blob: 2d484d3f7f22a98c8fb56fa339c27453c7c24dff [file] [log] [blame]
Christoph Hellwiga497ee32019-04-30 14:42:40 -04001// SPDX-License-Identifier: GPL-2.0-or-later
Paolo Valenteaee69d72017-04-19 08:29:02 -06002/*
3 * Budget Fair Queueing (BFQ) I/O scheduler.
4 *
5 * Based on ideas and code from CFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12 * Arianna Avanzini <avanzini@google.com>
13 *
14 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 *
Paolo Valenteaee69d72017-04-19 08:29:02 -060016 * BFQ is a proportional-share I/O scheduler, with some extra
17 * low-latency capabilities. BFQ also supports full hierarchical
18 * scheduling through cgroups. Next paragraphs provide an introduction
19 * on BFQ inner workings. Details on BFQ benefits, usage and
Mauro Carvalho Chehab898bd372019-04-18 19:45:00 -030020 * limitations can be found in Documentation/block/bfq-iosched.rst.
Paolo Valenteaee69d72017-04-19 08:29:02 -060021 *
22 * BFQ is a proportional-share storage-I/O scheduling algorithm based
23 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24 * budgets, measured in number of sectors, to processes instead of
25 * time slices. The device is not granted to the in-service process
26 * for a given time slice, but until it has exhausted its assigned
27 * budget. This change from the time to the service domain enables BFQ
28 * to distribute the device throughput among processes as desired,
29 * without any distortion due to throughput fluctuations, or to device
30 * internal queueing. BFQ uses an ad hoc internal scheduler, called
31 * B-WF2Q+, to schedule processes according to their budgets. More
32 * precisely, BFQ schedules queues associated with processes. Each
33 * process/queue is assigned a user-configurable weight, and B-WF2Q+
34 * guarantees that each queue receives a fraction of the throughput
35 * proportional to its weight. Thanks to the accurate policy of
36 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37 * processes issuing sequential requests (to boost the throughput),
38 * and yet guarantee a low latency to interactive and soft real-time
39 * applications.
40 *
41 * In particular, to provide these low-latency guarantees, BFQ
42 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020043 * applications: interactive and soft real-time. In more detail, BFQ
44 * behaves this way if the low_latency parameter is set (default
45 * configuration). This feature enables BFQ to provide applications in
46 * these classes with a very low latency.
47 *
48 * To implement this feature, BFQ constantly tries to detect whether
49 * the I/O requests in a bfq_queue come from an interactive or a soft
50 * real-time application. For brevity, in these cases, the queue is
51 * said to be interactive or soft real-time. In both cases, BFQ
52 * privileges the service of the queue, over that of non-interactive
53 * and non-soft-real-time queues. This privileging is performed,
54 * mainly, by raising the weight of the queue. So, for brevity, we
55 * call just weight-raising periods the time periods during which a
56 * queue is privileged, because deemed interactive or soft real-time.
57 *
58 * The detection of soft real-time queues/applications is described in
59 * detail in the comments on the function
60 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61 * interactive queue works as follows: a queue is deemed interactive
62 * if it is constantly non empty only for a limited time interval,
63 * after which it does become empty. The queue may be deemed
64 * interactive again (for a limited time), if it restarts being
65 * constantly non empty, provided that this happens only after the
66 * queue has remained empty for a given minimum idle time.
67 *
68 * By default, BFQ computes automatically the above maximum time
69 * interval, i.e., the time interval after which a constantly
70 * non-empty queue stops being deemed interactive. Since a queue is
71 * weight-raised while it is deemed interactive, this maximum time
72 * interval happens to coincide with the (maximum) duration of the
73 * weight-raising for interactive queues.
74 *
75 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060076 * preserving both a low latency and a high throughput on NCQ-capable,
77 * rotational or flash-based devices, and to get the job done quickly
78 * for applications consisting in many I/O-bound processes.
79 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020080 * NOTE: if the main or only goal, with a given device, is to achieve
81 * the maximum-possible throughput at all times, then do switch off
82 * all low-latency heuristics for that device, by setting low_latency
83 * to 0.
84 *
Paolo Valente4029eef2018-05-31 16:45:05 +020085 * BFQ is described in [1], where also a reference to the initial,
86 * more theoretical paper on BFQ can be found. The interested reader
87 * can find in the latter paper full details on the main algorithm, as
88 * well as formulas of the guarantees and formal proofs of all the
89 * properties. With respect to the version of BFQ presented in these
90 * papers, this implementation adds a few more heuristics, such as the
91 * ones that guarantee a low latency to interactive and soft real-time
92 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -060093 *
94 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96 * with O(log N) complexity derives from the one introduced with EEVDF
97 * in [3].
98 *
99 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100 * Scheduler", Proceedings of the First Workshop on Mobile System
101 * Technologies (MST-2015), May 2015.
102 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103 *
104 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106 * Oct 1997.
107 *
108 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109 *
110 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111 * First: A Flexible and Accurate Mechanism for Proportional Share
112 * Resource Allocation", technical report.
113 *
114 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115 */
116#include <linux/module.h>
117#include <linux/slab.h>
118#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200119#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600120#include <linux/ktime.h>
121#include <linux/rbtree.h>
122#include <linux/ioprio.h>
123#include <linux/sbitmap.h>
124#include <linux/delay.h>
Yufen Yud51cfc52020-05-04 14:47:55 +0200125#include <linux/backing-dev.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600126
Chaitanya Kulkarnib357e4a2021-02-21 21:29:59 -0800127#include <trace/events/block.h>
128
Christoph Hellwig2e9bc342021-09-20 14:33:23 +0200129#include "elevator.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600130#include "blk.h"
131#include "blk-mq.h"
132#include "blk-mq-tag.h"
133#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600134#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200135#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600136
137#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600138void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600139{ \
140 __set_bit(BFQQF_##name, &(bfqq)->flags); \
141} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600142void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600143{ \
144 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
145} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600146int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600147{ \
148 return test_bit(BFQQF_##name, &(bfqq)->flags); \
149}
150
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200151BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600152BFQ_BFQQ_FNS(busy);
153BFQ_BFQQ_FNS(wait_request);
154BFQ_BFQQ_FNS(non_blocking_wait_rq);
155BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200156BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600157BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200159BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200160BFQ_BFQQ_FNS(coop);
161BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200162BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600163#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164
Joseph Qi4168a8d2021-02-23 09:55:28 +0800165/* Expiration time of async (0) and sync (1) requests, in ns. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600166static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167
168/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169static const int bfq_back_max = 16 * 1024;
170
171/* Penalty of a backwards seek, in number of sectors. */
172static const int bfq_back_penalty = 2;
173
174/* Idling period duration, in ns. */
175static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176
177/* Minimum number of assigned budgets for which stats are safe to compute. */
178static const int bfq_stats_min_budgets = 194;
179
180/* Default maximum budget values, in sectors and number of requests. */
181static const int bfq_default_max_budget = 16 * 1024;
182
Paolo Valentec074170e2017-04-12 18:23:11 +0200183/*
Paolo Valented5801082018-08-16 18:51:17 +0200184 * When a sync request is dispatched, the queue that contains that
185 * request, and all the ancestor entities of that queue, are charged
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200186 * with the number of sectors of the request. In contrast, if the
Paolo Valented5801082018-08-16 18:51:17 +0200187 * request is async, then the queue and its ancestor entities are
188 * charged with the number of sectors of the request, multiplied by
189 * the factor below. This throttles the bandwidth for async I/O,
190 * w.r.t. to sync I/O, and it is done to counter the tendency of async
191 * writes to steal I/O throughput to reads.
192 *
193 * The current value of this parameter is the result of a tuning with
194 * several hardware and software configurations. We tried to find the
195 * lowest value for which writes do not cause noticeable problems to
196 * reads. In fact, the lower this parameter, the stabler I/O control,
197 * in the following respect. The lower this parameter is, the less
198 * the bandwidth enjoyed by a group decreases
199 * - when the group does writes, w.r.t. to when it does reads;
200 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200201 */
Paolo Valented5801082018-08-16 18:51:17 +0200202static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200203
Paolo Valenteaee69d72017-04-19 08:29:02 -0600204/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600205const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600206
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100207/*
208 * Time limit for merging (see comments in bfq_setup_cooperator). Set
209 * to the slowest value that, in our tests, proved to be effective in
210 * removing false positives, while not causing true positives to miss
211 * queue merging.
212 *
213 * As can be deduced from the low time limit below, queue merging, if
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200214 * successful, happens at the very beginning of the I/O of the involved
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100215 * cooperating processes, as a consequence of the arrival of the very
216 * first requests from each cooperator. After that, there is very
217 * little chance to find cooperators.
218 */
219static const unsigned long bfq_merge_time_limit = HZ/10;
220
Paolo Valenteaee69d72017-04-19 08:29:02 -0600221static struct kmem_cache *bfq_pool;
222
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200223/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600224#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
225
226/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100227#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600228#define BFQ_HW_QUEUE_SAMPLES 32
229
230#define BFQQ_SEEK_THR (sector_t)(8 * 100)
231#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100232#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 (get_sdist(last_pos, rq) > \
234 BFQQ_SEEK_THR && \
235 (!blk_queue_nonrot(bfqd->queue) || \
236 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600237#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100238#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valente7074f072019-03-12 09:59:31 +0100239/*
240 * Sync random I/O is likely to be confused with soft real-time I/O,
241 * because it is characterized by limited throughput and apparently
242 * isochronous arrival pattern. To avoid false positives, queues
243 * containing only random (seeky) I/O are prevented from being tagged
244 * as soft real-time.
245 */
Paolo Valentee6feaf22019-06-22 22:44:16 +0200246#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history == -1)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600247
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200248/* Min number of samples required to perform peak-rate update */
249#define BFQ_RATE_MIN_SAMPLES 32
250/* Min observation time interval required to perform a peak-rate update (ns) */
251#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
252/* Target observation time interval for a peak-rate update (ns) */
253#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600254
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200255/*
256 * Shift used for peak-rate fixed precision calculations.
257 * With
258 * - the current shift: 16 positions
259 * - the current type used to store rate: u32
260 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262 * the range of rates that can be stored is
263 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265 * [15, 65G] sectors/sec
266 * Which, assuming a sector size of 512B, corresponds to a range of
267 * [7.5K, 33T] B/sec
268 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600269#define BFQ_RATE_SHIFT 16
270
Paolo Valente44e44a12017-04-12 18:23:12 +0200271/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200272 * When configured for computing the duration of the weight-raising
273 * for interactive queues automatically (see the comments at the
274 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200275 * duration = (ref_rate / r) * ref_wr_duration,
276 * where r is the peak rate of the device, and ref_rate and
277 * ref_wr_duration are two reference parameters. In particular,
278 * ref_rate is the peak rate of the reference storage device (see
279 * below), and ref_wr_duration is about the maximum time needed, with
280 * BFQ and while reading two files in parallel, to load typical large
281 * applications on the reference device (see the comments on
282 * max_service_from_wr below, for more details on how ref_wr_duration
283 * is obtained). In practice, the slower/faster the device at hand
284 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200285 * reference device. Accordingly, the longer/shorter BFQ grants
286 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200287 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200288 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200290 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200291 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292 * are the reference values for a rotational device, whereas
293 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294 * non-rotational device. The reference rates are not the actual peak
295 * rates of the devices used as a reference, but slightly lower
296 * values. The reason for using slightly lower values is that the
297 * peak-rate estimator tends to yield slightly lower values than the
298 * actual peak rate (it can yield the actual peak rate only if there
299 * is only one process doing I/O, and the process does sequential
300 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200301 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200302 * The reference peak rates are measured in sectors/usec, left-shifted
303 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200304 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200305static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200306/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200307 * To improve readability, a conversion function is used to initialize
308 * the following array, which entails that the array can be
309 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200310 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200311static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200312
Paolo Valente8a8747d2018-01-13 12:05:18 +0100313/*
314 * BFQ uses the above-detailed, time-based weight-raising mechanism to
315 * privilege interactive tasks. This mechanism is vulnerable to the
316 * following false positives: I/O-bound applications that will go on
317 * doing I/O for much longer than the duration of weight
318 * raising. These applications have basically no benefit from being
319 * weight-raised at the beginning of their I/O. On the opposite end,
320 * while being weight-raised, these applications
321 * a) unjustly steal throughput to applications that may actually need
322 * low latency;
323 * b) make BFQ uselessly perform device idling; device idling results
324 * in loss of device throughput with most flash-based storage, and may
325 * increase latencies when used purposelessly.
326 *
327 * BFQ tries to reduce these problems, by adopting the following
328 * countermeasure. To introduce this countermeasure, we need first to
329 * finish explaining how the duration of weight-raising for
330 * interactive tasks is computed.
331 *
332 * For a bfq_queue deemed as interactive, the duration of weight
333 * raising is dynamically adjusted, as a function of the estimated
334 * peak rate of the device, so as to be equal to the time needed to
335 * execute the 'largest' interactive task we benchmarked so far. By
336 * largest task, we mean the task for which each involved process has
337 * to do more I/O than for any of the other tasks we benchmarked. This
338 * reference interactive task is the start-up of LibreOffice Writer,
339 * and in this task each process/bfq_queue needs to have at most ~110K
340 * sectors transferred.
341 *
342 * This last piece of information enables BFQ to reduce the actual
343 * duration of weight-raising for at least one class of I/O-bound
344 * applications: those doing sequential or quasi-sequential I/O. An
345 * example is file copy. In fact, once started, the main I/O-bound
346 * processes of these applications usually consume the above 110K
347 * sectors in much less time than the processes of an application that
348 * is starting, because these I/O-bound processes will greedily devote
349 * almost all their CPU cycles only to their target,
350 * throughput-friendly I/O operations. This is even more true if BFQ
351 * happens to be underestimating the device peak rate, and thus
352 * overestimating the duration of weight raising. But, according to
353 * our measurements, once transferred 110K sectors, these processes
354 * have no right to be weight-raised any longer.
355 *
356 * Basing on the last consideration, BFQ ends weight-raising for a
357 * bfq_queue if the latter happens to have received an amount of
358 * service at least equal to the following constant. The constant is
359 * set to slightly more than 110K, to have a minimum safety margin.
360 *
361 * This early ending of weight-raising reduces the amount of time
362 * during which interactive false positives cause the two problems
363 * described at the beginning of these comments.
364 */
365static const unsigned long max_service_from_wr = 120000;
366
Pietro Pedroni78124722021-06-19 16:09:45 +0200367/*
368 * Maximum time between the creation of two queues, for stable merge
369 * to be activated (in ms)
370 */
371static const unsigned long bfq_activation_stable_merging = 600;
372/*
373 * Minimum time to be waited before evaluating delayed stable merge (in ms)
374 */
375static const unsigned long bfq_late_stable_merging = 600;
376
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700377#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600378#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
379
Paolo Valenteea25da42017-04-19 08:48:24 -0600380struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381{
382 return bic->bfqq[is_sync];
383}
384
Paolo Valente7ea96ee2021-05-12 11:43:52 +0200385static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386
Paolo Valenteea25da42017-04-19 08:48:24 -0600387void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388{
Paolo Valente7ea96ee2021-05-12 11:43:52 +0200389 /*
390 * If bfqq != NULL, then a non-stable queue merge between
391 * bic->bfqq and bfqq is happening here. This causes troubles
392 * in the following case: bic->bfqq has also been scheduled
393 * for a possible stable merge with bic->stable_merge_bfqq,
394 * and bic->stable_merge_bfqq == bfqq happens to
395 * hold. Troubles occur because bfqq may then undergo a split,
396 * thereby becoming eligible for a stable merge. Yet, if
397 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
398 * would be stably merged with itself. To avoid this anomaly,
399 * we cancel the stable merge if
400 * bic->stable_merge_bfqq == bfqq.
401 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600402 bic->bfqq[is_sync] = bfqq;
Paolo Valente7ea96ee2021-05-12 11:43:52 +0200403
404 if (bfqq && bic->stable_merge_bfqq == bfqq) {
405 /*
406 * Actually, these same instructions are executed also
407 * in bfq_setup_cooperator, in case of abort or actual
408 * execution of a stable merge. We could avoid
409 * repeating these instructions there too, but if we
410 * did so, we would nest even more complexity in this
411 * function.
412 */
413 bfq_put_stable_ref(bic->stable_merge_bfqq);
414
415 bic->stable_merge_bfqq = NULL;
416 }
Paolo Valenteea25da42017-04-19 08:48:24 -0600417}
418
419struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
420{
421 return bic->icq.q->elevator->elevator_data;
422}
423
Paolo Valenteaee69d72017-04-19 08:29:02 -0600424/**
425 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
426 * @icq: the iocontext queue.
427 */
428static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
429{
430 /* bic->icq is the first member, %NULL will convert to %NULL */
431 return container_of(icq, struct bfq_io_cq, icq);
432}
433
434/**
435 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600436 * @q: the request queue.
437 */
Christoph Hellwig836b3942021-11-26 12:58:06 +0100438static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600439{
Christoph Hellwig836b3942021-11-26 12:58:06 +0100440 struct bfq_io_cq *icq;
441 unsigned long flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600442
Christoph Hellwig836b3942021-11-26 12:58:06 +0100443 if (!current->io_context)
444 return NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600445
Christoph Hellwig836b3942021-11-26 12:58:06 +0100446 spin_lock_irqsave(&q->queue_lock, flags);
447 icq = icq_to_bic(ioc_lookup_icq(current->io_context, q));
448 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600449
Christoph Hellwig836b3942021-11-26 12:58:06 +0100450 return icq;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600451}
452
453/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200454 * Scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600456 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600457void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600458{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200459 if (bfqd->queued != 0) {
460 bfq_log(bfqd, "schedule dispatch");
461 blk_mq_run_hw_queues(bfqd->queue, true);
462 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600463}
464
Paolo Valenteaee69d72017-04-19 08:29:02 -0600465#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600466
467#define bfq_sample_valid(samples) ((samples) > 80)
468
469/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600470 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Angelo Ruocco636b8fe2019-04-08 17:35:34 +0200471 * We choose the request that is closer to the head right now. Distance
Paolo Valenteaee69d72017-04-19 08:29:02 -0600472 * behind the head is penalized and only allowed to a certain extent.
473 */
474static struct request *bfq_choose_req(struct bfq_data *bfqd,
475 struct request *rq1,
476 struct request *rq2,
477 sector_t last)
478{
479 sector_t s1, s2, d1 = 0, d2 = 0;
480 unsigned long back_max;
481#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
482#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
483 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
484
485 if (!rq1 || rq1 == rq2)
486 return rq2;
487 if (!rq2)
488 return rq1;
489
490 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
491 return rq1;
492 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
493 return rq2;
494 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
495 return rq1;
496 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
497 return rq2;
498
499 s1 = blk_rq_pos(rq1);
500 s2 = blk_rq_pos(rq2);
501
502 /*
503 * By definition, 1KiB is 2 sectors.
504 */
505 back_max = bfqd->bfq_back_max * 2;
506
507 /*
508 * Strict one way elevator _except_ in the case where we allow
509 * short backward seeks which are biased as twice the cost of a
510 * similar forward seek.
511 */
512 if (s1 >= last)
513 d1 = s1 - last;
514 else if (s1 + back_max >= last)
515 d1 = (last - s1) * bfqd->bfq_back_penalty;
516 else
517 wrap |= BFQ_RQ1_WRAP;
518
519 if (s2 >= last)
520 d2 = s2 - last;
521 else if (s2 + back_max >= last)
522 d2 = (last - s2) * bfqd->bfq_back_penalty;
523 else
524 wrap |= BFQ_RQ2_WRAP;
525
526 /* Found required data */
527
528 /*
529 * By doing switch() on the bit mask "wrap" we avoid having to
530 * check two variables for all permutations: --> faster!
531 */
532 switch (wrap) {
533 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
534 if (d1 < d2)
535 return rq1;
536 else if (d2 < d1)
537 return rq2;
538
539 if (s1 >= s2)
540 return rq1;
541 else
542 return rq2;
543
544 case BFQ_RQ2_WRAP:
545 return rq1;
546 case BFQ_RQ1_WRAP:
547 return rq2;
548 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
549 default:
550 /*
551 * Since both rqs are wrapped,
552 * start with the one that's further behind head
553 * (--> only *one* back seek required),
554 * since back seek takes more time than forward.
555 */
556 if (s1 <= s2)
557 return rq1;
558 else
559 return rq2;
560 }
561}
562
Jan Kara76f1df82021-11-25 14:36:37 +0100563#define BFQ_LIMIT_INLINE_DEPTH 16
564
565#ifdef CONFIG_BFQ_GROUP_IOSCHED
566static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
567{
568 struct bfq_data *bfqd = bfqq->bfqd;
569 struct bfq_entity *entity = &bfqq->entity;
570 struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
571 struct bfq_entity **entities = inline_entities;
572 int depth, level;
573 int class_idx = bfqq->ioprio_class - 1;
574 struct bfq_sched_data *sched_data;
575 unsigned long wsum;
576 bool ret = false;
577
578 if (!entity->on_st_or_in_serv)
579 return false;
580
581 /* +1 for bfqq entity, root cgroup not included */
582 depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
583 if (depth > BFQ_LIMIT_INLINE_DEPTH) {
584 entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
585 if (!entities)
586 return false;
587 }
588
589 spin_lock_irq(&bfqd->lock);
590 sched_data = entity->sched_data;
591 /* Gather our ancestors as we need to traverse them in reverse order */
592 level = 0;
593 for_each_entity(entity) {
594 /*
595 * If at some level entity is not even active, allow request
596 * queueing so that BFQ knows there's work to do and activate
597 * entities.
598 */
599 if (!entity->on_st_or_in_serv)
600 goto out;
601 /* Uh, more parents than cgroup subsystem thinks? */
602 if (WARN_ON_ONCE(level >= depth))
603 break;
604 entities[level++] = entity;
605 }
606 WARN_ON_ONCE(level != depth);
607 for (level--; level >= 0; level--) {
608 entity = entities[level];
609 if (level > 0) {
610 wsum = bfq_entity_service_tree(entity)->wsum;
611 } else {
612 int i;
613 /*
614 * For bfqq itself we take into account service trees
615 * of all higher priority classes and multiply their
616 * weights so that low prio queue from higher class
617 * gets more requests than high prio queue from lower
618 * class.
619 */
620 wsum = 0;
621 for (i = 0; i <= class_idx; i++) {
622 wsum = wsum * IOPRIO_BE_NR +
623 sched_data->service_tree[i].wsum;
624 }
625 }
626 limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
627 if (entity->allocated >= limit) {
628 bfq_log_bfqq(bfqq->bfqd, bfqq,
629 "too many requests: allocated %d limit %d level %d",
630 entity->allocated, limit, level);
631 ret = true;
632 break;
633 }
634 }
635out:
636 spin_unlock_irq(&bfqd->lock);
637 if (entities != inline_entities)
638 kfree(entities);
639 return ret;
640}
641#else
642static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
643{
644 return false;
645}
646#endif
647
Paolo Valentea52a69e2018-01-13 12:05:17 +0100648/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100649 * Async I/O can easily starve sync I/O (both sync reads and sync
650 * writes), by consuming all tags. Similarly, storms of sync writes,
651 * such as those that sync(2) may trigger, can starve sync reads.
652 * Limit depths of async I/O and sync writes so as to counter both
653 * problems.
Jan Kara76f1df82021-11-25 14:36:37 +0100654 *
655 * Also if a bfq queue or its parent cgroup consume more tags than would be
656 * appropriate for their weight, we trim the available tag depth to 1. This
657 * avoids a situation where one cgroup can starve another cgroup from tags and
658 * thus block service differentiation among cgroups. Note that because the
659 * queue / cgroup already has many requests allocated and queued, this does not
660 * significantly affect service guarantees coming from the BFQ scheduling
661 * algorithm.
Paolo Valentea52a69e2018-01-13 12:05:17 +0100662 */
663static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
664{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100665 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Christoph Hellwiga0725c22021-11-26 12:58:07 +0100666 struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
Jan Kara76f1df82021-11-25 14:36:37 +0100667 struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(op)) : NULL;
668 int depth;
669 unsigned limit = data->q->nr_requests;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100670
Jan Kara76f1df82021-11-25 14:36:37 +0100671 /* Sync reads have full depth available */
672 if (op_is_sync(op) && !op_is_write(op)) {
673 depth = 0;
674 } else {
675 depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
676 limit = (limit * depth) >> bfqd->full_depth_shift;
677 }
Paolo Valentea52a69e2018-01-13 12:05:17 +0100678
Jan Kara76f1df82021-11-25 14:36:37 +0100679 /*
680 * Does queue (or any parent entity) exceed number of requests that
681 * should be available to it? Heavily limit depth so that it cannot
682 * consume more available requests and thus starve other entities.
683 */
684 if (bfqq && bfqq_request_over_limit(bfqq, limit))
685 depth = 1;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100686
687 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
Jan Kara76f1df82021-11-25 14:36:37 +0100688 __func__, bfqd->wr_busy_queues, op_is_sync(op), depth);
689 if (depth)
690 data->shallow_depth = depth;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100691}
692
Arianna Avanzini36eca892017-04-12 18:23:16 +0200693static struct bfq_queue *
694bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
695 sector_t sector, struct rb_node **ret_parent,
696 struct rb_node ***rb_link)
697{
698 struct rb_node **p, *parent;
699 struct bfq_queue *bfqq = NULL;
700
701 parent = NULL;
702 p = &root->rb_node;
703 while (*p) {
704 struct rb_node **n;
705
706 parent = *p;
707 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
708
709 /*
710 * Sort strictly based on sector. Smallest to the left,
711 * largest to the right.
712 */
713 if (sector > blk_rq_pos(bfqq->next_rq))
714 n = &(*p)->rb_right;
715 else if (sector < blk_rq_pos(bfqq->next_rq))
716 n = &(*p)->rb_left;
717 else
718 break;
719 p = n;
720 bfqq = NULL;
721 }
722
723 *ret_parent = parent;
724 if (rb_link)
725 *rb_link = p;
726
727 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
728 (unsigned long long)sector,
729 bfqq ? bfqq->pid : 0);
730
731 return bfqq;
732}
733
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100734static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
735{
736 return bfqq->service_from_backlogged > 0 &&
737 time_is_before_jiffies(bfqq->first_IO_time +
738 bfq_merge_time_limit);
739}
740
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100741/*
742 * The following function is not marked as __cold because it is
743 * actually cold, but for the same performance goal described in the
744 * comments on the likely() at the beginning of
745 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
746 * execution time for the case where this function is not invoked, we
747 * had to add an unlikely() in each involved if().
748 */
749void __cold
750bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200751{
752 struct rb_node **p, *parent;
753 struct bfq_queue *__bfqq;
754
755 if (bfqq->pos_root) {
756 rb_erase(&bfqq->pos_node, bfqq->pos_root);
757 bfqq->pos_root = NULL;
758 }
759
Paolo Valente32c59e32020-02-03 11:40:55 +0100760 /* oom_bfqq does not participate in queue merging */
761 if (bfqq == &bfqd->oom_bfqq)
762 return;
763
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100764 /*
765 * bfqq cannot be merged any longer (see comments in
766 * bfq_setup_cooperator): no point in adding bfqq into the
767 * position tree.
768 */
769 if (bfq_too_late_for_merging(bfqq))
770 return;
771
Arianna Avanzini36eca892017-04-12 18:23:16 +0200772 if (bfq_class_idle(bfqq))
773 return;
774 if (!bfqq->next_rq)
775 return;
776
777 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
778 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
779 blk_rq_pos(bfqq->next_rq), &parent, &p);
780 if (!__bfqq) {
781 rb_link_node(&bfqq->pos_node, parent, p);
782 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
783 } else
784 bfqq->pos_root = NULL;
785}
786
Paolo Valenteaee69d72017-04-19 08:29:02 -0600787/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100788 * The following function returns false either if every active queue
789 * must receive the same share of the throughput (symmetric scenario),
790 * or, as a special case, if bfqq must receive a share of the
791 * throughput lower than or equal to the share that every other active
792 * queue must receive. If bfqq does sync I/O, then these are the only
793 * two cases where bfqq happens to be guaranteed its share of the
794 * throughput even if I/O dispatching is not plugged when bfqq remains
795 * temporarily empty (for more details, see the comments in the
796 * function bfq_better_to_idle()). For this reason, the return value
797 * of this function is used to check whether I/O-dispatch plugging can
798 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200799 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100800 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200801 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100802 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200803 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100804 * weight,
805 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200806 * number of children.
807 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200808 * Unfortunately, keeping the necessary state for evaluating exactly
809 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100810 * and time consuming. Therefore this function evaluates, instead,
811 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200812 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200813 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100814 * 2) all active queues belong to the same I/O-priority class,
815 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200816 * In particular, the last condition is always true if hierarchical
817 * support or the cgroups interface are not enabled, thus no state
818 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200819 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100820static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
821 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200822{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100823 bool smallest_weight = bfqq &&
824 bfqq->weight_counter &&
825 bfqq->weight_counter ==
826 container_of(
827 rb_first_cached(&bfqd->queue_weights_tree),
828 struct bfq_weight_counter,
829 weights_node);
830
Paolo Valente73d58112019-01-29 12:06:29 +0100831 /*
832 * For queue weights to differ, queue_weights_tree must contain
833 * at least two nodes.
834 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100835 bool varied_queue_weights = !smallest_weight &&
836 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
837 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
838 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100839
840 bool multiple_classes_busy =
841 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
842 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
843 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
844
Paolo Valentefb53ac62019-03-12 09:59:28 +0100845 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300846#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100847 || bfqd->num_groups_with_pending_reqs > 0
848#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100849 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200850}
851
852/*
853 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200854 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200855 * increment the existing counter.
856 *
857 * Note that weight-counter trees contain few nodes in mostly symmetric
858 * scenarios. For example, if all queues have the same weight, then the
859 * weight-counter tree for the queues may contain at most one node.
860 * This holds even if low_latency is on, because weight-raised queues
861 * are not inserted in the tree.
862 * In most scenarios, the rate at which nodes are created/destroyed
863 * should be low too.
864 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200865void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100866 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200867{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200868 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100869 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
870 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200871
872 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200873 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200874 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200875 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200876 * non-weight-raised, and hence change its weight, and
877 * backlogged; in this respect, each of the two events
878 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200879 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200880 * second event. This second invocation is actually useless,
881 * and we handle this fact by exiting immediately. More
882 * efficient or clearer solutions might possibly be adopted.
883 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200884 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200885 return;
886
887 while (*new) {
888 struct bfq_weight_counter *__counter = container_of(*new,
889 struct bfq_weight_counter,
890 weights_node);
891 parent = *new;
892
893 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200894 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200895 goto inc_counter;
896 }
897 if (entity->weight < __counter->weight)
898 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100899 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200900 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100901 leftmost = false;
902 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200903 }
904
Federico Motta2d29c9f2018-10-12 11:55:57 +0200905 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
906 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200907
908 /*
909 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200910 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100911 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100912 * causes the scenario to be deemed wrongly symmetric in case
913 * bfqq's weight would have been the only weight making the
914 * scenario asymmetric. On the bright side, no unbalance will
915 * however occur when bfqq becomes inactive again (the
916 * invocation of this function is triggered by an activation
917 * of queue). In fact, bfq_weights_tree_remove does nothing
918 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200919 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200920 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200921 return;
922
Federico Motta2d29c9f2018-10-12 11:55:57 +0200923 bfqq->weight_counter->weight = entity->weight;
924 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100925 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
926 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200927
928inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200929 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100930 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200931}
932
933/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200934 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200935 * counter reaches 0, remove the counter from the tree.
936 * See the comments to the function bfq_weights_tree_add() for considerations
937 * about overhead.
938 */
Paolo Valente04715592018-06-25 21:55:34 +0200939void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200940 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100941 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200942{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200943 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200944 return;
945
Federico Motta2d29c9f2018-10-12 11:55:57 +0200946 bfqq->weight_counter->num_active--;
947 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200948 goto reset_entity_pointer;
949
Paolo Valentefb53ac62019-03-12 09:59:28 +0100950 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200951 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200952
953reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200954 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100955 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200956}
957
958/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200959 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
960 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200961 */
962void bfq_weights_tree_remove(struct bfq_data *bfqd,
963 struct bfq_queue *bfqq)
964{
965 struct bfq_entity *entity = bfqq->entity.parent;
966
Paolo Valente04715592018-06-25 21:55:34 +0200967 for_each_entity(entity) {
968 struct bfq_sched_data *sd = entity->my_sched_data;
969
970 if (sd->next_in_service || sd->in_service_entity) {
971 /*
972 * entity is still active, because either
973 * next_in_service or in_service_entity is not
974 * NULL (see the comments on the definition of
975 * next_in_service for details on why
976 * in_service_entity must be checked too).
977 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200978 * As a consequence, its parent entities are
979 * active as well, and thus this loop must
980 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200981 */
982 break;
983 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100984
985 /*
986 * The decrement of num_groups_with_pending_reqs is
987 * not performed immediately upon the deactivation of
988 * entity, but it is delayed to when it also happens
989 * that the first leaf descendant bfqq of entity gets
990 * all its pending requests completed. The following
991 * instructions perform this delayed decrement, if
992 * needed. See the comments on
993 * num_groups_with_pending_reqs for details.
994 */
995 if (entity->in_groups_with_pending_reqs) {
996 entity->in_groups_with_pending_reqs = false;
997 bfqd->num_groups_with_pending_reqs--;
998 }
Paolo Valente04715592018-06-25 21:55:34 +0200999 }
Paolo Valente9dee8b32019-01-29 12:06:34 +01001000
1001 /*
1002 * Next function is invoked last, because it causes bfqq to be
1003 * freed if the following holds: bfqq is not in service and
1004 * has no dispatched request. DO NOT use bfqq after the next
1005 * function invocation.
1006 */
1007 __bfq_weights_tree_remove(bfqd, bfqq,
1008 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +02001009}
1010
1011/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06001012 * Return expired entry, or NULL to just start from scratch in rbtree.
1013 */
1014static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
1015 struct request *last)
1016{
1017 struct request *rq;
1018
1019 if (bfq_bfqq_fifo_expire(bfqq))
1020 return NULL;
1021
1022 bfq_mark_bfqq_fifo_expire(bfqq);
1023
1024 rq = rq_entry_fifo(bfqq->fifo.next);
1025
1026 if (rq == last || ktime_get_ns() < rq->fifo_time)
1027 return NULL;
1028
1029 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1030 return rq;
1031}
1032
1033static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1034 struct bfq_queue *bfqq,
1035 struct request *last)
1036{
1037 struct rb_node *rbnext = rb_next(&last->rb_node);
1038 struct rb_node *rbprev = rb_prev(&last->rb_node);
1039 struct request *next, *prev = NULL;
1040
1041 /* Follow expired path, else get first next available. */
1042 next = bfq_check_fifo(bfqq, last);
1043 if (next)
1044 return next;
1045
1046 if (rbprev)
1047 prev = rb_entry_rq(rbprev);
1048
1049 if (rbnext)
1050 next = rb_entry_rq(rbnext);
1051 else {
1052 rbnext = rb_first(&bfqq->sort_list);
1053 if (rbnext && rbnext != &last->rb_node)
1054 next = rb_entry_rq(rbnext);
1055 }
1056
1057 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1058}
1059
Paolo Valentec074170e2017-04-12 18:23:11 +02001060/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001061static unsigned long bfq_serv_to_charge(struct request *rq,
1062 struct bfq_queue *bfqq)
1063{
Paolo Valente02a6d782019-01-29 12:06:37 +01001064 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +01001065 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +02001066 return blk_rq_sectors(rq);
1067
Paolo Valented5801082018-08-16 18:51:17 +02001068 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001069}
1070
1071/**
1072 * bfq_updated_next_req - update the queue after a new next_rq selection.
1073 * @bfqd: the device data the queue belongs to.
1074 * @bfqq: the queue to update.
1075 *
1076 * If the first request of a queue changes we make sure that the queue
1077 * has enough budget to serve at least its first request (if the
1078 * request has grown). We do this because if the queue has not enough
1079 * budget for its first request, it has to go through two dispatch
1080 * rounds to actually get it dispatched.
1081 */
1082static void bfq_updated_next_req(struct bfq_data *bfqd,
1083 struct bfq_queue *bfqq)
1084{
1085 struct bfq_entity *entity = &bfqq->entity;
1086 struct request *next_rq = bfqq->next_rq;
1087 unsigned long new_budget;
1088
1089 if (!next_rq)
1090 return;
1091
1092 if (bfqq == bfqd->in_service_queue)
1093 /*
1094 * In order not to break guarantees, budgets cannot be
1095 * changed after an entity has been selected.
1096 */
1097 return;
1098
Paolo Valentef3218ad2019-01-29 12:06:27 +01001099 new_budget = max_t(unsigned long,
1100 max_t(unsigned long, bfqq->max_budget,
1101 bfq_serv_to_charge(next_rq, bfqq)),
1102 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001103 if (entity->budget != new_budget) {
1104 entity->budget = new_budget;
1105 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1106 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +02001107 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001108 }
1109}
1110
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001111static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1112{
1113 u64 dur;
1114
1115 if (bfqd->bfq_wr_max_time > 0)
1116 return bfqd->bfq_wr_max_time;
1117
Paolo Valentee24f1c22018-05-31 16:45:06 +02001118 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001119 do_div(dur, bfqd->peak_rate);
1120
1121 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +02001122 * Limit duration between 3 and 25 seconds. The upper limit
1123 * has been conservatively set after the following worst case:
1124 * on a QEMU/KVM virtual machine
1125 * - running in a slow PC
1126 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1127 * - serving a heavy I/O workload, such as the sequential reading
1128 * of several files
1129 * mplayer took 23 seconds to start, if constantly weight-raised.
1130 *
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02001131 * As for higher values than that accommodating the above bad
Davide Sapienzad450542e2018-05-31 16:45:07 +02001132 * scenario, tests show that higher values would often yield
1133 * the opposite of the desired result, i.e., would worsen
1134 * responsiveness by allowing non-interactive applications to
1135 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001136 *
1137 * On the other end, lower values than 3 seconds make it
1138 * difficult for most interactive tasks to complete their jobs
1139 * before weight-raising finishes.
1140 */
Davide Sapienzad450542e2018-05-31 16:45:07 +02001141 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001142}
1143
1144/* switch back from soft real-time to interactive weight raising */
1145static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1146 struct bfq_data *bfqd)
1147{
1148 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1149 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1150 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1151}
1152
Arianna Avanzini36eca892017-04-12 18:23:16 +02001153static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001154bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1155 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001156{
Paolo Valente8c544772021-03-04 18:46:25 +01001157 unsigned int old_wr_coeff = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001158 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1159
Paolo Valented5be3fe2017-08-04 07:35:10 +02001160 if (bic->saved_has_short_ttime)
1161 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001162 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001163 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001164
1165 if (bic->saved_IO_bound)
1166 bfq_mark_bfqq_IO_bound(bfqq);
1167 else
1168 bfq_clear_bfqq_IO_bound(bfqq);
1169
Paolo Valente5a5436b2021-01-25 20:02:47 +01001170 bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1171 bfqq->inject_limit = bic->saved_inject_limit;
1172 bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1173
Francesco Pollicinofffca082019-03-12 09:59:34 +01001174 bfqq->entity.new_weight = bic->saved_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001175 bfqq->ttime = bic->saved_ttime;
Paolo Valenteeb2fd802021-01-25 20:02:43 +01001176 bfqq->io_start_time = bic->saved_io_start_time;
1177 bfqq->tot_idle_time = bic->saved_tot_idle_time;
Paolo Valente8c544772021-03-04 18:46:25 +01001178 /*
1179 * Restore weight coefficient only if low_latency is on
1180 */
1181 if (bfqd->low_latency) {
1182 old_wr_coeff = bfqq->wr_coeff;
1183 bfqq->wr_coeff = bic->saved_wr_coeff;
1184 }
Paolo Valentee6739142021-01-25 20:02:46 +01001185 bfqq->service_from_wr = bic->saved_service_from_wr;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001186 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1187 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1188 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1189
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001190 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001191 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001192 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001193 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1194 !bfq_bfqq_in_large_burst(bfqq) &&
1195 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1196 bfq_wr_duration(bfqd))) {
1197 switch_back_to_interactive_wr(bfqq, bfqd);
1198 } else {
1199 bfqq->wr_coeff = 1;
1200 bfq_log_bfqq(bfqq->bfqd, bfqq,
1201 "resume state: switching off wr");
1202 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001203 }
1204
1205 /* make sure weight will be updated, however we got here */
1206 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001207
1208 if (likely(!busy))
1209 return;
1210
1211 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1212 bfqd->wr_busy_queues++;
1213 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1214 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001215}
1216
1217static int bfqq_process_refs(struct bfq_queue *bfqq)
1218{
Jan Kara98f04492021-11-25 14:36:35 +01001219 return bfqq->ref - bfqq->entity.allocated -
1220 bfqq->entity.on_st_or_in_serv -
Paolo Valente430a67f2021-03-04 18:46:27 +01001221 (bfqq->weight_counter != NULL) - bfqq->stable_ref;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001222}
1223
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001224/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1225static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1226{
1227 struct bfq_queue *item;
1228 struct hlist_node *n;
1229
1230 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1231 hlist_del_init(&item->burst_list_node);
Paolo Valente84a74682019-03-12 09:59:32 +01001232
1233 /*
1234 * Start the creation of a new burst list only if there is no
1235 * active queue. See comments on the conditional invocation of
1236 * bfq_handle_burst().
1237 */
1238 if (bfq_tot_busy_queues(bfqd) == 0) {
1239 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1240 bfqd->burst_size = 1;
1241 } else
1242 bfqd->burst_size = 0;
1243
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001244 bfqd->burst_parent_entity = bfqq->entity.parent;
1245}
1246
1247/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1248static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1249{
1250 /* Increment burst size to take into account also bfqq */
1251 bfqd->burst_size++;
1252
1253 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1254 struct bfq_queue *pos, *bfqq_item;
1255 struct hlist_node *n;
1256
1257 /*
1258 * Enough queues have been activated shortly after each
1259 * other to consider this burst as large.
1260 */
1261 bfqd->large_burst = true;
1262
1263 /*
1264 * We can now mark all queues in the burst list as
1265 * belonging to a large burst.
1266 */
1267 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1268 burst_list_node)
1269 bfq_mark_bfqq_in_large_burst(bfqq_item);
1270 bfq_mark_bfqq_in_large_burst(bfqq);
1271
1272 /*
1273 * From now on, and until the current burst finishes, any
1274 * new queue being activated shortly after the last queue
1275 * was inserted in the burst can be immediately marked as
1276 * belonging to a large burst. So the burst list is not
1277 * needed any more. Remove it.
1278 */
1279 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1280 burst_list_node)
1281 hlist_del_init(&pos->burst_list_node);
1282 } else /*
1283 * Burst not yet large: add bfqq to the burst list. Do
1284 * not increment the ref counter for bfqq, because bfqq
1285 * is removed from the burst list before freeing bfqq
1286 * in put_queue.
1287 */
1288 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1289}
1290
1291/*
1292 * If many queues belonging to the same group happen to be created
1293 * shortly after each other, then the processes associated with these
1294 * queues have typically a common goal. In particular, bursts of queue
1295 * creations are usually caused by services or applications that spawn
1296 * many parallel threads/processes. Examples are systemd during boot,
1297 * or git grep. To help these processes get their job done as soon as
1298 * possible, it is usually better to not grant either weight-raising
Paolo Valente84a74682019-03-12 09:59:32 +01001299 * or device idling to their queues, unless these queues must be
1300 * protected from the I/O flowing through other active queues.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001301 *
1302 * In this comment we describe, firstly, the reasons why this fact
1303 * holds, and, secondly, the next function, which implements the main
1304 * steps needed to properly mark these queues so that they can then be
1305 * treated in a different way.
1306 *
1307 * The above services or applications benefit mostly from a high
1308 * throughput: the quicker the requests of the activated queues are
1309 * cumulatively served, the sooner the target job of these queues gets
1310 * completed. As a consequence, weight-raising any of these queues,
1311 * which also implies idling the device for it, is almost always
Paolo Valente84a74682019-03-12 09:59:32 +01001312 * counterproductive, unless there are other active queues to isolate
1313 * these new queues from. If there no other active queues, then
1314 * weight-raising these new queues just lowers throughput in most
1315 * cases.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001316 *
1317 * On the other hand, a burst of queue creations may be caused also by
1318 * the start of an application that does not consist of a lot of
1319 * parallel I/O-bound threads. In fact, with a complex application,
1320 * several short processes may need to be executed to start-up the
1321 * application. In this respect, to start an application as quickly as
1322 * possible, the best thing to do is in any case to privilege the I/O
1323 * related to the application with respect to all other
1324 * I/O. Therefore, the best strategy to start as quickly as possible
1325 * an application that causes a burst of queue creations is to
1326 * weight-raise all the queues created during the burst. This is the
1327 * exact opposite of the best strategy for the other type of bursts.
1328 *
1329 * In the end, to take the best action for each of the two cases, the
1330 * two types of bursts need to be distinguished. Fortunately, this
1331 * seems relatively easy, by looking at the sizes of the bursts. In
1332 * particular, we found a threshold such that only bursts with a
1333 * larger size than that threshold are apparently caused by
1334 * services or commands such as systemd or git grep. For brevity,
1335 * hereafter we call just 'large' these bursts. BFQ *does not*
1336 * weight-raise queues whose creation occurs in a large burst. In
1337 * addition, for each of these queues BFQ performs or does not perform
1338 * idling depending on which choice boosts the throughput more. The
1339 * exact choice depends on the device and request pattern at
1340 * hand.
1341 *
1342 * Unfortunately, false positives may occur while an interactive task
1343 * is starting (e.g., an application is being started). The
1344 * consequence is that the queues associated with the task do not
1345 * enjoy weight raising as expected. Fortunately these false positives
1346 * are very rare. They typically occur if some service happens to
1347 * start doing I/O exactly when the interactive task starts.
1348 *
Paolo Valente84a74682019-03-12 09:59:32 +01001349 * Turning back to the next function, it is invoked only if there are
1350 * no active queues (apart from active queues that would belong to the
1351 * same, possible burst bfqq would belong to), and it implements all
1352 * the steps needed to detect the occurrence of a large burst and to
1353 * properly mark all the queues belonging to it (so that they can then
1354 * be treated in a different way). This goal is achieved by
1355 * maintaining a "burst list" that holds, temporarily, the queues that
1356 * belong to the burst in progress. The list is then used to mark
1357 * these queues as belonging to a large burst if the burst does become
1358 * large. The main steps are the following.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001359 *
1360 * . when the very first queue is created, the queue is inserted into the
1361 * list (as it could be the first queue in a possible burst)
1362 *
1363 * . if the current burst has not yet become large, and a queue Q that does
1364 * not yet belong to the burst is activated shortly after the last time
1365 * at which a new queue entered the burst list, then the function appends
1366 * Q to the burst list
1367 *
1368 * . if, as a consequence of the previous step, the burst size reaches
1369 * the large-burst threshold, then
1370 *
1371 * . all the queues in the burst list are marked as belonging to a
1372 * large burst
1373 *
1374 * . the burst list is deleted; in fact, the burst list already served
1375 * its purpose (keeping temporarily track of the queues in a burst,
1376 * so as to be able to mark them as belonging to a large burst in the
1377 * previous sub-step), and now is not needed any more
1378 *
1379 * . the device enters a large-burst mode
1380 *
1381 * . if a queue Q that does not belong to the burst is created while
1382 * the device is in large-burst mode and shortly after the last time
1383 * at which a queue either entered the burst list or was marked as
1384 * belonging to the current large burst, then Q is immediately marked
1385 * as belonging to a large burst.
1386 *
1387 * . if a queue Q that does not belong to the burst is created a while
1388 * later, i.e., not shortly after, than the last time at which a queue
1389 * either entered the burst list or was marked as belonging to the
1390 * current large burst, then the current burst is deemed as finished and:
1391 *
1392 * . the large-burst mode is reset if set
1393 *
1394 * . the burst list is emptied
1395 *
1396 * . Q is inserted in the burst list, as Q may be the first queue
1397 * in a possible new burst (then the burst list contains just Q
1398 * after this step).
1399 */
1400static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1401{
1402 /*
1403 * If bfqq is already in the burst list or is part of a large
1404 * burst, or finally has just been split, then there is
1405 * nothing else to do.
1406 */
1407 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1408 bfq_bfqq_in_large_burst(bfqq) ||
1409 time_is_after_eq_jiffies(bfqq->split_time +
1410 msecs_to_jiffies(10)))
1411 return;
1412
1413 /*
1414 * If bfqq's creation happens late enough, or bfqq belongs to
1415 * a different group than the burst group, then the current
1416 * burst is finished, and related data structures must be
1417 * reset.
1418 *
1419 * In this respect, consider the special case where bfqq is
1420 * the very first queue created after BFQ is selected for this
1421 * device. In this case, last_ins_in_burst and
1422 * burst_parent_entity are not yet significant when we get
1423 * here. But it is easy to verify that, whether or not the
1424 * following condition is true, bfqq will end up being
1425 * inserted into the burst list. In particular the list will
1426 * happen to contain only bfqq. And this is exactly what has
1427 * to happen, as bfqq may be the first queue of the first
1428 * burst.
1429 */
1430 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1431 bfqd->bfq_burst_interval) ||
1432 bfqq->entity.parent != bfqd->burst_parent_entity) {
1433 bfqd->large_burst = false;
1434 bfq_reset_burst_list(bfqd, bfqq);
1435 goto end;
1436 }
1437
1438 /*
1439 * If we get here, then bfqq is being activated shortly after the
1440 * last queue. So, if the current burst is also large, we can mark
1441 * bfqq as belonging to this large burst immediately.
1442 */
1443 if (bfqd->large_burst) {
1444 bfq_mark_bfqq_in_large_burst(bfqq);
1445 goto end;
1446 }
1447
1448 /*
1449 * If we get here, then a large-burst state has not yet been
1450 * reached, but bfqq is being activated shortly after the last
1451 * queue. Then we add bfqq to the burst.
1452 */
1453 bfq_add_to_burst(bfqd, bfqq);
1454end:
1455 /*
1456 * At this point, bfqq either has been added to the current
1457 * burst or has caused the current burst to terminate and a
1458 * possible new burst to start. In particular, in the second
1459 * case, bfqq has become the first queue in the possible new
1460 * burst. In both cases last_ins_in_burst needs to be moved
1461 * forward.
1462 */
1463 bfqd->last_ins_in_burst = jiffies;
1464}
1465
Paolo Valenteaee69d72017-04-19 08:29:02 -06001466static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1467{
1468 struct bfq_entity *entity = &bfqq->entity;
1469
1470 return entity->budget - entity->service;
1471}
1472
1473/*
1474 * If enough samples have been computed, return the current max budget
1475 * stored in bfqd, which is dynamically updated according to the
1476 * estimated disk peak rate; otherwise return the default max budget
1477 */
1478static int bfq_max_budget(struct bfq_data *bfqd)
1479{
1480 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1481 return bfq_default_max_budget;
1482 else
1483 return bfqd->bfq_max_budget;
1484}
1485
1486/*
1487 * Return min budget, which is a fraction of the current or default
1488 * max budget (trying with 1/32)
1489 */
1490static int bfq_min_budget(struct bfq_data *bfqd)
1491{
1492 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1493 return bfq_default_max_budget / 32;
1494 else
1495 return bfqd->bfq_max_budget / 32;
1496}
1497
Paolo Valenteaee69d72017-04-19 08:29:02 -06001498/*
1499 * The next function, invoked after the input queue bfqq switches from
1500 * idle to busy, updates the budget of bfqq. The function also tells
1501 * whether the in-service queue should be expired, by returning
1502 * true. The purpose of expiring the in-service queue is to give bfqq
1503 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001504 * for preempting the in-service queue is to achieve one of the two
1505 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001506 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001507 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1508 * expired because it has remained idle. In particular, bfqq may have
1509 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001510 *
1511 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1512 * and did not make it to issue a new request before its last
1513 * request was served;
1514 *
1515 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1516 * a new request before the expiration of the idling-time.
1517 *
1518 * Even if bfqq has expired for one of the above reasons, the process
1519 * associated with the queue may be however issuing requests greedily,
1520 * and thus be sensitive to the bandwidth it receives (bfqq may have
1521 * remained idle for other reasons: CPU high load, bfqq not enjoying
1522 * idling, I/O throttling somewhere in the path from the process to
1523 * the I/O scheduler, ...). But if, after every expiration for one of
1524 * the above two reasons, bfqq has to wait for the service of at least
1525 * one full budget of another queue before being served again, then
1526 * bfqq is likely to get a much lower bandwidth or resource time than
1527 * its reserved ones. To address this issue, two countermeasures need
1528 * to be taken.
1529 *
1530 * First, the budget and the timestamps of bfqq need to be updated in
1531 * a special way on bfqq reactivation: they need to be updated as if
1532 * bfqq did not remain idle and did not expire. In fact, if they are
1533 * computed as if bfqq expired and remained idle until reactivation,
1534 * then the process associated with bfqq is treated as if, instead of
1535 * being greedy, it stopped issuing requests when bfqq remained idle,
1536 * and restarts issuing requests only on this reactivation. In other
1537 * words, the scheduler does not help the process recover the "service
1538 * hole" between bfqq expiration and reactivation. As a consequence,
1539 * the process receives a lower bandwidth than its reserved one. In
1540 * contrast, to recover this hole, the budget must be updated as if
1541 * bfqq was not expired at all before this reactivation, i.e., it must
1542 * be set to the value of the remaining budget when bfqq was
1543 * expired. Along the same line, timestamps need to be assigned the
1544 * value they had the last time bfqq was selected for service, i.e.,
1545 * before last expiration. Thus timestamps need to be back-shifted
1546 * with respect to their normal computation (see [1] for more details
1547 * on this tricky aspect).
1548 *
1549 * Secondly, to allow the process to recover the hole, the in-service
1550 * queue must be expired too, to give bfqq the chance to preempt it
1551 * immediately. In fact, if bfqq has to wait for a full budget of the
1552 * in-service queue to be completed, then it may become impossible to
1553 * let the process recover the hole, even if the back-shifted
1554 * timestamps of bfqq are lower than those of the in-service queue. If
1555 * this happens for most or all of the holes, then the process may not
1556 * receive its reserved bandwidth. In this respect, it is worth noting
1557 * that, being the service of outstanding requests unpreemptible, a
1558 * little fraction of the holes may however be unrecoverable, thereby
1559 * causing a little loss of bandwidth.
1560 *
1561 * The last important point is detecting whether bfqq does need this
1562 * bandwidth recovery. In this respect, the next function deems the
1563 * process associated with bfqq greedy, and thus allows it to recover
1564 * the hole, if: 1) the process is waiting for the arrival of a new
1565 * request (which implies that bfqq expired for one of the above two
1566 * reasons), and 2) such a request has arrived soon. The first
1567 * condition is controlled through the flag non_blocking_wait_rq,
1568 * while the second through the flag arrived_in_time. If both
1569 * conditions hold, then the function computes the budget in the
1570 * above-described special way, and signals that the in-service queue
1571 * should be expired. Timestamp back-shifting is done later in
1572 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001573 *
1574 * 2. Reduce latency. Even if timestamps are not backshifted to let
1575 * the process associated with bfqq recover a service hole, bfqq may
1576 * however happen to have, after being (re)activated, a lower finish
1577 * timestamp than the in-service queue. That is, the next budget of
1578 * bfqq may have to be completed before the one of the in-service
1579 * queue. If this is the case, then preempting the in-service queue
1580 * allows this goal to be achieved, apart from the unpreemptible,
1581 * outstanding requests mentioned above.
1582 *
1583 * Unfortunately, regardless of which of the above two goals one wants
1584 * to achieve, service trees need first to be updated to know whether
1585 * the in-service queue must be preempted. To have service trees
1586 * correctly updated, the in-service queue must be expired and
1587 * rescheduled, and bfqq must be scheduled too. This is one of the
1588 * most costly operations (in future versions, the scheduling
1589 * mechanism may be re-designed in such a way to make it possible to
1590 * know whether preemption is needed without needing to update service
1591 * trees). In addition, queue preemptions almost always cause random
Paolo Valente96a291c2019-06-25 07:12:48 +02001592 * I/O, which may in turn cause loss of throughput. Finally, there may
1593 * even be no in-service queue when the next function is invoked (so,
1594 * no queue to compare timestamps with). Because of these facts, the
1595 * next function adopts the following simple scheme to avoid costly
1596 * operations, too frequent preemptions and too many dependencies on
1597 * the state of the scheduler: it requests the expiration of the
1598 * in-service queue (unconditionally) only for queues that need to
1599 * recover a hole. Then it delegates to other parts of the code the
1600 * responsibility of handling the above case 2.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001601 */
1602static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1603 struct bfq_queue *bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001604 bool arrived_in_time)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001605{
1606 struct bfq_entity *entity = &bfqq->entity;
1607
Paolo Valente218cb892019-01-29 12:06:26 +01001608 /*
1609 * In the next compound condition, we check also whether there
1610 * is some budget left, because otherwise there is no point in
1611 * trying to go on serving bfqq with this same budget: bfqq
1612 * would be expired immediately after being selected for
1613 * service. This would only cause useless overhead.
1614 */
1615 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1616 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001617 /*
1618 * We do not clear the flag non_blocking_wait_rq here, as
1619 * the latter is used in bfq_activate_bfqq to signal
1620 * that timestamps need to be back-shifted (and is
1621 * cleared right after).
1622 */
1623
1624 /*
1625 * In next assignment we rely on that either
1626 * entity->service or entity->budget are not updated
1627 * on expiration if bfqq is empty (see
1628 * __bfq_bfqq_recalc_budget). Thus both quantities
1629 * remain unchanged after such an expiration, and the
1630 * following statement therefore assigns to
1631 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001632 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001633 */
1634 entity->budget = min_t(unsigned long,
1635 bfq_bfqq_budget_left(bfqq),
1636 bfqq->max_budget);
1637
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001638 /*
1639 * At this point, we have used entity->service to get
1640 * the budget left (needed for updating
1641 * entity->budget). Thus we finally can, and have to,
1642 * reset entity->service. The latter must be reset
1643 * because bfqq would otherwise be charged again for
1644 * the service it has received during its previous
1645 * service slot(s).
1646 */
1647 entity->service = 0;
1648
Paolo Valenteaee69d72017-04-19 08:29:02 -06001649 return true;
1650 }
1651
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001652 /*
1653 * We can finally complete expiration, by setting service to 0.
1654 */
1655 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001656 entity->budget = max_t(unsigned long, bfqq->max_budget,
1657 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1658 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente96a291c2019-06-25 07:12:48 +02001659 return false;
Paolo Valente44e44a12017-04-12 18:23:12 +02001660}
1661
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001662/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001663 * Return the farthest past time instant according to jiffies
1664 * macros.
1665 */
1666static unsigned long bfq_smallest_from_now(void)
1667{
1668 return jiffies - MAX_JIFFY_OFFSET;
1669}
1670
Paolo Valente44e44a12017-04-12 18:23:12 +02001671static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1672 struct bfq_queue *bfqq,
1673 unsigned int old_wr_coeff,
1674 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001675 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001676 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001677 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001678{
1679 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1680 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001681 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001682 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001683 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1684 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1685 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001686 /*
1687 * No interactive weight raising in progress
1688 * here: assign minus infinity to
1689 * wr_start_at_switch_to_srt, to make sure
1690 * that, at the end of the soft-real-time
1691 * weight raising periods that is starting
1692 * now, no interactive weight-raising period
1693 * may be wrongly considered as still in
1694 * progress (and thus actually started by
1695 * mistake).
1696 */
1697 bfqq->wr_start_at_switch_to_srt =
1698 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001699 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1700 BFQ_SOFTRT_WEIGHT_FACTOR;
1701 bfqq->wr_cur_max_time =
1702 bfqd->bfq_wr_rt_max_time;
1703 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001704
1705 /*
1706 * If needed, further reduce budget to make sure it is
1707 * close to bfqq's backlog, so as to reduce the
1708 * scheduling-error component due to a too large
1709 * budget. Do not care about throughput consequences,
1710 * but only about latency. Finally, do not assign a
1711 * too small budget either, to avoid increasing
1712 * latency by causing too frequent expirations.
1713 */
1714 bfqq->entity.budget = min_t(unsigned long,
1715 bfqq->entity.budget,
1716 2 * bfq_min_budget(bfqd));
1717 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001718 if (interactive) { /* update wr coeff and duration */
1719 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1720 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001721 } else if (in_burst)
1722 bfqq->wr_coeff = 1;
1723 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001724 /*
1725 * The application is now or still meeting the
1726 * requirements for being deemed soft rt. We
1727 * can then correctly and safely (re)charge
1728 * the weight-raising duration for the
1729 * application with the weight-raising
1730 * duration for soft rt applications.
1731 *
1732 * In particular, doing this recharge now, i.e.,
1733 * before the weight-raising period for the
1734 * application finishes, reduces the probability
1735 * of the following negative scenario:
1736 * 1) the weight of a soft rt application is
1737 * raised at startup (as for any newly
1738 * created application),
1739 * 2) since the application is not interactive,
1740 * at a certain time weight-raising is
1741 * stopped for the application,
1742 * 3) at that time the application happens to
1743 * still have pending requests, and hence
1744 * is destined to not have a chance to be
1745 * deemed soft rt before these requests are
1746 * completed (see the comments to the
1747 * function bfq_bfqq_softrt_next_start()
1748 * for details on soft rt detection),
1749 * 4) these pending requests experience a high
1750 * latency because the application is not
1751 * weight-raised while they are pending.
1752 */
1753 if (bfqq->wr_cur_max_time !=
1754 bfqd->bfq_wr_rt_max_time) {
1755 bfqq->wr_start_at_switch_to_srt =
1756 bfqq->last_wr_start_finish;
1757
1758 bfqq->wr_cur_max_time =
1759 bfqd->bfq_wr_rt_max_time;
1760 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1761 BFQ_SOFTRT_WEIGHT_FACTOR;
1762 }
1763 bfqq->last_wr_start_finish = jiffies;
1764 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001765 }
1766}
1767
1768static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1769 struct bfq_queue *bfqq)
1770{
1771 return bfqq->dispatched == 0 &&
1772 time_is_before_jiffies(
1773 bfqq->budget_timeout +
1774 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001775}
1776
Paolo Valente96a291c2019-06-25 07:12:48 +02001777
1778/*
1779 * Return true if bfqq is in a higher priority class, or has a higher
1780 * weight than the in-service queue.
1781 */
1782static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1783 struct bfq_queue *in_serv_bfqq)
1784{
1785 int bfqq_weight, in_serv_weight;
1786
1787 if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1788 return true;
1789
1790 if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1791 bfqq_weight = bfqq->entity.weight;
1792 in_serv_weight = in_serv_bfqq->entity.weight;
1793 } else {
1794 if (bfqq->entity.parent)
1795 bfqq_weight = bfqq->entity.parent->weight;
1796 else
1797 bfqq_weight = bfqq->entity.weight;
1798 if (in_serv_bfqq->entity.parent)
1799 in_serv_weight = in_serv_bfqq->entity.parent->weight;
1800 else
1801 in_serv_weight = in_serv_bfqq->entity.weight;
1802 }
1803
1804 return bfqq_weight > in_serv_weight;
1805}
1806
Paolo Valente7f1995c2021-01-25 20:02:44 +01001807static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1808
Paolo Valenteaee69d72017-04-19 08:29:02 -06001809static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1810 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001811 int old_wr_coeff,
1812 struct request *rq,
1813 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001814{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001815 bool soft_rt, in_burst, wr_or_deserves_wr,
1816 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001817 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001818 /*
1819 * See the comments on
1820 * bfq_bfqq_update_budg_for_activation for
1821 * details on the usage of the next variable.
1822 */
1823 arrived_in_time = ktime_get_ns() <=
1824 bfqq->ttime.last_end_request +
1825 bfqd->bfq_slice_idle * 3;
1826
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001827
Paolo Valenteaee69d72017-04-19 08:29:02 -06001828 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001829 * bfqq deserves to be weight-raised if:
1830 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001831 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001832 * - it has been idle for enough time or is soft real-time,
Paolo Valente91b896f2021-01-22 19:19:46 +01001833 * - is linked to a bfq_io_cq (it is not shared in any sense),
1834 * - has a default weight (otherwise we assume the user wanted
1835 * to control its weight explicitly)
Paolo Valente44e44a12017-04-12 18:23:12 +02001836 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001837 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001838 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Paolo Valente7074f072019-03-12 09:59:31 +01001839 !BFQQ_TOTALLY_SEEKY(bfqq) &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001840 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001841 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
Paolo Valente91b896f2021-01-22 19:19:46 +01001842 bfqq->dispatched == 0 &&
1843 bfqq->entity.new_weight == 40;
1844 *interactive = !in_burst && idle_for_long_time &&
1845 bfqq->entity.new_weight == 40;
Paolo Valente511a269922021-06-19 16:09:42 +02001846 /*
1847 * Merged bfq_queues are kept out of weight-raising
1848 * (low-latency) mechanisms. The reason is that these queues
1849 * are usually created for non-interactive and
1850 * non-soft-real-time tasks. Yet this is not the case for
1851 * stably-merged queues. These queues are merged just because
1852 * they are created shortly after each other. So they may
1853 * easily serve the I/O of an interactive or soft-real time
1854 * application, if the application happens to spawn multiple
1855 * processes. So let also stably-merged queued enjoy weight
1856 * raising.
1857 */
Paolo Valente44e44a12017-04-12 18:23:12 +02001858 wr_or_deserves_wr = bfqd->low_latency &&
1859 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001860 (bfq_bfqq_sync(bfqq) &&
Paolo Valente511a269922021-06-19 16:09:42 +02001861 (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1862 (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001863
1864 /*
1865 * Using the last flag, update budget and check whether bfqq
1866 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001867 */
1868 bfqq_wants_to_preempt =
1869 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente96a291c2019-06-25 07:12:48 +02001870 arrived_in_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001871
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001872 /*
1873 * If bfqq happened to be activated in a burst, but has been
1874 * idle for much more than an interactive queue, then we
1875 * assume that, in the overall I/O initiated in the burst, the
1876 * I/O associated with bfqq is finished. So bfqq does not need
1877 * to be treated as a queue belonging to a burst
1878 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1879 * if set, and remove bfqq from the burst list if it's
1880 * there. We do not decrement burst_size, because the fact
1881 * that bfqq does not need to belong to the burst list any
1882 * more does not invalidate the fact that bfqq was created in
1883 * a burst.
1884 */
1885 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1886 idle_for_long_time &&
1887 time_is_before_jiffies(
1888 bfqq->budget_timeout +
1889 msecs_to_jiffies(10000))) {
1890 hlist_del_init(&bfqq->burst_list_node);
1891 bfq_clear_bfqq_in_large_burst(bfqq);
1892 }
1893
1894 bfq_clear_bfqq_just_created(bfqq);
1895
Paolo Valente44e44a12017-04-12 18:23:12 +02001896 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001897 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1898 /* wraparound */
1899 bfqq->split_time =
1900 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001901
Arianna Avanzini36eca892017-04-12 18:23:16 +02001902 if (time_is_before_jiffies(bfqq->split_time +
1903 bfqd->bfq_wr_min_idle_time)) {
1904 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1905 old_wr_coeff,
1906 wr_or_deserves_wr,
1907 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001908 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001909 soft_rt);
1910
1911 if (old_wr_coeff != bfqq->wr_coeff)
1912 bfqq->entity.prio_changed = 1;
1913 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001914 }
1915
Paolo Valente77b7dce2017-04-12 18:23:13 +02001916 bfqq->last_idle_bklogged = jiffies;
1917 bfqq->service_from_backlogged = 0;
1918 bfq_clear_bfqq_softrt_update(bfqq);
1919
Paolo Valenteaee69d72017-04-19 08:29:02 -06001920 bfq_add_bfqq_busy(bfqd, bfqq);
1921
1922 /*
Paolo Valente7f1995c2021-01-25 20:02:44 +01001923 * Expire in-service queue if preemption may be needed for
1924 * guarantees or throughput. As for guarantees, we care
1925 * explicitly about two cases. The first is that bfqq has to
1926 * recover a service hole, as explained in the comments on
Paolo Valente96a291c2019-06-25 07:12:48 +02001927 * bfq_bfqq_update_budg_for_activation(), i.e., that
1928 * bfqq_wants_to_preempt is true. However, if bfqq does not
1929 * carry time-critical I/O, then bfqq's bandwidth is less
1930 * important than that of queues that carry time-critical I/O.
1931 * So, as a further constraint, we consider this case only if
1932 * bfqq is at least as weight-raised, i.e., at least as time
1933 * critical, as the in-service queue.
1934 *
1935 * The second case is that bfqq is in a higher priority class,
1936 * or has a higher weight than the in-service queue. If this
1937 * condition does not hold, we don't care because, even if
1938 * bfqq does not start to be served immediately, the resulting
1939 * delay for bfqq's I/O is however lower or much lower than
1940 * the ideal completion time to be guaranteed to bfqq's I/O.
1941 *
1942 * In both cases, preemption is needed only if, according to
1943 * the timestamps of both bfqq and of the in-service queue,
1944 * bfqq actually is the next queue to serve. So, to reduce
1945 * useless preemptions, the return value of
1946 * next_queue_may_preempt() is considered in the next compound
1947 * condition too. Yet next_queue_may_preempt() just checks a
1948 * simple, necessary condition for bfqq to be the next queue
1949 * to serve. In fact, to evaluate a sufficient condition, the
1950 * timestamps of the in-service queue would need to be
1951 * updated, and this operation is quite costly (see the
1952 * comments on bfq_bfqq_update_budg_for_activation()).
Paolo Valente7f1995c2021-01-25 20:02:44 +01001953 *
1954 * As for throughput, we ask bfq_better_to_idle() whether we
1955 * still need to plug I/O dispatching. If bfq_better_to_idle()
1956 * says no, then plugging is not needed any longer, either to
1957 * boost throughput or to perserve service guarantees. Then
1958 * the best option is to stop plugging I/O, as not doing so
1959 * would certainly lower throughput. We may end up in this
1960 * case if: (1) upon a dispatch attempt, we detected that it
1961 * was better to plug I/O dispatch, and to wait for a new
1962 * request to arrive for the currently in-service queue, but
1963 * (2) this switch of bfqq to busy changes the scenario.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001964 */
Paolo Valente96a291c2019-06-25 07:12:48 +02001965 if (bfqd->in_service_queue &&
1966 ((bfqq_wants_to_preempt &&
1967 bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
Paolo Valente7f1995c2021-01-25 20:02:44 +01001968 bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1969 !bfq_better_to_idle(bfqd->in_service_queue)) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001970 next_queue_may_preempt(bfqd))
1971 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1972 false, BFQQE_PREEMPTED);
1973}
1974
Paolo Valente766d6142019-06-25 07:12:43 +02001975static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1976 struct bfq_queue *bfqq)
1977{
1978 /* invalidate baseline total service time */
1979 bfqq->last_serv_time_ns = 0;
1980
1981 /*
1982 * Reset pointer in case we are waiting for
1983 * some request completion.
1984 */
1985 bfqd->waited_rq = NULL;
1986
1987 /*
1988 * If bfqq has a short think time, then start by setting the
1989 * inject limit to 0 prudentially, because the service time of
1990 * an injected I/O request may be higher than the think time
1991 * of bfqq, and therefore, if one request was injected when
1992 * bfqq remains empty, this injected request might delay the
1993 * service of the next I/O request for bfqq significantly. In
1994 * case bfqq can actually tolerate some injection, then the
1995 * adaptive update will however raise the limit soon. This
1996 * lucky circumstance holds exactly because bfqq has a short
1997 * think time, and thus, after remaining empty, is likely to
1998 * get new I/O enqueued---and then completed---before being
1999 * expired. This is the very pattern that gives the
2000 * limit-update algorithm the chance to measure the effect of
2001 * injection on request service times, and then to update the
2002 * limit accordingly.
2003 *
2004 * However, in the following special case, the inject limit is
2005 * left to 1 even if the think time is short: bfqq's I/O is
2006 * synchronized with that of some other queue, i.e., bfqq may
2007 * receive new I/O only after the I/O of the other queue is
2008 * completed. Keeping the inject limit to 1 allows the
2009 * blocking I/O to be served while bfqq is in service. And
2010 * this is very convenient both for bfqq and for overall
2011 * throughput, as explained in detail in the comments in
2012 * bfq_update_has_short_ttime().
2013 *
2014 * On the opposite end, if bfqq has a long think time, then
2015 * start directly by 1, because:
2016 * a) on the bright side, keeping at most one request in
2017 * service in the drive is unlikely to cause any harm to the
2018 * latency of bfqq's requests, as the service time of a single
2019 * request is likely to be lower than the think time of bfqq;
2020 * b) on the downside, after becoming empty, bfqq is likely to
2021 * expire before getting its next request. With this request
2022 * arrival pattern, it is very hard to sample total service
2023 * times and update the inject limit accordingly (see comments
2024 * on bfq_update_inject_limit()). So the limit is likely to be
2025 * never, or at least seldom, updated. As a consequence, by
2026 * setting the limit to 1, we avoid that no injection ever
2027 * occurs with bfqq. On the downside, this proactive step
2028 * further reduces chances to actually compute the baseline
2029 * total service time. Thus it reduces chances to execute the
2030 * limit-update algorithm and possibly raise the limit to more
2031 * than 1.
2032 */
2033 if (bfq_bfqq_has_short_ttime(bfqq))
2034 bfqq->inject_limit = 0;
2035 else
2036 bfqq->inject_limit = 1;
2037
2038 bfqq->decrease_time_jif = jiffies;
2039}
2040
Paolo Valenteeb2fd802021-01-25 20:02:43 +01002041static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2042{
2043 u64 tot_io_time = now_ns - bfqq->io_start_time;
2044
2045 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2046 bfqq->tot_idle_time +=
2047 now_ns - bfqq->ttime.last_end_request;
2048
2049 if (unlikely(bfq_bfqq_just_created(bfqq)))
2050 return;
2051
2052 /*
2053 * Must be busy for at least about 80% of the time to be
2054 * considered I/O bound.
2055 */
2056 if (bfqq->tot_idle_time * 5 > tot_io_time)
2057 bfq_clear_bfqq_IO_bound(bfqq);
2058 else
2059 bfq_mark_bfqq_IO_bound(bfqq);
2060
2061 /*
2062 * Keep an observation window of at most 200 ms in the past
2063 * from now.
2064 */
2065 if (tot_io_time > 200 * NSEC_PER_MSEC) {
2066 bfqq->io_start_time = now_ns - (tot_io_time>>1);
2067 bfqq->tot_idle_time >>= 1;
2068 }
2069}
2070
Paolo Valente71217df2021-01-25 20:02:48 +01002071/*
2072 * Detect whether bfqq's I/O seems synchronized with that of some
2073 * other queue, i.e., whether bfqq, after remaining empty, happens to
2074 * receive new I/O only right after some I/O request of the other
2075 * queue has been completed. We call waker queue the other queue, and
2076 * we assume, for simplicity, that bfqq may have at most one waker
2077 * queue.
2078 *
2079 * A remarkable throughput boost can be reached by unconditionally
2080 * injecting the I/O of the waker queue, every time a new
2081 * bfq_dispatch_request happens to be invoked while I/O is being
2082 * plugged for bfqq. In addition to boosting throughput, this
2083 * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2084 * bfqq. Note that these same results may be achieved with the general
2085 * injection mechanism, but less effectively. For details on this
2086 * aspect, see the comments on the choice of the queue for injection
2087 * in bfq_select_queue().
2088 *
Jan Kara1f18b702021-11-25 14:36:38 +01002089 * Turning back to the detection of a waker queue, a queue Q is deemed as a
2090 * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2091 * non empty right after a request of Q has been completed within given
2092 * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2093 * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2094 * still being served by the drive, and may receive new I/O on the completion
2095 * of some of the in-flight requests. In particular, on the first time, Q is
2096 * tentatively set as a candidate waker queue, while on the third consecutive
2097 * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2098 * is a waker queue for bfqq. These detection steps are performed only if bfqq
2099 * has a long think time, so as to make it more likely that bfqq's I/O is
2100 * actually being blocked by a synchronization. This last filter, plus the
2101 * above three-times requirement and time limit for detection, make false
Paolo Valenteefc72522021-06-19 16:09:47 +02002102 * positives less likely.
Paolo Valente71217df2021-01-25 20:02:48 +01002103 *
2104 * NOTE
2105 *
2106 * The sooner a waker queue is detected, the sooner throughput can be
2107 * boosted by injecting I/O from the waker queue. Fortunately,
2108 * detection is likely to be actually fast, for the following
2109 * reasons. While blocked by synchronization, bfqq has a long think
2110 * time. This implies that bfqq's inject limit is at least equal to 1
2111 * (see the comments in bfq_update_inject_limit()). So, thanks to
2112 * injection, the waker queue is likely to be served during the very
2113 * first I/O-plugging time interval for bfqq. This triggers the first
2114 * step of the detection mechanism. Thanks again to injection, the
2115 * candidate waker queue is then likely to be confirmed no later than
2116 * during the next I/O-plugging interval for bfqq.
2117 *
2118 * ISSUE
2119 *
2120 * On queue merging all waker information is lost.
2121 */
Jens Axboea5bf0a92021-01-25 21:15:01 -07002122static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2123 u64 now_ns)
Paolo Valente71217df2021-01-25 20:02:48 +01002124{
Jan Kara1eb17f52021-11-25 14:36:40 +01002125 char waker_name[MAX_BFQQ_NAME_LENGTH];
2126
Paolo Valente71217df2021-01-25 20:02:48 +01002127 if (!bfqd->last_completed_rq_bfqq ||
2128 bfqd->last_completed_rq_bfqq == bfqq ||
2129 bfq_bfqq_has_short_ttime(bfqq) ||
Paolo Valenteefc72522021-06-19 16:09:47 +02002130 bfqq->dispatched > 0 ||
Paolo Valente71217df2021-01-25 20:02:48 +01002131 now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2132 bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2133 return;
2134
Jan Kara1f18b702021-11-25 14:36:38 +01002135 /*
2136 * We reset waker detection logic also if too much time has passed
2137 * since the first detection. If wakeups are rare, pointless idling
2138 * doesn't hurt throughput that much. The condition below makes sure
2139 * we do not uselessly idle blocking waker in more than 1/64 cases.
2140 */
Paolo Valente71217df2021-01-25 20:02:48 +01002141 if (bfqd->last_completed_rq_bfqq !=
Jan Kara1f18b702021-11-25 14:36:38 +01002142 bfqq->tentative_waker_bfqq ||
2143 now_ns > bfqq->waker_detection_started +
2144 128 * (u64)bfqd->bfq_slice_idle) {
Paolo Valente71217df2021-01-25 20:02:48 +01002145 /*
2146 * First synchronization detected with a
2147 * candidate waker queue, or with a different
2148 * candidate waker queue from the current one.
2149 */
2150 bfqq->tentative_waker_bfqq =
2151 bfqd->last_completed_rq_bfqq;
2152 bfqq->num_waker_detections = 1;
Jan Kara1f18b702021-11-25 14:36:38 +01002153 bfqq->waker_detection_started = now_ns;
Jan Kara1eb17f52021-11-25 14:36:40 +01002154 bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2155 MAX_BFQQ_NAME_LENGTH);
2156 bfq_log_bfqq(bfqd, bfqq, "set tenative waker %s", waker_name);
Paolo Valente71217df2021-01-25 20:02:48 +01002157 } else /* Same tentative waker queue detected again */
2158 bfqq->num_waker_detections++;
2159
2160 if (bfqq->num_waker_detections == 3) {
2161 bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2162 bfqq->tentative_waker_bfqq = NULL;
Jan Kara1eb17f52021-11-25 14:36:40 +01002163 bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2164 MAX_BFQQ_NAME_LENGTH);
2165 bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
Paolo Valente71217df2021-01-25 20:02:48 +01002166
2167 /*
2168 * If the waker queue disappears, then
2169 * bfqq->waker_bfqq must be reset. To
2170 * this goal, we maintain in each
2171 * waker queue a list, woken_list, of
2172 * all the queues that reference the
2173 * waker queue through their
2174 * waker_bfqq pointer. When the waker
2175 * queue exits, the waker_bfqq pointer
2176 * of all the queues in the woken_list
2177 * is reset.
2178 *
2179 * In addition, if bfqq is already in
2180 * the woken_list of a waker queue,
2181 * then, before being inserted into
2182 * the woken_list of a new waker
2183 * queue, bfqq must be removed from
2184 * the woken_list of the old waker
2185 * queue.
2186 */
2187 if (!hlist_unhashed(&bfqq->woken_list_node))
2188 hlist_del_init(&bfqq->woken_list_node);
2189 hlist_add_head(&bfqq->woken_list_node,
2190 &bfqd->last_completed_rq_bfqq->woken_list);
2191 }
2192}
2193
Paolo Valenteaee69d72017-04-19 08:29:02 -06002194static void bfq_add_request(struct request *rq)
2195{
2196 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2197 struct bfq_data *bfqd = bfqq->bfqd;
2198 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02002199 unsigned int old_wr_coeff = bfqq->wr_coeff;
2200 bool interactive = false;
Paolo Valenteeb2fd802021-01-25 20:02:43 +01002201 u64 now_ns = ktime_get_ns();
Paolo Valenteaee69d72017-04-19 08:29:02 -06002202
2203 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2204 bfqq->queued[rq_is_sync(rq)]++;
2205 bfqd->queued++;
2206
Paolo Valente2341d6622019-03-12 09:59:29 +01002207 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
Paolo Valente71217df2021-01-25 20:02:48 +01002208 bfq_check_waker(bfqd, bfqq, now_ns);
Paolo Valente13a857a2019-06-25 07:12:47 +02002209
2210 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01002211 * Periodically reset inject limit, to make sure that
2212 * the latter eventually drops in case workload
2213 * changes, see step (3) in the comments on
2214 * bfq_update_inject_limit().
2215 */
2216 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente766d6142019-06-25 07:12:43 +02002217 msecs_to_jiffies(1000)))
2218 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valente2341d6622019-03-12 09:59:29 +01002219
2220 /*
2221 * The following conditions must hold to setup a new
2222 * sampling of total service time, and then a new
2223 * update of the inject limit:
2224 * - bfqq is in service, because the total service
2225 * time is evaluated only for the I/O requests of
2226 * the queues in service;
2227 * - this is the right occasion to compute or to
2228 * lower the baseline total service time, because
2229 * there are actually no requests in the drive,
2230 * or
2231 * the baseline total service time is available, and
2232 * this is the right occasion to compute the other
2233 * quantity needed to update the inject limit, i.e.,
2234 * the total service time caused by the amount of
2235 * injection allowed by the current value of the
2236 * limit. It is the right occasion because injection
2237 * has actually been performed during the service
2238 * hole, and there are still in-flight requests,
2239 * which are very likely to be exactly the injected
2240 * requests, or part of them;
2241 * - the minimum interval for sampling the total
2242 * service time and updating the inject limit has
2243 * elapsed.
2244 */
2245 if (bfqq == bfqd->in_service_queue &&
2246 (bfqd->rq_in_driver == 0 ||
2247 (bfqq->last_serv_time_ns > 0 &&
2248 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2249 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
Paolo Valente17c3d262019-08-22 17:20:36 +02002250 msecs_to_jiffies(10))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01002251 bfqd->last_empty_occupied_ns = ktime_get_ns();
2252 /*
2253 * Start the state machine for measuring the
2254 * total service time of rq: setting
2255 * wait_dispatch will cause bfqd->waited_rq to
2256 * be set when rq will be dispatched.
2257 */
2258 bfqd->wait_dispatch = true;
Paolo Valente23ed5702019-08-22 17:20:34 +02002259 /*
2260 * If there is no I/O in service in the drive,
2261 * then possible injection occurred before the
2262 * arrival of rq will not affect the total
2263 * service time of rq. So the injection limit
2264 * must not be updated as a function of such
2265 * total service time, unless new injection
2266 * occurs before rq is completed. To have the
2267 * injection limit updated only in the latter
2268 * case, reset rqs_injected here (rqs_injected
2269 * will be set in case injection is performed
2270 * on bfqq before rq is completed).
2271 */
2272 if (bfqd->rq_in_driver == 0)
2273 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01002274 }
2275 }
2276
Paolo Valenteeb2fd802021-01-25 20:02:43 +01002277 if (bfq_bfqq_sync(bfqq))
2278 bfq_update_io_intensity(bfqq, now_ns);
2279
Paolo Valenteaee69d72017-04-19 08:29:02 -06002280 elv_rb_add(&bfqq->sort_list, rq);
2281
2282 /*
2283 * Check if this request is a better next-serve candidate.
2284 */
2285 prev = bfqq->next_rq;
2286 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2287 bfqq->next_rq = next_rq;
2288
Arianna Avanzini36eca892017-04-12 18:23:16 +02002289 /*
2290 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002291 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02002292 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002293 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002294 bfq_pos_tree_add_move(bfqd, bfqq);
2295
Paolo Valenteaee69d72017-04-19 08:29:02 -06002296 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02002297 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2298 rq, &interactive);
2299 else {
2300 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2301 time_is_before_jiffies(
2302 bfqq->last_wr_start_finish +
2303 bfqd->bfq_wr_min_inter_arr_async)) {
2304 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2305 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2306
Paolo Valentecfd69712017-04-12 18:23:15 +02002307 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02002308 bfqq->entity.prio_changed = 1;
2309 }
2310 if (prev != bfqq->next_rq)
2311 bfq_updated_next_req(bfqd, bfqq);
2312 }
2313
2314 /*
2315 * Assign jiffies to last_wr_start_finish in the following
2316 * cases:
2317 *
2318 * . if bfqq is not going to be weight-raised, because, for
2319 * non weight-raised queues, last_wr_start_finish stores the
2320 * arrival time of the last request; as of now, this piece
2321 * of information is used only for deciding whether to
2322 * weight-raise async queues
2323 *
2324 * . if bfqq is not weight-raised, because, if bfqq is now
2325 * switching to weight-raised, then last_wr_start_finish
2326 * stores the time when weight-raising starts
2327 *
2328 * . if bfqq is interactive, because, regardless of whether
2329 * bfqq is currently weight-raised, the weight-raising
2330 * period must start or restart (this case is considered
2331 * separately because it is not detected by the above
2332 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02002333 *
2334 * last_wr_start_finish has to be updated also if bfqq is soft
2335 * real-time, because the weight-raising period is constantly
2336 * restarted on idle-to-busy transitions for these queues, but
2337 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2338 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02002339 */
2340 if (bfqd->low_latency &&
2341 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2342 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002343}
2344
2345static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2346 struct bio *bio,
2347 struct request_queue *q)
2348{
2349 struct bfq_queue *bfqq = bfqd->bio_bfqq;
2350
2351
2352 if (bfqq)
2353 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2354
2355 return NULL;
2356}
2357
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002358static sector_t get_sdist(sector_t last_pos, struct request *rq)
2359{
2360 if (last_pos)
2361 return abs(blk_rq_pos(rq) - last_pos);
2362
2363 return 0;
2364}
2365
Paolo Valenteaee69d72017-04-19 08:29:02 -06002366#if 0 /* Still not clear if we can do without next two functions */
2367static void bfq_activate_request(struct request_queue *q, struct request *rq)
2368{
2369 struct bfq_data *bfqd = q->elevator->elevator_data;
2370
2371 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002372}
2373
2374static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2375{
2376 struct bfq_data *bfqd = q->elevator->elevator_data;
2377
2378 bfqd->rq_in_driver--;
2379}
2380#endif
2381
2382static void bfq_remove_request(struct request_queue *q,
2383 struct request *rq)
2384{
2385 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2386 struct bfq_data *bfqd = bfqq->bfqd;
2387 const int sync = rq_is_sync(rq);
2388
2389 if (bfqq->next_rq == rq) {
2390 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2391 bfq_updated_next_req(bfqd, bfqq);
2392 }
2393
2394 if (rq->queuelist.prev != &rq->queuelist)
2395 list_del_init(&rq->queuelist);
2396 bfqq->queued[sync]--;
2397 bfqd->queued--;
2398 elv_rb_del(&bfqq->sort_list, rq);
2399
2400 elv_rqhash_del(q, rq);
2401 if (q->last_merge == rq)
2402 q->last_merge = NULL;
2403
2404 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2405 bfqq->next_rq = NULL;
2406
2407 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002408 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002409 /*
2410 * bfqq emptied. In normal operation, when
2411 * bfqq is empty, bfqq->entity.service and
2412 * bfqq->entity.budget must contain,
2413 * respectively, the service received and the
2414 * budget used last time bfqq emptied. These
2415 * facts do not hold in this case, as at least
2416 * this last removal occurred while bfqq is
2417 * not in service. To avoid inconsistencies,
2418 * reset both bfqq->entity.service and
2419 * bfqq->entity.budget, if bfqq has still a
2420 * process that may issue I/O requests to it.
2421 */
2422 bfqq->entity.budget = bfqq->entity.service = 0;
2423 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002424
2425 /*
2426 * Remove queue from request-position tree as it is empty.
2427 */
2428 if (bfqq->pos_root) {
2429 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2430 bfqq->pos_root = NULL;
2431 }
Paolo Valente05e90282017-12-20 12:38:31 +01002432 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002433 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2434 if (unlikely(!bfqd->nonrot_with_queueing))
2435 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002436 }
2437
2438 if (rq->cmd_flags & REQ_META)
2439 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002440
Paolo Valenteaee69d72017-04-19 08:29:02 -06002441}
2442
Omar Sandovalefed9a32021-05-10 17:05:35 -07002443static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002444 unsigned int nr_segs)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002445{
Paolo Valenteaee69d72017-04-19 08:29:02 -06002446 struct bfq_data *bfqd = q->elevator->elevator_data;
2447 struct request *free = NULL;
2448 /*
2449 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2450 * store its return value for later use, to avoid nesting
2451 * queue_lock inside the bfqd->lock. We assume that the bic
2452 * returned by bfq_bic_lookup does not go away before
2453 * bfqd->lock is taken.
2454 */
Christoph Hellwig836b3942021-11-26 12:58:06 +01002455 struct bfq_io_cq *bic = bfq_bic_lookup(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002456 bool ret;
2457
2458 spin_lock_irq(&bfqd->lock);
2459
2460 if (bic)
2461 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2462 else
2463 bfqd->bio_bfqq = NULL;
2464 bfqd->bio_bic = bic;
2465
Christoph Hellwig14ccb662019-06-06 12:29:01 +02002466 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002467
Jan Karafd2ef392021-06-23 11:36:34 +02002468 spin_unlock_irq(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002469 if (free)
2470 blk_mq_free_request(free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002471
2472 return ret;
2473}
2474
2475static int bfq_request_merge(struct request_queue *q, struct request **req,
2476 struct bio *bio)
2477{
2478 struct bfq_data *bfqd = q->elevator->elevator_data;
2479 struct request *__rq;
2480
2481 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2482 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2483 *req = __rq;
Ming Lei866663b2021-07-29 11:42:26 +08002484
2485 if (blk_discard_mergable(__rq))
2486 return ELEVATOR_DISCARD_MERGE;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002487 return ELEVATOR_FRONT_MERGE;
2488 }
2489
2490 return ELEVATOR_NO_MERGE;
2491}
2492
Paolo Valente18e5a572018-05-04 19:17:01 +02002493static struct bfq_queue *bfq_init_rq(struct request *rq);
2494
Paolo Valenteaee69d72017-04-19 08:29:02 -06002495static void bfq_request_merged(struct request_queue *q, struct request *req,
2496 enum elv_merge type)
2497{
2498 if (type == ELEVATOR_FRONT_MERGE &&
2499 rb_prev(&req->rb_node) &&
2500 blk_rq_pos(req) <
2501 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2502 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002503 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valentefd031772019-08-07 19:21:11 +02002504 struct bfq_data *bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002505 struct request *prev, *next_rq;
2506
Paolo Valentefd031772019-08-07 19:21:11 +02002507 if (!bfqq)
2508 return;
2509
2510 bfqd = bfqq->bfqd;
2511
Paolo Valenteaee69d72017-04-19 08:29:02 -06002512 /* Reposition request in its sort_list */
2513 elv_rb_del(&bfqq->sort_list, req);
2514 elv_rb_add(&bfqq->sort_list, req);
2515
2516 /* Choose next request to be served for bfqq */
2517 prev = bfqq->next_rq;
2518 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2519 bfqd->last_position);
2520 bfqq->next_rq = next_rq;
2521 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002522 * If next_rq changes, update both the queue's budget to
2523 * fit the new request and the queue's position in its
2524 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002525 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002526 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002527 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002528 /*
2529 * See comments on bfq_pos_tree_add_move() for
2530 * the unlikely().
2531 */
2532 if (unlikely(!bfqd->nonrot_with_queueing))
2533 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002534 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002535 }
2536}
2537
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002538/*
2539 * This function is called to notify the scheduler that the requests
2540 * rq and 'next' have been merged, with 'next' going away. BFQ
2541 * exploits this hook to address the following issue: if 'next' has a
2542 * fifo_time lower that rq, then the fifo_time of rq must be set to
2543 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002544 *
2545 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2546 * on that rq is picked from the hash table q->elevator->hash, which,
2547 * in its turn, is filled only with I/O requests present in
2548 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2549 * the function that fills this hash table (elv_rqhash_add) is called
2550 * only by bfq_insert_request.
2551 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002552static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2553 struct request *next)
2554{
Paolo Valente18e5a572018-05-04 19:17:01 +02002555 struct bfq_queue *bfqq = bfq_init_rq(rq),
2556 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002557
Paolo Valentefd031772019-08-07 19:21:11 +02002558 if (!bfqq)
Jan Karaa921c652021-06-23 11:36:33 +02002559 goto remove;
Paolo Valentefd031772019-08-07 19:21:11 +02002560
Paolo Valenteaee69d72017-04-19 08:29:02 -06002561 /*
2562 * If next and rq belong to the same bfq_queue and next is older
2563 * than rq, then reposition rq in the fifo (by substituting next
2564 * with rq). Otherwise, if next and rq belong to different
2565 * bfq_queues, never reposition rq: in fact, we would have to
2566 * reposition it with respect to next's position in its own fifo,
2567 * which would most certainly be too expensive with respect to
2568 * the benefits.
2569 */
2570 if (bfqq == next_bfqq &&
2571 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2572 next->fifo_time < rq->fifo_time) {
2573 list_del_init(&rq->queuelist);
2574 list_replace_init(&next->queuelist, &rq->queuelist);
2575 rq->fifo_time = next->fifo_time;
2576 }
2577
2578 if (bfqq->next_rq == next)
2579 bfqq->next_rq = rq;
2580
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002581 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Jan Karaa921c652021-06-23 11:36:33 +02002582remove:
2583 /* Merged request may be in the IO scheduler. Remove it. */
2584 if (!RB_EMPTY_NODE(&next->rb_node)) {
2585 bfq_remove_request(next->q, next);
2586 if (next_bfqq)
2587 bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2588 next->cmd_flags);
2589 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002590}
2591
Paolo Valente44e44a12017-04-12 18:23:12 +02002592/* Must be called with bfqq != NULL */
2593static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2594{
Paolo Valente3c337692021-01-22 19:19:47 +01002595 /*
2596 * If bfqq has been enjoying interactive weight-raising, then
2597 * reset soft_rt_next_start. We do it for the following
2598 * reason. bfqq may have been conveying the I/O needed to load
2599 * a soft real-time application. Such an application actually
2600 * exhibits a soft real-time I/O pattern after it finishes
2601 * loading, and finally starts doing its job. But, if bfqq has
2602 * been receiving a lot of bandwidth so far (likely to happen
2603 * on a fast device), then soft_rt_next_start now contains a
2604 * high value that. So, without this reset, bfqq would be
2605 * prevented from being possibly considered as soft_rt for a
2606 * very long time.
2607 */
2608
2609 if (bfqq->wr_cur_max_time !=
2610 bfqq->bfqd->bfq_wr_rt_max_time)
2611 bfqq->soft_rt_next_start = jiffies;
2612
Paolo Valentecfd69712017-04-12 18:23:15 +02002613 if (bfq_bfqq_busy(bfqq))
2614 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002615 bfqq->wr_coeff = 1;
2616 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002617 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002618 /*
2619 * Trigger a weight change on the next invocation of
2620 * __bfq_entity_update_weight_prio.
2621 */
2622 bfqq->entity.prio_changed = 1;
2623}
2624
Paolo Valenteea25da42017-04-19 08:48:24 -06002625void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2626 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002627{
2628 int i, j;
2629
2630 for (i = 0; i < 2; i++)
Damien Le Moal202bc942021-08-11 12:37:01 +09002631 for (j = 0; j < IOPRIO_NR_LEVELS; j++)
Paolo Valente44e44a12017-04-12 18:23:12 +02002632 if (bfqg->async_bfqq[i][j])
2633 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2634 if (bfqg->async_idle_bfqq)
2635 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2636}
2637
2638static void bfq_end_wr(struct bfq_data *bfqd)
2639{
2640 struct bfq_queue *bfqq;
2641
2642 spin_lock_irq(&bfqd->lock);
2643
2644 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2645 bfq_bfqq_end_wr(bfqq);
2646 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2647 bfq_bfqq_end_wr(bfqq);
2648 bfq_end_wr_async(bfqd);
2649
2650 spin_unlock_irq(&bfqd->lock);
2651}
2652
Arianna Avanzini36eca892017-04-12 18:23:16 +02002653static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2654{
2655 if (request)
2656 return blk_rq_pos(io_struct);
2657 else
2658 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2659}
2660
2661static int bfq_rq_close_to_sector(void *io_struct, bool request,
2662 sector_t sector)
2663{
2664 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2665 BFQQ_CLOSE_THR;
2666}
2667
2668static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2669 struct bfq_queue *bfqq,
2670 sector_t sector)
2671{
2672 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2673 struct rb_node *parent, *node;
2674 struct bfq_queue *__bfqq;
2675
2676 if (RB_EMPTY_ROOT(root))
2677 return NULL;
2678
2679 /*
2680 * First, if we find a request starting at the end of the last
2681 * request, choose it.
2682 */
2683 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2684 if (__bfqq)
2685 return __bfqq;
2686
2687 /*
2688 * If the exact sector wasn't found, the parent of the NULL leaf
2689 * will contain the closest sector (rq_pos_tree sorted by
2690 * next_request position).
2691 */
2692 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2693 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2694 return __bfqq;
2695
2696 if (blk_rq_pos(__bfqq->next_rq) < sector)
2697 node = rb_next(&__bfqq->pos_node);
2698 else
2699 node = rb_prev(&__bfqq->pos_node);
2700 if (!node)
2701 return NULL;
2702
2703 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2704 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2705 return __bfqq;
2706
2707 return NULL;
2708}
2709
2710static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2711 struct bfq_queue *cur_bfqq,
2712 sector_t sector)
2713{
2714 struct bfq_queue *bfqq;
2715
2716 /*
2717 * We shall notice if some of the queues are cooperating,
2718 * e.g., working closely on the same area of the device. In
2719 * that case, we can group them together and: 1) don't waste
2720 * time idling, and 2) serve the union of their requests in
2721 * the best possible order for throughput.
2722 */
2723 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2724 if (!bfqq || bfqq == cur_bfqq)
2725 return NULL;
2726
2727 return bfqq;
2728}
2729
2730static struct bfq_queue *
2731bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2732{
2733 int process_refs, new_process_refs;
2734 struct bfq_queue *__bfqq;
2735
2736 /*
2737 * If there are no process references on the new_bfqq, then it is
2738 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2739 * may have dropped their last reference (not just their last process
2740 * reference).
2741 */
2742 if (!bfqq_process_refs(new_bfqq))
2743 return NULL;
2744
2745 /* Avoid a circular list and skip interim queue merges. */
2746 while ((__bfqq = new_bfqq->new_bfqq)) {
2747 if (__bfqq == bfqq)
2748 return NULL;
2749 new_bfqq = __bfqq;
2750 }
2751
2752 process_refs = bfqq_process_refs(bfqq);
2753 new_process_refs = bfqq_process_refs(new_bfqq);
2754 /*
2755 * If the process for the bfqq has gone away, there is no
2756 * sense in merging the queues.
2757 */
2758 if (process_refs == 0 || new_process_refs == 0)
2759 return NULL;
2760
2761 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2762 new_bfqq->pid);
2763
2764 /*
2765 * Merging is just a redirection: the requests of the process
2766 * owning one of the two queues are redirected to the other queue.
2767 * The latter queue, in its turn, is set as shared if this is the
2768 * first time that the requests of some process are redirected to
2769 * it.
2770 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002771 * We redirect bfqq to new_bfqq and not the opposite, because
2772 * we are in the context of the process owning bfqq, thus we
2773 * have the io_cq of this process. So we can immediately
2774 * configure this io_cq to redirect the requests of the
2775 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2776 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002777 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002778 * Anyway, even in case new_bfqq coincides with the in-service
2779 * queue, redirecting requests the in-service queue is the
2780 * best option, as we feed the in-service queue with new
2781 * requests close to the last request served and, by doing so,
2782 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002783 */
2784 bfqq->new_bfqq = new_bfqq;
2785 new_bfqq->ref += process_refs;
2786 return new_bfqq;
2787}
2788
2789static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2790 struct bfq_queue *new_bfqq)
2791{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002792 if (bfq_too_late_for_merging(new_bfqq))
2793 return false;
2794
Arianna Avanzini36eca892017-04-12 18:23:16 +02002795 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2796 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2797 return false;
2798
2799 /*
2800 * If either of the queues has already been detected as seeky,
2801 * then merging it with the other queue is unlikely to lead to
2802 * sequential I/O.
2803 */
2804 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2805 return false;
2806
2807 /*
2808 * Interleaved I/O is known to be done by (some) applications
2809 * only for reads, so it does not make sense to merge async
2810 * queues.
2811 */
2812 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2813 return false;
2814
2815 return true;
2816}
2817
Paolo Valente430a67f2021-03-04 18:46:27 +01002818static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2819 struct bfq_queue *bfqq);
2820
Arianna Avanzini36eca892017-04-12 18:23:16 +02002821/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002822 * Attempt to schedule a merge of bfqq with the currently in-service
2823 * queue or with a close queue among the scheduled queues. Return
2824 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2825 * structure otherwise.
2826 *
2827 * The OOM queue is not allowed to participate to cooperation: in fact, since
2828 * the requests temporarily redirected to the OOM queue could be redirected
2829 * again to dedicated queues at any time, the state needed to correctly
2830 * handle merging with the OOM queue would be quite complex and expensive
2831 * to maintain. Besides, in such a critical condition as an out of memory,
2832 * the benefits of queue merging may be little relevant, or even negligible.
2833 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002834 * WARNING: queue merging may impair fairness among non-weight raised
2835 * queues, for at least two reasons: 1) the original weight of a
2836 * merged queue may change during the merged state, 2) even being the
2837 * weight the same, a merged queue may be bloated with many more
2838 * requests than the ones produced by its originally-associated
2839 * process.
2840 */
2841static struct bfq_queue *
2842bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valente430a67f2021-03-04 18:46:27 +01002843 void *io_struct, bool request, struct bfq_io_cq *bic)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002844{
2845 struct bfq_queue *in_service_bfqq, *new_bfqq;
2846
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002847 /*
Paolo Valente430a67f2021-03-04 18:46:27 +01002848 * Check delayed stable merge for rotational or non-queueing
2849 * devs. For this branch to be executed, bfqq must not be
2850 * currently merged with some other queue (i.e., bfqq->bic
2851 * must be non null). If we considered also merged queues,
2852 * then we should also check whether bfqq has already been
2853 * merged with bic->stable_merge_bfqq. But this would be
2854 * costly and complicated.
2855 */
2856 if (unlikely(!bfqd->nonrot_with_queueing)) {
Paolo Valentebd3664b2021-06-19 16:09:46 +02002857 /*
2858 * Make sure also that bfqq is sync, because
2859 * bic->stable_merge_bfqq may point to some queue (for
2860 * stable merging) also if bic is associated with a
2861 * sync queue, but this bfqq is async
2862 */
2863 if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
Paolo Valente430a67f2021-03-04 18:46:27 +01002864 !bfq_bfqq_just_created(bfqq) &&
Luca Mariottie03f2ab2021-06-19 16:09:43 +02002865 time_is_before_jiffies(bfqq->split_time +
Pietro Pedroni78124722021-06-19 16:09:45 +02002866 msecs_to_jiffies(bfq_late_stable_merging)) &&
Paolo Valented4f49982021-06-19 16:09:44 +02002867 time_is_before_jiffies(bfqq->creation_time +
Pietro Pedroni78124722021-06-19 16:09:45 +02002868 msecs_to_jiffies(bfq_late_stable_merging))) {
Paolo Valente430a67f2021-03-04 18:46:27 +01002869 struct bfq_queue *stable_merge_bfqq =
2870 bic->stable_merge_bfqq;
2871 int proc_ref = min(bfqq_process_refs(bfqq),
2872 bfqq_process_refs(stable_merge_bfqq));
2873
2874 /* deschedule stable merge, because done or aborted here */
2875 bfq_put_stable_ref(stable_merge_bfqq);
2876
2877 bic->stable_merge_bfqq = NULL;
2878
2879 if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2880 proc_ref > 0) {
2881 /* next function will take at least one ref */
2882 struct bfq_queue *new_bfqq =
2883 bfq_setup_merge(bfqq, stable_merge_bfqq);
2884
2885 bic->stably_merged = true;
2886 if (new_bfqq && new_bfqq->bic)
2887 new_bfqq->bic->stably_merged = true;
2888 return new_bfqq;
2889 } else
2890 return NULL;
2891 }
2892 }
2893
2894 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002895 * Do not perform queue merging if the device is non
2896 * rotational and performs internal queueing. In fact, such a
2897 * device reaches a high speed through internal parallelism
2898 * and pipelining. This means that, to reach a high
2899 * throughput, it must have many requests enqueued at the same
2900 * time. But, in this configuration, the internal scheduling
2901 * algorithm of the device does exactly the job of queue
2902 * merging: it reorders requests so as to obtain as much as
2903 * possible a sequential I/O pattern. As a consequence, with
2904 * the workload generated by processes doing interleaved I/O,
2905 * the throughput reached by the device is likely to be the
2906 * same, with and without queue merging.
2907 *
2908 * Disabling merging also provides a remarkable benefit in
2909 * terms of throughput. Merging tends to make many workloads
2910 * artificially more uneven, because of shared queues
2911 * remaining non empty for incomparably more time than
2912 * non-merged queues. This may accentuate workload
2913 * asymmetries. For example, if one of the queues in a set of
2914 * merged queues has a higher weight than a normal queue, then
2915 * the shared queue may inherit such a high weight and, by
2916 * staying almost always active, may force BFQ to perform I/O
2917 * plugging most of the time. This evidently makes it harder
2918 * for BFQ to let the device reach a high throughput.
2919 *
2920 * Finally, the likely() macro below is not used because one
2921 * of the two branches is more likely than the other, but to
2922 * have the code path after the following if() executed as
2923 * fast as possible for the case of a non rotational device
2924 * with queueing. We want it because this is the fastest kind
2925 * of device. On the opposite end, the likely() may lengthen
2926 * the execution time of BFQ for the case of slower devices
2927 * (rotational or at least without queueing). But in this case
2928 * the execution time of BFQ matters very little, if not at
2929 * all.
2930 */
2931 if (likely(bfqd->nonrot_with_queueing))
2932 return NULL;
2933
2934 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002935 * Prevent bfqq from being merged if it has been created too
2936 * long ago. The idea is that true cooperating processes, and
2937 * thus their associated bfq_queues, are supposed to be
2938 * created shortly after each other. This is the case, e.g.,
2939 * for KVM/QEMU and dump I/O threads. Basing on this
2940 * assumption, the following filtering greatly reduces the
2941 * probability that two non-cooperating processes, which just
2942 * happen to do close I/O for some short time interval, have
2943 * their queues merged by mistake.
2944 */
2945 if (bfq_too_late_for_merging(bfqq))
2946 return NULL;
2947
Jens Axboeebc69e82021-09-28 06:33:15 -06002948 if (bfqq->new_bfqq)
2949 return bfqq->new_bfqq;
2950
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002951 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002952 return NULL;
2953
2954 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002955 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002956 return NULL;
2957
2958 in_service_bfqq = bfqd->in_service_queue;
2959
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002960 if (in_service_bfqq && in_service_bfqq != bfqq &&
2961 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002962 bfq_rq_close_to_sector(io_struct, request,
2963 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002964 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2965 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2966 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2967 if (new_bfqq)
2968 return new_bfqq;
2969 }
2970 /*
2971 * Check whether there is a cooperator among currently scheduled
2972 * queues. The only thing we need is that the bio/request is not
2973 * NULL, as we need it to establish whether a cooperator exists.
2974 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002975 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2976 bfq_io_struct_pos(io_struct, request));
2977
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002978 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002979 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2980 return bfq_setup_merge(bfqq, new_bfqq);
2981
2982 return NULL;
2983}
2984
2985static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2986{
2987 struct bfq_io_cq *bic = bfqq->bic;
2988
2989 /*
2990 * If !bfqq->bic, the queue is already shared or its requests
2991 * have already been redirected to a shared queue; both idle window
2992 * and weight raising state have already been saved. Do nothing.
2993 */
2994 if (!bic)
2995 return;
2996
Paolo Valente5a5436b2021-01-25 20:02:47 +01002997 bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2998 bic->saved_inject_limit = bfqq->inject_limit;
2999 bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
3000
Francesco Pollicinofffca082019-03-12 09:59:34 +01003001 bic->saved_weight = bfqq->entity.orig_weight;
Arianna Avanzini36eca892017-04-12 18:23:16 +02003002 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02003003 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003004 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Paolo Valenteeb2fd802021-01-25 20:02:43 +01003005 bic->saved_io_start_time = bfqq->io_start_time;
3006 bic->saved_tot_idle_time = bfqq->tot_idle_time;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003007 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3008 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02003009 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01003010 !bfq_bfqq_in_large_burst(bfqq) &&
3011 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02003012 /*
3013 * bfqq being merged right after being created: bfqq
3014 * would have deserved interactive weight raising, but
3015 * did not make it to be set in a weight-raised state,
3016 * because of this early merge. Store directly the
3017 * weight-raising state that would have been assigned
3018 * to bfqq, so that to avoid that bfqq unjustly fails
3019 * to enjoy weight raising if split soon.
3020 */
3021 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
Douglas Anderson2b50f232019-06-26 12:59:19 -07003022 bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
Paolo Valente894df932017-09-21 11:04:02 +02003023 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
3024 bic->saved_last_wr_start_finish = jiffies;
3025 } else {
3026 bic->saved_wr_coeff = bfqq->wr_coeff;
3027 bic->saved_wr_start_at_switch_to_srt =
3028 bfqq->wr_start_at_switch_to_srt;
Paolo Valentee6739142021-01-25 20:02:46 +01003029 bic->saved_service_from_wr = bfqq->service_from_wr;
Paolo Valente894df932017-09-21 11:04:02 +02003030 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3031 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3032 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02003033}
3034
Paolo Valente430a67f2021-03-04 18:46:27 +01003035
3036static void
3037bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3038{
3039 if (cur_bfqq->entity.parent &&
3040 cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3041 cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3042 else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3043 cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3044}
3045
Paolo Valente478de332019-11-14 10:33:11 +01003046void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3047{
3048 /*
3049 * To prevent bfqq's service guarantees from being violated,
3050 * bfqq may be left busy, i.e., queued for service, even if
3051 * empty (see comments in __bfq_bfqq_expire() for
3052 * details). But, if no process will send requests to bfqq any
3053 * longer, then there is no point in keeping bfqq queued for
3054 * service. In addition, keeping bfqq queued for service, but
3055 * with no process ref any longer, may have caused bfqq to be
3056 * freed when dequeued from service. But this is assumed to
3057 * never happen.
3058 */
3059 if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3060 bfqq != bfqd->in_service_queue)
3061 bfq_del_bfqq_busy(bfqd, bfqq, false);
3062
Paolo Valente430a67f2021-03-04 18:46:27 +01003063 bfq_reassign_last_bfqq(bfqq, NULL);
3064
Paolo Valente478de332019-11-14 10:33:11 +01003065 bfq_put_queue(bfqq);
3066}
3067
Arianna Avanzini36eca892017-04-12 18:23:16 +02003068static void
3069bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3070 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3071{
3072 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3073 (unsigned long)new_bfqq->pid);
3074 /* Save weight raising and idle window of the merged queues */
3075 bfq_bfqq_save_state(bfqq);
3076 bfq_bfqq_save_state(new_bfqq);
3077 if (bfq_bfqq_IO_bound(bfqq))
3078 bfq_mark_bfqq_IO_bound(new_bfqq);
3079 bfq_clear_bfqq_IO_bound(bfqq);
3080
3081 /*
Paolo Valente8ef3fc32021-03-04 18:46:24 +01003082 * The processes associated with bfqq are cooperators of the
3083 * processes associated with new_bfqq. So, if bfqq has a
3084 * waker, then assume that all these processes will be happy
3085 * to let bfqq's waker freely inject I/O when they have no
3086 * I/O.
3087 */
3088 if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3089 bfqq->waker_bfqq != new_bfqq) {
3090 new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3091 new_bfqq->tentative_waker_bfqq = NULL;
3092
3093 /*
3094 * If the waker queue disappears, then
3095 * new_bfqq->waker_bfqq must be reset. So insert
3096 * new_bfqq into the woken_list of the waker. See
3097 * bfq_check_waker for details.
3098 */
3099 hlist_add_head(&new_bfqq->woken_list_node,
3100 &new_bfqq->waker_bfqq->woken_list);
3101
3102 }
3103
3104 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02003105 * If bfqq is weight-raised, then let new_bfqq inherit
3106 * weight-raising. To reduce false positives, neglect the case
3107 * where bfqq has just been created, but has not yet made it
3108 * to be weight-raised (which may happen because EQM may merge
3109 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003110 * time for bfqq). Handling this case would however be very
3111 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02003112 */
3113 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3114 new_bfqq->wr_coeff = bfqq->wr_coeff;
3115 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3116 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3117 new_bfqq->wr_start_at_switch_to_srt =
3118 bfqq->wr_start_at_switch_to_srt;
3119 if (bfq_bfqq_busy(new_bfqq))
3120 bfqd->wr_busy_queues++;
3121 new_bfqq->entity.prio_changed = 1;
3122 }
3123
3124 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3125 bfqq->wr_coeff = 1;
3126 bfqq->entity.prio_changed = 1;
3127 if (bfq_bfqq_busy(bfqq))
3128 bfqd->wr_busy_queues--;
3129 }
3130
3131 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3132 bfqd->wr_busy_queues);
3133
3134 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02003135 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3136 */
3137 bic_set_bfqq(bic, new_bfqq, 1);
3138 bfq_mark_bfqq_coop(new_bfqq);
3139 /*
3140 * new_bfqq now belongs to at least two bics (it is a shared queue):
3141 * set new_bfqq->bic to NULL. bfqq either:
3142 * - does not belong to any bic any more, and hence bfqq->bic must
3143 * be set to NULL, or
3144 * - is a queue whose owning bics have already been redirected to a
3145 * different queue, hence the queue is destined to not belong to
3146 * any bic soon and bfqq->bic is already NULL (therefore the next
3147 * assignment causes no harm).
3148 */
3149 new_bfqq->bic = NULL;
Francesco Pollicino1e664132019-03-12 09:59:33 +01003150 /*
3151 * If the queue is shared, the pid is the pid of one of the associated
3152 * processes. Which pid depends on the exact sequence of merge events
3153 * the queue underwent. So printing such a pid is useless and confusing
3154 * because it reports a random pid between those of the associated
3155 * processes.
3156 * We mark such a queue with a pid -1, and then print SHARED instead of
3157 * a pid in logging messages.
3158 */
3159 new_bfqq->pid = -1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02003160 bfqq->bic = NULL;
Paolo Valente430a67f2021-03-04 18:46:27 +01003161
3162 bfq_reassign_last_bfqq(bfqq, new_bfqq);
3163
Paolo Valente478de332019-11-14 10:33:11 +01003164 bfq_release_process_ref(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003165}
3166
Paolo Valenteaee69d72017-04-19 08:29:02 -06003167static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3168 struct bio *bio)
3169{
3170 struct bfq_data *bfqd = q->elevator->elevator_data;
3171 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003172 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003173
3174 /*
3175 * Disallow merge of a sync bio into an async request.
3176 */
3177 if (is_sync && !rq_is_sync(rq))
3178 return false;
3179
3180 /*
3181 * Lookup the bfqq that this bio will be queued with. Allow
3182 * merge only if rq is queued there.
3183 */
3184 if (!bfqq)
3185 return false;
3186
Arianna Avanzini36eca892017-04-12 18:23:16 +02003187 /*
3188 * We take advantage of this function to perform an early merge
3189 * of the queues of possible cooperating processes.
3190 */
Paolo Valente430a67f2021-03-04 18:46:27 +01003191 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003192 if (new_bfqq) {
3193 /*
3194 * bic still points to bfqq, then it has not yet been
3195 * redirected to some other bfq_queue, and a queue
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02003196 * merge between bfqq and new_bfqq can be safely
3197 * fulfilled, i.e., bic can be redirected to new_bfqq
Arianna Avanzini36eca892017-04-12 18:23:16 +02003198 * and bfqq can be put.
3199 */
3200 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3201 new_bfqq);
3202 /*
3203 * If we get here, bio will be queued into new_queue,
3204 * so use new_bfqq to decide whether bio and rq can be
3205 * merged.
3206 */
3207 bfqq = new_bfqq;
3208
3209 /*
3210 * Change also bqfd->bio_bfqq, as
3211 * bfqd->bio_bic now points to new_bfqq, and
3212 * this function may be invoked again (and then may
3213 * use again bqfd->bio_bfqq).
3214 */
3215 bfqd->bio_bfqq = bfqq;
3216 }
3217
Paolo Valenteaee69d72017-04-19 08:29:02 -06003218 return bfqq == RQ_BFQQ(rq);
3219}
3220
Paolo Valente44e44a12017-04-12 18:23:12 +02003221/*
3222 * Set the maximum time for the in-service queue to consume its
3223 * budget. This prevents seeky processes from lowering the throughput.
3224 * In practice, a time-slice service scheme is used with seeky
3225 * processes.
3226 */
3227static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3228 struct bfq_queue *bfqq)
3229{
Paolo Valente77b7dce2017-04-12 18:23:13 +02003230 unsigned int timeout_coeff;
3231
3232 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3233 timeout_coeff = 1;
3234 else
3235 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3236
Paolo Valente44e44a12017-04-12 18:23:12 +02003237 bfqd->last_budget_start = ktime_get();
3238
3239 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02003240 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02003241}
3242
Paolo Valenteaee69d72017-04-19 08:29:02 -06003243static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3244 struct bfq_queue *bfqq)
3245{
3246 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003247 bfq_clear_bfqq_fifo_expire(bfqq);
3248
3249 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3250
Paolo Valente77b7dce2017-04-12 18:23:13 +02003251 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3252 bfqq->wr_coeff > 1 &&
3253 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3254 time_is_before_jiffies(bfqq->budget_timeout)) {
3255 /*
3256 * For soft real-time queues, move the start
3257 * of the weight-raising period forward by the
3258 * time the queue has not received any
3259 * service. Otherwise, a relatively long
3260 * service delay is likely to cause the
3261 * weight-raising period of the queue to end,
3262 * because of the short duration of the
3263 * weight-raising period of a soft real-time
3264 * queue. It is worth noting that this move
3265 * is not so dangerous for the other queues,
3266 * because soft real-time queues are not
3267 * greedy.
3268 *
3269 * To not add a further variable, we use the
3270 * overloaded field budget_timeout to
3271 * determine for how long the queue has not
3272 * received service, i.e., how much time has
3273 * elapsed since the queue expired. However,
3274 * this is a little imprecise, because
3275 * budget_timeout is set to jiffies if bfqq
3276 * not only expires, but also remains with no
3277 * request.
3278 */
3279 if (time_after(bfqq->budget_timeout,
3280 bfqq->last_wr_start_finish))
3281 bfqq->last_wr_start_finish +=
3282 jiffies - bfqq->budget_timeout;
3283 else
3284 bfqq->last_wr_start_finish = jiffies;
3285 }
3286
Paolo Valente44e44a12017-04-12 18:23:12 +02003287 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003288 bfq_log_bfqq(bfqd, bfqq,
3289 "set_in_service_queue, cur-budget = %d",
3290 bfqq->entity.budget);
3291 }
3292
3293 bfqd->in_service_queue = bfqq;
Jan Kara41e76c82020-06-05 16:16:16 +02003294 bfqd->in_serv_last_pos = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003295}
3296
3297/*
3298 * Get and set a new queue for service.
3299 */
3300static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3301{
3302 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3303
3304 __bfq_set_in_service_queue(bfqd, bfqq);
3305 return bfqq;
3306}
3307
Paolo Valenteaee69d72017-04-19 08:29:02 -06003308static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3309{
3310 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003311 u32 sl;
3312
Paolo Valenteaee69d72017-04-19 08:29:02 -06003313 bfq_mark_bfqq_wait_request(bfqq);
3314
3315 /*
3316 * We don't want to idle for seeks, but we do want to allow
3317 * fair distribution of slice time for a process doing back-to-back
3318 * seeks. So allow a little bit of time for him to submit a new rq.
3319 */
3320 sl = bfqd->bfq_slice_idle;
3321 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02003322 * Unless the queue is being weight-raised or the scenario is
3323 * asymmetric, grant only minimum idle time if the queue
3324 * is seeky. A long idling is preserved for a weight-raised
3325 * queue, or, more in general, in an asymmetric scenario,
3326 * because a long idling is needed for guaranteeing to a queue
3327 * its reserved share of the throughput (in particular, it is
3328 * needed if the queue has a higher weight than some other
3329 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003330 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02003331 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01003332 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003333 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01003334 else if (bfqq->wr_coeff > 1)
3335 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003336
3337 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01003338 bfqd->last_idling_start_jiffies = jiffies;
3339
Paolo Valenteaee69d72017-04-19 08:29:02 -06003340 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3341 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003342 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003343}
3344
3345/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003346 * In autotuning mode, max_budget is dynamically recomputed as the
3347 * amount of sectors transferred in timeout at the estimated peak
3348 * rate. This enables BFQ to utilize a full timeslice with a full
3349 * budget, even if the in-service queue is served at peak rate. And
3350 * this maximises throughput with sequential workloads.
3351 */
3352static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3353{
3354 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3355 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3356}
3357
Paolo Valente44e44a12017-04-12 18:23:12 +02003358/*
3359 * Update parameters related to throughput and responsiveness, as a
3360 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02003361 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02003362 */
3363static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3364{
Paolo Valentee24f1c22018-05-31 16:45:06 +02003365 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02003366 bfqd->bfq_max_budget =
3367 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02003368 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02003369 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003370}
3371
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003372static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3373 struct request *rq)
3374{
3375 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3376 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3377 bfqd->peak_rate_samples = 1;
3378 bfqd->sequential_samples = 0;
3379 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3380 blk_rq_sectors(rq);
3381 } else /* no new rq dispatched, just reset the number of samples */
3382 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3383
3384 bfq_log(bfqd,
3385 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
3386 bfqd->peak_rate_samples, bfqd->sequential_samples,
3387 bfqd->tot_sectors_dispatched);
3388}
3389
3390static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3391{
3392 u32 rate, weight, divisor;
3393
3394 /*
3395 * For the convergence property to hold (see comments on
3396 * bfq_update_peak_rate()) and for the assessment to be
3397 * reliable, a minimum number of samples must be present, and
3398 * a minimum amount of time must have elapsed. If not so, do
3399 * not compute new rate. Just reset parameters, to get ready
3400 * for a new evaluation attempt.
3401 */
3402 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3403 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3404 goto reset_computation;
3405
3406 /*
3407 * If a new request completion has occurred after last
3408 * dispatch, then, to approximate the rate at which requests
3409 * have been served by the device, it is more precise to
3410 * extend the observation interval to the last completion.
3411 */
3412 bfqd->delta_from_first =
3413 max_t(u64, bfqd->delta_from_first,
3414 bfqd->last_completion - bfqd->first_dispatch);
3415
3416 /*
3417 * Rate computed in sects/usec, and not sects/nsec, for
3418 * precision issues.
3419 */
3420 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3421 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3422
3423 /*
3424 * Peak rate not updated if:
3425 * - the percentage of sequential dispatches is below 3/4 of the
3426 * total, and rate is below the current estimated peak rate
3427 * - rate is unreasonably high (> 20M sectors/sec)
3428 */
3429 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3430 rate <= bfqd->peak_rate) ||
3431 rate > 20<<BFQ_RATE_SHIFT)
3432 goto reset_computation;
3433
3434 /*
3435 * We have to update the peak rate, at last! To this purpose,
3436 * we use a low-pass filter. We compute the smoothing constant
3437 * of the filter as a function of the 'weight' of the new
3438 * measured rate.
3439 *
3440 * As can be seen in next formulas, we define this weight as a
3441 * quantity proportional to how sequential the workload is,
3442 * and to how long the observation time interval is.
3443 *
3444 * The weight runs from 0 to 8. The maximum value of the
3445 * weight, 8, yields the minimum value for the smoothing
3446 * constant. At this minimum value for the smoothing constant,
3447 * the measured rate contributes for half of the next value of
3448 * the estimated peak rate.
3449 *
3450 * So, the first step is to compute the weight as a function
3451 * of how sequential the workload is. Note that the weight
3452 * cannot reach 9, because bfqd->sequential_samples cannot
3453 * become equal to bfqd->peak_rate_samples, which, in its
3454 * turn, holds true because bfqd->sequential_samples is not
3455 * incremented for the first sample.
3456 */
3457 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3458
3459 /*
3460 * Second step: further refine the weight as a function of the
3461 * duration of the observation interval.
3462 */
3463 weight = min_t(u32, 8,
3464 div_u64(weight * bfqd->delta_from_first,
3465 BFQ_RATE_REF_INTERVAL));
3466
3467 /*
3468 * Divisor ranging from 10, for minimum weight, to 2, for
3469 * maximum weight.
3470 */
3471 divisor = 10 - weight;
3472
3473 /*
3474 * Finally, update peak rate:
3475 *
3476 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
3477 */
3478 bfqd->peak_rate *= divisor-1;
3479 bfqd->peak_rate /= divisor;
3480 rate /= divisor; /* smoothing constant alpha = 1/divisor */
3481
3482 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02003483
3484 /*
3485 * For a very slow device, bfqd->peak_rate can reach 0 (see
3486 * the minimum representable values reported in the comments
3487 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3488 * divisions by zero where bfqd->peak_rate is used as a
3489 * divisor.
3490 */
3491 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3492
Paolo Valente44e44a12017-04-12 18:23:12 +02003493 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003494
3495reset_computation:
3496 bfq_reset_rate_computation(bfqd, rq);
3497}
3498
3499/*
3500 * Update the read/write peak rate (the main quantity used for
3501 * auto-tuning, see update_thr_responsiveness_params()).
3502 *
3503 * It is not trivial to estimate the peak rate (correctly): because of
3504 * the presence of sw and hw queues between the scheduler and the
3505 * device components that finally serve I/O requests, it is hard to
3506 * say exactly when a given dispatched request is served inside the
3507 * device, and for how long. As a consequence, it is hard to know
3508 * precisely at what rate a given set of requests is actually served
3509 * by the device.
3510 *
3511 * On the opposite end, the dispatch time of any request is trivially
3512 * available, and, from this piece of information, the "dispatch rate"
3513 * of requests can be immediately computed. So, the idea in the next
3514 * function is to use what is known, namely request dispatch times
3515 * (plus, when useful, request completion times), to estimate what is
3516 * unknown, namely in-device request service rate.
3517 *
3518 * The main issue is that, because of the above facts, the rate at
3519 * which a certain set of requests is dispatched over a certain time
3520 * interval can vary greatly with respect to the rate at which the
3521 * same requests are then served. But, since the size of any
3522 * intermediate queue is limited, and the service scheme is lossless
3523 * (no request is silently dropped), the following obvious convergence
3524 * property holds: the number of requests dispatched MUST become
3525 * closer and closer to the number of requests completed as the
3526 * observation interval grows. This is the key property used in
3527 * the next function to estimate the peak service rate as a function
3528 * of the observed dispatch rate. The function assumes to be invoked
3529 * on every request dispatch.
3530 */
3531static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3532{
3533 u64 now_ns = ktime_get_ns();
3534
3535 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3536 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3537 bfqd->peak_rate_samples);
3538 bfq_reset_rate_computation(bfqd, rq);
3539 goto update_last_values; /* will add one sample */
3540 }
3541
3542 /*
3543 * Device idle for very long: the observation interval lasting
3544 * up to this dispatch cannot be a valid observation interval
3545 * for computing a new peak rate (similarly to the late-
3546 * completion event in bfq_completed_request()). Go to
3547 * update_rate_and_reset to have the following three steps
3548 * taken:
3549 * - close the observation interval at the last (previous)
3550 * request dispatch or completion
3551 * - compute rate, if possible, for that observation interval
3552 * - start a new observation interval with this dispatch
3553 */
3554 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3555 bfqd->rq_in_driver == 0)
3556 goto update_rate_and_reset;
3557
3558 /* Update sampling information */
3559 bfqd->peak_rate_samples++;
3560
3561 if ((bfqd->rq_in_driver > 0 ||
3562 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01003563 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003564 bfqd->sequential_samples++;
3565
3566 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3567
3568 /* Reset max observed rq size every 32 dispatches */
3569 if (likely(bfqd->peak_rate_samples % 32))
3570 bfqd->last_rq_max_size =
3571 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3572 else
3573 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3574
3575 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3576
3577 /* Target observation interval not yet reached, go on sampling */
3578 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3579 goto update_last_values;
3580
3581update_rate_and_reset:
3582 bfq_update_rate_reset(bfqd, rq);
3583update_last_values:
3584 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01003585 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3586 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003587 bfqd->last_dispatch = now_ns;
3588}
3589
3590/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003591 * Remove request from internal lists.
3592 */
3593static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3594{
3595 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3596
3597 /*
3598 * For consistency, the next instruction should have been
3599 * executed after removing the request from the queue and
3600 * dispatching it. We execute instead this instruction before
3601 * bfq_remove_request() (and hence introduce a temporary
3602 * inconsistency), for efficiency. In fact, should this
3603 * dispatch occur for a non in-service bfqq, this anticipated
3604 * increment prevents two counters related to bfqq->dispatched
3605 * from risking to be, first, uselessly decremented, and then
3606 * incremented again when the (new) value of bfqq->dispatched
3607 * happens to be taken into account.
3608 */
3609 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003610 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003611
3612 bfq_remove_request(q, rq);
3613}
3614
Paolo Valente37261122019-06-25 07:12:49 +02003615/*
3616 * There is a case where idling does not have to be performed for
3617 * throughput concerns, but to preserve the throughput share of
3618 * the process associated with bfqq.
3619 *
3620 * To introduce this case, we can note that allowing the drive
3621 * to enqueue more than one request at a time, and hence
3622 * delegating de facto final scheduling decisions to the
3623 * drive's internal scheduler, entails loss of control on the
3624 * actual request service order. In particular, the critical
3625 * situation is when requests from different processes happen
3626 * to be present, at the same time, in the internal queue(s)
3627 * of the drive. In such a situation, the drive, by deciding
3628 * the service order of the internally-queued requests, does
3629 * determine also the actual throughput distribution among
3630 * these processes. But the drive typically has no notion or
3631 * concern about per-process throughput distribution, and
3632 * makes its decisions only on a per-request basis. Therefore,
3633 * the service distribution enforced by the drive's internal
3634 * scheduler is likely to coincide with the desired throughput
3635 * distribution only in a completely symmetric, or favorably
3636 * skewed scenario where:
3637 * (i-a) each of these processes must get the same throughput as
3638 * the others,
3639 * (i-b) in case (i-a) does not hold, it holds that the process
3640 * associated with bfqq must receive a lower or equal
3641 * throughput than any of the other processes;
3642 * (ii) the I/O of each process has the same properties, in
3643 * terms of locality (sequential or random), direction
3644 * (reads or writes), request sizes, greediness
3645 * (from I/O-bound to sporadic), and so on;
3646
3647 * In fact, in such a scenario, the drive tends to treat the requests
3648 * of each process in about the same way as the requests of the
3649 * others, and thus to provide each of these processes with about the
3650 * same throughput. This is exactly the desired throughput
3651 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3652 * even more convenient distribution for (the process associated with)
3653 * bfqq.
3654 *
3655 * In contrast, in any asymmetric or unfavorable scenario, device
3656 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3657 * that bfqq receives its assigned fraction of the device throughput
3658 * (see [1] for details).
3659 *
3660 * The problem is that idling may significantly reduce throughput with
3661 * certain combinations of types of I/O and devices. An important
3662 * example is sync random I/O on flash storage with command
3663 * queueing. So, unless bfqq falls in cases where idling also boosts
3664 * throughput, it is important to check conditions (i-a), i(-b) and
3665 * (ii) accurately, so as to avoid idling when not strictly needed for
3666 * service guarantees.
3667 *
3668 * Unfortunately, it is extremely difficult to thoroughly check
3669 * condition (ii). And, in case there are active groups, it becomes
3670 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3671 * if there are active groups, then, for conditions (i-a) or (i-b) to
3672 * become false 'indirectly', it is enough that an active group
3673 * contains more active processes or sub-groups than some other active
3674 * group. More precisely, for conditions (i-a) or (i-b) to become
3675 * false because of such a group, it is not even necessary that the
3676 * group is (still) active: it is sufficient that, even if the group
3677 * has become inactive, some of its descendant processes still have
3678 * some request already dispatched but still waiting for
3679 * completion. In fact, requests have still to be guaranteed their
3680 * share of the throughput even after being dispatched. In this
3681 * respect, it is easy to show that, if a group frequently becomes
3682 * inactive while still having in-flight requests, and if, when this
3683 * happens, the group is not considered in the calculation of whether
3684 * the scenario is asymmetric, then the group may fail to be
3685 * guaranteed its fair share of the throughput (basically because
3686 * idling may not be performed for the descendant processes of the
3687 * group, but it had to be). We address this issue with the following
3688 * bi-modal behavior, implemented in the function
3689 * bfq_asymmetric_scenario().
3690 *
3691 * If there are groups with requests waiting for completion
3692 * (as commented above, some of these groups may even be
3693 * already inactive), then the scenario is tagged as
3694 * asymmetric, conservatively, without checking any of the
3695 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3696 * This behavior matches also the fact that groups are created
3697 * exactly if controlling I/O is a primary concern (to
3698 * preserve bandwidth and latency guarantees).
3699 *
3700 * On the opposite end, if there are no groups with requests waiting
3701 * for completion, then only conditions (i-a) and (i-b) are actually
3702 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3703 * idling is not performed, regardless of whether condition (ii)
3704 * holds. In other words, only if conditions (i-a) and (i-b) do not
3705 * hold, then idling is allowed, and the device tends to be prevented
3706 * from queueing many requests, possibly of several processes. Since
3707 * there are no groups with requests waiting for completion, then, to
3708 * control conditions (i-a) and (i-b) it is enough to check just
3709 * whether all the queues with requests waiting for completion also
3710 * have the same weight.
3711 *
3712 * Not checking condition (ii) evidently exposes bfqq to the
3713 * risk of getting less throughput than its fair share.
3714 * However, for queues with the same weight, a further
3715 * mechanism, preemption, mitigates or even eliminates this
3716 * problem. And it does so without consequences on overall
3717 * throughput. This mechanism and its benefits are explained
3718 * in the next three paragraphs.
3719 *
3720 * Even if a queue, say Q, is expired when it remains idle, Q
3721 * can still preempt the new in-service queue if the next
3722 * request of Q arrives soon (see the comments on
3723 * bfq_bfqq_update_budg_for_activation). If all queues and
3724 * groups have the same weight, this form of preemption,
3725 * combined with the hole-recovery heuristic described in the
3726 * comments on function bfq_bfqq_update_budg_for_activation,
3727 * are enough to preserve a correct bandwidth distribution in
3728 * the mid term, even without idling. In fact, even if not
3729 * idling allows the internal queues of the device to contain
3730 * many requests, and thus to reorder requests, we can rather
3731 * safely assume that the internal scheduler still preserves a
3732 * minimum of mid-term fairness.
3733 *
3734 * More precisely, this preemption-based, idleless approach
3735 * provides fairness in terms of IOPS, and not sectors per
3736 * second. This can be seen with a simple example. Suppose
3737 * that there are two queues with the same weight, but that
3738 * the first queue receives requests of 8 sectors, while the
3739 * second queue receives requests of 1024 sectors. In
3740 * addition, suppose that each of the two queues contains at
3741 * most one request at a time, which implies that each queue
3742 * always remains idle after it is served. Finally, after
3743 * remaining idle, each queue receives very quickly a new
3744 * request. It follows that the two queues are served
3745 * alternatively, preempting each other if needed. This
3746 * implies that, although both queues have the same weight,
3747 * the queue with large requests receives a service that is
3748 * 1024/8 times as high as the service received by the other
3749 * queue.
3750 *
3751 * The motivation for using preemption instead of idling (for
3752 * queues with the same weight) is that, by not idling,
3753 * service guarantees are preserved (completely or at least in
3754 * part) without minimally sacrificing throughput. And, if
3755 * there is no active group, then the primary expectation for
3756 * this device is probably a high throughput.
3757 *
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003758 * We are now left only with explaining the two sub-conditions in the
3759 * additional compound condition that is checked below for deciding
3760 * whether the scenario is asymmetric. To explain the first
3761 * sub-condition, we need to add that the function
Paolo Valente37261122019-06-25 07:12:49 +02003762 * bfq_asymmetric_scenario checks the weights of only
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003763 * non-weight-raised queues, for efficiency reasons (see comments on
3764 * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3765 * is checked explicitly here. More precisely, the compound condition
3766 * below takes into account also the fact that, even if bfqq is being
3767 * weight-raised, the scenario is still symmetric if all queues with
3768 * requests waiting for completion happen to be
3769 * weight-raised. Actually, we should be even more precise here, and
3770 * differentiate between interactive weight raising and soft real-time
3771 * weight raising.
3772 *
3773 * The second sub-condition checked in the compound condition is
3774 * whether there is a fair amount of already in-flight I/O not
3775 * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3776 * following reason. The drive may decide to serve in-flight
3777 * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3778 * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3779 * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3780 * basically uncontrolled amount of I/O from other queues may be
3781 * dispatched too, possibly causing the service of bfqq's I/O to be
3782 * delayed even longer in the drive. This problem gets more and more
3783 * serious as the speed and the queue depth of the drive grow,
3784 * because, as these two quantities grow, the probability to find no
3785 * queue busy but many requests in flight grows too. By contrast,
3786 * plugging I/O dispatching minimizes the delay induced by already
3787 * in-flight I/O, and enables bfqq to recover the bandwidth it may
3788 * lose because of this delay.
Paolo Valente37261122019-06-25 07:12:49 +02003789 *
3790 * As a side note, it is worth considering that the above
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003791 * device-idling countermeasures may however fail in the following
3792 * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3793 * in a time period during which all symmetry sub-conditions hold, and
3794 * therefore the device is allowed to enqueue many requests, but at
3795 * some later point in time some sub-condition stops to hold, then it
3796 * may become impossible to make requests be served in the desired
3797 * order until all the requests already queued in the device have been
3798 * served. The last sub-condition commented above somewhat mitigates
3799 * this problem for weight-raised queues.
Paolo Valente2391d132021-01-22 19:19:48 +01003800 *
3801 * However, as an additional mitigation for this problem, we preserve
3802 * plugging for a special symmetric case that may suddenly turn into
3803 * asymmetric: the case where only bfqq is busy. In this case, not
3804 * expiring bfqq does not cause any harm to any other queues in terms
3805 * of service guarantees. In contrast, it avoids the following unlucky
3806 * sequence of events: (1) bfqq is expired, (2) a new queue with a
3807 * lower weight than bfqq becomes busy (or more queues), (3) the new
3808 * queue is served until a new request arrives for bfqq, (4) when bfqq
3809 * is finally served, there are so many requests of the new queue in
3810 * the drive that the pending requests for bfqq take a lot of time to
3811 * be served. In particular, event (2) may case even already
3812 * dispatched requests of bfqq to be delayed, inside the drive. So, to
3813 * avoid this series of events, the scenario is preventively declared
3814 * as asymmetric also if bfqq is the only busy queues
Paolo Valente37261122019-06-25 07:12:49 +02003815 */
3816static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3817 struct bfq_queue *bfqq)
3818{
Paolo Valente2391d132021-01-22 19:19:48 +01003819 int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3820
Paolo Valentef718b092020-02-03 11:40:54 +01003821 /* No point in idling for bfqq if it won't get requests any longer */
3822 if (unlikely(!bfqq_process_refs(bfqq)))
3823 return false;
3824
Paolo Valente37261122019-06-25 07:12:49 +02003825 return (bfqq->wr_coeff > 1 &&
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003826 (bfqd->wr_busy_queues <
Paolo Valente2391d132021-01-22 19:19:48 +01003827 tot_busy_queues ||
Paolo Valenteb5e02b42019-07-18 09:08:52 +02003828 bfqd->rq_in_driver >=
3829 bfqq->dispatched + 4)) ||
Paolo Valente2391d132021-01-22 19:19:48 +01003830 bfq_asymmetric_scenario(bfqd, bfqq) ||
3831 tot_busy_queues == 1;
Paolo Valente37261122019-06-25 07:12:49 +02003832}
3833
3834static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3835 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003836{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003837 /*
3838 * If this bfqq is shared between multiple processes, check
3839 * to make sure that those processes are still issuing I/Os
3840 * within the mean seek distance. If not, it may be time to
3841 * break the queues apart again.
3842 */
3843 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3844 bfq_mark_bfqq_split_coop(bfqq);
3845
Paolo Valente37261122019-06-25 07:12:49 +02003846 /*
3847 * Consider queues with a higher finish virtual time than
3848 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3849 * true, then bfqq's bandwidth would be violated if an
3850 * uncontrolled amount of I/O from these queues were
3851 * dispatched while bfqq is waiting for its new I/O to
3852 * arrive. This is exactly what may happen if this is a forced
3853 * expiration caused by a preemption attempt, and if bfqq is
3854 * not re-scheduled. To prevent this from happening, re-queue
3855 * bfqq if it needs I/O-dispatch plugging, even if it is
3856 * empty. By doing so, bfqq is granted to be served before the
3857 * above queues (provided that bfqq is of course eligible).
3858 */
3859 if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3860 !(reason == BFQQE_PREEMPTED &&
3861 idling_needed_for_service_guarantees(bfqd, bfqq))) {
Paolo Valente44e44a12017-04-12 18:23:12 +02003862 if (bfqq->dispatched == 0)
3863 /*
3864 * Overloading budget_timeout field to store
3865 * the time at which the queue remains with no
3866 * backlog and no outstanding request; used by
3867 * the weight-raising mechanism.
3868 */
3869 bfqq->budget_timeout = jiffies;
3870
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003871 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003872 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003873 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003874 /*
3875 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003876 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003877 */
Paolo Valente37261122019-06-25 07:12:49 +02003878 if (unlikely(!bfqd->nonrot_with_queueing &&
3879 !RB_EMPTY_ROOT(&bfqq->sort_list)))
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003880 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003881 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003882
3883 /*
3884 * All in-service entities must have been properly deactivated
3885 * or requeued before executing the next function, which
Paolo Valenteeed47d12019-04-10 10:38:33 +02003886 * resets all in-service entities as no more in service. This
3887 * may cause bfqq to be freed. If this happens, the next
3888 * function returns true.
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003889 */
Paolo Valenteeed47d12019-04-10 10:38:33 +02003890 return __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003891}
3892
3893/**
3894 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3895 * @bfqd: device data.
3896 * @bfqq: queue to update.
3897 * @reason: reason for expiration.
3898 *
3899 * Handle the feedback on @bfqq budget at queue expiration.
3900 * See the body for detailed comments.
3901 */
3902static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3903 struct bfq_queue *bfqq,
3904 enum bfqq_expiration reason)
3905{
3906 struct request *next_rq;
3907 int budget, min_budget;
3908
Paolo Valenteaee69d72017-04-19 08:29:02 -06003909 min_budget = bfq_min_budget(bfqd);
3910
Paolo Valente44e44a12017-04-12 18:23:12 +02003911 if (bfqq->wr_coeff == 1)
3912 budget = bfqq->max_budget;
3913 else /*
3914 * Use a constant, low budget for weight-raised queues,
3915 * to help achieve a low latency. Keep it slightly higher
3916 * than the minimum possible budget, to cause a little
3917 * bit fewer expirations.
3918 */
3919 budget = 2 * min_budget;
3920
Paolo Valenteaee69d72017-04-19 08:29:02 -06003921 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3922 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3923 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3924 budget, bfq_min_budget(bfqd));
3925 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3926 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3927
Paolo Valente44e44a12017-04-12 18:23:12 +02003928 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003929 switch (reason) {
3930 /*
3931 * Caveat: in all the following cases we trade latency
3932 * for throughput.
3933 */
3934 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003935 /*
3936 * This is the only case where we may reduce
3937 * the budget: if there is no request of the
3938 * process still waiting for completion, then
3939 * we assume (tentatively) that the timer has
3940 * expired because the batch of requests of
3941 * the process could have been served with a
3942 * smaller budget. Hence, betting that
3943 * process will behave in the same way when it
3944 * becomes backlogged again, we reduce its
3945 * next budget. As long as we guess right,
3946 * this budget cut reduces the latency
3947 * experienced by the process.
3948 *
3949 * However, if there are still outstanding
3950 * requests, then the process may have not yet
3951 * issued its next request just because it is
3952 * still waiting for the completion of some of
3953 * the still outstanding ones. So in this
3954 * subcase we do not reduce its budget, on the
3955 * contrary we increase it to possibly boost
3956 * the throughput, as discussed in the
3957 * comments to the BUDGET_TIMEOUT case.
3958 */
3959 if (bfqq->dispatched > 0) /* still outstanding reqs */
3960 budget = min(budget * 2, bfqd->bfq_max_budget);
3961 else {
3962 if (budget > 5 * min_budget)
3963 budget -= 4 * min_budget;
3964 else
3965 budget = min_budget;
3966 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003967 break;
3968 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003969 /*
3970 * We double the budget here because it gives
3971 * the chance to boost the throughput if this
3972 * is not a seeky process (and has bumped into
3973 * this timeout because of, e.g., ZBR).
3974 */
3975 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003976 break;
3977 case BFQQE_BUDGET_EXHAUSTED:
3978 /*
3979 * The process still has backlog, and did not
3980 * let either the budget timeout or the disk
3981 * idling timeout expire. Hence it is not
3982 * seeky, has a short thinktime and may be
3983 * happy with a higher budget too. So
3984 * definitely increase the budget of this good
3985 * candidate to boost the disk throughput.
3986 */
Paolo Valente54b60452017-04-12 18:23:09 +02003987 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003988 break;
3989 case BFQQE_NO_MORE_REQUESTS:
3990 /*
3991 * For queues that expire for this reason, it
3992 * is particularly important to keep the
3993 * budget close to the actual service they
3994 * need. Doing so reduces the timestamp
3995 * misalignment problem described in the
3996 * comments in the body of
3997 * __bfq_activate_entity. In fact, suppose
3998 * that a queue systematically expires for
3999 * BFQQE_NO_MORE_REQUESTS and presents a
4000 * new request in time to enjoy timestamp
4001 * back-shifting. The larger the budget of the
4002 * queue is with respect to the service the
4003 * queue actually requests in each service
4004 * slot, the more times the queue can be
4005 * reactivated with the same virtual finish
4006 * time. It follows that, even if this finish
4007 * time is pushed to the system virtual time
4008 * to reduce the consequent timestamp
4009 * misalignment, the queue unjustly enjoys for
4010 * many re-activations a lower finish time
4011 * than all newly activated queues.
4012 *
4013 * The service needed by bfqq is measured
4014 * quite precisely by bfqq->entity.service.
4015 * Since bfqq does not enjoy device idling,
4016 * bfqq->entity.service is equal to the number
4017 * of sectors that the process associated with
4018 * bfqq requested to read/write before waiting
4019 * for request completions, or blocking for
4020 * other reasons.
4021 */
4022 budget = max_t(int, bfqq->entity.service, min_budget);
4023 break;
4024 default:
4025 return;
4026 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004027 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004028 /*
4029 * Async queues get always the maximum possible
4030 * budget, as for them we do not care about latency
4031 * (in addition, their ability to dispatch is limited
4032 * by the charging factor).
4033 */
4034 budget = bfqd->bfq_max_budget;
4035 }
4036
4037 bfqq->max_budget = budget;
4038
4039 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4040 !bfqd->bfq_user_max_budget)
4041 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4042
4043 /*
4044 * If there is still backlog, then assign a new budget, making
4045 * sure that it is large enough for the next request. Since
4046 * the finish time of bfqq must be kept in sync with the
4047 * budget, be sure to call __bfq_bfqq_expire() *after* this
4048 * update.
4049 *
4050 * If there is no backlog, then no need to update the budget;
4051 * it will be updated on the arrival of a new request.
4052 */
4053 next_rq = bfqq->next_rq;
4054 if (next_rq)
4055 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4056 bfq_serv_to_charge(next_rq, bfqq));
4057
4058 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4059 next_rq ? blk_rq_sectors(next_rq) : 0,
4060 bfqq->entity.budget);
4061}
4062
Paolo Valenteaee69d72017-04-19 08:29:02 -06004063/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004064 * Return true if the process associated with bfqq is "slow". The slow
4065 * flag is used, in addition to the budget timeout, to reduce the
4066 * amount of service provided to seeky processes, and thus reduce
4067 * their chances to lower the throughput. More details in the comments
4068 * on the function bfq_bfqq_expire().
4069 *
4070 * An important observation is in order: as discussed in the comments
4071 * on the function bfq_update_peak_rate(), with devices with internal
4072 * queues, it is hard if ever possible to know when and for how long
4073 * an I/O request is processed by the device (apart from the trivial
4074 * I/O pattern where a new request is dispatched only after the
4075 * previous one has been completed). This makes it hard to evaluate
4076 * the real rate at which the I/O requests of each bfq_queue are
4077 * served. In fact, for an I/O scheduler like BFQ, serving a
4078 * bfq_queue means just dispatching its requests during its service
4079 * slot (i.e., until the budget of the queue is exhausted, or the
4080 * queue remains idle, or, finally, a timeout fires). But, during the
4081 * service slot of a bfq_queue, around 100 ms at most, the device may
4082 * be even still processing requests of bfq_queues served in previous
4083 * service slots. On the opposite end, the requests of the in-service
4084 * bfq_queue may be completed after the service slot of the queue
4085 * finishes.
4086 *
4087 * Anyway, unless more sophisticated solutions are used
4088 * (where possible), the sum of the sizes of the requests dispatched
4089 * during the service slot of a bfq_queue is probably the only
4090 * approximation available for the service received by the bfq_queue
4091 * during its service slot. And this sum is the quantity used in this
4092 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004093 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004094static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4095 bool compensate, enum bfqq_expiration reason,
4096 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004097{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004098 ktime_t delta_ktime;
4099 u32 delta_usecs;
4100 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004101
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004102 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06004103 return false;
4104
4105 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004106 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004107 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004108 delta_ktime = ktime_get();
4109 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4110 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004111
4112 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004113 if (delta_usecs < 1000) {
4114 if (blk_queue_nonrot(bfqd->queue))
4115 /*
4116 * give same worst-case guarantees as idling
4117 * for seeky
4118 */
4119 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4120 else /* charge at least one seek */
4121 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004122
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004123 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004124 }
4125
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004126 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004127
4128 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004129 * Use only long (> 20ms) intervals to filter out excessive
4130 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004131 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004132 if (delta_usecs > 20000) {
4133 /*
4134 * Caveat for rotational devices: processes doing I/O
4135 * in the slower disk zones tend to be slow(er) even
4136 * if not seeky. In this respect, the estimated peak
4137 * rate is likely to be an average over the disk
4138 * surface. Accordingly, to not be too harsh with
4139 * unlucky processes, a process is deemed slow only if
4140 * its rate has been lower than half of the estimated
4141 * peak rate.
4142 */
4143 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4144 }
4145
4146 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4147
4148 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004149}
4150
4151/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004152 * To be deemed as soft real-time, an application must meet two
4153 * requirements. First, the application must not require an average
4154 * bandwidth higher than the approximate bandwidth required to playback or
4155 * record a compressed high-definition video.
4156 * The next function is invoked on the completion of the last request of a
4157 * batch, to compute the next-start time instant, soft_rt_next_start, such
4158 * that, if the next request of the application does not arrive before
4159 * soft_rt_next_start, then the above requirement on the bandwidth is met.
4160 *
4161 * The second requirement is that the request pattern of the application is
4162 * isochronous, i.e., that, after issuing a request or a batch of requests,
4163 * the application stops issuing new requests until all its pending requests
4164 * have been completed. After that, the application may issue a new batch,
4165 * and so on.
4166 * For this reason the next function is invoked to compute
4167 * soft_rt_next_start only for applications that meet this requirement,
4168 * whereas soft_rt_next_start is set to infinity for applications that do
4169 * not.
4170 *
Paolo Valentea34b0242017-12-15 07:23:12 +01004171 * Unfortunately, even a greedy (i.e., I/O-bound) application may
4172 * happen to meet, occasionally or systematically, both the above
4173 * bandwidth and isochrony requirements. This may happen at least in
4174 * the following circumstances. First, if the CPU load is high. The
4175 * application may stop issuing requests while the CPUs are busy
4176 * serving other processes, then restart, then stop again for a while,
4177 * and so on. The other circumstances are related to the storage
4178 * device: the storage device is highly loaded or reaches a low-enough
4179 * throughput with the I/O of the application (e.g., because the I/O
4180 * is random and/or the device is slow). In all these cases, the
4181 * I/O of the application may be simply slowed down enough to meet
4182 * the bandwidth and isochrony requirements. To reduce the probability
4183 * that greedy applications are deemed as soft real-time in these
4184 * corner cases, a further rule is used in the computation of
4185 * soft_rt_next_start: the return value of this function is forced to
4186 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004187 *
Paolo Valentea34b0242017-12-15 07:23:12 +01004188 * (a) Current time plus: (1) the maximum time for which the arrival
4189 * of a request is waited for when a sync queue becomes idle,
4190 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4191 * postpone for a moment the reason for adding a few extra
4192 * jiffies; we get back to it after next item (b). Lower-bounding
4193 * the return value of this function with the current time plus
4194 * bfqd->bfq_slice_idle tends to filter out greedy applications,
4195 * because the latter issue their next request as soon as possible
4196 * after the last one has been completed. In contrast, a soft
4197 * real-time application spends some time processing data, after a
4198 * batch of its requests has been completed.
4199 *
4200 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4201 * above, greedy applications may happen to meet both the
4202 * bandwidth and isochrony requirements under heavy CPU or
4203 * storage-device load. In more detail, in these scenarios, these
4204 * applications happen, only for limited time periods, to do I/O
4205 * slowly enough to meet all the requirements described so far,
4206 * including the filtering in above item (a). These slow-speed
4207 * time intervals are usually interspersed between other time
4208 * intervals during which these applications do I/O at a very high
4209 * speed. Fortunately, exactly because of the high speed of the
4210 * I/O in the high-speed intervals, the values returned by this
4211 * function happen to be so high, near the end of any such
4212 * high-speed interval, to be likely to fall *after* the end of
4213 * the low-speed time interval that follows. These high values are
4214 * stored in bfqq->soft_rt_next_start after each invocation of
4215 * this function. As a consequence, if the last value of
4216 * bfqq->soft_rt_next_start is constantly used to lower-bound the
4217 * next value that this function may return, then, from the very
4218 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
4219 * likely to be constantly kept so high that any I/O request
4220 * issued during the low-speed interval is considered as arriving
4221 * to soon for the application to be deemed as soft
4222 * real-time. Then, in the high-speed interval that follows, the
4223 * application will not be deemed as soft real-time, just because
4224 * it will do I/O at a high speed. And so on.
4225 *
4226 * Getting back to the filtering in item (a), in the following two
4227 * cases this filtering might be easily passed by a greedy
4228 * application, if the reference quantity was just
4229 * bfqd->bfq_slice_idle:
4230 * 1) HZ is so low that the duration of a jiffy is comparable to or
4231 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4232 * devices with HZ=100. The time granularity may be so coarse
4233 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
4234 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004235 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4236 * for a while, then suddenly 'jump' by several units to recover the lost
4237 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01004238 * To address this issue, in the filtering in (a) we do not use as a
4239 * reference time interval just bfqd->bfq_slice_idle, but
4240 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4241 * minimum number of jiffies for which the filter seems to be quite
4242 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004243 */
4244static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4245 struct bfq_queue *bfqq)
4246{
Paolo Valentea34b0242017-12-15 07:23:12 +01004247 return max3(bfqq->soft_rt_next_start,
4248 bfqq->last_idle_bklogged +
4249 HZ * bfqq->service_from_backlogged /
4250 bfqd->bfq_wr_max_softrt_rate,
4251 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004252}
4253
Paolo Valenteaee69d72017-04-19 08:29:02 -06004254/**
4255 * bfq_bfqq_expire - expire a queue.
4256 * @bfqd: device owning the queue.
4257 * @bfqq: the queue to expire.
4258 * @compensate: if true, compensate for the time spent idling.
4259 * @reason: the reason causing the expiration.
4260 *
Paolo Valentec074170e2017-04-12 18:23:11 +02004261 * If the process associated with bfqq does slow I/O (e.g., because it
4262 * issues random requests), we charge bfqq with the time it has been
4263 * in service instead of the service it has received (see
4264 * bfq_bfqq_charge_time for details on how this goal is achieved). As
4265 * a consequence, bfqq will typically get higher timestamps upon
4266 * reactivation, and hence it will be rescheduled as if it had
4267 * received more service than what it has actually received. In the
4268 * end, bfqq receives less service in proportion to how slowly its
4269 * associated process consumes its budgets (and hence how seriously it
4270 * tends to lower the throughput). In addition, this time-charging
4271 * strategy guarantees time fairness among slow processes. In
4272 * contrast, if the process associated with bfqq is not slow, we
4273 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004274 *
Paolo Valentec074170e2017-04-12 18:23:11 +02004275 * Charging time to the first type of queues and the exact service to
4276 * the other has the effect of using the WF2Q+ policy to schedule the
4277 * former on a timeslice basis, without violating service domain
4278 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004279 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004280void bfq_bfqq_expire(struct bfq_data *bfqd,
4281 struct bfq_queue *bfqq,
4282 bool compensate,
4283 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004284{
4285 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004286 unsigned long delta = 0;
4287 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004288
4289 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004290 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06004291 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004292 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004293
4294 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02004295 * As above explained, charge slow (typically seeky) and
4296 * timed-out queues with the time and not the service
4297 * received, to favor sequential workloads.
4298 *
4299 * Processes doing I/O in the slower disk zones will tend to
4300 * be slow(er) even if not seeky. Therefore, since the
4301 * estimated peak rate is actually an average over the disk
4302 * surface, these processes may timeout just for bad luck. To
4303 * avoid punishing them, do not charge time to processes that
4304 * succeeded in consuming at least 2/3 of their budget. This
4305 * allows BFQ to preserve enough elasticity to still perform
4306 * bandwidth, and not time, distribution with little unlucky
4307 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004308 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004309 if (bfqq->wr_coeff == 1 &&
4310 (slow ||
4311 (reason == BFQQE_BUDGET_TIMEOUT &&
4312 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02004313 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004314
Paolo Valente44e44a12017-04-12 18:23:12 +02004315 if (bfqd->low_latency && bfqq->wr_coeff == 1)
4316 bfqq->last_wr_start_finish = jiffies;
4317
Paolo Valente77b7dce2017-04-12 18:23:13 +02004318 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4319 RB_EMPTY_ROOT(&bfqq->sort_list)) {
4320 /*
4321 * If we get here, and there are no outstanding
4322 * requests, then the request pattern is isochronous
4323 * (see the comments on the function
Paolo Valente3c337692021-01-22 19:19:47 +01004324 * bfq_bfqq_softrt_next_start()). Therefore we can
4325 * compute soft_rt_next_start.
Paolo Valente20cd3242019-01-29 12:06:25 +01004326 *
4327 * If, instead, the queue still has outstanding
4328 * requests, then we have to wait for the completion
4329 * of all the outstanding requests to discover whether
4330 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004331 */
Paolo Valente3c337692021-01-22 19:19:47 +01004332 if (bfqq->dispatched == 0)
Paolo Valente77b7dce2017-04-12 18:23:13 +02004333 bfqq->soft_rt_next_start =
4334 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01004335 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004336 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004337 * Schedule an update of soft_rt_next_start to when
4338 * the task may be discovered to be isochronous.
4339 */
4340 bfq_mark_bfqq_softrt_update(bfqq);
4341 }
4342 }
4343
Paolo Valenteaee69d72017-04-19 08:29:02 -06004344 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004345 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4346 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004347
4348 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004349 * bfqq expired, so no total service time needs to be computed
4350 * any longer: reset state machine for measuring total service
4351 * times.
4352 */
4353 bfqd->rqs_injected = bfqd->wait_dispatch = false;
4354 bfqd->waited_rq = NULL;
4355
4356 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004357 * Increase, decrease or leave budget unchanged according to
4358 * reason.
4359 */
4360 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
Paolo Valente37261122019-06-25 07:12:49 +02004361 if (__bfq_bfqq_expire(bfqd, bfqq, reason))
Paolo Valenteeed47d12019-04-10 10:38:33 +02004362 /* bfqq is gone, no more actions on it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004363 return;
4364
Paolo Valenteaee69d72017-04-19 08:29:02 -06004365 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004366 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004367 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004368 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004369 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02004370 /*
4371 * Not setting service to 0, because, if the next rq
4372 * arrives in time, the queue will go on receiving
4373 * service with this same budget (as if it never expired)
4374 */
4375 } else
4376 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02004377
4378 /*
4379 * Reset the received-service counter for every parent entity.
4380 * Differently from what happens with bfqq->entity.service,
4381 * the resetting of this counter never needs to be postponed
4382 * for parent entities. In fact, in case bfqq may have a
4383 * chance to go on being served using the last, partially
4384 * consumed budget, bfqq->entity.service needs to be kept,
4385 * because if bfqq then actually goes on being served using
4386 * the same budget, the last value of bfqq->entity.service is
4387 * needed to properly decrement bfqq->entity.budget by the
4388 * portion already consumed. In contrast, it is not necessary
4389 * to keep entity->service for parent entities too, because
4390 * the bubble up of the new value of bfqq->entity.budget will
4391 * make sure that the budgets of parent entities are correct,
4392 * even in case bfqq and thus parent entities go on receiving
4393 * service with the same budget.
4394 */
4395 entity = entity->parent;
4396 for_each_entity(entity)
4397 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004398}
4399
4400/*
4401 * Budget timeout is not implemented through a dedicated timer, but
4402 * just checked on request arrivals and completions, as well as on
4403 * idle timer expirations.
4404 */
4405static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4406{
Paolo Valente44e44a12017-04-12 18:23:12 +02004407 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004408}
4409
4410/*
4411 * If we expire a queue that is actively waiting (i.e., with the
4412 * device idled) for the arrival of a new request, then we may incur
4413 * the timestamp misalignment problem described in the body of the
4414 * function __bfq_activate_entity. Hence we return true only if this
4415 * condition does not hold, or if the queue is slow enough to deserve
4416 * only to be kicked off for preserving a high throughput.
4417 */
4418static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4419{
4420 bfq_log_bfqq(bfqq->bfqd, bfqq,
4421 "may_budget_timeout: wait_request %d left %d timeout %d",
4422 bfq_bfqq_wait_request(bfqq),
4423 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
4424 bfq_bfqq_budget_timeout(bfqq));
4425
4426 return (!bfq_bfqq_wait_request(bfqq) ||
4427 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
4428 &&
4429 bfq_bfqq_budget_timeout(bfqq);
4430}
4431
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004432static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4433 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004434{
Paolo Valenteedaf9422017-08-04 07:35:11 +02004435 bool rot_without_queueing =
4436 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4437 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004438 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02004439
Paolo Valentef718b092020-02-03 11:40:54 +01004440 /* No point in idling for bfqq if it won't get requests any longer */
4441 if (unlikely(!bfqq_process_refs(bfqq)))
4442 return false;
4443
Paolo Valenteedaf9422017-08-04 07:35:11 +02004444 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4445 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4446
Paolo Valented5be3fe2017-08-04 07:35:10 +02004447 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02004448 * The next variable takes into account the cases where idling
4449 * boosts the throughput.
4450 *
Paolo Valentee01eff02017-04-12 18:23:19 +02004451 * The value of the variable is computed considering, first, that
4452 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02004453 * (a) the device is not NCQ-capable and rotational, or
4454 * (b) regardless of the presence of NCQ, the device is rotational and
4455 * the request pattern for bfqq is I/O-bound and sequential, or
4456 * (c) regardless of whether it is rotational, the device is
4457 * not NCQ-capable and the request pattern for bfqq is
4458 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004459 *
4460 * Secondly, and in contrast to the above item (b), idling an
4461 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02004462 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02004463 * the throughput in proportion to how fast the device
4464 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02004465 * above conditions (a), (b) or (c) is true, and, in
4466 * particular, happens to be false if bfqd is an NCQ-capable
4467 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004468 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02004469 idling_boosts_thr = rot_without_queueing ||
4470 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4471 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004472
4473 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004474 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02004475 * idling_boosts_thr, unless a special case holds. In this
4476 * special case, described below, idling may cause problems to
4477 * weight-raised queues.
4478 *
4479 * When the request pool is saturated (e.g., in the presence
4480 * of write hogs), if the processes associated with
4481 * non-weight-raised queues ask for requests at a lower rate,
4482 * then processes associated with weight-raised queues have a
4483 * higher probability to get a request from the pool
4484 * immediately (or at least soon) when they need one. Thus
4485 * they have a higher probability to actually get a fraction
4486 * of the device throughput proportional to their high
4487 * weight. This is especially true with NCQ-capable drives,
4488 * which enqueue several requests in advance, and further
4489 * reorder internally-queued requests.
4490 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004491 * For this reason, we force to false the return value if
4492 * there are weight-raised busy queues. In this case, and if
4493 * bfqq is not weight-raised, this guarantees that the device
4494 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4495 * then idling will be guaranteed by another variable, see
4496 * below). Combined with the timestamping rules of BFQ (see
4497 * [1] for details), this behavior causes bfqq, and hence any
4498 * sync non-weight-raised queue, to get a lower number of
4499 * requests served, and thus to ask for a lower number of
4500 * requests from the request pool, before the busy
4501 * weight-raised queues get served again. This often mitigates
4502 * starvation problems in the presence of heavy write
4503 * workloads and NCQ, thereby guaranteeing a higher
4504 * application and system responsiveness in these hostile
4505 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02004506 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004507 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02004508 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004509}
Paolo Valentecfd69712017-04-12 18:23:15 +02004510
Paolo Valente530c4cb2019-01-29 12:06:32 +01004511/*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004512 * For a queue that becomes empty, device idling is allowed only if
4513 * this function returns true for that queue. As a consequence, since
4514 * device idling plays a critical role for both throughput boosting
4515 * and service guarantees, the return value of this function plays a
4516 * critical role as well.
4517 *
4518 * In a nutshell, this function returns true only if idling is
4519 * beneficial for throughput or, even if detrimental for throughput,
4520 * idling is however necessary to preserve service guarantees (low
4521 * latency, desired throughput distribution, ...). In particular, on
4522 * NCQ-capable devices, this function tries to return false, so as to
4523 * help keep the drives' internal queues full, whenever this helps the
4524 * device boost the throughput without causing any service-guarantee
4525 * issue.
4526 *
4527 * Most of the issues taken into account to get the return value of
4528 * this function are not trivial. We discuss these issues in the two
4529 * functions providing the main pieces of information needed by this
4530 * function.
4531 */
4532static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4533{
4534 struct bfq_data *bfqd = bfqq->bfqd;
4535 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4536
Paolo Valentef718b092020-02-03 11:40:54 +01004537 /* No point in idling for bfqq if it won't get requests any longer */
4538 if (unlikely(!bfqq_process_refs(bfqq)))
4539 return false;
4540
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004541 if (unlikely(bfqd->strict_guarantees))
4542 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004543
4544 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004545 * Idling is performed only if slice_idle > 0. In addition, we
4546 * do not idle if
4547 * (a) bfqq is async
4548 * (b) bfqq is in the idle io prio class: in this case we do
4549 * not idle because we want to minimize the bandwidth that
4550 * queues in this class can steal to higher-priority queues
4551 */
4552 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4553 bfq_class_idle(bfqq))
4554 return false;
4555
4556 idling_boosts_thr_with_no_issue =
4557 idling_boosts_thr_without_issues(bfqd, bfqq);
4558
4559 idling_needed_for_service_guar =
4560 idling_needed_for_service_guarantees(bfqd, bfqq);
4561
4562 /*
4563 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02004564 * return value of the function, which is true only if idling
4565 * either boosts the throughput (without issues), or is
4566 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02004567 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01004568 return idling_boosts_thr_with_no_issue ||
4569 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004570}
4571
4572/*
Paolo Valente277a4a92018-06-25 21:55:37 +02004573 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06004574 * returns true, then:
4575 * 1) the queue must remain in service and cannot be expired, and
4576 * 2) the device must be idled to wait for the possible arrival of a new
4577 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02004578 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06004579 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02004580 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06004581 * returns true.
4582 */
4583static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4584{
Paolo Valente277a4a92018-06-25 21:55:37 +02004585 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004586}
4587
Paolo Valente2341d6622019-03-12 09:59:29 +01004588/*
4589 * This function chooses the queue from which to pick the next extra
4590 * I/O request to inject, if it finds a compatible queue. See the
4591 * comments on bfq_update_inject_limit() for details on the injection
4592 * mechanism, and for the definitions of the quantities mentioned
4593 * below.
4594 */
4595static struct bfq_queue *
4596bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02004597{
Paolo Valente2341d6622019-03-12 09:59:29 +01004598 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4599 unsigned int limit = in_serv_bfqq->inject_limit;
4600 /*
4601 * If
4602 * - bfqq is not weight-raised and therefore does not carry
4603 * time-critical I/O,
4604 * or
4605 * - regardless of whether bfqq is weight-raised, bfqq has
4606 * however a long think time, during which it can absorb the
4607 * effect of an appropriate number of extra I/O requests
4608 * from other queues (see bfq_update_inject_limit for
4609 * details on the computation of this number);
4610 * then injection can be performed without restrictions.
4611 */
4612 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4613 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02004614
4615 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004616 * If
4617 * - the baseline total service time could not be sampled yet,
4618 * so the inject limit happens to be still 0, and
4619 * - a lot of time has elapsed since the plugging of I/O
4620 * dispatching started, so drive speed is being wasted
4621 * significantly;
4622 * then temporarily raise inject limit to one request.
4623 */
4624 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4625 bfq_bfqq_wait_request(in_serv_bfqq) &&
4626 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4627 bfqd->bfq_slice_idle)
4628 )
4629 limit = 1;
4630
4631 if (bfqd->rq_in_driver >= limit)
4632 return NULL;
4633
4634 /*
4635 * Linear search of the source queue for injection; but, with
4636 * a high probability, very few steps are needed to find a
4637 * candidate queue, i.e., a queue with enough budget left for
4638 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02004639 * - BFQ dynamically updates the budget of every queue so as
4640 * to accommodate the expected backlog of the queue;
4641 * - if a queue gets all its requests dispatched as injected
4642 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004643 * (and re-added only if it gets new requests, but then it
4644 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004645 */
4646 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4647 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004648 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004649 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004650 bfq_bfqq_budget_left(bfqq)) {
4651 /*
4652 * Allow for only one large in-flight request
4653 * on non-rotational devices, for the
4654 * following reason. On non-rotationl drives,
4655 * large requests take much longer than
4656 * smaller requests to be served. In addition,
4657 * the drive prefers to serve large requests
4658 * w.r.t. to small ones, if it can choose. So,
4659 * having more than one large requests queued
4660 * in the drive may easily make the next first
4661 * request of the in-service queue wait for so
4662 * long to break bfqq's service guarantees. On
4663 * the bright side, large requests let the
4664 * drive reach a very high throughput, even if
4665 * there is only one in-flight large request
4666 * at a time.
4667 */
4668 if (blk_queue_nonrot(bfqd->queue) &&
4669 blk_rq_sectors(bfqq->next_rq) >=
4670 BFQQ_SECT_THR_NONROT)
4671 limit = min_t(unsigned int, 1, limit);
4672 else
4673 limit = in_serv_bfqq->inject_limit;
4674
4675 if (bfqd->rq_in_driver < limit) {
4676 bfqd->rqs_injected = true;
4677 return bfqq;
4678 }
4679 }
Paolo Valented0edc242018-09-14 16:23:08 +02004680
4681 return NULL;
4682}
4683
Paolo Valenteaee69d72017-04-19 08:29:02 -06004684/*
4685 * Select a queue for service. If we have a current queue in service,
4686 * check whether to continue servicing it, or retrieve and set a new one.
4687 */
4688static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4689{
4690 struct bfq_queue *bfqq;
4691 struct request *next_rq;
4692 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4693
4694 bfqq = bfqd->in_service_queue;
4695 if (!bfqq)
4696 goto new_queue;
4697
4698 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4699
Paolo Valente4420b092018-06-25 21:55:35 +02004700 /*
4701 * Do not expire bfqq for budget timeout if bfqq may be about
4702 * to enjoy device idling. The reason why, in this case, we
4703 * prevent bfqq from expiring is the same as in the comments
4704 * on the case where bfq_bfqq_must_idle() returns true, in
4705 * bfq_completed_request().
4706 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004707 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004708 !bfq_bfqq_must_idle(bfqq))
4709 goto expire;
4710
4711check_queue:
4712 /*
4713 * This loop is rarely executed more than once. Even when it
4714 * happens, it is much more convenient to re-execute this loop
4715 * than to return NULL and trigger a new dispatch to get a
4716 * request served.
4717 */
4718 next_rq = bfqq->next_rq;
4719 /*
4720 * If bfqq has requests queued and it has enough budget left to
4721 * serve them, keep the queue, otherwise expire it.
4722 */
4723 if (next_rq) {
4724 if (bfq_serv_to_charge(next_rq, bfqq) >
4725 bfq_bfqq_budget_left(bfqq)) {
4726 /*
4727 * Expire the queue for budget exhaustion,
4728 * which makes sure that the next budget is
4729 * enough to serve the next request, even if
4730 * it comes from the fifo expired path.
4731 */
4732 reason = BFQQE_BUDGET_EXHAUSTED;
4733 goto expire;
4734 } else {
4735 /*
4736 * The idle timer may be pending because we may
4737 * not disable disk idling even when a new request
4738 * arrives.
4739 */
4740 if (bfq_bfqq_wait_request(bfqq)) {
4741 /*
4742 * If we get here: 1) at least a new request
4743 * has arrived but we have not disabled the
4744 * timer because the request was too small,
4745 * 2) then the block layer has unplugged
4746 * the device, causing the dispatch to be
4747 * invoked.
4748 *
4749 * Since the device is unplugged, now the
4750 * requests are probably large enough to
4751 * provide a reasonable throughput.
4752 * So we disable idling.
4753 */
4754 bfq_clear_bfqq_wait_request(bfqq);
4755 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4756 }
4757 goto keep_queue;
4758 }
4759 }
4760
4761 /*
4762 * No requests pending. However, if the in-service queue is idling
4763 * for a new request, or has requests waiting for a completion and
4764 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004765 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004766 * Yet, inject service from other queues if it boosts
4767 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004768 */
4769 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004770 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004771 struct bfq_queue *async_bfqq =
4772 bfqq->bic && bfqq->bic->bfqq[0] &&
Paolo Valente37261122019-06-25 07:12:49 +02004773 bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4774 bfqq->bic->bfqq[0]->next_rq ?
Paolo Valente2341d6622019-03-12 09:59:29 +01004775 bfqq->bic->bfqq[0] : NULL;
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004776 struct bfq_queue *blocked_bfqq =
4777 !hlist_empty(&bfqq->woken_list) ?
4778 container_of(bfqq->woken_list.first,
4779 struct bfq_queue,
4780 woken_list_node)
4781 : NULL;
Paolo Valente2341d6622019-03-12 09:59:29 +01004782
4783 /*
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004784 * The next four mutually-exclusive ifs decide
Paolo Valente13a857a2019-06-25 07:12:47 +02004785 * whether to try injection, and choose the queue to
4786 * pick an I/O request from.
4787 *
4788 * The first if checks whether the process associated
4789 * with bfqq has also async I/O pending. If so, it
4790 * injects such I/O unconditionally. Injecting async
4791 * I/O from the same process can cause no harm to the
4792 * process. On the contrary, it can only increase
4793 * bandwidth and reduce latency for the process.
4794 *
4795 * The second if checks whether there happens to be a
4796 * non-empty waker queue for bfqq, i.e., a queue whose
4797 * I/O needs to be completed for bfqq to receive new
4798 * I/O. This happens, e.g., if bfqq is associated with
4799 * a process that does some sync. A sync generates
4800 * extra blocking I/O, which must be completed before
4801 * the process associated with bfqq can go on with its
4802 * I/O. If the I/O of the waker queue is not served,
4803 * then bfqq remains empty, and no I/O is dispatched,
4804 * until the idle timeout fires for bfqq. This is
4805 * likely to result in lower bandwidth and higher
4806 * latencies for bfqq, and in a severe loss of total
4807 * throughput. The best action to take is therefore to
4808 * serve the waker queue as soon as possible. So do it
4809 * (without relying on the third alternative below for
4810 * eventually serving waker_bfqq's I/O; see the last
4811 * paragraph for further details). This systematic
4812 * injection of I/O from the waker queue does not
4813 * cause any delay to bfqq's I/O. On the contrary,
4814 * next bfqq's I/O is brought forward dramatically,
4815 * for it is not blocked for milliseconds.
4816 *
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004817 * The third if checks whether there is a queue woken
4818 * by bfqq, and currently with pending I/O. Such a
4819 * woken queue does not steal bandwidth from bfqq,
4820 * because it remains soon without I/O if bfqq is not
4821 * served. So there is virtually no risk of loss of
4822 * bandwidth for bfqq if this woken queue has I/O
4823 * dispatched while bfqq is waiting for new I/O.
4824 *
4825 * The fourth if checks whether bfqq is a queue for
Paolo Valente13a857a2019-06-25 07:12:47 +02004826 * which it is better to avoid injection. It is so if
4827 * bfqq delivers more throughput when served without
4828 * any further I/O from other queues in the middle, or
4829 * if the service times of bfqq's I/O requests both
4830 * count more than overall throughput, and may be
4831 * easily increased by injection (this happens if bfqq
4832 * has a short think time). If none of these
4833 * conditions holds, then a candidate queue for
4834 * injection is looked for through
4835 * bfq_choose_bfqq_for_injection(). Note that the
4836 * latter may return NULL (for example if the inject
4837 * limit for bfqq is currently 0).
4838 *
4839 * NOTE: motivation for the second alternative
4840 *
4841 * Thanks to the way the inject limit is updated in
4842 * bfq_update_has_short_ttime(), it is rather likely
4843 * that, if I/O is being plugged for bfqq and the
4844 * waker queue has pending I/O requests that are
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004845 * blocking bfqq's I/O, then the fourth alternative
Paolo Valente13a857a2019-06-25 07:12:47 +02004846 * above lets the waker queue get served before the
4847 * I/O-plugging timeout fires. So one may deem the
4848 * second alternative superfluous. It is not, because
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004849 * the fourth alternative may be way less effective in
Paolo Valente13a857a2019-06-25 07:12:47 +02004850 * case of a synchronization. For two main
4851 * reasons. First, throughput may be low because the
4852 * inject limit may be too low to guarantee the same
4853 * amount of injected I/O, from the waker queue or
4854 * other queues, that the second alternative
4855 * guarantees (the second alternative unconditionally
4856 * injects a pending I/O request of the waker queue
4857 * for each bfq_dispatch_request()). Second, with the
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004858 * fourth alternative, the duration of the plugging,
Paolo Valente13a857a2019-06-25 07:12:47 +02004859 * i.e., the time before bfqq finally receives new I/O,
4860 * may not be minimized, because the waker queue may
4861 * happen to be served only after other queues.
Paolo Valente2341d6622019-03-12 09:59:29 +01004862 */
4863 if (async_bfqq &&
4864 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4865 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4866 bfq_bfqq_budget_left(async_bfqq))
4867 bfqq = bfqq->bic->bfqq[0];
Paolo Valente71217df2021-01-25 20:02:48 +01004868 else if (bfqq->waker_bfqq &&
Paolo Valente13a857a2019-06-25 07:12:47 +02004869 bfq_bfqq_busy(bfqq->waker_bfqq) &&
Jia Cheng Hud4fc3642021-01-22 19:19:44 +01004870 bfqq->waker_bfqq->next_rq &&
Paolo Valente13a857a2019-06-25 07:12:47 +02004871 bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4872 bfqq->waker_bfqq) <=
4873 bfq_bfqq_budget_left(bfqq->waker_bfqq)
4874 )
4875 bfqq = bfqq->waker_bfqq;
Paolo Valente2ec5a5c2021-03-04 18:46:22 +01004876 else if (blocked_bfqq &&
4877 bfq_bfqq_busy(blocked_bfqq) &&
4878 blocked_bfqq->next_rq &&
4879 bfq_serv_to_charge(blocked_bfqq->next_rq,
4880 blocked_bfqq) <=
4881 bfq_bfqq_budget_left(blocked_bfqq)
4882 )
4883 bfqq = blocked_bfqq;
Paolo Valente2341d6622019-03-12 09:59:29 +01004884 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4885 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4886 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004887 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4888 else
4889 bfqq = NULL;
4890
Paolo Valenteaee69d72017-04-19 08:29:02 -06004891 goto keep_queue;
4892 }
4893
4894 reason = BFQQE_NO_MORE_REQUESTS;
4895expire:
4896 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4897new_queue:
4898 bfqq = bfq_set_in_service_queue(bfqd);
4899 if (bfqq) {
4900 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4901 goto check_queue;
4902 }
4903keep_queue:
4904 if (bfqq)
4905 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4906 else
4907 bfq_log(bfqd, "select_queue: no queue returned");
4908
4909 return bfqq;
4910}
4911
Paolo Valente44e44a12017-04-12 18:23:12 +02004912static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4913{
4914 struct bfq_entity *entity = &bfqq->entity;
4915
4916 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4917 bfq_log_bfqq(bfqd, bfqq,
4918 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4919 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4920 jiffies_to_msecs(bfqq->wr_cur_max_time),
4921 bfqq->wr_coeff,
4922 bfqq->entity.weight, bfqq->entity.orig_weight);
4923
4924 if (entity->prio_changed)
4925 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4926
4927 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004928 * If the queue was activated in a burst, or too much
4929 * time has elapsed from the beginning of this
4930 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004931 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004932 if (bfq_bfqq_in_large_burst(bfqq))
4933 bfq_bfqq_end_wr(bfqq);
4934 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4935 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004936 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4937 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Paolo Valente3c337692021-01-22 19:19:47 +01004938 bfq_wr_duration(bfqd))) {
4939 /*
4940 * Either in interactive weight
4941 * raising, or in soft_rt weight
4942 * raising with the
4943 * interactive-weight-raising period
4944 * elapsed (so no switch back to
4945 * interactive weight raising).
4946 */
Paolo Valente77b7dce2017-04-12 18:23:13 +02004947 bfq_bfqq_end_wr(bfqq);
Paolo Valente3c337692021-01-22 19:19:47 +01004948 } else { /*
4949 * soft_rt finishing while still in
4950 * interactive period, switch back to
4951 * interactive weight raising
4952 */
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004953 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004954 bfqq->entity.prio_changed = 1;
4955 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004956 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004957 if (bfqq->wr_coeff > 1 &&
4958 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4959 bfqq->service_from_wr > max_service_from_wr) {
4960 /* see comments on max_service_from_wr */
4961 bfq_bfqq_end_wr(bfqq);
4962 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004963 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004964 /*
4965 * To improve latency (for this or other queues), immediately
4966 * update weight both if it must be raised and if it must be
4967 * lowered. Since, entity may be on some active tree here, and
4968 * might have a pending change of its ioprio class, invoke
4969 * next function with the last parameter unset (see the
4970 * comments on the function).
4971 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004972 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004973 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4974 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004975}
4976
Paolo Valenteaee69d72017-04-19 08:29:02 -06004977/*
4978 * Dispatch next request from bfqq.
4979 */
4980static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4981 struct bfq_queue *bfqq)
4982{
4983 struct request *rq = bfqq->next_rq;
4984 unsigned long service_to_charge;
4985
4986 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4987
4988 bfq_bfqq_served(bfqq, service_to_charge);
4989
Paolo Valente2341d6622019-03-12 09:59:29 +01004990 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4991 bfqd->wait_dispatch = false;
4992 bfqd->waited_rq = rq;
4993 }
4994
Paolo Valenteaee69d72017-04-19 08:29:02 -06004995 bfq_dispatch_remove(bfqd->queue, rq);
4996
Paolo Valente2341d6622019-03-12 09:59:29 +01004997 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004998 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004999
Paolo Valente44e44a12017-04-12 18:23:12 +02005000 /*
5001 * If weight raising has to terminate for bfqq, then next
5002 * function causes an immediate update of bfqq's weight,
5003 * without waiting for next activation. As a consequence, on
5004 * expiration, bfqq will be timestamped as if has never been
5005 * weight-raised during this service slot, even if it has
5006 * received part or even most of the service as a
5007 * weight-raised queue. This inflates bfqq's timestamps, which
5008 * is beneficial, as bfqq is then more willing to leave the
5009 * device immediately to possible other weight-raised queues.
5010 */
5011 bfq_update_wr_data(bfqd, bfqq);
5012
Paolo Valenteaee69d72017-04-19 08:29:02 -06005013 /*
5014 * Expire bfqq, pretending that its budget expired, if bfqq
5015 * belongs to CLASS_IDLE and other queues are waiting for
5016 * service.
5017 */
Paolo Valente73d58112019-01-29 12:06:29 +01005018 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02005019 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005020
Paolo Valenteaee69d72017-04-19 08:29:02 -06005021 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02005022
5023return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06005024 return rq;
5025}
5026
5027static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5028{
5029 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5030
5031 /*
5032 * Avoiding lock: a race on bfqd->busy_queues should cause at
5033 * most a call to dispatch for nothing
5034 */
5035 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01005036 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005037}
5038
5039static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5040{
5041 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5042 struct request *rq = NULL;
5043 struct bfq_queue *bfqq = NULL;
5044
5045 if (!list_empty(&bfqd->dispatch)) {
5046 rq = list_first_entry(&bfqd->dispatch, struct request,
5047 queuelist);
5048 list_del_init(&rq->queuelist);
5049
5050 bfqq = RQ_BFQQ(rq);
5051
5052 if (bfqq) {
5053 /*
5054 * Increment counters here, because this
5055 * dispatch does not follow the standard
5056 * dispatch flow (where counters are
5057 * incremented)
5058 */
5059 bfqq->dispatched++;
5060
5061 goto inc_in_driver_start_rq;
5062 }
5063
5064 /*
Paolo Valentea7877392018-02-07 22:19:20 +01005065 * We exploit the bfq_finish_requeue_request hook to
5066 * decrement rq_in_driver, but
5067 * bfq_finish_requeue_request will not be invoked on
5068 * this request. So, to avoid unbalance, just start
5069 * this request, without incrementing rq_in_driver. As
5070 * a negative consequence, rq_in_driver is deceptively
5071 * lower than it should be while this request is in
5072 * service. This may cause bfq_schedule_dispatch to be
5073 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005074 *
5075 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01005076 * bfq_finish_requeue_request hook, if defined, is
5077 * probably invoked also on this request. So, by
5078 * exploiting this hook, we could 1) increment
5079 * rq_in_driver here, and 2) decrement it in
5080 * bfq_finish_requeue_request. Such a solution would
5081 * let the value of the counter be always accurate,
5082 * but it would entail using an extra interface
5083 * function. This cost seems higher than the benefit,
5084 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06005085 * requests very low.
5086 */
5087 goto start_rq;
5088 }
5089
Paolo Valente73d58112019-01-29 12:06:29 +01005090 bfq_log(bfqd, "dispatch requests: %d busy queues",
5091 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06005092
Paolo Valente73d58112019-01-29 12:06:29 +01005093 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005094 goto exit;
5095
5096 /*
5097 * Force device to serve one request at a time if
5098 * strict_guarantees is true. Forcing this service scheme is
5099 * currently the ONLY way to guarantee that the request
5100 * service order enforced by the scheduler is respected by a
5101 * queueing device. Otherwise the device is free even to make
5102 * some unlucky request wait for as long as the device
5103 * wishes.
5104 *
Randy Dunlapf06678a2020-07-30 18:42:27 -07005105 * Of course, serving one request at a time may cause loss of
Paolo Valenteaee69d72017-04-19 08:29:02 -06005106 * throughput.
5107 */
5108 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5109 goto exit;
5110
5111 bfqq = bfq_select_queue(bfqd);
5112 if (!bfqq)
5113 goto exit;
5114
5115 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5116
5117 if (rq) {
5118inc_in_driver_start_rq:
5119 bfqd->rq_in_driver++;
5120start_rq:
5121 rq->rq_flags |= RQF_STARTED;
5122 }
5123exit:
5124 return rq;
5125}
5126
Christoph Hellwig8060c472019-06-06 12:26:24 +02005127#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01005128static void bfq_update_dispatch_stats(struct request_queue *q,
5129 struct request *rq,
5130 struct bfq_queue *in_serv_queue,
5131 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005132{
Paolo Valente9b25bd02017-12-04 11:42:05 +01005133 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005134
Paolo Valente24bfd192017-11-13 07:34:09 +01005135 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01005136 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01005137
5138 /*
5139 * rq and bfqq are guaranteed to exist until this function
5140 * ends, for the following reasons. First, rq can be
5141 * dispatched to the device, and then can be completed and
5142 * freed, only after this function ends. Second, rq cannot be
5143 * merged (and thus freed because of a merge) any longer,
5144 * because it has already started. Thus rq cannot be freed
5145 * before this function ends, and, since rq has a reference to
5146 * bfqq, the same guarantee holds for bfqq too.
5147 *
5148 * In addition, the following queue lock guarantees that
5149 * bfqq_group(bfqq) exists as well.
5150 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005151 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005152 if (idle_timer_disabled)
5153 /*
5154 * Since the idle timer has been disabled,
5155 * in_serv_queue contained some request when
5156 * __bfq_dispatch_request was invoked above, which
5157 * implies that rq was picked exactly from
5158 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5159 * therefore guaranteed to exist because of the above
5160 * arguments.
5161 */
5162 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5163 if (bfqq) {
5164 struct bfq_group *bfqg = bfqq_group(bfqq);
5165
5166 bfqg_stats_update_avg_queue_size(bfqg);
5167 bfqg_stats_set_start_empty_time(bfqg);
5168 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5169 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005170 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005171}
5172#else
5173static inline void bfq_update_dispatch_stats(struct request_queue *q,
5174 struct request *rq,
5175 struct bfq_queue *in_serv_queue,
5176 bool idle_timer_disabled) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02005177#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente24bfd192017-11-13 07:34:09 +01005178
Paolo Valente9b25bd02017-12-04 11:42:05 +01005179static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5180{
5181 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5182 struct request *rq;
5183 struct bfq_queue *in_serv_queue;
5184 bool waiting_rq, idle_timer_disabled;
5185
5186 spin_lock_irq(&bfqd->lock);
5187
5188 in_serv_queue = bfqd->in_service_queue;
5189 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5190
5191 rq = __bfq_dispatch_request(hctx);
5192
5193 idle_timer_disabled =
5194 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5195
5196 spin_unlock_irq(&bfqd->lock);
5197
5198 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
5199 idle_timer_disabled);
5200
Paolo Valenteaee69d72017-04-19 08:29:02 -06005201 return rq;
5202}
5203
5204/*
5205 * Task holds one reference to the queue, dropped when task exits. Each rq
5206 * in-flight on this queue also holds a reference, dropped when rq is freed.
5207 *
5208 * Scheduler lock must be held here. Recall not to use bfqq after calling
5209 * this function on it.
5210 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005211void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005212{
Paolo Valente3f758e82019-08-07 16:17:54 +02005213 struct bfq_queue *item;
5214 struct hlist_node *n;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005215 struct bfq_group *bfqg = bfqq_group(bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005216
Paolo Valenteaee69d72017-04-19 08:29:02 -06005217 if (bfqq->bfqd)
5218 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5219 bfqq, bfqq->ref);
5220
5221 bfqq->ref--;
5222 if (bfqq->ref)
5223 return;
5224
Paolo Valente99fead82017-10-09 13:11:23 +02005225 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005226 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02005227 /*
5228 * Decrement also burst size after the removal, if the
5229 * process associated with bfqq is exiting, and thus
5230 * does not contribute to the burst any longer. This
5231 * decrement helps filter out false positives of large
5232 * bursts, when some short-lived process (often due to
5233 * the execution of commands by some service) happens
5234 * to start and exit while a complex application is
5235 * starting, and thus spawning several processes that
5236 * do I/O (and that *must not* be treated as a large
5237 * burst, see comments on bfq_handle_burst).
5238 *
5239 * In particular, the decrement is performed only if:
5240 * 1) bfqq is not a merged queue, because, if it is,
5241 * then this free of bfqq is not triggered by the exit
5242 * of the process bfqq is associated with, but exactly
5243 * by the fact that bfqq has just been merged.
5244 * 2) burst_size is greater than 0, to handle
5245 * unbalanced decrements. Unbalanced decrements may
5246 * happen in te following case: bfqq is inserted into
5247 * the current burst list--without incrementing
5248 * bust_size--because of a split, but the current
5249 * burst list is not the burst list bfqq belonged to
5250 * (see comments on the case of a split in
5251 * bfq_set_request).
5252 */
5253 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5254 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02005255 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005256
Paolo Valente3f758e82019-08-07 16:17:54 +02005257 /*
5258 * bfqq does not exist any longer, so it cannot be woken by
5259 * any other queue, and cannot wake any other queue. Then bfqq
5260 * must be removed from the woken list of its possible waker
5261 * queue, and all queues in the woken list of bfqq must stop
5262 * having a waker queue. Strictly speaking, these updates
5263 * should be performed when bfqq remains with no I/O source
5264 * attached to it, which happens before bfqq gets freed. In
5265 * particular, this happens when the last process associated
5266 * with bfqq exits or gets associated with a different
5267 * queue. However, both events lead to bfqq being freed soon,
5268 * and dangling references would come out only after bfqq gets
5269 * freed. So these updates are done here, as a simple and safe
5270 * way to handle all cases.
5271 */
5272 /* remove bfqq from woken list */
5273 if (!hlist_unhashed(&bfqq->woken_list_node))
5274 hlist_del_init(&bfqq->woken_list_node);
5275
5276 /* reset waker for all queues in woken list */
5277 hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5278 woken_list_node) {
5279 item->waker_bfqq = NULL;
Paolo Valente3f758e82019-08-07 16:17:54 +02005280 hlist_del_init(&item->woken_list_node);
5281 }
5282
Paolo Valente08d383a2019-08-07 16:17:53 +02005283 if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5284 bfqq->bfqd->last_completed_rq_bfqq = NULL;
5285
Paolo Valenteaee69d72017-04-19 08:29:02 -06005286 kmem_cache_free(bfq_pool, bfqq);
Paolo Valente8f9bebc2017-06-05 10:11:15 +02005287 bfqg_and_blkg_put(bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005288}
5289
Paolo Valente430a67f2021-03-04 18:46:27 +01005290static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5291{
5292 bfqq->stable_ref--;
5293 bfq_put_queue(bfqq);
5294}
5295
Arianna Avanzini36eca892017-04-12 18:23:16 +02005296static void bfq_put_cooperator(struct bfq_queue *bfqq)
5297{
5298 struct bfq_queue *__bfqq, *next;
5299
5300 /*
5301 * If this queue was scheduled to merge with another queue, be
5302 * sure to drop the reference taken on that queue (and others in
5303 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5304 */
5305 __bfqq = bfqq->new_bfqq;
5306 while (__bfqq) {
5307 if (__bfqq == bfqq)
5308 break;
5309 next = __bfqq->new_bfqq;
5310 bfq_put_queue(__bfqq);
5311 __bfqq = next;
5312 }
5313}
5314
Paolo Valenteaee69d72017-04-19 08:29:02 -06005315static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5316{
5317 if (bfqq == bfqd->in_service_queue) {
Paolo Valente37261122019-06-25 07:12:49 +02005318 __bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005319 bfq_schedule_dispatch(bfqd);
5320 }
5321
5322 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5323
Arianna Avanzini36eca892017-04-12 18:23:16 +02005324 bfq_put_cooperator(bfqq);
5325
Paolo Valente478de332019-11-14 10:33:11 +01005326 bfq_release_process_ref(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005327}
5328
5329static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5330{
5331 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5332 struct bfq_data *bfqd;
5333
5334 if (bfqq)
5335 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5336
5337 if (bfqq && bfqd) {
5338 unsigned long flags;
5339
5340 spin_lock_irqsave(&bfqd->lock, flags);
Douglas Andersondbc31172019-06-27 21:44:09 -07005341 bfqq->bic = NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005342 bfq_exit_bfqq(bfqd, bfqq);
5343 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005344 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005345 }
5346}
5347
5348static void bfq_exit_icq(struct io_cq *icq)
5349{
5350 struct bfq_io_cq *bic = icq_to_bic(icq);
5351
Paolo Valente430a67f2021-03-04 18:46:27 +01005352 if (bic->stable_merge_bfqq) {
5353 struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5354
5355 /*
5356 * bfqd is NULL if scheduler already exited, and in
5357 * that case this is the last time bfqq is accessed.
5358 */
5359 if (bfqd) {
5360 unsigned long flags;
5361
5362 spin_lock_irqsave(&bfqd->lock, flags);
5363 bfq_put_stable_ref(bic->stable_merge_bfqq);
5364 spin_unlock_irqrestore(&bfqd->lock, flags);
5365 } else {
5366 bfq_put_stable_ref(bic->stable_merge_bfqq);
5367 }
5368 }
5369
Paolo Valenteaee69d72017-04-19 08:29:02 -06005370 bfq_exit_icq_bfqq(bic, true);
5371 bfq_exit_icq_bfqq(bic, false);
5372}
5373
5374/*
5375 * Update the entity prio values; note that the new values will not
5376 * be used until the next (re)activation.
5377 */
5378static void
5379bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5380{
5381 struct task_struct *tsk = current;
5382 int ioprio_class;
5383 struct bfq_data *bfqd = bfqq->bfqd;
5384
5385 if (!bfqd)
5386 return;
5387
5388 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5389 switch (ioprio_class) {
5390 default:
Yufen Yud51cfc52020-05-04 14:47:55 +02005391 pr_err("bdi %s: bfq: bad prio class %d\n",
Christoph Hellwigd152c682021-08-16 15:46:24 +02005392 bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
Christoph Hellwigedb08722021-08-09 16:17:43 +02005393 ioprio_class);
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05005394 fallthrough;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005395 case IOPRIO_CLASS_NONE:
5396 /*
5397 * No prio set, inherit CPU scheduling settings.
5398 */
5399 bfqq->new_ioprio = task_nice_ioprio(tsk);
5400 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5401 break;
5402 case IOPRIO_CLASS_RT:
5403 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5404 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5405 break;
5406 case IOPRIO_CLASS_BE:
5407 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5408 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5409 break;
5410 case IOPRIO_CLASS_IDLE:
5411 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5412 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005413 break;
5414 }
5415
Damien Le Moal202bc942021-08-11 12:37:01 +09005416 if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06005417 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5418 bfqq->new_ioprio);
Damien Le Moal202bc942021-08-11 12:37:01 +09005419 bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005420 }
5421
5422 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
Paolo Valente3c337692021-01-22 19:19:47 +01005423 bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5424 bfqq->new_ioprio, bfqq->entity.new_weight);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005425 bfqq->entity.prio_changed = 1;
5426}
5427
Paolo Valenteea25da42017-04-19 08:48:24 -06005428static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5429 struct bio *bio, bool is_sync,
Paolo Valente430a67f2021-03-04 18:46:27 +01005430 struct bfq_io_cq *bic,
5431 bool respawn);
Paolo Valenteea25da42017-04-19 08:48:24 -06005432
Paolo Valenteaee69d72017-04-19 08:29:02 -06005433static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5434{
5435 struct bfq_data *bfqd = bic_to_bfqd(bic);
5436 struct bfq_queue *bfqq;
5437 int ioprio = bic->icq.ioc->ioprio;
5438
5439 /*
5440 * This condition may trigger on a newly created bic, be sure to
5441 * drop the lock before returning.
5442 */
5443 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5444 return;
5445
5446 bic->ioprio = ioprio;
5447
5448 bfqq = bic_to_bfqq(bic, false);
5449 if (bfqq) {
Paolo Valente478de332019-11-14 10:33:11 +01005450 bfq_release_process_ref(bfqd, bfqq);
Paolo Valente430a67f2021-03-04 18:46:27 +01005451 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic, true);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005452 bic_set_bfqq(bic, bfqq, false);
5453 }
5454
5455 bfqq = bic_to_bfqq(bic, true);
5456 if (bfqq)
5457 bfq_set_next_ioprio_data(bfqq, bic);
5458}
5459
5460static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5461 struct bfq_io_cq *bic, pid_t pid, int is_sync)
5462{
Paolo Valenteeb2fd802021-01-25 20:02:43 +01005463 u64 now_ns = ktime_get_ns();
5464
Paolo Valenteaee69d72017-04-19 08:29:02 -06005465 RB_CLEAR_NODE(&bfqq->entity.rb_node);
5466 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005467 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valente13a857a2019-06-25 07:12:47 +02005468 INIT_HLIST_NODE(&bfqq->woken_list_node);
5469 INIT_HLIST_HEAD(&bfqq->woken_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005470
5471 bfqq->ref = 0;
5472 bfqq->bfqd = bfqd;
5473
5474 if (bic)
5475 bfq_set_next_ioprio_data(bfqq, bic);
5476
5477 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02005478 /*
5479 * No need to mark as has_short_ttime if in
5480 * idle_class, because no device idling is performed
5481 * for queues in idle class
5482 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005483 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02005484 /* tentatively mark as has_short_ttime */
5485 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005486 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005487 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005488 } else
5489 bfq_clear_bfqq_sync(bfqq);
5490
5491 /* set end request to minus infinity from now */
Paolo Valenteeb2fd802021-01-25 20:02:43 +01005492 bfqq->ttime.last_end_request = now_ns + 1;
5493
Paolo Valente430a67f2021-03-04 18:46:27 +01005494 bfqq->creation_time = jiffies;
5495
Paolo Valenteeb2fd802021-01-25 20:02:43 +01005496 bfqq->io_start_time = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005497
5498 bfq_mark_bfqq_IO_bound(bfqq);
5499
5500 bfqq->pid = pid;
5501
5502 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02005503 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005504 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005505
Paolo Valente44e44a12017-04-12 18:23:12 +02005506 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005507 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005508 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02005509 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02005510
5511 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01005512 * To not forget the possibly high bandwidth consumed by a
5513 * process/queue in the recent past,
5514 * bfq_bfqq_softrt_next_start() returns a value at least equal
5515 * to the current value of bfqq->soft_rt_next_start (see
5516 * comments on bfq_bfqq_softrt_next_start). Set
5517 * soft_rt_next_start to now, to mean that bfqq has consumed
5518 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005519 */
Paolo Valentea34b0242017-12-15 07:23:12 +01005520 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02005521
Paolo Valenteaee69d72017-04-19 08:29:02 -06005522 /* first request is almost certainly seeky */
5523 bfqq->seek_history = 1;
5524}
5525
5526static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005527 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005528 int ioprio_class, int ioprio)
5529{
5530 switch (ioprio_class) {
5531 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005532 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005533 case IOPRIO_CLASS_NONE:
Damien Le Moale70344c2021-08-11 12:37:02 +09005534 ioprio = IOPRIO_BE_NORM;
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05005535 fallthrough;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005536 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005537 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06005538 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005539 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005540 default:
5541 return NULL;
5542 }
5543}
5544
Paolo Valente430a67f2021-03-04 18:46:27 +01005545static struct bfq_queue *
5546bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5547 struct bfq_io_cq *bic,
5548 struct bfq_queue *last_bfqq_created)
5549{
5550 struct bfq_queue *new_bfqq =
5551 bfq_setup_merge(bfqq, last_bfqq_created);
5552
5553 if (!new_bfqq)
5554 return bfqq;
5555
5556 if (new_bfqq->bic)
5557 new_bfqq->bic->stably_merged = true;
5558 bic->stably_merged = true;
5559
5560 /*
5561 * Reusing merge functions. This implies that
5562 * bfqq->bic must be set too, for
5563 * bfq_merge_bfqqs to correctly save bfqq's
5564 * state before killing it.
5565 */
5566 bfqq->bic = bic;
5567 bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5568
5569 return new_bfqq;
5570}
5571
5572/*
5573 * Many throughput-sensitive workloads are made of several parallel
5574 * I/O flows, with all flows generated by the same application, or
5575 * more generically by the same task (e.g., system boot). The most
5576 * counterproductive action with these workloads is plugging I/O
5577 * dispatch when one of the bfq_queues associated with these flows
5578 * remains temporarily empty.
5579 *
5580 * To avoid this plugging, BFQ has been using a burst-handling
5581 * mechanism for years now. This mechanism has proven effective for
5582 * throughput, and not detrimental for service guarantees. The
5583 * following function pushes this mechanism a little bit further,
5584 * basing on the following two facts.
5585 *
5586 * First, all the I/O flows of a the same application or task
5587 * contribute to the execution/completion of that common application
5588 * or task. So the performance figures that matter are total
5589 * throughput of the flows and task-wide I/O latency. In particular,
5590 * these flows do not need to be protected from each other, in terms
5591 * of individual bandwidth or latency.
5592 *
5593 * Second, the above fact holds regardless of the number of flows.
5594 *
5595 * Putting these two facts together, this commits merges stably the
5596 * bfq_queues associated with these I/O flows, i.e., with the
5597 * processes that generate these IO/ flows, regardless of how many the
5598 * involved processes are.
5599 *
5600 * To decide whether a set of bfq_queues is actually associated with
5601 * the I/O flows of a common application or task, and to merge these
5602 * queues stably, this function operates as follows: given a bfq_queue,
5603 * say Q2, currently being created, and the last bfq_queue, say Q1,
5604 * created before Q2, Q2 is merged stably with Q1 if
5605 * - very little time has elapsed since when Q1 was created
5606 * - Q2 has the same ioprio as Q1
5607 * - Q2 belongs to the same group as Q1
5608 *
5609 * Merging bfq_queues also reduces scheduling overhead. A fio test
5610 * with ten random readers on /dev/nullb shows a throughput boost of
5611 * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5612 * the total per-request processing time, the above throughput boost
5613 * implies that BFQ's overhead is reduced by more than 50%.
5614 *
5615 * This new mechanism most certainly obsoletes the current
5616 * burst-handling heuristics. We keep those heuristics for the moment.
5617 */
5618static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5619 struct bfq_queue *bfqq,
5620 struct bfq_io_cq *bic)
5621{
5622 struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5623 &bfqq->entity.parent->last_bfqq_created :
5624 &bfqd->last_bfqq_created;
5625
5626 struct bfq_queue *last_bfqq_created = *source_bfqq;
5627
5628 /*
5629 * If last_bfqq_created has not been set yet, then init it. If
5630 * it has been set already, but too long ago, then move it
5631 * forward to bfqq. Finally, move also if bfqq belongs to a
5632 * different group than last_bfqq_created, or if bfqq has a
5633 * different ioprio or ioprio_class. If none of these
5634 * conditions holds true, then try an early stable merge or
5635 * schedule a delayed stable merge.
5636 *
5637 * A delayed merge is scheduled (instead of performing an
5638 * early merge), in case bfqq might soon prove to be more
5639 * throughput-beneficial if not merged. Currently this is
5640 * possible only if bfqd is rotational with no queueing. For
5641 * such a drive, not merging bfqq is better for throughput if
5642 * bfqq happens to contain sequential I/O. So, we wait a
5643 * little bit for enough I/O to flow through bfqq. After that,
5644 * if such an I/O is sequential, then the merge is
5645 * canceled. Otherwise the merge is finally performed.
5646 */
5647 if (!last_bfqq_created ||
5648 time_before(last_bfqq_created->creation_time +
Pietro Pedroni78124722021-06-19 16:09:45 +02005649 msecs_to_jiffies(bfq_activation_stable_merging),
Paolo Valente430a67f2021-03-04 18:46:27 +01005650 bfqq->creation_time) ||
5651 bfqq->entity.parent != last_bfqq_created->entity.parent ||
5652 bfqq->ioprio != last_bfqq_created->ioprio ||
5653 bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5654 *source_bfqq = bfqq;
5655 else if (time_after_eq(last_bfqq_created->creation_time +
5656 bfqd->bfq_burst_interval,
5657 bfqq->creation_time)) {
5658 if (likely(bfqd->nonrot_with_queueing))
5659 /*
5660 * With this type of drive, leaving
5661 * bfqq alone may provide no
5662 * throughput benefits compared with
5663 * merging bfqq. So merge bfqq now.
5664 */
5665 bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5666 bic,
5667 last_bfqq_created);
5668 else { /* schedule tentative stable merge */
5669 /*
5670 * get reference on last_bfqq_created,
5671 * to prevent it from being freed,
5672 * until we decide whether to merge
5673 */
5674 last_bfqq_created->ref++;
5675 /*
5676 * need to keep track of stable refs, to
5677 * compute process refs correctly
5678 */
5679 last_bfqq_created->stable_ref++;
5680 /*
5681 * Record the bfqq to merge to.
5682 */
5683 bic->stable_merge_bfqq = last_bfqq_created;
5684 }
5685 }
5686
5687 return bfqq;
5688}
5689
5690
Paolo Valenteaee69d72017-04-19 08:29:02 -06005691static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5692 struct bio *bio, bool is_sync,
Paolo Valente430a67f2021-03-04 18:46:27 +01005693 struct bfq_io_cq *bic,
5694 bool respawn)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005695{
5696 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5697 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5698 struct bfq_queue **async_bfqq = NULL;
5699 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005700 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005701
5702 rcu_read_lock();
5703
Dennis Zhou0fe061b2018-12-05 12:10:26 -05005704 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005705 if (!bfqg) {
5706 bfqq = &bfqd->oom_bfqq;
5707 goto out;
5708 }
5709
Paolo Valenteaee69d72017-04-19 08:29:02 -06005710 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005711 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005712 ioprio);
5713 bfqq = *async_bfqq;
5714 if (bfqq)
5715 goto out;
5716 }
5717
5718 bfqq = kmem_cache_alloc_node(bfq_pool,
5719 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5720 bfqd->queue->node);
5721
5722 if (bfqq) {
5723 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5724 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005725 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005726 bfq_log_bfqq(bfqd, bfqq, "allocated");
5727 } else {
5728 bfqq = &bfqd->oom_bfqq;
5729 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5730 goto out;
5731 }
5732
5733 /*
5734 * Pin the queue now that it's allocated, scheduler exit will
5735 * prune it.
5736 */
5737 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005738 bfqq->ref++; /*
5739 * Extra group reference, w.r.t. sync
5740 * queue. This extra reference is removed
5741 * only if bfqq->bfqg disappears, to
5742 * guarantee that this queue is not freed
5743 * until its group goes away.
5744 */
5745 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06005746 bfqq, bfqq->ref);
5747 *async_bfqq = bfqq;
5748 }
5749
5750out:
5751 bfqq->ref++; /* get a process reference to this queue */
Paolo Valente430a67f2021-03-04 18:46:27 +01005752
5753 if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5754 bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5755
Paolo Valenteaee69d72017-04-19 08:29:02 -06005756 rcu_read_unlock();
5757 return bfqq;
5758}
5759
5760static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5761 struct bfq_queue *bfqq)
5762{
5763 struct bfq_ttime *ttime = &bfqq->ttime;
Jan Kara7684fbd2020-06-05 16:16:18 +02005764 u64 elapsed;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005765
Jan Kara7684fbd2020-06-05 16:16:18 +02005766 /*
5767 * We are really interested in how long it takes for the queue to
5768 * become busy when there is no outstanding IO for this queue. So
5769 * ignore cases when the bfq queue has already IO queued.
5770 */
5771 if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5772 return;
5773 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005774 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5775
Jan Kara28c6def2020-06-05 16:16:17 +02005776 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005777 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
5778 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5779 ttime->ttime_samples);
5780}
5781
5782static void
5783bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5784 struct request *rq)
5785{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005786 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01005787 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valente7074f072019-03-12 09:59:31 +01005788
5789 if (bfqq->wr_coeff > 1 &&
5790 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
Paolo Valented1f600f2021-01-25 20:02:45 +01005791 BFQQ_TOTALLY_SEEKY(bfqq)) {
5792 if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5793 bfq_wr_duration(bfqd))) {
5794 /*
5795 * In soft_rt weight raising with the
5796 * interactive-weight-raising period
5797 * elapsed (so no switch back to
5798 * interactive weight raising).
5799 */
5800 bfq_bfqq_end_wr(bfqq);
5801 } else { /*
5802 * stopping soft_rt weight raising
5803 * while still in interactive period,
5804 * switch back to interactive weight
5805 * raising
5806 */
5807 switch_back_to_interactive_wr(bfqq, bfqd);
5808 bfqq->entity.prio_changed = 1;
5809 }
5810 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005811}
5812
Paolo Valented5be3fe2017-08-04 07:35:10 +02005813static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5814 struct bfq_queue *bfqq,
5815 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005816{
Paolo Valente766d6142019-06-25 07:12:43 +02005817 bool has_short_ttime = true, state_changed;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005818
Paolo Valented5be3fe2017-08-04 07:35:10 +02005819 /*
5820 * No need to update has_short_ttime if bfqq is async or in
5821 * idle io prio class, or if bfq_slice_idle is zero, because
5822 * no device idling is performed for bfqq in this case.
5823 */
5824 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5825 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005826 return;
5827
Arianna Avanzini36eca892017-04-12 18:23:16 +02005828 /* Idle window just restored, statistics are meaningless. */
5829 if (time_is_after_eq_jiffies(bfqq->split_time +
5830 bfqd->bfq_wr_min_idle_time))
5831 return;
5832
Paolo Valented5be3fe2017-08-04 07:35:10 +02005833 /* Think time is infinite if no process is linked to
Paolo Valenteb5f74ec2021-01-22 19:19:43 +01005834 * bfqq. Otherwise check average think time to decide whether
5835 * to mark as has_short_ttime. To this goal, compare average
5836 * think time with half the I/O-plugging timeout.
Paolo Valented5be3fe2017-08-04 07:35:10 +02005837 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005838 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02005839 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
Paolo Valenteb5f74ec2021-01-22 19:19:43 +01005840 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
Paolo Valented5be3fe2017-08-04 07:35:10 +02005841 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005842
Paolo Valente766d6142019-06-25 07:12:43 +02005843 state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02005844
5845 if (has_short_ttime)
5846 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005847 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02005848 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valente766d6142019-06-25 07:12:43 +02005849
5850 /*
5851 * Until the base value for the total service time gets
5852 * finally computed for bfqq, the inject limit does depend on
5853 * the think-time state (short|long). In particular, the limit
5854 * is 0 or 1 if the think time is deemed, respectively, as
5855 * short or long (details in the comments in
5856 * bfq_update_inject_limit()). Accordingly, the next
5857 * instructions reset the inject limit if the think-time state
5858 * has changed and the above base value is still to be
5859 * computed.
5860 *
5861 * However, the reset is performed only if more than 100 ms
5862 * have elapsed since the last update of the inject limit, or
5863 * (inclusive) if the change is from short to long think
5864 * time. The reason for this waiting is as follows.
5865 *
5866 * bfqq may have a long think time because of a
5867 * synchronization with some other queue, i.e., because the
5868 * I/O of some other queue may need to be completed for bfqq
Paolo Valente13a857a2019-06-25 07:12:47 +02005869 * to receive new I/O. Details in the comments on the choice
5870 * of the queue for injection in bfq_select_queue().
Paolo Valente766d6142019-06-25 07:12:43 +02005871 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005872 * As stressed in those comments, if such a synchronization is
5873 * actually in place, then, without injection on bfqq, the
5874 * blocking I/O cannot happen to served while bfqq is in
5875 * service. As a consequence, if bfqq is granted
5876 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5877 * is dispatched, until the idle timeout fires. This is likely
5878 * to result in lower bandwidth and higher latencies for bfqq,
5879 * and in a severe loss of total throughput.
Paolo Valente766d6142019-06-25 07:12:43 +02005880 *
5881 * On the opposite end, a non-zero inject limit may allow the
5882 * I/O that blocks bfqq to be executed soon, and therefore
Paolo Valente13a857a2019-06-25 07:12:47 +02005883 * bfqq to receive new I/O soon.
5884 *
5885 * But, if the blocking gets actually eliminated, then the
5886 * next think-time sample for bfqq may be very low. This in
5887 * turn may cause bfqq's think time to be deemed
5888 * short. Without the 100 ms barrier, this new state change
5889 * would cause the body of the next if to be executed
Paolo Valente766d6142019-06-25 07:12:43 +02005890 * immediately. But this would set to 0 the inject
5891 * limit. Without injection, the blocking I/O would cause the
5892 * think time of bfqq to become long again, and therefore the
5893 * inject limit to be raised again, and so on. The only effect
5894 * of such a steady oscillation between the two think-time
5895 * states would be to prevent effective injection on bfqq.
5896 *
5897 * In contrast, if the inject limit is not reset during such a
5898 * long time interval as 100 ms, then the number of short
5899 * think time samples can grow significantly before the reset
Paolo Valente13a857a2019-06-25 07:12:47 +02005900 * is performed. As a consequence, the think time state can
5901 * become stable before the reset. Therefore there will be no
5902 * state change when the 100 ms elapse, and no reset of the
5903 * inject limit. The inject limit remains steadily equal to 1
5904 * both during and after the 100 ms. So injection can be
Paolo Valente766d6142019-06-25 07:12:43 +02005905 * performed at all times, and throughput gets boosted.
5906 *
5907 * An inject limit equal to 1 is however in conflict, in
5908 * general, with the fact that the think time of bfqq is
5909 * short, because injection may be likely to delay bfqq's I/O
5910 * (as explained in the comments in
5911 * bfq_update_inject_limit()). But this does not happen in
5912 * this special case, because bfqq's low think time is due to
5913 * an effective handling of a synchronization, through
5914 * injection. In this special case, bfqq's I/O does not get
5915 * delayed by injection; on the contrary, bfqq's I/O is
5916 * brought forward, because it is not blocked for
5917 * milliseconds.
5918 *
Paolo Valente13a857a2019-06-25 07:12:47 +02005919 * In addition, serving the blocking I/O much sooner, and much
5920 * more frequently than once per I/O-plugging timeout, makes
5921 * it much quicker to detect a waker queue (the concept of
5922 * waker queue is defined in the comments in
5923 * bfq_add_request()). This makes it possible to start sooner
5924 * to boost throughput more effectively, by injecting the I/O
5925 * of the waker queue unconditionally on every
5926 * bfq_dispatch_request().
5927 *
5928 * One last, important benefit of not resetting the inject
5929 * limit before 100 ms is that, during this time interval, the
5930 * base value for the total service time is likely to get
5931 * finally computed for bfqq, freeing the inject limit from
5932 * its relation with the think time.
Paolo Valente766d6142019-06-25 07:12:43 +02005933 */
5934 if (state_changed && bfqq->last_serv_time_ns == 0 &&
5935 (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5936 msecs_to_jiffies(100)) ||
5937 !has_short_ttime))
5938 bfq_reset_inject_limit(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005939}
5940
5941/*
5942 * Called when a new fs request (rq) is added to bfqq. Check if there's
5943 * something we should do about it.
5944 */
5945static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5946 struct request *rq)
5947{
Paolo Valenteaee69d72017-04-19 08:29:02 -06005948 if (rq->cmd_flags & REQ_META)
5949 bfqq->meta_pending++;
5950
Paolo Valenteaee69d72017-04-19 08:29:02 -06005951 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5952
5953 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5954 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5955 blk_rq_sectors(rq) < 32;
5956 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5957
5958 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005959 * There is just this request queued: if
5960 * - the request is small, and
5961 * - we are idling to boost throughput, and
5962 * - the queue is not to be expired,
5963 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005964 *
5965 * In this way, if the device is being idled to wait
5966 * for a new request from the in-service queue, we
5967 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005968 * device to serve just a small request. In contrast
5969 * we wait for the block layer to decide when to
5970 * unplug the device: hopefully, new requests will be
5971 * merged to this one quickly, then the device will be
5972 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005973 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005974 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5975 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005976 return;
5977
5978 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01005979 * A large enough request arrived, or idling is being
5980 * performed to preserve service guarantees, or
5981 * finally the queue is to be expired: in all these
5982 * cases disk idling is to be stopped, so clear
5983 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005984 */
5985 bfq_clear_bfqq_wait_request(bfqq);
5986 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5987
5988 /*
5989 * The queue is not empty, because a new request just
5990 * arrived. Hence we can safely expire the queue, in
5991 * case of budget timeout, without risking that the
5992 * timestamps of the queue are not updated correctly.
5993 * See [1] for more details.
5994 */
5995 if (budget_timeout)
5996 bfq_bfqq_expire(bfqd, bfqq, false,
5997 BFQQE_BUDGET_TIMEOUT);
5998 }
5999}
6000
Jan Kara98f04492021-11-25 14:36:35 +01006001static void bfqq_request_allocated(struct bfq_queue *bfqq)
6002{
6003 struct bfq_entity *entity = &bfqq->entity;
6004
6005 for_each_entity(entity)
6006 entity->allocated++;
6007}
6008
6009static void bfqq_request_freed(struct bfq_queue *bfqq)
6010{
6011 struct bfq_entity *entity = &bfqq->entity;
6012
6013 for_each_entity(entity)
6014 entity->allocated--;
6015}
6016
Paolo Valente24bfd192017-11-13 07:34:09 +01006017/* returns true if it causes the idle timer to be disabled */
6018static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006019{
Arianna Avanzini36eca892017-04-12 18:23:16 +02006020 struct bfq_queue *bfqq = RQ_BFQQ(rq),
Paolo Valente430a67f2021-03-04 18:46:27 +01006021 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6022 RQ_BIC(rq));
Paolo Valente24bfd192017-11-13 07:34:09 +01006023 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006024
6025 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02006026 /*
6027 * Release the request's reference to the old bfqq
6028 * and make sure one is taken to the shared queue.
6029 */
Jan Kara98f04492021-11-25 14:36:35 +01006030 bfqq_request_allocated(new_bfqq);
6031 bfqq_request_freed(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006032 new_bfqq->ref++;
6033 /*
6034 * If the bic associated with the process
6035 * issuing this request still points to bfqq
6036 * (and thus has not been already redirected
6037 * to new_bfqq or even some other bfq_queue),
6038 * then complete the merge and redirect it to
6039 * new_bfqq.
6040 */
6041 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6042 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6043 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02006044
6045 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006046 /*
6047 * rq is about to be enqueued into new_bfqq,
6048 * release rq reference on bfqq
6049 */
6050 bfq_put_queue(bfqq);
6051 rq->elv.priv[1] = new_bfqq;
6052 bfqq = new_bfqq;
6053 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06006054
Paolo Valentea3f9bce2019-06-25 07:12:46 +02006055 bfq_update_io_thinktime(bfqd, bfqq);
6056 bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6057 bfq_update_io_seektime(bfqd, bfqq, rq);
6058
Paolo Valente24bfd192017-11-13 07:34:09 +01006059 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006060 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01006061 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006062
6063 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6064 list_add_tail(&rq->queuelist, &bfqq->fifo);
6065
6066 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01006067
6068 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006069}
6070
Christoph Hellwig8060c472019-06-06 12:26:24 +02006071#ifdef CONFIG_BFQ_CGROUP_DEBUG
Paolo Valente9b25bd02017-12-04 11:42:05 +01006072static void bfq_update_insert_stats(struct request_queue *q,
6073 struct bfq_queue *bfqq,
6074 bool idle_timer_disabled,
6075 unsigned int cmd_flags)
6076{
6077 if (!bfqq)
6078 return;
6079
6080 /*
6081 * bfqq still exists, because it can disappear only after
6082 * either it is merged with another queue, or the process it
6083 * is associated with exits. But both actions must be taken by
6084 * the same process currently executing this flow of
6085 * instructions.
6086 *
6087 * In addition, the following queue lock guarantees that
6088 * bfqq_group(bfqq) exists as well.
6089 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006090 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01006091 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6092 if (idle_timer_disabled)
6093 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07006094 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01006095}
6096#else
6097static inline void bfq_update_insert_stats(struct request_queue *q,
6098 struct bfq_queue *bfqq,
6099 bool idle_timer_disabled,
6100 unsigned int cmd_flags) {}
Christoph Hellwig8060c472019-06-06 12:26:24 +02006101#endif /* CONFIG_BFQ_CGROUP_DEBUG */
Paolo Valente9b25bd02017-12-04 11:42:05 +01006102
Paolo Valenteaee69d72017-04-19 08:29:02 -06006103static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6104 bool at_head)
6105{
6106 struct request_queue *q = hctx->queue;
6107 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02006108 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01006109 bool idle_timer_disabled = false;
6110 unsigned int cmd_flags;
Jan Karafd2ef392021-06-23 11:36:34 +02006111 LIST_HEAD(free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006112
Tejun Heofd41e602019-11-07 11:18:00 -08006113#ifdef CONFIG_BFQ_GROUP_IOSCHED
6114 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6115 bfqg_stats_update_legacy_io(q, rq);
6116#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006117 spin_lock_irq(&bfqd->lock);
Jan Karafd2ef392021-06-23 11:36:34 +02006118 if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06006119 spin_unlock_irq(&bfqd->lock);
Jan Karafd2ef392021-06-23 11:36:34 +02006120 blk_mq_free_requests(&free);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006121 return;
6122 }
6123
6124 spin_unlock_irq(&bfqd->lock);
6125
Chaitanya Kulkarnib357e4a2021-02-21 21:29:59 -08006126 trace_block_rq_insert(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006127
6128 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02006129 bfqq = bfq_init_rq(rq);
Jan Karac65e6fd2021-11-25 14:36:41 +01006130 if (!bfqq || at_head) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06006131 if (at_head)
6132 list_add(&rq->queuelist, &bfqd->dispatch);
6133 else
6134 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valentefd031772019-08-07 19:21:11 +02006135 } else {
Paolo Valente24bfd192017-11-13 07:34:09 +01006136 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01006137 /*
6138 * Update bfqq, because, if a queue merge has occurred
6139 * in __bfq_insert_request, then rq has been
6140 * redirected into a new queue.
6141 */
6142 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006143
6144 if (rq_mergeable(rq)) {
6145 elv_rqhash_add(q, rq);
6146 if (!q->last_merge)
6147 q->last_merge = rq;
6148 }
6149 }
6150
Paolo Valente24bfd192017-11-13 07:34:09 +01006151 /*
6152 * Cache cmd_flags before releasing scheduler lock, because rq
6153 * may disappear afterwards (for example, because of a request
6154 * merge).
6155 */
6156 cmd_flags = rq->cmd_flags;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006157 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01006158
Paolo Valente9b25bd02017-12-04 11:42:05 +01006159 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6160 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006161}
6162
6163static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6164 struct list_head *list, bool at_head)
6165{
6166 while (!list_empty(list)) {
6167 struct request *rq;
6168
6169 rq = list_first_entry(list, struct request, queuelist);
6170 list_del_init(&rq->queuelist);
6171 bfq_insert_request(hctx, rq, at_head);
6172 }
6173}
6174
6175static void bfq_update_hw_tag(struct bfq_data *bfqd)
6176{
Paolo Valenteb3c34982019-01-29 12:06:36 +01006177 struct bfq_queue *bfqq = bfqd->in_service_queue;
6178
Paolo Valenteaee69d72017-04-19 08:29:02 -06006179 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6180 bfqd->rq_in_driver);
6181
6182 if (bfqd->hw_tag == 1)
6183 return;
6184
6185 /*
6186 * This sample is valid if the number of outstanding requests
6187 * is large enough to allow a queueing behavior. Note that the
6188 * sum is not exact, as it's not taking into account deactivated
6189 * requests.
6190 */
Paolo Valentea3c92562019-01-29 12:06:35 +01006191 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006192 return;
6193
Paolo Valenteb3c34982019-01-29 12:06:36 +01006194 /*
6195 * If active queue hasn't enough requests and can idle, bfq might not
6196 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6197 * case
6198 */
6199 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6200 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6201 BFQ_HW_QUEUE_THRESHOLD &&
6202 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6203 return;
6204
Paolo Valenteaee69d72017-04-19 08:29:02 -06006205 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6206 return;
6207
6208 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6209 bfqd->max_rq_in_driver = 0;
6210 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01006211
6212 bfqd->nonrot_with_queueing =
6213 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006214}
6215
6216static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6217{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006218 u64 now_ns;
6219 u32 delta_us;
6220
Paolo Valenteaee69d72017-04-19 08:29:02 -06006221 bfq_update_hw_tag(bfqd);
6222
6223 bfqd->rq_in_driver--;
6224 bfqq->dispatched--;
6225
Paolo Valente44e44a12017-04-12 18:23:12 +02006226 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6227 /*
6228 * Set budget_timeout (which we overload to store the
6229 * time at which the queue remains with no backlog and
6230 * no outstanding request; used by the weight-raising
6231 * mechanism).
6232 */
6233 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02006234
Paolo Valente04715592018-06-25 21:55:34 +02006235 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02006236 }
6237
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006238 now_ns = ktime_get_ns();
6239
6240 bfqq->ttime.last_end_request = now_ns;
6241
6242 /*
6243 * Using us instead of ns, to get a reasonable precision in
6244 * computing rate in next check.
6245 */
6246 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6247
6248 /*
6249 * If the request took rather long to complete, and, according
6250 * to the maximum request size recorded, this completion latency
6251 * implies that the request was certainly served at a very low
6252 * rate (less than 1M sectors/sec), then the whole observation
6253 * interval that lasts up to this time instant cannot be a
6254 * valid time interval for computing a new peak rate. Invoke
6255 * bfq_update_rate_reset to have the following three steps
6256 * taken:
6257 * - close the observation interval at the last (previous)
6258 * request dispatch or completion
6259 * - compute rate, if possible, for that observation interval
6260 * - reset to zero samples, which will trigger a proper
6261 * re-initialization of the observation interval on next
6262 * dispatch
6263 */
6264 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6265 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6266 1UL<<(BFQ_RATE_SHIFT - 10))
6267 bfq_update_rate_reset(bfqd, NULL);
6268 bfqd->last_completion = now_ns;
Paolo Valente85686d02021-03-04 18:46:26 +01006269 /*
6270 * Shared queues are likely to receive I/O at a high
6271 * rate. This may deceptively let them be considered as wakers
6272 * of other queues. But a false waker will unjustly steal
6273 * bandwidth to its supposedly woken queue. So considering
6274 * also shared queues in the waking mechanism may cause more
Paolo Valente9a2ac412021-06-19 16:09:48 +02006275 * control troubles than throughput benefits. Then reset
6276 * last_completed_rq_bfqq if bfqq is a shared queue.
Paolo Valente85686d02021-03-04 18:46:26 +01006277 */
6278 if (!bfq_bfqq_coop(bfqq))
6279 bfqd->last_completed_rq_bfqq = bfqq;
Paolo Valente9a2ac412021-06-19 16:09:48 +02006280 else
6281 bfqd->last_completed_rq_bfqq = NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006282
6283 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02006284 * If we are waiting to discover whether the request pattern
6285 * of the task associated with the queue is actually
6286 * isochronous, and both requisites for this condition to hold
6287 * are now satisfied, then compute soft_rt_next_start (see the
6288 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01006289 * do not compute soft_rt_next_start if bfqq is in interactive
6290 * weight raising (see the comments in bfq_bfqq_expire() for
6291 * an explanation). We schedule this delayed update when bfqq
6292 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02006293 */
6294 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01006295 RB_EMPTY_ROOT(&bfqq->sort_list) &&
6296 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02006297 bfqq->soft_rt_next_start =
6298 bfq_bfqq_softrt_next_start(bfqd, bfqq);
6299
6300 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06006301 * If this is the in-service queue, check if it needs to be expired,
6302 * or if we want to idle in case it has no pending requests.
6303 */
6304 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02006305 if (bfq_bfqq_must_idle(bfqq)) {
6306 if (bfqq->dispatched == 0)
6307 bfq_arm_slice_timer(bfqd);
6308 /*
6309 * If we get here, we do not expire bfqq, even
6310 * if bfqq was in budget timeout or had no
6311 * more requests (as controlled in the next
6312 * conditional instructions). The reason for
6313 * not expiring bfqq is as follows.
6314 *
6315 * Here bfqq->dispatched > 0 holds, but
6316 * bfq_bfqq_must_idle() returned true. This
6317 * implies that, even if no request arrives
6318 * for bfqq before bfqq->dispatched reaches 0,
6319 * bfqq will, however, not be expired on the
6320 * completion event that causes bfqq->dispatch
6321 * to reach zero. In contrast, on this event,
6322 * bfqq will start enjoying device idling
6323 * (I/O-dispatch plugging).
6324 *
6325 * But, if we expired bfqq here, bfqq would
6326 * not have the chance to enjoy device idling
6327 * when bfqq->dispatched finally reaches
6328 * zero. This would expose bfqq to violation
6329 * of its reserved service guarantees.
6330 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06006331 return;
6332 } else if (bfq_may_expire_for_budg_timeout(bfqq))
6333 bfq_bfqq_expire(bfqd, bfqq, false,
6334 BFQQE_BUDGET_TIMEOUT);
6335 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6336 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02006337 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06006338 bfq_bfqq_expire(bfqd, bfqq, false,
6339 BFQQE_NO_MORE_REQUESTS);
6340 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08006341
6342 if (!bfqd->rq_in_driver)
6343 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006344}
6345
Paolo Valentea7877392018-02-07 22:19:20 +01006346static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006347{
Jan Kara98f04492021-11-25 14:36:35 +01006348 bfqq_request_freed(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006349 bfq_put_queue(bfqq);
6350}
6351
Paolo Valentea7877392018-02-07 22:19:20 +01006352/*
Paolo Valente2341d6622019-03-12 09:59:29 +01006353 * The processes associated with bfqq may happen to generate their
6354 * cumulative I/O at a lower rate than the rate at which the device
6355 * could serve the same I/O. This is rather probable, e.g., if only
6356 * one process is associated with bfqq and the device is an SSD. It
6357 * results in bfqq becoming often empty while in service. In this
6358 * respect, if BFQ is allowed to switch to another queue when bfqq
6359 * remains empty, then the device goes on being fed with I/O requests,
6360 * and the throughput is not affected. In contrast, if BFQ is not
6361 * allowed to switch to another queue---because bfqq is sync and
6362 * I/O-dispatch needs to be plugged while bfqq is temporarily
6363 * empty---then, during the service of bfqq, there will be frequent
6364 * "service holes", i.e., time intervals during which bfqq gets empty
6365 * and the device can only consume the I/O already queued in its
6366 * hardware queues. During service holes, the device may even get to
6367 * remaining idle. In the end, during the service of bfqq, the device
6368 * is driven at a lower speed than the one it can reach with the kind
6369 * of I/O flowing through bfqq.
6370 *
6371 * To counter this loss of throughput, BFQ implements a "request
6372 * injection mechanism", which tries to fill the above service holes
6373 * with I/O requests taken from other queues. The hard part in this
6374 * mechanism is finding the right amount of I/O to inject, so as to
6375 * both boost throughput and not break bfqq's bandwidth and latency
6376 * guarantees. In this respect, the mechanism maintains a per-queue
6377 * inject limit, computed as below. While bfqq is empty, the injection
6378 * mechanism dispatches extra I/O requests only until the total number
6379 * of I/O requests in flight---i.e., already dispatched but not yet
6380 * completed---remains lower than this limit.
6381 *
6382 * A first definition comes in handy to introduce the algorithm by
6383 * which the inject limit is computed. We define as first request for
6384 * bfqq, an I/O request for bfqq that arrives while bfqq is in
6385 * service, and causes bfqq to switch from empty to non-empty. The
6386 * algorithm updates the limit as a function of the effect of
6387 * injection on the service times of only the first requests of
6388 * bfqq. The reason for this restriction is that these are the
6389 * requests whose service time is affected most, because they are the
6390 * first to arrive after injection possibly occurred.
6391 *
6392 * To evaluate the effect of injection, the algorithm measures the
6393 * "total service time" of first requests. We define as total service
6394 * time of an I/O request, the time that elapses since when the
6395 * request is enqueued into bfqq, to when it is completed. This
6396 * quantity allows the whole effect of injection to be measured. It is
6397 * easy to see why. Suppose that some requests of other queues are
6398 * actually injected while bfqq is empty, and that a new request R
6399 * then arrives for bfqq. If the device does start to serve all or
6400 * part of the injected requests during the service hole, then,
6401 * because of this extra service, it may delay the next invocation of
6402 * the dispatch hook of BFQ. Then, even after R gets eventually
6403 * dispatched, the device may delay the actual service of R if it is
6404 * still busy serving the extra requests, or if it decides to serve,
6405 * before R, some extra request still present in its queues. As a
6406 * conclusion, the cumulative extra delay caused by injection can be
6407 * easily evaluated by just comparing the total service time of first
6408 * requests with and without injection.
6409 *
6410 * The limit-update algorithm works as follows. On the arrival of a
6411 * first request of bfqq, the algorithm measures the total time of the
6412 * request only if one of the three cases below holds, and, for each
6413 * case, it updates the limit as described below:
6414 *
6415 * (1) If there is no in-flight request. This gives a baseline for the
6416 * total service time of the requests of bfqq. If the baseline has
6417 * not been computed yet, then, after computing it, the limit is
6418 * set to 1, to start boosting throughput, and to prepare the
6419 * ground for the next case. If the baseline has already been
6420 * computed, then it is updated, in case it results to be lower
6421 * than the previous value.
6422 *
6423 * (2) If the limit is higher than 0 and there are in-flight
6424 * requests. By comparing the total service time in this case with
6425 * the above baseline, it is possible to know at which extent the
6426 * current value of the limit is inflating the total service
6427 * time. If the inflation is below a certain threshold, then bfqq
6428 * is assumed to be suffering from no perceivable loss of its
6429 * service guarantees, and the limit is even tentatively
6430 * increased. If the inflation is above the threshold, then the
6431 * limit is decreased. Due to the lack of any hysteresis, this
6432 * logic makes the limit oscillate even in steady workload
6433 * conditions. Yet we opted for it, because it is fast in reaching
6434 * the best value for the limit, as a function of the current I/O
6435 * workload. To reduce oscillations, this step is disabled for a
6436 * short time interval after the limit happens to be decreased.
6437 *
6438 * (3) Periodically, after resetting the limit, to make sure that the
6439 * limit eventually drops in case the workload changes. This is
6440 * needed because, after the limit has gone safely up for a
6441 * certain workload, it is impossible to guess whether the
6442 * baseline total service time may have changed, without measuring
6443 * it again without injection. A more effective version of this
6444 * step might be to just sample the baseline, by interrupting
6445 * injection only once, and then to reset/lower the limit only if
6446 * the total service time with the current limit does happen to be
6447 * too large.
6448 *
6449 * More details on each step are provided in the comments on the
6450 * pieces of code that implement these steps: the branch handling the
6451 * transition from empty to non empty in bfq_add_request(), the branch
6452 * handling injection in bfq_select_queue(), and the function
6453 * bfq_choose_bfqq_for_injection(). These comments also explain some
6454 * exceptions, made by the injection mechanism in some special cases.
6455 */
6456static void bfq_update_inject_limit(struct bfq_data *bfqd,
6457 struct bfq_queue *bfqq)
6458{
6459 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6460 unsigned int old_limit = bfqq->inject_limit;
6461
Paolo Valente23ed5702019-08-22 17:20:34 +02006462 if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
Paolo Valente2341d6622019-03-12 09:59:29 +01006463 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6464
6465 if (tot_time_ns >= threshold && old_limit > 0) {
6466 bfqq->inject_limit--;
6467 bfqq->decrease_time_jif = jiffies;
6468 } else if (tot_time_ns < threshold &&
Paolo Valentec1e0a182019-08-22 17:20:35 +02006469 old_limit <= bfqd->max_rq_in_driver)
Paolo Valente2341d6622019-03-12 09:59:29 +01006470 bfqq->inject_limit++;
6471 }
6472
6473 /*
6474 * Either we still have to compute the base value for the
6475 * total service time, and there seem to be the right
6476 * conditions to do it, or we can lower the last base value
6477 * computed.
Paolo Valentedb599f92019-06-25 07:12:44 +02006478 *
6479 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6480 * request in flight, because this function is in the code
6481 * path that handles the completion of a request of bfqq, and,
6482 * in particular, this function is executed before
6483 * bfqd->rq_in_driver is decremented in such a code path.
Paolo Valente2341d6622019-03-12 09:59:29 +01006484 */
Paolo Valentedb599f92019-06-25 07:12:44 +02006485 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
Paolo Valente2341d6622019-03-12 09:59:29 +01006486 tot_time_ns < bfqq->last_serv_time_ns) {
Paolo Valente58494c92019-08-22 17:20:37 +02006487 if (bfqq->last_serv_time_ns == 0) {
6488 /*
6489 * Now we certainly have a base value: make sure we
6490 * start trying injection.
6491 */
6492 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6493 }
Paolo Valente2341d6622019-03-12 09:59:29 +01006494 bfqq->last_serv_time_ns = tot_time_ns;
Paolo Valente24792ad2019-06-25 07:12:45 +02006495 } else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6496 /*
6497 * No I/O injected and no request still in service in
6498 * the drive: these are the exact conditions for
6499 * computing the base value of the total service time
6500 * for bfqq. So let's update this value, because it is
6501 * rather variable. For example, it varies if the size
6502 * or the spatial locality of the I/O requests in bfqq
6503 * change.
6504 */
6505 bfqq->last_serv_time_ns = tot_time_ns;
6506
Paolo Valente2341d6622019-03-12 09:59:29 +01006507
6508 /* update complete, not waiting for any request completion any longer */
6509 bfqd->waited_rq = NULL;
Paolo Valente23ed5702019-08-22 17:20:34 +02006510 bfqd->rqs_injected = false;
Paolo Valente2341d6622019-03-12 09:59:29 +01006511}
6512
6513/*
Paolo Valentea7877392018-02-07 22:19:20 +01006514 * Handle either a requeue or a finish for rq. The things to do are
6515 * the same in both cases: all references to rq are to be dropped. In
6516 * particular, rq is considered completed from the point of view of
6517 * the scheduler.
6518 */
6519static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006520{
Paolo Valentea7877392018-02-07 22:19:20 +01006521 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006522 struct bfq_data *bfqd;
Jan Karaa921c652021-06-23 11:36:33 +02006523 unsigned long flags;
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006524
Paolo Valentea7877392018-02-07 22:19:20 +01006525 /*
Paolo Valentea7877392018-02-07 22:19:20 +01006526 * rq either is not associated with any icq, or is an already
6527 * requeued request that has not (yet) been re-inserted into
6528 * a bfq_queue.
6529 */
6530 if (!rq->elv.icq || !bfqq)
6531 return;
6532
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006533 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006534
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006535 if (rq->rq_flags & RQF_STARTED)
6536 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07006537 rq->start_time_ns,
6538 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006539 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006540
Jan Karaa921c652021-06-23 11:36:33 +02006541 spin_lock_irqsave(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006542 if (likely(rq->rq_flags & RQF_STARTED)) {
Paolo Valente2341d6622019-03-12 09:59:29 +01006543 if (rq == bfqd->waited_rq)
6544 bfq_update_inject_limit(bfqd, bfqq);
6545
Paolo Valenteaee69d72017-04-19 08:29:02 -06006546 bfq_completed_request(bfqq, bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006547 }
Jan Karaa921c652021-06-23 11:36:33 +02006548 bfq_finish_requeue_request_body(bfqq);
6549 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006550
Paolo Valentea7877392018-02-07 22:19:20 +01006551 /*
6552 * Reset private fields. In case of a requeue, this allows
6553 * this function to correctly do nothing if it is spuriously
6554 * invoked again on this same request (see the check at the
6555 * beginning of the function). Probably, a better general
6556 * design would be to prevent blk-mq from invoking the requeue
6557 * or finish hooks of an elevator, for a request that is not
6558 * referred by that elevator.
6559 *
6560 * Resetting the following fields would break the
6561 * request-insertion logic if rq is re-inserted into a bfq
6562 * internal queue, without a re-preparation. Here we assume
6563 * that re-insertions of requeued requests, without
6564 * re-preparation, can happen only for pass_through or at_head
6565 * requests (which are not re-inserted into bfq internal
6566 * queues).
6567 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06006568 rq->elv.priv[0] = NULL;
6569 rq->elv.priv[1] = NULL;
6570}
6571
6572/*
Paolo Valentec92bdde2020-02-03 11:41:00 +01006573 * Removes the association between the current task and bfqq, assuming
6574 * that bic points to the bfq iocontext of the task.
Arianna Avanzini36eca892017-04-12 18:23:16 +02006575 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6576 * was the last process referring to that bfqq.
6577 */
6578static struct bfq_queue *
6579bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6580{
6581 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6582
6583 if (bfqq_process_refs(bfqq) == 1) {
6584 bfqq->pid = current->pid;
6585 bfq_clear_bfqq_coop(bfqq);
6586 bfq_clear_bfqq_split_coop(bfqq);
6587 return bfqq;
6588 }
6589
6590 bic_set_bfqq(bic, NULL, 1);
6591
6592 bfq_put_cooperator(bfqq);
6593
Paolo Valente478de332019-11-14 10:33:11 +01006594 bfq_release_process_ref(bfqq->bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006595 return NULL;
6596}
6597
6598static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6599 struct bfq_io_cq *bic,
6600 struct bio *bio,
6601 bool split, bool is_sync,
6602 bool *new_queue)
6603{
6604 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6605
6606 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6607 return bfqq;
6608
6609 if (new_queue)
6610 *new_queue = true;
6611
6612 if (bfqq)
6613 bfq_put_queue(bfqq);
Paolo Valente430a67f2021-03-04 18:46:27 +01006614 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006615
6616 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006617 if (split && is_sync) {
6618 if ((bic->was_in_burst_list && bfqd->large_burst) ||
6619 bic->saved_in_large_burst)
6620 bfq_mark_bfqq_in_large_burst(bfqq);
6621 else {
6622 bfq_clear_bfqq_in_large_burst(bfqq);
6623 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02006624 /*
6625 * If bfqq was in the current
6626 * burst list before being
6627 * merged, then we have to add
6628 * it back. And we do not need
6629 * to increase burst_size, as
6630 * we did not decrement
6631 * burst_size when we removed
6632 * bfqq from the burst list as
6633 * a consequence of a merge
6634 * (see comments in
6635 * bfq_put_queue). In this
6636 * respect, it would be rather
6637 * costly to know whether the
6638 * current burst list is still
6639 * the same burst list from
6640 * which bfqq was removed on
6641 * the merge. To avoid this
6642 * cost, if bfqq was in a
6643 * burst list, then we add
6644 * bfqq to the current burst
6645 * list without any further
6646 * check. This can cause
6647 * inappropriate insertions,
6648 * but rarely enough to not
6649 * harm the detection of large
6650 * bursts significantly.
6651 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006652 hlist_add_head(&bfqq->burst_list_node,
6653 &bfqd->burst_list);
6654 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006655 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006656 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02006657
6658 return bfqq;
6659}
6660
6661/*
Paolo Valente18e5a572018-05-04 19:17:01 +02006662 * Only reset private fields. The actual request preparation will be
6663 * performed by bfq_init_rq, when rq is either inserted or merged. See
6664 * comments on bfq_init_rq for the reason behind this delayed
6665 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06006666 */
Christoph Hellwig5d9c3052020-05-29 15:53:08 +02006667static void bfq_prepare_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006668{
Christoph Hellwig87dd1d62021-11-26 12:58:10 +01006669 rq->elv.icq = ioc_find_get_icq(rq->q);
Jens Axboe5a9d0412021-11-13 11:18:32 -07006670
Paolo Valente18e5a572018-05-04 19:17:01 +02006671 /*
6672 * Regardless of whether we have an icq attached, we have to
6673 * clear the scheduler pointers, as they might point to
6674 * previously allocated bic/bfqq structs.
6675 */
6676 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6677}
6678
6679/*
6680 * If needed, init rq, allocate bfq data structures associated with
6681 * rq, and increment reference counters in the destination bfq_queue
6682 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6683 * not associated with any bfq_queue.
6684 *
6685 * This function is invoked by the functions that perform rq insertion
6686 * or merging. One may have expected the above preparation operations
6687 * to be performed in bfq_prepare_request, and not delayed to when rq
6688 * is inserted or merged. The rationale behind this delayed
6689 * preparation is that, after the prepare_request hook is invoked for
6690 * rq, rq may still be transformed into a request with no icq, i.e., a
6691 * request not associated with any queue. No bfq hook is invoked to
Angelo Ruocco636b8fe2019-04-08 17:35:34 +02006692 * signal this transformation. As a consequence, should these
Paolo Valente18e5a572018-05-04 19:17:01 +02006693 * preparation operations be performed when the prepare_request hook
6694 * is invoked, and should rq be transformed one moment later, bfq
6695 * would end up in an inconsistent state, because it would have
6696 * incremented some queue counters for an rq destined to
6697 * transformation, without any chance to correctly lower these
6698 * counters back. In contrast, no transformation can still happen for
6699 * rq after rq has been inserted or merged. So, it is safe to execute
6700 * these preparation operations when rq is finally inserted or merged.
6701 */
6702static struct bfq_queue *bfq_init_rq(struct request *rq)
6703{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006704 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02006705 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006706 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02006707 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006708 const int is_sync = rq_is_sync(rq);
6709 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006710 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06006711 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006712
Paolo Valente18e5a572018-05-04 19:17:01 +02006713 if (unlikely(!rq->elv.icq))
6714 return NULL;
6715
Jens Axboe72961c42018-04-17 17:08:52 -06006716 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02006717 * Assuming that elv.priv[1] is set only if everything is set
6718 * for this rq. This holds true, because this function is
6719 * invoked only for insertion or merging, and, after such
6720 * events, a request cannot be manipulated any longer before
6721 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06006722 */
Paolo Valente18e5a572018-05-04 19:17:01 +02006723 if (rq->elv.priv[1])
6724 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06006725
Christoph Hellwig9f210732017-06-16 18:15:24 +02006726 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006727
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01006728 bfq_check_ioprio_change(bic, bio);
6729
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006730 bfq_bic_update_cgroup(bic, bio);
6731
Arianna Avanzini36eca892017-04-12 18:23:16 +02006732 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6733 &new_queue);
6734
6735 if (likely(!new_queue)) {
6736 /* If the queue was seeky for too long, break it apart. */
Paolo Valente430a67f2021-03-04 18:46:27 +01006737 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6738 !bic->stably_merged) {
Paolo Valente8ef3fc32021-03-04 18:46:24 +01006739 struct bfq_queue *old_bfqq = bfqq;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006740
6741 /* Update bic before losing reference to bfqq */
6742 if (bfq_bfqq_in_large_burst(bfqq))
6743 bic->saved_in_large_burst = true;
6744
Arianna Avanzini36eca892017-04-12 18:23:16 +02006745 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006746 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006747
Paolo Valente8ef3fc32021-03-04 18:46:24 +01006748 if (!bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02006749 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6750 true, is_sync,
6751 NULL);
Paolo Valente8ef3fc32021-03-04 18:46:24 +01006752 bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6753 bfqq->tentative_waker_bfqq = NULL;
6754
6755 /*
6756 * If the waker queue disappears, then
6757 * new_bfqq->waker_bfqq must be
6758 * reset. So insert new_bfqq into the
6759 * woken_list of the waker. See
6760 * bfq_check_waker for details.
6761 */
6762 if (bfqq->waker_bfqq)
6763 hlist_add_head(&bfqq->woken_list_node,
6764 &bfqq->waker_bfqq->woken_list);
6765 } else
Paolo Valente13c931b2017-06-27 12:30:47 -06006766 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02006767 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06006768 }
6769
Jan Kara98f04492021-11-25 14:36:35 +01006770 bfqq_request_allocated(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006771 bfqq->ref++;
6772 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6773 rq, bfqq, bfqq->ref);
6774
6775 rq->elv.priv[0] = bic;
6776 rq->elv.priv[1] = bfqq;
6777
Arianna Avanzini36eca892017-04-12 18:23:16 +02006778 /*
6779 * If a bfq_queue has only one process reference, it is owned
6780 * by only this bic: we can then set bfqq->bic = bic. in
6781 * addition, if the queue has also just been split, we have to
6782 * resume its state.
6783 */
6784 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6785 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006786 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02006787 /*
6788 * The queue has just been split from a shared
6789 * queue: restore the idle window and the
6790 * possible weight raising period.
6791 */
Paolo Valente13c931b2017-06-27 12:30:47 -06006792 bfq_bfqq_resume_state(bfqq, bfqd, bic,
6793 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02006794 }
6795 }
6796
Paolo Valente84a74682019-03-12 09:59:32 +01006797 /*
6798 * Consider bfqq as possibly belonging to a burst of newly
6799 * created queues only if:
6800 * 1) A burst is actually happening (bfqd->burst_size > 0)
6801 * or
6802 * 2) There is no other active queue. In fact, if, in
6803 * contrast, there are active queues not belonging to the
6804 * possible burst bfqq may belong to, then there is no gain
6805 * in considering bfqq as belonging to a burst, and
6806 * therefore in not weight-raising bfqq. See comments on
6807 * bfq_handle_burst().
6808 *
6809 * This filtering also helps eliminating false positives,
6810 * occurring when bfqq does not belong to an actual large
6811 * burst, but some background task (e.g., a service) happens
6812 * to trigger the creation of new queues very close to when
6813 * bfqq and its possible companion queues are created. See
6814 * comments on bfq_handle_burst() for further details also on
6815 * this issue.
6816 */
6817 if (unlikely(bfq_bfqq_just_created(bfqq) &&
6818 (bfqd->burst_size > 0 ||
6819 bfq_tot_busy_queues(bfqd) == 0)))
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006820 bfq_handle_burst(bfqd, bfqq);
6821
Paolo Valente18e5a572018-05-04 19:17:01 +02006822 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006823}
6824
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006825static void
6826bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006827{
Paolo Valenteaee69d72017-04-19 08:29:02 -06006828 enum bfqq_expiration reason;
6829 unsigned long flags;
6830
6831 spin_lock_irqsave(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006832
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006833 /*
6834 * Considering that bfqq may be in race, we should firstly check
6835 * whether bfqq is in service before doing something on it. If
6836 * the bfqq in race is not in service, it has already been expired
6837 * through __bfq_bfqq_expire func and its wait_request flags has
6838 * been cleared in __bfq_bfqd_reset_in_service func.
6839 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06006840 if (bfqq != bfqd->in_service_queue) {
6841 spin_unlock_irqrestore(&bfqd->lock, flags);
6842 return;
6843 }
6844
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006845 bfq_clear_bfqq_wait_request(bfqq);
6846
Paolo Valenteaee69d72017-04-19 08:29:02 -06006847 if (bfq_bfqq_budget_timeout(bfqq))
6848 /*
6849 * Also here the queue can be safely expired
6850 * for budget timeout without wasting
6851 * guarantees
6852 */
6853 reason = BFQQE_BUDGET_TIMEOUT;
6854 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6855 /*
6856 * The queue may not be empty upon timer expiration,
6857 * because we may not disable the timer when the
6858 * first request of the in-service queue arrives
6859 * during disk idling.
6860 */
6861 reason = BFQQE_TOO_IDLE;
6862 else
6863 goto schedule_dispatch;
6864
6865 bfq_bfqq_expire(bfqd, bfqq, true, reason);
6866
6867schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02006868 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006869 bfq_schedule_dispatch(bfqd);
6870}
6871
6872/*
6873 * Handler of the expiration of the timer running if the in-service queue
6874 * is idling inside its time slice.
6875 */
6876static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6877{
6878 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6879 idle_slice_timer);
6880 struct bfq_queue *bfqq = bfqd->in_service_queue;
6881
6882 /*
6883 * Theoretical race here: the in-service queue can be NULL or
6884 * different from the queue that was idling if a new request
6885 * arrives for the current queue and there is a full dispatch
6886 * cycle that changes the in-service queue. This can hardly
6887 * happen, but in the worst case we just expire a queue too
6888 * early.
6889 */
6890 if (bfqq)
Zhiqiang Liu2f95fa52020-03-19 19:18:13 +08006891 bfq_idle_slice_timer_body(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006892
6893 return HRTIMER_NORESTART;
6894}
6895
6896static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6897 struct bfq_queue **bfqq_ptr)
6898{
6899 struct bfq_queue *bfqq = *bfqq_ptr;
6900
6901 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6902 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006903 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6904
Paolo Valenteaee69d72017-04-19 08:29:02 -06006905 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6906 bfqq, bfqq->ref);
6907 bfq_put_queue(bfqq);
6908 *bfqq_ptr = NULL;
6909 }
6910}
6911
6912/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006913 * Release all the bfqg references to its async queues. If we are
6914 * deallocating the group these queues may still contain requests, so
6915 * we reparent them to the root cgroup (i.e., the only one that will
6916 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06006917 */
Paolo Valenteea25da42017-04-19 08:48:24 -06006918void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006919{
6920 int i, j;
6921
6922 for (i = 0; i < 2; i++)
Damien Le Moal202bc942021-08-11 12:37:01 +09006923 for (j = 0; j < IOPRIO_NR_LEVELS; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006924 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006925
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006926 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006927}
6928
Jens Axboef0635b82018-05-09 13:27:21 -06006929/*
6930 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06006931 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06006932 */
Jan Kara76f1df82021-11-25 14:36:37 +01006933static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06006934{
Jan Kara44dfa272021-11-25 14:36:36 +01006935 unsigned int depth = 1U << bt->sb.shift;
Jens Axboe483b7bf2018-05-09 15:26:55 -06006936
Jan Kara44dfa272021-11-25 14:36:36 +01006937 bfqd->full_depth_shift = bt->sb.shift;
Jens Axboef0635b82018-05-09 13:27:21 -06006938 /*
6939 * In-word depths if no bfq_queue is being weight-raised:
6940 * leaving 25% of tags only for sync reads.
6941 *
6942 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06006943 * (1U<<bt->sb.shift), instead of computing directly
6944 * (1U<<(bt->sb.shift - something)), to be robust against
6945 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06006946 * limit 'something'.
6947 */
6948 /* no more than 50% of tags for async I/O */
Jan Kara44dfa272021-11-25 14:36:36 +01006949 bfqd->word_depths[0][0] = max(depth >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006950 /*
6951 * no more than 75% of tags for sync writes (25% extra tags
6952 * w.r.t. async I/O, to prevent async I/O from starving sync
6953 * writes)
6954 */
Jan Kara44dfa272021-11-25 14:36:36 +01006955 bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006956
6957 /*
6958 * In-word depths in case some bfq_queue is being weight-
6959 * raised: leaving ~63% of tags for sync reads. This is the
6960 * highest percentage for which, in our tests, application
6961 * start-up times didn't suffer from any regression due to tag
6962 * shortage.
6963 */
6964 /* no more than ~18% of tags for async I/O */
Jan Kara44dfa272021-11-25 14:36:36 +01006965 bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006966 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jan Kara44dfa272021-11-25 14:36:36 +01006967 bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06006968}
6969
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006970static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
Jens Axboef0635b82018-05-09 13:27:21 -06006971{
6972 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6973 struct blk_mq_tags *tags = hctx->sched_tags;
6974
Jan Kara76f1df82021-11-25 14:36:37 +01006975 bfq_update_depths(bfqd, &tags->bitmap_tags);
6976 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
Jens Axboe77f1e0a2019-01-18 10:34:16 -07006977}
6978
6979static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6980{
6981 bfq_depth_updated(hctx);
Jens Axboef0635b82018-05-09 13:27:21 -06006982 return 0;
6983}
6984
Paolo Valenteaee69d72017-04-19 08:29:02 -06006985static void bfq_exit_queue(struct elevator_queue *e)
6986{
6987 struct bfq_data *bfqd = e->elevator_data;
6988 struct bfq_queue *bfqq, *n;
6989
6990 hrtimer_cancel(&bfqd->idle_slice_timer);
6991
6992 spin_lock_irq(&bfqd->lock);
6993 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006994 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006995 spin_unlock_irq(&bfqd->lock);
6996
6997 hrtimer_cancel(&bfqd->idle_slice_timer);
6998
Paolo Valente0d52af52018-01-09 10:27:59 +01006999 /* release oom-queue reference to root group */
7000 bfqg_and_blkg_put(bfqd->root_group);
7001
Paolo Valente4d8340d2020-02-03 11:40:58 +01007002#ifdef CONFIG_BFQ_GROUP_IOSCHED
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007003 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
7004#else
7005 spin_lock_irq(&bfqd->lock);
7006 bfq_put_async_queues(bfqd, bfqd->root_group);
7007 kfree(bfqd->root_group);
7008 spin_unlock_irq(&bfqd->lock);
7009#endif
7010
Paolo Valenteaee69d72017-04-19 08:29:02 -06007011 kfree(bfqd);
7012}
7013
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007014static void bfq_init_root_group(struct bfq_group *root_group,
7015 struct bfq_data *bfqd)
7016{
7017 int i;
7018
7019#ifdef CONFIG_BFQ_GROUP_IOSCHED
7020 root_group->entity.parent = NULL;
7021 root_group->my_entity = NULL;
7022 root_group->bfqd = bfqd;
7023#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02007024 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007025 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7026 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7027 root_group->sched_data.bfq_class_idle_last_service = jiffies;
7028}
7029
Paolo Valenteaee69d72017-04-19 08:29:02 -06007030static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7031{
7032 struct bfq_data *bfqd;
7033 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007034
7035 eq = elevator_alloc(q, e);
7036 if (!eq)
7037 return -ENOMEM;
7038
7039 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7040 if (!bfqd) {
7041 kobject_put(&eq->kobj);
7042 return -ENOMEM;
7043 }
7044 eq->elevator_data = bfqd;
7045
Christoph Hellwig0d945c12018-11-15 12:17:28 -07007046 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007047 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07007048 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007049
Paolo Valenteaee69d72017-04-19 08:29:02 -06007050 /*
7051 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7052 * Grab a permanent reference to it, so that the normal code flow
7053 * will not attempt to free it.
7054 */
7055 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7056 bfqd->oom_bfqq.ref++;
7057 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7058 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7059 bfqd->oom_bfqq.entity.new_weight =
7060 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02007061
7062 /* oom_bfqq does not participate to bursts */
7063 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7064
Paolo Valenteaee69d72017-04-19 08:29:02 -06007065 /*
7066 * Trigger weight initialization, according to ioprio, at the
7067 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7068 * class won't be changed any more.
7069 */
7070 bfqd->oom_bfqq.entity.prio_changed = 1;
7071
7072 bfqd->queue = q;
7073
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007074 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007075
7076 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7077 HRTIMER_MODE_REL);
7078 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7079
Paolo Valentefb53ac62019-03-12 09:59:28 +01007080 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01007081 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02007082
Paolo Valenteaee69d72017-04-19 08:29:02 -06007083 INIT_LIST_HEAD(&bfqd->active_list);
7084 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02007085 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007086
7087 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01007088 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007089
7090 bfqd->bfq_max_budget = bfq_default_max_budget;
7091
7092 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7093 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7094 bfqd->bfq_back_max = bfq_back_max;
7095 bfqd->bfq_back_penalty = bfq_back_penalty;
7096 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007097 bfqd->bfq_timeout = bfq_timeout;
7098
Arianna Avanzinie1b23242017-04-12 18:23:20 +02007099 bfqd->bfq_large_burst_thresh = 8;
7100 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7101
Paolo Valente44e44a12017-04-12 18:23:12 +02007102 bfqd->low_latency = true;
7103
7104 /*
7105 * Trade-off between responsiveness and fairness.
7106 */
7107 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02007108 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02007109 bfqd->bfq_wr_max_time = 0;
7110 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7111 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02007112 bfqd->bfq_wr_max_softrt_rate = 7000; /*
7113 * Approximate rate required
7114 * to playback or record a
7115 * high-definition compressed
7116 * video.
7117 */
Paolo Valentecfd69712017-04-12 18:23:15 +02007118 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02007119
7120 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02007121 * Begin by assuming, optimistically, that the device peak
7122 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02007123 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02007124 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7125 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7126 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02007127
Paolo Valenteaee69d72017-04-19 08:29:02 -06007128 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007129
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007130 /*
7131 * The invocation of the next bfq_create_group_hierarchy
7132 * function is the head of a chain of function calls
7133 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7134 * blk_mq_freeze_queue) that may lead to the invocation of the
7135 * has_work hook function. For this reason,
7136 * bfq_create_group_hierarchy is invoked only after all
7137 * scheduler data has been initialized, apart from the fields
7138 * that can be initialized only after invoking
7139 * bfq_create_group_hierarchy. This, in particular, enables
7140 * has_work to correctly return false. Of course, to avoid
7141 * other inconsistencies, the blk-mq stack must then refrain
7142 * from invoking further scheduler hooks before this init
7143 * function is finished.
7144 */
7145 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7146 if (!bfqd->root_group)
7147 goto out_free;
7148 bfq_init_root_group(bfqd->root_group, bfqd);
7149 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7150
Luca Micciob5dc5d42017-10-09 16:27:21 +02007151 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007152 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007153
7154out_free:
7155 kfree(bfqd);
7156 kobject_put(&eq->kobj);
7157 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007158}
7159
7160static void bfq_slab_kill(void)
7161{
7162 kmem_cache_destroy(bfq_pool);
7163}
7164
7165static int __init bfq_slab_setup(void)
7166{
7167 bfq_pool = KMEM_CACHE(bfq_queue, 0);
7168 if (!bfq_pool)
7169 return -ENOMEM;
7170 return 0;
7171}
7172
7173static ssize_t bfq_var_show(unsigned int var, char *page)
7174{
7175 return sprintf(page, "%u\n", var);
7176}
7177
Bart Van Assche2f791362017-08-30 11:42:09 -07007178static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06007179{
7180 unsigned long new_val;
7181 int ret = kstrtoul(page, 10, &new_val);
7182
Bart Van Assche2f791362017-08-30 11:42:09 -07007183 if (ret)
7184 return ret;
7185 *var = new_val;
7186 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007187}
7188
7189#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
7190static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7191{ \
7192 struct bfq_data *bfqd = e->elevator_data; \
7193 u64 __data = __VAR; \
7194 if (__CONV == 1) \
7195 __data = jiffies_to_msecs(__data); \
7196 else if (__CONV == 2) \
7197 __data = div_u64(__data, NSEC_PER_MSEC); \
7198 return bfq_var_show(__data, (page)); \
7199}
7200SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7201SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7202SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7203SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7204SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7205SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7206SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7207SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02007208SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007209#undef SHOW_FUNCTION
7210
7211#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
7212static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7213{ \
7214 struct bfq_data *bfqd = e->elevator_data; \
7215 u64 __data = __VAR; \
7216 __data = div_u64(__data, NSEC_PER_USEC); \
7217 return bfq_var_show(__data, (page)); \
7218}
7219USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7220#undef USEC_SHOW_FUNCTION
7221
7222#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
7223static ssize_t \
7224__FUNC(struct elevator_queue *e, const char *page, size_t count) \
7225{ \
7226 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07007227 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07007228 int ret; \
7229 \
7230 ret = bfq_var_store(&__data, (page)); \
7231 if (ret) \
7232 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07007233 if (__data < __min) \
7234 __data = __min; \
7235 else if (__data > __max) \
7236 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06007237 if (__CONV == 1) \
7238 *(__PTR) = msecs_to_jiffies(__data); \
7239 else if (__CONV == 2) \
7240 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
7241 else \
7242 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08007243 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06007244}
7245STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7246 INT_MAX, 2);
7247STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7248 INT_MAX, 2);
7249STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7250STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7251 INT_MAX, 0);
7252STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7253#undef STORE_FUNCTION
7254
7255#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
7256static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7257{ \
7258 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07007259 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07007260 int ret; \
7261 \
7262 ret = bfq_var_store(&__data, (page)); \
7263 if (ret) \
7264 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07007265 if (__data < __min) \
7266 __data = __min; \
7267 else if (__data > __max) \
7268 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06007269 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08007270 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06007271}
7272USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7273 UINT_MAX);
7274#undef USEC_STORE_FUNCTION
7275
Paolo Valenteaee69d72017-04-19 08:29:02 -06007276static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7277 const char *page, size_t count)
7278{
7279 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07007280 unsigned long __data;
7281 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08007282
Bart Van Assche2f791362017-08-30 11:42:09 -07007283 ret = bfq_var_store(&__data, (page));
7284 if (ret)
7285 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007286
7287 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02007288 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007289 else {
7290 if (__data > INT_MAX)
7291 __data = INT_MAX;
7292 bfqd->bfq_max_budget = __data;
7293 }
7294
7295 bfqd->bfq_user_max_budget = __data;
7296
weiping zhang235f8da2017-08-25 01:11:33 +08007297 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007298}
7299
7300/*
7301 * Leaving this name to preserve name compatibility with cfq
7302 * parameters, but this timeout is used for both sync and async.
7303 */
7304static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7305 const char *page, size_t count)
7306{
7307 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07007308 unsigned long __data;
7309 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08007310
Bart Van Assche2f791362017-08-30 11:42:09 -07007311 ret = bfq_var_store(&__data, (page));
7312 if (ret)
7313 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007314
7315 if (__data < 1)
7316 __data = 1;
7317 else if (__data > INT_MAX)
7318 __data = INT_MAX;
7319
7320 bfqd->bfq_timeout = msecs_to_jiffies(__data);
7321 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02007322 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06007323
weiping zhang235f8da2017-08-25 01:11:33 +08007324 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007325}
7326
7327static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7328 const char *page, size_t count)
7329{
7330 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07007331 unsigned long __data;
7332 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08007333
Bart Van Assche2f791362017-08-30 11:42:09 -07007334 ret = bfq_var_store(&__data, (page));
7335 if (ret)
7336 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007337
7338 if (__data > 1)
7339 __data = 1;
7340 if (!bfqd->strict_guarantees && __data == 1
7341 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7342 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7343
7344 bfqd->strict_guarantees = __data;
7345
weiping zhang235f8da2017-08-25 01:11:33 +08007346 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007347}
7348
Paolo Valente44e44a12017-04-12 18:23:12 +02007349static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7350 const char *page, size_t count)
7351{
7352 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07007353 unsigned long __data;
7354 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08007355
Bart Van Assche2f791362017-08-30 11:42:09 -07007356 ret = bfq_var_store(&__data, (page));
7357 if (ret)
7358 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02007359
7360 if (__data > 1)
7361 __data = 1;
7362 if (__data == 0 && bfqd->low_latency != 0)
7363 bfq_end_wr(bfqd);
7364 bfqd->low_latency = __data;
7365
weiping zhang235f8da2017-08-25 01:11:33 +08007366 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02007367}
7368
Paolo Valenteaee69d72017-04-19 08:29:02 -06007369#define BFQ_ATTR(name) \
7370 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7371
7372static struct elv_fs_entry bfq_attrs[] = {
7373 BFQ_ATTR(fifo_expire_sync),
7374 BFQ_ATTR(fifo_expire_async),
7375 BFQ_ATTR(back_seek_max),
7376 BFQ_ATTR(back_seek_penalty),
7377 BFQ_ATTR(slice_idle),
7378 BFQ_ATTR(slice_idle_us),
7379 BFQ_ATTR(max_budget),
7380 BFQ_ATTR(timeout_sync),
7381 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02007382 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06007383 __ATTR_NULL
7384};
7385
7386static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06007387 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01007388 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02007389 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01007390 .requeue_request = bfq_finish_requeue_request,
7391 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06007392 .exit_icq = bfq_exit_icq,
7393 .insert_requests = bfq_insert_requests,
7394 .dispatch_request = bfq_dispatch_request,
7395 .next_request = elv_rb_latter_request,
7396 .former_request = elv_rb_former_request,
7397 .allow_merge = bfq_allow_bio_merge,
7398 .bio_merge = bfq_bio_merge,
7399 .request_merge = bfq_request_merge,
7400 .requests_merged = bfq_requests_merged,
7401 .request_merged = bfq_request_merged,
7402 .has_work = bfq_has_work,
Jens Axboe77f1e0a2019-01-18 10:34:16 -07007403 .depth_updated = bfq_depth_updated,
Jens Axboef0635b82018-05-09 13:27:21 -06007404 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06007405 .init_sched = bfq_init_queue,
7406 .exit_sched = bfq_exit_queue,
7407 },
7408
Paolo Valenteaee69d72017-04-19 08:29:02 -06007409 .icq_size = sizeof(struct bfq_io_cq),
7410 .icq_align = __alignof__(struct bfq_io_cq),
7411 .elevator_attrs = bfq_attrs,
7412 .elevator_name = "bfq",
7413 .elevator_owner = THIS_MODULE,
7414};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01007415MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06007416
7417static int __init bfq_init(void)
7418{
7419 int ret;
7420
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007421#ifdef CONFIG_BFQ_GROUP_IOSCHED
7422 ret = blkcg_policy_register(&blkcg_policy_bfq);
7423 if (ret)
7424 return ret;
7425#endif
7426
Paolo Valenteaee69d72017-04-19 08:29:02 -06007427 ret = -ENOMEM;
7428 if (bfq_slab_setup())
7429 goto err_pol_unreg;
7430
Paolo Valente44e44a12017-04-12 18:23:12 +02007431 /*
7432 * Times to load large popular applications for the typical
7433 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02007434 * comments before the definition of the next
7435 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02007436 * estimated peak rate tends to be smaller than the actual
7437 * peak rate. The reason for this last fact is that estimates
7438 * are computed over much shorter time intervals than the long
7439 * intervals typically used for benchmarking. Why? First, to
7440 * adapt more quickly to variations. Second, because an I/O
7441 * scheduler cannot rely on a peak-rate-evaluation workload to
7442 * be run for a long time.
7443 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02007444 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7445 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02007446
Paolo Valenteaee69d72017-04-19 08:29:02 -06007447 ret = elv_register(&iosched_bfq_mq);
7448 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08007449 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06007450
7451 return 0;
7452
weiping zhang37dcd652017-08-19 00:37:20 +08007453slab_kill:
7454 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06007455err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007456#ifdef CONFIG_BFQ_GROUP_IOSCHED
7457 blkcg_policy_unregister(&blkcg_policy_bfq);
7458#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06007459 return ret;
7460}
7461
7462static void __exit bfq_exit(void)
7463{
7464 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02007465#ifdef CONFIG_BFQ_GROUP_IOSCHED
7466 blkcg_policy_unregister(&blkcg_policy_bfq);
7467#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06007468 bfq_slab_kill();
7469}
7470
7471module_init(bfq_init);
7472module_exit(bfq_exit);
7473
7474MODULE_AUTHOR("Paolo Valente");
7475MODULE_LICENSE("GPL");
7476MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");