blob: 4fd4f1996498db361a25b8c2e33d057080f36cae [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec074170e2017-04-12 18:23:11 +0200189/*
190 * Async to sync throughput distribution is controlled as follows:
191 * when an async request is served, the entity is charged the number
192 * of sectors of the request, multiplied by the factor below
193 */
194static const int bfq_async_charge_factor = 10;
195
Paolo Valenteaee69d72017-04-19 08:29:02 -0600196/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600197const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600198
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100199/*
200 * Time limit for merging (see comments in bfq_setup_cooperator). Set
201 * to the slowest value that, in our tests, proved to be effective in
202 * removing false positives, while not causing true positives to miss
203 * queue merging.
204 *
205 * As can be deduced from the low time limit below, queue merging, if
206 * successful, happens at the very beggining of the I/O of the involved
207 * cooperating processes, as a consequence of the arrival of the very
208 * first requests from each cooperator. After that, there is very
209 * little chance to find cooperators.
210 */
211static const unsigned long bfq_merge_time_limit = HZ/10;
212
Paolo Valenteaee69d72017-04-19 08:29:02 -0600213static struct kmem_cache *bfq_pool;
214
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200215/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600216#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
217
218/* hw_tag detection: parallel requests threshold and min samples needed. */
219#define BFQ_HW_QUEUE_THRESHOLD 4
220#define BFQ_HW_QUEUE_SAMPLES 32
221
222#define BFQQ_SEEK_THR (sector_t)(8 * 100)
223#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
224#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100225#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600226
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200227/* Min number of samples required to perform peak-rate update */
228#define BFQ_RATE_MIN_SAMPLES 32
229/* Min observation time interval required to perform a peak-rate update (ns) */
230#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
231/* Target observation time interval for a peak-rate update (ns) */
232#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600233
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200234/*
235 * Shift used for peak-rate fixed precision calculations.
236 * With
237 * - the current shift: 16 positions
238 * - the current type used to store rate: u32
239 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
240 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
241 * the range of rates that can be stored is
242 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
243 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
244 * [15, 65G] sectors/sec
245 * Which, assuming a sector size of 512B, corresponds to a range of
246 * [7.5K, 33T] B/sec
247 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600248#define BFQ_RATE_SHIFT 16
249
Paolo Valente44e44a12017-04-12 18:23:12 +0200250/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200251 * When configured for computing the duration of the weight-raising
252 * for interactive queues automatically (see the comments at the
253 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200254 * duration = (ref_rate / r) * ref_wr_duration,
255 * where r is the peak rate of the device, and ref_rate and
256 * ref_wr_duration are two reference parameters. In particular,
257 * ref_rate is the peak rate of the reference storage device (see
258 * below), and ref_wr_duration is about the maximum time needed, with
259 * BFQ and while reading two files in parallel, to load typical large
260 * applications on the reference device (see the comments on
261 * max_service_from_wr below, for more details on how ref_wr_duration
262 * is obtained). In practice, the slower/faster the device at hand
263 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200264 * reference device. Accordingly, the longer/shorter BFQ grants
265 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200266 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200267 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
268 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200269 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200270 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
271 * are the reference values for a rotational device, whereas
272 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
273 * non-rotational device. The reference rates are not the actual peak
274 * rates of the devices used as a reference, but slightly lower
275 * values. The reason for using slightly lower values is that the
276 * peak-rate estimator tends to yield slightly lower values than the
277 * actual peak rate (it can yield the actual peak rate only if there
278 * is only one process doing I/O, and the process does sequential
279 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200280 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * The reference peak rates are measured in sectors/usec, left-shifted
282 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200283 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200284static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200285/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200286 * To improve readability, a conversion function is used to initialize
287 * the following array, which entails that the array can be
288 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200289 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200290static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200291
Paolo Valente8a8747d2018-01-13 12:05:18 +0100292/*
293 * BFQ uses the above-detailed, time-based weight-raising mechanism to
294 * privilege interactive tasks. This mechanism is vulnerable to the
295 * following false positives: I/O-bound applications that will go on
296 * doing I/O for much longer than the duration of weight
297 * raising. These applications have basically no benefit from being
298 * weight-raised at the beginning of their I/O. On the opposite end,
299 * while being weight-raised, these applications
300 * a) unjustly steal throughput to applications that may actually need
301 * low latency;
302 * b) make BFQ uselessly perform device idling; device idling results
303 * in loss of device throughput with most flash-based storage, and may
304 * increase latencies when used purposelessly.
305 *
306 * BFQ tries to reduce these problems, by adopting the following
307 * countermeasure. To introduce this countermeasure, we need first to
308 * finish explaining how the duration of weight-raising for
309 * interactive tasks is computed.
310 *
311 * For a bfq_queue deemed as interactive, the duration of weight
312 * raising is dynamically adjusted, as a function of the estimated
313 * peak rate of the device, so as to be equal to the time needed to
314 * execute the 'largest' interactive task we benchmarked so far. By
315 * largest task, we mean the task for which each involved process has
316 * to do more I/O than for any of the other tasks we benchmarked. This
317 * reference interactive task is the start-up of LibreOffice Writer,
318 * and in this task each process/bfq_queue needs to have at most ~110K
319 * sectors transferred.
320 *
321 * This last piece of information enables BFQ to reduce the actual
322 * duration of weight-raising for at least one class of I/O-bound
323 * applications: those doing sequential or quasi-sequential I/O. An
324 * example is file copy. In fact, once started, the main I/O-bound
325 * processes of these applications usually consume the above 110K
326 * sectors in much less time than the processes of an application that
327 * is starting, because these I/O-bound processes will greedily devote
328 * almost all their CPU cycles only to their target,
329 * throughput-friendly I/O operations. This is even more true if BFQ
330 * happens to be underestimating the device peak rate, and thus
331 * overestimating the duration of weight raising. But, according to
332 * our measurements, once transferred 110K sectors, these processes
333 * have no right to be weight-raised any longer.
334 *
335 * Basing on the last consideration, BFQ ends weight-raising for a
336 * bfq_queue if the latter happens to have received an amount of
337 * service at least equal to the following constant. The constant is
338 * set to slightly more than 110K, to have a minimum safety margin.
339 *
340 * This early ending of weight-raising reduces the amount of time
341 * during which interactive false positives cause the two problems
342 * described at the beginning of these comments.
343 */
344static const unsigned long max_service_from_wr = 120000;
345
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700346#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600347#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
348
Paolo Valenteea25da42017-04-19 08:48:24 -0600349struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
350{
351 return bic->bfqq[is_sync];
352}
353
354void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
355{
356 bic->bfqq[is_sync] = bfqq;
357}
358
359struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
360{
361 return bic->icq.q->elevator->elevator_data;
362}
363
Paolo Valenteaee69d72017-04-19 08:29:02 -0600364/**
365 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
366 * @icq: the iocontext queue.
367 */
368static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
369{
370 /* bic->icq is the first member, %NULL will convert to %NULL */
371 return container_of(icq, struct bfq_io_cq, icq);
372}
373
374/**
375 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
376 * @bfqd: the lookup key.
377 * @ioc: the io_context of the process doing I/O.
378 * @q: the request queue.
379 */
380static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
381 struct io_context *ioc,
382 struct request_queue *q)
383{
384 if (ioc) {
385 unsigned long flags;
386 struct bfq_io_cq *icq;
387
388 spin_lock_irqsave(q->queue_lock, flags);
389 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
390 spin_unlock_irqrestore(q->queue_lock, flags);
391
392 return icq;
393 }
394
395 return NULL;
396}
397
398/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200399 * Scheduler run of queue, if there are requests pending and no one in the
400 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600401 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600402void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600403{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200404 if (bfqd->queued != 0) {
405 bfq_log(bfqd, "schedule dispatch");
406 blk_mq_run_hw_queues(bfqd->queue, true);
407 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600408}
409
Paolo Valenteaee69d72017-04-19 08:29:02 -0600410#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
411#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
412
413#define bfq_sample_valid(samples) ((samples) > 80)
414
415/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600416 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
417 * We choose the request that is closesr to the head right now. Distance
418 * behind the head is penalized and only allowed to a certain extent.
419 */
420static struct request *bfq_choose_req(struct bfq_data *bfqd,
421 struct request *rq1,
422 struct request *rq2,
423 sector_t last)
424{
425 sector_t s1, s2, d1 = 0, d2 = 0;
426 unsigned long back_max;
427#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
428#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
429 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
430
431 if (!rq1 || rq1 == rq2)
432 return rq2;
433 if (!rq2)
434 return rq1;
435
436 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
437 return rq1;
438 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
439 return rq2;
440 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
441 return rq1;
442 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
443 return rq2;
444
445 s1 = blk_rq_pos(rq1);
446 s2 = blk_rq_pos(rq2);
447
448 /*
449 * By definition, 1KiB is 2 sectors.
450 */
451 back_max = bfqd->bfq_back_max * 2;
452
453 /*
454 * Strict one way elevator _except_ in the case where we allow
455 * short backward seeks which are biased as twice the cost of a
456 * similar forward seek.
457 */
458 if (s1 >= last)
459 d1 = s1 - last;
460 else if (s1 + back_max >= last)
461 d1 = (last - s1) * bfqd->bfq_back_penalty;
462 else
463 wrap |= BFQ_RQ1_WRAP;
464
465 if (s2 >= last)
466 d2 = s2 - last;
467 else if (s2 + back_max >= last)
468 d2 = (last - s2) * bfqd->bfq_back_penalty;
469 else
470 wrap |= BFQ_RQ2_WRAP;
471
472 /* Found required data */
473
474 /*
475 * By doing switch() on the bit mask "wrap" we avoid having to
476 * check two variables for all permutations: --> faster!
477 */
478 switch (wrap) {
479 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
480 if (d1 < d2)
481 return rq1;
482 else if (d2 < d1)
483 return rq2;
484
485 if (s1 >= s2)
486 return rq1;
487 else
488 return rq2;
489
490 case BFQ_RQ2_WRAP:
491 return rq1;
492 case BFQ_RQ1_WRAP:
493 return rq2;
494 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
495 default:
496 /*
497 * Since both rqs are wrapped,
498 * start with the one that's further behind head
499 * (--> only *one* back seek required),
500 * since back seek takes more time than forward.
501 */
502 if (s1 <= s2)
503 return rq1;
504 else
505 return rq2;
506 }
507}
508
Paolo Valentea52a69e2018-01-13 12:05:17 +0100509/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100510 * Async I/O can easily starve sync I/O (both sync reads and sync
511 * writes), by consuming all tags. Similarly, storms of sync writes,
512 * such as those that sync(2) may trigger, can starve sync reads.
513 * Limit depths of async I/O and sync writes so as to counter both
514 * problems.
515 */
516static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
517{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100518 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100519
520 if (op_is_sync(op) && !op_is_write(op))
521 return;
522
Paolo Valentea52a69e2018-01-13 12:05:17 +0100523 data->shallow_depth =
524 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
525
526 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
527 __func__, bfqd->wr_busy_queues, op_is_sync(op),
528 data->shallow_depth);
529}
530
Arianna Avanzini36eca892017-04-12 18:23:16 +0200531static struct bfq_queue *
532bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
533 sector_t sector, struct rb_node **ret_parent,
534 struct rb_node ***rb_link)
535{
536 struct rb_node **p, *parent;
537 struct bfq_queue *bfqq = NULL;
538
539 parent = NULL;
540 p = &root->rb_node;
541 while (*p) {
542 struct rb_node **n;
543
544 parent = *p;
545 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
546
547 /*
548 * Sort strictly based on sector. Smallest to the left,
549 * largest to the right.
550 */
551 if (sector > blk_rq_pos(bfqq->next_rq))
552 n = &(*p)->rb_right;
553 else if (sector < blk_rq_pos(bfqq->next_rq))
554 n = &(*p)->rb_left;
555 else
556 break;
557 p = n;
558 bfqq = NULL;
559 }
560
561 *ret_parent = parent;
562 if (rb_link)
563 *rb_link = p;
564
565 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
566 (unsigned long long)sector,
567 bfqq ? bfqq->pid : 0);
568
569 return bfqq;
570}
571
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100572static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
573{
574 return bfqq->service_from_backlogged > 0 &&
575 time_is_before_jiffies(bfqq->first_IO_time +
576 bfq_merge_time_limit);
577}
578
Paolo Valenteea25da42017-04-19 08:48:24 -0600579void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200580{
581 struct rb_node **p, *parent;
582 struct bfq_queue *__bfqq;
583
584 if (bfqq->pos_root) {
585 rb_erase(&bfqq->pos_node, bfqq->pos_root);
586 bfqq->pos_root = NULL;
587 }
588
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100589 /*
590 * bfqq cannot be merged any longer (see comments in
591 * bfq_setup_cooperator): no point in adding bfqq into the
592 * position tree.
593 */
594 if (bfq_too_late_for_merging(bfqq))
595 return;
596
Arianna Avanzini36eca892017-04-12 18:23:16 +0200597 if (bfq_class_idle(bfqq))
598 return;
599 if (!bfqq->next_rq)
600 return;
601
602 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
603 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
604 blk_rq_pos(bfqq->next_rq), &parent, &p);
605 if (!__bfqq) {
606 rb_link_node(&bfqq->pos_node, parent, p);
607 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
608 } else
609 bfqq->pos_root = NULL;
610}
611
Paolo Valenteaee69d72017-04-19 08:29:02 -0600612/*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200613 * Tell whether there are active queues or groups with differentiated weights.
614 */
615static bool bfq_differentiated_weights(struct bfq_data *bfqd)
616{
617 /*
618 * For weights to differ, at least one of the trees must contain
619 * at least two nodes.
620 */
621 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
622 (bfqd->queue_weights_tree.rb_node->rb_left ||
623 bfqd->queue_weights_tree.rb_node->rb_right)
624#ifdef CONFIG_BFQ_GROUP_IOSCHED
625 ) ||
626 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
627 (bfqd->group_weights_tree.rb_node->rb_left ||
628 bfqd->group_weights_tree.rb_node->rb_right)
629#endif
630 );
631}
632
633/*
634 * The following function returns true if every queue must receive the
635 * same share of the throughput (this condition is used when deciding
636 * whether idling may be disabled, see the comments in the function
637 * bfq_bfqq_may_idle()).
638 *
639 * Such a scenario occurs when:
640 * 1) all active queues have the same weight,
641 * 2) all active groups at the same level in the groups tree have the same
642 * weight,
643 * 3) all active groups at the same level in the groups tree have the same
644 * number of children.
645 *
646 * Unfortunately, keeping the necessary state for evaluating exactly the
647 * above symmetry conditions would be quite complex and time-consuming.
648 * Therefore this function evaluates, instead, the following stronger
649 * sub-conditions, for which it is much easier to maintain the needed
650 * state:
651 * 1) all active queues have the same weight,
652 * 2) all active groups have the same weight,
653 * 3) all active groups have at most one active child each.
654 * In particular, the last two conditions are always true if hierarchical
655 * support and the cgroups interface are not enabled, thus no state needs
656 * to be maintained in this case.
657 */
658static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
659{
660 return !bfq_differentiated_weights(bfqd);
661}
662
663/*
664 * If the weight-counter tree passed as input contains no counter for
665 * the weight of the input entity, then add that counter; otherwise just
666 * increment the existing counter.
667 *
668 * Note that weight-counter trees contain few nodes in mostly symmetric
669 * scenarios. For example, if all queues have the same weight, then the
670 * weight-counter tree for the queues may contain at most one node.
671 * This holds even if low_latency is on, because weight-raised queues
672 * are not inserted in the tree.
673 * In most scenarios, the rate at which nodes are created/destroyed
674 * should be low too.
675 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600676void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
677 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200678{
679 struct rb_node **new = &(root->rb_node), *parent = NULL;
680
681 /*
682 * Do not insert if the entity is already associated with a
683 * counter, which happens if:
684 * 1) the entity is associated with a queue,
685 * 2) a request arrival has caused the queue to become both
686 * non-weight-raised, and hence change its weight, and
687 * backlogged; in this respect, each of the two events
688 * causes an invocation of this function,
689 * 3) this is the invocation of this function caused by the
690 * second event. This second invocation is actually useless,
691 * and we handle this fact by exiting immediately. More
692 * efficient or clearer solutions might possibly be adopted.
693 */
694 if (entity->weight_counter)
695 return;
696
697 while (*new) {
698 struct bfq_weight_counter *__counter = container_of(*new,
699 struct bfq_weight_counter,
700 weights_node);
701 parent = *new;
702
703 if (entity->weight == __counter->weight) {
704 entity->weight_counter = __counter;
705 goto inc_counter;
706 }
707 if (entity->weight < __counter->weight)
708 new = &((*new)->rb_left);
709 else
710 new = &((*new)->rb_right);
711 }
712
713 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
714 GFP_ATOMIC);
715
716 /*
717 * In the unlucky event of an allocation failure, we just
718 * exit. This will cause the weight of entity to not be
719 * considered in bfq_differentiated_weights, which, in its
720 * turn, causes the scenario to be deemed wrongly symmetric in
721 * case entity's weight would have been the only weight making
722 * the scenario asymmetric. On the bright side, no unbalance
723 * will however occur when entity becomes inactive again (the
724 * invocation of this function is triggered by an activation
725 * of entity). In fact, bfq_weights_tree_remove does nothing
726 * if !entity->weight_counter.
727 */
728 if (unlikely(!entity->weight_counter))
729 return;
730
731 entity->weight_counter->weight = entity->weight;
732 rb_link_node(&entity->weight_counter->weights_node, parent, new);
733 rb_insert_color(&entity->weight_counter->weights_node, root);
734
735inc_counter:
736 entity->weight_counter->num_active++;
737}
738
739/*
740 * Decrement the weight counter associated with the entity, and, if the
741 * counter reaches 0, remove the counter from the tree.
742 * See the comments to the function bfq_weights_tree_add() for considerations
743 * about overhead.
744 */
Paolo Valente04715592018-06-25 21:55:34 +0200745void __bfq_weights_tree_remove(struct bfq_data *bfqd,
746 struct bfq_entity *entity,
747 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200748{
749 if (!entity->weight_counter)
750 return;
751
752 entity->weight_counter->num_active--;
753 if (entity->weight_counter->num_active > 0)
754 goto reset_entity_pointer;
755
756 rb_erase(&entity->weight_counter->weights_node, root);
757 kfree(entity->weight_counter);
758
759reset_entity_pointer:
760 entity->weight_counter = NULL;
761}
762
763/*
Paolo Valente04715592018-06-25 21:55:34 +0200764 * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
765 * parent entities.
766 */
767void bfq_weights_tree_remove(struct bfq_data *bfqd,
768 struct bfq_queue *bfqq)
769{
770 struct bfq_entity *entity = bfqq->entity.parent;
771
772 __bfq_weights_tree_remove(bfqd, &bfqq->entity,
773 &bfqd->queue_weights_tree);
774
775 for_each_entity(entity) {
776 struct bfq_sched_data *sd = entity->my_sched_data;
777
778 if (sd->next_in_service || sd->in_service_entity) {
779 /*
780 * entity is still active, because either
781 * next_in_service or in_service_entity is not
782 * NULL (see the comments on the definition of
783 * next_in_service for details on why
784 * in_service_entity must be checked too).
785 *
786 * As a consequence, the weight of entity is
787 * not to be removed. In addition, if entity
788 * is active, then its parent entities are
789 * active as well, and thus their weights are
790 * not to be removed either. In the end, this
791 * loop must stop here.
792 */
793 break;
794 }
795 __bfq_weights_tree_remove(bfqd, entity,
796 &bfqd->group_weights_tree);
797 }
798}
799
800/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600801 * Return expired entry, or NULL to just start from scratch in rbtree.
802 */
803static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
804 struct request *last)
805{
806 struct request *rq;
807
808 if (bfq_bfqq_fifo_expire(bfqq))
809 return NULL;
810
811 bfq_mark_bfqq_fifo_expire(bfqq);
812
813 rq = rq_entry_fifo(bfqq->fifo.next);
814
815 if (rq == last || ktime_get_ns() < rq->fifo_time)
816 return NULL;
817
818 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
819 return rq;
820}
821
822static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
823 struct bfq_queue *bfqq,
824 struct request *last)
825{
826 struct rb_node *rbnext = rb_next(&last->rb_node);
827 struct rb_node *rbprev = rb_prev(&last->rb_node);
828 struct request *next, *prev = NULL;
829
830 /* Follow expired path, else get first next available. */
831 next = bfq_check_fifo(bfqq, last);
832 if (next)
833 return next;
834
835 if (rbprev)
836 prev = rb_entry_rq(rbprev);
837
838 if (rbnext)
839 next = rb_entry_rq(rbnext);
840 else {
841 rbnext = rb_first(&bfqq->sort_list);
842 if (rbnext && rbnext != &last->rb_node)
843 next = rb_entry_rq(rbnext);
844 }
845
846 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
847}
848
Paolo Valentec074170e2017-04-12 18:23:11 +0200849/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600850static unsigned long bfq_serv_to_charge(struct request *rq,
851 struct bfq_queue *bfqq)
852{
Paolo Valente44e44a12017-04-12 18:23:12 +0200853 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
Paolo Valentec074170e2017-04-12 18:23:11 +0200854 return blk_rq_sectors(rq);
855
Paolo Valentecfd69712017-04-12 18:23:15 +0200856 /*
857 * If there are no weight-raised queues, then amplify service
858 * by just the async charge factor; otherwise amplify service
859 * by twice the async charge factor, to further reduce latency
860 * for weight-raised queues.
861 */
862 if (bfqq->bfqd->wr_busy_queues == 0)
863 return blk_rq_sectors(rq) * bfq_async_charge_factor;
864
865 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600866}
867
868/**
869 * bfq_updated_next_req - update the queue after a new next_rq selection.
870 * @bfqd: the device data the queue belongs to.
871 * @bfqq: the queue to update.
872 *
873 * If the first request of a queue changes we make sure that the queue
874 * has enough budget to serve at least its first request (if the
875 * request has grown). We do this because if the queue has not enough
876 * budget for its first request, it has to go through two dispatch
877 * rounds to actually get it dispatched.
878 */
879static void bfq_updated_next_req(struct bfq_data *bfqd,
880 struct bfq_queue *bfqq)
881{
882 struct bfq_entity *entity = &bfqq->entity;
883 struct request *next_rq = bfqq->next_rq;
884 unsigned long new_budget;
885
886 if (!next_rq)
887 return;
888
889 if (bfqq == bfqd->in_service_queue)
890 /*
891 * In order not to break guarantees, budgets cannot be
892 * changed after an entity has been selected.
893 */
894 return;
895
896 new_budget = max_t(unsigned long, bfqq->max_budget,
897 bfq_serv_to_charge(next_rq, bfqq));
898 if (entity->budget != new_budget) {
899 entity->budget = new_budget;
900 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
901 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200902 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600903 }
904}
905
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200906static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
907{
908 u64 dur;
909
910 if (bfqd->bfq_wr_max_time > 0)
911 return bfqd->bfq_wr_max_time;
912
Paolo Valentee24f1c22018-05-31 16:45:06 +0200913 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200914 do_div(dur, bfqd->peak_rate);
915
916 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200917 * Limit duration between 3 and 25 seconds. The upper limit
918 * has been conservatively set after the following worst case:
919 * on a QEMU/KVM virtual machine
920 * - running in a slow PC
921 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
922 * - serving a heavy I/O workload, such as the sequential reading
923 * of several files
924 * mplayer took 23 seconds to start, if constantly weight-raised.
925 *
926 * As for higher values than that accomodating the above bad
927 * scenario, tests show that higher values would often yield
928 * the opposite of the desired result, i.e., would worsen
929 * responsiveness by allowing non-interactive applications to
930 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200931 *
932 * On the other end, lower values than 3 seconds make it
933 * difficult for most interactive tasks to complete their jobs
934 * before weight-raising finishes.
935 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200936 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200937}
938
939/* switch back from soft real-time to interactive weight raising */
940static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
941 struct bfq_data *bfqd)
942{
943 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
944 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
945 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
946}
947
Arianna Avanzini36eca892017-04-12 18:23:16 +0200948static void
Paolo Valente13c931b2017-06-27 12:30:47 -0600949bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
950 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200951{
Paolo Valente13c931b2017-06-27 12:30:47 -0600952 unsigned int old_wr_coeff = bfqq->wr_coeff;
953 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
954
Paolo Valented5be3fe2017-08-04 07:35:10 +0200955 if (bic->saved_has_short_ttime)
956 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200957 else
Paolo Valented5be3fe2017-08-04 07:35:10 +0200958 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200959
960 if (bic->saved_IO_bound)
961 bfq_mark_bfqq_IO_bound(bfqq);
962 else
963 bfq_clear_bfqq_IO_bound(bfqq);
964
965 bfqq->ttime = bic->saved_ttime;
966 bfqq->wr_coeff = bic->saved_wr_coeff;
967 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
968 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
969 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
970
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200971 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +0200972 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200973 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200974 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
975 !bfq_bfqq_in_large_burst(bfqq) &&
976 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
977 bfq_wr_duration(bfqd))) {
978 switch_back_to_interactive_wr(bfqq, bfqd);
979 } else {
980 bfqq->wr_coeff = 1;
981 bfq_log_bfqq(bfqq->bfqd, bfqq,
982 "resume state: switching off wr");
983 }
Arianna Avanzini36eca892017-04-12 18:23:16 +0200984 }
985
986 /* make sure weight will be updated, however we got here */
987 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -0600988
989 if (likely(!busy))
990 return;
991
992 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
993 bfqd->wr_busy_queues++;
994 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
995 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +0200996}
997
998static int bfqq_process_refs(struct bfq_queue *bfqq)
999{
1000 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1001}
1002
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001003/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1004static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1005{
1006 struct bfq_queue *item;
1007 struct hlist_node *n;
1008
1009 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1010 hlist_del_init(&item->burst_list_node);
1011 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1012 bfqd->burst_size = 1;
1013 bfqd->burst_parent_entity = bfqq->entity.parent;
1014}
1015
1016/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1017static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1018{
1019 /* Increment burst size to take into account also bfqq */
1020 bfqd->burst_size++;
1021
1022 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1023 struct bfq_queue *pos, *bfqq_item;
1024 struct hlist_node *n;
1025
1026 /*
1027 * Enough queues have been activated shortly after each
1028 * other to consider this burst as large.
1029 */
1030 bfqd->large_burst = true;
1031
1032 /*
1033 * We can now mark all queues in the burst list as
1034 * belonging to a large burst.
1035 */
1036 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1037 burst_list_node)
1038 bfq_mark_bfqq_in_large_burst(bfqq_item);
1039 bfq_mark_bfqq_in_large_burst(bfqq);
1040
1041 /*
1042 * From now on, and until the current burst finishes, any
1043 * new queue being activated shortly after the last queue
1044 * was inserted in the burst can be immediately marked as
1045 * belonging to a large burst. So the burst list is not
1046 * needed any more. Remove it.
1047 */
1048 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1049 burst_list_node)
1050 hlist_del_init(&pos->burst_list_node);
1051 } else /*
1052 * Burst not yet large: add bfqq to the burst list. Do
1053 * not increment the ref counter for bfqq, because bfqq
1054 * is removed from the burst list before freeing bfqq
1055 * in put_queue.
1056 */
1057 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1058}
1059
1060/*
1061 * If many queues belonging to the same group happen to be created
1062 * shortly after each other, then the processes associated with these
1063 * queues have typically a common goal. In particular, bursts of queue
1064 * creations are usually caused by services or applications that spawn
1065 * many parallel threads/processes. Examples are systemd during boot,
1066 * or git grep. To help these processes get their job done as soon as
1067 * possible, it is usually better to not grant either weight-raising
1068 * or device idling to their queues.
1069 *
1070 * In this comment we describe, firstly, the reasons why this fact
1071 * holds, and, secondly, the next function, which implements the main
1072 * steps needed to properly mark these queues so that they can then be
1073 * treated in a different way.
1074 *
1075 * The above services or applications benefit mostly from a high
1076 * throughput: the quicker the requests of the activated queues are
1077 * cumulatively served, the sooner the target job of these queues gets
1078 * completed. As a consequence, weight-raising any of these queues,
1079 * which also implies idling the device for it, is almost always
1080 * counterproductive. In most cases it just lowers throughput.
1081 *
1082 * On the other hand, a burst of queue creations may be caused also by
1083 * the start of an application that does not consist of a lot of
1084 * parallel I/O-bound threads. In fact, with a complex application,
1085 * several short processes may need to be executed to start-up the
1086 * application. In this respect, to start an application as quickly as
1087 * possible, the best thing to do is in any case to privilege the I/O
1088 * related to the application with respect to all other
1089 * I/O. Therefore, the best strategy to start as quickly as possible
1090 * an application that causes a burst of queue creations is to
1091 * weight-raise all the queues created during the burst. This is the
1092 * exact opposite of the best strategy for the other type of bursts.
1093 *
1094 * In the end, to take the best action for each of the two cases, the
1095 * two types of bursts need to be distinguished. Fortunately, this
1096 * seems relatively easy, by looking at the sizes of the bursts. In
1097 * particular, we found a threshold such that only bursts with a
1098 * larger size than that threshold are apparently caused by
1099 * services or commands such as systemd or git grep. For brevity,
1100 * hereafter we call just 'large' these bursts. BFQ *does not*
1101 * weight-raise queues whose creation occurs in a large burst. In
1102 * addition, for each of these queues BFQ performs or does not perform
1103 * idling depending on which choice boosts the throughput more. The
1104 * exact choice depends on the device and request pattern at
1105 * hand.
1106 *
1107 * Unfortunately, false positives may occur while an interactive task
1108 * is starting (e.g., an application is being started). The
1109 * consequence is that the queues associated with the task do not
1110 * enjoy weight raising as expected. Fortunately these false positives
1111 * are very rare. They typically occur if some service happens to
1112 * start doing I/O exactly when the interactive task starts.
1113 *
1114 * Turning back to the next function, it implements all the steps
1115 * needed to detect the occurrence of a large burst and to properly
1116 * mark all the queues belonging to it (so that they can then be
1117 * treated in a different way). This goal is achieved by maintaining a
1118 * "burst list" that holds, temporarily, the queues that belong to the
1119 * burst in progress. The list is then used to mark these queues as
1120 * belonging to a large burst if the burst does become large. The main
1121 * steps are the following.
1122 *
1123 * . when the very first queue is created, the queue is inserted into the
1124 * list (as it could be the first queue in a possible burst)
1125 *
1126 * . if the current burst has not yet become large, and a queue Q that does
1127 * not yet belong to the burst is activated shortly after the last time
1128 * at which a new queue entered the burst list, then the function appends
1129 * Q to the burst list
1130 *
1131 * . if, as a consequence of the previous step, the burst size reaches
1132 * the large-burst threshold, then
1133 *
1134 * . all the queues in the burst list are marked as belonging to a
1135 * large burst
1136 *
1137 * . the burst list is deleted; in fact, the burst list already served
1138 * its purpose (keeping temporarily track of the queues in a burst,
1139 * so as to be able to mark them as belonging to a large burst in the
1140 * previous sub-step), and now is not needed any more
1141 *
1142 * . the device enters a large-burst mode
1143 *
1144 * . if a queue Q that does not belong to the burst is created while
1145 * the device is in large-burst mode and shortly after the last time
1146 * at which a queue either entered the burst list or was marked as
1147 * belonging to the current large burst, then Q is immediately marked
1148 * as belonging to a large burst.
1149 *
1150 * . if a queue Q that does not belong to the burst is created a while
1151 * later, i.e., not shortly after, than the last time at which a queue
1152 * either entered the burst list or was marked as belonging to the
1153 * current large burst, then the current burst is deemed as finished and:
1154 *
1155 * . the large-burst mode is reset if set
1156 *
1157 * . the burst list is emptied
1158 *
1159 * . Q is inserted in the burst list, as Q may be the first queue
1160 * in a possible new burst (then the burst list contains just Q
1161 * after this step).
1162 */
1163static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1164{
1165 /*
1166 * If bfqq is already in the burst list or is part of a large
1167 * burst, or finally has just been split, then there is
1168 * nothing else to do.
1169 */
1170 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1171 bfq_bfqq_in_large_burst(bfqq) ||
1172 time_is_after_eq_jiffies(bfqq->split_time +
1173 msecs_to_jiffies(10)))
1174 return;
1175
1176 /*
1177 * If bfqq's creation happens late enough, or bfqq belongs to
1178 * a different group than the burst group, then the current
1179 * burst is finished, and related data structures must be
1180 * reset.
1181 *
1182 * In this respect, consider the special case where bfqq is
1183 * the very first queue created after BFQ is selected for this
1184 * device. In this case, last_ins_in_burst and
1185 * burst_parent_entity are not yet significant when we get
1186 * here. But it is easy to verify that, whether or not the
1187 * following condition is true, bfqq will end up being
1188 * inserted into the burst list. In particular the list will
1189 * happen to contain only bfqq. And this is exactly what has
1190 * to happen, as bfqq may be the first queue of the first
1191 * burst.
1192 */
1193 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1194 bfqd->bfq_burst_interval) ||
1195 bfqq->entity.parent != bfqd->burst_parent_entity) {
1196 bfqd->large_burst = false;
1197 bfq_reset_burst_list(bfqd, bfqq);
1198 goto end;
1199 }
1200
1201 /*
1202 * If we get here, then bfqq is being activated shortly after the
1203 * last queue. So, if the current burst is also large, we can mark
1204 * bfqq as belonging to this large burst immediately.
1205 */
1206 if (bfqd->large_burst) {
1207 bfq_mark_bfqq_in_large_burst(bfqq);
1208 goto end;
1209 }
1210
1211 /*
1212 * If we get here, then a large-burst state has not yet been
1213 * reached, but bfqq is being activated shortly after the last
1214 * queue. Then we add bfqq to the burst.
1215 */
1216 bfq_add_to_burst(bfqd, bfqq);
1217end:
1218 /*
1219 * At this point, bfqq either has been added to the current
1220 * burst or has caused the current burst to terminate and a
1221 * possible new burst to start. In particular, in the second
1222 * case, bfqq has become the first queue in the possible new
1223 * burst. In both cases last_ins_in_burst needs to be moved
1224 * forward.
1225 */
1226 bfqd->last_ins_in_burst = jiffies;
1227}
1228
Paolo Valenteaee69d72017-04-19 08:29:02 -06001229static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1230{
1231 struct bfq_entity *entity = &bfqq->entity;
1232
1233 return entity->budget - entity->service;
1234}
1235
1236/*
1237 * If enough samples have been computed, return the current max budget
1238 * stored in bfqd, which is dynamically updated according to the
1239 * estimated disk peak rate; otherwise return the default max budget
1240 */
1241static int bfq_max_budget(struct bfq_data *bfqd)
1242{
1243 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1244 return bfq_default_max_budget;
1245 else
1246 return bfqd->bfq_max_budget;
1247}
1248
1249/*
1250 * Return min budget, which is a fraction of the current or default
1251 * max budget (trying with 1/32)
1252 */
1253static int bfq_min_budget(struct bfq_data *bfqd)
1254{
1255 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1256 return bfq_default_max_budget / 32;
1257 else
1258 return bfqd->bfq_max_budget / 32;
1259}
1260
Paolo Valenteaee69d72017-04-19 08:29:02 -06001261/*
1262 * The next function, invoked after the input queue bfqq switches from
1263 * idle to busy, updates the budget of bfqq. The function also tells
1264 * whether the in-service queue should be expired, by returning
1265 * true. The purpose of expiring the in-service queue is to give bfqq
1266 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001267 * for preempting the in-service queue is to achieve one of the two
1268 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001269 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001270 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1271 * expired because it has remained idle. In particular, bfqq may have
1272 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001273 *
1274 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1275 * and did not make it to issue a new request before its last
1276 * request was served;
1277 *
1278 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1279 * a new request before the expiration of the idling-time.
1280 *
1281 * Even if bfqq has expired for one of the above reasons, the process
1282 * associated with the queue may be however issuing requests greedily,
1283 * and thus be sensitive to the bandwidth it receives (bfqq may have
1284 * remained idle for other reasons: CPU high load, bfqq not enjoying
1285 * idling, I/O throttling somewhere in the path from the process to
1286 * the I/O scheduler, ...). But if, after every expiration for one of
1287 * the above two reasons, bfqq has to wait for the service of at least
1288 * one full budget of another queue before being served again, then
1289 * bfqq is likely to get a much lower bandwidth or resource time than
1290 * its reserved ones. To address this issue, two countermeasures need
1291 * to be taken.
1292 *
1293 * First, the budget and the timestamps of bfqq need to be updated in
1294 * a special way on bfqq reactivation: they need to be updated as if
1295 * bfqq did not remain idle and did not expire. In fact, if they are
1296 * computed as if bfqq expired and remained idle until reactivation,
1297 * then the process associated with bfqq is treated as if, instead of
1298 * being greedy, it stopped issuing requests when bfqq remained idle,
1299 * and restarts issuing requests only on this reactivation. In other
1300 * words, the scheduler does not help the process recover the "service
1301 * hole" between bfqq expiration and reactivation. As a consequence,
1302 * the process receives a lower bandwidth than its reserved one. In
1303 * contrast, to recover this hole, the budget must be updated as if
1304 * bfqq was not expired at all before this reactivation, i.e., it must
1305 * be set to the value of the remaining budget when bfqq was
1306 * expired. Along the same line, timestamps need to be assigned the
1307 * value they had the last time bfqq was selected for service, i.e.,
1308 * before last expiration. Thus timestamps need to be back-shifted
1309 * with respect to their normal computation (see [1] for more details
1310 * on this tricky aspect).
1311 *
1312 * Secondly, to allow the process to recover the hole, the in-service
1313 * queue must be expired too, to give bfqq the chance to preempt it
1314 * immediately. In fact, if bfqq has to wait for a full budget of the
1315 * in-service queue to be completed, then it may become impossible to
1316 * let the process recover the hole, even if the back-shifted
1317 * timestamps of bfqq are lower than those of the in-service queue. If
1318 * this happens for most or all of the holes, then the process may not
1319 * receive its reserved bandwidth. In this respect, it is worth noting
1320 * that, being the service of outstanding requests unpreemptible, a
1321 * little fraction of the holes may however be unrecoverable, thereby
1322 * causing a little loss of bandwidth.
1323 *
1324 * The last important point is detecting whether bfqq does need this
1325 * bandwidth recovery. In this respect, the next function deems the
1326 * process associated with bfqq greedy, and thus allows it to recover
1327 * the hole, if: 1) the process is waiting for the arrival of a new
1328 * request (which implies that bfqq expired for one of the above two
1329 * reasons), and 2) such a request has arrived soon. The first
1330 * condition is controlled through the flag non_blocking_wait_rq,
1331 * while the second through the flag arrived_in_time. If both
1332 * conditions hold, then the function computes the budget in the
1333 * above-described special way, and signals that the in-service queue
1334 * should be expired. Timestamp back-shifting is done later in
1335 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001336 *
1337 * 2. Reduce latency. Even if timestamps are not backshifted to let
1338 * the process associated with bfqq recover a service hole, bfqq may
1339 * however happen to have, after being (re)activated, a lower finish
1340 * timestamp than the in-service queue. That is, the next budget of
1341 * bfqq may have to be completed before the one of the in-service
1342 * queue. If this is the case, then preempting the in-service queue
1343 * allows this goal to be achieved, apart from the unpreemptible,
1344 * outstanding requests mentioned above.
1345 *
1346 * Unfortunately, regardless of which of the above two goals one wants
1347 * to achieve, service trees need first to be updated to know whether
1348 * the in-service queue must be preempted. To have service trees
1349 * correctly updated, the in-service queue must be expired and
1350 * rescheduled, and bfqq must be scheduled too. This is one of the
1351 * most costly operations (in future versions, the scheduling
1352 * mechanism may be re-designed in such a way to make it possible to
1353 * know whether preemption is needed without needing to update service
1354 * trees). In addition, queue preemptions almost always cause random
1355 * I/O, and thus loss of throughput. Because of these facts, the next
1356 * function adopts the following simple scheme to avoid both costly
1357 * operations and too frequent preemptions: it requests the expiration
1358 * of the in-service queue (unconditionally) only for queues that need
1359 * to recover a hole, or that either are weight-raised or deserve to
1360 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001361 */
1362static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1363 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001364 bool arrived_in_time,
1365 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001366{
1367 struct bfq_entity *entity = &bfqq->entity;
1368
1369 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1370 /*
1371 * We do not clear the flag non_blocking_wait_rq here, as
1372 * the latter is used in bfq_activate_bfqq to signal
1373 * that timestamps need to be back-shifted (and is
1374 * cleared right after).
1375 */
1376
1377 /*
1378 * In next assignment we rely on that either
1379 * entity->service or entity->budget are not updated
1380 * on expiration if bfqq is empty (see
1381 * __bfq_bfqq_recalc_budget). Thus both quantities
1382 * remain unchanged after such an expiration, and the
1383 * following statement therefore assigns to
1384 * entity->budget the remaining budget on such an
1385 * expiration. For clarity, entity->service is not
1386 * updated on expiration in any case, and, in normal
1387 * operation, is reset only when bfqq is selected for
1388 * service (see bfq_get_next_queue).
1389 */
1390 entity->budget = min_t(unsigned long,
1391 bfq_bfqq_budget_left(bfqq),
1392 bfqq->max_budget);
1393
1394 return true;
1395 }
1396
1397 entity->budget = max_t(unsigned long, bfqq->max_budget,
1398 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1399 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001400 return wr_or_deserves_wr;
1401}
1402
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001403/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001404 * Return the farthest past time instant according to jiffies
1405 * macros.
1406 */
1407static unsigned long bfq_smallest_from_now(void)
1408{
1409 return jiffies - MAX_JIFFY_OFFSET;
1410}
1411
Paolo Valente44e44a12017-04-12 18:23:12 +02001412static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1413 struct bfq_queue *bfqq,
1414 unsigned int old_wr_coeff,
1415 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001416 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001417 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001418 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001419{
1420 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1421 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001422 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001423 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001424 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1425 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1426 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001427 /*
1428 * No interactive weight raising in progress
1429 * here: assign minus infinity to
1430 * wr_start_at_switch_to_srt, to make sure
1431 * that, at the end of the soft-real-time
1432 * weight raising periods that is starting
1433 * now, no interactive weight-raising period
1434 * may be wrongly considered as still in
1435 * progress (and thus actually started by
1436 * mistake).
1437 */
1438 bfqq->wr_start_at_switch_to_srt =
1439 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001440 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1441 BFQ_SOFTRT_WEIGHT_FACTOR;
1442 bfqq->wr_cur_max_time =
1443 bfqd->bfq_wr_rt_max_time;
1444 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001445
1446 /*
1447 * If needed, further reduce budget to make sure it is
1448 * close to bfqq's backlog, so as to reduce the
1449 * scheduling-error component due to a too large
1450 * budget. Do not care about throughput consequences,
1451 * but only about latency. Finally, do not assign a
1452 * too small budget either, to avoid increasing
1453 * latency by causing too frequent expirations.
1454 */
1455 bfqq->entity.budget = min_t(unsigned long,
1456 bfqq->entity.budget,
1457 2 * bfq_min_budget(bfqd));
1458 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001459 if (interactive) { /* update wr coeff and duration */
1460 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1461 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001462 } else if (in_burst)
1463 bfqq->wr_coeff = 1;
1464 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001465 /*
1466 * The application is now or still meeting the
1467 * requirements for being deemed soft rt. We
1468 * can then correctly and safely (re)charge
1469 * the weight-raising duration for the
1470 * application with the weight-raising
1471 * duration for soft rt applications.
1472 *
1473 * In particular, doing this recharge now, i.e.,
1474 * before the weight-raising period for the
1475 * application finishes, reduces the probability
1476 * of the following negative scenario:
1477 * 1) the weight of a soft rt application is
1478 * raised at startup (as for any newly
1479 * created application),
1480 * 2) since the application is not interactive,
1481 * at a certain time weight-raising is
1482 * stopped for the application,
1483 * 3) at that time the application happens to
1484 * still have pending requests, and hence
1485 * is destined to not have a chance to be
1486 * deemed soft rt before these requests are
1487 * completed (see the comments to the
1488 * function bfq_bfqq_softrt_next_start()
1489 * for details on soft rt detection),
1490 * 4) these pending requests experience a high
1491 * latency because the application is not
1492 * weight-raised while they are pending.
1493 */
1494 if (bfqq->wr_cur_max_time !=
1495 bfqd->bfq_wr_rt_max_time) {
1496 bfqq->wr_start_at_switch_to_srt =
1497 bfqq->last_wr_start_finish;
1498
1499 bfqq->wr_cur_max_time =
1500 bfqd->bfq_wr_rt_max_time;
1501 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1502 BFQ_SOFTRT_WEIGHT_FACTOR;
1503 }
1504 bfqq->last_wr_start_finish = jiffies;
1505 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001506 }
1507}
1508
1509static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1510 struct bfq_queue *bfqq)
1511{
1512 return bfqq->dispatched == 0 &&
1513 time_is_before_jiffies(
1514 bfqq->budget_timeout +
1515 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001516}
1517
1518static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1519 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001520 int old_wr_coeff,
1521 struct request *rq,
1522 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001523{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001524 bool soft_rt, in_burst, wr_or_deserves_wr,
1525 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001526 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001527 /*
1528 * See the comments on
1529 * bfq_bfqq_update_budg_for_activation for
1530 * details on the usage of the next variable.
1531 */
1532 arrived_in_time = ktime_get_ns() <=
1533 bfqq->ttime.last_end_request +
1534 bfqd->bfq_slice_idle * 3;
1535
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001536
Paolo Valenteaee69d72017-04-19 08:29:02 -06001537 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001538 * bfqq deserves to be weight-raised if:
1539 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001540 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001541 * - it has been idle for enough time or is soft real-time,
1542 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001543 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001544 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001545 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001546 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001547 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1548 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001549 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001550 wr_or_deserves_wr = bfqd->low_latency &&
1551 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001552 (bfq_bfqq_sync(bfqq) &&
1553 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001554
1555 /*
1556 * Using the last flag, update budget and check whether bfqq
1557 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001558 */
1559 bfqq_wants_to_preempt =
1560 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001561 arrived_in_time,
1562 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001563
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001564 /*
1565 * If bfqq happened to be activated in a burst, but has been
1566 * idle for much more than an interactive queue, then we
1567 * assume that, in the overall I/O initiated in the burst, the
1568 * I/O associated with bfqq is finished. So bfqq does not need
1569 * to be treated as a queue belonging to a burst
1570 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1571 * if set, and remove bfqq from the burst list if it's
1572 * there. We do not decrement burst_size, because the fact
1573 * that bfqq does not need to belong to the burst list any
1574 * more does not invalidate the fact that bfqq was created in
1575 * a burst.
1576 */
1577 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1578 idle_for_long_time &&
1579 time_is_before_jiffies(
1580 bfqq->budget_timeout +
1581 msecs_to_jiffies(10000))) {
1582 hlist_del_init(&bfqq->burst_list_node);
1583 bfq_clear_bfqq_in_large_burst(bfqq);
1584 }
1585
1586 bfq_clear_bfqq_just_created(bfqq);
1587
1588
Paolo Valenteaee69d72017-04-19 08:29:02 -06001589 if (!bfq_bfqq_IO_bound(bfqq)) {
1590 if (arrived_in_time) {
1591 bfqq->requests_within_timer++;
1592 if (bfqq->requests_within_timer >=
1593 bfqd->bfq_requests_within_timer)
1594 bfq_mark_bfqq_IO_bound(bfqq);
1595 } else
1596 bfqq->requests_within_timer = 0;
1597 }
1598
Paolo Valente44e44a12017-04-12 18:23:12 +02001599 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001600 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1601 /* wraparound */
1602 bfqq->split_time =
1603 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001604
Arianna Avanzini36eca892017-04-12 18:23:16 +02001605 if (time_is_before_jiffies(bfqq->split_time +
1606 bfqd->bfq_wr_min_idle_time)) {
1607 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1608 old_wr_coeff,
1609 wr_or_deserves_wr,
1610 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001611 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001612 soft_rt);
1613
1614 if (old_wr_coeff != bfqq->wr_coeff)
1615 bfqq->entity.prio_changed = 1;
1616 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001617 }
1618
Paolo Valente77b7dce2017-04-12 18:23:13 +02001619 bfqq->last_idle_bklogged = jiffies;
1620 bfqq->service_from_backlogged = 0;
1621 bfq_clear_bfqq_softrt_update(bfqq);
1622
Paolo Valenteaee69d72017-04-19 08:29:02 -06001623 bfq_add_bfqq_busy(bfqd, bfqq);
1624
1625 /*
1626 * Expire in-service queue only if preemption may be needed
1627 * for guarantees. In this respect, the function
1628 * next_queue_may_preempt just checks a simple, necessary
1629 * condition, and not a sufficient condition based on
1630 * timestamps. In fact, for the latter condition to be
1631 * evaluated, timestamps would need first to be updated, and
1632 * this operation is quite costly (see the comments on the
1633 * function bfq_bfqq_update_budg_for_activation).
1634 */
1635 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001636 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001637 next_queue_may_preempt(bfqd))
1638 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1639 false, BFQQE_PREEMPTED);
1640}
1641
1642static void bfq_add_request(struct request *rq)
1643{
1644 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1645 struct bfq_data *bfqd = bfqq->bfqd;
1646 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001647 unsigned int old_wr_coeff = bfqq->wr_coeff;
1648 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001649
1650 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1651 bfqq->queued[rq_is_sync(rq)]++;
1652 bfqd->queued++;
1653
1654 elv_rb_add(&bfqq->sort_list, rq);
1655
1656 /*
1657 * Check if this request is a better next-serve candidate.
1658 */
1659 prev = bfqq->next_rq;
1660 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1661 bfqq->next_rq = next_rq;
1662
Arianna Avanzini36eca892017-04-12 18:23:16 +02001663 /*
1664 * Adjust priority tree position, if next_rq changes.
1665 */
1666 if (prev != bfqq->next_rq)
1667 bfq_pos_tree_add_move(bfqd, bfqq);
1668
Paolo Valenteaee69d72017-04-19 08:29:02 -06001669 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001670 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1671 rq, &interactive);
1672 else {
1673 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1674 time_is_before_jiffies(
1675 bfqq->last_wr_start_finish +
1676 bfqd->bfq_wr_min_inter_arr_async)) {
1677 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1678 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1679
Paolo Valentecfd69712017-04-12 18:23:15 +02001680 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001681 bfqq->entity.prio_changed = 1;
1682 }
1683 if (prev != bfqq->next_rq)
1684 bfq_updated_next_req(bfqd, bfqq);
1685 }
1686
1687 /*
1688 * Assign jiffies to last_wr_start_finish in the following
1689 * cases:
1690 *
1691 * . if bfqq is not going to be weight-raised, because, for
1692 * non weight-raised queues, last_wr_start_finish stores the
1693 * arrival time of the last request; as of now, this piece
1694 * of information is used only for deciding whether to
1695 * weight-raise async queues
1696 *
1697 * . if bfqq is not weight-raised, because, if bfqq is now
1698 * switching to weight-raised, then last_wr_start_finish
1699 * stores the time when weight-raising starts
1700 *
1701 * . if bfqq is interactive, because, regardless of whether
1702 * bfqq is currently weight-raised, the weight-raising
1703 * period must start or restart (this case is considered
1704 * separately because it is not detected by the above
1705 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001706 *
1707 * last_wr_start_finish has to be updated also if bfqq is soft
1708 * real-time, because the weight-raising period is constantly
1709 * restarted on idle-to-busy transitions for these queues, but
1710 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1711 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001712 */
1713 if (bfqd->low_latency &&
1714 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1715 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001716}
1717
1718static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1719 struct bio *bio,
1720 struct request_queue *q)
1721{
1722 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1723
1724
1725 if (bfqq)
1726 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1727
1728 return NULL;
1729}
1730
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001731static sector_t get_sdist(sector_t last_pos, struct request *rq)
1732{
1733 if (last_pos)
1734 return abs(blk_rq_pos(rq) - last_pos);
1735
1736 return 0;
1737}
1738
Paolo Valenteaee69d72017-04-19 08:29:02 -06001739#if 0 /* Still not clear if we can do without next two functions */
1740static void bfq_activate_request(struct request_queue *q, struct request *rq)
1741{
1742 struct bfq_data *bfqd = q->elevator->elevator_data;
1743
1744 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001745}
1746
1747static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1748{
1749 struct bfq_data *bfqd = q->elevator->elevator_data;
1750
1751 bfqd->rq_in_driver--;
1752}
1753#endif
1754
1755static void bfq_remove_request(struct request_queue *q,
1756 struct request *rq)
1757{
1758 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1759 struct bfq_data *bfqd = bfqq->bfqd;
1760 const int sync = rq_is_sync(rq);
1761
1762 if (bfqq->next_rq == rq) {
1763 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1764 bfq_updated_next_req(bfqd, bfqq);
1765 }
1766
1767 if (rq->queuelist.prev != &rq->queuelist)
1768 list_del_init(&rq->queuelist);
1769 bfqq->queued[sync]--;
1770 bfqd->queued--;
1771 elv_rb_del(&bfqq->sort_list, rq);
1772
1773 elv_rqhash_del(q, rq);
1774 if (q->last_merge == rq)
1775 q->last_merge = NULL;
1776
1777 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1778 bfqq->next_rq = NULL;
1779
1780 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001781 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001782 /*
1783 * bfqq emptied. In normal operation, when
1784 * bfqq is empty, bfqq->entity.service and
1785 * bfqq->entity.budget must contain,
1786 * respectively, the service received and the
1787 * budget used last time bfqq emptied. These
1788 * facts do not hold in this case, as at least
1789 * this last removal occurred while bfqq is
1790 * not in service. To avoid inconsistencies,
1791 * reset both bfqq->entity.service and
1792 * bfqq->entity.budget, if bfqq has still a
1793 * process that may issue I/O requests to it.
1794 */
1795 bfqq->entity.budget = bfqq->entity.service = 0;
1796 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001797
1798 /*
1799 * Remove queue from request-position tree as it is empty.
1800 */
1801 if (bfqq->pos_root) {
1802 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1803 bfqq->pos_root = NULL;
1804 }
Paolo Valente05e90282017-12-20 12:38:31 +01001805 } else {
1806 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001807 }
1808
1809 if (rq->cmd_flags & REQ_META)
1810 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001811
Paolo Valenteaee69d72017-04-19 08:29:02 -06001812}
1813
1814static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1815{
1816 struct request_queue *q = hctx->queue;
1817 struct bfq_data *bfqd = q->elevator->elevator_data;
1818 struct request *free = NULL;
1819 /*
1820 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1821 * store its return value for later use, to avoid nesting
1822 * queue_lock inside the bfqd->lock. We assume that the bic
1823 * returned by bfq_bic_lookup does not go away before
1824 * bfqd->lock is taken.
1825 */
1826 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1827 bool ret;
1828
1829 spin_lock_irq(&bfqd->lock);
1830
1831 if (bic)
1832 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1833 else
1834 bfqd->bio_bfqq = NULL;
1835 bfqd->bio_bic = bic;
1836
1837 ret = blk_mq_sched_try_merge(q, bio, &free);
1838
1839 if (free)
1840 blk_mq_free_request(free);
1841 spin_unlock_irq(&bfqd->lock);
1842
1843 return ret;
1844}
1845
1846static int bfq_request_merge(struct request_queue *q, struct request **req,
1847 struct bio *bio)
1848{
1849 struct bfq_data *bfqd = q->elevator->elevator_data;
1850 struct request *__rq;
1851
1852 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1853 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1854 *req = __rq;
1855 return ELEVATOR_FRONT_MERGE;
1856 }
1857
1858 return ELEVATOR_NO_MERGE;
1859}
1860
Paolo Valente18e5a572018-05-04 19:17:01 +02001861static struct bfq_queue *bfq_init_rq(struct request *rq);
1862
Paolo Valenteaee69d72017-04-19 08:29:02 -06001863static void bfq_request_merged(struct request_queue *q, struct request *req,
1864 enum elv_merge type)
1865{
1866 if (type == ELEVATOR_FRONT_MERGE &&
1867 rb_prev(&req->rb_node) &&
1868 blk_rq_pos(req) <
1869 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1870 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02001871 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001872 struct bfq_data *bfqd = bfqq->bfqd;
1873 struct request *prev, *next_rq;
1874
1875 /* Reposition request in its sort_list */
1876 elv_rb_del(&bfqq->sort_list, req);
1877 elv_rb_add(&bfqq->sort_list, req);
1878
1879 /* Choose next request to be served for bfqq */
1880 prev = bfqq->next_rq;
1881 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1882 bfqd->last_position);
1883 bfqq->next_rq = next_rq;
1884 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02001885 * If next_rq changes, update both the queue's budget to
1886 * fit the new request and the queue's position in its
1887 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001888 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02001889 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001890 bfq_updated_next_req(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001891 bfq_pos_tree_add_move(bfqd, bfqq);
1892 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06001893 }
1894}
1895
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001896/*
1897 * This function is called to notify the scheduler that the requests
1898 * rq and 'next' have been merged, with 'next' going away. BFQ
1899 * exploits this hook to address the following issue: if 'next' has a
1900 * fifo_time lower that rq, then the fifo_time of rq must be set to
1901 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001902 *
1903 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1904 * on that rq is picked from the hash table q->elevator->hash, which,
1905 * in its turn, is filled only with I/O requests present in
1906 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1907 * the function that fills this hash table (elv_rqhash_add) is called
1908 * only by bfq_insert_request.
1909 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001910static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1911 struct request *next)
1912{
Paolo Valente18e5a572018-05-04 19:17:01 +02001913 struct bfq_queue *bfqq = bfq_init_rq(rq),
1914 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001915
Paolo Valenteaee69d72017-04-19 08:29:02 -06001916 /*
1917 * If next and rq belong to the same bfq_queue and next is older
1918 * than rq, then reposition rq in the fifo (by substituting next
1919 * with rq). Otherwise, if next and rq belong to different
1920 * bfq_queues, never reposition rq: in fact, we would have to
1921 * reposition it with respect to next's position in its own fifo,
1922 * which would most certainly be too expensive with respect to
1923 * the benefits.
1924 */
1925 if (bfqq == next_bfqq &&
1926 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1927 next->fifo_time < rq->fifo_time) {
1928 list_del_init(&rq->queuelist);
1929 list_replace_init(&next->queuelist, &rq->queuelist);
1930 rq->fifo_time = next->fifo_time;
1931 }
1932
1933 if (bfqq->next_rq == next)
1934 bfqq->next_rq = rq;
1935
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001936 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001937}
1938
Paolo Valente44e44a12017-04-12 18:23:12 +02001939/* Must be called with bfqq != NULL */
1940static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1941{
Paolo Valentecfd69712017-04-12 18:23:15 +02001942 if (bfq_bfqq_busy(bfqq))
1943 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02001944 bfqq->wr_coeff = 1;
1945 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001946 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02001947 /*
1948 * Trigger a weight change on the next invocation of
1949 * __bfq_entity_update_weight_prio.
1950 */
1951 bfqq->entity.prio_changed = 1;
1952}
1953
Paolo Valenteea25da42017-04-19 08:48:24 -06001954void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1955 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02001956{
1957 int i, j;
1958
1959 for (i = 0; i < 2; i++)
1960 for (j = 0; j < IOPRIO_BE_NR; j++)
1961 if (bfqg->async_bfqq[i][j])
1962 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1963 if (bfqg->async_idle_bfqq)
1964 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1965}
1966
1967static void bfq_end_wr(struct bfq_data *bfqd)
1968{
1969 struct bfq_queue *bfqq;
1970
1971 spin_lock_irq(&bfqd->lock);
1972
1973 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1974 bfq_bfqq_end_wr(bfqq);
1975 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1976 bfq_bfqq_end_wr(bfqq);
1977 bfq_end_wr_async(bfqd);
1978
1979 spin_unlock_irq(&bfqd->lock);
1980}
1981
Arianna Avanzini36eca892017-04-12 18:23:16 +02001982static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1983{
1984 if (request)
1985 return blk_rq_pos(io_struct);
1986 else
1987 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1988}
1989
1990static int bfq_rq_close_to_sector(void *io_struct, bool request,
1991 sector_t sector)
1992{
1993 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1994 BFQQ_CLOSE_THR;
1995}
1996
1997static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1998 struct bfq_queue *bfqq,
1999 sector_t sector)
2000{
2001 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2002 struct rb_node *parent, *node;
2003 struct bfq_queue *__bfqq;
2004
2005 if (RB_EMPTY_ROOT(root))
2006 return NULL;
2007
2008 /*
2009 * First, if we find a request starting at the end of the last
2010 * request, choose it.
2011 */
2012 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2013 if (__bfqq)
2014 return __bfqq;
2015
2016 /*
2017 * If the exact sector wasn't found, the parent of the NULL leaf
2018 * will contain the closest sector (rq_pos_tree sorted by
2019 * next_request position).
2020 */
2021 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2022 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2023 return __bfqq;
2024
2025 if (blk_rq_pos(__bfqq->next_rq) < sector)
2026 node = rb_next(&__bfqq->pos_node);
2027 else
2028 node = rb_prev(&__bfqq->pos_node);
2029 if (!node)
2030 return NULL;
2031
2032 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2033 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2034 return __bfqq;
2035
2036 return NULL;
2037}
2038
2039static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2040 struct bfq_queue *cur_bfqq,
2041 sector_t sector)
2042{
2043 struct bfq_queue *bfqq;
2044
2045 /*
2046 * We shall notice if some of the queues are cooperating,
2047 * e.g., working closely on the same area of the device. In
2048 * that case, we can group them together and: 1) don't waste
2049 * time idling, and 2) serve the union of their requests in
2050 * the best possible order for throughput.
2051 */
2052 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2053 if (!bfqq || bfqq == cur_bfqq)
2054 return NULL;
2055
2056 return bfqq;
2057}
2058
2059static struct bfq_queue *
2060bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2061{
2062 int process_refs, new_process_refs;
2063 struct bfq_queue *__bfqq;
2064
2065 /*
2066 * If there are no process references on the new_bfqq, then it is
2067 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2068 * may have dropped their last reference (not just their last process
2069 * reference).
2070 */
2071 if (!bfqq_process_refs(new_bfqq))
2072 return NULL;
2073
2074 /* Avoid a circular list and skip interim queue merges. */
2075 while ((__bfqq = new_bfqq->new_bfqq)) {
2076 if (__bfqq == bfqq)
2077 return NULL;
2078 new_bfqq = __bfqq;
2079 }
2080
2081 process_refs = bfqq_process_refs(bfqq);
2082 new_process_refs = bfqq_process_refs(new_bfqq);
2083 /*
2084 * If the process for the bfqq has gone away, there is no
2085 * sense in merging the queues.
2086 */
2087 if (process_refs == 0 || new_process_refs == 0)
2088 return NULL;
2089
2090 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2091 new_bfqq->pid);
2092
2093 /*
2094 * Merging is just a redirection: the requests of the process
2095 * owning one of the two queues are redirected to the other queue.
2096 * The latter queue, in its turn, is set as shared if this is the
2097 * first time that the requests of some process are redirected to
2098 * it.
2099 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002100 * We redirect bfqq to new_bfqq and not the opposite, because
2101 * we are in the context of the process owning bfqq, thus we
2102 * have the io_cq of this process. So we can immediately
2103 * configure this io_cq to redirect the requests of the
2104 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2105 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002106 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002107 * Anyway, even in case new_bfqq coincides with the in-service
2108 * queue, redirecting requests the in-service queue is the
2109 * best option, as we feed the in-service queue with new
2110 * requests close to the last request served and, by doing so,
2111 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002112 */
2113 bfqq->new_bfqq = new_bfqq;
2114 new_bfqq->ref += process_refs;
2115 return new_bfqq;
2116}
2117
2118static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2119 struct bfq_queue *new_bfqq)
2120{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002121 if (bfq_too_late_for_merging(new_bfqq))
2122 return false;
2123
Arianna Avanzini36eca892017-04-12 18:23:16 +02002124 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2125 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2126 return false;
2127
2128 /*
2129 * If either of the queues has already been detected as seeky,
2130 * then merging it with the other queue is unlikely to lead to
2131 * sequential I/O.
2132 */
2133 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2134 return false;
2135
2136 /*
2137 * Interleaved I/O is known to be done by (some) applications
2138 * only for reads, so it does not make sense to merge async
2139 * queues.
2140 */
2141 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2142 return false;
2143
2144 return true;
2145}
2146
2147/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002148 * Attempt to schedule a merge of bfqq with the currently in-service
2149 * queue or with a close queue among the scheduled queues. Return
2150 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2151 * structure otherwise.
2152 *
2153 * The OOM queue is not allowed to participate to cooperation: in fact, since
2154 * the requests temporarily redirected to the OOM queue could be redirected
2155 * again to dedicated queues at any time, the state needed to correctly
2156 * handle merging with the OOM queue would be quite complex and expensive
2157 * to maintain. Besides, in such a critical condition as an out of memory,
2158 * the benefits of queue merging may be little relevant, or even negligible.
2159 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002160 * WARNING: queue merging may impair fairness among non-weight raised
2161 * queues, for at least two reasons: 1) the original weight of a
2162 * merged queue may change during the merged state, 2) even being the
2163 * weight the same, a merged queue may be bloated with many more
2164 * requests than the ones produced by its originally-associated
2165 * process.
2166 */
2167static struct bfq_queue *
2168bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2169 void *io_struct, bool request)
2170{
2171 struct bfq_queue *in_service_bfqq, *new_bfqq;
2172
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002173 /*
2174 * Prevent bfqq from being merged if it has been created too
2175 * long ago. The idea is that true cooperating processes, and
2176 * thus their associated bfq_queues, are supposed to be
2177 * created shortly after each other. This is the case, e.g.,
2178 * for KVM/QEMU and dump I/O threads. Basing on this
2179 * assumption, the following filtering greatly reduces the
2180 * probability that two non-cooperating processes, which just
2181 * happen to do close I/O for some short time interval, have
2182 * their queues merged by mistake.
2183 */
2184 if (bfq_too_late_for_merging(bfqq))
2185 return NULL;
2186
Arianna Avanzini36eca892017-04-12 18:23:16 +02002187 if (bfqq->new_bfqq)
2188 return bfqq->new_bfqq;
2189
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002190 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002191 return NULL;
2192
2193 /* If there is only one backlogged queue, don't search. */
2194 if (bfqd->busy_queues == 1)
2195 return NULL;
2196
2197 in_service_bfqq = bfqd->in_service_queue;
2198
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002199 if (in_service_bfqq && in_service_bfqq != bfqq &&
2200 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2201 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002202 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2203 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2204 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2205 if (new_bfqq)
2206 return new_bfqq;
2207 }
2208 /*
2209 * Check whether there is a cooperator among currently scheduled
2210 * queues. The only thing we need is that the bio/request is not
2211 * NULL, as we need it to establish whether a cooperator exists.
2212 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002213 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2214 bfq_io_struct_pos(io_struct, request));
2215
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002216 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002217 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2218 return bfq_setup_merge(bfqq, new_bfqq);
2219
2220 return NULL;
2221}
2222
2223static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2224{
2225 struct bfq_io_cq *bic = bfqq->bic;
2226
2227 /*
2228 * If !bfqq->bic, the queue is already shared or its requests
2229 * have already been redirected to a shared queue; both idle window
2230 * and weight raising state have already been saved. Do nothing.
2231 */
2232 if (!bic)
2233 return;
2234
2235 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002236 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002237 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002238 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2239 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002240 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002241 !bfq_bfqq_in_large_burst(bfqq) &&
2242 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002243 /*
2244 * bfqq being merged right after being created: bfqq
2245 * would have deserved interactive weight raising, but
2246 * did not make it to be set in a weight-raised state,
2247 * because of this early merge. Store directly the
2248 * weight-raising state that would have been assigned
2249 * to bfqq, so that to avoid that bfqq unjustly fails
2250 * to enjoy weight raising if split soon.
2251 */
2252 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2253 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2254 bic->saved_last_wr_start_finish = jiffies;
2255 } else {
2256 bic->saved_wr_coeff = bfqq->wr_coeff;
2257 bic->saved_wr_start_at_switch_to_srt =
2258 bfqq->wr_start_at_switch_to_srt;
2259 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2260 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2261 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002262}
2263
Arianna Avanzini36eca892017-04-12 18:23:16 +02002264static void
2265bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2266 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2267{
2268 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2269 (unsigned long)new_bfqq->pid);
2270 /* Save weight raising and idle window of the merged queues */
2271 bfq_bfqq_save_state(bfqq);
2272 bfq_bfqq_save_state(new_bfqq);
2273 if (bfq_bfqq_IO_bound(bfqq))
2274 bfq_mark_bfqq_IO_bound(new_bfqq);
2275 bfq_clear_bfqq_IO_bound(bfqq);
2276
2277 /*
2278 * If bfqq is weight-raised, then let new_bfqq inherit
2279 * weight-raising. To reduce false positives, neglect the case
2280 * where bfqq has just been created, but has not yet made it
2281 * to be weight-raised (which may happen because EQM may merge
2282 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002283 * time for bfqq). Handling this case would however be very
2284 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002285 */
2286 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2287 new_bfqq->wr_coeff = bfqq->wr_coeff;
2288 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2289 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2290 new_bfqq->wr_start_at_switch_to_srt =
2291 bfqq->wr_start_at_switch_to_srt;
2292 if (bfq_bfqq_busy(new_bfqq))
2293 bfqd->wr_busy_queues++;
2294 new_bfqq->entity.prio_changed = 1;
2295 }
2296
2297 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2298 bfqq->wr_coeff = 1;
2299 bfqq->entity.prio_changed = 1;
2300 if (bfq_bfqq_busy(bfqq))
2301 bfqd->wr_busy_queues--;
2302 }
2303
2304 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2305 bfqd->wr_busy_queues);
2306
2307 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002308 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2309 */
2310 bic_set_bfqq(bic, new_bfqq, 1);
2311 bfq_mark_bfqq_coop(new_bfqq);
2312 /*
2313 * new_bfqq now belongs to at least two bics (it is a shared queue):
2314 * set new_bfqq->bic to NULL. bfqq either:
2315 * - does not belong to any bic any more, and hence bfqq->bic must
2316 * be set to NULL, or
2317 * - is a queue whose owning bics have already been redirected to a
2318 * different queue, hence the queue is destined to not belong to
2319 * any bic soon and bfqq->bic is already NULL (therefore the next
2320 * assignment causes no harm).
2321 */
2322 new_bfqq->bic = NULL;
2323 bfqq->bic = NULL;
2324 /* release process reference to bfqq */
2325 bfq_put_queue(bfqq);
2326}
2327
Paolo Valenteaee69d72017-04-19 08:29:02 -06002328static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2329 struct bio *bio)
2330{
2331 struct bfq_data *bfqd = q->elevator->elevator_data;
2332 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002333 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002334
2335 /*
2336 * Disallow merge of a sync bio into an async request.
2337 */
2338 if (is_sync && !rq_is_sync(rq))
2339 return false;
2340
2341 /*
2342 * Lookup the bfqq that this bio will be queued with. Allow
2343 * merge only if rq is queued there.
2344 */
2345 if (!bfqq)
2346 return false;
2347
Arianna Avanzini36eca892017-04-12 18:23:16 +02002348 /*
2349 * We take advantage of this function to perform an early merge
2350 * of the queues of possible cooperating processes.
2351 */
2352 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2353 if (new_bfqq) {
2354 /*
2355 * bic still points to bfqq, then it has not yet been
2356 * redirected to some other bfq_queue, and a queue
2357 * merge beween bfqq and new_bfqq can be safely
2358 * fulfillled, i.e., bic can be redirected to new_bfqq
2359 * and bfqq can be put.
2360 */
2361 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2362 new_bfqq);
2363 /*
2364 * If we get here, bio will be queued into new_queue,
2365 * so use new_bfqq to decide whether bio and rq can be
2366 * merged.
2367 */
2368 bfqq = new_bfqq;
2369
2370 /*
2371 * Change also bqfd->bio_bfqq, as
2372 * bfqd->bio_bic now points to new_bfqq, and
2373 * this function may be invoked again (and then may
2374 * use again bqfd->bio_bfqq).
2375 */
2376 bfqd->bio_bfqq = bfqq;
2377 }
2378
Paolo Valenteaee69d72017-04-19 08:29:02 -06002379 return bfqq == RQ_BFQQ(rq);
2380}
2381
Paolo Valente44e44a12017-04-12 18:23:12 +02002382/*
2383 * Set the maximum time for the in-service queue to consume its
2384 * budget. This prevents seeky processes from lowering the throughput.
2385 * In practice, a time-slice service scheme is used with seeky
2386 * processes.
2387 */
2388static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2389 struct bfq_queue *bfqq)
2390{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002391 unsigned int timeout_coeff;
2392
2393 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2394 timeout_coeff = 1;
2395 else
2396 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2397
Paolo Valente44e44a12017-04-12 18:23:12 +02002398 bfqd->last_budget_start = ktime_get();
2399
2400 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002401 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002402}
2403
Paolo Valenteaee69d72017-04-19 08:29:02 -06002404static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2405 struct bfq_queue *bfqq)
2406{
2407 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002408 bfq_clear_bfqq_fifo_expire(bfqq);
2409
2410 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2411
Paolo Valente77b7dce2017-04-12 18:23:13 +02002412 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2413 bfqq->wr_coeff > 1 &&
2414 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2415 time_is_before_jiffies(bfqq->budget_timeout)) {
2416 /*
2417 * For soft real-time queues, move the start
2418 * of the weight-raising period forward by the
2419 * time the queue has not received any
2420 * service. Otherwise, a relatively long
2421 * service delay is likely to cause the
2422 * weight-raising period of the queue to end,
2423 * because of the short duration of the
2424 * weight-raising period of a soft real-time
2425 * queue. It is worth noting that this move
2426 * is not so dangerous for the other queues,
2427 * because soft real-time queues are not
2428 * greedy.
2429 *
2430 * To not add a further variable, we use the
2431 * overloaded field budget_timeout to
2432 * determine for how long the queue has not
2433 * received service, i.e., how much time has
2434 * elapsed since the queue expired. However,
2435 * this is a little imprecise, because
2436 * budget_timeout is set to jiffies if bfqq
2437 * not only expires, but also remains with no
2438 * request.
2439 */
2440 if (time_after(bfqq->budget_timeout,
2441 bfqq->last_wr_start_finish))
2442 bfqq->last_wr_start_finish +=
2443 jiffies - bfqq->budget_timeout;
2444 else
2445 bfqq->last_wr_start_finish = jiffies;
2446 }
2447
Paolo Valente44e44a12017-04-12 18:23:12 +02002448 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002449 bfq_log_bfqq(bfqd, bfqq,
2450 "set_in_service_queue, cur-budget = %d",
2451 bfqq->entity.budget);
2452 }
2453
2454 bfqd->in_service_queue = bfqq;
2455}
2456
2457/*
2458 * Get and set a new queue for service.
2459 */
2460static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2461{
2462 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2463
2464 __bfq_set_in_service_queue(bfqd, bfqq);
2465 return bfqq;
2466}
2467
Paolo Valenteaee69d72017-04-19 08:29:02 -06002468static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2469{
2470 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002471 u32 sl;
2472
Paolo Valenteaee69d72017-04-19 08:29:02 -06002473 bfq_mark_bfqq_wait_request(bfqq);
2474
2475 /*
2476 * We don't want to idle for seeks, but we do want to allow
2477 * fair distribution of slice time for a process doing back-to-back
2478 * seeks. So allow a little bit of time for him to submit a new rq.
2479 */
2480 sl = bfqd->bfq_slice_idle;
2481 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002482 * Unless the queue is being weight-raised or the scenario is
2483 * asymmetric, grant only minimum idle time if the queue
2484 * is seeky. A long idling is preserved for a weight-raised
2485 * queue, or, more in general, in an asymmetric scenario,
2486 * because a long idling is needed for guaranteeing to a queue
2487 * its reserved share of the throughput (in particular, it is
2488 * needed if the queue has a higher weight than some other
2489 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002490 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002491 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2492 bfq_symmetric_scenario(bfqd))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002493 sl = min_t(u64, sl, BFQ_MIN_TT);
2494
2495 bfqd->last_idling_start = ktime_get();
2496 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2497 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002498 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002499}
2500
2501/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002502 * In autotuning mode, max_budget is dynamically recomputed as the
2503 * amount of sectors transferred in timeout at the estimated peak
2504 * rate. This enables BFQ to utilize a full timeslice with a full
2505 * budget, even if the in-service queue is served at peak rate. And
2506 * this maximises throughput with sequential workloads.
2507 */
2508static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2509{
2510 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2511 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2512}
2513
Paolo Valente44e44a12017-04-12 18:23:12 +02002514/*
2515 * Update parameters related to throughput and responsiveness, as a
2516 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002517 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002518 */
2519static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2520{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002521 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002522 bfqd->bfq_max_budget =
2523 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002524 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002525 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002526}
2527
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002528static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2529 struct request *rq)
2530{
2531 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2532 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2533 bfqd->peak_rate_samples = 1;
2534 bfqd->sequential_samples = 0;
2535 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2536 blk_rq_sectors(rq);
2537 } else /* no new rq dispatched, just reset the number of samples */
2538 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2539
2540 bfq_log(bfqd,
2541 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2542 bfqd->peak_rate_samples, bfqd->sequential_samples,
2543 bfqd->tot_sectors_dispatched);
2544}
2545
2546static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2547{
2548 u32 rate, weight, divisor;
2549
2550 /*
2551 * For the convergence property to hold (see comments on
2552 * bfq_update_peak_rate()) and for the assessment to be
2553 * reliable, a minimum number of samples must be present, and
2554 * a minimum amount of time must have elapsed. If not so, do
2555 * not compute new rate. Just reset parameters, to get ready
2556 * for a new evaluation attempt.
2557 */
2558 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2559 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2560 goto reset_computation;
2561
2562 /*
2563 * If a new request completion has occurred after last
2564 * dispatch, then, to approximate the rate at which requests
2565 * have been served by the device, it is more precise to
2566 * extend the observation interval to the last completion.
2567 */
2568 bfqd->delta_from_first =
2569 max_t(u64, bfqd->delta_from_first,
2570 bfqd->last_completion - bfqd->first_dispatch);
2571
2572 /*
2573 * Rate computed in sects/usec, and not sects/nsec, for
2574 * precision issues.
2575 */
2576 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2577 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2578
2579 /*
2580 * Peak rate not updated if:
2581 * - the percentage of sequential dispatches is below 3/4 of the
2582 * total, and rate is below the current estimated peak rate
2583 * - rate is unreasonably high (> 20M sectors/sec)
2584 */
2585 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2586 rate <= bfqd->peak_rate) ||
2587 rate > 20<<BFQ_RATE_SHIFT)
2588 goto reset_computation;
2589
2590 /*
2591 * We have to update the peak rate, at last! To this purpose,
2592 * we use a low-pass filter. We compute the smoothing constant
2593 * of the filter as a function of the 'weight' of the new
2594 * measured rate.
2595 *
2596 * As can be seen in next formulas, we define this weight as a
2597 * quantity proportional to how sequential the workload is,
2598 * and to how long the observation time interval is.
2599 *
2600 * The weight runs from 0 to 8. The maximum value of the
2601 * weight, 8, yields the minimum value for the smoothing
2602 * constant. At this minimum value for the smoothing constant,
2603 * the measured rate contributes for half of the next value of
2604 * the estimated peak rate.
2605 *
2606 * So, the first step is to compute the weight as a function
2607 * of how sequential the workload is. Note that the weight
2608 * cannot reach 9, because bfqd->sequential_samples cannot
2609 * become equal to bfqd->peak_rate_samples, which, in its
2610 * turn, holds true because bfqd->sequential_samples is not
2611 * incremented for the first sample.
2612 */
2613 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2614
2615 /*
2616 * Second step: further refine the weight as a function of the
2617 * duration of the observation interval.
2618 */
2619 weight = min_t(u32, 8,
2620 div_u64(weight * bfqd->delta_from_first,
2621 BFQ_RATE_REF_INTERVAL));
2622
2623 /*
2624 * Divisor ranging from 10, for minimum weight, to 2, for
2625 * maximum weight.
2626 */
2627 divisor = 10 - weight;
2628
2629 /*
2630 * Finally, update peak rate:
2631 *
2632 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2633 */
2634 bfqd->peak_rate *= divisor-1;
2635 bfqd->peak_rate /= divisor;
2636 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2637
2638 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002639
2640 /*
2641 * For a very slow device, bfqd->peak_rate can reach 0 (see
2642 * the minimum representable values reported in the comments
2643 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2644 * divisions by zero where bfqd->peak_rate is used as a
2645 * divisor.
2646 */
2647 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2648
Paolo Valente44e44a12017-04-12 18:23:12 +02002649 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002650
2651reset_computation:
2652 bfq_reset_rate_computation(bfqd, rq);
2653}
2654
2655/*
2656 * Update the read/write peak rate (the main quantity used for
2657 * auto-tuning, see update_thr_responsiveness_params()).
2658 *
2659 * It is not trivial to estimate the peak rate (correctly): because of
2660 * the presence of sw and hw queues between the scheduler and the
2661 * device components that finally serve I/O requests, it is hard to
2662 * say exactly when a given dispatched request is served inside the
2663 * device, and for how long. As a consequence, it is hard to know
2664 * precisely at what rate a given set of requests is actually served
2665 * by the device.
2666 *
2667 * On the opposite end, the dispatch time of any request is trivially
2668 * available, and, from this piece of information, the "dispatch rate"
2669 * of requests can be immediately computed. So, the idea in the next
2670 * function is to use what is known, namely request dispatch times
2671 * (plus, when useful, request completion times), to estimate what is
2672 * unknown, namely in-device request service rate.
2673 *
2674 * The main issue is that, because of the above facts, the rate at
2675 * which a certain set of requests is dispatched over a certain time
2676 * interval can vary greatly with respect to the rate at which the
2677 * same requests are then served. But, since the size of any
2678 * intermediate queue is limited, and the service scheme is lossless
2679 * (no request is silently dropped), the following obvious convergence
2680 * property holds: the number of requests dispatched MUST become
2681 * closer and closer to the number of requests completed as the
2682 * observation interval grows. This is the key property used in
2683 * the next function to estimate the peak service rate as a function
2684 * of the observed dispatch rate. The function assumes to be invoked
2685 * on every request dispatch.
2686 */
2687static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2688{
2689 u64 now_ns = ktime_get_ns();
2690
2691 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2692 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2693 bfqd->peak_rate_samples);
2694 bfq_reset_rate_computation(bfqd, rq);
2695 goto update_last_values; /* will add one sample */
2696 }
2697
2698 /*
2699 * Device idle for very long: the observation interval lasting
2700 * up to this dispatch cannot be a valid observation interval
2701 * for computing a new peak rate (similarly to the late-
2702 * completion event in bfq_completed_request()). Go to
2703 * update_rate_and_reset to have the following three steps
2704 * taken:
2705 * - close the observation interval at the last (previous)
2706 * request dispatch or completion
2707 * - compute rate, if possible, for that observation interval
2708 * - start a new observation interval with this dispatch
2709 */
2710 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2711 bfqd->rq_in_driver == 0)
2712 goto update_rate_and_reset;
2713
2714 /* Update sampling information */
2715 bfqd->peak_rate_samples++;
2716
2717 if ((bfqd->rq_in_driver > 0 ||
2718 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2719 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2720 bfqd->sequential_samples++;
2721
2722 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2723
2724 /* Reset max observed rq size every 32 dispatches */
2725 if (likely(bfqd->peak_rate_samples % 32))
2726 bfqd->last_rq_max_size =
2727 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2728 else
2729 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2730
2731 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2732
2733 /* Target observation interval not yet reached, go on sampling */
2734 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2735 goto update_last_values;
2736
2737update_rate_and_reset:
2738 bfq_update_rate_reset(bfqd, rq);
2739update_last_values:
2740 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2741 bfqd->last_dispatch = now_ns;
2742}
2743
2744/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002745 * Remove request from internal lists.
2746 */
2747static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2748{
2749 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2750
2751 /*
2752 * For consistency, the next instruction should have been
2753 * executed after removing the request from the queue and
2754 * dispatching it. We execute instead this instruction before
2755 * bfq_remove_request() (and hence introduce a temporary
2756 * inconsistency), for efficiency. In fact, should this
2757 * dispatch occur for a non in-service bfqq, this anticipated
2758 * increment prevents two counters related to bfqq->dispatched
2759 * from risking to be, first, uselessly decremented, and then
2760 * incremented again when the (new) value of bfqq->dispatched
2761 * happens to be taken into account.
2762 */
2763 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002764 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002765
2766 bfq_remove_request(q, rq);
2767}
2768
2769static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2770{
Arianna Avanzini36eca892017-04-12 18:23:16 +02002771 /*
2772 * If this bfqq is shared between multiple processes, check
2773 * to make sure that those processes are still issuing I/Os
2774 * within the mean seek distance. If not, it may be time to
2775 * break the queues apart again.
2776 */
2777 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2778 bfq_mark_bfqq_split_coop(bfqq);
2779
Paolo Valente44e44a12017-04-12 18:23:12 +02002780 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2781 if (bfqq->dispatched == 0)
2782 /*
2783 * Overloading budget_timeout field to store
2784 * the time at which the queue remains with no
2785 * backlog and no outstanding request; used by
2786 * the weight-raising mechanism.
2787 */
2788 bfqq->budget_timeout = jiffies;
2789
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002790 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002791 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02002792 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002793 /*
2794 * Resort priority tree of potential close cooperators.
2795 */
2796 bfq_pos_tree_add_move(bfqd, bfqq);
2797 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002798
2799 /*
2800 * All in-service entities must have been properly deactivated
2801 * or requeued before executing the next function, which
2802 * resets all in-service entites as no more in service.
2803 */
2804 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002805}
2806
2807/**
2808 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2809 * @bfqd: device data.
2810 * @bfqq: queue to update.
2811 * @reason: reason for expiration.
2812 *
2813 * Handle the feedback on @bfqq budget at queue expiration.
2814 * See the body for detailed comments.
2815 */
2816static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2817 struct bfq_queue *bfqq,
2818 enum bfqq_expiration reason)
2819{
2820 struct request *next_rq;
2821 int budget, min_budget;
2822
Paolo Valenteaee69d72017-04-19 08:29:02 -06002823 min_budget = bfq_min_budget(bfqd);
2824
Paolo Valente44e44a12017-04-12 18:23:12 +02002825 if (bfqq->wr_coeff == 1)
2826 budget = bfqq->max_budget;
2827 else /*
2828 * Use a constant, low budget for weight-raised queues,
2829 * to help achieve a low latency. Keep it slightly higher
2830 * than the minimum possible budget, to cause a little
2831 * bit fewer expirations.
2832 */
2833 budget = 2 * min_budget;
2834
Paolo Valenteaee69d72017-04-19 08:29:02 -06002835 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2836 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2837 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2838 budget, bfq_min_budget(bfqd));
2839 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2840 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2841
Paolo Valente44e44a12017-04-12 18:23:12 +02002842 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002843 switch (reason) {
2844 /*
2845 * Caveat: in all the following cases we trade latency
2846 * for throughput.
2847 */
2848 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02002849 /*
2850 * This is the only case where we may reduce
2851 * the budget: if there is no request of the
2852 * process still waiting for completion, then
2853 * we assume (tentatively) that the timer has
2854 * expired because the batch of requests of
2855 * the process could have been served with a
2856 * smaller budget. Hence, betting that
2857 * process will behave in the same way when it
2858 * becomes backlogged again, we reduce its
2859 * next budget. As long as we guess right,
2860 * this budget cut reduces the latency
2861 * experienced by the process.
2862 *
2863 * However, if there are still outstanding
2864 * requests, then the process may have not yet
2865 * issued its next request just because it is
2866 * still waiting for the completion of some of
2867 * the still outstanding ones. So in this
2868 * subcase we do not reduce its budget, on the
2869 * contrary we increase it to possibly boost
2870 * the throughput, as discussed in the
2871 * comments to the BUDGET_TIMEOUT case.
2872 */
2873 if (bfqq->dispatched > 0) /* still outstanding reqs */
2874 budget = min(budget * 2, bfqd->bfq_max_budget);
2875 else {
2876 if (budget > 5 * min_budget)
2877 budget -= 4 * min_budget;
2878 else
2879 budget = min_budget;
2880 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002881 break;
2882 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02002883 /*
2884 * We double the budget here because it gives
2885 * the chance to boost the throughput if this
2886 * is not a seeky process (and has bumped into
2887 * this timeout because of, e.g., ZBR).
2888 */
2889 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002890 break;
2891 case BFQQE_BUDGET_EXHAUSTED:
2892 /*
2893 * The process still has backlog, and did not
2894 * let either the budget timeout or the disk
2895 * idling timeout expire. Hence it is not
2896 * seeky, has a short thinktime and may be
2897 * happy with a higher budget too. So
2898 * definitely increase the budget of this good
2899 * candidate to boost the disk throughput.
2900 */
Paolo Valente54b60452017-04-12 18:23:09 +02002901 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002902 break;
2903 case BFQQE_NO_MORE_REQUESTS:
2904 /*
2905 * For queues that expire for this reason, it
2906 * is particularly important to keep the
2907 * budget close to the actual service they
2908 * need. Doing so reduces the timestamp
2909 * misalignment problem described in the
2910 * comments in the body of
2911 * __bfq_activate_entity. In fact, suppose
2912 * that a queue systematically expires for
2913 * BFQQE_NO_MORE_REQUESTS and presents a
2914 * new request in time to enjoy timestamp
2915 * back-shifting. The larger the budget of the
2916 * queue is with respect to the service the
2917 * queue actually requests in each service
2918 * slot, the more times the queue can be
2919 * reactivated with the same virtual finish
2920 * time. It follows that, even if this finish
2921 * time is pushed to the system virtual time
2922 * to reduce the consequent timestamp
2923 * misalignment, the queue unjustly enjoys for
2924 * many re-activations a lower finish time
2925 * than all newly activated queues.
2926 *
2927 * The service needed by bfqq is measured
2928 * quite precisely by bfqq->entity.service.
2929 * Since bfqq does not enjoy device idling,
2930 * bfqq->entity.service is equal to the number
2931 * of sectors that the process associated with
2932 * bfqq requested to read/write before waiting
2933 * for request completions, or blocking for
2934 * other reasons.
2935 */
2936 budget = max_t(int, bfqq->entity.service, min_budget);
2937 break;
2938 default:
2939 return;
2940 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002941 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002942 /*
2943 * Async queues get always the maximum possible
2944 * budget, as for them we do not care about latency
2945 * (in addition, their ability to dispatch is limited
2946 * by the charging factor).
2947 */
2948 budget = bfqd->bfq_max_budget;
2949 }
2950
2951 bfqq->max_budget = budget;
2952
2953 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2954 !bfqd->bfq_user_max_budget)
2955 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2956
2957 /*
2958 * If there is still backlog, then assign a new budget, making
2959 * sure that it is large enough for the next request. Since
2960 * the finish time of bfqq must be kept in sync with the
2961 * budget, be sure to call __bfq_bfqq_expire() *after* this
2962 * update.
2963 *
2964 * If there is no backlog, then no need to update the budget;
2965 * it will be updated on the arrival of a new request.
2966 */
2967 next_rq = bfqq->next_rq;
2968 if (next_rq)
2969 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2970 bfq_serv_to_charge(next_rq, bfqq));
2971
2972 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2973 next_rq ? blk_rq_sectors(next_rq) : 0,
2974 bfqq->entity.budget);
2975}
2976
Paolo Valenteaee69d72017-04-19 08:29:02 -06002977/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002978 * Return true if the process associated with bfqq is "slow". The slow
2979 * flag is used, in addition to the budget timeout, to reduce the
2980 * amount of service provided to seeky processes, and thus reduce
2981 * their chances to lower the throughput. More details in the comments
2982 * on the function bfq_bfqq_expire().
2983 *
2984 * An important observation is in order: as discussed in the comments
2985 * on the function bfq_update_peak_rate(), with devices with internal
2986 * queues, it is hard if ever possible to know when and for how long
2987 * an I/O request is processed by the device (apart from the trivial
2988 * I/O pattern where a new request is dispatched only after the
2989 * previous one has been completed). This makes it hard to evaluate
2990 * the real rate at which the I/O requests of each bfq_queue are
2991 * served. In fact, for an I/O scheduler like BFQ, serving a
2992 * bfq_queue means just dispatching its requests during its service
2993 * slot (i.e., until the budget of the queue is exhausted, or the
2994 * queue remains idle, or, finally, a timeout fires). But, during the
2995 * service slot of a bfq_queue, around 100 ms at most, the device may
2996 * be even still processing requests of bfq_queues served in previous
2997 * service slots. On the opposite end, the requests of the in-service
2998 * bfq_queue may be completed after the service slot of the queue
2999 * finishes.
3000 *
3001 * Anyway, unless more sophisticated solutions are used
3002 * (where possible), the sum of the sizes of the requests dispatched
3003 * during the service slot of a bfq_queue is probably the only
3004 * approximation available for the service received by the bfq_queue
3005 * during its service slot. And this sum is the quantity used in this
3006 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003007 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003008static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3009 bool compensate, enum bfqq_expiration reason,
3010 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003011{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003012 ktime_t delta_ktime;
3013 u32 delta_usecs;
3014 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003015
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003016 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003017 return false;
3018
3019 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003020 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003021 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003022 delta_ktime = ktime_get();
3023 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3024 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003025
3026 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003027 if (delta_usecs < 1000) {
3028 if (blk_queue_nonrot(bfqd->queue))
3029 /*
3030 * give same worst-case guarantees as idling
3031 * for seeky
3032 */
3033 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3034 else /* charge at least one seek */
3035 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003036
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003037 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003038 }
3039
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003040 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003041
3042 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003043 * Use only long (> 20ms) intervals to filter out excessive
3044 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003045 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003046 if (delta_usecs > 20000) {
3047 /*
3048 * Caveat for rotational devices: processes doing I/O
3049 * in the slower disk zones tend to be slow(er) even
3050 * if not seeky. In this respect, the estimated peak
3051 * rate is likely to be an average over the disk
3052 * surface. Accordingly, to not be too harsh with
3053 * unlucky processes, a process is deemed slow only if
3054 * its rate has been lower than half of the estimated
3055 * peak rate.
3056 */
3057 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3058 }
3059
3060 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3061
3062 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003063}
3064
3065/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003066 * To be deemed as soft real-time, an application must meet two
3067 * requirements. First, the application must not require an average
3068 * bandwidth higher than the approximate bandwidth required to playback or
3069 * record a compressed high-definition video.
3070 * The next function is invoked on the completion of the last request of a
3071 * batch, to compute the next-start time instant, soft_rt_next_start, such
3072 * that, if the next request of the application does not arrive before
3073 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3074 *
3075 * The second requirement is that the request pattern of the application is
3076 * isochronous, i.e., that, after issuing a request or a batch of requests,
3077 * the application stops issuing new requests until all its pending requests
3078 * have been completed. After that, the application may issue a new batch,
3079 * and so on.
3080 * For this reason the next function is invoked to compute
3081 * soft_rt_next_start only for applications that meet this requirement,
3082 * whereas soft_rt_next_start is set to infinity for applications that do
3083 * not.
3084 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003085 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3086 * happen to meet, occasionally or systematically, both the above
3087 * bandwidth and isochrony requirements. This may happen at least in
3088 * the following circumstances. First, if the CPU load is high. The
3089 * application may stop issuing requests while the CPUs are busy
3090 * serving other processes, then restart, then stop again for a while,
3091 * and so on. The other circumstances are related to the storage
3092 * device: the storage device is highly loaded or reaches a low-enough
3093 * throughput with the I/O of the application (e.g., because the I/O
3094 * is random and/or the device is slow). In all these cases, the
3095 * I/O of the application may be simply slowed down enough to meet
3096 * the bandwidth and isochrony requirements. To reduce the probability
3097 * that greedy applications are deemed as soft real-time in these
3098 * corner cases, a further rule is used in the computation of
3099 * soft_rt_next_start: the return value of this function is forced to
3100 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003101 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003102 * (a) Current time plus: (1) the maximum time for which the arrival
3103 * of a request is waited for when a sync queue becomes idle,
3104 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3105 * postpone for a moment the reason for adding a few extra
3106 * jiffies; we get back to it after next item (b). Lower-bounding
3107 * the return value of this function with the current time plus
3108 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3109 * because the latter issue their next request as soon as possible
3110 * after the last one has been completed. In contrast, a soft
3111 * real-time application spends some time processing data, after a
3112 * batch of its requests has been completed.
3113 *
3114 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3115 * above, greedy applications may happen to meet both the
3116 * bandwidth and isochrony requirements under heavy CPU or
3117 * storage-device load. In more detail, in these scenarios, these
3118 * applications happen, only for limited time periods, to do I/O
3119 * slowly enough to meet all the requirements described so far,
3120 * including the filtering in above item (a). These slow-speed
3121 * time intervals are usually interspersed between other time
3122 * intervals during which these applications do I/O at a very high
3123 * speed. Fortunately, exactly because of the high speed of the
3124 * I/O in the high-speed intervals, the values returned by this
3125 * function happen to be so high, near the end of any such
3126 * high-speed interval, to be likely to fall *after* the end of
3127 * the low-speed time interval that follows. These high values are
3128 * stored in bfqq->soft_rt_next_start after each invocation of
3129 * this function. As a consequence, if the last value of
3130 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3131 * next value that this function may return, then, from the very
3132 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3133 * likely to be constantly kept so high that any I/O request
3134 * issued during the low-speed interval is considered as arriving
3135 * to soon for the application to be deemed as soft
3136 * real-time. Then, in the high-speed interval that follows, the
3137 * application will not be deemed as soft real-time, just because
3138 * it will do I/O at a high speed. And so on.
3139 *
3140 * Getting back to the filtering in item (a), in the following two
3141 * cases this filtering might be easily passed by a greedy
3142 * application, if the reference quantity was just
3143 * bfqd->bfq_slice_idle:
3144 * 1) HZ is so low that the duration of a jiffy is comparable to or
3145 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3146 * devices with HZ=100. The time granularity may be so coarse
3147 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3148 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003149 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3150 * for a while, then suddenly 'jump' by several units to recover the lost
3151 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003152 * To address this issue, in the filtering in (a) we do not use as a
3153 * reference time interval just bfqd->bfq_slice_idle, but
3154 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3155 * minimum number of jiffies for which the filter seems to be quite
3156 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003157 */
3158static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3159 struct bfq_queue *bfqq)
3160{
Paolo Valentea34b0242017-12-15 07:23:12 +01003161 return max3(bfqq->soft_rt_next_start,
3162 bfqq->last_idle_bklogged +
3163 HZ * bfqq->service_from_backlogged /
3164 bfqd->bfq_wr_max_softrt_rate,
3165 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003166}
3167
Paolo Valenteaee69d72017-04-19 08:29:02 -06003168/**
3169 * bfq_bfqq_expire - expire a queue.
3170 * @bfqd: device owning the queue.
3171 * @bfqq: the queue to expire.
3172 * @compensate: if true, compensate for the time spent idling.
3173 * @reason: the reason causing the expiration.
3174 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003175 * If the process associated with bfqq does slow I/O (e.g., because it
3176 * issues random requests), we charge bfqq with the time it has been
3177 * in service instead of the service it has received (see
3178 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3179 * a consequence, bfqq will typically get higher timestamps upon
3180 * reactivation, and hence it will be rescheduled as if it had
3181 * received more service than what it has actually received. In the
3182 * end, bfqq receives less service in proportion to how slowly its
3183 * associated process consumes its budgets (and hence how seriously it
3184 * tends to lower the throughput). In addition, this time-charging
3185 * strategy guarantees time fairness among slow processes. In
3186 * contrast, if the process associated with bfqq is not slow, we
3187 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003188 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003189 * Charging time to the first type of queues and the exact service to
3190 * the other has the effect of using the WF2Q+ policy to schedule the
3191 * former on a timeslice basis, without violating service domain
3192 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003193 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003194void bfq_bfqq_expire(struct bfq_data *bfqd,
3195 struct bfq_queue *bfqq,
3196 bool compensate,
3197 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003198{
3199 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003200 unsigned long delta = 0;
3201 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003202 int ref;
3203
3204 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003205 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003206 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003207 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003208
3209 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003210 * As above explained, charge slow (typically seeky) and
3211 * timed-out queues with the time and not the service
3212 * received, to favor sequential workloads.
3213 *
3214 * Processes doing I/O in the slower disk zones will tend to
3215 * be slow(er) even if not seeky. Therefore, since the
3216 * estimated peak rate is actually an average over the disk
3217 * surface, these processes may timeout just for bad luck. To
3218 * avoid punishing them, do not charge time to processes that
3219 * succeeded in consuming at least 2/3 of their budget. This
3220 * allows BFQ to preserve enough elasticity to still perform
3221 * bandwidth, and not time, distribution with little unlucky
3222 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003223 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003224 if (bfqq->wr_coeff == 1 &&
3225 (slow ||
3226 (reason == BFQQE_BUDGET_TIMEOUT &&
3227 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003228 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003229
3230 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003231 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003232 bfq_clear_bfqq_IO_bound(bfqq);
3233
Paolo Valente44e44a12017-04-12 18:23:12 +02003234 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3235 bfqq->last_wr_start_finish = jiffies;
3236
Paolo Valente77b7dce2017-04-12 18:23:13 +02003237 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3238 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3239 /*
3240 * If we get here, and there are no outstanding
3241 * requests, then the request pattern is isochronous
3242 * (see the comments on the function
3243 * bfq_bfqq_softrt_next_start()). Thus we can compute
3244 * soft_rt_next_start. If, instead, the queue still
3245 * has outstanding requests, then we have to wait for
3246 * the completion of all the outstanding requests to
3247 * discover whether the request pattern is actually
3248 * isochronous.
3249 */
3250 if (bfqq->dispatched == 0)
3251 bfqq->soft_rt_next_start =
3252 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3253 else {
3254 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003255 * Schedule an update of soft_rt_next_start to when
3256 * the task may be discovered to be isochronous.
3257 */
3258 bfq_mark_bfqq_softrt_update(bfqq);
3259 }
3260 }
3261
Paolo Valenteaee69d72017-04-19 08:29:02 -06003262 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003263 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3264 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003265
3266 /*
3267 * Increase, decrease or leave budget unchanged according to
3268 * reason.
3269 */
3270 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3271 ref = bfqq->ref;
3272 __bfq_bfqq_expire(bfqd, bfqq);
3273
3274 /* mark bfqq as waiting a request only if a bic still points to it */
3275 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3276 reason != BFQQE_BUDGET_TIMEOUT &&
3277 reason != BFQQE_BUDGET_EXHAUSTED)
3278 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3279}
3280
3281/*
3282 * Budget timeout is not implemented through a dedicated timer, but
3283 * just checked on request arrivals and completions, as well as on
3284 * idle timer expirations.
3285 */
3286static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3287{
Paolo Valente44e44a12017-04-12 18:23:12 +02003288 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003289}
3290
3291/*
3292 * If we expire a queue that is actively waiting (i.e., with the
3293 * device idled) for the arrival of a new request, then we may incur
3294 * the timestamp misalignment problem described in the body of the
3295 * function __bfq_activate_entity. Hence we return true only if this
3296 * condition does not hold, or if the queue is slow enough to deserve
3297 * only to be kicked off for preserving a high throughput.
3298 */
3299static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3300{
3301 bfq_log_bfqq(bfqq->bfqd, bfqq,
3302 "may_budget_timeout: wait_request %d left %d timeout %d",
3303 bfq_bfqq_wait_request(bfqq),
3304 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3305 bfq_bfqq_budget_timeout(bfqq));
3306
3307 return (!bfq_bfqq_wait_request(bfqq) ||
3308 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3309 &&
3310 bfq_bfqq_budget_timeout(bfqq);
3311}
3312
3313/*
3314 * For a queue that becomes empty, device idling is allowed only if
Paolo Valente44e44a12017-04-12 18:23:12 +02003315 * this function returns true for the queue. As a consequence, since
3316 * device idling plays a critical role in both throughput boosting and
3317 * service guarantees, the return value of this function plays a
3318 * critical role in both these aspects as well.
3319 *
3320 * In a nutshell, this function returns true only if idling is
3321 * beneficial for throughput or, even if detrimental for throughput,
3322 * idling is however necessary to preserve service guarantees (low
3323 * latency, desired throughput distribution, ...). In particular, on
3324 * NCQ-capable devices, this function tries to return false, so as to
3325 * help keep the drives' internal queues full, whenever this helps the
3326 * device boost the throughput without causing any service-guarantee
3327 * issue.
3328 *
3329 * In more detail, the return value of this function is obtained by,
3330 * first, computing a number of boolean variables that take into
3331 * account throughput and service-guarantee issues, and, then,
3332 * combining these variables in a logical expression. Most of the
3333 * issues taken into account are not trivial. We discuss these issues
3334 * individually while introducing the variables.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003335 */
3336static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3337{
3338 struct bfq_data *bfqd = bfqq->bfqd;
Paolo Valenteedaf9422017-08-04 07:35:11 +02003339 bool rot_without_queueing =
3340 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3341 bfqq_sequential_and_IO_bound,
3342 idling_boosts_thr, idling_boosts_thr_without_issues,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003343 idling_needed_for_service_guarantees,
Paolo Valentecfd69712017-04-12 18:23:15 +02003344 asymmetric_scenario;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003345
3346 if (bfqd->strict_guarantees)
3347 return true;
3348
3349 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003350 * Idling is performed only if slice_idle > 0. In addition, we
3351 * do not idle if
3352 * (a) bfqq is async
3353 * (b) bfqq is in the idle io prio class: in this case we do
3354 * not idle because we want to minimize the bandwidth that
3355 * queues in this class can steal to higher-priority queues
3356 */
3357 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3358 bfq_class_idle(bfqq))
3359 return false;
3360
Paolo Valenteedaf9422017-08-04 07:35:11 +02003361 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3362 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3363
Paolo Valented5be3fe2017-08-04 07:35:10 +02003364 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003365 * The next variable takes into account the cases where idling
3366 * boosts the throughput.
3367 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003368 * The value of the variable is computed considering, first, that
3369 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003370 * (a) the device is not NCQ-capable and rotational, or
3371 * (b) regardless of the presence of NCQ, the device is rotational and
3372 * the request pattern for bfqq is I/O-bound and sequential, or
3373 * (c) regardless of whether it is rotational, the device is
3374 * not NCQ-capable and the request pattern for bfqq is
3375 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003376 *
3377 * Secondly, and in contrast to the above item (b), idling an
3378 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003379 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003380 * the throughput in proportion to how fast the device
3381 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003382 * above conditions (a), (b) or (c) is true, and, in
3383 * particular, happens to be false if bfqd is an NCQ-capable
3384 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003385 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003386 idling_boosts_thr = rot_without_queueing ||
3387 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3388 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003389
3390 /*
Paolo Valentecfd69712017-04-12 18:23:15 +02003391 * The value of the next variable,
3392 * idling_boosts_thr_without_issues, is equal to that of
3393 * idling_boosts_thr, unless a special case holds. In this
3394 * special case, described below, idling may cause problems to
3395 * weight-raised queues.
3396 *
3397 * When the request pool is saturated (e.g., in the presence
3398 * of write hogs), if the processes associated with
3399 * non-weight-raised queues ask for requests at a lower rate,
3400 * then processes associated with weight-raised queues have a
3401 * higher probability to get a request from the pool
3402 * immediately (or at least soon) when they need one. Thus
3403 * they have a higher probability to actually get a fraction
3404 * of the device throughput proportional to their high
3405 * weight. This is especially true with NCQ-capable drives,
3406 * which enqueue several requests in advance, and further
3407 * reorder internally-queued requests.
3408 *
3409 * For this reason, we force to false the value of
3410 * idling_boosts_thr_without_issues if there are weight-raised
3411 * busy queues. In this case, and if bfqq is not weight-raised,
3412 * this guarantees that the device is not idled for bfqq (if,
3413 * instead, bfqq is weight-raised, then idling will be
3414 * guaranteed by another variable, see below). Combined with
3415 * the timestamping rules of BFQ (see [1] for details), this
3416 * behavior causes bfqq, and hence any sync non-weight-raised
3417 * queue, to get a lower number of requests served, and thus
3418 * to ask for a lower number of requests from the request
3419 * pool, before the busy weight-raised queues get served
3420 * again. This often mitigates starvation problems in the
3421 * presence of heavy write workloads and NCQ, thereby
3422 * guaranteeing a higher application and system responsiveness
3423 * in these hostile scenarios.
3424 */
3425 idling_boosts_thr_without_issues = idling_boosts_thr &&
3426 bfqd->wr_busy_queues == 0;
3427
3428 /*
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003429 * There is then a case where idling must be performed not
3430 * for throughput concerns, but to preserve service
3431 * guarantees.
3432 *
3433 * To introduce this case, we can note that allowing the drive
3434 * to enqueue more than one request at a time, and hence
Paolo Valente44e44a12017-04-12 18:23:12 +02003435 * delegating de facto final scheduling decisions to the
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003436 * drive's internal scheduler, entails loss of control on the
Paolo Valente44e44a12017-04-12 18:23:12 +02003437 * actual request service order. In particular, the critical
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003438 * situation is when requests from different processes happen
Paolo Valente44e44a12017-04-12 18:23:12 +02003439 * to be present, at the same time, in the internal queue(s)
3440 * of the drive. In such a situation, the drive, by deciding
3441 * the service order of the internally-queued requests, does
3442 * determine also the actual throughput distribution among
3443 * these processes. But the drive typically has no notion or
3444 * concern about per-process throughput distribution, and
3445 * makes its decisions only on a per-request basis. Therefore,
3446 * the service distribution enforced by the drive's internal
3447 * scheduler is likely to coincide with the desired
3448 * device-throughput distribution only in a completely
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003449 * symmetric scenario where:
3450 * (i) each of these processes must get the same throughput as
3451 * the others;
3452 * (ii) all these processes have the same I/O pattern
3453 (either sequential or random).
3454 * In fact, in such a scenario, the drive will tend to treat
3455 * the requests of each of these processes in about the same
3456 * way as the requests of the others, and thus to provide
3457 * each of these processes with about the same throughput
3458 * (which is exactly the desired throughput distribution). In
3459 * contrast, in any asymmetric scenario, device idling is
3460 * certainly needed to guarantee that bfqq receives its
3461 * assigned fraction of the device throughput (see [1] for
3462 * details).
Paolo Valente44e44a12017-04-12 18:23:12 +02003463 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003464 * We address this issue by controlling, actually, only the
3465 * symmetry sub-condition (i), i.e., provided that
3466 * sub-condition (i) holds, idling is not performed,
3467 * regardless of whether sub-condition (ii) holds. In other
3468 * words, only if sub-condition (i) holds, then idling is
3469 * allowed, and the device tends to be prevented from queueing
3470 * many requests, possibly of several processes. The reason
3471 * for not controlling also sub-condition (ii) is that we
3472 * exploit preemption to preserve guarantees in case of
3473 * symmetric scenarios, even if (ii) does not hold, as
3474 * explained in the next two paragraphs.
Paolo Valente44e44a12017-04-12 18:23:12 +02003475 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003476 * Even if a queue, say Q, is expired when it remains idle, Q
3477 * can still preempt the new in-service queue if the next
3478 * request of Q arrives soon (see the comments on
3479 * bfq_bfqq_update_budg_for_activation). If all queues and
3480 * groups have the same weight, this form of preemption,
3481 * combined with the hole-recovery heuristic described in the
3482 * comments on function bfq_bfqq_update_budg_for_activation,
3483 * are enough to preserve a correct bandwidth distribution in
3484 * the mid term, even without idling. In fact, even if not
3485 * idling allows the internal queues of the device to contain
3486 * many requests, and thus to reorder requests, we can rather
3487 * safely assume that the internal scheduler still preserves a
3488 * minimum of mid-term fairness. The motivation for using
3489 * preemption instead of idling is that, by not idling,
3490 * service guarantees are preserved without minimally
3491 * sacrificing throughput. In other words, both a high
3492 * throughput and its desired distribution are obtained.
3493 *
3494 * More precisely, this preemption-based, idleless approach
3495 * provides fairness in terms of IOPS, and not sectors per
3496 * second. This can be seen with a simple example. Suppose
3497 * that there are two queues with the same weight, but that
3498 * the first queue receives requests of 8 sectors, while the
3499 * second queue receives requests of 1024 sectors. In
3500 * addition, suppose that each of the two queues contains at
3501 * most one request at a time, which implies that each queue
3502 * always remains idle after it is served. Finally, after
3503 * remaining idle, each queue receives very quickly a new
3504 * request. It follows that the two queues are served
3505 * alternatively, preempting each other if needed. This
3506 * implies that, although both queues have the same weight,
3507 * the queue with large requests receives a service that is
3508 * 1024/8 times as high as the service received by the other
3509 * queue.
3510 *
3511 * On the other hand, device idling is performed, and thus
3512 * pure sector-domain guarantees are provided, for the
3513 * following queues, which are likely to need stronger
3514 * throughput guarantees: weight-raised queues, and queues
3515 * with a higher weight than other queues. When such queues
3516 * are active, sub-condition (i) is false, which triggers
3517 * device idling.
3518 *
3519 * According to the above considerations, the next variable is
3520 * true (only) if sub-condition (i) holds. To compute the
3521 * value of this variable, we not only use the return value of
3522 * the function bfq_symmetric_scenario(), but also check
3523 * whether bfqq is being weight-raised, because
3524 * bfq_symmetric_scenario() does not take into account also
3525 * weight-raised queues (see comments on
3526 * bfq_weights_tree_add()).
Paolo Valente44e44a12017-04-12 18:23:12 +02003527 *
3528 * As a side note, it is worth considering that the above
3529 * device-idling countermeasures may however fail in the
3530 * following unlucky scenario: if idling is (correctly)
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003531 * disabled in a time period during which all symmetry
3532 * sub-conditions hold, and hence the device is allowed to
Paolo Valente44e44a12017-04-12 18:23:12 +02003533 * enqueue many requests, but at some later point in time some
3534 * sub-condition stops to hold, then it may become impossible
3535 * to let requests be served in the desired order until all
3536 * the requests already queued in the device have been served.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003537 */
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003538 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3539 !bfq_symmetric_scenario(bfqd);
Paolo Valente44e44a12017-04-12 18:23:12 +02003540
3541 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003542 * Finally, there is a case where maximizing throughput is the
3543 * best choice even if it may cause unfairness toward
3544 * bfqq. Such a case is when bfqq became active in a burst of
3545 * queue activations. Queues that became active during a large
3546 * burst benefit only from throughput, as discussed in the
3547 * comments on bfq_handle_burst. Thus, if bfqq became active
3548 * in a burst and not idling the device maximizes throughput,
3549 * then the device must no be idled, because not idling the
3550 * device provides bfqq and all other queues in the burst with
3551 * maximum benefit. Combining this and the above case, we can
3552 * now establish when idling is actually needed to preserve
3553 * service guarantees.
3554 */
3555 idling_needed_for_service_guarantees =
3556 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3557
3558 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003559 * We have now all the components we need to compute the
3560 * return value of the function, which is true only if idling
3561 * either boosts the throughput (without issues), or is
3562 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003563 */
Paolo Valented5be3fe2017-08-04 07:35:10 +02003564 return idling_boosts_thr_without_issues ||
3565 idling_needed_for_service_guarantees;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003566}
3567
3568/*
3569 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3570 * returns true, then:
3571 * 1) the queue must remain in service and cannot be expired, and
3572 * 2) the device must be idled to wait for the possible arrival of a new
3573 * request for the queue.
3574 * See the comments on the function bfq_bfqq_may_idle for the reasons
3575 * why performing device idling is the best choice to boost the throughput
3576 * and preserve service guarantees when bfq_bfqq_may_idle itself
3577 * returns true.
3578 */
3579static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3580{
Paolo Valented5be3fe2017-08-04 07:35:10 +02003581 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003582}
3583
3584/*
3585 * Select a queue for service. If we have a current queue in service,
3586 * check whether to continue servicing it, or retrieve and set a new one.
3587 */
3588static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3589{
3590 struct bfq_queue *bfqq;
3591 struct request *next_rq;
3592 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3593
3594 bfqq = bfqd->in_service_queue;
3595 if (!bfqq)
3596 goto new_queue;
3597
3598 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3599
Paolo Valente4420b092018-06-25 21:55:35 +02003600 /*
3601 * Do not expire bfqq for budget timeout if bfqq may be about
3602 * to enjoy device idling. The reason why, in this case, we
3603 * prevent bfqq from expiring is the same as in the comments
3604 * on the case where bfq_bfqq_must_idle() returns true, in
3605 * bfq_completed_request().
3606 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003607 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003608 !bfq_bfqq_must_idle(bfqq))
3609 goto expire;
3610
3611check_queue:
3612 /*
3613 * This loop is rarely executed more than once. Even when it
3614 * happens, it is much more convenient to re-execute this loop
3615 * than to return NULL and trigger a new dispatch to get a
3616 * request served.
3617 */
3618 next_rq = bfqq->next_rq;
3619 /*
3620 * If bfqq has requests queued and it has enough budget left to
3621 * serve them, keep the queue, otherwise expire it.
3622 */
3623 if (next_rq) {
3624 if (bfq_serv_to_charge(next_rq, bfqq) >
3625 bfq_bfqq_budget_left(bfqq)) {
3626 /*
3627 * Expire the queue for budget exhaustion,
3628 * which makes sure that the next budget is
3629 * enough to serve the next request, even if
3630 * it comes from the fifo expired path.
3631 */
3632 reason = BFQQE_BUDGET_EXHAUSTED;
3633 goto expire;
3634 } else {
3635 /*
3636 * The idle timer may be pending because we may
3637 * not disable disk idling even when a new request
3638 * arrives.
3639 */
3640 if (bfq_bfqq_wait_request(bfqq)) {
3641 /*
3642 * If we get here: 1) at least a new request
3643 * has arrived but we have not disabled the
3644 * timer because the request was too small,
3645 * 2) then the block layer has unplugged
3646 * the device, causing the dispatch to be
3647 * invoked.
3648 *
3649 * Since the device is unplugged, now the
3650 * requests are probably large enough to
3651 * provide a reasonable throughput.
3652 * So we disable idling.
3653 */
3654 bfq_clear_bfqq_wait_request(bfqq);
3655 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3656 }
3657 goto keep_queue;
3658 }
3659 }
3660
3661 /*
3662 * No requests pending. However, if the in-service queue is idling
3663 * for a new request, or has requests waiting for a completion and
3664 * may idle after their completion, then keep it anyway.
3665 */
3666 if (bfq_bfqq_wait_request(bfqq) ||
3667 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3668 bfqq = NULL;
3669 goto keep_queue;
3670 }
3671
3672 reason = BFQQE_NO_MORE_REQUESTS;
3673expire:
3674 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3675new_queue:
3676 bfqq = bfq_set_in_service_queue(bfqd);
3677 if (bfqq) {
3678 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3679 goto check_queue;
3680 }
3681keep_queue:
3682 if (bfqq)
3683 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3684 else
3685 bfq_log(bfqd, "select_queue: no queue returned");
3686
3687 return bfqq;
3688}
3689
Paolo Valente44e44a12017-04-12 18:23:12 +02003690static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3691{
3692 struct bfq_entity *entity = &bfqq->entity;
3693
3694 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3695 bfq_log_bfqq(bfqd, bfqq,
3696 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3697 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3698 jiffies_to_msecs(bfqq->wr_cur_max_time),
3699 bfqq->wr_coeff,
3700 bfqq->entity.weight, bfqq->entity.orig_weight);
3701
3702 if (entity->prio_changed)
3703 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3704
3705 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003706 * If the queue was activated in a burst, or too much
3707 * time has elapsed from the beginning of this
3708 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003709 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003710 if (bfq_bfqq_in_large_burst(bfqq))
3711 bfq_bfqq_end_wr(bfqq);
3712 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3713 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003714 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3715 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003716 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02003717 bfq_bfqq_end_wr(bfqq);
3718 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02003719 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003720 bfqq->entity.prio_changed = 1;
3721 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003722 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01003723 if (bfqq->wr_coeff > 1 &&
3724 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3725 bfqq->service_from_wr > max_service_from_wr) {
3726 /* see comments on max_service_from_wr */
3727 bfq_bfqq_end_wr(bfqq);
3728 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003729 }
Paolo Valente431b17f2017-07-03 10:00:10 +02003730 /*
3731 * To improve latency (for this or other queues), immediately
3732 * update weight both if it must be raised and if it must be
3733 * lowered. Since, entity may be on some active tree here, and
3734 * might have a pending change of its ioprio class, invoke
3735 * next function with the last parameter unset (see the
3736 * comments on the function).
3737 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003738 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02003739 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3740 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02003741}
3742
Paolo Valenteaee69d72017-04-19 08:29:02 -06003743/*
3744 * Dispatch next request from bfqq.
3745 */
3746static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3747 struct bfq_queue *bfqq)
3748{
3749 struct request *rq = bfqq->next_rq;
3750 unsigned long service_to_charge;
3751
3752 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3753
3754 bfq_bfqq_served(bfqq, service_to_charge);
3755
3756 bfq_dispatch_remove(bfqd->queue, rq);
3757
Paolo Valente44e44a12017-04-12 18:23:12 +02003758 /*
3759 * If weight raising has to terminate for bfqq, then next
3760 * function causes an immediate update of bfqq's weight,
3761 * without waiting for next activation. As a consequence, on
3762 * expiration, bfqq will be timestamped as if has never been
3763 * weight-raised during this service slot, even if it has
3764 * received part or even most of the service as a
3765 * weight-raised queue. This inflates bfqq's timestamps, which
3766 * is beneficial, as bfqq is then more willing to leave the
3767 * device immediately to possible other weight-raised queues.
3768 */
3769 bfq_update_wr_data(bfqd, bfqq);
3770
Paolo Valenteaee69d72017-04-19 08:29:02 -06003771 /*
3772 * Expire bfqq, pretending that its budget expired, if bfqq
3773 * belongs to CLASS_IDLE and other queues are waiting for
3774 * service.
3775 */
3776 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3777 goto expire;
3778
3779 return rq;
3780
3781expire:
3782 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3783 return rq;
3784}
3785
3786static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3787{
3788 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3789
3790 /*
3791 * Avoiding lock: a race on bfqd->busy_queues should cause at
3792 * most a call to dispatch for nothing
3793 */
3794 return !list_empty_careful(&bfqd->dispatch) ||
3795 bfqd->busy_queues > 0;
3796}
3797
3798static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3799{
3800 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3801 struct request *rq = NULL;
3802 struct bfq_queue *bfqq = NULL;
3803
3804 if (!list_empty(&bfqd->dispatch)) {
3805 rq = list_first_entry(&bfqd->dispatch, struct request,
3806 queuelist);
3807 list_del_init(&rq->queuelist);
3808
3809 bfqq = RQ_BFQQ(rq);
3810
3811 if (bfqq) {
3812 /*
3813 * Increment counters here, because this
3814 * dispatch does not follow the standard
3815 * dispatch flow (where counters are
3816 * incremented)
3817 */
3818 bfqq->dispatched++;
3819
3820 goto inc_in_driver_start_rq;
3821 }
3822
3823 /*
Paolo Valentea7877392018-02-07 22:19:20 +01003824 * We exploit the bfq_finish_requeue_request hook to
3825 * decrement rq_in_driver, but
3826 * bfq_finish_requeue_request will not be invoked on
3827 * this request. So, to avoid unbalance, just start
3828 * this request, without incrementing rq_in_driver. As
3829 * a negative consequence, rq_in_driver is deceptively
3830 * lower than it should be while this request is in
3831 * service. This may cause bfq_schedule_dispatch to be
3832 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003833 *
3834 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01003835 * bfq_finish_requeue_request hook, if defined, is
3836 * probably invoked also on this request. So, by
3837 * exploiting this hook, we could 1) increment
3838 * rq_in_driver here, and 2) decrement it in
3839 * bfq_finish_requeue_request. Such a solution would
3840 * let the value of the counter be always accurate,
3841 * but it would entail using an extra interface
3842 * function. This cost seems higher than the benefit,
3843 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06003844 * requests very low.
3845 */
3846 goto start_rq;
3847 }
3848
3849 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3850
3851 if (bfqd->busy_queues == 0)
3852 goto exit;
3853
3854 /*
3855 * Force device to serve one request at a time if
3856 * strict_guarantees is true. Forcing this service scheme is
3857 * currently the ONLY way to guarantee that the request
3858 * service order enforced by the scheduler is respected by a
3859 * queueing device. Otherwise the device is free even to make
3860 * some unlucky request wait for as long as the device
3861 * wishes.
3862 *
3863 * Of course, serving one request at at time may cause loss of
3864 * throughput.
3865 */
3866 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3867 goto exit;
3868
3869 bfqq = bfq_select_queue(bfqd);
3870 if (!bfqq)
3871 goto exit;
3872
3873 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3874
3875 if (rq) {
3876inc_in_driver_start_rq:
3877 bfqd->rq_in_driver++;
3878start_rq:
3879 rq->rq_flags |= RQF_STARTED;
3880 }
3881exit:
3882 return rq;
3883}
3884
Paolo Valente9b25bd02017-12-04 11:42:05 +01003885#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3886static void bfq_update_dispatch_stats(struct request_queue *q,
3887 struct request *rq,
3888 struct bfq_queue *in_serv_queue,
3889 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003890{
Paolo Valente9b25bd02017-12-04 11:42:05 +01003891 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003892
Paolo Valente24bfd192017-11-13 07:34:09 +01003893 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01003894 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01003895
3896 /*
3897 * rq and bfqq are guaranteed to exist until this function
3898 * ends, for the following reasons. First, rq can be
3899 * dispatched to the device, and then can be completed and
3900 * freed, only after this function ends. Second, rq cannot be
3901 * merged (and thus freed because of a merge) any longer,
3902 * because it has already started. Thus rq cannot be freed
3903 * before this function ends, and, since rq has a reference to
3904 * bfqq, the same guarantee holds for bfqq too.
3905 *
3906 * In addition, the following queue lock guarantees that
3907 * bfqq_group(bfqq) exists as well.
3908 */
Paolo Valente9b25bd02017-12-04 11:42:05 +01003909 spin_lock_irq(q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01003910 if (idle_timer_disabled)
3911 /*
3912 * Since the idle timer has been disabled,
3913 * in_serv_queue contained some request when
3914 * __bfq_dispatch_request was invoked above, which
3915 * implies that rq was picked exactly from
3916 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3917 * therefore guaranteed to exist because of the above
3918 * arguments.
3919 */
3920 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3921 if (bfqq) {
3922 struct bfq_group *bfqg = bfqq_group(bfqq);
3923
3924 bfqg_stats_update_avg_queue_size(bfqg);
3925 bfqg_stats_set_start_empty_time(bfqg);
3926 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3927 }
Paolo Valente9b25bd02017-12-04 11:42:05 +01003928 spin_unlock_irq(q->queue_lock);
3929}
3930#else
3931static inline void bfq_update_dispatch_stats(struct request_queue *q,
3932 struct request *rq,
3933 struct bfq_queue *in_serv_queue,
3934 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01003935#endif
3936
Paolo Valente9b25bd02017-12-04 11:42:05 +01003937static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3938{
3939 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3940 struct request *rq;
3941 struct bfq_queue *in_serv_queue;
3942 bool waiting_rq, idle_timer_disabled;
3943
3944 spin_lock_irq(&bfqd->lock);
3945
3946 in_serv_queue = bfqd->in_service_queue;
3947 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3948
3949 rq = __bfq_dispatch_request(hctx);
3950
3951 idle_timer_disabled =
3952 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3953
3954 spin_unlock_irq(&bfqd->lock);
3955
3956 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3957 idle_timer_disabled);
3958
Paolo Valenteaee69d72017-04-19 08:29:02 -06003959 return rq;
3960}
3961
3962/*
3963 * Task holds one reference to the queue, dropped when task exits. Each rq
3964 * in-flight on this queue also holds a reference, dropped when rq is freed.
3965 *
3966 * Scheduler lock must be held here. Recall not to use bfqq after calling
3967 * this function on it.
3968 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003969void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003970{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003971#ifdef CONFIG_BFQ_GROUP_IOSCHED
3972 struct bfq_group *bfqg = bfqq_group(bfqq);
3973#endif
3974
Paolo Valenteaee69d72017-04-19 08:29:02 -06003975 if (bfqq->bfqd)
3976 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3977 bfqq, bfqq->ref);
3978
3979 bfqq->ref--;
3980 if (bfqq->ref)
3981 return;
3982
Paolo Valente99fead82017-10-09 13:11:23 +02003983 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003984 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02003985 /*
3986 * Decrement also burst size after the removal, if the
3987 * process associated with bfqq is exiting, and thus
3988 * does not contribute to the burst any longer. This
3989 * decrement helps filter out false positives of large
3990 * bursts, when some short-lived process (often due to
3991 * the execution of commands by some service) happens
3992 * to start and exit while a complex application is
3993 * starting, and thus spawning several processes that
3994 * do I/O (and that *must not* be treated as a large
3995 * burst, see comments on bfq_handle_burst).
3996 *
3997 * In particular, the decrement is performed only if:
3998 * 1) bfqq is not a merged queue, because, if it is,
3999 * then this free of bfqq is not triggered by the exit
4000 * of the process bfqq is associated with, but exactly
4001 * by the fact that bfqq has just been merged.
4002 * 2) burst_size is greater than 0, to handle
4003 * unbalanced decrements. Unbalanced decrements may
4004 * happen in te following case: bfqq is inserted into
4005 * the current burst list--without incrementing
4006 * bust_size--because of a split, but the current
4007 * burst list is not the burst list bfqq belonged to
4008 * (see comments on the case of a split in
4009 * bfq_set_request).
4010 */
4011 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4012 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004013 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004014
Paolo Valenteaee69d72017-04-19 08:29:02 -06004015 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004016#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004017 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004018#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004019}
4020
Arianna Avanzini36eca892017-04-12 18:23:16 +02004021static void bfq_put_cooperator(struct bfq_queue *bfqq)
4022{
4023 struct bfq_queue *__bfqq, *next;
4024
4025 /*
4026 * If this queue was scheduled to merge with another queue, be
4027 * sure to drop the reference taken on that queue (and others in
4028 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4029 */
4030 __bfqq = bfqq->new_bfqq;
4031 while (__bfqq) {
4032 if (__bfqq == bfqq)
4033 break;
4034 next = __bfqq->new_bfqq;
4035 bfq_put_queue(__bfqq);
4036 __bfqq = next;
4037 }
4038}
4039
Paolo Valenteaee69d72017-04-19 08:29:02 -06004040static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4041{
4042 if (bfqq == bfqd->in_service_queue) {
4043 __bfq_bfqq_expire(bfqd, bfqq);
4044 bfq_schedule_dispatch(bfqd);
4045 }
4046
4047 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4048
Arianna Avanzini36eca892017-04-12 18:23:16 +02004049 bfq_put_cooperator(bfqq);
4050
Paolo Valenteaee69d72017-04-19 08:29:02 -06004051 bfq_put_queue(bfqq); /* release process reference */
4052}
4053
4054static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4055{
4056 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4057 struct bfq_data *bfqd;
4058
4059 if (bfqq)
4060 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4061
4062 if (bfqq && bfqd) {
4063 unsigned long flags;
4064
4065 spin_lock_irqsave(&bfqd->lock, flags);
4066 bfq_exit_bfqq(bfqd, bfqq);
4067 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004068 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004069 }
4070}
4071
4072static void bfq_exit_icq(struct io_cq *icq)
4073{
4074 struct bfq_io_cq *bic = icq_to_bic(icq);
4075
4076 bfq_exit_icq_bfqq(bic, true);
4077 bfq_exit_icq_bfqq(bic, false);
4078}
4079
4080/*
4081 * Update the entity prio values; note that the new values will not
4082 * be used until the next (re)activation.
4083 */
4084static void
4085bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4086{
4087 struct task_struct *tsk = current;
4088 int ioprio_class;
4089 struct bfq_data *bfqd = bfqq->bfqd;
4090
4091 if (!bfqd)
4092 return;
4093
4094 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4095 switch (ioprio_class) {
4096 default:
4097 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4098 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004099 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004100 case IOPRIO_CLASS_NONE:
4101 /*
4102 * No prio set, inherit CPU scheduling settings.
4103 */
4104 bfqq->new_ioprio = task_nice_ioprio(tsk);
4105 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4106 break;
4107 case IOPRIO_CLASS_RT:
4108 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4109 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4110 break;
4111 case IOPRIO_CLASS_BE:
4112 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4113 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4114 break;
4115 case IOPRIO_CLASS_IDLE:
4116 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4117 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004118 break;
4119 }
4120
4121 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4122 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4123 bfqq->new_ioprio);
4124 bfqq->new_ioprio = IOPRIO_BE_NR;
4125 }
4126
4127 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4128 bfqq->entity.prio_changed = 1;
4129}
4130
Paolo Valenteea25da42017-04-19 08:48:24 -06004131static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4132 struct bio *bio, bool is_sync,
4133 struct bfq_io_cq *bic);
4134
Paolo Valenteaee69d72017-04-19 08:29:02 -06004135static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4136{
4137 struct bfq_data *bfqd = bic_to_bfqd(bic);
4138 struct bfq_queue *bfqq;
4139 int ioprio = bic->icq.ioc->ioprio;
4140
4141 /*
4142 * This condition may trigger on a newly created bic, be sure to
4143 * drop the lock before returning.
4144 */
4145 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4146 return;
4147
4148 bic->ioprio = ioprio;
4149
4150 bfqq = bic_to_bfqq(bic, false);
4151 if (bfqq) {
4152 /* release process reference on this queue */
4153 bfq_put_queue(bfqq);
4154 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4155 bic_set_bfqq(bic, bfqq, false);
4156 }
4157
4158 bfqq = bic_to_bfqq(bic, true);
4159 if (bfqq)
4160 bfq_set_next_ioprio_data(bfqq, bic);
4161}
4162
4163static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4164 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4165{
4166 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4167 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004168 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004169
4170 bfqq->ref = 0;
4171 bfqq->bfqd = bfqd;
4172
4173 if (bic)
4174 bfq_set_next_ioprio_data(bfqq, bic);
4175
4176 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004177 /*
4178 * No need to mark as has_short_ttime if in
4179 * idle_class, because no device idling is performed
4180 * for queues in idle class
4181 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004182 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004183 /* tentatively mark as has_short_ttime */
4184 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004185 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004186 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004187 } else
4188 bfq_clear_bfqq_sync(bfqq);
4189
4190 /* set end request to minus infinity from now */
4191 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4192
4193 bfq_mark_bfqq_IO_bound(bfqq);
4194
4195 bfqq->pid = pid;
4196
4197 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004198 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004199 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004200
Paolo Valente44e44a12017-04-12 18:23:12 +02004201 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004202 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004203 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004204 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004205
4206 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004207 * To not forget the possibly high bandwidth consumed by a
4208 * process/queue in the recent past,
4209 * bfq_bfqq_softrt_next_start() returns a value at least equal
4210 * to the current value of bfqq->soft_rt_next_start (see
4211 * comments on bfq_bfqq_softrt_next_start). Set
4212 * soft_rt_next_start to now, to mean that bfqq has consumed
4213 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004214 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004215 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004216
Paolo Valenteaee69d72017-04-19 08:29:02 -06004217 /* first request is almost certainly seeky */
4218 bfqq->seek_history = 1;
4219}
4220
4221static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004222 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004223 int ioprio_class, int ioprio)
4224{
4225 switch (ioprio_class) {
4226 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004227 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004228 case IOPRIO_CLASS_NONE:
4229 ioprio = IOPRIO_NORM;
4230 /* fall through */
4231 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004232 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004233 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004234 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004235 default:
4236 return NULL;
4237 }
4238}
4239
4240static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4241 struct bio *bio, bool is_sync,
4242 struct bfq_io_cq *bic)
4243{
4244 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4245 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4246 struct bfq_queue **async_bfqq = NULL;
4247 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004248 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004249
4250 rcu_read_lock();
4251
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004252 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4253 if (!bfqg) {
4254 bfqq = &bfqd->oom_bfqq;
4255 goto out;
4256 }
4257
Paolo Valenteaee69d72017-04-19 08:29:02 -06004258 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004259 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004260 ioprio);
4261 bfqq = *async_bfqq;
4262 if (bfqq)
4263 goto out;
4264 }
4265
4266 bfqq = kmem_cache_alloc_node(bfq_pool,
4267 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4268 bfqd->queue->node);
4269
4270 if (bfqq) {
4271 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4272 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004273 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004274 bfq_log_bfqq(bfqd, bfqq, "allocated");
4275 } else {
4276 bfqq = &bfqd->oom_bfqq;
4277 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4278 goto out;
4279 }
4280
4281 /*
4282 * Pin the queue now that it's allocated, scheduler exit will
4283 * prune it.
4284 */
4285 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004286 bfqq->ref++; /*
4287 * Extra group reference, w.r.t. sync
4288 * queue. This extra reference is removed
4289 * only if bfqq->bfqg disappears, to
4290 * guarantee that this queue is not freed
4291 * until its group goes away.
4292 */
4293 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004294 bfqq, bfqq->ref);
4295 *async_bfqq = bfqq;
4296 }
4297
4298out:
4299 bfqq->ref++; /* get a process reference to this queue */
4300 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4301 rcu_read_unlock();
4302 return bfqq;
4303}
4304
4305static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4306 struct bfq_queue *bfqq)
4307{
4308 struct bfq_ttime *ttime = &bfqq->ttime;
4309 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4310
4311 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4312
4313 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4314 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4315 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4316 ttime->ttime_samples);
4317}
4318
4319static void
4320bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4321 struct request *rq)
4322{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004323 bfqq->seek_history <<= 1;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004324 bfqq->seek_history |=
4325 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004326 (!blk_queue_nonrot(bfqd->queue) ||
4327 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4328}
4329
Paolo Valented5be3fe2017-08-04 07:35:10 +02004330static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4331 struct bfq_queue *bfqq,
4332 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004333{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004334 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004335
Paolo Valented5be3fe2017-08-04 07:35:10 +02004336 /*
4337 * No need to update has_short_ttime if bfqq is async or in
4338 * idle io prio class, or if bfq_slice_idle is zero, because
4339 * no device idling is performed for bfqq in this case.
4340 */
4341 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4342 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004343 return;
4344
Arianna Avanzini36eca892017-04-12 18:23:16 +02004345 /* Idle window just restored, statistics are meaningless. */
4346 if (time_is_after_eq_jiffies(bfqq->split_time +
4347 bfqd->bfq_wr_min_idle_time))
4348 return;
4349
Paolo Valented5be3fe2017-08-04 07:35:10 +02004350 /* Think time is infinite if no process is linked to
4351 * bfqq. Otherwise check average think time to
4352 * decide whether to mark as has_short_ttime
4353 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004354 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004355 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4356 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4357 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004358
Paolo Valented5be3fe2017-08-04 07:35:10 +02004359 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4360 has_short_ttime);
4361
4362 if (has_short_ttime)
4363 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004364 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004365 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004366}
4367
4368/*
4369 * Called when a new fs request (rq) is added to bfqq. Check if there's
4370 * something we should do about it.
4371 */
4372static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4373 struct request *rq)
4374{
4375 struct bfq_io_cq *bic = RQ_BIC(rq);
4376
4377 if (rq->cmd_flags & REQ_META)
4378 bfqq->meta_pending++;
4379
4380 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004381 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004382 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004383
4384 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004385 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4386 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004387
4388 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4389
4390 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4391 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4392 blk_rq_sectors(rq) < 32;
4393 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4394
4395 /*
4396 * There is just this request queued: if the request
4397 * is small and the queue is not to be expired, then
4398 * just exit.
4399 *
4400 * In this way, if the device is being idled to wait
4401 * for a new request from the in-service queue, we
4402 * avoid unplugging the device and committing the
4403 * device to serve just a small request. On the
4404 * contrary, we wait for the block layer to decide
4405 * when to unplug the device: hopefully, new requests
4406 * will be merged to this one quickly, then the device
4407 * will be unplugged and larger requests will be
4408 * dispatched.
4409 */
4410 if (small_req && !budget_timeout)
4411 return;
4412
4413 /*
4414 * A large enough request arrived, or the queue is to
4415 * be expired: in both cases disk idling is to be
4416 * stopped, so clear wait_request flag and reset
4417 * timer.
4418 */
4419 bfq_clear_bfqq_wait_request(bfqq);
4420 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4421
4422 /*
4423 * The queue is not empty, because a new request just
4424 * arrived. Hence we can safely expire the queue, in
4425 * case of budget timeout, without risking that the
4426 * timestamps of the queue are not updated correctly.
4427 * See [1] for more details.
4428 */
4429 if (budget_timeout)
4430 bfq_bfqq_expire(bfqd, bfqq, false,
4431 BFQQE_BUDGET_TIMEOUT);
4432 }
4433}
4434
Paolo Valente24bfd192017-11-13 07:34:09 +01004435/* returns true if it causes the idle timer to be disabled */
4436static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004437{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004438 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4439 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004440 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004441
4442 if (new_bfqq) {
4443 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4444 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4445 /*
4446 * Release the request's reference to the old bfqq
4447 * and make sure one is taken to the shared queue.
4448 */
4449 new_bfqq->allocated++;
4450 bfqq->allocated--;
4451 new_bfqq->ref++;
4452 /*
4453 * If the bic associated with the process
4454 * issuing this request still points to bfqq
4455 * (and thus has not been already redirected
4456 * to new_bfqq or even some other bfq_queue),
4457 * then complete the merge and redirect it to
4458 * new_bfqq.
4459 */
4460 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4461 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4462 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004463
4464 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004465 /*
4466 * rq is about to be enqueued into new_bfqq,
4467 * release rq reference on bfqq
4468 */
4469 bfq_put_queue(bfqq);
4470 rq->elv.priv[1] = new_bfqq;
4471 bfqq = new_bfqq;
4472 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004473
Paolo Valente24bfd192017-11-13 07:34:09 +01004474 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004475 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004476 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004477
4478 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4479 list_add_tail(&rq->queuelist, &bfqq->fifo);
4480
4481 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004482
4483 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004484}
4485
Paolo Valente9b25bd02017-12-04 11:42:05 +01004486#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4487static void bfq_update_insert_stats(struct request_queue *q,
4488 struct bfq_queue *bfqq,
4489 bool idle_timer_disabled,
4490 unsigned int cmd_flags)
4491{
4492 if (!bfqq)
4493 return;
4494
4495 /*
4496 * bfqq still exists, because it can disappear only after
4497 * either it is merged with another queue, or the process it
4498 * is associated with exits. But both actions must be taken by
4499 * the same process currently executing this flow of
4500 * instructions.
4501 *
4502 * In addition, the following queue lock guarantees that
4503 * bfqq_group(bfqq) exists as well.
4504 */
4505 spin_lock_irq(q->queue_lock);
4506 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4507 if (idle_timer_disabled)
4508 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4509 spin_unlock_irq(q->queue_lock);
4510}
4511#else
4512static inline void bfq_update_insert_stats(struct request_queue *q,
4513 struct bfq_queue *bfqq,
4514 bool idle_timer_disabled,
4515 unsigned int cmd_flags) {}
4516#endif
4517
Paolo Valenteaee69d72017-04-19 08:29:02 -06004518static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4519 bool at_head)
4520{
4521 struct request_queue *q = hctx->queue;
4522 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02004523 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01004524 bool idle_timer_disabled = false;
4525 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004526
4527 spin_lock_irq(&bfqd->lock);
4528 if (blk_mq_sched_try_insert_merge(q, rq)) {
4529 spin_unlock_irq(&bfqd->lock);
4530 return;
4531 }
4532
4533 spin_unlock_irq(&bfqd->lock);
4534
4535 blk_mq_sched_request_inserted(rq);
4536
4537 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02004538 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004539 if (at_head || blk_rq_is_passthrough(rq)) {
4540 if (at_head)
4541 list_add(&rq->queuelist, &bfqd->dispatch);
4542 else
4543 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02004544 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01004545 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004546 /*
4547 * Update bfqq, because, if a queue merge has occurred
4548 * in __bfq_insert_request, then rq has been
4549 * redirected into a new queue.
4550 */
4551 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004552
4553 if (rq_mergeable(rq)) {
4554 elv_rqhash_add(q, rq);
4555 if (!q->last_merge)
4556 q->last_merge = rq;
4557 }
4558 }
4559
Paolo Valente24bfd192017-11-13 07:34:09 +01004560 /*
4561 * Cache cmd_flags before releasing scheduler lock, because rq
4562 * may disappear afterwards (for example, because of a request
4563 * merge).
4564 */
4565 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01004566
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004567 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004568
Paolo Valente9b25bd02017-12-04 11:42:05 +01004569 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4570 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004571}
4572
4573static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4574 struct list_head *list, bool at_head)
4575{
4576 while (!list_empty(list)) {
4577 struct request *rq;
4578
4579 rq = list_first_entry(list, struct request, queuelist);
4580 list_del_init(&rq->queuelist);
4581 bfq_insert_request(hctx, rq, at_head);
4582 }
4583}
4584
4585static void bfq_update_hw_tag(struct bfq_data *bfqd)
4586{
4587 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4588 bfqd->rq_in_driver);
4589
4590 if (bfqd->hw_tag == 1)
4591 return;
4592
4593 /*
4594 * This sample is valid if the number of outstanding requests
4595 * is large enough to allow a queueing behavior. Note that the
4596 * sum is not exact, as it's not taking into account deactivated
4597 * requests.
4598 */
4599 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4600 return;
4601
4602 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4603 return;
4604
4605 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4606 bfqd->max_rq_in_driver = 0;
4607 bfqd->hw_tag_samples = 0;
4608}
4609
4610static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4611{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004612 u64 now_ns;
4613 u32 delta_us;
4614
Paolo Valenteaee69d72017-04-19 08:29:02 -06004615 bfq_update_hw_tag(bfqd);
4616
4617 bfqd->rq_in_driver--;
4618 bfqq->dispatched--;
4619
Paolo Valente44e44a12017-04-12 18:23:12 +02004620 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4621 /*
4622 * Set budget_timeout (which we overload to store the
4623 * time at which the queue remains with no backlog and
4624 * no outstanding request; used by the weight-raising
4625 * mechanism).
4626 */
4627 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02004628
Paolo Valente04715592018-06-25 21:55:34 +02004629 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02004630 }
4631
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004632 now_ns = ktime_get_ns();
4633
4634 bfqq->ttime.last_end_request = now_ns;
4635
4636 /*
4637 * Using us instead of ns, to get a reasonable precision in
4638 * computing rate in next check.
4639 */
4640 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4641
4642 /*
4643 * If the request took rather long to complete, and, according
4644 * to the maximum request size recorded, this completion latency
4645 * implies that the request was certainly served at a very low
4646 * rate (less than 1M sectors/sec), then the whole observation
4647 * interval that lasts up to this time instant cannot be a
4648 * valid time interval for computing a new peak rate. Invoke
4649 * bfq_update_rate_reset to have the following three steps
4650 * taken:
4651 * - close the observation interval at the last (previous)
4652 * request dispatch or completion
4653 * - compute rate, if possible, for that observation interval
4654 * - reset to zero samples, which will trigger a proper
4655 * re-initialization of the observation interval on next
4656 * dispatch
4657 */
4658 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4659 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4660 1UL<<(BFQ_RATE_SHIFT - 10))
4661 bfq_update_rate_reset(bfqd, NULL);
4662 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004663
4664 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004665 * If we are waiting to discover whether the request pattern
4666 * of the task associated with the queue is actually
4667 * isochronous, and both requisites for this condition to hold
4668 * are now satisfied, then compute soft_rt_next_start (see the
4669 * comments on the function bfq_bfqq_softrt_next_start()). We
4670 * schedule this delayed check when bfqq expires, if it still
4671 * has in-flight requests.
4672 */
4673 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4674 RB_EMPTY_ROOT(&bfqq->sort_list))
4675 bfqq->soft_rt_next_start =
4676 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4677
4678 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004679 * If this is the in-service queue, check if it needs to be expired,
4680 * or if we want to idle in case it has no pending requests.
4681 */
4682 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02004683 if (bfq_bfqq_must_idle(bfqq)) {
4684 if (bfqq->dispatched == 0)
4685 bfq_arm_slice_timer(bfqd);
4686 /*
4687 * If we get here, we do not expire bfqq, even
4688 * if bfqq was in budget timeout or had no
4689 * more requests (as controlled in the next
4690 * conditional instructions). The reason for
4691 * not expiring bfqq is as follows.
4692 *
4693 * Here bfqq->dispatched > 0 holds, but
4694 * bfq_bfqq_must_idle() returned true. This
4695 * implies that, even if no request arrives
4696 * for bfqq before bfqq->dispatched reaches 0,
4697 * bfqq will, however, not be expired on the
4698 * completion event that causes bfqq->dispatch
4699 * to reach zero. In contrast, on this event,
4700 * bfqq will start enjoying device idling
4701 * (I/O-dispatch plugging).
4702 *
4703 * But, if we expired bfqq here, bfqq would
4704 * not have the chance to enjoy device idling
4705 * when bfqq->dispatched finally reaches
4706 * zero. This would expose bfqq to violation
4707 * of its reserved service guarantees.
4708 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004709 return;
4710 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4711 bfq_bfqq_expire(bfqd, bfqq, false,
4712 BFQQE_BUDGET_TIMEOUT);
4713 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4714 (bfqq->dispatched == 0 ||
4715 !bfq_bfqq_may_idle(bfqq)))
4716 bfq_bfqq_expire(bfqd, bfqq, false,
4717 BFQQE_NO_MORE_REQUESTS);
4718 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08004719
4720 if (!bfqd->rq_in_driver)
4721 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004722}
4723
Paolo Valentea7877392018-02-07 22:19:20 +01004724static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004725{
4726 bfqq->allocated--;
4727
4728 bfq_put_queue(bfqq);
4729}
4730
Paolo Valentea7877392018-02-07 22:19:20 +01004731/*
4732 * Handle either a requeue or a finish for rq. The things to do are
4733 * the same in both cases: all references to rq are to be dropped. In
4734 * particular, rq is considered completed from the point of view of
4735 * the scheduler.
4736 */
4737static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004738{
Paolo Valentea7877392018-02-07 22:19:20 +01004739 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004740 struct bfq_data *bfqd;
4741
Paolo Valentea7877392018-02-07 22:19:20 +01004742 /*
4743 * Requeue and finish hooks are invoked in blk-mq without
4744 * checking whether the involved request is actually still
4745 * referenced in the scheduler. To handle this fact, the
4746 * following two checks make this function exit in case of
4747 * spurious invocations, for which there is nothing to do.
4748 *
4749 * First, check whether rq has nothing to do with an elevator.
4750 */
4751 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004752 return;
4753
Paolo Valentea7877392018-02-07 22:19:20 +01004754 /*
4755 * rq either is not associated with any icq, or is an already
4756 * requeued request that has not (yet) been re-inserted into
4757 * a bfq_queue.
4758 */
4759 if (!rq->elv.icq || !bfqq)
4760 return;
4761
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004762 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004763
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004764 if (rq->rq_flags & RQF_STARTED)
4765 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07004766 rq->start_time_ns,
4767 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004768 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004769
4770 if (likely(rq->rq_flags & RQF_STARTED)) {
4771 unsigned long flags;
4772
4773 spin_lock_irqsave(&bfqd->lock, flags);
4774
4775 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01004776 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004777
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004778 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004779 } else {
4780 /*
4781 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01004782 * in which case we need to remove it (this should
4783 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06004784 * defer such a check and removal, to avoid
4785 * inconsistencies in the time interval from the end
4786 * of this function to the start of the deferred work.
4787 * This situation seems to occur only in process
4788 * context, as a consequence of a merge. In the
4789 * current version of the code, this implies that the
4790 * lock is held.
4791 */
4792
Luca Miccio614822f2017-11-13 07:34:08 +01004793 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02004794 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004795 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4796 rq->cmd_flags);
4797 }
Paolo Valentea7877392018-02-07 22:19:20 +01004798 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004799 }
4800
Paolo Valentea7877392018-02-07 22:19:20 +01004801 /*
4802 * Reset private fields. In case of a requeue, this allows
4803 * this function to correctly do nothing if it is spuriously
4804 * invoked again on this same request (see the check at the
4805 * beginning of the function). Probably, a better general
4806 * design would be to prevent blk-mq from invoking the requeue
4807 * or finish hooks of an elevator, for a request that is not
4808 * referred by that elevator.
4809 *
4810 * Resetting the following fields would break the
4811 * request-insertion logic if rq is re-inserted into a bfq
4812 * internal queue, without a re-preparation. Here we assume
4813 * that re-insertions of requeued requests, without
4814 * re-preparation, can happen only for pass_through or at_head
4815 * requests (which are not re-inserted into bfq internal
4816 * queues).
4817 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004818 rq->elv.priv[0] = NULL;
4819 rq->elv.priv[1] = NULL;
4820}
4821
4822/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02004823 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4824 * was the last process referring to that bfqq.
4825 */
4826static struct bfq_queue *
4827bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4828{
4829 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4830
4831 if (bfqq_process_refs(bfqq) == 1) {
4832 bfqq->pid = current->pid;
4833 bfq_clear_bfqq_coop(bfqq);
4834 bfq_clear_bfqq_split_coop(bfqq);
4835 return bfqq;
4836 }
4837
4838 bic_set_bfqq(bic, NULL, 1);
4839
4840 bfq_put_cooperator(bfqq);
4841
4842 bfq_put_queue(bfqq);
4843 return NULL;
4844}
4845
4846static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4847 struct bfq_io_cq *bic,
4848 struct bio *bio,
4849 bool split, bool is_sync,
4850 bool *new_queue)
4851{
4852 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4853
4854 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4855 return bfqq;
4856
4857 if (new_queue)
4858 *new_queue = true;
4859
4860 if (bfqq)
4861 bfq_put_queue(bfqq);
4862 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4863
4864 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004865 if (split && is_sync) {
4866 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4867 bic->saved_in_large_burst)
4868 bfq_mark_bfqq_in_large_burst(bfqq);
4869 else {
4870 bfq_clear_bfqq_in_large_burst(bfqq);
4871 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02004872 /*
4873 * If bfqq was in the current
4874 * burst list before being
4875 * merged, then we have to add
4876 * it back. And we do not need
4877 * to increase burst_size, as
4878 * we did not decrement
4879 * burst_size when we removed
4880 * bfqq from the burst list as
4881 * a consequence of a merge
4882 * (see comments in
4883 * bfq_put_queue). In this
4884 * respect, it would be rather
4885 * costly to know whether the
4886 * current burst list is still
4887 * the same burst list from
4888 * which bfqq was removed on
4889 * the merge. To avoid this
4890 * cost, if bfqq was in a
4891 * burst list, then we add
4892 * bfqq to the current burst
4893 * list without any further
4894 * check. This can cause
4895 * inappropriate insertions,
4896 * but rarely enough to not
4897 * harm the detection of large
4898 * bursts significantly.
4899 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004900 hlist_add_head(&bfqq->burst_list_node,
4901 &bfqd->burst_list);
4902 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004903 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004904 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004905
4906 return bfqq;
4907}
4908
4909/*
Paolo Valente18e5a572018-05-04 19:17:01 +02004910 * Only reset private fields. The actual request preparation will be
4911 * performed by bfq_init_rq, when rq is either inserted or merged. See
4912 * comments on bfq_init_rq for the reason behind this delayed
4913 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004914 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004915static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004916{
Paolo Valente18e5a572018-05-04 19:17:01 +02004917 /*
4918 * Regardless of whether we have an icq attached, we have to
4919 * clear the scheduler pointers, as they might point to
4920 * previously allocated bic/bfqq structs.
4921 */
4922 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4923}
4924
4925/*
4926 * If needed, init rq, allocate bfq data structures associated with
4927 * rq, and increment reference counters in the destination bfq_queue
4928 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4929 * not associated with any bfq_queue.
4930 *
4931 * This function is invoked by the functions that perform rq insertion
4932 * or merging. One may have expected the above preparation operations
4933 * to be performed in bfq_prepare_request, and not delayed to when rq
4934 * is inserted or merged. The rationale behind this delayed
4935 * preparation is that, after the prepare_request hook is invoked for
4936 * rq, rq may still be transformed into a request with no icq, i.e., a
4937 * request not associated with any queue. No bfq hook is invoked to
4938 * signal this tranformation. As a consequence, should these
4939 * preparation operations be performed when the prepare_request hook
4940 * is invoked, and should rq be transformed one moment later, bfq
4941 * would end up in an inconsistent state, because it would have
4942 * incremented some queue counters for an rq destined to
4943 * transformation, without any chance to correctly lower these
4944 * counters back. In contrast, no transformation can still happen for
4945 * rq after rq has been inserted or merged. So, it is safe to execute
4946 * these preparation operations when rq is finally inserted or merged.
4947 */
4948static struct bfq_queue *bfq_init_rq(struct request *rq)
4949{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004950 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02004951 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004952 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02004953 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004954 const int is_sync = rq_is_sync(rq);
4955 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004956 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06004957 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004958
Paolo Valente18e5a572018-05-04 19:17:01 +02004959 if (unlikely(!rq->elv.icq))
4960 return NULL;
4961
Jens Axboe72961c42018-04-17 17:08:52 -06004962 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02004963 * Assuming that elv.priv[1] is set only if everything is set
4964 * for this rq. This holds true, because this function is
4965 * invoked only for insertion or merging, and, after such
4966 * events, a request cannot be manipulated any longer before
4967 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06004968 */
Paolo Valente18e5a572018-05-04 19:17:01 +02004969 if (rq->elv.priv[1])
4970 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06004971
Christoph Hellwig9f210732017-06-16 18:15:24 +02004972 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004973
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01004974 bfq_check_ioprio_change(bic, bio);
4975
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004976 bfq_bic_update_cgroup(bic, bio);
4977
Arianna Avanzini36eca892017-04-12 18:23:16 +02004978 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4979 &new_queue);
4980
4981 if (likely(!new_queue)) {
4982 /* If the queue was seeky for too long, break it apart. */
4983 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4984 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004985
4986 /* Update bic before losing reference to bfqq */
4987 if (bfq_bfqq_in_large_burst(bfqq))
4988 bic->saved_in_large_burst = true;
4989
Arianna Avanzini36eca892017-04-12 18:23:16 +02004990 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004991 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004992
4993 if (!bfqq)
4994 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4995 true, is_sync,
4996 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06004997 else
4998 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004999 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005000 }
5001
5002 bfqq->allocated++;
5003 bfqq->ref++;
5004 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5005 rq, bfqq, bfqq->ref);
5006
5007 rq->elv.priv[0] = bic;
5008 rq->elv.priv[1] = bfqq;
5009
Arianna Avanzini36eca892017-04-12 18:23:16 +02005010 /*
5011 * If a bfq_queue has only one process reference, it is owned
5012 * by only this bic: we can then set bfqq->bic = bic. in
5013 * addition, if the queue has also just been split, we have to
5014 * resume its state.
5015 */
5016 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5017 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005018 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005019 /*
5020 * The queue has just been split from a shared
5021 * queue: restore the idle window and the
5022 * possible weight raising period.
5023 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005024 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5025 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005026 }
5027 }
5028
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005029 if (unlikely(bfq_bfqq_just_created(bfqq)))
5030 bfq_handle_burst(bfqd, bfqq);
5031
Paolo Valente18e5a572018-05-04 19:17:01 +02005032 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005033}
5034
5035static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5036{
5037 struct bfq_data *bfqd = bfqq->bfqd;
5038 enum bfqq_expiration reason;
5039 unsigned long flags;
5040
5041 spin_lock_irqsave(&bfqd->lock, flags);
5042 bfq_clear_bfqq_wait_request(bfqq);
5043
5044 if (bfqq != bfqd->in_service_queue) {
5045 spin_unlock_irqrestore(&bfqd->lock, flags);
5046 return;
5047 }
5048
5049 if (bfq_bfqq_budget_timeout(bfqq))
5050 /*
5051 * Also here the queue can be safely expired
5052 * for budget timeout without wasting
5053 * guarantees
5054 */
5055 reason = BFQQE_BUDGET_TIMEOUT;
5056 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5057 /*
5058 * The queue may not be empty upon timer expiration,
5059 * because we may not disable the timer when the
5060 * first request of the in-service queue arrives
5061 * during disk idling.
5062 */
5063 reason = BFQQE_TOO_IDLE;
5064 else
5065 goto schedule_dispatch;
5066
5067 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5068
5069schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005070 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005071 bfq_schedule_dispatch(bfqd);
5072}
5073
5074/*
5075 * Handler of the expiration of the timer running if the in-service queue
5076 * is idling inside its time slice.
5077 */
5078static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5079{
5080 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5081 idle_slice_timer);
5082 struct bfq_queue *bfqq = bfqd->in_service_queue;
5083
5084 /*
5085 * Theoretical race here: the in-service queue can be NULL or
5086 * different from the queue that was idling if a new request
5087 * arrives for the current queue and there is a full dispatch
5088 * cycle that changes the in-service queue. This can hardly
5089 * happen, but in the worst case we just expire a queue too
5090 * early.
5091 */
5092 if (bfqq)
5093 bfq_idle_slice_timer_body(bfqq);
5094
5095 return HRTIMER_NORESTART;
5096}
5097
5098static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5099 struct bfq_queue **bfqq_ptr)
5100{
5101 struct bfq_queue *bfqq = *bfqq_ptr;
5102
5103 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5104 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005105 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5106
Paolo Valenteaee69d72017-04-19 08:29:02 -06005107 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5108 bfqq, bfqq->ref);
5109 bfq_put_queue(bfqq);
5110 *bfqq_ptr = NULL;
5111 }
5112}
5113
5114/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005115 * Release all the bfqg references to its async queues. If we are
5116 * deallocating the group these queues may still contain requests, so
5117 * we reparent them to the root cgroup (i.e., the only one that will
5118 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005119 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005120void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005121{
5122 int i, j;
5123
5124 for (i = 0; i < 2; i++)
5125 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005126 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005127
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005128 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005129}
5130
Jens Axboef0635b82018-05-09 13:27:21 -06005131/*
5132 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005133 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005134 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005135static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5136 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005137{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005138 unsigned int i, j, min_shallow = UINT_MAX;
5139
Jens Axboef0635b82018-05-09 13:27:21 -06005140 /*
5141 * In-word depths if no bfq_queue is being weight-raised:
5142 * leaving 25% of tags only for sync reads.
5143 *
5144 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005145 * (1U<<bt->sb.shift), instead of computing directly
5146 * (1U<<(bt->sb.shift - something)), to be robust against
5147 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005148 * limit 'something'.
5149 */
5150 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005151 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005152 /*
5153 * no more than 75% of tags for sync writes (25% extra tags
5154 * w.r.t. async I/O, to prevent async I/O from starving sync
5155 * writes)
5156 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005157 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005158
5159 /*
5160 * In-word depths in case some bfq_queue is being weight-
5161 * raised: leaving ~63% of tags for sync reads. This is the
5162 * highest percentage for which, in our tests, application
5163 * start-up times didn't suffer from any regression due to tag
5164 * shortage.
5165 */
5166 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005167 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005168 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005169 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005170
5171 for (i = 0; i < 2; i++)
5172 for (j = 0; j < 2; j++)
5173 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5174
5175 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005176}
5177
5178static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5179{
5180 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5181 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005182 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005183
Jens Axboe483b7bf2018-05-09 15:26:55 -06005184 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5185 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005186 return 0;
5187}
5188
Paolo Valenteaee69d72017-04-19 08:29:02 -06005189static void bfq_exit_queue(struct elevator_queue *e)
5190{
5191 struct bfq_data *bfqd = e->elevator_data;
5192 struct bfq_queue *bfqq, *n;
5193
5194 hrtimer_cancel(&bfqd->idle_slice_timer);
5195
5196 spin_lock_irq(&bfqd->lock);
5197 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005198 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005199 spin_unlock_irq(&bfqd->lock);
5200
5201 hrtimer_cancel(&bfqd->idle_slice_timer);
5202
Jens Axboe8abef102018-01-09 12:20:51 -07005203#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005204 /* release oom-queue reference to root group */
5205 bfqg_and_blkg_put(bfqd->root_group);
5206
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005207 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5208#else
5209 spin_lock_irq(&bfqd->lock);
5210 bfq_put_async_queues(bfqd, bfqd->root_group);
5211 kfree(bfqd->root_group);
5212 spin_unlock_irq(&bfqd->lock);
5213#endif
5214
Paolo Valenteaee69d72017-04-19 08:29:02 -06005215 kfree(bfqd);
5216}
5217
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005218static void bfq_init_root_group(struct bfq_group *root_group,
5219 struct bfq_data *bfqd)
5220{
5221 int i;
5222
5223#ifdef CONFIG_BFQ_GROUP_IOSCHED
5224 root_group->entity.parent = NULL;
5225 root_group->my_entity = NULL;
5226 root_group->bfqd = bfqd;
5227#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005228 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005229 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5230 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5231 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5232}
5233
Paolo Valenteaee69d72017-04-19 08:29:02 -06005234static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5235{
5236 struct bfq_data *bfqd;
5237 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005238
5239 eq = elevator_alloc(q, e);
5240 if (!eq)
5241 return -ENOMEM;
5242
5243 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5244 if (!bfqd) {
5245 kobject_put(&eq->kobj);
5246 return -ENOMEM;
5247 }
5248 eq->elevator_data = bfqd;
5249
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005250 spin_lock_irq(q->queue_lock);
5251 q->elevator = eq;
5252 spin_unlock_irq(q->queue_lock);
5253
Paolo Valenteaee69d72017-04-19 08:29:02 -06005254 /*
5255 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5256 * Grab a permanent reference to it, so that the normal code flow
5257 * will not attempt to free it.
5258 */
5259 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5260 bfqd->oom_bfqq.ref++;
5261 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5262 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5263 bfqd->oom_bfqq.entity.new_weight =
5264 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005265
5266 /* oom_bfqq does not participate to bursts */
5267 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5268
Paolo Valenteaee69d72017-04-19 08:29:02 -06005269 /*
5270 * Trigger weight initialization, according to ioprio, at the
5271 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5272 * class won't be changed any more.
5273 */
5274 bfqd->oom_bfqq.entity.prio_changed = 1;
5275
5276 bfqd->queue = q;
5277
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005278 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005279
5280 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5281 HRTIMER_MODE_REL);
5282 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5283
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005284 bfqd->queue_weights_tree = RB_ROOT;
5285 bfqd->group_weights_tree = RB_ROOT;
5286
Paolo Valenteaee69d72017-04-19 08:29:02 -06005287 INIT_LIST_HEAD(&bfqd->active_list);
5288 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005289 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005290
5291 bfqd->hw_tag = -1;
5292
5293 bfqd->bfq_max_budget = bfq_default_max_budget;
5294
5295 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5296 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5297 bfqd->bfq_back_max = bfq_back_max;
5298 bfqd->bfq_back_penalty = bfq_back_penalty;
5299 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005300 bfqd->bfq_timeout = bfq_timeout;
5301
5302 bfqd->bfq_requests_within_timer = 120;
5303
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005304 bfqd->bfq_large_burst_thresh = 8;
5305 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5306
Paolo Valente44e44a12017-04-12 18:23:12 +02005307 bfqd->low_latency = true;
5308
5309 /*
5310 * Trade-off between responsiveness and fairness.
5311 */
5312 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005313 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005314 bfqd->bfq_wr_max_time = 0;
5315 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5316 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005317 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5318 * Approximate rate required
5319 * to playback or record a
5320 * high-definition compressed
5321 * video.
5322 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005323 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005324
5325 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005326 * Begin by assuming, optimistically, that the device peak
5327 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005328 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005329 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5330 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5331 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005332
Paolo Valenteaee69d72017-04-19 08:29:02 -06005333 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005334
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005335 /*
5336 * The invocation of the next bfq_create_group_hierarchy
5337 * function is the head of a chain of function calls
5338 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5339 * blk_mq_freeze_queue) that may lead to the invocation of the
5340 * has_work hook function. For this reason,
5341 * bfq_create_group_hierarchy is invoked only after all
5342 * scheduler data has been initialized, apart from the fields
5343 * that can be initialized only after invoking
5344 * bfq_create_group_hierarchy. This, in particular, enables
5345 * has_work to correctly return false. Of course, to avoid
5346 * other inconsistencies, the blk-mq stack must then refrain
5347 * from invoking further scheduler hooks before this init
5348 * function is finished.
5349 */
5350 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5351 if (!bfqd->root_group)
5352 goto out_free;
5353 bfq_init_root_group(bfqd->root_group, bfqd);
5354 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5355
Luca Micciob5dc5d42017-10-09 16:27:21 +02005356 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005357 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005358
5359out_free:
5360 kfree(bfqd);
5361 kobject_put(&eq->kobj);
5362 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005363}
5364
5365static void bfq_slab_kill(void)
5366{
5367 kmem_cache_destroy(bfq_pool);
5368}
5369
5370static int __init bfq_slab_setup(void)
5371{
5372 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5373 if (!bfq_pool)
5374 return -ENOMEM;
5375 return 0;
5376}
5377
5378static ssize_t bfq_var_show(unsigned int var, char *page)
5379{
5380 return sprintf(page, "%u\n", var);
5381}
5382
Bart Van Assche2f791362017-08-30 11:42:09 -07005383static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005384{
5385 unsigned long new_val;
5386 int ret = kstrtoul(page, 10, &new_val);
5387
Bart Van Assche2f791362017-08-30 11:42:09 -07005388 if (ret)
5389 return ret;
5390 *var = new_val;
5391 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005392}
5393
5394#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5395static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5396{ \
5397 struct bfq_data *bfqd = e->elevator_data; \
5398 u64 __data = __VAR; \
5399 if (__CONV == 1) \
5400 __data = jiffies_to_msecs(__data); \
5401 else if (__CONV == 2) \
5402 __data = div_u64(__data, NSEC_PER_MSEC); \
5403 return bfq_var_show(__data, (page)); \
5404}
5405SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5406SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5407SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5408SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5409SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5410SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5411SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5412SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02005413SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005414#undef SHOW_FUNCTION
5415
5416#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5417static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5418{ \
5419 struct bfq_data *bfqd = e->elevator_data; \
5420 u64 __data = __VAR; \
5421 __data = div_u64(__data, NSEC_PER_USEC); \
5422 return bfq_var_show(__data, (page)); \
5423}
5424USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5425#undef USEC_SHOW_FUNCTION
5426
5427#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5428static ssize_t \
5429__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5430{ \
5431 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005432 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005433 int ret; \
5434 \
5435 ret = bfq_var_store(&__data, (page)); \
5436 if (ret) \
5437 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005438 if (__data < __min) \
5439 __data = __min; \
5440 else if (__data > __max) \
5441 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005442 if (__CONV == 1) \
5443 *(__PTR) = msecs_to_jiffies(__data); \
5444 else if (__CONV == 2) \
5445 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5446 else \
5447 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08005448 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005449}
5450STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5451 INT_MAX, 2);
5452STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5453 INT_MAX, 2);
5454STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5455STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5456 INT_MAX, 0);
5457STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5458#undef STORE_FUNCTION
5459
5460#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5461static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5462{ \
5463 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005464 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005465 int ret; \
5466 \
5467 ret = bfq_var_store(&__data, (page)); \
5468 if (ret) \
5469 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005470 if (__data < __min) \
5471 __data = __min; \
5472 else if (__data > __max) \
5473 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005474 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08005475 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005476}
5477USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5478 UINT_MAX);
5479#undef USEC_STORE_FUNCTION
5480
Paolo Valenteaee69d72017-04-19 08:29:02 -06005481static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5482 const char *page, size_t count)
5483{
5484 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005485 unsigned long __data;
5486 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005487
Bart Van Assche2f791362017-08-30 11:42:09 -07005488 ret = bfq_var_store(&__data, (page));
5489 if (ret)
5490 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005491
5492 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005493 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005494 else {
5495 if (__data > INT_MAX)
5496 __data = INT_MAX;
5497 bfqd->bfq_max_budget = __data;
5498 }
5499
5500 bfqd->bfq_user_max_budget = __data;
5501
weiping zhang235f8da2017-08-25 01:11:33 +08005502 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005503}
5504
5505/*
5506 * Leaving this name to preserve name compatibility with cfq
5507 * parameters, but this timeout is used for both sync and async.
5508 */
5509static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5510 const char *page, size_t count)
5511{
5512 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005513 unsigned long __data;
5514 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005515
Bart Van Assche2f791362017-08-30 11:42:09 -07005516 ret = bfq_var_store(&__data, (page));
5517 if (ret)
5518 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005519
5520 if (__data < 1)
5521 __data = 1;
5522 else if (__data > INT_MAX)
5523 __data = INT_MAX;
5524
5525 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5526 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005527 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005528
weiping zhang235f8da2017-08-25 01:11:33 +08005529 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005530}
5531
5532static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5533 const char *page, size_t count)
5534{
5535 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005536 unsigned long __data;
5537 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005538
Bart Van Assche2f791362017-08-30 11:42:09 -07005539 ret = bfq_var_store(&__data, (page));
5540 if (ret)
5541 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005542
5543 if (__data > 1)
5544 __data = 1;
5545 if (!bfqd->strict_guarantees && __data == 1
5546 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5547 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5548
5549 bfqd->strict_guarantees = __data;
5550
weiping zhang235f8da2017-08-25 01:11:33 +08005551 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005552}
5553
Paolo Valente44e44a12017-04-12 18:23:12 +02005554static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5555 const char *page, size_t count)
5556{
5557 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005558 unsigned long __data;
5559 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005560
Bart Van Assche2f791362017-08-30 11:42:09 -07005561 ret = bfq_var_store(&__data, (page));
5562 if (ret)
5563 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02005564
5565 if (__data > 1)
5566 __data = 1;
5567 if (__data == 0 && bfqd->low_latency != 0)
5568 bfq_end_wr(bfqd);
5569 bfqd->low_latency = __data;
5570
weiping zhang235f8da2017-08-25 01:11:33 +08005571 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02005572}
5573
Paolo Valenteaee69d72017-04-19 08:29:02 -06005574#define BFQ_ATTR(name) \
5575 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5576
5577static struct elv_fs_entry bfq_attrs[] = {
5578 BFQ_ATTR(fifo_expire_sync),
5579 BFQ_ATTR(fifo_expire_async),
5580 BFQ_ATTR(back_seek_max),
5581 BFQ_ATTR(back_seek_penalty),
5582 BFQ_ATTR(slice_idle),
5583 BFQ_ATTR(slice_idle_us),
5584 BFQ_ATTR(max_budget),
5585 BFQ_ATTR(timeout_sync),
5586 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02005587 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06005588 __ATTR_NULL
5589};
5590
5591static struct elevator_type iosched_bfq_mq = {
5592 .ops.mq = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01005593 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005594 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01005595 .requeue_request = bfq_finish_requeue_request,
5596 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005597 .exit_icq = bfq_exit_icq,
5598 .insert_requests = bfq_insert_requests,
5599 .dispatch_request = bfq_dispatch_request,
5600 .next_request = elv_rb_latter_request,
5601 .former_request = elv_rb_former_request,
5602 .allow_merge = bfq_allow_bio_merge,
5603 .bio_merge = bfq_bio_merge,
5604 .request_merge = bfq_request_merge,
5605 .requests_merged = bfq_requests_merged,
5606 .request_merged = bfq_request_merged,
5607 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06005608 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005609 .init_sched = bfq_init_queue,
5610 .exit_sched = bfq_exit_queue,
5611 },
5612
5613 .uses_mq = true,
5614 .icq_size = sizeof(struct bfq_io_cq),
5615 .icq_align = __alignof__(struct bfq_io_cq),
5616 .elevator_attrs = bfq_attrs,
5617 .elevator_name = "bfq",
5618 .elevator_owner = THIS_MODULE,
5619};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01005620MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06005621
5622static int __init bfq_init(void)
5623{
5624 int ret;
5625
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005626#ifdef CONFIG_BFQ_GROUP_IOSCHED
5627 ret = blkcg_policy_register(&blkcg_policy_bfq);
5628 if (ret)
5629 return ret;
5630#endif
5631
Paolo Valenteaee69d72017-04-19 08:29:02 -06005632 ret = -ENOMEM;
5633 if (bfq_slab_setup())
5634 goto err_pol_unreg;
5635
Paolo Valente44e44a12017-04-12 18:23:12 +02005636 /*
5637 * Times to load large popular applications for the typical
5638 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02005639 * comments before the definition of the next
5640 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02005641 * estimated peak rate tends to be smaller than the actual
5642 * peak rate. The reason for this last fact is that estimates
5643 * are computed over much shorter time intervals than the long
5644 * intervals typically used for benchmarking. Why? First, to
5645 * adapt more quickly to variations. Second, because an I/O
5646 * scheduler cannot rely on a peak-rate-evaluation workload to
5647 * be run for a long time.
5648 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005649 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5650 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02005651
Paolo Valenteaee69d72017-04-19 08:29:02 -06005652 ret = elv_register(&iosched_bfq_mq);
5653 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08005654 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005655
5656 return 0;
5657
weiping zhang37dcd652017-08-19 00:37:20 +08005658slab_kill:
5659 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005660err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005661#ifdef CONFIG_BFQ_GROUP_IOSCHED
5662 blkcg_policy_unregister(&blkcg_policy_bfq);
5663#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005664 return ret;
5665}
5666
5667static void __exit bfq_exit(void)
5668{
5669 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005670#ifdef CONFIG_BFQ_GROUP_IOSCHED
5671 blkcg_policy_unregister(&blkcg_policy_bfq);
5672#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005673 bfq_slab_kill();
5674}
5675
5676module_init(bfq_init);
5677module_exit(bfq_exit);
5678
5679MODULE_AUTHOR("Paolo Valente");
5680MODULE_LICENSE("GPL");
5681MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");