestore(&q->lock, flags);
3762}
3763EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3764
3765void fastcall complete(struct completion *x)
3766{
3767 unsigned long flags;
3768
3769 spin_lock_irqsave(&x->wait.lock, flags);
3770 x->done++;
3771 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3772 1, 0, NULL);
3773 spin_unlock_irqrestore(&x->wait.lock, flags);
3774}
3775EXPORT_SYMBOL(complete);
3776
3777void fastcall complete_all(struct completion *x)
3778{
3779 unsigned long flags;
3780
3781 spin_lock_irqsave(&x->wait.lock, flags);
3782 x->done += UINT_MAX/2;
3783 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3784 0, 0, NULL);
3785 spin_unlock_irqrestore(&x->wait.lock, flags);
3786}
3787EXPORT_SYMBOL(complete_all);
3788
3789void fastcall __sched wait_for_completion(struct completion *x)
3790{
3791 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003792
Linus Torvalds1da177e2005-04-16 15:20:36 -07003793 spin_lock_irq(&x->wait.lock);
3794 if (!x->done) {
3795 DECLARE_WAITQUEUE(wait, current);
3796
3797 wait.flags |= WQ_FLAG_EXCLUSIVE;
3798 __add_wait_queue_tail(&x->wait, &wait);
3799 do {
3800 __set_current_state(TASK_UNINTERRUPTIBLE);
3801 spin_unlock_irq(&x->wait.lock);
3802 schedule();
3803 spin_lock_irq(&x->wait.lock);
3804 } while (!x->done);
3805 __remove_wait_queue(&x->wait, &wait);
3806 }
3807 x->done--;
3808 spin_unlock_irq(&x->wait.lock);
3809}
3810EXPORT_SYMBOL(wait_for_completion);
3811
3812unsigned long fastcall __sched
3813wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3814{
3815 might_sleep();
3816
3817 spin_lock_irq(&x->wait.lock);
3818 if (!x->done) {
3819 DECLARE_WAITQUEUE(wait, current);
3820
3821 wait.flags |= WQ_FLAG_EXCLUSIVE;
3822 __add_wait_queue_tail(&x->wait, &wait);
3823 do {
3824 __set_current_state(TASK_UNINTERRUPTIBLE);
3825 spin_unlock_irq(&x->wait.lock);
3826 timeout = schedule_timeout(timeout);
3827 spin_lock_irq(&x->wait.lock);
3828 if (!timeout) {
3829 __remove_wait_queue(&x->wait, &wait);
3830 goto out;
3831 }
3832 } while (!x->done);
3833 __remove_wait_queue(&x->wait, &wait);
3834 }
3835 x->done--;
3836out:
3837 spin_unlock_irq(&x->wait.lock);
3838 return timeout;
3839}
3840EXPORT_SYMBOL(wait_for_completion_timeout);
3841
3842int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3843{
3844 int ret = 0;
3845
3846 might_sleep();
3847
3848 spin_lock_irq(&x->wait.lock);
3849 if (!x->done) {
3850 DECLARE_WAITQUEUE(wait, current);
3851
3852 wait.flags |= WQ_FLAG_EXCLUSIVE;
3853 __add_wait_queue_tail(&x->wait, &wait);
3854 do {
3855 if (signal_pending(current)) {
3856 ret = -ERESTARTSYS;
3857 __remove_wait_queue(&x->wait, &wait);
3858 goto out;
3859 }
3860 __set_current_state(TASK_INTERRUPTIBLE);
3861 spin_unlock_irq(&x->wait.lock);
3862 schedule();
3863 spin_lock_irq(&x->wait.lock);
3864 } while (!x->done);
3865 __remove_wait_queue(&x->wait, &wait);
3866 }
3867 x->done--;
3868out:
3869 spin_unlock_irq(&x->wait.lock);
3870
3871 return ret;
3872}
3873EXPORT_SYMBOL(wait_for_completion_interruptible);
3874
3875unsigned long fastcall __sched
3876wait_for_completion_interruptible_timeout(struct completion *x,
3877 unsigned long timeout)
3878{
3879 might_sleep();
3880
3881 spin_lock_irq(&x->wait.lock);
3882 if (!x->done) {
3883 DECLARE_WAITQUEUE(wait, current);
3884
3885 wait.flags |= WQ_FLAG_EXCLUSIVE;
3886 __add_wait_queue_tail(&x->wait, &wait);
3887 do {
3888 if (signal_pending(current)) {
3889 timeout = -ERESTARTSYS;
3890 __remove_wait_queue(&x->wait, &wait);
3891 goto out;
3892 }
3893 __set_current_state(TASK_INTERRUPTIBLE);
3894 spin_unlock_irq(&x->wait.lock);
3895 timeout = schedule_timeout(timeout);
3896 spin_lock_irq(&x->wait.lock);
3897 if (!timeout) {
3898 __remove_wait_queue(&x->wait, &wait);
3899 goto out;
3900 }
3901 } while (!x->done);
3902 __remove_wait_queue(&x->wait, &wait);
3903 }
3904 x->done--;
3905out:
3906 spin_unlock_irq(&x->wait.lock);
3907 return timeout;
3908}
3909EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3910
3911
3912#define SLEEP_ON_VAR \
3913 unsigned long flags; \
3914 wait_queue_t wait; \
3915 init_waitqueue_entry(&wait, current);
3916
3917#define SLEEP_ON_HEAD \
3918 spin_lock_irqsave(&q->lock,flags); \
3919 __add_wait_queue(q, &wait); \
3920 spin_unlock(&q->lock);
3921
3922#define SLEEP_ON_TAIL \
3923 spin_lock_irq(&q->lock); \
3924 __remove_wait_queue(q, &wait); \
3925 spin_unlock_irqrestore(&q->lock, flags);
3926
3927void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3928{
3929 SLEEP_ON_VAR
3930
3931 current->state = TASK_INTERRUPTIBLE;
3932
3933 SLEEP_ON_HEAD
3934 schedule();
3935 SLEEP_ON_TAIL
3936}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003937EXPORT_SYMBOL(interruptible_sleep_on);
3938
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003939long fastcall __sched
3940interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003941{
3942 SLEEP_ON_VAR
3943
3944 current->state = TASK_INTERRUPTIBLE;
3945
3946 SLEEP_ON_HEAD
3947 timeout = schedule_timeout(timeout);
3948 SLEEP_ON_TAIL
3949
3950 return timeout;
3951}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3953
3954void fastcall __sched sleep_on(wait_queue_head_t *q)
3955{
3956 SLEEP_ON_VAR
3957
3958 current->state = TASK_UNINTERRUPTIBLE;
3959
3960 SLEEP_ON_HEAD
3961 schedule();
3962 SLEEP_ON_TAIL
3963}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964EXPORT_SYMBOL(sleep_on);
3965
3966long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3967{
3968 SLEEP_ON_VAR
3969
3970 current->state = TASK_UNINTERRUPTIBLE;
3971
3972 SLEEP_ON_HEAD
3973 timeout = schedule_timeout(timeout);
3974 SLEEP_ON_TAIL
3975
3976 return timeout;
3977}
3978
3979EXPORT_SYMBOL(sleep_on_timeout);
3980
Ingo Molnarb29739f2006-06-27 02:54:51 -07003981#ifdef CONFIG_RT_MUTEXES
3982
3983/*
3984 * rt_mutex_setprio - set the current priority of a task
3985 * @p: task
3986 * @prio: prio value (kernel-internal form)
3987 *
3988 * This function changes the 'effective' priority of a task. It does
3989 * not touch ->normal_prio like __setscheduler().
3990 *
3991 * Used by the rt_mutex code to implement priority inheritance logic.
3992 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003993void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003994{
Ingo Molnar70b97a72006-07-03 00:25:42 -07003995 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003996 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003997 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07003998 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003999
4000 BUG_ON(prio < 0 || prio > MAX_PRIO);
4001
4002 rq = task_rq_lock(p, &flags);
4003
Andrew Mortond5f9f942007-05-08 20:27:06 -07004004 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004005 array = p->array;
4006 if (array)
4007 dequeue_task(p, array);
4008 p->prio = prio;
4009
4010 if (array) {
4011 /*
4012 * If changing to an RT priority then queue it
4013 * in the active array!
4014 */
4015 if (rt_task(p))
4016 array = rq->active;
4017 enqueue_task(p, array);
4018 /*
4019 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004020 * our priority decreased, or if we are not currently running on
4021 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004022 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004023 if (task_running(rq, p)) {
4024 if (p->prio > oldprio)
4025 resched_task(rq->curr);
4026 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004027 resched_task(rq->curr);
4028 }
4029 task_rq_unlock(rq, &flags);
4030}
4031
4032#endif
4033
Ingo Molnar36c8b582006-07-03 00:25:41 -07004034void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004035{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004036 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004037 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004038 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004039 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040
4041 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4042 return;
4043 /*
4044 * We have to be careful, if called from sys_setpriority(),
4045 * the task might be in the middle of scheduling on another CPU.
4046 */
4047 rq = task_rq_lock(p, &flags);
4048 /*
4049 * The RT priorities are set via sched_setscheduler(), but we still
4050 * allow the 'normal' nice value to be set - but as expected
4051 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004052 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004053 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004054 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055 p->static_prio = NICE_TO_PRIO(nice);
4056 goto out_unlock;
4057 }
4058 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004059 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004060 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004061 dec_raw_weighted_load(rq, p);
4062 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004063
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004065 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004066 old_prio = p->prio;
4067 p->prio = effective_prio(p);
4068 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004069
4070 if (array) {
4071 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004072 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004073 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004074 * If the task increased its priority or is running and
4075 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004076 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004077 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078 resched_task(rq->curr);
4079 }
4080out_unlock:
4081 task_rq_unlock(rq, &flags);
4082}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004083EXPORT_SYMBOL(set_user_nice);
4084
Matt Mackalle43379f2005-05-01 08:59:00 -07004085/*
4086 * can_nice - check if a task can reduce its nice value
4087 * @p: task
4088 * @nice: nice value
4089 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004090int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004091{
Matt Mackall024f4742005-08-18 11:24:19 -07004092 /* convert nice value [19,-20] to rlimit style value [1,40] */
4093 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004094
Matt Mackalle43379f2005-05-01 08:59:00 -07004095 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4096 capable(CAP_SYS_NICE));
4097}
4098
Linus Torvalds1da177e2005-04-16 15:20:36 -07004099#ifdef __ARCH_WANT_SYS_NICE
4100
4101/*
4102 * sys_nice - change the priority of the current process.
4103 * @increment: priority increment
4104 *
4105 * sys_setpriority is a more generic, but much slower function that
4106 * does similar things.
4107 */
4108asmlinkage long sys_nice(int increment)
4109{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004110 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111
4112 /*
4113 * Setpriority might change our priority at the same moment.
4114 * We don't have to worry. Conceptually one call occurs first
4115 * and we have a single winner.
4116 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004117 if (increment < -40)
4118 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004119 if (increment > 40)
4120 increment = 40;
4121
4122 nice = PRIO_TO_NICE(current->static_prio) + increment;
4123 if (nice < -20)
4124 nice = -20;
4125 if (nice > 19)
4126 nice = 19;
4127
Matt Mackalle43379f2005-05-01 08:59:00 -07004128 if (increment < 0 && !can_nice(current, nice))
4129 return -EPERM;
4130
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131 retval = security_task_setnice(current, nice);
4132 if (retval)
4133 return retval;
4134
4135 set_user_nice(current, nice);
4136 return 0;
4137}
4138
4139#endif
4140
4141/**
4142 * task_prio - return the priority value of a given task.
4143 * @p: the task in question.
4144 *
4145 * This is the priority value as seen by users in /proc.
4146 * RT tasks are offset by -200. Normal tasks are centered
4147 * around 0, value goes from -16 to +15.
4148 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004149int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004150{
4151 return p->prio - MAX_RT_PRIO;
4152}
4153
4154/**
4155 * task_nice - return the nice value of a given task.
4156 * @p: the task in question.
4157 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004158int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004159{
4160 return TASK_NICE(p);
4161}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004162EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163
4164/**
4165 * idle_cpu - is a given cpu idle currently?
4166 * @cpu: the processor in question.
4167 */
4168int idle_cpu(int cpu)
4169{
4170 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4171}
4172
Linus Torvalds1da177e2005-04-16 15:20:36 -07004173/**
4174 * idle_task - return the idle task for a given cpu.
4175 * @cpu: the processor in question.
4176 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004177struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178{
4179 return cpu_rq(cpu)->idle;
4180}
4181
4182/**
4183 * find_process_by_pid - find a process with a matching PID value.
4184 * @pid: the pid in question.
4185 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004186static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187{
4188 return pid ? find_task_by_pid(pid) : current;
4189}
4190
4191/* Actually do priority change: must hold rq lock. */
4192static void __setscheduler(struct task_struct *p, int policy, int prio)
4193{
4194 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004195
Linus Torvalds1da177e2005-04-16 15:20:36 -07004196 p->policy = policy;
4197 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004198 p->normal_prio = normal_prio(p);
4199 /* we are holding p->pi_lock already */
4200 p->prio = rt_mutex_getprio(p);
4201 /*
4202 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4203 */
4204 if (policy == SCHED_BATCH)
4205 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004206 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207}
4208
4209/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004211 * @p: the task in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004214 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004215 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004217int sched_setscheduler(struct task_struct *p, int policy,
4218 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004219{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004220 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004221 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004222 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004223 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004224
Steven Rostedt66e53932006-06-27 02:54:44 -07004225 /* may grab non-irq protected spin_locks */
4226 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004227recheck:
4228 /* double check policy once rq lock held */
4229 if (policy < 0)
4230 policy = oldpolicy = p->policy;
4231 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004232 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4233 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234 /*
4235 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004236 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4237 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238 */
4239 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004240 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004241 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004242 return -EINVAL;
Oleg Nesterov57a6f51c2006-09-29 02:00:49 -07004243 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004244 return -EINVAL;
4245
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004246 /*
4247 * Allow unprivileged RT tasks to decrease priority:
4248 */
4249 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004250 if (is_rt_policy(policy)) {
4251 unsigned long rlim_rtprio;
4252 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004253
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004254 if (!lock_task_sighand(p, &flags))
4255 return -ESRCH;
4256 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4257 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004258
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004259 /* can't set/change the rt policy */
4260 if (policy != p->policy && !rlim_rtprio)
4261 return -EPERM;
4262
4263 /* can't increase priority */
4264 if (param->sched_priority > p->rt_priority &&
4265 param->sched_priority > rlim_rtprio)
4266 return -EPERM;
4267 }
4268
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004269 /* can't change other user's priorities */
4270 if ((current->euid != p->euid) &&
4271 (current->euid != p->uid))
4272 return -EPERM;
4273 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274
4275 retval = security_task_setscheduler(p, policy, param);
4276 if (retval)
4277 return retval;
4278 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004279 * make sure no PI-waiters arrive (or leave) while we are
4280 * changing the priority of the task:
4281 */
4282 spin_lock_irqsave(&p->pi_lock, flags);
4283 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284 * To be able to change p->policy safely, the apropriate
4285 * runqueue lock must be held.
4286 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004287 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004288 /* recheck policy now with rq lock held */
4289 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4290 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004291 __task_rq_unlock(rq);
4292 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293 goto recheck;
4294 }
4295 array = p->array;
4296 if (array)
4297 deactivate_task(p, rq);
4298 oldprio = p->prio;
4299 __setscheduler(p, policy, param->sched_priority);
4300 if (array) {
4301 __activate_task(p, rq);
4302 /*
4303 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004304 * our priority decreased, or if we are not currently running on
4305 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004307 if (task_running(rq, p)) {
4308 if (p->prio > oldprio)
4309 resched_task(rq->curr);
4310 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004311 resched_task(rq->curr);
4312 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004313 __task_rq_unlock(rq);
4314 spin_unlock_irqrestore(&p->pi_lock, flags);
4315
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004316 rt_mutex_adjust_pi(p);
4317
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 return 0;
4319}
4320EXPORT_SYMBOL_GPL(sched_setscheduler);
4321
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004322static int
4323do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004324{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 struct sched_param lparam;
4326 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004327 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004328
4329 if (!param || pid < 0)
4330 return -EINVAL;
4331 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4332 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004333
4334 rcu_read_lock();
4335 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004336 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004337 if (p != NULL)
4338 retval = sched_setscheduler(p, policy, &lparam);
4339 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004340
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341 return retval;
4342}
4343
4344/**
4345 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4346 * @pid: the pid in question.
4347 * @policy: new policy.
4348 * @param: structure containing the new RT priority.
4349 */
4350asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4351 struct sched_param __user *param)
4352{
Jason Baronc21761f2006-01-18 17:43:03 -08004353 /* negative values for policy are not valid */
4354 if (policy < 0)
4355 return -EINVAL;
4356
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357 return do_sched_setscheduler(pid, policy, param);
4358}
4359
4360/**
4361 * sys_sched_setparam - set/change the RT priority of a thread
4362 * @pid: the pid in question.
4363 * @param: structure containing the new RT priority.
4364 */
4365asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4366{
4367 return do_sched_setscheduler(pid, -1, param);
4368}
4369
4370/**
4371 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4372 * @pid: the pid in question.
4373 */
4374asmlinkage long sys_sched_getscheduler(pid_t pid)
4375{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004376 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004377 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004378
4379 if (pid < 0)
4380 goto out_nounlock;
4381
4382 retval = -ESRCH;
4383 read_lock(&tasklist_lock);
4384 p = find_process_by_pid(pid);
4385 if (p) {
4386 retval = security_task_getscheduler(p);
4387 if (!retval)
4388 retval = p->policy;
4389 }
4390 read_unlock(&tasklist_lock);
4391
4392out_nounlock:
4393 return retval;
4394}
4395
4396/**
4397 * sys_sched_getscheduler - get the RT priority of a thread
4398 * @pid: the pid in question.
4399 * @param: structure containing the RT priority.
4400 */
4401asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4402{
4403 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004404 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004405 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004406
4407 if (!param || pid < 0)
4408 goto out_nounlock;
4409
4410 read_lock(&tasklist_lock);
4411 p = find_process_by_pid(pid);
4412 retval = -ESRCH;
4413 if (!p)
4414 goto out_unlock;
4415
4416 retval = security_task_getscheduler(p);
4417 if (retval)
4418 goto out_unlock;
4419
4420 lp.sched_priority = p->rt_priority;
4421 read_unlock(&tasklist_lock);
4422
4423 /*
4424 * This one might sleep, we cannot do it with a spinlock held ...
4425 */
4426 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4427
4428out_nounlock:
4429 return retval;
4430
4431out_unlock:
4432 read_unlock(&tasklist_lock);
4433 return retval;
4434}
4435
4436long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4437{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004438 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004439 struct task_struct *p;
4440 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004441
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004442 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004443 read_lock(&tasklist_lock);
4444
4445 p = find_process_by_pid(pid);
4446 if (!p) {
4447 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004448 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004449 return -ESRCH;
4450 }
4451
4452 /*
4453 * It is not safe to call set_cpus_allowed with the
4454 * tasklist_lock held. We will bump the task_struct's
4455 * usage count and then drop tasklist_lock.
4456 */
4457 get_task_struct(p);
4458 read_unlock(&tasklist_lock);
4459
4460 retval = -EPERM;
4461 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4462 !capable(CAP_SYS_NICE))
4463 goto out_unlock;
4464
David Quigleye7834f82006-06-23 02:03:59 -07004465 retval = security_task_setscheduler(p, 0, NULL);
4466 if (retval)
4467 goto out_unlock;
4468
Linus Torvalds1da177e2005-04-16 15:20:36 -07004469 cpus_allowed = cpuset_cpus_allowed(p);
4470 cpus_and(new_mask, new_mask, cpus_allowed);
4471 retval = set_cpus_allowed(p, new_mask);
4472
4473out_unlock:
4474 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004475 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004476 return retval;
4477}
4478
4479static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4480 cpumask_t *new_mask)
4481{
4482 if (len < sizeof(cpumask_t)) {
4483 memset(new_mask, 0, sizeof(cpumask_t));
4484 } else if (len > sizeof(cpumask_t)) {
4485 len = sizeof(cpumask_t);
4486 }
4487 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4488}
4489
4490/**
4491 * sys_sched_setaffinity - set the cpu affinity of a process
4492 * @pid: pid of the process
4493 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4494 * @user_mask_ptr: user-space pointer to the new cpu mask
4495 */
4496asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4497 unsigned long __user *user_mask_ptr)
4498{
4499 cpumask_t new_mask;
4500 int retval;
4501
4502 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4503 if (retval)
4504 return retval;
4505
4506 return sched_setaffinity(pid, new_mask);
4507}
4508
4509/*
4510 * Represents all cpu's present in the system
4511 * In systems capable of hotplug, this map could dynamically grow
4512 * as new cpu's are detected in the system via any platform specific
4513 * method, such as ACPI for e.g.
4514 */
4515
Andi Kleen4cef0c62006-01-11 22:44:57 +01004516cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004517EXPORT_SYMBOL(cpu_present_map);
4518
4519#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004520cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004521EXPORT_SYMBOL(cpu_online_map);
4522
Andi Kleen4cef0c62006-01-11 22:44:57 +01004523cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004524EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004525#endif
4526
4527long sched_getaffinity(pid_t pid, cpumask_t *mask)
4528{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004529 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004530 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004531
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004532 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004533 read_lock(&tasklist_lock);
4534
4535 retval = -ESRCH;
4536 p = find_process_by_pid(pid);
4537 if (!p)
4538 goto out_unlock;
4539
David Quigleye7834f82006-06-23 02:03:59 -07004540 retval = security_task_getscheduler(p);
4541 if (retval)
4542 goto out_unlock;
4543
Jack Steiner2f7016d2006-02-01 03:05:18 -08004544 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004545
4546out_unlock:
4547 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004548 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004549 if (retval)
4550 return retval;
4551
4552 return 0;
4553}
4554
4555/**
4556 * sys_sched_getaffinity - get the cpu affinity of a process
4557 * @pid: pid of the process
4558 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4559 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4560 */
4561asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4562 unsigned long __user *user_mask_ptr)
4563{
4564 int ret;
4565 cpumask_t mask;
4566
4567 if (len < sizeof(cpumask_t))
4568 return -EINVAL;
4569
4570 ret = sched_getaffinity(pid, &mask);
4571 if (ret < 0)
4572 return ret;
4573
4574 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4575 return -EFAULT;
4576
4577 return sizeof(cpumask_t);
4578}
4579
4580/**
4581 * sys_sched_yield - yield the current processor to other threads.
4582 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004583 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004584 * to the expired array. If there are no other threads running on this
4585 * CPU then this function will return.
4586 */
4587asmlinkage long sys_sched_yield(void)
4588{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004589 struct rq *rq = this_rq_lock();
4590 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004591
4592 schedstat_inc(rq, yld_cnt);
4593 /*
4594 * We implement yielding by moving the task into the expired
4595 * queue.
4596 *
4597 * (special rule: RT tasks will just roundrobin in the active
4598 * array.)
4599 */
4600 if (rt_task(current))
4601 target = rq->active;
4602
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004603 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004604 schedstat_inc(rq, yld_act_empty);
4605 if (!rq->expired->nr_active)
4606 schedstat_inc(rq, yld_both_empty);
4607 } else if (!rq->expired->nr_active)
4608 schedstat_inc(rq, yld_exp_empty);
4609
4610 if (array != target) {
4611 dequeue_task(current, array);
4612 enqueue_task(current, target);
4613 } else
4614 /*
4615 * requeue_task is cheaper so perform that if possible.
4616 */
4617 requeue_task(current, array);
4618
4619 /*
4620 * Since we are going to call schedule() anyway, there's
4621 * no need to preempt or enable interrupts:
4622 */
4623 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004624 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004625 _raw_spin_unlock(&rq->lock);
4626 preempt_enable_no_resched();
4627
4628 schedule();
4629
4630 return 0;
4631}
4632
Andrew Mortone7b38402006-06-30 01:56:00 -07004633static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004634{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004635#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4636 __might_sleep(__FILE__, __LINE__);
4637#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004638 /*
4639 * The BKS might be reacquired before we have dropped
4640 * PREEMPT_ACTIVE, which could trigger a second
4641 * cond_resched() call.
4642 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643 do {
4644 add_preempt_count(PREEMPT_ACTIVE);
4645 schedule();
4646 sub_preempt_count(PREEMPT_ACTIVE);
4647 } while (need_resched());
4648}
4649
4650int __sched cond_resched(void)
4651{
Ingo Molnar94142322006-12-29 16:48:13 -08004652 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4653 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004654 __cond_resched();
4655 return 1;
4656 }
4657 return 0;
4658}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004659EXPORT_SYMBOL(cond_resched);
4660
4661/*
4662 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4663 * call schedule, and on return reacquire the lock.
4664 *
4665 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4666 * operations here to prevent schedule() from being called twice (once via
4667 * spin_unlock(), once by hand).
4668 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004669int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004670{
Jan Kara6df3cec2005-06-13 15:52:32 -07004671 int ret = 0;
4672
Linus Torvalds1da177e2005-04-16 15:20:36 -07004673 if (need_lockbreak(lock)) {
4674 spin_unlock(lock);
4675 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004676 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004677 spin_lock(lock);
4678 }
Ingo Molnar94142322006-12-29 16:48:13 -08004679 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004680 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004681 _raw_spin_unlock(lock);
4682 preempt_enable_no_resched();
4683 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004684 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004685 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004686 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004687 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004688}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004689EXPORT_SYMBOL(cond_resched_lock);
4690
4691int __sched cond_resched_softirq(void)
4692{
4693 BUG_ON(!in_softirq());
4694
Ingo Molnar94142322006-12-29 16:48:13 -08004695 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004696 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697 __cond_resched();
4698 local_bh_disable();
4699 return 1;
4700 }
4701 return 0;
4702}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004703EXPORT_SYMBOL(cond_resched_softirq);
4704
Linus Torvalds1da177e2005-04-16 15:20:36 -07004705/**
4706 * yield - yield the current processor to other threads.
4707 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004708 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 * thread runnable and calls sys_sched_yield().
4710 */
4711void __sched yield(void)
4712{
4713 set_current_state(TASK_RUNNING);
4714 sys_sched_yield();
4715}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004716EXPORT_SYMBOL(yield);
4717
4718/*
4719 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4720 * that process accounting knows that this is a task in IO wait state.
4721 *
4722 * But don't do that if it is a deliberate, throttling IO wait (this task
4723 * has set its backing_dev_info: the queue against which it should throttle)
4724 */
4725void __sched io_schedule(void)
4726{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004727 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004728
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004729 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004730 atomic_inc(&rq->nr_iowait);
4731 schedule();
4732 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004733 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004734}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004735EXPORT_SYMBOL(io_schedule);
4736
4737long __sched io_schedule_timeout(long timeout)
4738{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004739 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004740 long ret;
4741
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004742 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004743 atomic_inc(&rq->nr_iowait);
4744 ret = schedule_timeout(timeout);
4745 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004746 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004747 return ret;
4748}
4749
4750/**
4751 * sys_sched_get_priority_max - return maximum RT priority.
4752 * @policy: scheduling class.
4753 *
4754 * this syscall returns the maximum rt_priority that can be used
4755 * by a given scheduling class.
4756 */
4757asmlinkage long sys_sched_get_priority_max(int policy)
4758{
4759 int ret = -EINVAL;
4760
4761 switch (policy) {
4762 case SCHED_FIFO:
4763 case SCHED_RR:
4764 ret = MAX_USER_RT_PRIO-1;
4765 break;
4766 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004767 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 ret = 0;
4769 break;
4770 }
4771 return ret;
4772}
4773
4774/**
4775 * sys_sched_get_priority_min - return minimum RT priority.
4776 * @policy: scheduling class.
4777 *
4778 * this syscall returns the minimum rt_priority that can be used
4779 * by a given scheduling class.
4780 */
4781asmlinkage long sys_sched_get_priority_min(int policy)
4782{
4783 int ret = -EINVAL;
4784
4785 switch (policy) {
4786 case SCHED_FIFO:
4787 case SCHED_RR:
4788 ret = 1;
4789 break;
4790 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004791 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792 ret = 0;
4793 }
4794 return ret;
4795}
4796
4797/**
4798 * sys_sched_rr_get_interval - return the default timeslice of a process.
4799 * @pid: pid of the process.
4800 * @interval: userspace pointer to the timeslice value.
4801 *
4802 * this syscall writes the default timeslice value of a given process
4803 * into the user-space timespec buffer. A value of '0' means infinity.
4804 */
4805asmlinkage
4806long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4807{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004808 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004809 int retval = -EINVAL;
4810 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004811
4812 if (pid < 0)
4813 goto out_nounlock;
4814
4815 retval = -ESRCH;
4816 read_lock(&tasklist_lock);
4817 p = find_process_by_pid(pid);
4818 if (!p)
4819 goto out_unlock;
4820
4821 retval = security_task_getscheduler(p);
4822 if (retval)
4823 goto out_unlock;
4824
Peter Williamsb78709c2006-06-26 16:58:00 +10004825 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004826 0 : task_timeslice(p), &t);
4827 read_unlock(&tasklist_lock);
4828 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4829out_nounlock:
4830 return retval;
4831out_unlock:
4832 read_unlock(&tasklist_lock);
4833 return retval;
4834}
4835
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004836static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004837
4838static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004839{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004841 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842
Linus Torvalds1da177e2005-04-16 15:20:36 -07004843 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004844 printk("%-13.13s %c", p->comm,
4845 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846#if (BITS_PER_LONG == 32)
4847 if (state == TASK_RUNNING)
4848 printk(" running ");
4849 else
4850 printk(" %08lX ", thread_saved_pc(p));
4851#else
4852 if (state == TASK_RUNNING)
4853 printk(" running task ");
4854 else
4855 printk(" %016lx ", thread_saved_pc(p));
4856#endif
4857#ifdef CONFIG_DEBUG_STACK_USAGE
4858 {
Al Viro10ebffd2005-11-13 16:06:56 -08004859 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004860 while (!*n)
4861 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004862 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004863 }
4864#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004865 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004866 if (!p->mm)
4867 printk(" (L-TLB)\n");
4868 else
4869 printk(" (NOTLB)\n");
4870
4871 if (state != TASK_RUNNING)
4872 show_stack(p, NULL);
4873}
4874
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004875void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004876{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004877 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004878
4879#if (BITS_PER_LONG == 32)
4880 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004881 " free sibling\n");
4882 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004883#else
4884 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004885 " free sibling\n");
4886 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887#endif
4888 read_lock(&tasklist_lock);
4889 do_each_thread(g, p) {
4890 /*
4891 * reset the NMI-timeout, listing all files on a slow
4892 * console might take alot of time:
4893 */
4894 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004895 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004896 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004897 } while_each_thread(g, p);
4898
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004899 touch_all_softlockup_watchdogs();
4900
Linus Torvalds1da177e2005-04-16 15:20:36 -07004901 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004902 /*
4903 * Only show locks if all tasks are dumped:
4904 */
4905 if (state_filter == -1)
4906 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004907}
4908
Ingo Molnar1df21052007-07-09 18:51:58 +02004909void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4910{
4911 /* nothing yet */
4912}
4913
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004914/**
4915 * init_idle - set up an idle thread for a given CPU
4916 * @idle: task in question
4917 * @cpu: cpu the idle task belongs to
4918 *
4919 * NOTE: this function does not set the idle thread's NEED_RESCHED
4920 * flag, to make booting more robust.
4921 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004922void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004924 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925 unsigned long flags;
4926
Ingo Molnar81c29a82006-03-07 21:55:27 -08004927 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928 idle->sleep_avg = 0;
4929 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004930 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004931 idle->state = TASK_RUNNING;
4932 idle->cpus_allowed = cpumask_of_cpu(cpu);
4933 set_task_cpu(idle, cpu);
4934
4935 spin_lock_irqsave(&rq->lock, flags);
4936 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004937#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4938 idle->oncpu = 1;
4939#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004940 spin_unlock_irqrestore(&rq->lock, flags);
4941
4942 /* Set the preempt count _outside_ the spinlocks! */
4943#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f542005-11-13 16:06:55 -08004944 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004945#else
Al Viroa1261f542005-11-13 16:06:55 -08004946 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004947#endif
4948}
4949
4950/*
4951 * In a system that switches off the HZ timer nohz_cpu_mask
4952 * indicates which cpus entered this state. This is used
4953 * in the rcu update to wait only for active cpus. For system
4954 * which do not switch off the HZ timer nohz_cpu_mask should
4955 * always be CPU_MASK_NONE.
4956 */
4957cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4958
4959#ifdef CONFIG_SMP
4960/*
4961 * This is how migration works:
4962 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004963 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004964 * runqueue and wake up that CPU's migration thread.
4965 * 2) we down() the locked semaphore => thread blocks.
4966 * 3) migration thread wakes up (implicitly it forces the migrated
4967 * thread off the CPU)
4968 * 4) it gets the migration request and checks whether the migrated
4969 * task is still in the wrong runqueue.
4970 * 5) if it's in the wrong runqueue then the migration thread removes
4971 * it and puts it into the right queue.
4972 * 6) migration thread up()s the semaphore.
4973 * 7) we wake up and the migration is done.
4974 */
4975
4976/*
4977 * Change a given task's CPU affinity. Migrate the thread to a
4978 * proper CPU and schedule it away if the CPU it's executing on
4979 * is removed from the allowed bitmask.
4980 *
4981 * NOTE: the caller must have a valid reference to the task, the
4982 * task must not exit() & deallocate itself prematurely. The
4983 * call is not atomic; no spinlocks may be held.
4984 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004985int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004986{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004987 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004988 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004989 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004990 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991
4992 rq = task_rq_lock(p, &flags);
4993 if (!cpus_intersects(new_mask, cpu_online_map)) {
4994 ret = -EINVAL;
4995 goto out;
4996 }
4997
4998 p->cpus_allowed = new_mask;
4999 /* Can the task run on the task's current CPU? If so, we're done */
5000 if (cpu_isset(task_cpu(p), new_mask))
5001 goto out;
5002
5003 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5004 /* Need help from migration thread: drop lock and wait. */
5005 task_rq_unlock(rq, &flags);
5006 wake_up_process(rq->migration_thread);
5007 wait_for_completion(&req.done);
5008 tlb_migrate_finish(p->mm);
5009 return 0;
5010 }
5011out:
5012 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005013
Linus Torvalds1da177e2005-04-16 15:20:36 -07005014 return ret;
5015}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005016EXPORT_SYMBOL_GPL(set_cpus_allowed);
5017
5018/*
5019 * Move (not current) task off this cpu, onto dest cpu. We're doing
5020 * this because either it can't run here any more (set_cpus_allowed()
5021 * away from this CPU, or CPU going down), or because we're
5022 * attempting to rebalance this task on exec (sched_exec).
5023 *
5024 * So we race with normal scheduler movements, but that's OK, as long
5025 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005026 *
5027 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005028 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005029static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005031 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005032 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005033
5034 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005035 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005036
5037 rq_src = cpu_rq(src_cpu);
5038 rq_dest = cpu_rq(dest_cpu);
5039
5040 double_rq_lock(rq_src, rq_dest);
5041 /* Already moved. */
5042 if (task_cpu(p) != src_cpu)
5043 goto out;
5044 /* Affinity changed (again). */
5045 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5046 goto out;
5047
5048 set_task_cpu(p, dest_cpu);
5049 if (p->array) {
5050 /*
5051 * Sync timestamp with rq_dest's before activating.
5052 * The same thing could be achieved by doing this step
5053 * afterwards, and pretending it was a local activate.
5054 * This way is cleaner and logically correct.
5055 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005056 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5057 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005058 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005059 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005060 if (TASK_PREEMPTS_CURR(p, rq_dest))
5061 resched_task(rq_dest->curr);
5062 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005063 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005064out:
5065 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005066 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005067}
5068
5069/*
5070 * migration_thread - this is a highprio system thread that performs
5071 * thread migration by bumping thread off CPU then 'pushing' onto
5072 * another runqueue.
5073 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005074static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005075{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005076 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005077 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005078
5079 rq = cpu_rq(cpu);
5080 BUG_ON(rq->migration_thread != current);
5081
5082 set_current_state(TASK_INTERRUPTIBLE);
5083 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005084 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005086
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005087 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005088
5089 spin_lock_irq(&rq->lock);
5090
5091 if (cpu_is_offline(cpu)) {
5092 spin_unlock_irq(&rq->lock);
5093 goto wait_to_die;
5094 }
5095
5096 if (rq->active_balance) {
5097 active_load_balance(rq, cpu);
5098 rq->active_balance = 0;
5099 }
5100
5101 head = &rq->migration_queue;
5102
5103 if (list_empty(head)) {
5104 spin_unlock_irq(&rq->lock);
5105 schedule();
5106 set_current_state(TASK_INTERRUPTIBLE);
5107 continue;
5108 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005109 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005110 list_del_init(head->next);
5111
Nick Piggin674311d2005-06-25 14:57:27 -07005112 spin_unlock(&rq->lock);
5113 __migrate_task(req->task, cpu, req->dest_cpu);
5114 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005115
5116 complete(&req->done);
5117 }
5118 __set_current_state(TASK_RUNNING);
5119 return 0;
5120
5121wait_to_die:
5122 /* Wait for kthread_stop */
5123 set_current_state(TASK_INTERRUPTIBLE);
5124 while (!kthread_should_stop()) {
5125 schedule();
5126 set_current_state(TASK_INTERRUPTIBLE);
5127 }
5128 __set_current_state(TASK_RUNNING);
5129 return 0;
5130}
5131
5132#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005133/*
5134 * Figure out where task on dead CPU should go, use force if neccessary.
5135 * NOTE: interrupts should be disabled by the caller
5136 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005137static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005138{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005139 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005140 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005141 struct rq *rq;
5142 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005143
Kirill Korotaevefc30812006-06-27 02:54:32 -07005144restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005145 /* On same node? */
5146 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005147 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005148 dest_cpu = any_online_cpu(mask);
5149
5150 /* On any allowed CPU? */
5151 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005152 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005153
5154 /* No more Mr. Nice Guy. */
5155 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005156 rq = task_rq_lock(p, &flags);
5157 cpus_setall(p->cpus_allowed);
5158 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005159 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160
5161 /*
5162 * Don't tell them about moving exiting tasks or
5163 * kernel threads (both mm NULL), since they never
5164 * leave kernel.
5165 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005166 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005167 printk(KERN_INFO "process %d (%s) no "
5168 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005169 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005170 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005171 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005172 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005173}
5174
5175/*
5176 * While a dead CPU has no uninterruptible tasks queued at this point,
5177 * it might still have a nonzero ->nr_uninterruptible counter, because
5178 * for performance reasons the counter is not stricly tracking tasks to
5179 * their home CPUs. So we just add the counter to another CPU's counter,
5180 * to keep the global sum constant after CPU-down:
5181 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005182static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005183{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005184 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005185 unsigned long flags;
5186
5187 local_irq_save(flags);
5188 double_rq_lock(rq_src, rq_dest);
5189 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5190 rq_src->nr_uninterruptible = 0;
5191 double_rq_unlock(rq_src, rq_dest);
5192 local_irq_restore(flags);
5193}
5194
5195/* Run through task list and migrate tasks from the dead cpu. */
5196static void migrate_live_tasks(int src_cpu)
5197{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005198 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005199
5200 write_lock_irq(&tasklist_lock);
5201
Ingo Molnar48f24c42006-07-03 00:25:40 -07005202 do_each_thread(t, p) {
5203 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005204 continue;
5205
Ingo Molnar48f24c42006-07-03 00:25:40 -07005206 if (task_cpu(p) == src_cpu)
5207 move_task_off_dead_cpu(src_cpu, p);
5208 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209
5210 write_unlock_irq(&tasklist_lock);
5211}
5212
5213/* Schedules idle task to be the next runnable task on current CPU.
5214 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005215 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005216 */
5217void sched_idle_next(void)
5218{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005219 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005220 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005221 struct task_struct *p = rq->idle;
5222 unsigned long flags;
5223
5224 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005225 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005226
Ingo Molnar48f24c42006-07-03 00:25:40 -07005227 /*
5228 * Strictly not necessary since rest of the CPUs are stopped by now
5229 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005230 */
5231 spin_lock_irqsave(&rq->lock, flags);
5232
5233 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005234
5235 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005236 __activate_idle_task(p, rq);
5237
5238 spin_unlock_irqrestore(&rq->lock, flags);
5239}
5240
Ingo Molnar48f24c42006-07-03 00:25:40 -07005241/*
5242 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005243 * offline.
5244 */
5245void idle_task_exit(void)
5246{
5247 struct mm_struct *mm = current->active_mm;
5248
5249 BUG_ON(cpu_online(smp_processor_id()));
5250
5251 if (mm != &init_mm)
5252 switch_mm(mm, &init_mm, current);
5253 mmdrop(mm);
5254}
5255
Kirill Korotaev054b9102006-12-10 02:20:11 -08005256/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005257static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005258{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005259 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005260
5261 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005262 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005263
5264 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005265 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005266
Ingo Molnar48f24c42006-07-03 00:25:40 -07005267 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005268
5269 /*
5270 * Drop lock around migration; if someone else moves it,
5271 * that's OK. No task can be added to this CPU, so iteration is
5272 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005273 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005274 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005275 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005276 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005277 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278
Ingo Molnar48f24c42006-07-03 00:25:40 -07005279 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280}
5281
5282/* release_task() removes task from tasklist, so we won't find dead tasks. */
5283static void migrate_dead_tasks(unsigned int dead_cpu)
5284{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005285 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005286 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287
5288 for (arr = 0; arr < 2; arr++) {
5289 for (i = 0; i < MAX_PRIO; i++) {
5290 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005291
Linus Torvalds1da177e2005-04-16 15:20:36 -07005292 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005293 migrate_dead(dead_cpu, list_entry(list->next,
5294 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005295 }
5296 }
5297}
5298#endif /* CONFIG_HOTPLUG_CPU */
5299
5300/*
5301 * migration_call - callback that gets triggered when a CPU is added.
5302 * Here we can start up the necessary migration thread for the new CPU.
5303 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005304static int __cpuinit
5305migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005306{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005308 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005309 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005310 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005311
5312 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005313 case CPU_LOCK_ACQUIRE:
5314 mutex_lock(&sched_hotcpu_mutex);
5315 break;
5316
Linus Torvalds1da177e2005-04-16 15:20:36 -07005317 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005318 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005319 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5320 if (IS_ERR(p))
5321 return NOTIFY_BAD;
5322 p->flags |= PF_NOFREEZE;
5323 kthread_bind(p, cpu);
5324 /* Must be high prio: stop_machine expects to yield to it. */
5325 rq = task_rq_lock(p, &flags);
5326 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5327 task_rq_unlock(rq, &flags);
5328 cpu_rq(cpu)->migration_thread = p;
5329 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005330
Linus Torvalds1da177e2005-04-16 15:20:36 -07005331 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005332 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005333 /* Strictly unneccessary, as first user will wake it. */
5334 wake_up_process(cpu_rq(cpu)->migration_thread);
5335 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005336
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337#ifdef CONFIG_HOTPLUG_CPU
5338 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005339 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005340 if (!cpu_rq(cpu)->migration_thread)
5341 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005342 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005343 kthread_bind(cpu_rq(cpu)->migration_thread,
5344 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345 kthread_stop(cpu_rq(cpu)->migration_thread);
5346 cpu_rq(cpu)->migration_thread = NULL;
5347 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005348
Linus Torvalds1da177e2005-04-16 15:20:36 -07005349 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005350 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351 migrate_live_tasks(cpu);
5352 rq = cpu_rq(cpu);
5353 kthread_stop(rq->migration_thread);
5354 rq->migration_thread = NULL;
5355 /* Idle task back to normal (off runqueue, low prio) */
5356 rq = task_rq_lock(rq->idle, &flags);
5357 deactivate_task(rq->idle, rq);
5358 rq->idle->static_prio = MAX_PRIO;
5359 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5360 migrate_dead_tasks(cpu);
5361 task_rq_unlock(rq, &flags);
5362 migrate_nr_uninterruptible(rq);
5363 BUG_ON(rq->nr_running != 0);
5364
5365 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005366 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005367 * the requestors. */
5368 spin_lock_irq(&rq->lock);
5369 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005370 struct migration_req *req;
5371
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005373 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005374 list_del_init(&req->list);
5375 complete(&req->done);
5376 }
5377 spin_unlock_irq(&rq->lock);
5378 break;
5379#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005380 case CPU_LOCK_RELEASE:
5381 mutex_unlock(&sched_hotcpu_mutex);
5382 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383 }
5384 return NOTIFY_OK;
5385}
5386
5387/* Register at highest priority so that task migration (migrate_all_tasks)
5388 * happens before everything else.
5389 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005390static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005391 .notifier_call = migration_call,
5392 .priority = 10
5393};
5394
5395int __init migration_init(void)
5396{
5397 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005398 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005399
5400 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005401 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5402 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005403 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5404 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005405
Linus Torvalds1da177e2005-04-16 15:20:36 -07005406 return 0;
5407}
5408#endif
5409
5410#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005411
5412/* Number of possible processor ids */
5413int nr_cpu_ids __read_mostly = NR_CPUS;
5414EXPORT_SYMBOL(nr_cpu_ids);
5415
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005416#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005417#ifdef SCHED_DOMAIN_DEBUG
5418static void sched_domain_debug(struct sched_domain *sd, int cpu)
5419{
5420 int level = 0;
5421
Nick Piggin41c7ce92005-06-25 14:57:24 -07005422 if (!sd) {
5423 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5424 return;
5425 }
5426
Linus Torvalds1da177e2005-04-16 15:20:36 -07005427 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5428
5429 do {
5430 int i;
5431 char str[NR_CPUS];
5432 struct sched_group *group = sd->groups;
5433 cpumask_t groupmask;
5434
5435 cpumask_scnprintf(str, NR_CPUS, sd->span);
5436 cpus_clear(groupmask);
5437
5438 printk(KERN_DEBUG);
5439 for (i = 0; i < level + 1; i++)
5440 printk(" ");
5441 printk("domain %d: ", level);
5442
5443 if (!(sd->flags & SD_LOAD_BALANCE)) {
5444 printk("does not load-balance\n");
5445 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005446 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5447 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005448 break;
5449 }
5450
5451 printk("span %s\n", str);
5452
5453 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005454 printk(KERN_ERR "ERROR: domain->span does not contain "
5455 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005456 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005457 printk(KERN_ERR "ERROR: domain->groups does not contain"
5458 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005459
5460 printk(KERN_DEBUG);
5461 for (i = 0; i < level + 2; i++)
5462 printk(" ");
5463 printk("groups:");
5464 do {
5465 if (!group) {
5466 printk("\n");
5467 printk(KERN_ERR "ERROR: group is NULL\n");
5468 break;
5469 }
5470
Eric Dumazet5517d862007-05-08 00:32:57 -07005471 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005472 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005473 printk(KERN_ERR "ERROR: domain->cpu_power not "
5474 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005475 }
5476
5477 if (!cpus_weight(group->cpumask)) {
5478 printk("\n");
5479 printk(KERN_ERR "ERROR: empty group\n");
5480 }
5481
5482 if (cpus_intersects(groupmask, group->cpumask)) {
5483 printk("\n");
5484 printk(KERN_ERR "ERROR: repeated CPUs\n");
5485 }
5486
5487 cpus_or(groupmask, groupmask, group->cpumask);
5488
5489 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5490 printk(" %s", str);
5491
5492 group = group->next;
5493 } while (group != sd->groups);
5494 printk("\n");
5495
5496 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005497 printk(KERN_ERR "ERROR: groups don't span "
5498 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005499
5500 level++;
5501 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005502 if (!sd)
5503 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005504
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005505 if (!cpus_subset(groupmask, sd->span))
5506 printk(KERN_ERR "ERROR: parent span is not a superset "
5507 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005508
5509 } while (sd);
5510}
5511#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005512# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005513#endif
5514
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005515static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005516{
5517 if (cpus_weight(sd->span) == 1)
5518 return 1;
5519
5520 /* Following flags need at least 2 groups */
5521 if (sd->flags & (SD_LOAD_BALANCE |
5522 SD_BALANCE_NEWIDLE |
5523 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005524 SD_BALANCE_EXEC |
5525 SD_SHARE_CPUPOWER |
5526 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005527 if (sd->groups != sd->groups->next)
5528 return 0;
5529 }
5530
5531 /* Following flags don't use groups */
5532 if (sd->flags & (SD_WAKE_IDLE |
5533 SD_WAKE_AFFINE |
5534 SD_WAKE_BALANCE))
5535 return 0;
5536
5537 return 1;
5538}
5539
Ingo Molnar48f24c42006-07-03 00:25:40 -07005540static int
5541sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005542{
5543 unsigned long cflags = sd->flags, pflags = parent->flags;
5544
5545 if (sd_degenerate(parent))
5546 return 1;
5547
5548 if (!cpus_equal(sd->span, parent->span))
5549 return 0;
5550
5551 /* Does parent contain flags not in child? */
5552 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5553 if (cflags & SD_WAKE_AFFINE)
5554 pflags &= ~SD_WAKE_BALANCE;
5555 /* Flags needing groups don't count if only 1 group in parent */
5556 if (parent->groups == parent->groups->next) {
5557 pflags &= ~(SD_LOAD_BALANCE |
5558 SD_BALANCE_NEWIDLE |
5559 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005560 SD_BALANCE_EXEC |
5561 SD_SHARE_CPUPOWER |
5562 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005563 }
5564 if (~cflags & pflags)
5565 return 0;
5566
5567 return 1;
5568}
5569
Linus Torvalds1da177e2005-04-16 15:20:36 -07005570/*
5571 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5572 * hold the hotplug lock.
5573 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005574static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005575{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005576 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005577 struct sched_domain *tmp;
5578
5579 /* Remove the sched domains which do not contribute to scheduling. */
5580 for (tmp = sd; tmp; tmp = tmp->parent) {
5581 struct sched_domain *parent = tmp->parent;
5582 if (!parent)
5583 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005584 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005585 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005586 if (parent->parent)
5587 parent->parent->child = tmp;
5588 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005589 }
5590
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005591 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005592 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005593 if (sd)
5594 sd->child = NULL;
5595 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005596
5597 sched_domain_debug(sd, cpu);
5598
Nick Piggin674311d2005-06-25 14:57:27 -07005599 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005600}
5601
5602/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005603static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005604
5605/* Setup the mask of cpus configured for isolated domains */
5606static int __init isolated_cpu_setup(char *str)
5607{
5608 int ints[NR_CPUS], i;
5609
5610 str = get_options(str, ARRAY_SIZE(ints), ints);
5611 cpus_clear(cpu_isolated_map);
5612 for (i = 1; i <= ints[0]; i++)
5613 if (ints[i] < NR_CPUS)
5614 cpu_set(ints[i], cpu_isolated_map);
5615 return 1;
5616}
5617
5618__setup ("isolcpus=", isolated_cpu_setup);
5619
5620/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005621 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5622 * to a function which identifies what group(along with sched group) a CPU
5623 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5624 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005625 *
5626 * init_sched_build_groups will build a circular linked list of the groups
5627 * covered by the given span, and will set each group's ->cpumask correctly,
5628 * and ->cpu_power to 0.
5629 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005630static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005631init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5632 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5633 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005634{
5635 struct sched_group *first = NULL, *last = NULL;
5636 cpumask_t covered = CPU_MASK_NONE;
5637 int i;
5638
5639 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005640 struct sched_group *sg;
5641 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005642 int j;
5643
5644 if (cpu_isset(i, covered))
5645 continue;
5646
5647 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005648 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005649
5650 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005651 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005652 continue;
5653
5654 cpu_set(j, covered);
5655 cpu_set(j, sg->cpumask);
5656 }
5657 if (!first)
5658 first = sg;
5659 if (last)
5660 last->next = sg;
5661 last = sg;
5662 }
5663 last->next = first;
5664}
5665
John Hawkes9c1cfda2005-09-06 15:18:14 -07005666#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005667
John Hawkes9c1cfda2005-09-06 15:18:14 -07005668#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005669
John Hawkes9c1cfda2005-09-06 15:18:14 -07005670/**
5671 * find_next_best_node - find the next node to include in a sched_domain
5672 * @node: node whose sched_domain we're building
5673 * @used_nodes: nodes already in the sched_domain
5674 *
5675 * Find the next node to include in a given scheduling domain. Simply
5676 * finds the closest node not already in the @used_nodes map.
5677 *
5678 * Should use nodemask_t.
5679 */
5680static int find_next_best_node(int node, unsigned long *used_nodes)
5681{
5682 int i, n, val, min_val, best_node = 0;
5683
5684 min_val = INT_MAX;
5685
5686 for (i = 0; i < MAX_NUMNODES; i++) {
5687 /* Start at @node */
5688 n = (node + i) % MAX_NUMNODES;
5689
5690 if (!nr_cpus_node(n))
5691 continue;
5692
5693 /* Skip already used nodes */
5694 if (test_bit(n, used_nodes))
5695 continue;
5696
5697 /* Simple min distance search */
5698 val = node_distance(node, n);
5699
5700 if (val < min_val) {
5701 min_val = val;
5702 best_node = n;
5703 }
5704 }
5705
5706 set_bit(best_node, used_nodes);
5707 return best_node;
5708}
5709
5710/**
5711 * sched_domain_node_span - get a cpumask for a node's sched_domain
5712 * @node: node whose cpumask we're constructing
5713 * @size: number of nodes to include in this span
5714 *
5715 * Given a node, construct a good cpumask for its sched_domain to span. It
5716 * should be one that prevents unnecessary balancing, but also spreads tasks
5717 * out optimally.
5718 */
5719static cpumask_t sched_domain_node_span(int node)
5720{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005721 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005722 cpumask_t span, nodemask;
5723 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005724
5725 cpus_clear(span);
5726 bitmap_zero(used_nodes, MAX_NUMNODES);
5727
5728 nodemask = node_to_cpumask(node);
5729 cpus_or(span, span, nodemask);
5730 set_bit(node, used_nodes);
5731
5732 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5733 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005734
John Hawkes9c1cfda2005-09-06 15:18:14 -07005735 nodemask = node_to_cpumask(next_node);
5736 cpus_or(span, span, nodemask);
5737 }
5738
5739 return span;
5740}
5741#endif
5742
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005743int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005744
John Hawkes9c1cfda2005-09-06 15:18:14 -07005745/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005746 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005747 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005748#ifdef CONFIG_SCHED_SMT
5749static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005750static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005751
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005752static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5753 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005754{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005755 if (sg)
5756 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005757 return cpu;
5758}
5759#endif
5760
Ingo Molnar48f24c42006-07-03 00:25:40 -07005761/*
5762 * multi-core sched-domains:
5763 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005764#ifdef CONFIG_SCHED_MC
5765static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005766static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005767#endif
5768
5769#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005770static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5771 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005772{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005773 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005774 cpumask_t mask = cpu_sibling_map[cpu];
5775 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005776 group = first_cpu(mask);
5777 if (sg)
5778 *sg = &per_cpu(sched_group_core, group);
5779 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005780}
5781#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005782static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5783 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005784{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005785 if (sg)
5786 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005787 return cpu;
5788}
5789#endif
5790
Linus Torvalds1da177e2005-04-16 15:20:36 -07005791static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005792static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005793
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005794static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5795 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005796{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005797 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005798#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005799 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005800 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005801 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005802#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005803 cpumask_t mask = cpu_sibling_map[cpu];
5804 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005805 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005806#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005807 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005808#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005809 if (sg)
5810 *sg = &per_cpu(sched_group_phys, group);
5811 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005812}
5813
5814#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005815/*
5816 * The init_sched_build_groups can't handle what we want to do with node
5817 * groups, so roll our own. Now each node has its own list of groups which
5818 * gets dynamically allocated.
5819 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005820static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005821static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005822
5823static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005824static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005825
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005826static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5827 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005828{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005829 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5830 int group;
5831
5832 cpus_and(nodemask, nodemask, *cpu_map);
5833 group = first_cpu(nodemask);
5834
5835 if (sg)
5836 *sg = &per_cpu(sched_group_allnodes, group);
5837 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005838}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005839
Siddha, Suresh B08069032006-03-27 01:15:23 -08005840static void init_numa_sched_groups_power(struct sched_group *group_head)
5841{
5842 struct sched_group *sg = group_head;
5843 int j;
5844
5845 if (!sg)
5846 return;
5847next_sg:
5848 for_each_cpu_mask(j, sg->cpumask) {
5849 struct sched_domain *sd;
5850
5851 sd = &per_cpu(phys_domains, j);
5852 if (j != first_cpu(sd->groups->cpumask)) {
5853 /*
5854 * Only add "power" once for each
5855 * physical package.
5856 */
5857 continue;
5858 }
5859
Eric Dumazet5517d862007-05-08 00:32:57 -07005860 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005861 }
5862 sg = sg->next;
5863 if (sg != group_head)
5864 goto next_sg;
5865}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005866#endif
5867
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005868#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005869/* Free memory allocated for various sched_group structures */
5870static void free_sched_groups(const cpumask_t *cpu_map)
5871{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005872 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005873
5874 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005875 struct sched_group **sched_group_nodes
5876 = sched_group_nodes_bycpu[cpu];
5877
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005878 if (!sched_group_nodes)
5879 continue;
5880
5881 for (i = 0; i < MAX_NUMNODES; i++) {
5882 cpumask_t nodemask = node_to_cpumask(i);
5883 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5884
5885 cpus_and(nodemask, nodemask, *cpu_map);
5886 if (cpus_empty(nodemask))
5887 continue;
5888
5889 if (sg == NULL)
5890 continue;
5891 sg = sg->next;
5892next_sg:
5893 oldsg = sg;
5894 sg = sg->next;
5895 kfree(oldsg);
5896 if (oldsg != sched_group_nodes[i])
5897 goto next_sg;
5898 }
5899 kfree(sched_group_nodes);
5900 sched_group_nodes_bycpu[cpu] = NULL;
5901 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005902}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005903#else
5904static void free_sched_groups(const cpumask_t *cpu_map)
5905{
5906}
5907#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005908
Linus Torvalds1da177e2005-04-16 15:20:36 -07005909/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005910 * Initialize sched groups cpu_power.
5911 *
5912 * cpu_power indicates the capacity of sched group, which is used while
5913 * distributing the load between different sched groups in a sched domain.
5914 * Typically cpu_power for all the groups in a sched domain will be same unless
5915 * there are asymmetries in the topology. If there are asymmetries, group
5916 * having more cpu_power will pickup more load compared to the group having
5917 * less cpu_power.
5918 *
5919 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5920 * the maximum number of tasks a group can handle in the presence of other idle
5921 * or lightly loaded groups in the same sched domain.
5922 */
5923static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5924{
5925 struct sched_domain *child;
5926 struct sched_group *group;
5927
5928 WARN_ON(!sd || !sd->groups);
5929
5930 if (cpu != first_cpu(sd->groups->cpumask))
5931 return;
5932
5933 child = sd->child;
5934
Eric Dumazet5517d862007-05-08 00:32:57 -07005935 sd->groups->__cpu_power = 0;
5936
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005937 /*
5938 * For perf policy, if the groups in child domain share resources
5939 * (for example cores sharing some portions of the cache hierarchy
5940 * or SMT), then set this domain groups cpu_power such that each group
5941 * can handle only one task, when there are other idle groups in the
5942 * same sched domain.
5943 */
5944 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5945 (child->flags &
5946 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005947 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005948 return;
5949 }
5950
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005951 /*
5952 * add cpu_power of each child group to this groups cpu_power
5953 */
5954 group = child->groups;
5955 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005956 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005957 group = group->next;
5958 } while (group != child->groups);
5959}
5960
5961/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005962 * Build sched domains for a given set of cpus and attach the sched domains
5963 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005964 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005965static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005966{
5967 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005968 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07005969#ifdef CONFIG_NUMA
5970 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005971 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07005972
5973 /*
5974 * Allocate the per-node list of sched groups
5975 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005976 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07005977 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07005978 if (!sched_group_nodes) {
5979 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005980 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07005981 }
5982 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5983#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005984
5985 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005986 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005987 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005988 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005989 struct sched_domain *sd = NULL, *p;
5990 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5991
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005992 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005993
5994#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005995 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005996 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5997 sd = &per_cpu(allnodes_domains, i);
5998 *sd = SD_ALLNODES_INIT;
5999 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006000 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006001 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006002 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006003 } else
6004 p = NULL;
6005
Linus Torvalds1da177e2005-04-16 15:20:36 -07006006 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006007 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006008 sd->span = sched_domain_node_span(cpu_to_node(i));
6009 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006010 if (p)
6011 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006012 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006013#endif
6014
6015 p = sd;
6016 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006017 *sd = SD_CPU_INIT;
6018 sd->span = nodemask;
6019 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006020 if (p)
6021 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006022 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006023
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006024#ifdef CONFIG_SCHED_MC
6025 p = sd;
6026 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006027 *sd = SD_MC_INIT;
6028 sd->span = cpu_coregroup_map(i);
6029 cpus_and(sd->span, sd->span, *cpu_map);
6030 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006031 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006032 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006033#endif
6034
Linus Torvalds1da177e2005-04-16 15:20:36 -07006035#ifdef CONFIG_SCHED_SMT
6036 p = sd;
6037 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006038 *sd = SD_SIBLING_INIT;
6039 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006040 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006041 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006042 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006043 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044#endif
6045 }
6046
6047#ifdef CONFIG_SCHED_SMT
6048 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006049 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006050 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006051 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006052 if (i != first_cpu(this_sibling_map))
6053 continue;
6054
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006055 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006056 }
6057#endif
6058
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006059#ifdef CONFIG_SCHED_MC
6060 /* Set up multi-core groups */
6061 for_each_cpu_mask(i, *cpu_map) {
6062 cpumask_t this_core_map = cpu_coregroup_map(i);
6063 cpus_and(this_core_map, this_core_map, *cpu_map);
6064 if (i != first_cpu(this_core_map))
6065 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006066 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006067 }
6068#endif
6069
6070
Linus Torvalds1da177e2005-04-16 15:20:36 -07006071 /* Set up physical groups */
6072 for (i = 0; i < MAX_NUMNODES; i++) {
6073 cpumask_t nodemask = node_to_cpumask(i);
6074
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006075 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006076 if (cpus_empty(nodemask))
6077 continue;
6078
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006079 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006080 }
6081
6082#ifdef CONFIG_NUMA
6083 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006084 if (sd_allnodes)
6085 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006086
6087 for (i = 0; i < MAX_NUMNODES; i++) {
6088 /* Set up node groups */
6089 struct sched_group *sg, *prev;
6090 cpumask_t nodemask = node_to_cpumask(i);
6091 cpumask_t domainspan;
6092 cpumask_t covered = CPU_MASK_NONE;
6093 int j;
6094
6095 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006096 if (cpus_empty(nodemask)) {
6097 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006098 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006099 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006100
6101 domainspan = sched_domain_node_span(i);
6102 cpus_and(domainspan, domainspan, *cpu_map);
6103
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006104 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006105 if (!sg) {
6106 printk(KERN_WARNING "Can not alloc domain group for "
6107 "node %d\n", i);
6108 goto error;
6109 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006110 sched_group_nodes[i] = sg;
6111 for_each_cpu_mask(j, nodemask) {
6112 struct sched_domain *sd;
6113 sd = &per_cpu(node_domains, j);
6114 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006115 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006116 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006117 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006118 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006119 cpus_or(covered, covered, nodemask);
6120 prev = sg;
6121
6122 for (j = 0; j < MAX_NUMNODES; j++) {
6123 cpumask_t tmp, notcovered;
6124 int n = (i + j) % MAX_NUMNODES;
6125
6126 cpus_complement(notcovered, covered);
6127 cpus_and(tmp, notcovered, *cpu_map);
6128 cpus_and(tmp, tmp, domainspan);
6129 if (cpus_empty(tmp))
6130 break;
6131
6132 nodemask = node_to_cpumask(n);
6133 cpus_and(tmp, tmp, nodemask);
6134 if (cpus_empty(tmp))
6135 continue;
6136
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006137 sg = kmalloc_node(sizeof(struct sched_group),
6138 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006139 if (!sg) {
6140 printk(KERN_WARNING
6141 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006142 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006143 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006144 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006145 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006146 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006147 cpus_or(covered, covered, tmp);
6148 prev->next = sg;
6149 prev = sg;
6150 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006151 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006152#endif
6153
6154 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006155#ifdef CONFIG_SCHED_SMT
6156 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006157 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006158 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006159 }
6160#endif
6161#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006162 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006163 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006164 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006165 }
6166#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006167
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006168 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006169 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006170 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006171 }
6172
John Hawkes9c1cfda2005-09-06 15:18:14 -07006173#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006174 for (i = 0; i < MAX_NUMNODES; i++)
6175 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006176
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006177 if (sd_allnodes) {
6178 struct sched_group *sg;
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07006179
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006180 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07006181 init_numa_sched_groups_power(sg);
6182 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006183#endif
6184
Linus Torvalds1da177e2005-04-16 15:20:36 -07006185 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006186 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006187 struct sched_domain *sd;
6188#ifdef CONFIG_SCHED_SMT
6189 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006190#elif defined(CONFIG_SCHED_MC)
6191 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006192#else
6193 sd = &per_cpu(phys_domains, i);
6194#endif
6195 cpu_attach_domain(sd, i);
6196 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006197
6198 return 0;
6199
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006200#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006201error:
6202 free_sched_groups(cpu_map);
6203 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006204#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006205}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006206/*
6207 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6208 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006209static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006210{
6211 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006212 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006213
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006214 /*
6215 * Setup mask for cpus without special case scheduling requirements.
6216 * For now this just excludes isolated cpus, but could be used to
6217 * exclude other special cases in the future.
6218 */
6219 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6220
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006221 err = build_sched_domains(&cpu_default_map);
6222
6223 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006224}
6225
6226static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006227{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006228 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006229}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006230
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006231/*
6232 * Detach sched domains from a group of cpus specified in cpu_map
6233 * These cpus will now be attached to the NULL domain
6234 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006235static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006236{
6237 int i;
6238
6239 for_each_cpu_mask(i, *cpu_map)
6240 cpu_attach_domain(NULL, i);
6241 synchronize_sched();
6242 arch_destroy_sched_domains(cpu_map);
6243}
6244
6245/*
6246 * Partition sched domains as specified by the cpumasks below.
6247 * This attaches all cpus from the cpumasks to the NULL domain,
6248 * waits for a RCU quiescent period, recalculates sched
6249 * domain information and then attaches them back to the
6250 * correct sched domains
6251 * Call with hotplug lock held
6252 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006253int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006254{
6255 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006256 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006257
6258 cpus_and(*partition1, *partition1, cpu_online_map);
6259 cpus_and(*partition2, *partition2, cpu_online_map);
6260 cpus_or(change_map, *partition1, *partition2);
6261
6262 /* Detach sched domains from all of the affected cpus */
6263 detach_destroy_domains(&change_map);
6264 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006265 err = build_sched_domains(partition1);
6266 if (!err && !cpus_empty(*partition2))
6267 err = build_sched_domains(partition2);
6268
6269 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006270}
6271
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006272#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6273int arch_reinit_sched_domains(void)
6274{
6275 int err;
6276
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006277 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006278 detach_destroy_domains(&cpu_online_map);
6279 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006280 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006281
6282 return err;
6283}
6284
6285static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6286{
6287 int ret;
6288
6289 if (buf[0] != '0' && buf[0] != '1')
6290 return -EINVAL;
6291
6292 if (smt)
6293 sched_smt_power_savings = (buf[0] == '1');
6294 else
6295 sched_mc_power_savings = (buf[0] == '1');
6296
6297 ret = arch_reinit_sched_domains();
6298
6299 return ret ? ret : count;
6300}
6301
6302int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6303{
6304 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006305
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006306#ifdef CONFIG_SCHED_SMT
6307 if (smt_capable())
6308 err = sysfs_create_file(&cls->kset.kobj,
6309 &attr_sched_smt_power_savings.attr);
6310#endif
6311#ifdef CONFIG_SCHED_MC
6312 if (!err && mc_capable())
6313 err = sysfs_create_file(&cls->kset.kobj,
6314 &attr_sched_mc_power_savings.attr);
6315#endif
6316 return err;
6317}
6318#endif
6319
6320#ifdef CONFIG_SCHED_MC
6321static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6322{
6323 return sprintf(page, "%u\n", sched_mc_power_savings);
6324}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006325static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6326 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006327{
6328 return sched_power_savings_store(buf, count, 0);
6329}
6330SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6331 sched_mc_power_savings_store);
6332#endif
6333
6334#ifdef CONFIG_SCHED_SMT
6335static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6336{
6337 return sprintf(page, "%u\n", sched_smt_power_savings);
6338}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006339static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6340 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006341{
6342 return sched_power_savings_store(buf, count, 1);
6343}
6344SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6345 sched_smt_power_savings_store);
6346#endif
6347
Linus Torvalds1da177e2005-04-16 15:20:36 -07006348/*
6349 * Force a reinitialization of the sched domains hierarchy. The domains
6350 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006351 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006352 * which will prevent rebalancing while the sched domains are recalculated.
6353 */
6354static int update_sched_domains(struct notifier_block *nfb,
6355 unsigned long action, void *hcpu)
6356{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006357 switch (action) {
6358 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006359 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006360 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006361 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006362 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006363 return NOTIFY_OK;
6364
6365 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006366 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006367 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006368 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006369 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006370 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006371 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006372 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006373 /*
6374 * Fall through and re-initialise the domains.
6375 */
6376 break;
6377 default:
6378 return NOTIFY_DONE;
6379 }
6380
6381 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006382 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006383
6384 return NOTIFY_OK;
6385}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006386
6387void __init sched_init_smp(void)
6388{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006389 cpumask_t non_isolated_cpus;
6390
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006391 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006392 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006393 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006394 if (cpus_empty(non_isolated_cpus))
6395 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006396 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006397 /* XXX: Theoretical race here - CPU may be hotplugged now */
6398 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006399
6400 /* Move init over to a non-isolated CPU */
6401 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6402 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006403}
6404#else
6405void __init sched_init_smp(void)
6406{
6407}
6408#endif /* CONFIG_SMP */
6409
6410int in_sched_functions(unsigned long addr)
6411{
6412 /* Linker adds these: start and end of __sched functions */
6413 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006414
Linus Torvalds1da177e2005-04-16 15:20:36 -07006415 return in_lock_functions(addr) ||
6416 (addr >= (unsigned long)__sched_text_start
6417 && addr < (unsigned long)__sched_text_end);
6418}
6419
6420void __init sched_init(void)
6421{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006422 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006423 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006424
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006425 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006426 struct prio_array *array;
6427 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006428
6429 rq = cpu_rq(i);
6430 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006431 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006432 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006433 rq->active = rq->arrays;
6434 rq->expired = rq->arrays + 1;
6435 rq->best_expired_prio = MAX_PRIO;
6436
6437#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006438 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006439 for (j = 1; j < 3; j++)
6440 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006441 rq->active_balance = 0;
6442 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006443 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006444 rq->migration_thread = NULL;
6445 INIT_LIST_HEAD(&rq->migration_queue);
6446#endif
6447 atomic_set(&rq->nr_iowait, 0);
6448
6449 for (j = 0; j < 2; j++) {
6450 array = rq->arrays + j;
6451 for (k = 0; k < MAX_PRIO; k++) {
6452 INIT_LIST_HEAD(array->queue + k);
6453 __clear_bit(k, array->bitmap);
6454 }
6455 // delimiter for bitsearch
6456 __set_bit(MAX_PRIO, array->bitmap);
6457 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006458 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006459 }
6460
Peter Williams2dd73a42006-06-27 02:54:34 -07006461 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006462
Christoph Lameterc9819f42006-12-10 02:20:25 -08006463#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006464 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006465 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6466#endif
6467
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006468#ifdef CONFIG_RT_MUTEXES
6469 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6470#endif
6471
Linus Torvalds1da177e2005-04-16 15:20:36 -07006472 /*
6473 * The boot idle thread does lazy MMU switching as well:
6474 */
6475 atomic_inc(&init_mm.mm_count);
6476 enter_lazy_tlb(&init_mm, current);
6477
6478 /*
6479 * Make us the idle thread. Technically, schedule() should not be
6480 * called from this thread, however somewhere below it might be,
6481 * but because we are the idle thread, we just pick up running again
6482 * when this runqueue becomes "idle".
6483 */
6484 init_idle(current, smp_processor_id());
6485}
6486
6487#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6488void __might_sleep(char *file, int line)
6489{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006490#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006491 static unsigned long prev_jiffy; /* ratelimiting */
6492
6493 if ((in_atomic() || irqs_disabled()) &&
6494 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6495 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6496 return;
6497 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006498 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006499 " context at %s:%d\n", file, line);
6500 printk("in_atomic():%d, irqs_disabled():%d\n",
6501 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006502 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006503 if (irqs_disabled())
6504 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006505 dump_stack();
6506 }
6507#endif
6508}
6509EXPORT_SYMBOL(__might_sleep);
6510#endif
6511
6512#ifdef CONFIG_MAGIC_SYSRQ
6513void normalize_rt_tasks(void)
6514{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006515 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006516 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006517 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006518 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006519
6520 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006521
6522 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006523 if (!rt_task(p))
6524 continue;
6525
Ingo Molnarb29739f2006-06-27 02:54:51 -07006526 spin_lock_irqsave(&p->pi_lock, flags);
6527 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006528
6529 array = p->array;
6530 if (array)
6531 deactivate_task(p, task_rq(p));
6532 __setscheduler(p, SCHED_NORMAL, 0);
6533 if (array) {
6534 __activate_task(p, task_rq(p));
6535 resched_task(rq->curr);
6536 }
6537
Ingo Molnarb29739f2006-06-27 02:54:51 -07006538 __task_rq_unlock(rq);
6539 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006540 } while_each_thread(g, p);
6541
Linus Torvalds1da177e2005-04-16 15:20:36 -07006542 read_unlock_irq(&tasklist_lock);
6543}
6544
6545#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006546
6547#ifdef CONFIG_IA64
6548/*
6549 * These functions are only useful for the IA64 MCA handling.
6550 *
6551 * They can only be called when the whole system has been
6552 * stopped - every CPU needs to be quiescent, and no scheduling
6553 * activity can take place. Using them for anything else would
6554 * be a serious bug, and as a result, they aren't even visible
6555 * under any other configuration.
6556 */
6557
6558/**
6559 * curr_task - return the current task for a given cpu.
6560 * @cpu: the processor in question.
6561 *
6562 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6563 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006564struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006565{
6566 return cpu_curr(cpu);
6567}
6568
6569/**
6570 * set_curr_task - set the current task for a given cpu.
6571 * @cpu: the processor in question.
6572 * @p: the task pointer to set.
6573 *
6574 * Description: This function must only be used when non-maskable interrupts
6575 * are serviced on a separate stack. It allows the architecture to switch the
6576 * notion of the current task on a cpu in a non-blocking manner. This function
6577 * must be called with all CPU's synchronized, and interrupts disabled, the
6578 * and caller must save the original value of the current task (see
6579 * curr_task() above) and restore that value before reenabling interrupts and
6580 * re-starting the system.
6581 *
6582 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6583 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006584void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006585{
6586 cpu_curr(cpu) = p;
6587}
6588
6589#endif