blob: 5ad40e3add457db1e788314e8e46eb0b2dfb4e61 [file] [log] [blame]
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8#define pr_fmt(fmt) "kfence: " fmt
9
10#include <linux/atomic.h>
11#include <linux/bug.h>
12#include <linux/debugfs.h>
Marco Elver08f6b102021-11-05 13:45:34 -070013#include <linux/hash.h>
Marco Elver407f1d82021-05-04 18:40:21 -070014#include <linux/irq_work.h>
Marco Elver08f6b102021-11-05 13:45:34 -070015#include <linux/jhash.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080016#include <linux/kcsan-checks.h>
17#include <linux/kfence.h>
Marco Elver95511582021-03-24 21:37:47 -070018#include <linux/kmemleak.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080019#include <linux/list.h>
20#include <linux/lockdep.h>
Marco Elver08f6b102021-11-05 13:45:34 -070021#include <linux/log2.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080022#include <linux/memblock.h>
23#include <linux/moduleparam.h>
24#include <linux/random.h>
25#include <linux/rcupdate.h>
Marco Elver4bbf04a2021-09-07 19:56:21 -070026#include <linux/sched/clock.h>
Marco Elver37c92842021-05-04 18:40:24 -070027#include <linux/sched/sysctl.h>
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080028#include <linux/seq_file.h>
29#include <linux/slab.h>
30#include <linux/spinlock.h>
31#include <linux/string.h>
32
33#include <asm/kfence.h>
34
35#include "kfence.h"
36
37/* Disables KFENCE on the first warning assuming an irrecoverable error. */
38#define KFENCE_WARN_ON(cond) \
39 ({ \
40 const bool __cond = WARN_ON(cond); \
41 if (unlikely(__cond)) \
42 WRITE_ONCE(kfence_enabled, false); \
43 __cond; \
44 })
45
46/* === Data ================================================================= */
47
48static bool kfence_enabled __read_mostly;
49
50static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
51
52#ifdef MODULE_PARAM_PREFIX
53#undef MODULE_PARAM_PREFIX
54#endif
55#define MODULE_PARAM_PREFIX "kfence."
56
57static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
58{
59 unsigned long num;
60 int ret = kstrtoul(val, 0, &num);
61
62 if (ret < 0)
63 return ret;
64
65 if (!num) /* Using 0 to indicate KFENCE is disabled. */
66 WRITE_ONCE(kfence_enabled, false);
67 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
68 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
69
70 *((unsigned long *)kp->arg) = num;
71 return 0;
72}
73
74static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
75{
76 if (!READ_ONCE(kfence_enabled))
77 return sprintf(buffer, "0\n");
78
79 return param_get_ulong(buffer, kp);
80}
81
82static const struct kernel_param_ops sample_interval_param_ops = {
83 .set = param_set_sample_interval,
84 .get = param_get_sample_interval,
85};
86module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
87
Marco Elver08f6b102021-11-05 13:45:34 -070088/* Pool usage% threshold when currently covered allocations are skipped. */
89static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
90module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
91
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -080092/* The pool of pages used for guard pages and objects. */
93char *__kfence_pool __ro_after_init;
94EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
95
96/*
97 * Per-object metadata, with one-to-one mapping of object metadata to
98 * backing pages (in __kfence_pool).
99 */
100static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
101struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
102
103/* Freelist with available objects. */
104static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
105static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
106
Marco Elver07e84812021-11-05 13:45:46 -0700107/*
108 * The static key to set up a KFENCE allocation; or if static keys are not used
109 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
110 */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800111DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800112
113/* Gates the allocation, ensuring only one succeeds in a given period. */
114atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
115
Marco Elver08f6b102021-11-05 13:45:34 -0700116/*
117 * A Counting Bloom filter of allocation coverage: limits currently covered
118 * allocations of the same source filling up the pool.
119 *
120 * Assuming a range of 15%-85% unique allocations in the pool at any point in
121 * time, the below parameters provide a probablity of 0.02-0.33 for false
122 * positive hits respectively:
123 *
124 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
125 */
126#define ALLOC_COVERED_HNUM 2
127#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
128#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
129#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
130#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
131static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
132
133/* Stack depth used to determine uniqueness of an allocation. */
134#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
135
136/*
137 * Randomness for stack hashes, making the same collisions across reboots and
138 * different machines less likely.
139 */
140static u32 stack_hash_seed __ro_after_init;
141
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800142/* Statistics counters for debugfs. */
143enum kfence_counter_id {
144 KFENCE_COUNTER_ALLOCATED,
145 KFENCE_COUNTER_ALLOCS,
146 KFENCE_COUNTER_FREES,
147 KFENCE_COUNTER_ZOMBIES,
148 KFENCE_COUNTER_BUGS,
Marco Elver9a19aeb2021-11-05 13:45:28 -0700149 KFENCE_COUNTER_SKIP_INCOMPAT,
150 KFENCE_COUNTER_SKIP_CAPACITY,
Marco Elver08f6b102021-11-05 13:45:34 -0700151 KFENCE_COUNTER_SKIP_COVERED,
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800152 KFENCE_COUNTER_COUNT,
153};
154static atomic_long_t counters[KFENCE_COUNTER_COUNT];
155static const char *const counter_names[] = {
156 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
157 [KFENCE_COUNTER_ALLOCS] = "total allocations",
158 [KFENCE_COUNTER_FREES] = "total frees",
159 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
160 [KFENCE_COUNTER_BUGS] = "total bugs",
Marco Elver9a19aeb2021-11-05 13:45:28 -0700161 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
162 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
Marco Elver08f6b102021-11-05 13:45:34 -0700163 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800164};
165static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
166
167/* === Internals ============================================================ */
168
Marco Elver08f6b102021-11-05 13:45:34 -0700169static inline bool should_skip_covered(void)
170{
171 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
172
173 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
174}
175
176static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
177{
178 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
179 num_entries = filter_irq_stacks(stack_entries, num_entries);
180 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
181}
182
183/*
184 * Adds (or subtracts) count @val for allocation stack trace hash
185 * @alloc_stack_hash from Counting Bloom filter.
186 */
187static void alloc_covered_add(u32 alloc_stack_hash, int val)
188{
189 int i;
190
191 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
192 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
193 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
194 }
195}
196
197/*
198 * Returns true if the allocation stack trace hash @alloc_stack_hash is
199 * currently contained (non-zero count) in Counting Bloom filter.
200 */
201static bool alloc_covered_contains(u32 alloc_stack_hash)
202{
203 int i;
204
205 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
206 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
207 return false;
208 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
209 }
210
211 return true;
212}
213
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800214static bool kfence_protect(unsigned long addr)
215{
216 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
217}
218
219static bool kfence_unprotect(unsigned long addr)
220{
221 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
222}
223
224static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
225{
226 long index;
227
228 /* The checks do not affect performance; only called from slow-paths. */
229
230 if (!is_kfence_address((void *)addr))
231 return NULL;
232
233 /*
234 * May be an invalid index if called with an address at the edge of
235 * __kfence_pool, in which case we would report an "invalid access"
236 * error.
237 */
238 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
239 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
240 return NULL;
241
242 return &kfence_metadata[index];
243}
244
245static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
246{
247 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
248 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
249
250 /* The checks do not affect performance; only called from slow-paths. */
251
252 /* Only call with a pointer into kfence_metadata. */
253 if (KFENCE_WARN_ON(meta < kfence_metadata ||
254 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
255 return 0;
256
257 /*
258 * This metadata object only ever maps to 1 page; verify that the stored
259 * address is in the expected range.
260 */
261 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
262 return 0;
263
264 return pageaddr;
265}
266
267/*
268 * Update the object's metadata state, including updating the alloc/free stacks
269 * depending on the state transition.
270 */
Marco Elvera9ab52b2021-11-05 13:45:31 -0700271static noinline void
272metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
273 unsigned long *stack_entries, size_t num_stack_entries)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800274{
275 struct kfence_track *track =
276 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
277
278 lockdep_assert_held(&meta->lock);
279
Marco Elvera9ab52b2021-11-05 13:45:31 -0700280 if (stack_entries) {
281 memcpy(track->stack_entries, stack_entries,
282 num_stack_entries * sizeof(stack_entries[0]));
283 } else {
284 /*
285 * Skip over 1 (this) functions; noinline ensures we do not
286 * accidentally skip over the caller by never inlining.
287 */
288 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
289 }
290 track->num_stack_entries = num_stack_entries;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800291 track->pid = task_pid_nr(current);
Marco Elver4bbf04a2021-09-07 19:56:21 -0700292 track->cpu = raw_smp_processor_id();
293 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800294
295 /*
296 * Pairs with READ_ONCE() in
297 * kfence_shutdown_cache(),
298 * kfence_handle_page_fault().
299 */
300 WRITE_ONCE(meta->state, next);
301}
302
303/* Write canary byte to @addr. */
304static inline bool set_canary_byte(u8 *addr)
305{
306 *addr = KFENCE_CANARY_PATTERN(addr);
307 return true;
308}
309
310/* Check canary byte at @addr. */
311static inline bool check_canary_byte(u8 *addr)
312{
Marco Elver49332952021-11-05 13:45:43 -0700313 struct kfence_metadata *meta;
314 unsigned long flags;
315
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800316 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
317 return true;
318
319 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
Marco Elver49332952021-11-05 13:45:43 -0700320
321 meta = addr_to_metadata((unsigned long)addr);
322 raw_spin_lock_irqsave(&meta->lock, flags);
323 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
324 raw_spin_unlock_irqrestore(&meta->lock, flags);
325
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800326 return false;
327}
328
329/* __always_inline this to ensure we won't do an indirect call to fn. */
330static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
331{
332 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
333 unsigned long addr;
334
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800335 /*
336 * We'll iterate over each canary byte per-side until fn() returns
337 * false. However, we'll still iterate over the canary bytes to the
338 * right of the object even if there was an error in the canary bytes to
339 * the left of the object. Specifically, if check_canary_byte()
340 * generates an error, showing both sides might give more clues as to
341 * what the error is about when displaying which bytes were corrupted.
342 */
343
344 /* Apply to left of object. */
345 for (addr = pageaddr; addr < meta->addr; addr++) {
346 if (!fn((u8 *)addr))
347 break;
348 }
349
350 /* Apply to right of object. */
351 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
352 if (!fn((u8 *)addr))
353 break;
354 }
355}
356
Marco Elvera9ab52b2021-11-05 13:45:31 -0700357static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
Marco Elver08f6b102021-11-05 13:45:34 -0700358 unsigned long *stack_entries, size_t num_stack_entries,
359 u32 alloc_stack_hash)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800360{
361 struct kfence_metadata *meta = NULL;
362 unsigned long flags;
Vlastimil Babka8dae0cf2021-11-03 18:19:48 +0100363 struct slab *slab;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800364 void *addr;
365
366 /* Try to obtain a free object. */
367 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
368 if (!list_empty(&kfence_freelist)) {
369 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
370 list_del_init(&meta->list);
371 }
372 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
Marco Elver9a19aeb2021-11-05 13:45:28 -0700373 if (!meta) {
374 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800375 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700376 }
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800377
378 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
379 /*
380 * This is extremely unlikely -- we are reporting on a
381 * use-after-free, which locked meta->lock, and the reporting
382 * code via printk calls kmalloc() which ends up in
383 * kfence_alloc() and tries to grab the same object that we're
384 * reporting on. While it has never been observed, lockdep does
385 * report that there is a possibility of deadlock. Fix it by
386 * using trylock and bailing out gracefully.
387 */
388 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
389 /* Put the object back on the freelist. */
390 list_add_tail(&meta->list, &kfence_freelist);
391 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
392
393 return NULL;
394 }
395
396 meta->addr = metadata_to_pageaddr(meta);
397 /* Unprotect if we're reusing this page. */
398 if (meta->state == KFENCE_OBJECT_FREED)
399 kfence_unprotect(meta->addr);
400
401 /*
402 * Note: for allocations made before RNG initialization, will always
403 * return zero. We still benefit from enabling KFENCE as early as
404 * possible, even when the RNG is not yet available, as this will allow
405 * KFENCE to detect bugs due to earlier allocations. The only downside
406 * is that the out-of-bounds accesses detected are deterministic for
407 * such allocations.
408 */
409 if (prandom_u32_max(2)) {
410 /* Allocate on the "right" side, re-calculate address. */
411 meta->addr += PAGE_SIZE - size;
412 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
413 }
414
415 addr = (void *)meta->addr;
416
417 /* Update remaining metadata. */
Marco Elvera9ab52b2021-11-05 13:45:31 -0700418 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800419 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
420 WRITE_ONCE(meta->cache, cache);
421 meta->size = size;
Marco Elver08f6b102021-11-05 13:45:34 -0700422 meta->alloc_stack_hash = alloc_stack_hash;
Marco Elver49332952021-11-05 13:45:43 -0700423 raw_spin_unlock_irqrestore(&meta->lock, flags);
Marco Elver08f6b102021-11-05 13:45:34 -0700424
Marco Elver49332952021-11-05 13:45:43 -0700425 alloc_covered_add(alloc_stack_hash, 1);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800426
Vlastimil Babka8dae0cf2021-11-03 18:19:48 +0100427 /* Set required slab fields. */
428 slab = virt_to_slab((void *)meta->addr);
429 slab->slab_cache = cache;
Vlastimil Babka401fb122021-11-04 11:30:58 +0100430#if defined(CONFIG_SLUB)
431 slab->objects = 1;
432#elif defined(CONFIG_SLAB)
433 slab->s_mem = addr;
434#endif
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800435
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800436 /* Memory initialization. */
Marco Elver49332952021-11-05 13:45:43 -0700437 for_each_canary(meta, set_canary_byte);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800438
439 /*
440 * We check slab_want_init_on_alloc() ourselves, rather than letting
441 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
442 * redzone.
443 */
444 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
445 memzero_explicit(addr, size);
446 if (cache->ctor)
447 cache->ctor(addr);
448
449 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
450 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
451
452 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
453 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
454
455 return addr;
456}
457
458static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
459{
460 struct kcsan_scoped_access assert_page_exclusive;
461 unsigned long flags;
Marco Elver49332952021-11-05 13:45:43 -0700462 bool init;
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800463
464 raw_spin_lock_irqsave(&meta->lock, flags);
465
466 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
467 /* Invalid or double-free, bail out. */
468 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
Marco Elverbc8fbc52021-02-25 17:19:31 -0800469 kfence_report_error((unsigned long)addr, false, NULL, meta,
470 KFENCE_ERROR_INVALID_FREE);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800471 raw_spin_unlock_irqrestore(&meta->lock, flags);
472 return;
473 }
474
475 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
476 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
477 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
478 &assert_page_exclusive);
479
480 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
481 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
482
483 /* Restore page protection if there was an OOB access. */
484 if (meta->unprotected_page) {
Marco Elver94868a12021-05-04 18:40:18 -0700485 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800486 kfence_protect(meta->unprotected_page);
487 meta->unprotected_page = 0;
488 }
489
Marco Elver49332952021-11-05 13:45:43 -0700490 /* Mark the object as freed. */
491 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
492 init = slab_want_init_on_free(meta->cache);
493 raw_spin_unlock_irqrestore(&meta->lock, flags);
494
495 alloc_covered_add(meta->alloc_stack_hash, -1);
496
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800497 /* Check canary bytes for memory corruption. */
498 for_each_canary(meta, check_canary_byte);
499
500 /*
501 * Clear memory if init-on-free is set. While we protect the page, the
502 * data is still there, and after a use-after-free is detected, we
503 * unprotect the page, so the data is still accessible.
504 */
Marco Elver49332952021-11-05 13:45:43 -0700505 if (!zombie && unlikely(init))
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800506 memzero_explicit(addr, meta->size);
507
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800508 /* Protect to detect use-after-frees. */
509 kfence_protect((unsigned long)addr);
510
511 kcsan_end_scoped_access(&assert_page_exclusive);
512 if (!zombie) {
513 /* Add it to the tail of the freelist for reuse. */
514 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
515 KFENCE_WARN_ON(!list_empty(&meta->list));
516 list_add_tail(&meta->list, &kfence_freelist);
517 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
518
519 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
520 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
521 } else {
522 /* See kfence_shutdown_cache(). */
523 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
524 }
525}
526
527static void rcu_guarded_free(struct rcu_head *h)
528{
529 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
530
531 kfence_guarded_free((void *)meta->addr, meta, false);
532}
533
534static bool __init kfence_init_pool(void)
535{
536 unsigned long addr = (unsigned long)__kfence_pool;
537 struct page *pages;
538 int i;
539
540 if (!__kfence_pool)
541 return false;
542
543 if (!arch_kfence_init_pool())
544 goto err;
545
546 pages = virt_to_page(addr);
547
548 /*
549 * Set up object pages: they must have PG_slab set, to avoid freeing
550 * these as real pages.
551 *
552 * We also want to avoid inserting kfence_free() in the kfree()
553 * fast-path in SLUB, and therefore need to ensure kfree() correctly
554 * enters __slab_free() slow-path.
555 */
556 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
557 if (!i || (i % 2))
558 continue;
559
560 /* Verify we do not have a compound head page. */
561 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
562 goto err;
563
564 __SetPageSlab(&pages[i]);
565 }
566
567 /*
568 * Protect the first 2 pages. The first page is mostly unnecessary, and
569 * merely serves as an extended guard page. However, adding one
570 * additional page in the beginning gives us an even number of pages,
571 * which simplifies the mapping of address to metadata index.
572 */
573 for (i = 0; i < 2; i++) {
574 if (unlikely(!kfence_protect(addr)))
575 goto err;
576
577 addr += PAGE_SIZE;
578 }
579
580 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
581 struct kfence_metadata *meta = &kfence_metadata[i];
582
583 /* Initialize metadata. */
584 INIT_LIST_HEAD(&meta->list);
585 raw_spin_lock_init(&meta->lock);
586 meta->state = KFENCE_OBJECT_UNUSED;
587 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
588 list_add_tail(&meta->list, &kfence_freelist);
589
590 /* Protect the right redzone. */
591 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
592 goto err;
593
594 addr += 2 * PAGE_SIZE;
595 }
596
Marco Elver95511582021-03-24 21:37:47 -0700597 /*
598 * The pool is live and will never be deallocated from this point on.
599 * Remove the pool object from the kmemleak object tree, as it would
600 * otherwise overlap with allocations returned by kfence_alloc(), which
601 * are registered with kmemleak through the slab post-alloc hook.
602 */
603 kmemleak_free(__kfence_pool);
604
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800605 return true;
606
607err:
608 /*
609 * Only release unprotected pages, and do not try to go back and change
610 * page attributes due to risk of failing to do so as well. If changing
611 * page attributes for some pages fails, it is very likely that it also
612 * fails for the first page, and therefore expect addr==__kfence_pool in
613 * most failure cases.
614 */
615 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
616 __kfence_pool = NULL;
617 return false;
618}
619
620/* === DebugFS Interface ==================================================== */
621
622static int stats_show(struct seq_file *seq, void *v)
623{
624 int i;
625
626 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
627 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
628 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
629
630 return 0;
631}
632DEFINE_SHOW_ATTRIBUTE(stats);
633
634/*
635 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
636 * start_object() and next_object() return the object index + 1, because NULL is used
637 * to stop iteration.
638 */
639static void *start_object(struct seq_file *seq, loff_t *pos)
640{
641 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
642 return (void *)((long)*pos + 1);
643 return NULL;
644}
645
646static void stop_object(struct seq_file *seq, void *v)
647{
648}
649
650static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
651{
652 ++*pos;
653 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
654 return (void *)((long)*pos + 1);
655 return NULL;
656}
657
658static int show_object(struct seq_file *seq, void *v)
659{
660 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
661 unsigned long flags;
662
663 raw_spin_lock_irqsave(&meta->lock, flags);
664 kfence_print_object(seq, meta);
665 raw_spin_unlock_irqrestore(&meta->lock, flags);
666 seq_puts(seq, "---------------------------------\n");
667
668 return 0;
669}
670
671static const struct seq_operations object_seqops = {
672 .start = start_object,
673 .next = next_object,
674 .stop = stop_object,
675 .show = show_object,
676};
677
678static int open_objects(struct inode *inode, struct file *file)
679{
680 return seq_open(file, &object_seqops);
681}
682
683static const struct file_operations objects_fops = {
684 .open = open_objects,
685 .read = seq_read,
686 .llseek = seq_lseek,
Baokun Li0129ab12021-12-24 21:12:32 -0800687 .release = seq_release,
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800688};
689
690static int __init kfence_debugfs_init(void)
691{
692 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
693
694 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
695 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
696 return 0;
697}
698
699late_initcall(kfence_debugfs_init);
700
701/* === Allocation Gate Timer ================================================ */
702
Marco Elver407f1d82021-05-04 18:40:21 -0700703#ifdef CONFIG_KFENCE_STATIC_KEYS
704/* Wait queue to wake up allocation-gate timer task. */
705static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
706
707static void wake_up_kfence_timer(struct irq_work *work)
708{
709 wake_up(&allocation_wait);
710}
711static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
712#endif
713
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800714/*
715 * Set up delayed work, which will enable and disable the static key. We need to
716 * use a work queue (rather than a simple timer), since enabling and disabling a
717 * static key cannot be done from an interrupt.
718 *
719 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
720 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
721 * more aggressive sampling intervals), we could get away with a variant that
722 * avoids IPIs, at the cost of not immediately capturing allocations if the
723 * instructions remain cached.
724 */
725static struct delayed_work kfence_timer;
726static void toggle_allocation_gate(struct work_struct *work)
727{
728 if (!READ_ONCE(kfence_enabled))
729 return;
730
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800731 atomic_set(&kfence_allocation_gate, 0);
732#ifdef CONFIG_KFENCE_STATIC_KEYS
Marco Elver407f1d82021-05-04 18:40:21 -0700733 /* Enable static key, and await allocation to happen. */
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800734 static_branch_enable(&kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800735
Marco Elver37c92842021-05-04 18:40:24 -0700736 if (sysctl_hung_task_timeout_secs) {
737 /*
738 * During low activity with no allocations we might wait a
739 * while; let's avoid the hung task warning.
740 */
Marco Elver8fd0e992021-06-04 20:01:11 -0700741 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
742 sysctl_hung_task_timeout_secs * HZ / 2);
Marco Elver37c92842021-05-04 18:40:24 -0700743 } else {
Marco Elver8fd0e992021-06-04 20:01:11 -0700744 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
Marco Elver37c92842021-05-04 18:40:24 -0700745 }
Marco Elver407f1d82021-05-04 18:40:21 -0700746
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800747 /* Disable static key and reset timer. */
748 static_branch_disable(&kfence_allocation_key);
749#endif
Marco Elverff06e452021-06-30 18:54:03 -0700750 queue_delayed_work(system_unbound_wq, &kfence_timer,
Marco Elver36f0b352021-05-04 18:40:27 -0700751 msecs_to_jiffies(kfence_sample_interval));
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800752}
753static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
754
755/* === Public interface ===================================================== */
756
757void __init kfence_alloc_pool(void)
758{
759 if (!kfence_sample_interval)
760 return;
761
762 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
763
764 if (!__kfence_pool)
765 pr_err("failed to allocate pool\n");
766}
767
768void __init kfence_init(void)
769{
770 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
771 if (!kfence_sample_interval)
772 return;
773
Marco Elver08f6b102021-11-05 13:45:34 -0700774 stack_hash_seed = (u32)random_get_entropy();
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800775 if (!kfence_init_pool()) {
776 pr_err("%s failed\n", __func__);
777 return;
778 }
779
Marco Elver07e84812021-11-05 13:45:46 -0700780 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
781 static_branch_enable(&kfence_allocation_key);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800782 WRITE_ONCE(kfence_enabled, true);
Marco Elverff06e452021-06-30 18:54:03 -0700783 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
Marco Elver35beccf2021-02-25 17:19:40 -0800784 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
785 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
786 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800787}
788
789void kfence_shutdown_cache(struct kmem_cache *s)
790{
791 unsigned long flags;
792 struct kfence_metadata *meta;
793 int i;
794
795 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
796 bool in_use;
797
798 meta = &kfence_metadata[i];
799
800 /*
801 * If we observe some inconsistent cache and state pair where we
802 * should have returned false here, cache destruction is racing
803 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
804 * the lock will not help, as different critical section
805 * serialization will have the same outcome.
806 */
807 if (READ_ONCE(meta->cache) != s ||
808 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
809 continue;
810
811 raw_spin_lock_irqsave(&meta->lock, flags);
812 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
813 raw_spin_unlock_irqrestore(&meta->lock, flags);
814
815 if (in_use) {
816 /*
817 * This cache still has allocations, and we should not
818 * release them back into the freelist so they can still
819 * safely be used and retain the kernel's default
820 * behaviour of keeping the allocations alive (leak the
821 * cache); however, they effectively become "zombie
822 * allocations" as the KFENCE objects are the only ones
823 * still in use and the owning cache is being destroyed.
824 *
825 * We mark them freed, so that any subsequent use shows
826 * more useful error messages that will include stack
827 * traces of the user of the object, the original
828 * allocation, and caller to shutdown_cache().
829 */
830 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
831 }
832 }
833
834 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
835 meta = &kfence_metadata[i];
836
837 /* See above. */
838 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
839 continue;
840
841 raw_spin_lock_irqsave(&meta->lock, flags);
842 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
843 meta->cache = NULL;
844 raw_spin_unlock_irqrestore(&meta->lock, flags);
845 }
846}
847
848void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
849{
Marco Elvera9ab52b2021-11-05 13:45:31 -0700850 unsigned long stack_entries[KFENCE_STACK_DEPTH];
851 size_t num_stack_entries;
Marco Elver08f6b102021-11-05 13:45:34 -0700852 u32 alloc_stack_hash;
Marco Elvera9ab52b2021-11-05 13:45:31 -0700853
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800854 /*
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700855 * Perform size check before switching kfence_allocation_gate, so that
856 * we don't disable KFENCE without making an allocation.
857 */
Marco Elver9a19aeb2021-11-05 13:45:28 -0700858 if (size > PAGE_SIZE) {
859 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700860 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700861 }
Alexander Potapenko235a85c2021-07-23 15:50:11 -0700862
863 /*
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700864 * Skip allocations from non-default zones, including DMA. We cannot
865 * guarantee that pages in the KFENCE pool will have the requested
866 * properties (e.g. reside in DMAable memory).
867 */
868 if ((flags & GFP_ZONEMASK) ||
Marco Elver9a19aeb2021-11-05 13:45:28 -0700869 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
870 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700871 return NULL;
Marco Elver9a19aeb2021-11-05 13:45:28 -0700872 }
Alexander Potapenko236e9f12021-07-23 15:50:14 -0700873
Marco Elver07e84812021-11-05 13:45:46 -0700874 if (atomic_inc_return(&kfence_allocation_gate) > 1)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800875 return NULL;
Marco Elver407f1d82021-05-04 18:40:21 -0700876#ifdef CONFIG_KFENCE_STATIC_KEYS
877 /*
878 * waitqueue_active() is fully ordered after the update of
879 * kfence_allocation_gate per atomic_inc_return().
880 */
881 if (waitqueue_active(&allocation_wait)) {
882 /*
883 * Calling wake_up() here may deadlock when allocations happen
884 * from within timer code. Use an irq_work to defer it.
885 */
886 irq_work_queue(&wake_up_kfence_timer_work);
887 }
888#endif
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800889
890 if (!READ_ONCE(kfence_enabled))
891 return NULL;
892
Marco Elvera9ab52b2021-11-05 13:45:31 -0700893 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
894
Marco Elver08f6b102021-11-05 13:45:34 -0700895 /*
896 * Do expensive check for coverage of allocation in slow-path after
897 * allocation_gate has already become non-zero, even though it might
898 * mean not making any allocation within a given sample interval.
899 *
900 * This ensures reasonable allocation coverage when the pool is almost
901 * full, including avoiding long-lived allocations of the same source
902 * filling up the pool (e.g. pagecache allocations).
903 */
904 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
905 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
906 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
907 return NULL;
908 }
909
910 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
911 alloc_stack_hash);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800912}
913
914size_t kfence_ksize(const void *addr)
915{
916 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
917
918 /*
919 * Read locklessly -- if there is a race with __kfence_alloc(), this is
920 * either a use-after-free or invalid access.
921 */
922 return meta ? meta->size : 0;
923}
924
925void *kfence_object_start(const void *addr)
926{
927 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
928
929 /*
930 * Read locklessly -- if there is a race with __kfence_alloc(), this is
931 * either a use-after-free or invalid access.
932 */
933 return meta ? (void *)meta->addr : NULL;
934}
935
936void __kfence_free(void *addr)
937{
938 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
939
940 /*
941 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
942 * the object, as the object page may be recycled for other-typed
943 * objects once it has been freed. meta->cache may be NULL if the cache
944 * was destroyed.
945 */
946 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
947 call_rcu(&meta->rcu_head, rcu_guarded_free);
948 else
949 kfence_guarded_free(addr, meta, false);
950}
951
Marco Elverbc8fbc52021-02-25 17:19:31 -0800952bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -0800953{
954 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
955 struct kfence_metadata *to_report = NULL;
956 enum kfence_error_type error_type;
957 unsigned long flags;
958
959 if (!is_kfence_address((void *)addr))
960 return false;
961
962 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
963 return kfence_unprotect(addr); /* ... unprotect and proceed. */
964
965 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
966
967 if (page_index % 2) {
968 /* This is a redzone, report a buffer overflow. */
969 struct kfence_metadata *meta;
970 int distance = 0;
971
972 meta = addr_to_metadata(addr - PAGE_SIZE);
973 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
974 to_report = meta;
975 /* Data race ok; distance calculation approximate. */
976 distance = addr - data_race(meta->addr + meta->size);
977 }
978
979 meta = addr_to_metadata(addr + PAGE_SIZE);
980 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
981 /* Data race ok; distance calculation approximate. */
982 if (!to_report || distance > data_race(meta->addr) - addr)
983 to_report = meta;
984 }
985
986 if (!to_report)
987 goto out;
988
989 raw_spin_lock_irqsave(&to_report->lock, flags);
990 to_report->unprotected_page = addr;
991 error_type = KFENCE_ERROR_OOB;
992
993 /*
994 * If the object was freed before we took the look we can still
995 * report this as an OOB -- the report will simply show the
996 * stacktrace of the free as well.
997 */
998 } else {
999 to_report = addr_to_metadata(addr);
1000 if (!to_report)
1001 goto out;
1002
1003 raw_spin_lock_irqsave(&to_report->lock, flags);
1004 error_type = KFENCE_ERROR_UAF;
1005 /*
1006 * We may race with __kfence_alloc(), and it is possible that a
1007 * freed object may be reallocated. We simply report this as a
1008 * use-after-free, with the stack trace showing the place where
1009 * the object was re-allocated.
1010 */
1011 }
1012
1013out:
1014 if (to_report) {
Marco Elverbc8fbc52021-02-25 17:19:31 -08001015 kfence_report_error(addr, is_write, regs, to_report, error_type);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001016 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1017 } else {
1018 /* This may be a UAF or OOB access, but we can't be sure. */
Marco Elverbc8fbc52021-02-25 17:19:31 -08001019 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
Alexander Potapenko0ce20dd2021-02-25 17:18:53 -08001020 }
1021
1022 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1023}