Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * KFENCE guarded object allocator and fault handling. |
| 4 | * |
| 5 | * Copyright (C) 2020, Google LLC. |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) "kfence: " fmt |
| 9 | |
| 10 | #include <linux/atomic.h> |
| 11 | #include <linux/bug.h> |
| 12 | #include <linux/debugfs.h> |
| 13 | #include <linux/kcsan-checks.h> |
| 14 | #include <linux/kfence.h> |
| 15 | #include <linux/list.h> |
| 16 | #include <linux/lockdep.h> |
| 17 | #include <linux/memblock.h> |
| 18 | #include <linux/moduleparam.h> |
| 19 | #include <linux/random.h> |
| 20 | #include <linux/rcupdate.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | #include <linux/string.h> |
| 25 | |
| 26 | #include <asm/kfence.h> |
| 27 | |
| 28 | #include "kfence.h" |
| 29 | |
| 30 | /* Disables KFENCE on the first warning assuming an irrecoverable error. */ |
| 31 | #define KFENCE_WARN_ON(cond) \ |
| 32 | ({ \ |
| 33 | const bool __cond = WARN_ON(cond); \ |
| 34 | if (unlikely(__cond)) \ |
| 35 | WRITE_ONCE(kfence_enabled, false); \ |
| 36 | __cond; \ |
| 37 | }) |
| 38 | |
| 39 | /* === Data ================================================================= */ |
| 40 | |
| 41 | static bool kfence_enabled __read_mostly; |
| 42 | |
| 43 | static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; |
| 44 | |
| 45 | #ifdef MODULE_PARAM_PREFIX |
| 46 | #undef MODULE_PARAM_PREFIX |
| 47 | #endif |
| 48 | #define MODULE_PARAM_PREFIX "kfence." |
| 49 | |
| 50 | static int param_set_sample_interval(const char *val, const struct kernel_param *kp) |
| 51 | { |
| 52 | unsigned long num; |
| 53 | int ret = kstrtoul(val, 0, &num); |
| 54 | |
| 55 | if (ret < 0) |
| 56 | return ret; |
| 57 | |
| 58 | if (!num) /* Using 0 to indicate KFENCE is disabled. */ |
| 59 | WRITE_ONCE(kfence_enabled, false); |
| 60 | else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) |
| 61 | return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ |
| 62 | |
| 63 | *((unsigned long *)kp->arg) = num; |
| 64 | return 0; |
| 65 | } |
| 66 | |
| 67 | static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) |
| 68 | { |
| 69 | if (!READ_ONCE(kfence_enabled)) |
| 70 | return sprintf(buffer, "0\n"); |
| 71 | |
| 72 | return param_get_ulong(buffer, kp); |
| 73 | } |
| 74 | |
| 75 | static const struct kernel_param_ops sample_interval_param_ops = { |
| 76 | .set = param_set_sample_interval, |
| 77 | .get = param_get_sample_interval, |
| 78 | }; |
| 79 | module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); |
| 80 | |
| 81 | /* The pool of pages used for guard pages and objects. */ |
| 82 | char *__kfence_pool __ro_after_init; |
| 83 | EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ |
| 84 | |
| 85 | /* |
| 86 | * Per-object metadata, with one-to-one mapping of object metadata to |
| 87 | * backing pages (in __kfence_pool). |
| 88 | */ |
| 89 | static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); |
| 90 | struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; |
| 91 | |
| 92 | /* Freelist with available objects. */ |
| 93 | static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); |
| 94 | static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ |
| 95 | |
| 96 | #ifdef CONFIG_KFENCE_STATIC_KEYS |
| 97 | /* The static key to set up a KFENCE allocation. */ |
| 98 | DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); |
| 99 | #endif |
| 100 | |
| 101 | /* Gates the allocation, ensuring only one succeeds in a given period. */ |
| 102 | atomic_t kfence_allocation_gate = ATOMIC_INIT(1); |
| 103 | |
| 104 | /* Statistics counters for debugfs. */ |
| 105 | enum kfence_counter_id { |
| 106 | KFENCE_COUNTER_ALLOCATED, |
| 107 | KFENCE_COUNTER_ALLOCS, |
| 108 | KFENCE_COUNTER_FREES, |
| 109 | KFENCE_COUNTER_ZOMBIES, |
| 110 | KFENCE_COUNTER_BUGS, |
| 111 | KFENCE_COUNTER_COUNT, |
| 112 | }; |
| 113 | static atomic_long_t counters[KFENCE_COUNTER_COUNT]; |
| 114 | static const char *const counter_names[] = { |
| 115 | [KFENCE_COUNTER_ALLOCATED] = "currently allocated", |
| 116 | [KFENCE_COUNTER_ALLOCS] = "total allocations", |
| 117 | [KFENCE_COUNTER_FREES] = "total frees", |
| 118 | [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", |
| 119 | [KFENCE_COUNTER_BUGS] = "total bugs", |
| 120 | }; |
| 121 | static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); |
| 122 | |
| 123 | /* === Internals ============================================================ */ |
| 124 | |
| 125 | static bool kfence_protect(unsigned long addr) |
| 126 | { |
| 127 | return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); |
| 128 | } |
| 129 | |
| 130 | static bool kfence_unprotect(unsigned long addr) |
| 131 | { |
| 132 | return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); |
| 133 | } |
| 134 | |
| 135 | static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) |
| 136 | { |
| 137 | long index; |
| 138 | |
| 139 | /* The checks do not affect performance; only called from slow-paths. */ |
| 140 | |
| 141 | if (!is_kfence_address((void *)addr)) |
| 142 | return NULL; |
| 143 | |
| 144 | /* |
| 145 | * May be an invalid index if called with an address at the edge of |
| 146 | * __kfence_pool, in which case we would report an "invalid access" |
| 147 | * error. |
| 148 | */ |
| 149 | index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; |
| 150 | if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) |
| 151 | return NULL; |
| 152 | |
| 153 | return &kfence_metadata[index]; |
| 154 | } |
| 155 | |
| 156 | static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) |
| 157 | { |
| 158 | unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; |
| 159 | unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; |
| 160 | |
| 161 | /* The checks do not affect performance; only called from slow-paths. */ |
| 162 | |
| 163 | /* Only call with a pointer into kfence_metadata. */ |
| 164 | if (KFENCE_WARN_ON(meta < kfence_metadata || |
| 165 | meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) |
| 166 | return 0; |
| 167 | |
| 168 | /* |
| 169 | * This metadata object only ever maps to 1 page; verify that the stored |
| 170 | * address is in the expected range. |
| 171 | */ |
| 172 | if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) |
| 173 | return 0; |
| 174 | |
| 175 | return pageaddr; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Update the object's metadata state, including updating the alloc/free stacks |
| 180 | * depending on the state transition. |
| 181 | */ |
| 182 | static noinline void metadata_update_state(struct kfence_metadata *meta, |
| 183 | enum kfence_object_state next) |
| 184 | { |
| 185 | struct kfence_track *track = |
| 186 | next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; |
| 187 | |
| 188 | lockdep_assert_held(&meta->lock); |
| 189 | |
| 190 | /* |
| 191 | * Skip over 1 (this) functions; noinline ensures we do not accidentally |
| 192 | * skip over the caller by never inlining. |
| 193 | */ |
| 194 | track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); |
| 195 | track->pid = task_pid_nr(current); |
| 196 | |
| 197 | /* |
| 198 | * Pairs with READ_ONCE() in |
| 199 | * kfence_shutdown_cache(), |
| 200 | * kfence_handle_page_fault(). |
| 201 | */ |
| 202 | WRITE_ONCE(meta->state, next); |
| 203 | } |
| 204 | |
| 205 | /* Write canary byte to @addr. */ |
| 206 | static inline bool set_canary_byte(u8 *addr) |
| 207 | { |
| 208 | *addr = KFENCE_CANARY_PATTERN(addr); |
| 209 | return true; |
| 210 | } |
| 211 | |
| 212 | /* Check canary byte at @addr. */ |
| 213 | static inline bool check_canary_byte(u8 *addr) |
| 214 | { |
| 215 | if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) |
| 216 | return true; |
| 217 | |
| 218 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| 219 | kfence_report_error((unsigned long)addr, addr_to_metadata((unsigned long)addr), |
| 220 | KFENCE_ERROR_CORRUPTION); |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | /* __always_inline this to ensure we won't do an indirect call to fn. */ |
| 225 | static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) |
| 226 | { |
| 227 | const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); |
| 228 | unsigned long addr; |
| 229 | |
| 230 | lockdep_assert_held(&meta->lock); |
| 231 | |
| 232 | /* |
| 233 | * We'll iterate over each canary byte per-side until fn() returns |
| 234 | * false. However, we'll still iterate over the canary bytes to the |
| 235 | * right of the object even if there was an error in the canary bytes to |
| 236 | * the left of the object. Specifically, if check_canary_byte() |
| 237 | * generates an error, showing both sides might give more clues as to |
| 238 | * what the error is about when displaying which bytes were corrupted. |
| 239 | */ |
| 240 | |
| 241 | /* Apply to left of object. */ |
| 242 | for (addr = pageaddr; addr < meta->addr; addr++) { |
| 243 | if (!fn((u8 *)addr)) |
| 244 | break; |
| 245 | } |
| 246 | |
| 247 | /* Apply to right of object. */ |
| 248 | for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { |
| 249 | if (!fn((u8 *)addr)) |
| 250 | break; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) |
| 255 | { |
| 256 | struct kfence_metadata *meta = NULL; |
| 257 | unsigned long flags; |
| 258 | struct page *page; |
| 259 | void *addr; |
| 260 | |
| 261 | /* Try to obtain a free object. */ |
| 262 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 263 | if (!list_empty(&kfence_freelist)) { |
| 264 | meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); |
| 265 | list_del_init(&meta->list); |
| 266 | } |
| 267 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| 268 | if (!meta) |
| 269 | return NULL; |
| 270 | |
| 271 | if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { |
| 272 | /* |
| 273 | * This is extremely unlikely -- we are reporting on a |
| 274 | * use-after-free, which locked meta->lock, and the reporting |
| 275 | * code via printk calls kmalloc() which ends up in |
| 276 | * kfence_alloc() and tries to grab the same object that we're |
| 277 | * reporting on. While it has never been observed, lockdep does |
| 278 | * report that there is a possibility of deadlock. Fix it by |
| 279 | * using trylock and bailing out gracefully. |
| 280 | */ |
| 281 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 282 | /* Put the object back on the freelist. */ |
| 283 | list_add_tail(&meta->list, &kfence_freelist); |
| 284 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| 285 | |
| 286 | return NULL; |
| 287 | } |
| 288 | |
| 289 | meta->addr = metadata_to_pageaddr(meta); |
| 290 | /* Unprotect if we're reusing this page. */ |
| 291 | if (meta->state == KFENCE_OBJECT_FREED) |
| 292 | kfence_unprotect(meta->addr); |
| 293 | |
| 294 | /* |
| 295 | * Note: for allocations made before RNG initialization, will always |
| 296 | * return zero. We still benefit from enabling KFENCE as early as |
| 297 | * possible, even when the RNG is not yet available, as this will allow |
| 298 | * KFENCE to detect bugs due to earlier allocations. The only downside |
| 299 | * is that the out-of-bounds accesses detected are deterministic for |
| 300 | * such allocations. |
| 301 | */ |
| 302 | if (prandom_u32_max(2)) { |
| 303 | /* Allocate on the "right" side, re-calculate address. */ |
| 304 | meta->addr += PAGE_SIZE - size; |
| 305 | meta->addr = ALIGN_DOWN(meta->addr, cache->align); |
| 306 | } |
| 307 | |
| 308 | addr = (void *)meta->addr; |
| 309 | |
| 310 | /* Update remaining metadata. */ |
| 311 | metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); |
| 312 | /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ |
| 313 | WRITE_ONCE(meta->cache, cache); |
| 314 | meta->size = size; |
| 315 | for_each_canary(meta, set_canary_byte); |
| 316 | |
| 317 | /* Set required struct page fields. */ |
| 318 | page = virt_to_page(meta->addr); |
| 319 | page->slab_cache = cache; |
| 320 | |
| 321 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 322 | |
| 323 | /* Memory initialization. */ |
| 324 | |
| 325 | /* |
| 326 | * We check slab_want_init_on_alloc() ourselves, rather than letting |
| 327 | * SL*B do the initialization, as otherwise we might overwrite KFENCE's |
| 328 | * redzone. |
| 329 | */ |
| 330 | if (unlikely(slab_want_init_on_alloc(gfp, cache))) |
| 331 | memzero_explicit(addr, size); |
| 332 | if (cache->ctor) |
| 333 | cache->ctor(addr); |
| 334 | |
| 335 | if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) |
| 336 | kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ |
| 337 | |
| 338 | atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); |
| 339 | atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); |
| 340 | |
| 341 | return addr; |
| 342 | } |
| 343 | |
| 344 | static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) |
| 345 | { |
| 346 | struct kcsan_scoped_access assert_page_exclusive; |
| 347 | unsigned long flags; |
| 348 | |
| 349 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 350 | |
| 351 | if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { |
| 352 | /* Invalid or double-free, bail out. */ |
| 353 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| 354 | kfence_report_error((unsigned long)addr, meta, KFENCE_ERROR_INVALID_FREE); |
| 355 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ |
| 360 | kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, |
| 361 | KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, |
| 362 | &assert_page_exclusive); |
| 363 | |
| 364 | if (CONFIG_KFENCE_STRESS_TEST_FAULTS) |
| 365 | kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ |
| 366 | |
| 367 | /* Restore page protection if there was an OOB access. */ |
| 368 | if (meta->unprotected_page) { |
| 369 | kfence_protect(meta->unprotected_page); |
| 370 | meta->unprotected_page = 0; |
| 371 | } |
| 372 | |
| 373 | /* Check canary bytes for memory corruption. */ |
| 374 | for_each_canary(meta, check_canary_byte); |
| 375 | |
| 376 | /* |
| 377 | * Clear memory if init-on-free is set. While we protect the page, the |
| 378 | * data is still there, and after a use-after-free is detected, we |
| 379 | * unprotect the page, so the data is still accessible. |
| 380 | */ |
| 381 | if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) |
| 382 | memzero_explicit(addr, meta->size); |
| 383 | |
| 384 | /* Mark the object as freed. */ |
| 385 | metadata_update_state(meta, KFENCE_OBJECT_FREED); |
| 386 | |
| 387 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 388 | |
| 389 | /* Protect to detect use-after-frees. */ |
| 390 | kfence_protect((unsigned long)addr); |
| 391 | |
| 392 | kcsan_end_scoped_access(&assert_page_exclusive); |
| 393 | if (!zombie) { |
| 394 | /* Add it to the tail of the freelist for reuse. */ |
| 395 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 396 | KFENCE_WARN_ON(!list_empty(&meta->list)); |
| 397 | list_add_tail(&meta->list, &kfence_freelist); |
| 398 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| 399 | |
| 400 | atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); |
| 401 | atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); |
| 402 | } else { |
| 403 | /* See kfence_shutdown_cache(). */ |
| 404 | atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | static void rcu_guarded_free(struct rcu_head *h) |
| 409 | { |
| 410 | struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); |
| 411 | |
| 412 | kfence_guarded_free((void *)meta->addr, meta, false); |
| 413 | } |
| 414 | |
| 415 | static bool __init kfence_init_pool(void) |
| 416 | { |
| 417 | unsigned long addr = (unsigned long)__kfence_pool; |
| 418 | struct page *pages; |
| 419 | int i; |
| 420 | |
| 421 | if (!__kfence_pool) |
| 422 | return false; |
| 423 | |
| 424 | if (!arch_kfence_init_pool()) |
| 425 | goto err; |
| 426 | |
| 427 | pages = virt_to_page(addr); |
| 428 | |
| 429 | /* |
| 430 | * Set up object pages: they must have PG_slab set, to avoid freeing |
| 431 | * these as real pages. |
| 432 | * |
| 433 | * We also want to avoid inserting kfence_free() in the kfree() |
| 434 | * fast-path in SLUB, and therefore need to ensure kfree() correctly |
| 435 | * enters __slab_free() slow-path. |
| 436 | */ |
| 437 | for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { |
| 438 | if (!i || (i % 2)) |
| 439 | continue; |
| 440 | |
| 441 | /* Verify we do not have a compound head page. */ |
| 442 | if (WARN_ON(compound_head(&pages[i]) != &pages[i])) |
| 443 | goto err; |
| 444 | |
| 445 | __SetPageSlab(&pages[i]); |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | * Protect the first 2 pages. The first page is mostly unnecessary, and |
| 450 | * merely serves as an extended guard page. However, adding one |
| 451 | * additional page in the beginning gives us an even number of pages, |
| 452 | * which simplifies the mapping of address to metadata index. |
| 453 | */ |
| 454 | for (i = 0; i < 2; i++) { |
| 455 | if (unlikely(!kfence_protect(addr))) |
| 456 | goto err; |
| 457 | |
| 458 | addr += PAGE_SIZE; |
| 459 | } |
| 460 | |
| 461 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 462 | struct kfence_metadata *meta = &kfence_metadata[i]; |
| 463 | |
| 464 | /* Initialize metadata. */ |
| 465 | INIT_LIST_HEAD(&meta->list); |
| 466 | raw_spin_lock_init(&meta->lock); |
| 467 | meta->state = KFENCE_OBJECT_UNUSED; |
| 468 | meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ |
| 469 | list_add_tail(&meta->list, &kfence_freelist); |
| 470 | |
| 471 | /* Protect the right redzone. */ |
| 472 | if (unlikely(!kfence_protect(addr + PAGE_SIZE))) |
| 473 | goto err; |
| 474 | |
| 475 | addr += 2 * PAGE_SIZE; |
| 476 | } |
| 477 | |
| 478 | return true; |
| 479 | |
| 480 | err: |
| 481 | /* |
| 482 | * Only release unprotected pages, and do not try to go back and change |
| 483 | * page attributes due to risk of failing to do so as well. If changing |
| 484 | * page attributes for some pages fails, it is very likely that it also |
| 485 | * fails for the first page, and therefore expect addr==__kfence_pool in |
| 486 | * most failure cases. |
| 487 | */ |
| 488 | memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); |
| 489 | __kfence_pool = NULL; |
| 490 | return false; |
| 491 | } |
| 492 | |
| 493 | /* === DebugFS Interface ==================================================== */ |
| 494 | |
| 495 | static int stats_show(struct seq_file *seq, void *v) |
| 496 | { |
| 497 | int i; |
| 498 | |
| 499 | seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); |
| 500 | for (i = 0; i < KFENCE_COUNTER_COUNT; i++) |
| 501 | seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); |
| 502 | |
| 503 | return 0; |
| 504 | } |
| 505 | DEFINE_SHOW_ATTRIBUTE(stats); |
| 506 | |
| 507 | /* |
| 508 | * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. |
| 509 | * start_object() and next_object() return the object index + 1, because NULL is used |
| 510 | * to stop iteration. |
| 511 | */ |
| 512 | static void *start_object(struct seq_file *seq, loff_t *pos) |
| 513 | { |
| 514 | if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| 515 | return (void *)((long)*pos + 1); |
| 516 | return NULL; |
| 517 | } |
| 518 | |
| 519 | static void stop_object(struct seq_file *seq, void *v) |
| 520 | { |
| 521 | } |
| 522 | |
| 523 | static void *next_object(struct seq_file *seq, void *v, loff_t *pos) |
| 524 | { |
| 525 | ++*pos; |
| 526 | if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| 527 | return (void *)((long)*pos + 1); |
| 528 | return NULL; |
| 529 | } |
| 530 | |
| 531 | static int show_object(struct seq_file *seq, void *v) |
| 532 | { |
| 533 | struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; |
| 534 | unsigned long flags; |
| 535 | |
| 536 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 537 | kfence_print_object(seq, meta); |
| 538 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 539 | seq_puts(seq, "---------------------------------\n"); |
| 540 | |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | static const struct seq_operations object_seqops = { |
| 545 | .start = start_object, |
| 546 | .next = next_object, |
| 547 | .stop = stop_object, |
| 548 | .show = show_object, |
| 549 | }; |
| 550 | |
| 551 | static int open_objects(struct inode *inode, struct file *file) |
| 552 | { |
| 553 | return seq_open(file, &object_seqops); |
| 554 | } |
| 555 | |
| 556 | static const struct file_operations objects_fops = { |
| 557 | .open = open_objects, |
| 558 | .read = seq_read, |
| 559 | .llseek = seq_lseek, |
| 560 | }; |
| 561 | |
| 562 | static int __init kfence_debugfs_init(void) |
| 563 | { |
| 564 | struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); |
| 565 | |
| 566 | debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); |
| 567 | debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); |
| 568 | return 0; |
| 569 | } |
| 570 | |
| 571 | late_initcall(kfence_debugfs_init); |
| 572 | |
| 573 | /* === Allocation Gate Timer ================================================ */ |
| 574 | |
| 575 | /* |
| 576 | * Set up delayed work, which will enable and disable the static key. We need to |
| 577 | * use a work queue (rather than a simple timer), since enabling and disabling a |
| 578 | * static key cannot be done from an interrupt. |
| 579 | * |
| 580 | * Note: Toggling a static branch currently causes IPIs, and here we'll end up |
| 581 | * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with |
| 582 | * more aggressive sampling intervals), we could get away with a variant that |
| 583 | * avoids IPIs, at the cost of not immediately capturing allocations if the |
| 584 | * instructions remain cached. |
| 585 | */ |
| 586 | static struct delayed_work kfence_timer; |
| 587 | static void toggle_allocation_gate(struct work_struct *work) |
| 588 | { |
| 589 | if (!READ_ONCE(kfence_enabled)) |
| 590 | return; |
| 591 | |
| 592 | /* Enable static key, and await allocation to happen. */ |
| 593 | atomic_set(&kfence_allocation_gate, 0); |
| 594 | #ifdef CONFIG_KFENCE_STATIC_KEYS |
| 595 | static_branch_enable(&kfence_allocation_key); |
| 596 | /* |
| 597 | * Await an allocation. Timeout after 1 second, in case the kernel stops |
| 598 | * doing allocations, to avoid stalling this worker task for too long. |
| 599 | */ |
| 600 | { |
| 601 | unsigned long end_wait = jiffies + HZ; |
| 602 | |
| 603 | do { |
| 604 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 605 | if (atomic_read(&kfence_allocation_gate) != 0) |
| 606 | break; |
| 607 | schedule_timeout(1); |
| 608 | } while (time_before(jiffies, end_wait)); |
| 609 | __set_current_state(TASK_RUNNING); |
| 610 | } |
| 611 | /* Disable static key and reset timer. */ |
| 612 | static_branch_disable(&kfence_allocation_key); |
| 613 | #endif |
| 614 | schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval)); |
| 615 | } |
| 616 | static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); |
| 617 | |
| 618 | /* === Public interface ===================================================== */ |
| 619 | |
| 620 | void __init kfence_alloc_pool(void) |
| 621 | { |
| 622 | if (!kfence_sample_interval) |
| 623 | return; |
| 624 | |
| 625 | __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); |
| 626 | |
| 627 | if (!__kfence_pool) |
| 628 | pr_err("failed to allocate pool\n"); |
| 629 | } |
| 630 | |
| 631 | void __init kfence_init(void) |
| 632 | { |
| 633 | /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ |
| 634 | if (!kfence_sample_interval) |
| 635 | return; |
| 636 | |
| 637 | if (!kfence_init_pool()) { |
| 638 | pr_err("%s failed\n", __func__); |
| 639 | return; |
| 640 | } |
| 641 | |
| 642 | WRITE_ONCE(kfence_enabled, true); |
| 643 | schedule_delayed_work(&kfence_timer, 0); |
| 644 | pr_info("initialized - using %lu bytes for %d objects", KFENCE_POOL_SIZE, |
| 645 | CONFIG_KFENCE_NUM_OBJECTS); |
| 646 | if (IS_ENABLED(CONFIG_DEBUG_KERNEL)) |
| 647 | pr_cont(" at 0x%px-0x%px\n", (void *)__kfence_pool, |
| 648 | (void *)(__kfence_pool + KFENCE_POOL_SIZE)); |
| 649 | else |
| 650 | pr_cont("\n"); |
| 651 | } |
| 652 | |
| 653 | void kfence_shutdown_cache(struct kmem_cache *s) |
| 654 | { |
| 655 | unsigned long flags; |
| 656 | struct kfence_metadata *meta; |
| 657 | int i; |
| 658 | |
| 659 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 660 | bool in_use; |
| 661 | |
| 662 | meta = &kfence_metadata[i]; |
| 663 | |
| 664 | /* |
| 665 | * If we observe some inconsistent cache and state pair where we |
| 666 | * should have returned false here, cache destruction is racing |
| 667 | * with either kmem_cache_alloc() or kmem_cache_free(). Taking |
| 668 | * the lock will not help, as different critical section |
| 669 | * serialization will have the same outcome. |
| 670 | */ |
| 671 | if (READ_ONCE(meta->cache) != s || |
| 672 | READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) |
| 673 | continue; |
| 674 | |
| 675 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 676 | in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; |
| 677 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 678 | |
| 679 | if (in_use) { |
| 680 | /* |
| 681 | * This cache still has allocations, and we should not |
| 682 | * release them back into the freelist so they can still |
| 683 | * safely be used and retain the kernel's default |
| 684 | * behaviour of keeping the allocations alive (leak the |
| 685 | * cache); however, they effectively become "zombie |
| 686 | * allocations" as the KFENCE objects are the only ones |
| 687 | * still in use and the owning cache is being destroyed. |
| 688 | * |
| 689 | * We mark them freed, so that any subsequent use shows |
| 690 | * more useful error messages that will include stack |
| 691 | * traces of the user of the object, the original |
| 692 | * allocation, and caller to shutdown_cache(). |
| 693 | */ |
| 694 | kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 699 | meta = &kfence_metadata[i]; |
| 700 | |
| 701 | /* See above. */ |
| 702 | if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) |
| 703 | continue; |
| 704 | |
| 705 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 706 | if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) |
| 707 | meta->cache = NULL; |
| 708 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) |
| 713 | { |
| 714 | /* |
| 715 | * allocation_gate only needs to become non-zero, so it doesn't make |
| 716 | * sense to continue writing to it and pay the associated contention |
| 717 | * cost, in case we have a large number of concurrent allocations. |
| 718 | */ |
| 719 | if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) |
| 720 | return NULL; |
| 721 | |
| 722 | if (!READ_ONCE(kfence_enabled)) |
| 723 | return NULL; |
| 724 | |
| 725 | if (size > PAGE_SIZE) |
| 726 | return NULL; |
| 727 | |
| 728 | return kfence_guarded_alloc(s, size, flags); |
| 729 | } |
| 730 | |
| 731 | size_t kfence_ksize(const void *addr) |
| 732 | { |
| 733 | const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 734 | |
| 735 | /* |
| 736 | * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| 737 | * either a use-after-free or invalid access. |
| 738 | */ |
| 739 | return meta ? meta->size : 0; |
| 740 | } |
| 741 | |
| 742 | void *kfence_object_start(const void *addr) |
| 743 | { |
| 744 | const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 745 | |
| 746 | /* |
| 747 | * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| 748 | * either a use-after-free or invalid access. |
| 749 | */ |
| 750 | return meta ? (void *)meta->addr : NULL; |
| 751 | } |
| 752 | |
| 753 | void __kfence_free(void *addr) |
| 754 | { |
| 755 | struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 756 | |
| 757 | /* |
| 758 | * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing |
| 759 | * the object, as the object page may be recycled for other-typed |
| 760 | * objects once it has been freed. meta->cache may be NULL if the cache |
| 761 | * was destroyed. |
| 762 | */ |
| 763 | if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) |
| 764 | call_rcu(&meta->rcu_head, rcu_guarded_free); |
| 765 | else |
| 766 | kfence_guarded_free(addr, meta, false); |
| 767 | } |
| 768 | |
| 769 | bool kfence_handle_page_fault(unsigned long addr) |
| 770 | { |
| 771 | const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; |
| 772 | struct kfence_metadata *to_report = NULL; |
| 773 | enum kfence_error_type error_type; |
| 774 | unsigned long flags; |
| 775 | |
| 776 | if (!is_kfence_address((void *)addr)) |
| 777 | return false; |
| 778 | |
| 779 | if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ |
| 780 | return kfence_unprotect(addr); /* ... unprotect and proceed. */ |
| 781 | |
| 782 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| 783 | |
| 784 | if (page_index % 2) { |
| 785 | /* This is a redzone, report a buffer overflow. */ |
| 786 | struct kfence_metadata *meta; |
| 787 | int distance = 0; |
| 788 | |
| 789 | meta = addr_to_metadata(addr - PAGE_SIZE); |
| 790 | if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| 791 | to_report = meta; |
| 792 | /* Data race ok; distance calculation approximate. */ |
| 793 | distance = addr - data_race(meta->addr + meta->size); |
| 794 | } |
| 795 | |
| 796 | meta = addr_to_metadata(addr + PAGE_SIZE); |
| 797 | if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| 798 | /* Data race ok; distance calculation approximate. */ |
| 799 | if (!to_report || distance > data_race(meta->addr) - addr) |
| 800 | to_report = meta; |
| 801 | } |
| 802 | |
| 803 | if (!to_report) |
| 804 | goto out; |
| 805 | |
| 806 | raw_spin_lock_irqsave(&to_report->lock, flags); |
| 807 | to_report->unprotected_page = addr; |
| 808 | error_type = KFENCE_ERROR_OOB; |
| 809 | |
| 810 | /* |
| 811 | * If the object was freed before we took the look we can still |
| 812 | * report this as an OOB -- the report will simply show the |
| 813 | * stacktrace of the free as well. |
| 814 | */ |
| 815 | } else { |
| 816 | to_report = addr_to_metadata(addr); |
| 817 | if (!to_report) |
| 818 | goto out; |
| 819 | |
| 820 | raw_spin_lock_irqsave(&to_report->lock, flags); |
| 821 | error_type = KFENCE_ERROR_UAF; |
| 822 | /* |
| 823 | * We may race with __kfence_alloc(), and it is possible that a |
| 824 | * freed object may be reallocated. We simply report this as a |
| 825 | * use-after-free, with the stack trace showing the place where |
| 826 | * the object was re-allocated. |
| 827 | */ |
| 828 | } |
| 829 | |
| 830 | out: |
| 831 | if (to_report) { |
| 832 | kfence_report_error(addr, to_report, error_type); |
| 833 | raw_spin_unlock_irqrestore(&to_report->lock, flags); |
| 834 | } else { |
| 835 | /* This may be a UAF or OOB access, but we can't be sure. */ |
| 836 | kfence_report_error(addr, NULL, KFENCE_ERROR_INVALID); |
| 837 | } |
| 838 | |
| 839 | return kfence_unprotect(addr); /* Unprotect and let access proceed. */ |
| 840 | } |