Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * KFENCE guarded object allocator and fault handling. |
| 4 | * |
| 5 | * Copyright (C) 2020, Google LLC. |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) "kfence: " fmt |
| 9 | |
| 10 | #include <linux/atomic.h> |
| 11 | #include <linux/bug.h> |
| 12 | #include <linux/debugfs.h> |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 13 | #include <linux/hash.h> |
Marco Elver | 407f1d8 | 2021-05-04 18:40:21 -0700 | [diff] [blame] | 14 | #include <linux/irq_work.h> |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 15 | #include <linux/jhash.h> |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 16 | #include <linux/kcsan-checks.h> |
| 17 | #include <linux/kfence.h> |
Marco Elver | 9551158 | 2021-03-24 21:37:47 -0700 | [diff] [blame] | 18 | #include <linux/kmemleak.h> |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 19 | #include <linux/list.h> |
| 20 | #include <linux/lockdep.h> |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 21 | #include <linux/log2.h> |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 22 | #include <linux/memblock.h> |
| 23 | #include <linux/moduleparam.h> |
| 24 | #include <linux/random.h> |
| 25 | #include <linux/rcupdate.h> |
Marco Elver | 4bbf04a | 2021-09-07 19:56:21 -0700 | [diff] [blame] | 26 | #include <linux/sched/clock.h> |
Marco Elver | 37c9284 | 2021-05-04 18:40:24 -0700 | [diff] [blame] | 27 | #include <linux/sched/sysctl.h> |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 28 | #include <linux/seq_file.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/spinlock.h> |
| 31 | #include <linux/string.h> |
| 32 | |
| 33 | #include <asm/kfence.h> |
| 34 | |
| 35 | #include "kfence.h" |
| 36 | |
| 37 | /* Disables KFENCE on the first warning assuming an irrecoverable error. */ |
| 38 | #define KFENCE_WARN_ON(cond) \ |
| 39 | ({ \ |
| 40 | const bool __cond = WARN_ON(cond); \ |
| 41 | if (unlikely(__cond)) \ |
| 42 | WRITE_ONCE(kfence_enabled, false); \ |
| 43 | __cond; \ |
| 44 | }) |
| 45 | |
| 46 | /* === Data ================================================================= */ |
| 47 | |
| 48 | static bool kfence_enabled __read_mostly; |
| 49 | |
| 50 | static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; |
| 51 | |
| 52 | #ifdef MODULE_PARAM_PREFIX |
| 53 | #undef MODULE_PARAM_PREFIX |
| 54 | #endif |
| 55 | #define MODULE_PARAM_PREFIX "kfence." |
| 56 | |
| 57 | static int param_set_sample_interval(const char *val, const struct kernel_param *kp) |
| 58 | { |
| 59 | unsigned long num; |
| 60 | int ret = kstrtoul(val, 0, &num); |
| 61 | |
| 62 | if (ret < 0) |
| 63 | return ret; |
| 64 | |
| 65 | if (!num) /* Using 0 to indicate KFENCE is disabled. */ |
| 66 | WRITE_ONCE(kfence_enabled, false); |
| 67 | else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) |
| 68 | return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ |
| 69 | |
| 70 | *((unsigned long *)kp->arg) = num; |
| 71 | return 0; |
| 72 | } |
| 73 | |
| 74 | static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) |
| 75 | { |
| 76 | if (!READ_ONCE(kfence_enabled)) |
| 77 | return sprintf(buffer, "0\n"); |
| 78 | |
| 79 | return param_get_ulong(buffer, kp); |
| 80 | } |
| 81 | |
| 82 | static const struct kernel_param_ops sample_interval_param_ops = { |
| 83 | .set = param_set_sample_interval, |
| 84 | .get = param_get_sample_interval, |
| 85 | }; |
| 86 | module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); |
| 87 | |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 88 | /* Pool usage% threshold when currently covered allocations are skipped. */ |
| 89 | static unsigned long kfence_skip_covered_thresh __read_mostly = 75; |
| 90 | module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); |
| 91 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 92 | /* The pool of pages used for guard pages and objects. */ |
| 93 | char *__kfence_pool __ro_after_init; |
| 94 | EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ |
| 95 | |
| 96 | /* |
| 97 | * Per-object metadata, with one-to-one mapping of object metadata to |
| 98 | * backing pages (in __kfence_pool). |
| 99 | */ |
| 100 | static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); |
| 101 | struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; |
| 102 | |
| 103 | /* Freelist with available objects. */ |
| 104 | static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); |
| 105 | static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ |
| 106 | |
Marco Elver | 07e8481 | 2021-11-05 13:45:46 -0700 | [diff] [blame] | 107 | /* |
| 108 | * The static key to set up a KFENCE allocation; or if static keys are not used |
| 109 | * to gate allocations, to avoid a load and compare if KFENCE is disabled. |
| 110 | */ |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 111 | DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 112 | |
| 113 | /* Gates the allocation, ensuring only one succeeds in a given period. */ |
| 114 | atomic_t kfence_allocation_gate = ATOMIC_INIT(1); |
| 115 | |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 116 | /* |
| 117 | * A Counting Bloom filter of allocation coverage: limits currently covered |
| 118 | * allocations of the same source filling up the pool. |
| 119 | * |
| 120 | * Assuming a range of 15%-85% unique allocations in the pool at any point in |
| 121 | * time, the below parameters provide a probablity of 0.02-0.33 for false |
| 122 | * positive hits respectively: |
| 123 | * |
| 124 | * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM |
| 125 | */ |
| 126 | #define ALLOC_COVERED_HNUM 2 |
| 127 | #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) |
| 128 | #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) |
| 129 | #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) |
| 130 | #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) |
| 131 | static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; |
| 132 | |
| 133 | /* Stack depth used to determine uniqueness of an allocation. */ |
| 134 | #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) |
| 135 | |
| 136 | /* |
| 137 | * Randomness for stack hashes, making the same collisions across reboots and |
| 138 | * different machines less likely. |
| 139 | */ |
| 140 | static u32 stack_hash_seed __ro_after_init; |
| 141 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 142 | /* Statistics counters for debugfs. */ |
| 143 | enum kfence_counter_id { |
| 144 | KFENCE_COUNTER_ALLOCATED, |
| 145 | KFENCE_COUNTER_ALLOCS, |
| 146 | KFENCE_COUNTER_FREES, |
| 147 | KFENCE_COUNTER_ZOMBIES, |
| 148 | KFENCE_COUNTER_BUGS, |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 149 | KFENCE_COUNTER_SKIP_INCOMPAT, |
| 150 | KFENCE_COUNTER_SKIP_CAPACITY, |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 151 | KFENCE_COUNTER_SKIP_COVERED, |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 152 | KFENCE_COUNTER_COUNT, |
| 153 | }; |
| 154 | static atomic_long_t counters[KFENCE_COUNTER_COUNT]; |
| 155 | static const char *const counter_names[] = { |
| 156 | [KFENCE_COUNTER_ALLOCATED] = "currently allocated", |
| 157 | [KFENCE_COUNTER_ALLOCS] = "total allocations", |
| 158 | [KFENCE_COUNTER_FREES] = "total frees", |
| 159 | [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", |
| 160 | [KFENCE_COUNTER_BUGS] = "total bugs", |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 161 | [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", |
| 162 | [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 163 | [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 164 | }; |
| 165 | static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); |
| 166 | |
| 167 | /* === Internals ============================================================ */ |
| 168 | |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 169 | static inline bool should_skip_covered(void) |
| 170 | { |
| 171 | unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; |
| 172 | |
| 173 | return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; |
| 174 | } |
| 175 | |
| 176 | static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) |
| 177 | { |
| 178 | num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); |
| 179 | num_entries = filter_irq_stacks(stack_entries, num_entries); |
| 180 | return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * Adds (or subtracts) count @val for allocation stack trace hash |
| 185 | * @alloc_stack_hash from Counting Bloom filter. |
| 186 | */ |
| 187 | static void alloc_covered_add(u32 alloc_stack_hash, int val) |
| 188 | { |
| 189 | int i; |
| 190 | |
| 191 | for (i = 0; i < ALLOC_COVERED_HNUM; i++) { |
| 192 | atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); |
| 193 | alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Returns true if the allocation stack trace hash @alloc_stack_hash is |
| 199 | * currently contained (non-zero count) in Counting Bloom filter. |
| 200 | */ |
| 201 | static bool alloc_covered_contains(u32 alloc_stack_hash) |
| 202 | { |
| 203 | int i; |
| 204 | |
| 205 | for (i = 0; i < ALLOC_COVERED_HNUM; i++) { |
| 206 | if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) |
| 207 | return false; |
| 208 | alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); |
| 209 | } |
| 210 | |
| 211 | return true; |
| 212 | } |
| 213 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 214 | static bool kfence_protect(unsigned long addr) |
| 215 | { |
| 216 | return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); |
| 217 | } |
| 218 | |
| 219 | static bool kfence_unprotect(unsigned long addr) |
| 220 | { |
| 221 | return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); |
| 222 | } |
| 223 | |
| 224 | static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) |
| 225 | { |
| 226 | long index; |
| 227 | |
| 228 | /* The checks do not affect performance; only called from slow-paths. */ |
| 229 | |
| 230 | if (!is_kfence_address((void *)addr)) |
| 231 | return NULL; |
| 232 | |
| 233 | /* |
| 234 | * May be an invalid index if called with an address at the edge of |
| 235 | * __kfence_pool, in which case we would report an "invalid access" |
| 236 | * error. |
| 237 | */ |
| 238 | index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; |
| 239 | if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) |
| 240 | return NULL; |
| 241 | |
| 242 | return &kfence_metadata[index]; |
| 243 | } |
| 244 | |
| 245 | static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) |
| 246 | { |
| 247 | unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; |
| 248 | unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; |
| 249 | |
| 250 | /* The checks do not affect performance; only called from slow-paths. */ |
| 251 | |
| 252 | /* Only call with a pointer into kfence_metadata. */ |
| 253 | if (KFENCE_WARN_ON(meta < kfence_metadata || |
| 254 | meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) |
| 255 | return 0; |
| 256 | |
| 257 | /* |
| 258 | * This metadata object only ever maps to 1 page; verify that the stored |
| 259 | * address is in the expected range. |
| 260 | */ |
| 261 | if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) |
| 262 | return 0; |
| 263 | |
| 264 | return pageaddr; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Update the object's metadata state, including updating the alloc/free stacks |
| 269 | * depending on the state transition. |
| 270 | */ |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 271 | static noinline void |
| 272 | metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, |
| 273 | unsigned long *stack_entries, size_t num_stack_entries) |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 274 | { |
| 275 | struct kfence_track *track = |
| 276 | next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; |
| 277 | |
| 278 | lockdep_assert_held(&meta->lock); |
| 279 | |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 280 | if (stack_entries) { |
| 281 | memcpy(track->stack_entries, stack_entries, |
| 282 | num_stack_entries * sizeof(stack_entries[0])); |
| 283 | } else { |
| 284 | /* |
| 285 | * Skip over 1 (this) functions; noinline ensures we do not |
| 286 | * accidentally skip over the caller by never inlining. |
| 287 | */ |
| 288 | num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); |
| 289 | } |
| 290 | track->num_stack_entries = num_stack_entries; |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 291 | track->pid = task_pid_nr(current); |
Marco Elver | 4bbf04a | 2021-09-07 19:56:21 -0700 | [diff] [blame] | 292 | track->cpu = raw_smp_processor_id(); |
| 293 | track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 294 | |
| 295 | /* |
| 296 | * Pairs with READ_ONCE() in |
| 297 | * kfence_shutdown_cache(), |
| 298 | * kfence_handle_page_fault(). |
| 299 | */ |
| 300 | WRITE_ONCE(meta->state, next); |
| 301 | } |
| 302 | |
| 303 | /* Write canary byte to @addr. */ |
| 304 | static inline bool set_canary_byte(u8 *addr) |
| 305 | { |
| 306 | *addr = KFENCE_CANARY_PATTERN(addr); |
| 307 | return true; |
| 308 | } |
| 309 | |
| 310 | /* Check canary byte at @addr. */ |
| 311 | static inline bool check_canary_byte(u8 *addr) |
| 312 | { |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 313 | struct kfence_metadata *meta; |
| 314 | unsigned long flags; |
| 315 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 316 | if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) |
| 317 | return true; |
| 318 | |
| 319 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 320 | |
| 321 | meta = addr_to_metadata((unsigned long)addr); |
| 322 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 323 | kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); |
| 324 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 325 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 326 | return false; |
| 327 | } |
| 328 | |
| 329 | /* __always_inline this to ensure we won't do an indirect call to fn. */ |
| 330 | static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) |
| 331 | { |
| 332 | const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); |
| 333 | unsigned long addr; |
| 334 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 335 | /* |
| 336 | * We'll iterate over each canary byte per-side until fn() returns |
| 337 | * false. However, we'll still iterate over the canary bytes to the |
| 338 | * right of the object even if there was an error in the canary bytes to |
| 339 | * the left of the object. Specifically, if check_canary_byte() |
| 340 | * generates an error, showing both sides might give more clues as to |
| 341 | * what the error is about when displaying which bytes were corrupted. |
| 342 | */ |
| 343 | |
| 344 | /* Apply to left of object. */ |
| 345 | for (addr = pageaddr; addr < meta->addr; addr++) { |
| 346 | if (!fn((u8 *)addr)) |
| 347 | break; |
| 348 | } |
| 349 | |
| 350 | /* Apply to right of object. */ |
| 351 | for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { |
| 352 | if (!fn((u8 *)addr)) |
| 353 | break; |
| 354 | } |
| 355 | } |
| 356 | |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 357 | static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 358 | unsigned long *stack_entries, size_t num_stack_entries, |
| 359 | u32 alloc_stack_hash) |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 360 | { |
| 361 | struct kfence_metadata *meta = NULL; |
| 362 | unsigned long flags; |
Vlastimil Babka | 8dae0cf | 2021-11-03 18:19:48 +0100 | [diff] [blame] | 363 | struct slab *slab; |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 364 | void *addr; |
| 365 | |
| 366 | /* Try to obtain a free object. */ |
| 367 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 368 | if (!list_empty(&kfence_freelist)) { |
| 369 | meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); |
| 370 | list_del_init(&meta->list); |
| 371 | } |
| 372 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 373 | if (!meta) { |
| 374 | atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 375 | return NULL; |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 376 | } |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 377 | |
| 378 | if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { |
| 379 | /* |
| 380 | * This is extremely unlikely -- we are reporting on a |
| 381 | * use-after-free, which locked meta->lock, and the reporting |
| 382 | * code via printk calls kmalloc() which ends up in |
| 383 | * kfence_alloc() and tries to grab the same object that we're |
| 384 | * reporting on. While it has never been observed, lockdep does |
| 385 | * report that there is a possibility of deadlock. Fix it by |
| 386 | * using trylock and bailing out gracefully. |
| 387 | */ |
| 388 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 389 | /* Put the object back on the freelist. */ |
| 390 | list_add_tail(&meta->list, &kfence_freelist); |
| 391 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| 392 | |
| 393 | return NULL; |
| 394 | } |
| 395 | |
| 396 | meta->addr = metadata_to_pageaddr(meta); |
| 397 | /* Unprotect if we're reusing this page. */ |
| 398 | if (meta->state == KFENCE_OBJECT_FREED) |
| 399 | kfence_unprotect(meta->addr); |
| 400 | |
| 401 | /* |
| 402 | * Note: for allocations made before RNG initialization, will always |
| 403 | * return zero. We still benefit from enabling KFENCE as early as |
| 404 | * possible, even when the RNG is not yet available, as this will allow |
| 405 | * KFENCE to detect bugs due to earlier allocations. The only downside |
| 406 | * is that the out-of-bounds accesses detected are deterministic for |
| 407 | * such allocations. |
| 408 | */ |
| 409 | if (prandom_u32_max(2)) { |
| 410 | /* Allocate on the "right" side, re-calculate address. */ |
| 411 | meta->addr += PAGE_SIZE - size; |
| 412 | meta->addr = ALIGN_DOWN(meta->addr, cache->align); |
| 413 | } |
| 414 | |
| 415 | addr = (void *)meta->addr; |
| 416 | |
| 417 | /* Update remaining metadata. */ |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 418 | metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 419 | /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ |
| 420 | WRITE_ONCE(meta->cache, cache); |
| 421 | meta->size = size; |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 422 | meta->alloc_stack_hash = alloc_stack_hash; |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 423 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 424 | |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 425 | alloc_covered_add(alloc_stack_hash, 1); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 426 | |
Vlastimil Babka | 8dae0cf | 2021-11-03 18:19:48 +0100 | [diff] [blame] | 427 | /* Set required slab fields. */ |
| 428 | slab = virt_to_slab((void *)meta->addr); |
| 429 | slab->slab_cache = cache; |
Vlastimil Babka | 401fb12 | 2021-11-04 11:30:58 +0100 | [diff] [blame] | 430 | #if defined(CONFIG_SLUB) |
| 431 | slab->objects = 1; |
| 432 | #elif defined(CONFIG_SLAB) |
| 433 | slab->s_mem = addr; |
| 434 | #endif |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 435 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 436 | /* Memory initialization. */ |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 437 | for_each_canary(meta, set_canary_byte); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 438 | |
| 439 | /* |
| 440 | * We check slab_want_init_on_alloc() ourselves, rather than letting |
| 441 | * SL*B do the initialization, as otherwise we might overwrite KFENCE's |
| 442 | * redzone. |
| 443 | */ |
| 444 | if (unlikely(slab_want_init_on_alloc(gfp, cache))) |
| 445 | memzero_explicit(addr, size); |
| 446 | if (cache->ctor) |
| 447 | cache->ctor(addr); |
| 448 | |
| 449 | if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) |
| 450 | kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ |
| 451 | |
| 452 | atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); |
| 453 | atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); |
| 454 | |
| 455 | return addr; |
| 456 | } |
| 457 | |
| 458 | static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) |
| 459 | { |
| 460 | struct kcsan_scoped_access assert_page_exclusive; |
| 461 | unsigned long flags; |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 462 | bool init; |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 463 | |
| 464 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 465 | |
| 466 | if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { |
| 467 | /* Invalid or double-free, bail out. */ |
| 468 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
Marco Elver | bc8fbc5 | 2021-02-25 17:19:31 -0800 | [diff] [blame] | 469 | kfence_report_error((unsigned long)addr, false, NULL, meta, |
| 470 | KFENCE_ERROR_INVALID_FREE); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 471 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 472 | return; |
| 473 | } |
| 474 | |
| 475 | /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ |
| 476 | kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, |
| 477 | KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, |
| 478 | &assert_page_exclusive); |
| 479 | |
| 480 | if (CONFIG_KFENCE_STRESS_TEST_FAULTS) |
| 481 | kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ |
| 482 | |
| 483 | /* Restore page protection if there was an OOB access. */ |
| 484 | if (meta->unprotected_page) { |
Marco Elver | 94868a1 | 2021-05-04 18:40:18 -0700 | [diff] [blame] | 485 | memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 486 | kfence_protect(meta->unprotected_page); |
| 487 | meta->unprotected_page = 0; |
| 488 | } |
| 489 | |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 490 | /* Mark the object as freed. */ |
| 491 | metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); |
| 492 | init = slab_want_init_on_free(meta->cache); |
| 493 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 494 | |
| 495 | alloc_covered_add(meta->alloc_stack_hash, -1); |
| 496 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 497 | /* Check canary bytes for memory corruption. */ |
| 498 | for_each_canary(meta, check_canary_byte); |
| 499 | |
| 500 | /* |
| 501 | * Clear memory if init-on-free is set. While we protect the page, the |
| 502 | * data is still there, and after a use-after-free is detected, we |
| 503 | * unprotect the page, so the data is still accessible. |
| 504 | */ |
Marco Elver | 4933295 | 2021-11-05 13:45:43 -0700 | [diff] [blame] | 505 | if (!zombie && unlikely(init)) |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 506 | memzero_explicit(addr, meta->size); |
| 507 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 508 | /* Protect to detect use-after-frees. */ |
| 509 | kfence_protect((unsigned long)addr); |
| 510 | |
| 511 | kcsan_end_scoped_access(&assert_page_exclusive); |
| 512 | if (!zombie) { |
| 513 | /* Add it to the tail of the freelist for reuse. */ |
| 514 | raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| 515 | KFENCE_WARN_ON(!list_empty(&meta->list)); |
| 516 | list_add_tail(&meta->list, &kfence_freelist); |
| 517 | raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| 518 | |
| 519 | atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); |
| 520 | atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); |
| 521 | } else { |
| 522 | /* See kfence_shutdown_cache(). */ |
| 523 | atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | static void rcu_guarded_free(struct rcu_head *h) |
| 528 | { |
| 529 | struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); |
| 530 | |
| 531 | kfence_guarded_free((void *)meta->addr, meta, false); |
| 532 | } |
| 533 | |
| 534 | static bool __init kfence_init_pool(void) |
| 535 | { |
| 536 | unsigned long addr = (unsigned long)__kfence_pool; |
| 537 | struct page *pages; |
| 538 | int i; |
| 539 | |
| 540 | if (!__kfence_pool) |
| 541 | return false; |
| 542 | |
| 543 | if (!arch_kfence_init_pool()) |
| 544 | goto err; |
| 545 | |
| 546 | pages = virt_to_page(addr); |
| 547 | |
| 548 | /* |
| 549 | * Set up object pages: they must have PG_slab set, to avoid freeing |
| 550 | * these as real pages. |
| 551 | * |
| 552 | * We also want to avoid inserting kfence_free() in the kfree() |
| 553 | * fast-path in SLUB, and therefore need to ensure kfree() correctly |
| 554 | * enters __slab_free() slow-path. |
| 555 | */ |
| 556 | for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { |
| 557 | if (!i || (i % 2)) |
| 558 | continue; |
| 559 | |
| 560 | /* Verify we do not have a compound head page. */ |
| 561 | if (WARN_ON(compound_head(&pages[i]) != &pages[i])) |
| 562 | goto err; |
| 563 | |
| 564 | __SetPageSlab(&pages[i]); |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * Protect the first 2 pages. The first page is mostly unnecessary, and |
| 569 | * merely serves as an extended guard page. However, adding one |
| 570 | * additional page in the beginning gives us an even number of pages, |
| 571 | * which simplifies the mapping of address to metadata index. |
| 572 | */ |
| 573 | for (i = 0; i < 2; i++) { |
| 574 | if (unlikely(!kfence_protect(addr))) |
| 575 | goto err; |
| 576 | |
| 577 | addr += PAGE_SIZE; |
| 578 | } |
| 579 | |
| 580 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 581 | struct kfence_metadata *meta = &kfence_metadata[i]; |
| 582 | |
| 583 | /* Initialize metadata. */ |
| 584 | INIT_LIST_HEAD(&meta->list); |
| 585 | raw_spin_lock_init(&meta->lock); |
| 586 | meta->state = KFENCE_OBJECT_UNUSED; |
| 587 | meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ |
| 588 | list_add_tail(&meta->list, &kfence_freelist); |
| 589 | |
| 590 | /* Protect the right redzone. */ |
| 591 | if (unlikely(!kfence_protect(addr + PAGE_SIZE))) |
| 592 | goto err; |
| 593 | |
| 594 | addr += 2 * PAGE_SIZE; |
| 595 | } |
| 596 | |
Marco Elver | 9551158 | 2021-03-24 21:37:47 -0700 | [diff] [blame] | 597 | /* |
| 598 | * The pool is live and will never be deallocated from this point on. |
| 599 | * Remove the pool object from the kmemleak object tree, as it would |
| 600 | * otherwise overlap with allocations returned by kfence_alloc(), which |
| 601 | * are registered with kmemleak through the slab post-alloc hook. |
| 602 | */ |
| 603 | kmemleak_free(__kfence_pool); |
| 604 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 605 | return true; |
| 606 | |
| 607 | err: |
| 608 | /* |
| 609 | * Only release unprotected pages, and do not try to go back and change |
| 610 | * page attributes due to risk of failing to do so as well. If changing |
| 611 | * page attributes for some pages fails, it is very likely that it also |
| 612 | * fails for the first page, and therefore expect addr==__kfence_pool in |
| 613 | * most failure cases. |
| 614 | */ |
| 615 | memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); |
| 616 | __kfence_pool = NULL; |
| 617 | return false; |
| 618 | } |
| 619 | |
| 620 | /* === DebugFS Interface ==================================================== */ |
| 621 | |
| 622 | static int stats_show(struct seq_file *seq, void *v) |
| 623 | { |
| 624 | int i; |
| 625 | |
| 626 | seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); |
| 627 | for (i = 0; i < KFENCE_COUNTER_COUNT; i++) |
| 628 | seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); |
| 629 | |
| 630 | return 0; |
| 631 | } |
| 632 | DEFINE_SHOW_ATTRIBUTE(stats); |
| 633 | |
| 634 | /* |
| 635 | * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. |
| 636 | * start_object() and next_object() return the object index + 1, because NULL is used |
| 637 | * to stop iteration. |
| 638 | */ |
| 639 | static void *start_object(struct seq_file *seq, loff_t *pos) |
| 640 | { |
| 641 | if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| 642 | return (void *)((long)*pos + 1); |
| 643 | return NULL; |
| 644 | } |
| 645 | |
| 646 | static void stop_object(struct seq_file *seq, void *v) |
| 647 | { |
| 648 | } |
| 649 | |
| 650 | static void *next_object(struct seq_file *seq, void *v, loff_t *pos) |
| 651 | { |
| 652 | ++*pos; |
| 653 | if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| 654 | return (void *)((long)*pos + 1); |
| 655 | return NULL; |
| 656 | } |
| 657 | |
| 658 | static int show_object(struct seq_file *seq, void *v) |
| 659 | { |
| 660 | struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; |
| 661 | unsigned long flags; |
| 662 | |
| 663 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 664 | kfence_print_object(seq, meta); |
| 665 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 666 | seq_puts(seq, "---------------------------------\n"); |
| 667 | |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | static const struct seq_operations object_seqops = { |
| 672 | .start = start_object, |
| 673 | .next = next_object, |
| 674 | .stop = stop_object, |
| 675 | .show = show_object, |
| 676 | }; |
| 677 | |
| 678 | static int open_objects(struct inode *inode, struct file *file) |
| 679 | { |
| 680 | return seq_open(file, &object_seqops); |
| 681 | } |
| 682 | |
| 683 | static const struct file_operations objects_fops = { |
| 684 | .open = open_objects, |
| 685 | .read = seq_read, |
| 686 | .llseek = seq_lseek, |
Baokun Li | 0129ab1 | 2021-12-24 21:12:32 -0800 | [diff] [blame] | 687 | .release = seq_release, |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 688 | }; |
| 689 | |
| 690 | static int __init kfence_debugfs_init(void) |
| 691 | { |
| 692 | struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); |
| 693 | |
| 694 | debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); |
| 695 | debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | late_initcall(kfence_debugfs_init); |
| 700 | |
| 701 | /* === Allocation Gate Timer ================================================ */ |
| 702 | |
Marco Elver | 407f1d8 | 2021-05-04 18:40:21 -0700 | [diff] [blame] | 703 | #ifdef CONFIG_KFENCE_STATIC_KEYS |
| 704 | /* Wait queue to wake up allocation-gate timer task. */ |
| 705 | static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); |
| 706 | |
| 707 | static void wake_up_kfence_timer(struct irq_work *work) |
| 708 | { |
| 709 | wake_up(&allocation_wait); |
| 710 | } |
| 711 | static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); |
| 712 | #endif |
| 713 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 714 | /* |
| 715 | * Set up delayed work, which will enable and disable the static key. We need to |
| 716 | * use a work queue (rather than a simple timer), since enabling and disabling a |
| 717 | * static key cannot be done from an interrupt. |
| 718 | * |
| 719 | * Note: Toggling a static branch currently causes IPIs, and here we'll end up |
| 720 | * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with |
| 721 | * more aggressive sampling intervals), we could get away with a variant that |
| 722 | * avoids IPIs, at the cost of not immediately capturing allocations if the |
| 723 | * instructions remain cached. |
| 724 | */ |
| 725 | static struct delayed_work kfence_timer; |
| 726 | static void toggle_allocation_gate(struct work_struct *work) |
| 727 | { |
| 728 | if (!READ_ONCE(kfence_enabled)) |
| 729 | return; |
| 730 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 731 | atomic_set(&kfence_allocation_gate, 0); |
| 732 | #ifdef CONFIG_KFENCE_STATIC_KEYS |
Marco Elver | 407f1d8 | 2021-05-04 18:40:21 -0700 | [diff] [blame] | 733 | /* Enable static key, and await allocation to happen. */ |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 734 | static_branch_enable(&kfence_allocation_key); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 735 | |
Marco Elver | 37c9284 | 2021-05-04 18:40:24 -0700 | [diff] [blame] | 736 | if (sysctl_hung_task_timeout_secs) { |
| 737 | /* |
| 738 | * During low activity with no allocations we might wait a |
| 739 | * while; let's avoid the hung task warning. |
| 740 | */ |
Marco Elver | 8fd0e99 | 2021-06-04 20:01:11 -0700 | [diff] [blame] | 741 | wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), |
| 742 | sysctl_hung_task_timeout_secs * HZ / 2); |
Marco Elver | 37c9284 | 2021-05-04 18:40:24 -0700 | [diff] [blame] | 743 | } else { |
Marco Elver | 8fd0e99 | 2021-06-04 20:01:11 -0700 | [diff] [blame] | 744 | wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); |
Marco Elver | 37c9284 | 2021-05-04 18:40:24 -0700 | [diff] [blame] | 745 | } |
Marco Elver | 407f1d8 | 2021-05-04 18:40:21 -0700 | [diff] [blame] | 746 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 747 | /* Disable static key and reset timer. */ |
| 748 | static_branch_disable(&kfence_allocation_key); |
| 749 | #endif |
Marco Elver | ff06e45 | 2021-06-30 18:54:03 -0700 | [diff] [blame] | 750 | queue_delayed_work(system_unbound_wq, &kfence_timer, |
Marco Elver | 36f0b35 | 2021-05-04 18:40:27 -0700 | [diff] [blame] | 751 | msecs_to_jiffies(kfence_sample_interval)); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 752 | } |
| 753 | static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); |
| 754 | |
| 755 | /* === Public interface ===================================================== */ |
| 756 | |
| 757 | void __init kfence_alloc_pool(void) |
| 758 | { |
| 759 | if (!kfence_sample_interval) |
| 760 | return; |
| 761 | |
| 762 | __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); |
| 763 | |
| 764 | if (!__kfence_pool) |
| 765 | pr_err("failed to allocate pool\n"); |
| 766 | } |
| 767 | |
| 768 | void __init kfence_init(void) |
| 769 | { |
| 770 | /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ |
| 771 | if (!kfence_sample_interval) |
| 772 | return; |
| 773 | |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 774 | stack_hash_seed = (u32)random_get_entropy(); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 775 | if (!kfence_init_pool()) { |
| 776 | pr_err("%s failed\n", __func__); |
| 777 | return; |
| 778 | } |
| 779 | |
Marco Elver | 07e8481 | 2021-11-05 13:45:46 -0700 | [diff] [blame] | 780 | if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) |
| 781 | static_branch_enable(&kfence_allocation_key); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 782 | WRITE_ONCE(kfence_enabled, true); |
Marco Elver | ff06e45 | 2021-06-30 18:54:03 -0700 | [diff] [blame] | 783 | queue_delayed_work(system_unbound_wq, &kfence_timer, 0); |
Marco Elver | 35beccf | 2021-02-25 17:19:40 -0800 | [diff] [blame] | 784 | pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, |
| 785 | CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, |
| 786 | (void *)(__kfence_pool + KFENCE_POOL_SIZE)); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 787 | } |
| 788 | |
| 789 | void kfence_shutdown_cache(struct kmem_cache *s) |
| 790 | { |
| 791 | unsigned long flags; |
| 792 | struct kfence_metadata *meta; |
| 793 | int i; |
| 794 | |
| 795 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 796 | bool in_use; |
| 797 | |
| 798 | meta = &kfence_metadata[i]; |
| 799 | |
| 800 | /* |
| 801 | * If we observe some inconsistent cache and state pair where we |
| 802 | * should have returned false here, cache destruction is racing |
| 803 | * with either kmem_cache_alloc() or kmem_cache_free(). Taking |
| 804 | * the lock will not help, as different critical section |
| 805 | * serialization will have the same outcome. |
| 806 | */ |
| 807 | if (READ_ONCE(meta->cache) != s || |
| 808 | READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) |
| 809 | continue; |
| 810 | |
| 811 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 812 | in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; |
| 813 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 814 | |
| 815 | if (in_use) { |
| 816 | /* |
| 817 | * This cache still has allocations, and we should not |
| 818 | * release them back into the freelist so they can still |
| 819 | * safely be used and retain the kernel's default |
| 820 | * behaviour of keeping the allocations alive (leak the |
| 821 | * cache); however, they effectively become "zombie |
| 822 | * allocations" as the KFENCE objects are the only ones |
| 823 | * still in use and the owning cache is being destroyed. |
| 824 | * |
| 825 | * We mark them freed, so that any subsequent use shows |
| 826 | * more useful error messages that will include stack |
| 827 | * traces of the user of the object, the original |
| 828 | * allocation, and caller to shutdown_cache(). |
| 829 | */ |
| 830 | kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| 835 | meta = &kfence_metadata[i]; |
| 836 | |
| 837 | /* See above. */ |
| 838 | if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) |
| 839 | continue; |
| 840 | |
| 841 | raw_spin_lock_irqsave(&meta->lock, flags); |
| 842 | if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) |
| 843 | meta->cache = NULL; |
| 844 | raw_spin_unlock_irqrestore(&meta->lock, flags); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) |
| 849 | { |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 850 | unsigned long stack_entries[KFENCE_STACK_DEPTH]; |
| 851 | size_t num_stack_entries; |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 852 | u32 alloc_stack_hash; |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 853 | |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 854 | /* |
Alexander Potapenko | 235a85c | 2021-07-23 15:50:11 -0700 | [diff] [blame] | 855 | * Perform size check before switching kfence_allocation_gate, so that |
| 856 | * we don't disable KFENCE without making an allocation. |
| 857 | */ |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 858 | if (size > PAGE_SIZE) { |
| 859 | atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); |
Alexander Potapenko | 235a85c | 2021-07-23 15:50:11 -0700 | [diff] [blame] | 860 | return NULL; |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 861 | } |
Alexander Potapenko | 235a85c | 2021-07-23 15:50:11 -0700 | [diff] [blame] | 862 | |
| 863 | /* |
Alexander Potapenko | 236e9f1 | 2021-07-23 15:50:14 -0700 | [diff] [blame] | 864 | * Skip allocations from non-default zones, including DMA. We cannot |
| 865 | * guarantee that pages in the KFENCE pool will have the requested |
| 866 | * properties (e.g. reside in DMAable memory). |
| 867 | */ |
| 868 | if ((flags & GFP_ZONEMASK) || |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 869 | (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { |
| 870 | atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); |
Alexander Potapenko | 236e9f1 | 2021-07-23 15:50:14 -0700 | [diff] [blame] | 871 | return NULL; |
Marco Elver | 9a19aeb | 2021-11-05 13:45:28 -0700 | [diff] [blame] | 872 | } |
Alexander Potapenko | 236e9f1 | 2021-07-23 15:50:14 -0700 | [diff] [blame] | 873 | |
Marco Elver | 07e8481 | 2021-11-05 13:45:46 -0700 | [diff] [blame] | 874 | if (atomic_inc_return(&kfence_allocation_gate) > 1) |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 875 | return NULL; |
Marco Elver | 407f1d8 | 2021-05-04 18:40:21 -0700 | [diff] [blame] | 876 | #ifdef CONFIG_KFENCE_STATIC_KEYS |
| 877 | /* |
| 878 | * waitqueue_active() is fully ordered after the update of |
| 879 | * kfence_allocation_gate per atomic_inc_return(). |
| 880 | */ |
| 881 | if (waitqueue_active(&allocation_wait)) { |
| 882 | /* |
| 883 | * Calling wake_up() here may deadlock when allocations happen |
| 884 | * from within timer code. Use an irq_work to defer it. |
| 885 | */ |
| 886 | irq_work_queue(&wake_up_kfence_timer_work); |
| 887 | } |
| 888 | #endif |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 889 | |
| 890 | if (!READ_ONCE(kfence_enabled)) |
| 891 | return NULL; |
| 892 | |
Marco Elver | a9ab52b | 2021-11-05 13:45:31 -0700 | [diff] [blame] | 893 | num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); |
| 894 | |
Marco Elver | 08f6b10 | 2021-11-05 13:45:34 -0700 | [diff] [blame] | 895 | /* |
| 896 | * Do expensive check for coverage of allocation in slow-path after |
| 897 | * allocation_gate has already become non-zero, even though it might |
| 898 | * mean not making any allocation within a given sample interval. |
| 899 | * |
| 900 | * This ensures reasonable allocation coverage when the pool is almost |
| 901 | * full, including avoiding long-lived allocations of the same source |
| 902 | * filling up the pool (e.g. pagecache allocations). |
| 903 | */ |
| 904 | alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); |
| 905 | if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { |
| 906 | atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); |
| 907 | return NULL; |
| 908 | } |
| 909 | |
| 910 | return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, |
| 911 | alloc_stack_hash); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 912 | } |
| 913 | |
| 914 | size_t kfence_ksize(const void *addr) |
| 915 | { |
| 916 | const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 917 | |
| 918 | /* |
| 919 | * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| 920 | * either a use-after-free or invalid access. |
| 921 | */ |
| 922 | return meta ? meta->size : 0; |
| 923 | } |
| 924 | |
| 925 | void *kfence_object_start(const void *addr) |
| 926 | { |
| 927 | const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 928 | |
| 929 | /* |
| 930 | * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| 931 | * either a use-after-free or invalid access. |
| 932 | */ |
| 933 | return meta ? (void *)meta->addr : NULL; |
| 934 | } |
| 935 | |
| 936 | void __kfence_free(void *addr) |
| 937 | { |
| 938 | struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| 939 | |
| 940 | /* |
| 941 | * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing |
| 942 | * the object, as the object page may be recycled for other-typed |
| 943 | * objects once it has been freed. meta->cache may be NULL if the cache |
| 944 | * was destroyed. |
| 945 | */ |
| 946 | if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) |
| 947 | call_rcu(&meta->rcu_head, rcu_guarded_free); |
| 948 | else |
| 949 | kfence_guarded_free(addr, meta, false); |
| 950 | } |
| 951 | |
Marco Elver | bc8fbc5 | 2021-02-25 17:19:31 -0800 | [diff] [blame] | 952 | bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 953 | { |
| 954 | const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; |
| 955 | struct kfence_metadata *to_report = NULL; |
| 956 | enum kfence_error_type error_type; |
| 957 | unsigned long flags; |
| 958 | |
| 959 | if (!is_kfence_address((void *)addr)) |
| 960 | return false; |
| 961 | |
| 962 | if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ |
| 963 | return kfence_unprotect(addr); /* ... unprotect and proceed. */ |
| 964 | |
| 965 | atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| 966 | |
| 967 | if (page_index % 2) { |
| 968 | /* This is a redzone, report a buffer overflow. */ |
| 969 | struct kfence_metadata *meta; |
| 970 | int distance = 0; |
| 971 | |
| 972 | meta = addr_to_metadata(addr - PAGE_SIZE); |
| 973 | if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| 974 | to_report = meta; |
| 975 | /* Data race ok; distance calculation approximate. */ |
| 976 | distance = addr - data_race(meta->addr + meta->size); |
| 977 | } |
| 978 | |
| 979 | meta = addr_to_metadata(addr + PAGE_SIZE); |
| 980 | if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| 981 | /* Data race ok; distance calculation approximate. */ |
| 982 | if (!to_report || distance > data_race(meta->addr) - addr) |
| 983 | to_report = meta; |
| 984 | } |
| 985 | |
| 986 | if (!to_report) |
| 987 | goto out; |
| 988 | |
| 989 | raw_spin_lock_irqsave(&to_report->lock, flags); |
| 990 | to_report->unprotected_page = addr; |
| 991 | error_type = KFENCE_ERROR_OOB; |
| 992 | |
| 993 | /* |
| 994 | * If the object was freed before we took the look we can still |
| 995 | * report this as an OOB -- the report will simply show the |
| 996 | * stacktrace of the free as well. |
| 997 | */ |
| 998 | } else { |
| 999 | to_report = addr_to_metadata(addr); |
| 1000 | if (!to_report) |
| 1001 | goto out; |
| 1002 | |
| 1003 | raw_spin_lock_irqsave(&to_report->lock, flags); |
| 1004 | error_type = KFENCE_ERROR_UAF; |
| 1005 | /* |
| 1006 | * We may race with __kfence_alloc(), and it is possible that a |
| 1007 | * freed object may be reallocated. We simply report this as a |
| 1008 | * use-after-free, with the stack trace showing the place where |
| 1009 | * the object was re-allocated. |
| 1010 | */ |
| 1011 | } |
| 1012 | |
| 1013 | out: |
| 1014 | if (to_report) { |
Marco Elver | bc8fbc5 | 2021-02-25 17:19:31 -0800 | [diff] [blame] | 1015 | kfence_report_error(addr, is_write, regs, to_report, error_type); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 1016 | raw_spin_unlock_irqrestore(&to_report->lock, flags); |
| 1017 | } else { |
| 1018 | /* This may be a UAF or OOB access, but we can't be sure. */ |
Marco Elver | bc8fbc5 | 2021-02-25 17:19:31 -0800 | [diff] [blame] | 1019 | kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); |
Alexander Potapenko | 0ce20dd | 2021-02-25 17:18:53 -0800 | [diff] [blame] | 1020 | } |
| 1021 | |
| 1022 | return kfence_unprotect(addr); /* Unprotect and let access proceed. */ |
| 1023 | } |