blob: 13128fa1306256e617a7641fcc78fcafa40fdc5d [file] [log] [blame]
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8#define pr_fmt(fmt) "kfence: " fmt
9
10#include <linux/atomic.h>
11#include <linux/bug.h>
12#include <linux/debugfs.h>
Marco Elver08f6b102021-11-05 13:45:34 -070013#include <linux/hash.h>
Marco Elver407f1d82021-05-04 18:40:21 -070014#include <linux/irq_work.h>
Marco Elver08f6b102021-11-05 13:45:34 -070015#include <linux/jhash.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080016#include <linux/kcsan-checks.h>
17#include <linux/kfence.h>
Marco Elver95511582021-03-24 21:37:47 -070018#include <linux/kmemleak.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080019#include <linux/list.h>
20#include <linux/lockdep.h>
Marco Elver08f6b102021-11-05 13:45:34 -070021#include <linux/log2.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080022#include <linux/memblock.h>
23#include <linux/moduleparam.h>
24#include <linux/random.h>
25#include <linux/rcupdate.h>
Marco Elver4bbf04a2021-09-07 19:56:21 -070026#include <linux/sched/clock.h>
Marco Elver37c92842021-05-04 18:40:24 -070027#include <linux/sched/sysctl.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080028#include <linux/seq_file.h>
29#include <linux/slab.h>
30#include <linux/spinlock.h>
31#include <linux/string.h>
32
33#include <asm/kfence.h>
34
35#include "kfence.h"
36
37/* Disables KFENCE on the first warning assuming an irrecoverable error. */
38#define KFENCE_WARN_ON(cond) \
39 ({ \
40 const bool __cond = WARN_ON(cond); \
41 if (unlikely(__cond)) \
42 WRITE_ONCE(kfence_enabled, false); \
43 __cond; \
44 })
45
46/* === Data ================================================================= */
47
48static bool kfence_enabled __read_mostly;
49
Peng Liu8913c612022-02-11 16:32:35 -080050unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
51EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080052
53#ifdef MODULE_PARAM_PREFIX
54#undef MODULE_PARAM_PREFIX
55#endif
56#define MODULE_PARAM_PREFIX "kfence."
57
58static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
59{
60 unsigned long num;
61 int ret = kstrtoul(val, 0, &num);
62
63 if (ret < 0)
64 return ret;
65
66 if (!num) /* Using 0 to indicate KFENCE is disabled. */
67 WRITE_ONCE(kfence_enabled, false);
68 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
69 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
70
71 *((unsigned long *)kp->arg) = num;
72 return 0;
73}
74
75static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
76{
77 if (!READ_ONCE(kfence_enabled))
78 return sprintf(buffer, "0\n");
79
80 return param_get_ulong(buffer, kp);
81}
82
83static const struct kernel_param_ops sample_interval_param_ops = {
84 .set = param_set_sample_interval,
85 .get = param_get_sample_interval,
86};
87module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
88
Marco Elver08f6b102021-11-05 13:45:34 -070089/* Pool usage% threshold when currently covered allocations are skipped. */
90static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
91module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
92
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080093/* The pool of pages used for guard pages and objects. */
94char *__kfence_pool __ro_after_init;
95EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
96
97/*
98 * Per-object metadata, with one-to-one mapping of object metadata to
99 * backing pages (in __kfence_pool).
100 */
101static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
102struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
103
104/* Freelist with available objects. */
105static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
106static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
107
Marco Elver07e84812021-11-05 13:45:46 -0700108/*
109 * The static key to set up a KFENCE allocation; or if static keys are not used
110 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
111 */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800112DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800113
114/* Gates the allocation, ensuring only one succeeds in a given period. */
115atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
116
Marco Elver08f6b102021-11-05 13:45:34 -0700117/*
118 * A Counting Bloom filter of allocation coverage: limits currently covered
119 * allocations of the same source filling up the pool.
120 *
121 * Assuming a range of 15%-85% unique allocations in the pool at any point in
122 * time, the below parameters provide a probablity of 0.02-0.33 for false
123 * positive hits respectively:
124 *
125 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
126 */
127#define ALLOC_COVERED_HNUM 2
128#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
129#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
130#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
131#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
132static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
133
134/* Stack depth used to determine uniqueness of an allocation. */
135#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
136
137/*
138 * Randomness for stack hashes, making the same collisions across reboots and
139 * different machines less likely.
140 */
141static u32 stack_hash_seed __ro_after_init;
142
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800143/* Statistics counters for debugfs. */
144enum kfence_counter_id {
145 KFENCE_COUNTER_ALLOCATED,
146 KFENCE_COUNTER_ALLOCS,
147 KFENCE_COUNTER_FREES,
148 KFENCE_COUNTER_ZOMBIES,
149 KFENCE_COUNTER_BUGS,
Marco Elver9a19aeb2021-11-05 13:45:28 -0700150 KFENCE_COUNTER_SKIP_INCOMPAT,
151 KFENCE_COUNTER_SKIP_CAPACITY,
Marco Elver08f6b102021-11-05 13:45:34 -0700152 KFENCE_COUNTER_SKIP_COVERED,
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800153 KFENCE_COUNTER_COUNT,
154};
155static atomic_long_t counters[KFENCE_COUNTER_COUNT];
156static const char *const counter_names[] = {
157 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
158 [KFENCE_COUNTER_ALLOCS] = "total allocations",
159 [KFENCE_COUNTER_FREES] = "total frees",
160 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
161 [KFENCE_COUNTER_BUGS] = "total bugs",
Marco Elver9a19aeb2021-11-05 13:45:28 -0700162 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
163 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
Marco Elver08f6b102021-11-05 13:45:34 -0700164 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800165};
166static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
167
168/* === Internals ============================================================ */
169
Marco Elver08f6b102021-11-05 13:45:34 -0700170static inline bool should_skip_covered(void)
171{
172 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
173
174 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
175}
176
177static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
178{
179 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
180 num_entries = filter_irq_stacks(stack_entries, num_entries);
181 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
182}
183
184/*
185 * Adds (or subtracts) count @val for allocation stack trace hash
186 * @alloc_stack_hash from Counting Bloom filter.
187 */
188static void alloc_covered_add(u32 alloc_stack_hash, int val)
189{
190 int i;
191
192 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
193 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
194 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
195 }
196}
197
198/*
199 * Returns true if the allocation stack trace hash @alloc_stack_hash is
200 * currently contained (non-zero count) in Counting Bloom filter.
201 */
202static bool alloc_covered_contains(u32 alloc_stack_hash)
203{
204 int i;
205
206 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
207 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
208 return false;
209 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
210 }
211
212 return true;
213}
214
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800215static bool kfence_protect(unsigned long addr)
216{
217 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
218}
219
220static bool kfence_unprotect(unsigned long addr)
221{
222 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
223}
224
225static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
226{
227 long index;
228
229 /* The checks do not affect performance; only called from slow-paths. */
230
231 if (!is_kfence_address((void *)addr))
232 return NULL;
233
234 /*
235 * May be an invalid index if called with an address at the edge of
236 * __kfence_pool, in which case we would report an "invalid access"
237 * error.
238 */
239 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
240 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
241 return NULL;
242
243 return &kfence_metadata[index];
244}
245
246static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
247{
248 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
249 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
250
251 /* The checks do not affect performance; only called from slow-paths. */
252
253 /* Only call with a pointer into kfence_metadata. */
254 if (KFENCE_WARN_ON(meta < kfence_metadata ||
255 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
256 return 0;
257
258 /*
259 * This metadata object only ever maps to 1 page; verify that the stored
260 * address is in the expected range.
261 */
262 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
263 return 0;
264
265 return pageaddr;
266}
267
268/*
269 * Update the object's metadata state, including updating the alloc/free stacks
270 * depending on the state transition.
271 */
Marco Elvera9ab52b2021-11-05 13:45:31 -0700272static noinline void
273metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
274 unsigned long *stack_entries, size_t num_stack_entries)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800275{
276 struct kfence_track *track =
277 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
278
279 lockdep_assert_held(&meta->lock);
280
Marco Elvera9ab52b2021-11-05 13:45:31 -0700281 if (stack_entries) {
282 memcpy(track->stack_entries, stack_entries,
283 num_stack_entries * sizeof(stack_entries[0]));
284 } else {
285 /*
286 * Skip over 1 (this) functions; noinline ensures we do not
287 * accidentally skip over the caller by never inlining.
288 */
289 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
290 }
291 track->num_stack_entries = num_stack_entries;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800292 track->pid = task_pid_nr(current);
Marco Elver4bbf04a2021-09-07 19:56:21 -0700293 track->cpu = raw_smp_processor_id();
294 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800295
296 /*
297 * Pairs with READ_ONCE() in
298 * kfence_shutdown_cache(),
299 * kfence_handle_page_fault().
300 */
301 WRITE_ONCE(meta->state, next);
302}
303
304/* Write canary byte to @addr. */
305static inline bool set_canary_byte(u8 *addr)
306{
307 *addr = KFENCE_CANARY_PATTERN(addr);
308 return true;
309}
310
311/* Check canary byte at @addr. */
312static inline bool check_canary_byte(u8 *addr)
313{
Marco Elver49332952021-11-05 13:45:43 -0700314 struct kfence_metadata *meta;
315 unsigned long flags;
316
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800317 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
318 return true;
319
320 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
Marco Elver49332952021-11-05 13:45:43 -0700321
322 meta = addr_to_metadata((unsigned long)addr);
323 raw_spin_lock_irqsave(&meta->lock, flags);
324 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
325 raw_spin_unlock_irqrestore(&meta->lock, flags);
326
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800327 return false;
328}
329
330/* __always_inline this to ensure we won't do an indirect call to fn. */
331static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
332{
333 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
334 unsigned long addr;
335
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800336 /*
337 * We'll iterate over each canary byte per-side until fn() returns
338 * false. However, we'll still iterate over the canary bytes to the
339 * right of the object even if there was an error in the canary bytes to
340 * the left of the object. Specifically, if check_canary_byte()
341 * generates an error, showing both sides might give more clues as to
342 * what the error is about when displaying which bytes were corrupted.
343 */
344
345 /* Apply to left of object. */
346 for (addr = pageaddr; addr < meta->addr; addr++) {
347 if (!fn((u8 *)addr))
348 break;
349 }
350
351 /* Apply to right of object. */
352 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
353 if (!fn((u8 *)addr))
354 break;
355 }
356}
357
Marco Elvera9ab52b2021-11-05 13:45:31 -0700358static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
Marco Elver08f6b102021-11-05 13:45:34 -0700359 unsigned long *stack_entries, size_t num_stack_entries,
360 u32 alloc_stack_hash)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800361{
362 struct kfence_metadata *meta = NULL;
363 unsigned long flags;
Vlastimil Babka8dae0cf2021-11-03 18:19:48 +0100364 struct slab *slab;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800365 void *addr;
366
367 /* Try to obtain a free object. */
368 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
369 if (!list_empty(&kfence_freelist)) {
370 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
371 list_del_init(&meta->list);
372 }
373 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
Marco Elver9a19aeb2021-11-05 13:45:28 -0700374 if (!meta) {
375 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800376 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700377 }
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800378
379 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
380 /*
381 * This is extremely unlikely -- we are reporting on a
382 * use-after-free, which locked meta->lock, and the reporting
383 * code via printk calls kmalloc() which ends up in
384 * kfence_alloc() and tries to grab the same object that we're
385 * reporting on. While it has never been observed, lockdep does
386 * report that there is a possibility of deadlock. Fix it by
387 * using trylock and bailing out gracefully.
388 */
389 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
390 /* Put the object back on the freelist. */
391 list_add_tail(&meta->list, &kfence_freelist);
392 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
393
394 return NULL;
395 }
396
397 meta->addr = metadata_to_pageaddr(meta);
398 /* Unprotect if we're reusing this page. */
399 if (meta->state == KFENCE_OBJECT_FREED)
400 kfence_unprotect(meta->addr);
401
402 /*
403 * Note: for allocations made before RNG initialization, will always
404 * return zero. We still benefit from enabling KFENCE as early as
405 * possible, even when the RNG is not yet available, as this will allow
406 * KFENCE to detect bugs due to earlier allocations. The only downside
407 * is that the out-of-bounds accesses detected are deterministic for
408 * such allocations.
409 */
410 if (prandom_u32_max(2)) {
411 /* Allocate on the "right" side, re-calculate address. */
412 meta->addr += PAGE_SIZE - size;
413 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
414 }
415
416 addr = (void *)meta->addr;
417
418 /* Update remaining metadata. */
Marco Elvera9ab52b2021-11-05 13:45:31 -0700419 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800420 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
421 WRITE_ONCE(meta->cache, cache);
422 meta->size = size;
Marco Elver08f6b102021-11-05 13:45:34 -0700423 meta->alloc_stack_hash = alloc_stack_hash;
Marco Elver49332952021-11-05 13:45:43 -0700424 raw_spin_unlock_irqrestore(&meta->lock, flags);
Marco Elver08f6b102021-11-05 13:45:34 -0700425
Marco Elver49332952021-11-05 13:45:43 -0700426 alloc_covered_add(alloc_stack_hash, 1);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800427
Vlastimil Babka8dae0cf2021-11-03 18:19:48 +0100428 /* Set required slab fields. */
429 slab = virt_to_slab((void *)meta->addr);
430 slab->slab_cache = cache;
Vlastimil Babka401fb122021-11-04 11:30:58 +0100431#if defined(CONFIG_SLUB)
432 slab->objects = 1;
433#elif defined(CONFIG_SLAB)
434 slab->s_mem = addr;
435#endif
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800436
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800437 /* Memory initialization. */
Marco Elver49332952021-11-05 13:45:43 -0700438 for_each_canary(meta, set_canary_byte);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800439
440 /*
441 * We check slab_want_init_on_alloc() ourselves, rather than letting
442 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
443 * redzone.
444 */
445 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
446 memzero_explicit(addr, size);
447 if (cache->ctor)
448 cache->ctor(addr);
449
450 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
451 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
452
453 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
454 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
455
456 return addr;
457}
458
459static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
460{
461 struct kcsan_scoped_access assert_page_exclusive;
462 unsigned long flags;
Marco Elver49332952021-11-05 13:45:43 -0700463 bool init;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800464
465 raw_spin_lock_irqsave(&meta->lock, flags);
466
467 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
468 /* Invalid or double-free, bail out. */
469 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
Marco Elverbc8fbc52021-02-25 17:19:31 -0800470 kfence_report_error((unsigned long)addr, false, NULL, meta,
471 KFENCE_ERROR_INVALID_FREE);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800472 raw_spin_unlock_irqrestore(&meta->lock, flags);
473 return;
474 }
475
476 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
477 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
478 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
479 &assert_page_exclusive);
480
481 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
482 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
483
484 /* Restore page protection if there was an OOB access. */
485 if (meta->unprotected_page) {
Marco Elver94868a12021-05-04 18:40:18 -0700486 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800487 kfence_protect(meta->unprotected_page);
488 meta->unprotected_page = 0;
489 }
490
Marco Elver49332952021-11-05 13:45:43 -0700491 /* Mark the object as freed. */
492 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
493 init = slab_want_init_on_free(meta->cache);
494 raw_spin_unlock_irqrestore(&meta->lock, flags);
495
496 alloc_covered_add(meta->alloc_stack_hash, -1);
497
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800498 /* Check canary bytes for memory corruption. */
499 for_each_canary(meta, check_canary_byte);
500
501 /*
502 * Clear memory if init-on-free is set. While we protect the page, the
503 * data is still there, and after a use-after-free is detected, we
504 * unprotect the page, so the data is still accessible.
505 */
Marco Elver49332952021-11-05 13:45:43 -0700506 if (!zombie && unlikely(init))
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800507 memzero_explicit(addr, meta->size);
508
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800509 /* Protect to detect use-after-frees. */
510 kfence_protect((unsigned long)addr);
511
512 kcsan_end_scoped_access(&assert_page_exclusive);
513 if (!zombie) {
514 /* Add it to the tail of the freelist for reuse. */
515 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
516 KFENCE_WARN_ON(!list_empty(&meta->list));
517 list_add_tail(&meta->list, &kfence_freelist);
518 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
519
520 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
521 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
522 } else {
523 /* See kfence_shutdown_cache(). */
524 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
525 }
526}
527
528static void rcu_guarded_free(struct rcu_head *h)
529{
530 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
531
532 kfence_guarded_free((void *)meta->addr, meta, false);
533}
534
535static bool __init kfence_init_pool(void)
536{
537 unsigned long addr = (unsigned long)__kfence_pool;
538 struct page *pages;
539 int i;
540
541 if (!__kfence_pool)
542 return false;
543
544 if (!arch_kfence_init_pool())
545 goto err;
546
547 pages = virt_to_page(addr);
548
549 /*
550 * Set up object pages: they must have PG_slab set, to avoid freeing
551 * these as real pages.
552 *
553 * We also want to avoid inserting kfence_free() in the kfree()
554 * fast-path in SLUB, and therefore need to ensure kfree() correctly
555 * enters __slab_free() slow-path.
556 */
557 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
558 if (!i || (i % 2))
559 continue;
560
561 /* Verify we do not have a compound head page. */
562 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
563 goto err;
564
565 __SetPageSlab(&pages[i]);
566 }
567
568 /*
569 * Protect the first 2 pages. The first page is mostly unnecessary, and
570 * merely serves as an extended guard page. However, adding one
571 * additional page in the beginning gives us an even number of pages,
572 * which simplifies the mapping of address to metadata index.
573 */
574 for (i = 0; i < 2; i++) {
575 if (unlikely(!kfence_protect(addr)))
576 goto err;
577
578 addr += PAGE_SIZE;
579 }
580
581 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
582 struct kfence_metadata *meta = &kfence_metadata[i];
583
584 /* Initialize metadata. */
585 INIT_LIST_HEAD(&meta->list);
586 raw_spin_lock_init(&meta->lock);
587 meta->state = KFENCE_OBJECT_UNUSED;
588 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
589 list_add_tail(&meta->list, &kfence_freelist);
590
591 /* Protect the right redzone. */
592 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
593 goto err;
594
595 addr += 2 * PAGE_SIZE;
596 }
597
Marco Elver95511582021-03-24 21:37:47 -0700598 /*
599 * The pool is live and will never be deallocated from this point on.
600 * Remove the pool object from the kmemleak object tree, as it would
601 * otherwise overlap with allocations returned by kfence_alloc(), which
602 * are registered with kmemleak through the slab post-alloc hook.
603 */
604 kmemleak_free(__kfence_pool);
605
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800606 return true;
607
608err:
609 /*
610 * Only release unprotected pages, and do not try to go back and change
611 * page attributes due to risk of failing to do so as well. If changing
612 * page attributes for some pages fails, it is very likely that it also
613 * fails for the first page, and therefore expect addr==__kfence_pool in
614 * most failure cases.
615 */
616 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
617 __kfence_pool = NULL;
618 return false;
619}
620
621/* === DebugFS Interface ==================================================== */
622
623static int stats_show(struct seq_file *seq, void *v)
624{
625 int i;
626
627 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
628 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
629 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
630
631 return 0;
632}
633DEFINE_SHOW_ATTRIBUTE(stats);
634
635/*
636 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
637 * start_object() and next_object() return the object index + 1, because NULL is used
638 * to stop iteration.
639 */
640static void *start_object(struct seq_file *seq, loff_t *pos)
641{
642 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
643 return (void *)((long)*pos + 1);
644 return NULL;
645}
646
647static void stop_object(struct seq_file *seq, void *v)
648{
649}
650
651static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
652{
653 ++*pos;
654 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
655 return (void *)((long)*pos + 1);
656 return NULL;
657}
658
659static int show_object(struct seq_file *seq, void *v)
660{
661 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
662 unsigned long flags;
663
664 raw_spin_lock_irqsave(&meta->lock, flags);
665 kfence_print_object(seq, meta);
666 raw_spin_unlock_irqrestore(&meta->lock, flags);
667 seq_puts(seq, "---------------------------------\n");
668
669 return 0;
670}
671
672static const struct seq_operations object_seqops = {
673 .start = start_object,
674 .next = next_object,
675 .stop = stop_object,
676 .show = show_object,
677};
678
679static int open_objects(struct inode *inode, struct file *file)
680{
681 return seq_open(file, &object_seqops);
682}
683
684static const struct file_operations objects_fops = {
685 .open = open_objects,
686 .read = seq_read,
687 .llseek = seq_lseek,
Baokun Li0129ab12021-12-24 21:12:32 -0800688 .release = seq_release,
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800689};
690
691static int __init kfence_debugfs_init(void)
692{
693 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
694
695 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
696 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
697 return 0;
698}
699
700late_initcall(kfence_debugfs_init);
701
702/* === Allocation Gate Timer ================================================ */
703
Marco Elver407f1d82021-05-04 18:40:21 -0700704#ifdef CONFIG_KFENCE_STATIC_KEYS
705/* Wait queue to wake up allocation-gate timer task. */
706static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
707
708static void wake_up_kfence_timer(struct irq_work *work)
709{
710 wake_up(&allocation_wait);
711}
712static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
713#endif
714
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800715/*
716 * Set up delayed work, which will enable and disable the static key. We need to
717 * use a work queue (rather than a simple timer), since enabling and disabling a
718 * static key cannot be done from an interrupt.
719 *
720 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
721 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
722 * more aggressive sampling intervals), we could get away with a variant that
723 * avoids IPIs, at the cost of not immediately capturing allocations if the
724 * instructions remain cached.
725 */
726static struct delayed_work kfence_timer;
727static void toggle_allocation_gate(struct work_struct *work)
728{
729 if (!READ_ONCE(kfence_enabled))
730 return;
731
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800732 atomic_set(&kfence_allocation_gate, 0);
733#ifdef CONFIG_KFENCE_STATIC_KEYS
Marco Elver407f1d82021-05-04 18:40:21 -0700734 /* Enable static key, and await allocation to happen. */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800735 static_branch_enable(&kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800736
Marco Elver37c92842021-05-04 18:40:24 -0700737 if (sysctl_hung_task_timeout_secs) {
738 /*
739 * During low activity with no allocations we might wait a
740 * while; let's avoid the hung task warning.
741 */
Marco Elver8fd0e992021-06-04 20:01:11 -0700742 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
743 sysctl_hung_task_timeout_secs * HZ / 2);
Marco Elver37c92842021-05-04 18:40:24 -0700744 } else {
Marco Elver8fd0e992021-06-04 20:01:11 -0700745 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
Marco Elver37c92842021-05-04 18:40:24 -0700746 }
Marco Elver407f1d82021-05-04 18:40:21 -0700747
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800748 /* Disable static key and reset timer. */
749 static_branch_disable(&kfence_allocation_key);
750#endif
Marco Elverff06e452021-06-30 18:54:03 -0700751 queue_delayed_work(system_unbound_wq, &kfence_timer,
Marco Elver36f0b352021-05-04 18:40:27 -0700752 msecs_to_jiffies(kfence_sample_interval));
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800753}
754static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
755
756/* === Public interface ===================================================== */
757
758void __init kfence_alloc_pool(void)
759{
760 if (!kfence_sample_interval)
761 return;
762
763 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
764
765 if (!__kfence_pool)
766 pr_err("failed to allocate pool\n");
767}
768
769void __init kfence_init(void)
770{
771 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
772 if (!kfence_sample_interval)
773 return;
774
Marco Elver08f6b102021-11-05 13:45:34 -0700775 stack_hash_seed = (u32)random_get_entropy();
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800776 if (!kfence_init_pool()) {
777 pr_err("%s failed\n", __func__);
778 return;
779 }
780
Marco Elver07e84812021-11-05 13:45:46 -0700781 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
782 static_branch_enable(&kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800783 WRITE_ONCE(kfence_enabled, true);
Marco Elverff06e452021-06-30 18:54:03 -0700784 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
Marco Elver35beccf2021-02-25 17:19:40 -0800785 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
786 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
787 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800788}
789
790void kfence_shutdown_cache(struct kmem_cache *s)
791{
792 unsigned long flags;
793 struct kfence_metadata *meta;
794 int i;
795
796 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
797 bool in_use;
798
799 meta = &kfence_metadata[i];
800
801 /*
802 * If we observe some inconsistent cache and state pair where we
803 * should have returned false here, cache destruction is racing
804 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
805 * the lock will not help, as different critical section
806 * serialization will have the same outcome.
807 */
808 if (READ_ONCE(meta->cache) != s ||
809 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
810 continue;
811
812 raw_spin_lock_irqsave(&meta->lock, flags);
813 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
814 raw_spin_unlock_irqrestore(&meta->lock, flags);
815
816 if (in_use) {
817 /*
818 * This cache still has allocations, and we should not
819 * release them back into the freelist so they can still
820 * safely be used and retain the kernel's default
821 * behaviour of keeping the allocations alive (leak the
822 * cache); however, they effectively become "zombie
823 * allocations" as the KFENCE objects are the only ones
824 * still in use and the owning cache is being destroyed.
825 *
826 * We mark them freed, so that any subsequent use shows
827 * more useful error messages that will include stack
828 * traces of the user of the object, the original
829 * allocation, and caller to shutdown_cache().
830 */
831 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
832 }
833 }
834
835 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
836 meta = &kfence_metadata[i];
837
838 /* See above. */
839 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
840 continue;
841
842 raw_spin_lock_irqsave(&meta->lock, flags);
843 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
844 meta->cache = NULL;
845 raw_spin_unlock_irqrestore(&meta->lock, flags);
846 }
847}
848
849void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
850{
Marco Elvera9ab52b2021-11-05 13:45:31 -0700851 unsigned long stack_entries[KFENCE_STACK_DEPTH];
852 size_t num_stack_entries;
Marco Elver08f6b102021-11-05 13:45:34 -0700853 u32 alloc_stack_hash;
Marco Elvera9ab52b2021-11-05 13:45:31 -0700854
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800855 /*
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700856 * Perform size check before switching kfence_allocation_gate, so that
857 * we don't disable KFENCE without making an allocation.
858 */
Marco Elver9a19aeb2021-11-05 13:45:28 -0700859 if (size > PAGE_SIZE) {
860 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700861 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700862 }
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700863
864 /*
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700865 * Skip allocations from non-default zones, including DMA. We cannot
866 * guarantee that pages in the KFENCE pool will have the requested
867 * properties (e.g. reside in DMAable memory).
868 */
869 if ((flags & GFP_ZONEMASK) ||
Marco Elver9a19aeb2021-11-05 13:45:28 -0700870 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
871 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700872 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700873 }
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700874
Marco Elver07e84812021-11-05 13:45:46 -0700875 if (atomic_inc_return(&kfence_allocation_gate) > 1)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800876 return NULL;
Marco Elver407f1d82021-05-04 18:40:21 -0700877#ifdef CONFIG_KFENCE_STATIC_KEYS
878 /*
879 * waitqueue_active() is fully ordered after the update of
880 * kfence_allocation_gate per atomic_inc_return().
881 */
882 if (waitqueue_active(&allocation_wait)) {
883 /*
884 * Calling wake_up() here may deadlock when allocations happen
885 * from within timer code. Use an irq_work to defer it.
886 */
887 irq_work_queue(&wake_up_kfence_timer_work);
888 }
889#endif
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800890
891 if (!READ_ONCE(kfence_enabled))
892 return NULL;
893
Marco Elvera9ab52b2021-11-05 13:45:31 -0700894 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
895
Marco Elver08f6b102021-11-05 13:45:34 -0700896 /*
897 * Do expensive check for coverage of allocation in slow-path after
898 * allocation_gate has already become non-zero, even though it might
899 * mean not making any allocation within a given sample interval.
900 *
901 * This ensures reasonable allocation coverage when the pool is almost
902 * full, including avoiding long-lived allocations of the same source
903 * filling up the pool (e.g. pagecache allocations).
904 */
905 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
906 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
907 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
908 return NULL;
909 }
910
911 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
912 alloc_stack_hash);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800913}
914
915size_t kfence_ksize(const void *addr)
916{
917 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
918
919 /*
920 * Read locklessly -- if there is a race with __kfence_alloc(), this is
921 * either a use-after-free or invalid access.
922 */
923 return meta ? meta->size : 0;
924}
925
926void *kfence_object_start(const void *addr)
927{
928 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
929
930 /*
931 * Read locklessly -- if there is a race with __kfence_alloc(), this is
932 * either a use-after-free or invalid access.
933 */
934 return meta ? (void *)meta->addr : NULL;
935}
936
937void __kfence_free(void *addr)
938{
939 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
940
941 /*
942 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
943 * the object, as the object page may be recycled for other-typed
944 * objects once it has been freed. meta->cache may be NULL if the cache
945 * was destroyed.
946 */
947 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
948 call_rcu(&meta->rcu_head, rcu_guarded_free);
949 else
950 kfence_guarded_free(addr, meta, false);
951}
952
Marco Elverbc8fbc52021-02-25 17:19:31 -0800953bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800954{
955 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
956 struct kfence_metadata *to_report = NULL;
957 enum kfence_error_type error_type;
958 unsigned long flags;
959
960 if (!is_kfence_address((void *)addr))
961 return false;
962
963 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
964 return kfence_unprotect(addr); /* ... unprotect and proceed. */
965
966 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
967
968 if (page_index % 2) {
969 /* This is a redzone, report a buffer overflow. */
970 struct kfence_metadata *meta;
971 int distance = 0;
972
973 meta = addr_to_metadata(addr - PAGE_SIZE);
974 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
975 to_report = meta;
976 /* Data race ok; distance calculation approximate. */
977 distance = addr - data_race(meta->addr + meta->size);
978 }
979
980 meta = addr_to_metadata(addr + PAGE_SIZE);
981 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
982 /* Data race ok; distance calculation approximate. */
983 if (!to_report || distance > data_race(meta->addr) - addr)
984 to_report = meta;
985 }
986
987 if (!to_report)
988 goto out;
989
990 raw_spin_lock_irqsave(&to_report->lock, flags);
991 to_report->unprotected_page = addr;
992 error_type = KFENCE_ERROR_OOB;
993
994 /*
995 * If the object was freed before we took the look we can still
996 * report this as an OOB -- the report will simply show the
997 * stacktrace of the free as well.
998 */
999 } else {
1000 to_report = addr_to_metadata(addr);
1001 if (!to_report)
1002 goto out;
1003
1004 raw_spin_lock_irqsave(&to_report->lock, flags);
1005 error_type = KFENCE_ERROR_UAF;
1006 /*
1007 * We may race with __kfence_alloc(), and it is possible that a
1008 * freed object may be reallocated. We simply report this as a
1009 * use-after-free, with the stack trace showing the place where
1010 * the object was re-allocated.
1011 */
1012 }
1013
1014out:
1015 if (to_report) {
Marco Elverbc8fbc52021-02-25 17:19:31 -08001016 kfence_report_error(addr, is_write, regs, to_report, error_type);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001017 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1018 } else {
1019 /* This may be a UAF or OOB access, but we can't be sure. */
Marco Elverbc8fbc52021-02-25 17:19:31 -08001020 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001021 }
1022
1023 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1024}