blob: b957e9db87d8f8a1b2c282b560f03942ddc0a8a6 [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec074170e2017-04-12 18:23:11 +0200189/*
Paolo Valented5801082018-08-16 18:51:17 +0200190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
198 *
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200207 */
Paolo Valented5801082018-08-16 18:51:17 +0200208static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200209
Paolo Valenteaee69d72017-04-19 08:29:02 -0600210/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600211const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600212
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100213/*
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
218 *
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
224 */
225static const unsigned long bfq_merge_time_limit = HZ/10;
226
Paolo Valenteaee69d72017-04-19 08:29:02 -0600227static struct kmem_cache *bfq_pool;
228
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200229/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600230#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
231
232/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100233#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600234#define BFQ_HW_QUEUE_SAMPLES 32
235
236#define BFQQ_SEEK_THR (sector_t)(8 * 100)
237#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100238#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
239 (get_sdist(last_pos, rq) > \
240 BFQQ_SEEK_THR && \
241 (!blk_queue_nonrot(bfqd->queue) || \
242 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600243#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100244#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600245
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200246/* Min number of samples required to perform peak-rate update */
247#define BFQ_RATE_MIN_SAMPLES 32
248/* Min observation time interval required to perform a peak-rate update (ns) */
249#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
250/* Target observation time interval for a peak-rate update (ns) */
251#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600252
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200253/*
254 * Shift used for peak-rate fixed precision calculations.
255 * With
256 * - the current shift: 16 positions
257 * - the current type used to store rate: u32
258 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
259 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
260 * the range of rates that can be stored is
261 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
262 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
263 * [15, 65G] sectors/sec
264 * Which, assuming a sector size of 512B, corresponds to a range of
265 * [7.5K, 33T] B/sec
266 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600267#define BFQ_RATE_SHIFT 16
268
Paolo Valente44e44a12017-04-12 18:23:12 +0200269/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200270 * When configured for computing the duration of the weight-raising
271 * for interactive queues automatically (see the comments at the
272 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200273 * duration = (ref_rate / r) * ref_wr_duration,
274 * where r is the peak rate of the device, and ref_rate and
275 * ref_wr_duration are two reference parameters. In particular,
276 * ref_rate is the peak rate of the reference storage device (see
277 * below), and ref_wr_duration is about the maximum time needed, with
278 * BFQ and while reading two files in parallel, to load typical large
279 * applications on the reference device (see the comments on
280 * max_service_from_wr below, for more details on how ref_wr_duration
281 * is obtained). In practice, the slower/faster the device at hand
282 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200283 * reference device. Accordingly, the longer/shorter BFQ grants
284 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200285 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200286 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
287 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200288 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200289 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
290 * are the reference values for a rotational device, whereas
291 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
292 * non-rotational device. The reference rates are not the actual peak
293 * rates of the devices used as a reference, but slightly lower
294 * values. The reason for using slightly lower values is that the
295 * peak-rate estimator tends to yield slightly lower values than the
296 * actual peak rate (it can yield the actual peak rate only if there
297 * is only one process doing I/O, and the process does sequential
298 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200299 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200300 * The reference peak rates are measured in sectors/usec, left-shifted
301 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200302 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200303static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200304/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200305 * To improve readability, a conversion function is used to initialize
306 * the following array, which entails that the array can be
307 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200308 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200309static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200310
Paolo Valente8a8747d2018-01-13 12:05:18 +0100311/*
312 * BFQ uses the above-detailed, time-based weight-raising mechanism to
313 * privilege interactive tasks. This mechanism is vulnerable to the
314 * following false positives: I/O-bound applications that will go on
315 * doing I/O for much longer than the duration of weight
316 * raising. These applications have basically no benefit from being
317 * weight-raised at the beginning of their I/O. On the opposite end,
318 * while being weight-raised, these applications
319 * a) unjustly steal throughput to applications that may actually need
320 * low latency;
321 * b) make BFQ uselessly perform device idling; device idling results
322 * in loss of device throughput with most flash-based storage, and may
323 * increase latencies when used purposelessly.
324 *
325 * BFQ tries to reduce these problems, by adopting the following
326 * countermeasure. To introduce this countermeasure, we need first to
327 * finish explaining how the duration of weight-raising for
328 * interactive tasks is computed.
329 *
330 * For a bfq_queue deemed as interactive, the duration of weight
331 * raising is dynamically adjusted, as a function of the estimated
332 * peak rate of the device, so as to be equal to the time needed to
333 * execute the 'largest' interactive task we benchmarked so far. By
334 * largest task, we mean the task for which each involved process has
335 * to do more I/O than for any of the other tasks we benchmarked. This
336 * reference interactive task is the start-up of LibreOffice Writer,
337 * and in this task each process/bfq_queue needs to have at most ~110K
338 * sectors transferred.
339 *
340 * This last piece of information enables BFQ to reduce the actual
341 * duration of weight-raising for at least one class of I/O-bound
342 * applications: those doing sequential or quasi-sequential I/O. An
343 * example is file copy. In fact, once started, the main I/O-bound
344 * processes of these applications usually consume the above 110K
345 * sectors in much less time than the processes of an application that
346 * is starting, because these I/O-bound processes will greedily devote
347 * almost all their CPU cycles only to their target,
348 * throughput-friendly I/O operations. This is even more true if BFQ
349 * happens to be underestimating the device peak rate, and thus
350 * overestimating the duration of weight raising. But, according to
351 * our measurements, once transferred 110K sectors, these processes
352 * have no right to be weight-raised any longer.
353 *
354 * Basing on the last consideration, BFQ ends weight-raising for a
355 * bfq_queue if the latter happens to have received an amount of
356 * service at least equal to the following constant. The constant is
357 * set to slightly more than 110K, to have a minimum safety margin.
358 *
359 * This early ending of weight-raising reduces the amount of time
360 * during which interactive false positives cause the two problems
361 * described at the beginning of these comments.
362 */
363static const unsigned long max_service_from_wr = 120000;
364
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700365#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600366#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
367
Paolo Valenteea25da42017-04-19 08:48:24 -0600368struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
369{
370 return bic->bfqq[is_sync];
371}
372
373void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
374{
375 bic->bfqq[is_sync] = bfqq;
376}
377
378struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
379{
380 return bic->icq.q->elevator->elevator_data;
381}
382
Paolo Valenteaee69d72017-04-19 08:29:02 -0600383/**
384 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
385 * @icq: the iocontext queue.
386 */
387static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
388{
389 /* bic->icq is the first member, %NULL will convert to %NULL */
390 return container_of(icq, struct bfq_io_cq, icq);
391}
392
393/**
394 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
395 * @bfqd: the lookup key.
396 * @ioc: the io_context of the process doing I/O.
397 * @q: the request queue.
398 */
399static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
400 struct io_context *ioc,
401 struct request_queue *q)
402{
403 if (ioc) {
404 unsigned long flags;
405 struct bfq_io_cq *icq;
406
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700407 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600408 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700409 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600410
411 return icq;
412 }
413
414 return NULL;
415}
416
417/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200418 * Scheduler run of queue, if there are requests pending and no one in the
419 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600420 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600421void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600422{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200423 if (bfqd->queued != 0) {
424 bfq_log(bfqd, "schedule dispatch");
425 blk_mq_run_hw_queues(bfqd->queue, true);
426 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600427}
428
Paolo Valenteaee69d72017-04-19 08:29:02 -0600429#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
430#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
431
432#define bfq_sample_valid(samples) ((samples) > 80)
433
434/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600435 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
436 * We choose the request that is closesr to the head right now. Distance
437 * behind the head is penalized and only allowed to a certain extent.
438 */
439static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 struct request *rq1,
441 struct request *rq2,
442 sector_t last)
443{
444 sector_t s1, s2, d1 = 0, d2 = 0;
445 unsigned long back_max;
446#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
447#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
448 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449
450 if (!rq1 || rq1 == rq2)
451 return rq2;
452 if (!rq2)
453 return rq1;
454
455 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 return rq1;
457 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 return rq2;
459 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 return rq1;
461 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 return rq2;
463
464 s1 = blk_rq_pos(rq1);
465 s2 = blk_rq_pos(rq2);
466
467 /*
468 * By definition, 1KiB is 2 sectors.
469 */
470 back_max = bfqd->bfq_back_max * 2;
471
472 /*
473 * Strict one way elevator _except_ in the case where we allow
474 * short backward seeks which are biased as twice the cost of a
475 * similar forward seek.
476 */
477 if (s1 >= last)
478 d1 = s1 - last;
479 else if (s1 + back_max >= last)
480 d1 = (last - s1) * bfqd->bfq_back_penalty;
481 else
482 wrap |= BFQ_RQ1_WRAP;
483
484 if (s2 >= last)
485 d2 = s2 - last;
486 else if (s2 + back_max >= last)
487 d2 = (last - s2) * bfqd->bfq_back_penalty;
488 else
489 wrap |= BFQ_RQ2_WRAP;
490
491 /* Found required data */
492
493 /*
494 * By doing switch() on the bit mask "wrap" we avoid having to
495 * check two variables for all permutations: --> faster!
496 */
497 switch (wrap) {
498 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 if (d1 < d2)
500 return rq1;
501 else if (d2 < d1)
502 return rq2;
503
504 if (s1 >= s2)
505 return rq1;
506 else
507 return rq2;
508
509 case BFQ_RQ2_WRAP:
510 return rq1;
511 case BFQ_RQ1_WRAP:
512 return rq2;
513 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 default:
515 /*
516 * Since both rqs are wrapped,
517 * start with the one that's further behind head
518 * (--> only *one* back seek required),
519 * since back seek takes more time than forward.
520 */
521 if (s1 <= s2)
522 return rq1;
523 else
524 return rq2;
525 }
526}
527
Paolo Valentea52a69e2018-01-13 12:05:17 +0100528/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100529 * Async I/O can easily starve sync I/O (both sync reads and sync
530 * writes), by consuming all tags. Similarly, storms of sync writes,
531 * such as those that sync(2) may trigger, can starve sync reads.
532 * Limit depths of async I/O and sync writes so as to counter both
533 * problems.
534 */
535static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100538
539 if (op_is_sync(op) && !op_is_write(op))
540 return;
541
Paolo Valentea52a69e2018-01-13 12:05:17 +0100542 data->shallow_depth =
543 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544
545 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 __func__, bfqd->wr_busy_queues, op_is_sync(op),
547 data->shallow_depth);
548}
549
Arianna Avanzini36eca892017-04-12 18:23:16 +0200550static struct bfq_queue *
551bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 sector_t sector, struct rb_node **ret_parent,
553 struct rb_node ***rb_link)
554{
555 struct rb_node **p, *parent;
556 struct bfq_queue *bfqq = NULL;
557
558 parent = NULL;
559 p = &root->rb_node;
560 while (*p) {
561 struct rb_node **n;
562
563 parent = *p;
564 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565
566 /*
567 * Sort strictly based on sector. Smallest to the left,
568 * largest to the right.
569 */
570 if (sector > blk_rq_pos(bfqq->next_rq))
571 n = &(*p)->rb_right;
572 else if (sector < blk_rq_pos(bfqq->next_rq))
573 n = &(*p)->rb_left;
574 else
575 break;
576 p = n;
577 bfqq = NULL;
578 }
579
580 *ret_parent = parent;
581 if (rb_link)
582 *rb_link = p;
583
584 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 (unsigned long long)sector,
586 bfqq ? bfqq->pid : 0);
587
588 return bfqq;
589}
590
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100591static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592{
593 return bfqq->service_from_backlogged > 0 &&
594 time_is_before_jiffies(bfqq->first_IO_time +
595 bfq_merge_time_limit);
596}
597
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100598/*
599 * The following function is not marked as __cold because it is
600 * actually cold, but for the same performance goal described in the
601 * comments on the likely() at the beginning of
602 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
603 * execution time for the case where this function is not invoked, we
604 * had to add an unlikely() in each involved if().
605 */
606void __cold
607bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200608{
609 struct rb_node **p, *parent;
610 struct bfq_queue *__bfqq;
611
612 if (bfqq->pos_root) {
613 rb_erase(&bfqq->pos_node, bfqq->pos_root);
614 bfqq->pos_root = NULL;
615 }
616
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100617 /*
618 * bfqq cannot be merged any longer (see comments in
619 * bfq_setup_cooperator): no point in adding bfqq into the
620 * position tree.
621 */
622 if (bfq_too_late_for_merging(bfqq))
623 return;
624
Arianna Avanzini36eca892017-04-12 18:23:16 +0200625 if (bfq_class_idle(bfqq))
626 return;
627 if (!bfqq->next_rq)
628 return;
629
630 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
631 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
632 blk_rq_pos(bfqq->next_rq), &parent, &p);
633 if (!__bfqq) {
634 rb_link_node(&bfqq->pos_node, parent, p);
635 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
636 } else
637 bfqq->pos_root = NULL;
638}
639
Paolo Valenteaee69d72017-04-19 08:29:02 -0600640/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100641 * The following function returns false either if every active queue
642 * must receive the same share of the throughput (symmetric scenario),
643 * or, as a special case, if bfqq must receive a share of the
644 * throughput lower than or equal to the share that every other active
645 * queue must receive. If bfqq does sync I/O, then these are the only
646 * two cases where bfqq happens to be guaranteed its share of the
647 * throughput even if I/O dispatching is not plugged when bfqq remains
648 * temporarily empty (for more details, see the comments in the
649 * function bfq_better_to_idle()). For this reason, the return value
650 * of this function is used to check whether I/O-dispatch plugging can
651 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200652 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100653 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200654 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100655 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200656 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100657 * weight,
658 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200659 * number of children.
660 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200661 * Unfortunately, keeping the necessary state for evaluating exactly
662 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100663 * and time consuming. Therefore this function evaluates, instead,
664 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200665 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200666 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100667 * 2) all active queues belong to the same I/O-priority class,
668 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200669 * In particular, the last condition is always true if hierarchical
670 * support or the cgroups interface are not enabled, thus no state
671 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200672 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100673static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
674 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200675{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100676 bool smallest_weight = bfqq &&
677 bfqq->weight_counter &&
678 bfqq->weight_counter ==
679 container_of(
680 rb_first_cached(&bfqd->queue_weights_tree),
681 struct bfq_weight_counter,
682 weights_node);
683
Paolo Valente73d58112019-01-29 12:06:29 +0100684 /*
685 * For queue weights to differ, queue_weights_tree must contain
686 * at least two nodes.
687 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100688 bool varied_queue_weights = !smallest_weight &&
689 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
690 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
691 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100692
693 bool multiple_classes_busy =
694 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
695 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
696 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
697
Paolo Valentefb53ac62019-03-12 09:59:28 +0100698 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300699#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100700 || bfqd->num_groups_with_pending_reqs > 0
701#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100702 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200703}
704
705/*
706 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200707 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200708 * increment the existing counter.
709 *
710 * Note that weight-counter trees contain few nodes in mostly symmetric
711 * scenarios. For example, if all queues have the same weight, then the
712 * weight-counter tree for the queues may contain at most one node.
713 * This holds even if low_latency is on, because weight-raised queues
714 * are not inserted in the tree.
715 * In most scenarios, the rate at which nodes are created/destroyed
716 * should be low too.
717 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200718void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100719 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200720{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200721 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100722 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
723 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200724
725 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200726 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200727 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200728 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200729 * non-weight-raised, and hence change its weight, and
730 * backlogged; in this respect, each of the two events
731 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200732 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200733 * second event. This second invocation is actually useless,
734 * and we handle this fact by exiting immediately. More
735 * efficient or clearer solutions might possibly be adopted.
736 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200737 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200738 return;
739
740 while (*new) {
741 struct bfq_weight_counter *__counter = container_of(*new,
742 struct bfq_weight_counter,
743 weights_node);
744 parent = *new;
745
746 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200747 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200748 goto inc_counter;
749 }
750 if (entity->weight < __counter->weight)
751 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100752 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200753 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100754 leftmost = false;
755 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200756 }
757
Federico Motta2d29c9f2018-10-12 11:55:57 +0200758 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
759 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200760
761 /*
762 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200763 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100764 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100765 * causes the scenario to be deemed wrongly symmetric in case
766 * bfqq's weight would have been the only weight making the
767 * scenario asymmetric. On the bright side, no unbalance will
768 * however occur when bfqq becomes inactive again (the
769 * invocation of this function is triggered by an activation
770 * of queue). In fact, bfq_weights_tree_remove does nothing
771 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200772 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200773 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200774 return;
775
Federico Motta2d29c9f2018-10-12 11:55:57 +0200776 bfqq->weight_counter->weight = entity->weight;
777 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100778 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
779 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200780
781inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200782 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100783 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200784}
785
786/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200787 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200788 * counter reaches 0, remove the counter from the tree.
789 * See the comments to the function bfq_weights_tree_add() for considerations
790 * about overhead.
791 */
Paolo Valente04715592018-06-25 21:55:34 +0200792void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200793 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100794 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200795{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200796 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200797 return;
798
Federico Motta2d29c9f2018-10-12 11:55:57 +0200799 bfqq->weight_counter->num_active--;
800 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200801 goto reset_entity_pointer;
802
Paolo Valentefb53ac62019-03-12 09:59:28 +0100803 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200804 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200805
806reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200807 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100808 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200809}
810
811/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200812 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
813 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200814 */
815void bfq_weights_tree_remove(struct bfq_data *bfqd,
816 struct bfq_queue *bfqq)
817{
818 struct bfq_entity *entity = bfqq->entity.parent;
819
Paolo Valente04715592018-06-25 21:55:34 +0200820 for_each_entity(entity) {
821 struct bfq_sched_data *sd = entity->my_sched_data;
822
823 if (sd->next_in_service || sd->in_service_entity) {
824 /*
825 * entity is still active, because either
826 * next_in_service or in_service_entity is not
827 * NULL (see the comments on the definition of
828 * next_in_service for details on why
829 * in_service_entity must be checked too).
830 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200831 * As a consequence, its parent entities are
832 * active as well, and thus this loop must
833 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200834 */
835 break;
836 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100837
838 /*
839 * The decrement of num_groups_with_pending_reqs is
840 * not performed immediately upon the deactivation of
841 * entity, but it is delayed to when it also happens
842 * that the first leaf descendant bfqq of entity gets
843 * all its pending requests completed. The following
844 * instructions perform this delayed decrement, if
845 * needed. See the comments on
846 * num_groups_with_pending_reqs for details.
847 */
848 if (entity->in_groups_with_pending_reqs) {
849 entity->in_groups_with_pending_reqs = false;
850 bfqd->num_groups_with_pending_reqs--;
851 }
Paolo Valente04715592018-06-25 21:55:34 +0200852 }
Paolo Valente9dee8b32019-01-29 12:06:34 +0100853
854 /*
855 * Next function is invoked last, because it causes bfqq to be
856 * freed if the following holds: bfqq is not in service and
857 * has no dispatched request. DO NOT use bfqq after the next
858 * function invocation.
859 */
860 __bfq_weights_tree_remove(bfqd, bfqq,
861 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +0200862}
863
864/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600865 * Return expired entry, or NULL to just start from scratch in rbtree.
866 */
867static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
868 struct request *last)
869{
870 struct request *rq;
871
872 if (bfq_bfqq_fifo_expire(bfqq))
873 return NULL;
874
875 bfq_mark_bfqq_fifo_expire(bfqq);
876
877 rq = rq_entry_fifo(bfqq->fifo.next);
878
879 if (rq == last || ktime_get_ns() < rq->fifo_time)
880 return NULL;
881
882 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
883 return rq;
884}
885
886static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
887 struct bfq_queue *bfqq,
888 struct request *last)
889{
890 struct rb_node *rbnext = rb_next(&last->rb_node);
891 struct rb_node *rbprev = rb_prev(&last->rb_node);
892 struct request *next, *prev = NULL;
893
894 /* Follow expired path, else get first next available. */
895 next = bfq_check_fifo(bfqq, last);
896 if (next)
897 return next;
898
899 if (rbprev)
900 prev = rb_entry_rq(rbprev);
901
902 if (rbnext)
903 next = rb_entry_rq(rbnext);
904 else {
905 rbnext = rb_first(&bfqq->sort_list);
906 if (rbnext && rbnext != &last->rb_node)
907 next = rb_entry_rq(rbnext);
908 }
909
910 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
911}
912
Paolo Valentec074170e2017-04-12 18:23:11 +0200913/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600914static unsigned long bfq_serv_to_charge(struct request *rq,
915 struct bfq_queue *bfqq)
916{
Paolo Valente02a6d782019-01-29 12:06:37 +0100917 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +0100918 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +0200919 return blk_rq_sectors(rq);
920
Paolo Valented5801082018-08-16 18:51:17 +0200921 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600922}
923
924/**
925 * bfq_updated_next_req - update the queue after a new next_rq selection.
926 * @bfqd: the device data the queue belongs to.
927 * @bfqq: the queue to update.
928 *
929 * If the first request of a queue changes we make sure that the queue
930 * has enough budget to serve at least its first request (if the
931 * request has grown). We do this because if the queue has not enough
932 * budget for its first request, it has to go through two dispatch
933 * rounds to actually get it dispatched.
934 */
935static void bfq_updated_next_req(struct bfq_data *bfqd,
936 struct bfq_queue *bfqq)
937{
938 struct bfq_entity *entity = &bfqq->entity;
939 struct request *next_rq = bfqq->next_rq;
940 unsigned long new_budget;
941
942 if (!next_rq)
943 return;
944
945 if (bfqq == bfqd->in_service_queue)
946 /*
947 * In order not to break guarantees, budgets cannot be
948 * changed after an entity has been selected.
949 */
950 return;
951
Paolo Valentef3218ad2019-01-29 12:06:27 +0100952 new_budget = max_t(unsigned long,
953 max_t(unsigned long, bfqq->max_budget,
954 bfq_serv_to_charge(next_rq, bfqq)),
955 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600956 if (entity->budget != new_budget) {
957 entity->budget = new_budget;
958 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
959 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200960 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600961 }
962}
963
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200964static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
965{
966 u64 dur;
967
968 if (bfqd->bfq_wr_max_time > 0)
969 return bfqd->bfq_wr_max_time;
970
Paolo Valentee24f1c22018-05-31 16:45:06 +0200971 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200972 do_div(dur, bfqd->peak_rate);
973
974 /*
Davide Sapienzad450542e2018-05-31 16:45:07 +0200975 * Limit duration between 3 and 25 seconds. The upper limit
976 * has been conservatively set after the following worst case:
977 * on a QEMU/KVM virtual machine
978 * - running in a slow PC
979 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
980 * - serving a heavy I/O workload, such as the sequential reading
981 * of several files
982 * mplayer took 23 seconds to start, if constantly weight-raised.
983 *
984 * As for higher values than that accomodating the above bad
985 * scenario, tests show that higher values would often yield
986 * the opposite of the desired result, i.e., would worsen
987 * responsiveness by allowing non-interactive applications to
988 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200989 *
990 * On the other end, lower values than 3 seconds make it
991 * difficult for most interactive tasks to complete their jobs
992 * before weight-raising finishes.
993 */
Davide Sapienzad450542e2018-05-31 16:45:07 +0200994 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200995}
996
997/* switch back from soft real-time to interactive weight raising */
998static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
999 struct bfq_data *bfqd)
1000{
1001 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1002 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1003 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1004}
1005
Arianna Avanzini36eca892017-04-12 18:23:16 +02001006static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001007bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1008 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001009{
Paolo Valente13c931b2017-06-27 12:30:47 -06001010 unsigned int old_wr_coeff = bfqq->wr_coeff;
1011 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1012
Paolo Valented5be3fe2017-08-04 07:35:10 +02001013 if (bic->saved_has_short_ttime)
1014 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001015 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001016 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001017
1018 if (bic->saved_IO_bound)
1019 bfq_mark_bfqq_IO_bound(bfqq);
1020 else
1021 bfq_clear_bfqq_IO_bound(bfqq);
1022
1023 bfqq->ttime = bic->saved_ttime;
1024 bfqq->wr_coeff = bic->saved_wr_coeff;
1025 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1026 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1027 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1028
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001029 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001030 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001031 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001032 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1033 !bfq_bfqq_in_large_burst(bfqq) &&
1034 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1035 bfq_wr_duration(bfqd))) {
1036 switch_back_to_interactive_wr(bfqq, bfqd);
1037 } else {
1038 bfqq->wr_coeff = 1;
1039 bfq_log_bfqq(bfqq->bfqd, bfqq,
1040 "resume state: switching off wr");
1041 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001042 }
1043
1044 /* make sure weight will be updated, however we got here */
1045 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001046
1047 if (likely(!busy))
1048 return;
1049
1050 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1051 bfqd->wr_busy_queues++;
1052 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1053 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001054}
1055
1056static int bfqq_process_refs(struct bfq_queue *bfqq)
1057{
Paolo Valente9dee8b32019-01-29 12:06:34 +01001058 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1059 (bfqq->weight_counter != NULL);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001060}
1061
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001062/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1063static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1064{
1065 struct bfq_queue *item;
1066 struct hlist_node *n;
1067
1068 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1069 hlist_del_init(&item->burst_list_node);
1070 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1071 bfqd->burst_size = 1;
1072 bfqd->burst_parent_entity = bfqq->entity.parent;
1073}
1074
1075/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1076static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1077{
1078 /* Increment burst size to take into account also bfqq */
1079 bfqd->burst_size++;
1080
1081 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1082 struct bfq_queue *pos, *bfqq_item;
1083 struct hlist_node *n;
1084
1085 /*
1086 * Enough queues have been activated shortly after each
1087 * other to consider this burst as large.
1088 */
1089 bfqd->large_burst = true;
1090
1091 /*
1092 * We can now mark all queues in the burst list as
1093 * belonging to a large burst.
1094 */
1095 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1096 burst_list_node)
1097 bfq_mark_bfqq_in_large_burst(bfqq_item);
1098 bfq_mark_bfqq_in_large_burst(bfqq);
1099
1100 /*
1101 * From now on, and until the current burst finishes, any
1102 * new queue being activated shortly after the last queue
1103 * was inserted in the burst can be immediately marked as
1104 * belonging to a large burst. So the burst list is not
1105 * needed any more. Remove it.
1106 */
1107 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1108 burst_list_node)
1109 hlist_del_init(&pos->burst_list_node);
1110 } else /*
1111 * Burst not yet large: add bfqq to the burst list. Do
1112 * not increment the ref counter for bfqq, because bfqq
1113 * is removed from the burst list before freeing bfqq
1114 * in put_queue.
1115 */
1116 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1117}
1118
1119/*
1120 * If many queues belonging to the same group happen to be created
1121 * shortly after each other, then the processes associated with these
1122 * queues have typically a common goal. In particular, bursts of queue
1123 * creations are usually caused by services or applications that spawn
1124 * many parallel threads/processes. Examples are systemd during boot,
1125 * or git grep. To help these processes get their job done as soon as
1126 * possible, it is usually better to not grant either weight-raising
1127 * or device idling to their queues.
1128 *
1129 * In this comment we describe, firstly, the reasons why this fact
1130 * holds, and, secondly, the next function, which implements the main
1131 * steps needed to properly mark these queues so that they can then be
1132 * treated in a different way.
1133 *
1134 * The above services or applications benefit mostly from a high
1135 * throughput: the quicker the requests of the activated queues are
1136 * cumulatively served, the sooner the target job of these queues gets
1137 * completed. As a consequence, weight-raising any of these queues,
1138 * which also implies idling the device for it, is almost always
1139 * counterproductive. In most cases it just lowers throughput.
1140 *
1141 * On the other hand, a burst of queue creations may be caused also by
1142 * the start of an application that does not consist of a lot of
1143 * parallel I/O-bound threads. In fact, with a complex application,
1144 * several short processes may need to be executed to start-up the
1145 * application. In this respect, to start an application as quickly as
1146 * possible, the best thing to do is in any case to privilege the I/O
1147 * related to the application with respect to all other
1148 * I/O. Therefore, the best strategy to start as quickly as possible
1149 * an application that causes a burst of queue creations is to
1150 * weight-raise all the queues created during the burst. This is the
1151 * exact opposite of the best strategy for the other type of bursts.
1152 *
1153 * In the end, to take the best action for each of the two cases, the
1154 * two types of bursts need to be distinguished. Fortunately, this
1155 * seems relatively easy, by looking at the sizes of the bursts. In
1156 * particular, we found a threshold such that only bursts with a
1157 * larger size than that threshold are apparently caused by
1158 * services or commands such as systemd or git grep. For brevity,
1159 * hereafter we call just 'large' these bursts. BFQ *does not*
1160 * weight-raise queues whose creation occurs in a large burst. In
1161 * addition, for each of these queues BFQ performs or does not perform
1162 * idling depending on which choice boosts the throughput more. The
1163 * exact choice depends on the device and request pattern at
1164 * hand.
1165 *
1166 * Unfortunately, false positives may occur while an interactive task
1167 * is starting (e.g., an application is being started). The
1168 * consequence is that the queues associated with the task do not
1169 * enjoy weight raising as expected. Fortunately these false positives
1170 * are very rare. They typically occur if some service happens to
1171 * start doing I/O exactly when the interactive task starts.
1172 *
1173 * Turning back to the next function, it implements all the steps
1174 * needed to detect the occurrence of a large burst and to properly
1175 * mark all the queues belonging to it (so that they can then be
1176 * treated in a different way). This goal is achieved by maintaining a
1177 * "burst list" that holds, temporarily, the queues that belong to the
1178 * burst in progress. The list is then used to mark these queues as
1179 * belonging to a large burst if the burst does become large. The main
1180 * steps are the following.
1181 *
1182 * . when the very first queue is created, the queue is inserted into the
1183 * list (as it could be the first queue in a possible burst)
1184 *
1185 * . if the current burst has not yet become large, and a queue Q that does
1186 * not yet belong to the burst is activated shortly after the last time
1187 * at which a new queue entered the burst list, then the function appends
1188 * Q to the burst list
1189 *
1190 * . if, as a consequence of the previous step, the burst size reaches
1191 * the large-burst threshold, then
1192 *
1193 * . all the queues in the burst list are marked as belonging to a
1194 * large burst
1195 *
1196 * . the burst list is deleted; in fact, the burst list already served
1197 * its purpose (keeping temporarily track of the queues in a burst,
1198 * so as to be able to mark them as belonging to a large burst in the
1199 * previous sub-step), and now is not needed any more
1200 *
1201 * . the device enters a large-burst mode
1202 *
1203 * . if a queue Q that does not belong to the burst is created while
1204 * the device is in large-burst mode and shortly after the last time
1205 * at which a queue either entered the burst list or was marked as
1206 * belonging to the current large burst, then Q is immediately marked
1207 * as belonging to a large burst.
1208 *
1209 * . if a queue Q that does not belong to the burst is created a while
1210 * later, i.e., not shortly after, than the last time at which a queue
1211 * either entered the burst list or was marked as belonging to the
1212 * current large burst, then the current burst is deemed as finished and:
1213 *
1214 * . the large-burst mode is reset if set
1215 *
1216 * . the burst list is emptied
1217 *
1218 * . Q is inserted in the burst list, as Q may be the first queue
1219 * in a possible new burst (then the burst list contains just Q
1220 * after this step).
1221 */
1222static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1223{
1224 /*
1225 * If bfqq is already in the burst list or is part of a large
1226 * burst, or finally has just been split, then there is
1227 * nothing else to do.
1228 */
1229 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1230 bfq_bfqq_in_large_burst(bfqq) ||
1231 time_is_after_eq_jiffies(bfqq->split_time +
1232 msecs_to_jiffies(10)))
1233 return;
1234
1235 /*
1236 * If bfqq's creation happens late enough, or bfqq belongs to
1237 * a different group than the burst group, then the current
1238 * burst is finished, and related data structures must be
1239 * reset.
1240 *
1241 * In this respect, consider the special case where bfqq is
1242 * the very first queue created after BFQ is selected for this
1243 * device. In this case, last_ins_in_burst and
1244 * burst_parent_entity are not yet significant when we get
1245 * here. But it is easy to verify that, whether or not the
1246 * following condition is true, bfqq will end up being
1247 * inserted into the burst list. In particular the list will
1248 * happen to contain only bfqq. And this is exactly what has
1249 * to happen, as bfqq may be the first queue of the first
1250 * burst.
1251 */
1252 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1253 bfqd->bfq_burst_interval) ||
1254 bfqq->entity.parent != bfqd->burst_parent_entity) {
1255 bfqd->large_burst = false;
1256 bfq_reset_burst_list(bfqd, bfqq);
1257 goto end;
1258 }
1259
1260 /*
1261 * If we get here, then bfqq is being activated shortly after the
1262 * last queue. So, if the current burst is also large, we can mark
1263 * bfqq as belonging to this large burst immediately.
1264 */
1265 if (bfqd->large_burst) {
1266 bfq_mark_bfqq_in_large_burst(bfqq);
1267 goto end;
1268 }
1269
1270 /*
1271 * If we get here, then a large-burst state has not yet been
1272 * reached, but bfqq is being activated shortly after the last
1273 * queue. Then we add bfqq to the burst.
1274 */
1275 bfq_add_to_burst(bfqd, bfqq);
1276end:
1277 /*
1278 * At this point, bfqq either has been added to the current
1279 * burst or has caused the current burst to terminate and a
1280 * possible new burst to start. In particular, in the second
1281 * case, bfqq has become the first queue in the possible new
1282 * burst. In both cases last_ins_in_burst needs to be moved
1283 * forward.
1284 */
1285 bfqd->last_ins_in_burst = jiffies;
1286}
1287
Paolo Valenteaee69d72017-04-19 08:29:02 -06001288static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1289{
1290 struct bfq_entity *entity = &bfqq->entity;
1291
1292 return entity->budget - entity->service;
1293}
1294
1295/*
1296 * If enough samples have been computed, return the current max budget
1297 * stored in bfqd, which is dynamically updated according to the
1298 * estimated disk peak rate; otherwise return the default max budget
1299 */
1300static int bfq_max_budget(struct bfq_data *bfqd)
1301{
1302 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1303 return bfq_default_max_budget;
1304 else
1305 return bfqd->bfq_max_budget;
1306}
1307
1308/*
1309 * Return min budget, which is a fraction of the current or default
1310 * max budget (trying with 1/32)
1311 */
1312static int bfq_min_budget(struct bfq_data *bfqd)
1313{
1314 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1315 return bfq_default_max_budget / 32;
1316 else
1317 return bfqd->bfq_max_budget / 32;
1318}
1319
Paolo Valenteaee69d72017-04-19 08:29:02 -06001320/*
1321 * The next function, invoked after the input queue bfqq switches from
1322 * idle to busy, updates the budget of bfqq. The function also tells
1323 * whether the in-service queue should be expired, by returning
1324 * true. The purpose of expiring the in-service queue is to give bfqq
1325 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001326 * for preempting the in-service queue is to achieve one of the two
1327 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001328 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001329 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1330 * expired because it has remained idle. In particular, bfqq may have
1331 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001332 *
1333 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1334 * and did not make it to issue a new request before its last
1335 * request was served;
1336 *
1337 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1338 * a new request before the expiration of the idling-time.
1339 *
1340 * Even if bfqq has expired for one of the above reasons, the process
1341 * associated with the queue may be however issuing requests greedily,
1342 * and thus be sensitive to the bandwidth it receives (bfqq may have
1343 * remained idle for other reasons: CPU high load, bfqq not enjoying
1344 * idling, I/O throttling somewhere in the path from the process to
1345 * the I/O scheduler, ...). But if, after every expiration for one of
1346 * the above two reasons, bfqq has to wait for the service of at least
1347 * one full budget of another queue before being served again, then
1348 * bfqq is likely to get a much lower bandwidth or resource time than
1349 * its reserved ones. To address this issue, two countermeasures need
1350 * to be taken.
1351 *
1352 * First, the budget and the timestamps of bfqq need to be updated in
1353 * a special way on bfqq reactivation: they need to be updated as if
1354 * bfqq did not remain idle and did not expire. In fact, if they are
1355 * computed as if bfqq expired and remained idle until reactivation,
1356 * then the process associated with bfqq is treated as if, instead of
1357 * being greedy, it stopped issuing requests when bfqq remained idle,
1358 * and restarts issuing requests only on this reactivation. In other
1359 * words, the scheduler does not help the process recover the "service
1360 * hole" between bfqq expiration and reactivation. As a consequence,
1361 * the process receives a lower bandwidth than its reserved one. In
1362 * contrast, to recover this hole, the budget must be updated as if
1363 * bfqq was not expired at all before this reactivation, i.e., it must
1364 * be set to the value of the remaining budget when bfqq was
1365 * expired. Along the same line, timestamps need to be assigned the
1366 * value they had the last time bfqq was selected for service, i.e.,
1367 * before last expiration. Thus timestamps need to be back-shifted
1368 * with respect to their normal computation (see [1] for more details
1369 * on this tricky aspect).
1370 *
1371 * Secondly, to allow the process to recover the hole, the in-service
1372 * queue must be expired too, to give bfqq the chance to preempt it
1373 * immediately. In fact, if bfqq has to wait for a full budget of the
1374 * in-service queue to be completed, then it may become impossible to
1375 * let the process recover the hole, even if the back-shifted
1376 * timestamps of bfqq are lower than those of the in-service queue. If
1377 * this happens for most or all of the holes, then the process may not
1378 * receive its reserved bandwidth. In this respect, it is worth noting
1379 * that, being the service of outstanding requests unpreemptible, a
1380 * little fraction of the holes may however be unrecoverable, thereby
1381 * causing a little loss of bandwidth.
1382 *
1383 * The last important point is detecting whether bfqq does need this
1384 * bandwidth recovery. In this respect, the next function deems the
1385 * process associated with bfqq greedy, and thus allows it to recover
1386 * the hole, if: 1) the process is waiting for the arrival of a new
1387 * request (which implies that bfqq expired for one of the above two
1388 * reasons), and 2) such a request has arrived soon. The first
1389 * condition is controlled through the flag non_blocking_wait_rq,
1390 * while the second through the flag arrived_in_time. If both
1391 * conditions hold, then the function computes the budget in the
1392 * above-described special way, and signals that the in-service queue
1393 * should be expired. Timestamp back-shifting is done later in
1394 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001395 *
1396 * 2. Reduce latency. Even if timestamps are not backshifted to let
1397 * the process associated with bfqq recover a service hole, bfqq may
1398 * however happen to have, after being (re)activated, a lower finish
1399 * timestamp than the in-service queue. That is, the next budget of
1400 * bfqq may have to be completed before the one of the in-service
1401 * queue. If this is the case, then preempting the in-service queue
1402 * allows this goal to be achieved, apart from the unpreemptible,
1403 * outstanding requests mentioned above.
1404 *
1405 * Unfortunately, regardless of which of the above two goals one wants
1406 * to achieve, service trees need first to be updated to know whether
1407 * the in-service queue must be preempted. To have service trees
1408 * correctly updated, the in-service queue must be expired and
1409 * rescheduled, and bfqq must be scheduled too. This is one of the
1410 * most costly operations (in future versions, the scheduling
1411 * mechanism may be re-designed in such a way to make it possible to
1412 * know whether preemption is needed without needing to update service
1413 * trees). In addition, queue preemptions almost always cause random
1414 * I/O, and thus loss of throughput. Because of these facts, the next
1415 * function adopts the following simple scheme to avoid both costly
1416 * operations and too frequent preemptions: it requests the expiration
1417 * of the in-service queue (unconditionally) only for queues that need
1418 * to recover a hole, or that either are weight-raised or deserve to
1419 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001420 */
1421static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1422 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001423 bool arrived_in_time,
1424 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001425{
1426 struct bfq_entity *entity = &bfqq->entity;
1427
Paolo Valente218cb892019-01-29 12:06:26 +01001428 /*
1429 * In the next compound condition, we check also whether there
1430 * is some budget left, because otherwise there is no point in
1431 * trying to go on serving bfqq with this same budget: bfqq
1432 * would be expired immediately after being selected for
1433 * service. This would only cause useless overhead.
1434 */
1435 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1436 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001437 /*
1438 * We do not clear the flag non_blocking_wait_rq here, as
1439 * the latter is used in bfq_activate_bfqq to signal
1440 * that timestamps need to be back-shifted (and is
1441 * cleared right after).
1442 */
1443
1444 /*
1445 * In next assignment we rely on that either
1446 * entity->service or entity->budget are not updated
1447 * on expiration if bfqq is empty (see
1448 * __bfq_bfqq_recalc_budget). Thus both quantities
1449 * remain unchanged after such an expiration, and the
1450 * following statement therefore assigns to
1451 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001452 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001453 */
1454 entity->budget = min_t(unsigned long,
1455 bfq_bfqq_budget_left(bfqq),
1456 bfqq->max_budget);
1457
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001458 /*
1459 * At this point, we have used entity->service to get
1460 * the budget left (needed for updating
1461 * entity->budget). Thus we finally can, and have to,
1462 * reset entity->service. The latter must be reset
1463 * because bfqq would otherwise be charged again for
1464 * the service it has received during its previous
1465 * service slot(s).
1466 */
1467 entity->service = 0;
1468
Paolo Valenteaee69d72017-04-19 08:29:02 -06001469 return true;
1470 }
1471
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001472 /*
1473 * We can finally complete expiration, by setting service to 0.
1474 */
1475 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001476 entity->budget = max_t(unsigned long, bfqq->max_budget,
1477 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1478 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001479 return wr_or_deserves_wr;
1480}
1481
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001482/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001483 * Return the farthest past time instant according to jiffies
1484 * macros.
1485 */
1486static unsigned long bfq_smallest_from_now(void)
1487{
1488 return jiffies - MAX_JIFFY_OFFSET;
1489}
1490
Paolo Valente44e44a12017-04-12 18:23:12 +02001491static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1492 struct bfq_queue *bfqq,
1493 unsigned int old_wr_coeff,
1494 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001495 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001496 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001497 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001498{
1499 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1500 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001501 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001502 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001503 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1504 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1505 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001506 /*
1507 * No interactive weight raising in progress
1508 * here: assign minus infinity to
1509 * wr_start_at_switch_to_srt, to make sure
1510 * that, at the end of the soft-real-time
1511 * weight raising periods that is starting
1512 * now, no interactive weight-raising period
1513 * may be wrongly considered as still in
1514 * progress (and thus actually started by
1515 * mistake).
1516 */
1517 bfqq->wr_start_at_switch_to_srt =
1518 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001519 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1520 BFQ_SOFTRT_WEIGHT_FACTOR;
1521 bfqq->wr_cur_max_time =
1522 bfqd->bfq_wr_rt_max_time;
1523 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001524
1525 /*
1526 * If needed, further reduce budget to make sure it is
1527 * close to bfqq's backlog, so as to reduce the
1528 * scheduling-error component due to a too large
1529 * budget. Do not care about throughput consequences,
1530 * but only about latency. Finally, do not assign a
1531 * too small budget either, to avoid increasing
1532 * latency by causing too frequent expirations.
1533 */
1534 bfqq->entity.budget = min_t(unsigned long,
1535 bfqq->entity.budget,
1536 2 * bfq_min_budget(bfqd));
1537 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001538 if (interactive) { /* update wr coeff and duration */
1539 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1540 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001541 } else if (in_burst)
1542 bfqq->wr_coeff = 1;
1543 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001544 /*
1545 * The application is now or still meeting the
1546 * requirements for being deemed soft rt. We
1547 * can then correctly and safely (re)charge
1548 * the weight-raising duration for the
1549 * application with the weight-raising
1550 * duration for soft rt applications.
1551 *
1552 * In particular, doing this recharge now, i.e.,
1553 * before the weight-raising period for the
1554 * application finishes, reduces the probability
1555 * of the following negative scenario:
1556 * 1) the weight of a soft rt application is
1557 * raised at startup (as for any newly
1558 * created application),
1559 * 2) since the application is not interactive,
1560 * at a certain time weight-raising is
1561 * stopped for the application,
1562 * 3) at that time the application happens to
1563 * still have pending requests, and hence
1564 * is destined to not have a chance to be
1565 * deemed soft rt before these requests are
1566 * completed (see the comments to the
1567 * function bfq_bfqq_softrt_next_start()
1568 * for details on soft rt detection),
1569 * 4) these pending requests experience a high
1570 * latency because the application is not
1571 * weight-raised while they are pending.
1572 */
1573 if (bfqq->wr_cur_max_time !=
1574 bfqd->bfq_wr_rt_max_time) {
1575 bfqq->wr_start_at_switch_to_srt =
1576 bfqq->last_wr_start_finish;
1577
1578 bfqq->wr_cur_max_time =
1579 bfqd->bfq_wr_rt_max_time;
1580 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1581 BFQ_SOFTRT_WEIGHT_FACTOR;
1582 }
1583 bfqq->last_wr_start_finish = jiffies;
1584 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001585 }
1586}
1587
1588static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1589 struct bfq_queue *bfqq)
1590{
1591 return bfqq->dispatched == 0 &&
1592 time_is_before_jiffies(
1593 bfqq->budget_timeout +
1594 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001595}
1596
1597static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1598 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001599 int old_wr_coeff,
1600 struct request *rq,
1601 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001602{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001603 bool soft_rt, in_burst, wr_or_deserves_wr,
1604 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001605 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001606 /*
1607 * See the comments on
1608 * bfq_bfqq_update_budg_for_activation for
1609 * details on the usage of the next variable.
1610 */
1611 arrived_in_time = ktime_get_ns() <=
1612 bfqq->ttime.last_end_request +
1613 bfqd->bfq_slice_idle * 3;
1614
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001615
Paolo Valenteaee69d72017-04-19 08:29:02 -06001616 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001617 * bfqq deserves to be weight-raised if:
1618 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001619 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001620 * - it has been idle for enough time or is soft real-time,
1621 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001622 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001623 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001624 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001625 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001626 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1627 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001628 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001629 wr_or_deserves_wr = bfqd->low_latency &&
1630 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001631 (bfq_bfqq_sync(bfqq) &&
1632 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001633
1634 /*
1635 * Using the last flag, update budget and check whether bfqq
1636 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001637 */
1638 bfqq_wants_to_preempt =
1639 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001640 arrived_in_time,
1641 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001642
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001643 /*
1644 * If bfqq happened to be activated in a burst, but has been
1645 * idle for much more than an interactive queue, then we
1646 * assume that, in the overall I/O initiated in the burst, the
1647 * I/O associated with bfqq is finished. So bfqq does not need
1648 * to be treated as a queue belonging to a burst
1649 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1650 * if set, and remove bfqq from the burst list if it's
1651 * there. We do not decrement burst_size, because the fact
1652 * that bfqq does not need to belong to the burst list any
1653 * more does not invalidate the fact that bfqq was created in
1654 * a burst.
1655 */
1656 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1657 idle_for_long_time &&
1658 time_is_before_jiffies(
1659 bfqq->budget_timeout +
1660 msecs_to_jiffies(10000))) {
1661 hlist_del_init(&bfqq->burst_list_node);
1662 bfq_clear_bfqq_in_large_burst(bfqq);
1663 }
1664
1665 bfq_clear_bfqq_just_created(bfqq);
1666
1667
Paolo Valenteaee69d72017-04-19 08:29:02 -06001668 if (!bfq_bfqq_IO_bound(bfqq)) {
1669 if (arrived_in_time) {
1670 bfqq->requests_within_timer++;
1671 if (bfqq->requests_within_timer >=
1672 bfqd->bfq_requests_within_timer)
1673 bfq_mark_bfqq_IO_bound(bfqq);
1674 } else
1675 bfqq->requests_within_timer = 0;
1676 }
1677
Paolo Valente44e44a12017-04-12 18:23:12 +02001678 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001679 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1680 /* wraparound */
1681 bfqq->split_time =
1682 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001683
Arianna Avanzini36eca892017-04-12 18:23:16 +02001684 if (time_is_before_jiffies(bfqq->split_time +
1685 bfqd->bfq_wr_min_idle_time)) {
1686 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1687 old_wr_coeff,
1688 wr_or_deserves_wr,
1689 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001690 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001691 soft_rt);
1692
1693 if (old_wr_coeff != bfqq->wr_coeff)
1694 bfqq->entity.prio_changed = 1;
1695 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001696 }
1697
Paolo Valente77b7dce2017-04-12 18:23:13 +02001698 bfqq->last_idle_bklogged = jiffies;
1699 bfqq->service_from_backlogged = 0;
1700 bfq_clear_bfqq_softrt_update(bfqq);
1701
Paolo Valenteaee69d72017-04-19 08:29:02 -06001702 bfq_add_bfqq_busy(bfqd, bfqq);
1703
1704 /*
1705 * Expire in-service queue only if preemption may be needed
1706 * for guarantees. In this respect, the function
1707 * next_queue_may_preempt just checks a simple, necessary
1708 * condition, and not a sufficient condition based on
1709 * timestamps. In fact, for the latter condition to be
1710 * evaluated, timestamps would need first to be updated, and
1711 * this operation is quite costly (see the comments on the
1712 * function bfq_bfqq_update_budg_for_activation).
1713 */
1714 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001715 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001716 next_queue_may_preempt(bfqd))
1717 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1718 false, BFQQE_PREEMPTED);
1719}
1720
1721static void bfq_add_request(struct request *rq)
1722{
1723 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1724 struct bfq_data *bfqd = bfqq->bfqd;
1725 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001726 unsigned int old_wr_coeff = bfqq->wr_coeff;
1727 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001728
1729 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1730 bfqq->queued[rq_is_sync(rq)]++;
1731 bfqd->queued++;
1732
Paolo Valente2341d6622019-03-12 09:59:29 +01001733 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1734 /*
1735 * Periodically reset inject limit, to make sure that
1736 * the latter eventually drops in case workload
1737 * changes, see step (3) in the comments on
1738 * bfq_update_inject_limit().
1739 */
1740 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1741 msecs_to_jiffies(1000))) {
1742 /* invalidate baseline total service time */
1743 bfqq->last_serv_time_ns = 0;
1744
1745 /*
1746 * Reset pointer in case we are waiting for
1747 * some request completion.
1748 */
1749 bfqd->waited_rq = NULL;
1750
1751 /*
1752 * If bfqq has a short think time, then start
1753 * by setting the inject limit to 0
1754 * prudentially, because the service time of
1755 * an injected I/O request may be higher than
1756 * the think time of bfqq, and therefore, if
1757 * one request was injected when bfqq remains
1758 * empty, this injected request might delay
1759 * the service of the next I/O request for
1760 * bfqq significantly. In case bfqq can
1761 * actually tolerate some injection, then the
1762 * adaptive update will however raise the
1763 * limit soon. This lucky circumstance holds
1764 * exactly because bfqq has a short think
1765 * time, and thus, after remaining empty, is
1766 * likely to get new I/O enqueued---and then
1767 * completed---before being expired. This is
1768 * the very pattern that gives the
1769 * limit-update algorithm the chance to
1770 * measure the effect of injection on request
1771 * service times, and then to update the limit
1772 * accordingly.
1773 *
1774 * On the opposite end, if bfqq has a long
1775 * think time, then start directly by 1,
1776 * because:
1777 * a) on the bright side, keeping at most one
1778 * request in service in the drive is unlikely
1779 * to cause any harm to the latency of bfqq's
1780 * requests, as the service time of a single
1781 * request is likely to be lower than the
1782 * think time of bfqq;
1783 * b) on the downside, after becoming empty,
1784 * bfqq is likely to expire before getting its
1785 * next request. With this request arrival
1786 * pattern, it is very hard to sample total
1787 * service times and update the inject limit
1788 * accordingly (see comments on
1789 * bfq_update_inject_limit()). So the limit is
1790 * likely to be never, or at least seldom,
1791 * updated. As a consequence, by setting the
1792 * limit to 1, we avoid that no injection ever
1793 * occurs with bfqq. On the downside, this
1794 * proactive step further reduces chances to
1795 * actually compute the baseline total service
1796 * time. Thus it reduces chances to execute the
1797 * limit-update algorithm and possibly raise the
1798 * limit to more than 1.
1799 */
1800 if (bfq_bfqq_has_short_ttime(bfqq))
1801 bfqq->inject_limit = 0;
1802 else
1803 bfqq->inject_limit = 1;
1804 bfqq->decrease_time_jif = jiffies;
1805 }
1806
1807 /*
1808 * The following conditions must hold to setup a new
1809 * sampling of total service time, and then a new
1810 * update of the inject limit:
1811 * - bfqq is in service, because the total service
1812 * time is evaluated only for the I/O requests of
1813 * the queues in service;
1814 * - this is the right occasion to compute or to
1815 * lower the baseline total service time, because
1816 * there are actually no requests in the drive,
1817 * or
1818 * the baseline total service time is available, and
1819 * this is the right occasion to compute the other
1820 * quantity needed to update the inject limit, i.e.,
1821 * the total service time caused by the amount of
1822 * injection allowed by the current value of the
1823 * limit. It is the right occasion because injection
1824 * has actually been performed during the service
1825 * hole, and there are still in-flight requests,
1826 * which are very likely to be exactly the injected
1827 * requests, or part of them;
1828 * - the minimum interval for sampling the total
1829 * service time and updating the inject limit has
1830 * elapsed.
1831 */
1832 if (bfqq == bfqd->in_service_queue &&
1833 (bfqd->rq_in_driver == 0 ||
1834 (bfqq->last_serv_time_ns > 0 &&
1835 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
1836 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1837 msecs_to_jiffies(100))) {
1838 bfqd->last_empty_occupied_ns = ktime_get_ns();
1839 /*
1840 * Start the state machine for measuring the
1841 * total service time of rq: setting
1842 * wait_dispatch will cause bfqd->waited_rq to
1843 * be set when rq will be dispatched.
1844 */
1845 bfqd->wait_dispatch = true;
1846 bfqd->rqs_injected = false;
1847 }
1848 }
1849
Paolo Valenteaee69d72017-04-19 08:29:02 -06001850 elv_rb_add(&bfqq->sort_list, rq);
1851
1852 /*
1853 * Check if this request is a better next-serve candidate.
1854 */
1855 prev = bfqq->next_rq;
1856 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1857 bfqq->next_rq = next_rq;
1858
Arianna Avanzini36eca892017-04-12 18:23:16 +02001859 /*
1860 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001861 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02001862 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001863 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02001864 bfq_pos_tree_add_move(bfqd, bfqq);
1865
Paolo Valenteaee69d72017-04-19 08:29:02 -06001866 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001867 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1868 rq, &interactive);
1869 else {
1870 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1871 time_is_before_jiffies(
1872 bfqq->last_wr_start_finish +
1873 bfqd->bfq_wr_min_inter_arr_async)) {
1874 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1875 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1876
Paolo Valentecfd69712017-04-12 18:23:15 +02001877 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001878 bfqq->entity.prio_changed = 1;
1879 }
1880 if (prev != bfqq->next_rq)
1881 bfq_updated_next_req(bfqd, bfqq);
1882 }
1883
1884 /*
1885 * Assign jiffies to last_wr_start_finish in the following
1886 * cases:
1887 *
1888 * . if bfqq is not going to be weight-raised, because, for
1889 * non weight-raised queues, last_wr_start_finish stores the
1890 * arrival time of the last request; as of now, this piece
1891 * of information is used only for deciding whether to
1892 * weight-raise async queues
1893 *
1894 * . if bfqq is not weight-raised, because, if bfqq is now
1895 * switching to weight-raised, then last_wr_start_finish
1896 * stores the time when weight-raising starts
1897 *
1898 * . if bfqq is interactive, because, regardless of whether
1899 * bfqq is currently weight-raised, the weight-raising
1900 * period must start or restart (this case is considered
1901 * separately because it is not detected by the above
1902 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001903 *
1904 * last_wr_start_finish has to be updated also if bfqq is soft
1905 * real-time, because the weight-raising period is constantly
1906 * restarted on idle-to-busy transitions for these queues, but
1907 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1908 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001909 */
1910 if (bfqd->low_latency &&
1911 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1912 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001913}
1914
1915static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1916 struct bio *bio,
1917 struct request_queue *q)
1918{
1919 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1920
1921
1922 if (bfqq)
1923 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1924
1925 return NULL;
1926}
1927
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001928static sector_t get_sdist(sector_t last_pos, struct request *rq)
1929{
1930 if (last_pos)
1931 return abs(blk_rq_pos(rq) - last_pos);
1932
1933 return 0;
1934}
1935
Paolo Valenteaee69d72017-04-19 08:29:02 -06001936#if 0 /* Still not clear if we can do without next two functions */
1937static void bfq_activate_request(struct request_queue *q, struct request *rq)
1938{
1939 struct bfq_data *bfqd = q->elevator->elevator_data;
1940
1941 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001942}
1943
1944static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1945{
1946 struct bfq_data *bfqd = q->elevator->elevator_data;
1947
1948 bfqd->rq_in_driver--;
1949}
1950#endif
1951
1952static void bfq_remove_request(struct request_queue *q,
1953 struct request *rq)
1954{
1955 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1956 struct bfq_data *bfqd = bfqq->bfqd;
1957 const int sync = rq_is_sync(rq);
1958
1959 if (bfqq->next_rq == rq) {
1960 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1961 bfq_updated_next_req(bfqd, bfqq);
1962 }
1963
1964 if (rq->queuelist.prev != &rq->queuelist)
1965 list_del_init(&rq->queuelist);
1966 bfqq->queued[sync]--;
1967 bfqd->queued--;
1968 elv_rb_del(&bfqq->sort_list, rq);
1969
1970 elv_rqhash_del(q, rq);
1971 if (q->last_merge == rq)
1972 q->last_merge = NULL;
1973
1974 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1975 bfqq->next_rq = NULL;
1976
1977 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001978 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001979 /*
1980 * bfqq emptied. In normal operation, when
1981 * bfqq is empty, bfqq->entity.service and
1982 * bfqq->entity.budget must contain,
1983 * respectively, the service received and the
1984 * budget used last time bfqq emptied. These
1985 * facts do not hold in this case, as at least
1986 * this last removal occurred while bfqq is
1987 * not in service. To avoid inconsistencies,
1988 * reset both bfqq->entity.service and
1989 * bfqq->entity.budget, if bfqq has still a
1990 * process that may issue I/O requests to it.
1991 */
1992 bfqq->entity.budget = bfqq->entity.service = 0;
1993 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001994
1995 /*
1996 * Remove queue from request-position tree as it is empty.
1997 */
1998 if (bfqq->pos_root) {
1999 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2000 bfqq->pos_root = NULL;
2001 }
Paolo Valente05e90282017-12-20 12:38:31 +01002002 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002003 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2004 if (unlikely(!bfqd->nonrot_with_queueing))
2005 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002006 }
2007
2008 if (rq->cmd_flags & REQ_META)
2009 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002010
Paolo Valenteaee69d72017-04-19 08:29:02 -06002011}
2012
2013static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
2014{
2015 struct request_queue *q = hctx->queue;
2016 struct bfq_data *bfqd = q->elevator->elevator_data;
2017 struct request *free = NULL;
2018 /*
2019 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2020 * store its return value for later use, to avoid nesting
2021 * queue_lock inside the bfqd->lock. We assume that the bic
2022 * returned by bfq_bic_lookup does not go away before
2023 * bfqd->lock is taken.
2024 */
2025 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2026 bool ret;
2027
2028 spin_lock_irq(&bfqd->lock);
2029
2030 if (bic)
2031 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2032 else
2033 bfqd->bio_bfqq = NULL;
2034 bfqd->bio_bic = bic;
2035
2036 ret = blk_mq_sched_try_merge(q, bio, &free);
2037
2038 if (free)
2039 blk_mq_free_request(free);
2040 spin_unlock_irq(&bfqd->lock);
2041
2042 return ret;
2043}
2044
2045static int bfq_request_merge(struct request_queue *q, struct request **req,
2046 struct bio *bio)
2047{
2048 struct bfq_data *bfqd = q->elevator->elevator_data;
2049 struct request *__rq;
2050
2051 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2052 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2053 *req = __rq;
2054 return ELEVATOR_FRONT_MERGE;
2055 }
2056
2057 return ELEVATOR_NO_MERGE;
2058}
2059
Paolo Valente18e5a572018-05-04 19:17:01 +02002060static struct bfq_queue *bfq_init_rq(struct request *rq);
2061
Paolo Valenteaee69d72017-04-19 08:29:02 -06002062static void bfq_request_merged(struct request_queue *q, struct request *req,
2063 enum elv_merge type)
2064{
2065 if (type == ELEVATOR_FRONT_MERGE &&
2066 rb_prev(&req->rb_node) &&
2067 blk_rq_pos(req) <
2068 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2069 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002070 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002071 struct bfq_data *bfqd = bfqq->bfqd;
2072 struct request *prev, *next_rq;
2073
2074 /* Reposition request in its sort_list */
2075 elv_rb_del(&bfqq->sort_list, req);
2076 elv_rb_add(&bfqq->sort_list, req);
2077
2078 /* Choose next request to be served for bfqq */
2079 prev = bfqq->next_rq;
2080 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2081 bfqd->last_position);
2082 bfqq->next_rq = next_rq;
2083 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002084 * If next_rq changes, update both the queue's budget to
2085 * fit the new request and the queue's position in its
2086 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002087 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002088 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002089 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002090 /*
2091 * See comments on bfq_pos_tree_add_move() for
2092 * the unlikely().
2093 */
2094 if (unlikely(!bfqd->nonrot_with_queueing))
2095 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002096 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002097 }
2098}
2099
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002100/*
2101 * This function is called to notify the scheduler that the requests
2102 * rq and 'next' have been merged, with 'next' going away. BFQ
2103 * exploits this hook to address the following issue: if 'next' has a
2104 * fifo_time lower that rq, then the fifo_time of rq must be set to
2105 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002106 *
2107 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2108 * on that rq is picked from the hash table q->elevator->hash, which,
2109 * in its turn, is filled only with I/O requests present in
2110 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2111 * the function that fills this hash table (elv_rqhash_add) is called
2112 * only by bfq_insert_request.
2113 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002114static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2115 struct request *next)
2116{
Paolo Valente18e5a572018-05-04 19:17:01 +02002117 struct bfq_queue *bfqq = bfq_init_rq(rq),
2118 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002119
Paolo Valenteaee69d72017-04-19 08:29:02 -06002120 /*
2121 * If next and rq belong to the same bfq_queue and next is older
2122 * than rq, then reposition rq in the fifo (by substituting next
2123 * with rq). Otherwise, if next and rq belong to different
2124 * bfq_queues, never reposition rq: in fact, we would have to
2125 * reposition it with respect to next's position in its own fifo,
2126 * which would most certainly be too expensive with respect to
2127 * the benefits.
2128 */
2129 if (bfqq == next_bfqq &&
2130 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2131 next->fifo_time < rq->fifo_time) {
2132 list_del_init(&rq->queuelist);
2133 list_replace_init(&next->queuelist, &rq->queuelist);
2134 rq->fifo_time = next->fifo_time;
2135 }
2136
2137 if (bfqq->next_rq == next)
2138 bfqq->next_rq = rq;
2139
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002140 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002141}
2142
Paolo Valente44e44a12017-04-12 18:23:12 +02002143/* Must be called with bfqq != NULL */
2144static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2145{
Paolo Valentecfd69712017-04-12 18:23:15 +02002146 if (bfq_bfqq_busy(bfqq))
2147 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002148 bfqq->wr_coeff = 1;
2149 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002150 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002151 /*
2152 * Trigger a weight change on the next invocation of
2153 * __bfq_entity_update_weight_prio.
2154 */
2155 bfqq->entity.prio_changed = 1;
2156}
2157
Paolo Valenteea25da42017-04-19 08:48:24 -06002158void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2159 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002160{
2161 int i, j;
2162
2163 for (i = 0; i < 2; i++)
2164 for (j = 0; j < IOPRIO_BE_NR; j++)
2165 if (bfqg->async_bfqq[i][j])
2166 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2167 if (bfqg->async_idle_bfqq)
2168 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2169}
2170
2171static void bfq_end_wr(struct bfq_data *bfqd)
2172{
2173 struct bfq_queue *bfqq;
2174
2175 spin_lock_irq(&bfqd->lock);
2176
2177 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2178 bfq_bfqq_end_wr(bfqq);
2179 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2180 bfq_bfqq_end_wr(bfqq);
2181 bfq_end_wr_async(bfqd);
2182
2183 spin_unlock_irq(&bfqd->lock);
2184}
2185
Arianna Avanzini36eca892017-04-12 18:23:16 +02002186static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2187{
2188 if (request)
2189 return blk_rq_pos(io_struct);
2190 else
2191 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2192}
2193
2194static int bfq_rq_close_to_sector(void *io_struct, bool request,
2195 sector_t sector)
2196{
2197 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2198 BFQQ_CLOSE_THR;
2199}
2200
2201static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2202 struct bfq_queue *bfqq,
2203 sector_t sector)
2204{
2205 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2206 struct rb_node *parent, *node;
2207 struct bfq_queue *__bfqq;
2208
2209 if (RB_EMPTY_ROOT(root))
2210 return NULL;
2211
2212 /*
2213 * First, if we find a request starting at the end of the last
2214 * request, choose it.
2215 */
2216 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2217 if (__bfqq)
2218 return __bfqq;
2219
2220 /*
2221 * If the exact sector wasn't found, the parent of the NULL leaf
2222 * will contain the closest sector (rq_pos_tree sorted by
2223 * next_request position).
2224 */
2225 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2226 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2227 return __bfqq;
2228
2229 if (blk_rq_pos(__bfqq->next_rq) < sector)
2230 node = rb_next(&__bfqq->pos_node);
2231 else
2232 node = rb_prev(&__bfqq->pos_node);
2233 if (!node)
2234 return NULL;
2235
2236 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2237 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2238 return __bfqq;
2239
2240 return NULL;
2241}
2242
2243static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2244 struct bfq_queue *cur_bfqq,
2245 sector_t sector)
2246{
2247 struct bfq_queue *bfqq;
2248
2249 /*
2250 * We shall notice if some of the queues are cooperating,
2251 * e.g., working closely on the same area of the device. In
2252 * that case, we can group them together and: 1) don't waste
2253 * time idling, and 2) serve the union of their requests in
2254 * the best possible order for throughput.
2255 */
2256 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2257 if (!bfqq || bfqq == cur_bfqq)
2258 return NULL;
2259
2260 return bfqq;
2261}
2262
2263static struct bfq_queue *
2264bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2265{
2266 int process_refs, new_process_refs;
2267 struct bfq_queue *__bfqq;
2268
2269 /*
2270 * If there are no process references on the new_bfqq, then it is
2271 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2272 * may have dropped their last reference (not just their last process
2273 * reference).
2274 */
2275 if (!bfqq_process_refs(new_bfqq))
2276 return NULL;
2277
2278 /* Avoid a circular list and skip interim queue merges. */
2279 while ((__bfqq = new_bfqq->new_bfqq)) {
2280 if (__bfqq == bfqq)
2281 return NULL;
2282 new_bfqq = __bfqq;
2283 }
2284
2285 process_refs = bfqq_process_refs(bfqq);
2286 new_process_refs = bfqq_process_refs(new_bfqq);
2287 /*
2288 * If the process for the bfqq has gone away, there is no
2289 * sense in merging the queues.
2290 */
2291 if (process_refs == 0 || new_process_refs == 0)
2292 return NULL;
2293
2294 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2295 new_bfqq->pid);
2296
2297 /*
2298 * Merging is just a redirection: the requests of the process
2299 * owning one of the two queues are redirected to the other queue.
2300 * The latter queue, in its turn, is set as shared if this is the
2301 * first time that the requests of some process are redirected to
2302 * it.
2303 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002304 * We redirect bfqq to new_bfqq and not the opposite, because
2305 * we are in the context of the process owning bfqq, thus we
2306 * have the io_cq of this process. So we can immediately
2307 * configure this io_cq to redirect the requests of the
2308 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2309 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002310 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002311 * Anyway, even in case new_bfqq coincides with the in-service
2312 * queue, redirecting requests the in-service queue is the
2313 * best option, as we feed the in-service queue with new
2314 * requests close to the last request served and, by doing so,
2315 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002316 */
2317 bfqq->new_bfqq = new_bfqq;
2318 new_bfqq->ref += process_refs;
2319 return new_bfqq;
2320}
2321
2322static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2323 struct bfq_queue *new_bfqq)
2324{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002325 if (bfq_too_late_for_merging(new_bfqq))
2326 return false;
2327
Arianna Avanzini36eca892017-04-12 18:23:16 +02002328 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2329 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2330 return false;
2331
2332 /*
2333 * If either of the queues has already been detected as seeky,
2334 * then merging it with the other queue is unlikely to lead to
2335 * sequential I/O.
2336 */
2337 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2338 return false;
2339
2340 /*
2341 * Interleaved I/O is known to be done by (some) applications
2342 * only for reads, so it does not make sense to merge async
2343 * queues.
2344 */
2345 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2346 return false;
2347
2348 return true;
2349}
2350
2351/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002352 * Attempt to schedule a merge of bfqq with the currently in-service
2353 * queue or with a close queue among the scheduled queues. Return
2354 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2355 * structure otherwise.
2356 *
2357 * The OOM queue is not allowed to participate to cooperation: in fact, since
2358 * the requests temporarily redirected to the OOM queue could be redirected
2359 * again to dedicated queues at any time, the state needed to correctly
2360 * handle merging with the OOM queue would be quite complex and expensive
2361 * to maintain. Besides, in such a critical condition as an out of memory,
2362 * the benefits of queue merging may be little relevant, or even negligible.
2363 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002364 * WARNING: queue merging may impair fairness among non-weight raised
2365 * queues, for at least two reasons: 1) the original weight of a
2366 * merged queue may change during the merged state, 2) even being the
2367 * weight the same, a merged queue may be bloated with many more
2368 * requests than the ones produced by its originally-associated
2369 * process.
2370 */
2371static struct bfq_queue *
2372bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2373 void *io_struct, bool request)
2374{
2375 struct bfq_queue *in_service_bfqq, *new_bfqq;
2376
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002377 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002378 * Do not perform queue merging if the device is non
2379 * rotational and performs internal queueing. In fact, such a
2380 * device reaches a high speed through internal parallelism
2381 * and pipelining. This means that, to reach a high
2382 * throughput, it must have many requests enqueued at the same
2383 * time. But, in this configuration, the internal scheduling
2384 * algorithm of the device does exactly the job of queue
2385 * merging: it reorders requests so as to obtain as much as
2386 * possible a sequential I/O pattern. As a consequence, with
2387 * the workload generated by processes doing interleaved I/O,
2388 * the throughput reached by the device is likely to be the
2389 * same, with and without queue merging.
2390 *
2391 * Disabling merging also provides a remarkable benefit in
2392 * terms of throughput. Merging tends to make many workloads
2393 * artificially more uneven, because of shared queues
2394 * remaining non empty for incomparably more time than
2395 * non-merged queues. This may accentuate workload
2396 * asymmetries. For example, if one of the queues in a set of
2397 * merged queues has a higher weight than a normal queue, then
2398 * the shared queue may inherit such a high weight and, by
2399 * staying almost always active, may force BFQ to perform I/O
2400 * plugging most of the time. This evidently makes it harder
2401 * for BFQ to let the device reach a high throughput.
2402 *
2403 * Finally, the likely() macro below is not used because one
2404 * of the two branches is more likely than the other, but to
2405 * have the code path after the following if() executed as
2406 * fast as possible for the case of a non rotational device
2407 * with queueing. We want it because this is the fastest kind
2408 * of device. On the opposite end, the likely() may lengthen
2409 * the execution time of BFQ for the case of slower devices
2410 * (rotational or at least without queueing). But in this case
2411 * the execution time of BFQ matters very little, if not at
2412 * all.
2413 */
2414 if (likely(bfqd->nonrot_with_queueing))
2415 return NULL;
2416
2417 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002418 * Prevent bfqq from being merged if it has been created too
2419 * long ago. The idea is that true cooperating processes, and
2420 * thus their associated bfq_queues, are supposed to be
2421 * created shortly after each other. This is the case, e.g.,
2422 * for KVM/QEMU and dump I/O threads. Basing on this
2423 * assumption, the following filtering greatly reduces the
2424 * probability that two non-cooperating processes, which just
2425 * happen to do close I/O for some short time interval, have
2426 * their queues merged by mistake.
2427 */
2428 if (bfq_too_late_for_merging(bfqq))
2429 return NULL;
2430
Arianna Avanzini36eca892017-04-12 18:23:16 +02002431 if (bfqq->new_bfqq)
2432 return bfqq->new_bfqq;
2433
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002434 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002435 return NULL;
2436
2437 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002438 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002439 return NULL;
2440
2441 in_service_bfqq = bfqd->in_service_queue;
2442
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002443 if (in_service_bfqq && in_service_bfqq != bfqq &&
2444 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002445 bfq_rq_close_to_sector(io_struct, request,
2446 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002447 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2448 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2449 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2450 if (new_bfqq)
2451 return new_bfqq;
2452 }
2453 /*
2454 * Check whether there is a cooperator among currently scheduled
2455 * queues. The only thing we need is that the bio/request is not
2456 * NULL, as we need it to establish whether a cooperator exists.
2457 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002458 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2459 bfq_io_struct_pos(io_struct, request));
2460
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002461 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002462 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2463 return bfq_setup_merge(bfqq, new_bfqq);
2464
2465 return NULL;
2466}
2467
2468static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2469{
2470 struct bfq_io_cq *bic = bfqq->bic;
2471
2472 /*
2473 * If !bfqq->bic, the queue is already shared or its requests
2474 * have already been redirected to a shared queue; both idle window
2475 * and weight raising state have already been saved. Do nothing.
2476 */
2477 if (!bic)
2478 return;
2479
2480 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002481 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002482 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002483 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2484 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002485 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002486 !bfq_bfqq_in_large_burst(bfqq) &&
2487 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002488 /*
2489 * bfqq being merged right after being created: bfqq
2490 * would have deserved interactive weight raising, but
2491 * did not make it to be set in a weight-raised state,
2492 * because of this early merge. Store directly the
2493 * weight-raising state that would have been assigned
2494 * to bfqq, so that to avoid that bfqq unjustly fails
2495 * to enjoy weight raising if split soon.
2496 */
2497 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2498 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2499 bic->saved_last_wr_start_finish = jiffies;
2500 } else {
2501 bic->saved_wr_coeff = bfqq->wr_coeff;
2502 bic->saved_wr_start_at_switch_to_srt =
2503 bfqq->wr_start_at_switch_to_srt;
2504 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2505 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2506 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002507}
2508
Arianna Avanzini36eca892017-04-12 18:23:16 +02002509static void
2510bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2511 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2512{
2513 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2514 (unsigned long)new_bfqq->pid);
2515 /* Save weight raising and idle window of the merged queues */
2516 bfq_bfqq_save_state(bfqq);
2517 bfq_bfqq_save_state(new_bfqq);
2518 if (bfq_bfqq_IO_bound(bfqq))
2519 bfq_mark_bfqq_IO_bound(new_bfqq);
2520 bfq_clear_bfqq_IO_bound(bfqq);
2521
2522 /*
2523 * If bfqq is weight-raised, then let new_bfqq inherit
2524 * weight-raising. To reduce false positives, neglect the case
2525 * where bfqq has just been created, but has not yet made it
2526 * to be weight-raised (which may happen because EQM may merge
2527 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002528 * time for bfqq). Handling this case would however be very
2529 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002530 */
2531 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2532 new_bfqq->wr_coeff = bfqq->wr_coeff;
2533 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2534 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2535 new_bfqq->wr_start_at_switch_to_srt =
2536 bfqq->wr_start_at_switch_to_srt;
2537 if (bfq_bfqq_busy(new_bfqq))
2538 bfqd->wr_busy_queues++;
2539 new_bfqq->entity.prio_changed = 1;
2540 }
2541
2542 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2543 bfqq->wr_coeff = 1;
2544 bfqq->entity.prio_changed = 1;
2545 if (bfq_bfqq_busy(bfqq))
2546 bfqd->wr_busy_queues--;
2547 }
2548
2549 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2550 bfqd->wr_busy_queues);
2551
2552 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002553 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2554 */
2555 bic_set_bfqq(bic, new_bfqq, 1);
2556 bfq_mark_bfqq_coop(new_bfqq);
2557 /*
2558 * new_bfqq now belongs to at least two bics (it is a shared queue):
2559 * set new_bfqq->bic to NULL. bfqq either:
2560 * - does not belong to any bic any more, and hence bfqq->bic must
2561 * be set to NULL, or
2562 * - is a queue whose owning bics have already been redirected to a
2563 * different queue, hence the queue is destined to not belong to
2564 * any bic soon and bfqq->bic is already NULL (therefore the next
2565 * assignment causes no harm).
2566 */
2567 new_bfqq->bic = NULL;
2568 bfqq->bic = NULL;
2569 /* release process reference to bfqq */
2570 bfq_put_queue(bfqq);
2571}
2572
Paolo Valenteaee69d72017-04-19 08:29:02 -06002573static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2574 struct bio *bio)
2575{
2576 struct bfq_data *bfqd = q->elevator->elevator_data;
2577 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002578 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002579
2580 /*
2581 * Disallow merge of a sync bio into an async request.
2582 */
2583 if (is_sync && !rq_is_sync(rq))
2584 return false;
2585
2586 /*
2587 * Lookup the bfqq that this bio will be queued with. Allow
2588 * merge only if rq is queued there.
2589 */
2590 if (!bfqq)
2591 return false;
2592
Arianna Avanzini36eca892017-04-12 18:23:16 +02002593 /*
2594 * We take advantage of this function to perform an early merge
2595 * of the queues of possible cooperating processes.
2596 */
2597 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2598 if (new_bfqq) {
2599 /*
2600 * bic still points to bfqq, then it has not yet been
2601 * redirected to some other bfq_queue, and a queue
2602 * merge beween bfqq and new_bfqq can be safely
2603 * fulfillled, i.e., bic can be redirected to new_bfqq
2604 * and bfqq can be put.
2605 */
2606 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2607 new_bfqq);
2608 /*
2609 * If we get here, bio will be queued into new_queue,
2610 * so use new_bfqq to decide whether bio and rq can be
2611 * merged.
2612 */
2613 bfqq = new_bfqq;
2614
2615 /*
2616 * Change also bqfd->bio_bfqq, as
2617 * bfqd->bio_bic now points to new_bfqq, and
2618 * this function may be invoked again (and then may
2619 * use again bqfd->bio_bfqq).
2620 */
2621 bfqd->bio_bfqq = bfqq;
2622 }
2623
Paolo Valenteaee69d72017-04-19 08:29:02 -06002624 return bfqq == RQ_BFQQ(rq);
2625}
2626
Paolo Valente44e44a12017-04-12 18:23:12 +02002627/*
2628 * Set the maximum time for the in-service queue to consume its
2629 * budget. This prevents seeky processes from lowering the throughput.
2630 * In practice, a time-slice service scheme is used with seeky
2631 * processes.
2632 */
2633static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2634 struct bfq_queue *bfqq)
2635{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002636 unsigned int timeout_coeff;
2637
2638 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2639 timeout_coeff = 1;
2640 else
2641 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2642
Paolo Valente44e44a12017-04-12 18:23:12 +02002643 bfqd->last_budget_start = ktime_get();
2644
2645 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002646 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002647}
2648
Paolo Valenteaee69d72017-04-19 08:29:02 -06002649static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2650 struct bfq_queue *bfqq)
2651{
2652 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002653 bfq_clear_bfqq_fifo_expire(bfqq);
2654
2655 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2656
Paolo Valente77b7dce2017-04-12 18:23:13 +02002657 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2658 bfqq->wr_coeff > 1 &&
2659 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2660 time_is_before_jiffies(bfqq->budget_timeout)) {
2661 /*
2662 * For soft real-time queues, move the start
2663 * of the weight-raising period forward by the
2664 * time the queue has not received any
2665 * service. Otherwise, a relatively long
2666 * service delay is likely to cause the
2667 * weight-raising period of the queue to end,
2668 * because of the short duration of the
2669 * weight-raising period of a soft real-time
2670 * queue. It is worth noting that this move
2671 * is not so dangerous for the other queues,
2672 * because soft real-time queues are not
2673 * greedy.
2674 *
2675 * To not add a further variable, we use the
2676 * overloaded field budget_timeout to
2677 * determine for how long the queue has not
2678 * received service, i.e., how much time has
2679 * elapsed since the queue expired. However,
2680 * this is a little imprecise, because
2681 * budget_timeout is set to jiffies if bfqq
2682 * not only expires, but also remains with no
2683 * request.
2684 */
2685 if (time_after(bfqq->budget_timeout,
2686 bfqq->last_wr_start_finish))
2687 bfqq->last_wr_start_finish +=
2688 jiffies - bfqq->budget_timeout;
2689 else
2690 bfqq->last_wr_start_finish = jiffies;
2691 }
2692
Paolo Valente44e44a12017-04-12 18:23:12 +02002693 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002694 bfq_log_bfqq(bfqd, bfqq,
2695 "set_in_service_queue, cur-budget = %d",
2696 bfqq->entity.budget);
2697 }
2698
2699 bfqd->in_service_queue = bfqq;
2700}
2701
2702/*
2703 * Get and set a new queue for service.
2704 */
2705static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2706{
2707 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2708
2709 __bfq_set_in_service_queue(bfqd, bfqq);
2710 return bfqq;
2711}
2712
Paolo Valenteaee69d72017-04-19 08:29:02 -06002713static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2714{
2715 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002716 u32 sl;
2717
Paolo Valenteaee69d72017-04-19 08:29:02 -06002718 bfq_mark_bfqq_wait_request(bfqq);
2719
2720 /*
2721 * We don't want to idle for seeks, but we do want to allow
2722 * fair distribution of slice time for a process doing back-to-back
2723 * seeks. So allow a little bit of time for him to submit a new rq.
2724 */
2725 sl = bfqd->bfq_slice_idle;
2726 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002727 * Unless the queue is being weight-raised or the scenario is
2728 * asymmetric, grant only minimum idle time if the queue
2729 * is seeky. A long idling is preserved for a weight-raised
2730 * queue, or, more in general, in an asymmetric scenario,
2731 * because a long idling is needed for guaranteeing to a queue
2732 * its reserved share of the throughput (in particular, it is
2733 * needed if the queue has a higher weight than some other
2734 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002735 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002736 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01002737 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002738 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01002739 else if (bfqq->wr_coeff > 1)
2740 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002741
2742 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01002743 bfqd->last_idling_start_jiffies = jiffies;
2744
Paolo Valenteaee69d72017-04-19 08:29:02 -06002745 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2746 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002747 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002748}
2749
2750/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002751 * In autotuning mode, max_budget is dynamically recomputed as the
2752 * amount of sectors transferred in timeout at the estimated peak
2753 * rate. This enables BFQ to utilize a full timeslice with a full
2754 * budget, even if the in-service queue is served at peak rate. And
2755 * this maximises throughput with sequential workloads.
2756 */
2757static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2758{
2759 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2760 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2761}
2762
Paolo Valente44e44a12017-04-12 18:23:12 +02002763/*
2764 * Update parameters related to throughput and responsiveness, as a
2765 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002766 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002767 */
2768static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2769{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002770 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002771 bfqd->bfq_max_budget =
2772 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002773 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002774 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002775}
2776
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002777static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2778 struct request *rq)
2779{
2780 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2781 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2782 bfqd->peak_rate_samples = 1;
2783 bfqd->sequential_samples = 0;
2784 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2785 blk_rq_sectors(rq);
2786 } else /* no new rq dispatched, just reset the number of samples */
2787 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2788
2789 bfq_log(bfqd,
2790 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2791 bfqd->peak_rate_samples, bfqd->sequential_samples,
2792 bfqd->tot_sectors_dispatched);
2793}
2794
2795static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2796{
2797 u32 rate, weight, divisor;
2798
2799 /*
2800 * For the convergence property to hold (see comments on
2801 * bfq_update_peak_rate()) and for the assessment to be
2802 * reliable, a minimum number of samples must be present, and
2803 * a minimum amount of time must have elapsed. If not so, do
2804 * not compute new rate. Just reset parameters, to get ready
2805 * for a new evaluation attempt.
2806 */
2807 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2808 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2809 goto reset_computation;
2810
2811 /*
2812 * If a new request completion has occurred after last
2813 * dispatch, then, to approximate the rate at which requests
2814 * have been served by the device, it is more precise to
2815 * extend the observation interval to the last completion.
2816 */
2817 bfqd->delta_from_first =
2818 max_t(u64, bfqd->delta_from_first,
2819 bfqd->last_completion - bfqd->first_dispatch);
2820
2821 /*
2822 * Rate computed in sects/usec, and not sects/nsec, for
2823 * precision issues.
2824 */
2825 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2826 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2827
2828 /*
2829 * Peak rate not updated if:
2830 * - the percentage of sequential dispatches is below 3/4 of the
2831 * total, and rate is below the current estimated peak rate
2832 * - rate is unreasonably high (> 20M sectors/sec)
2833 */
2834 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2835 rate <= bfqd->peak_rate) ||
2836 rate > 20<<BFQ_RATE_SHIFT)
2837 goto reset_computation;
2838
2839 /*
2840 * We have to update the peak rate, at last! To this purpose,
2841 * we use a low-pass filter. We compute the smoothing constant
2842 * of the filter as a function of the 'weight' of the new
2843 * measured rate.
2844 *
2845 * As can be seen in next formulas, we define this weight as a
2846 * quantity proportional to how sequential the workload is,
2847 * and to how long the observation time interval is.
2848 *
2849 * The weight runs from 0 to 8. The maximum value of the
2850 * weight, 8, yields the minimum value for the smoothing
2851 * constant. At this minimum value for the smoothing constant,
2852 * the measured rate contributes for half of the next value of
2853 * the estimated peak rate.
2854 *
2855 * So, the first step is to compute the weight as a function
2856 * of how sequential the workload is. Note that the weight
2857 * cannot reach 9, because bfqd->sequential_samples cannot
2858 * become equal to bfqd->peak_rate_samples, which, in its
2859 * turn, holds true because bfqd->sequential_samples is not
2860 * incremented for the first sample.
2861 */
2862 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2863
2864 /*
2865 * Second step: further refine the weight as a function of the
2866 * duration of the observation interval.
2867 */
2868 weight = min_t(u32, 8,
2869 div_u64(weight * bfqd->delta_from_first,
2870 BFQ_RATE_REF_INTERVAL));
2871
2872 /*
2873 * Divisor ranging from 10, for minimum weight, to 2, for
2874 * maximum weight.
2875 */
2876 divisor = 10 - weight;
2877
2878 /*
2879 * Finally, update peak rate:
2880 *
2881 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2882 */
2883 bfqd->peak_rate *= divisor-1;
2884 bfqd->peak_rate /= divisor;
2885 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2886
2887 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002888
2889 /*
2890 * For a very slow device, bfqd->peak_rate can reach 0 (see
2891 * the minimum representable values reported in the comments
2892 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2893 * divisions by zero where bfqd->peak_rate is used as a
2894 * divisor.
2895 */
2896 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2897
Paolo Valente44e44a12017-04-12 18:23:12 +02002898 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002899
2900reset_computation:
2901 bfq_reset_rate_computation(bfqd, rq);
2902}
2903
2904/*
2905 * Update the read/write peak rate (the main quantity used for
2906 * auto-tuning, see update_thr_responsiveness_params()).
2907 *
2908 * It is not trivial to estimate the peak rate (correctly): because of
2909 * the presence of sw and hw queues between the scheduler and the
2910 * device components that finally serve I/O requests, it is hard to
2911 * say exactly when a given dispatched request is served inside the
2912 * device, and for how long. As a consequence, it is hard to know
2913 * precisely at what rate a given set of requests is actually served
2914 * by the device.
2915 *
2916 * On the opposite end, the dispatch time of any request is trivially
2917 * available, and, from this piece of information, the "dispatch rate"
2918 * of requests can be immediately computed. So, the idea in the next
2919 * function is to use what is known, namely request dispatch times
2920 * (plus, when useful, request completion times), to estimate what is
2921 * unknown, namely in-device request service rate.
2922 *
2923 * The main issue is that, because of the above facts, the rate at
2924 * which a certain set of requests is dispatched over a certain time
2925 * interval can vary greatly with respect to the rate at which the
2926 * same requests are then served. But, since the size of any
2927 * intermediate queue is limited, and the service scheme is lossless
2928 * (no request is silently dropped), the following obvious convergence
2929 * property holds: the number of requests dispatched MUST become
2930 * closer and closer to the number of requests completed as the
2931 * observation interval grows. This is the key property used in
2932 * the next function to estimate the peak service rate as a function
2933 * of the observed dispatch rate. The function assumes to be invoked
2934 * on every request dispatch.
2935 */
2936static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2937{
2938 u64 now_ns = ktime_get_ns();
2939
2940 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2941 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2942 bfqd->peak_rate_samples);
2943 bfq_reset_rate_computation(bfqd, rq);
2944 goto update_last_values; /* will add one sample */
2945 }
2946
2947 /*
2948 * Device idle for very long: the observation interval lasting
2949 * up to this dispatch cannot be a valid observation interval
2950 * for computing a new peak rate (similarly to the late-
2951 * completion event in bfq_completed_request()). Go to
2952 * update_rate_and_reset to have the following three steps
2953 * taken:
2954 * - close the observation interval at the last (previous)
2955 * request dispatch or completion
2956 * - compute rate, if possible, for that observation interval
2957 * - start a new observation interval with this dispatch
2958 */
2959 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2960 bfqd->rq_in_driver == 0)
2961 goto update_rate_and_reset;
2962
2963 /* Update sampling information */
2964 bfqd->peak_rate_samples++;
2965
2966 if ((bfqd->rq_in_driver > 0 ||
2967 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01002968 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002969 bfqd->sequential_samples++;
2970
2971 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2972
2973 /* Reset max observed rq size every 32 dispatches */
2974 if (likely(bfqd->peak_rate_samples % 32))
2975 bfqd->last_rq_max_size =
2976 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2977 else
2978 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2979
2980 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2981
2982 /* Target observation interval not yet reached, go on sampling */
2983 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2984 goto update_last_values;
2985
2986update_rate_and_reset:
2987 bfq_update_rate_reset(bfqd, rq);
2988update_last_values:
2989 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01002990 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
2991 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002992 bfqd->last_dispatch = now_ns;
2993}
2994
2995/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002996 * Remove request from internal lists.
2997 */
2998static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2999{
3000 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3001
3002 /*
3003 * For consistency, the next instruction should have been
3004 * executed after removing the request from the queue and
3005 * dispatching it. We execute instead this instruction before
3006 * bfq_remove_request() (and hence introduce a temporary
3007 * inconsistency), for efficiency. In fact, should this
3008 * dispatch occur for a non in-service bfqq, this anticipated
3009 * increment prevents two counters related to bfqq->dispatched
3010 * from risking to be, first, uselessly decremented, and then
3011 * incremented again when the (new) value of bfqq->dispatched
3012 * happens to be taken into account.
3013 */
3014 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003015 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003016
3017 bfq_remove_request(q, rq);
3018}
3019
3020static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3021{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003022 /*
3023 * If this bfqq is shared between multiple processes, check
3024 * to make sure that those processes are still issuing I/Os
3025 * within the mean seek distance. If not, it may be time to
3026 * break the queues apart again.
3027 */
3028 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3029 bfq_mark_bfqq_split_coop(bfqq);
3030
Paolo Valente44e44a12017-04-12 18:23:12 +02003031 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
3032 if (bfqq->dispatched == 0)
3033 /*
3034 * Overloading budget_timeout field to store
3035 * the time at which the queue remains with no
3036 * backlog and no outstanding request; used by
3037 * the weight-raising mechanism.
3038 */
3039 bfqq->budget_timeout = jiffies;
3040
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003041 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003042 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003043 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003044 /*
3045 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003046 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003047 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003048 if (unlikely(!bfqd->nonrot_with_queueing))
3049 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003050 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003051
3052 /*
3053 * All in-service entities must have been properly deactivated
3054 * or requeued before executing the next function, which
3055 * resets all in-service entites as no more in service.
3056 */
3057 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003058}
3059
3060/**
3061 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3062 * @bfqd: device data.
3063 * @bfqq: queue to update.
3064 * @reason: reason for expiration.
3065 *
3066 * Handle the feedback on @bfqq budget at queue expiration.
3067 * See the body for detailed comments.
3068 */
3069static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3070 struct bfq_queue *bfqq,
3071 enum bfqq_expiration reason)
3072{
3073 struct request *next_rq;
3074 int budget, min_budget;
3075
Paolo Valenteaee69d72017-04-19 08:29:02 -06003076 min_budget = bfq_min_budget(bfqd);
3077
Paolo Valente44e44a12017-04-12 18:23:12 +02003078 if (bfqq->wr_coeff == 1)
3079 budget = bfqq->max_budget;
3080 else /*
3081 * Use a constant, low budget for weight-raised queues,
3082 * to help achieve a low latency. Keep it slightly higher
3083 * than the minimum possible budget, to cause a little
3084 * bit fewer expirations.
3085 */
3086 budget = 2 * min_budget;
3087
Paolo Valenteaee69d72017-04-19 08:29:02 -06003088 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3089 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3090 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3091 budget, bfq_min_budget(bfqd));
3092 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3093 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3094
Paolo Valente44e44a12017-04-12 18:23:12 +02003095 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003096 switch (reason) {
3097 /*
3098 * Caveat: in all the following cases we trade latency
3099 * for throughput.
3100 */
3101 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003102 /*
3103 * This is the only case where we may reduce
3104 * the budget: if there is no request of the
3105 * process still waiting for completion, then
3106 * we assume (tentatively) that the timer has
3107 * expired because the batch of requests of
3108 * the process could have been served with a
3109 * smaller budget. Hence, betting that
3110 * process will behave in the same way when it
3111 * becomes backlogged again, we reduce its
3112 * next budget. As long as we guess right,
3113 * this budget cut reduces the latency
3114 * experienced by the process.
3115 *
3116 * However, if there are still outstanding
3117 * requests, then the process may have not yet
3118 * issued its next request just because it is
3119 * still waiting for the completion of some of
3120 * the still outstanding ones. So in this
3121 * subcase we do not reduce its budget, on the
3122 * contrary we increase it to possibly boost
3123 * the throughput, as discussed in the
3124 * comments to the BUDGET_TIMEOUT case.
3125 */
3126 if (bfqq->dispatched > 0) /* still outstanding reqs */
3127 budget = min(budget * 2, bfqd->bfq_max_budget);
3128 else {
3129 if (budget > 5 * min_budget)
3130 budget -= 4 * min_budget;
3131 else
3132 budget = min_budget;
3133 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003134 break;
3135 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003136 /*
3137 * We double the budget here because it gives
3138 * the chance to boost the throughput if this
3139 * is not a seeky process (and has bumped into
3140 * this timeout because of, e.g., ZBR).
3141 */
3142 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003143 break;
3144 case BFQQE_BUDGET_EXHAUSTED:
3145 /*
3146 * The process still has backlog, and did not
3147 * let either the budget timeout or the disk
3148 * idling timeout expire. Hence it is not
3149 * seeky, has a short thinktime and may be
3150 * happy with a higher budget too. So
3151 * definitely increase the budget of this good
3152 * candidate to boost the disk throughput.
3153 */
Paolo Valente54b60452017-04-12 18:23:09 +02003154 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003155 break;
3156 case BFQQE_NO_MORE_REQUESTS:
3157 /*
3158 * For queues that expire for this reason, it
3159 * is particularly important to keep the
3160 * budget close to the actual service they
3161 * need. Doing so reduces the timestamp
3162 * misalignment problem described in the
3163 * comments in the body of
3164 * __bfq_activate_entity. In fact, suppose
3165 * that a queue systematically expires for
3166 * BFQQE_NO_MORE_REQUESTS and presents a
3167 * new request in time to enjoy timestamp
3168 * back-shifting. The larger the budget of the
3169 * queue is with respect to the service the
3170 * queue actually requests in each service
3171 * slot, the more times the queue can be
3172 * reactivated with the same virtual finish
3173 * time. It follows that, even if this finish
3174 * time is pushed to the system virtual time
3175 * to reduce the consequent timestamp
3176 * misalignment, the queue unjustly enjoys for
3177 * many re-activations a lower finish time
3178 * than all newly activated queues.
3179 *
3180 * The service needed by bfqq is measured
3181 * quite precisely by bfqq->entity.service.
3182 * Since bfqq does not enjoy device idling,
3183 * bfqq->entity.service is equal to the number
3184 * of sectors that the process associated with
3185 * bfqq requested to read/write before waiting
3186 * for request completions, or blocking for
3187 * other reasons.
3188 */
3189 budget = max_t(int, bfqq->entity.service, min_budget);
3190 break;
3191 default:
3192 return;
3193 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003194 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003195 /*
3196 * Async queues get always the maximum possible
3197 * budget, as for them we do not care about latency
3198 * (in addition, their ability to dispatch is limited
3199 * by the charging factor).
3200 */
3201 budget = bfqd->bfq_max_budget;
3202 }
3203
3204 bfqq->max_budget = budget;
3205
3206 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3207 !bfqd->bfq_user_max_budget)
3208 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3209
3210 /*
3211 * If there is still backlog, then assign a new budget, making
3212 * sure that it is large enough for the next request. Since
3213 * the finish time of bfqq must be kept in sync with the
3214 * budget, be sure to call __bfq_bfqq_expire() *after* this
3215 * update.
3216 *
3217 * If there is no backlog, then no need to update the budget;
3218 * it will be updated on the arrival of a new request.
3219 */
3220 next_rq = bfqq->next_rq;
3221 if (next_rq)
3222 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3223 bfq_serv_to_charge(next_rq, bfqq));
3224
3225 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3226 next_rq ? blk_rq_sectors(next_rq) : 0,
3227 bfqq->entity.budget);
3228}
3229
Paolo Valenteaee69d72017-04-19 08:29:02 -06003230/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003231 * Return true if the process associated with bfqq is "slow". The slow
3232 * flag is used, in addition to the budget timeout, to reduce the
3233 * amount of service provided to seeky processes, and thus reduce
3234 * their chances to lower the throughput. More details in the comments
3235 * on the function bfq_bfqq_expire().
3236 *
3237 * An important observation is in order: as discussed in the comments
3238 * on the function bfq_update_peak_rate(), with devices with internal
3239 * queues, it is hard if ever possible to know when and for how long
3240 * an I/O request is processed by the device (apart from the trivial
3241 * I/O pattern where a new request is dispatched only after the
3242 * previous one has been completed). This makes it hard to evaluate
3243 * the real rate at which the I/O requests of each bfq_queue are
3244 * served. In fact, for an I/O scheduler like BFQ, serving a
3245 * bfq_queue means just dispatching its requests during its service
3246 * slot (i.e., until the budget of the queue is exhausted, or the
3247 * queue remains idle, or, finally, a timeout fires). But, during the
3248 * service slot of a bfq_queue, around 100 ms at most, the device may
3249 * be even still processing requests of bfq_queues served in previous
3250 * service slots. On the opposite end, the requests of the in-service
3251 * bfq_queue may be completed after the service slot of the queue
3252 * finishes.
3253 *
3254 * Anyway, unless more sophisticated solutions are used
3255 * (where possible), the sum of the sizes of the requests dispatched
3256 * during the service slot of a bfq_queue is probably the only
3257 * approximation available for the service received by the bfq_queue
3258 * during its service slot. And this sum is the quantity used in this
3259 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003260 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003261static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3262 bool compensate, enum bfqq_expiration reason,
3263 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003264{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003265 ktime_t delta_ktime;
3266 u32 delta_usecs;
3267 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003268
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003269 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003270 return false;
3271
3272 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003273 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003274 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003275 delta_ktime = ktime_get();
3276 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3277 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003278
3279 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003280 if (delta_usecs < 1000) {
3281 if (blk_queue_nonrot(bfqd->queue))
3282 /*
3283 * give same worst-case guarantees as idling
3284 * for seeky
3285 */
3286 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3287 else /* charge at least one seek */
3288 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003289
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003290 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003291 }
3292
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003293 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003294
3295 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003296 * Use only long (> 20ms) intervals to filter out excessive
3297 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003298 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003299 if (delta_usecs > 20000) {
3300 /*
3301 * Caveat for rotational devices: processes doing I/O
3302 * in the slower disk zones tend to be slow(er) even
3303 * if not seeky. In this respect, the estimated peak
3304 * rate is likely to be an average over the disk
3305 * surface. Accordingly, to not be too harsh with
3306 * unlucky processes, a process is deemed slow only if
3307 * its rate has been lower than half of the estimated
3308 * peak rate.
3309 */
3310 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3311 }
3312
3313 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3314
3315 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003316}
3317
3318/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003319 * To be deemed as soft real-time, an application must meet two
3320 * requirements. First, the application must not require an average
3321 * bandwidth higher than the approximate bandwidth required to playback or
3322 * record a compressed high-definition video.
3323 * The next function is invoked on the completion of the last request of a
3324 * batch, to compute the next-start time instant, soft_rt_next_start, such
3325 * that, if the next request of the application does not arrive before
3326 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3327 *
3328 * The second requirement is that the request pattern of the application is
3329 * isochronous, i.e., that, after issuing a request or a batch of requests,
3330 * the application stops issuing new requests until all its pending requests
3331 * have been completed. After that, the application may issue a new batch,
3332 * and so on.
3333 * For this reason the next function is invoked to compute
3334 * soft_rt_next_start only for applications that meet this requirement,
3335 * whereas soft_rt_next_start is set to infinity for applications that do
3336 * not.
3337 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003338 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3339 * happen to meet, occasionally or systematically, both the above
3340 * bandwidth and isochrony requirements. This may happen at least in
3341 * the following circumstances. First, if the CPU load is high. The
3342 * application may stop issuing requests while the CPUs are busy
3343 * serving other processes, then restart, then stop again for a while,
3344 * and so on. The other circumstances are related to the storage
3345 * device: the storage device is highly loaded or reaches a low-enough
3346 * throughput with the I/O of the application (e.g., because the I/O
3347 * is random and/or the device is slow). In all these cases, the
3348 * I/O of the application may be simply slowed down enough to meet
3349 * the bandwidth and isochrony requirements. To reduce the probability
3350 * that greedy applications are deemed as soft real-time in these
3351 * corner cases, a further rule is used in the computation of
3352 * soft_rt_next_start: the return value of this function is forced to
3353 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003354 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003355 * (a) Current time plus: (1) the maximum time for which the arrival
3356 * of a request is waited for when a sync queue becomes idle,
3357 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3358 * postpone for a moment the reason for adding a few extra
3359 * jiffies; we get back to it after next item (b). Lower-bounding
3360 * the return value of this function with the current time plus
3361 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3362 * because the latter issue their next request as soon as possible
3363 * after the last one has been completed. In contrast, a soft
3364 * real-time application spends some time processing data, after a
3365 * batch of its requests has been completed.
3366 *
3367 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3368 * above, greedy applications may happen to meet both the
3369 * bandwidth and isochrony requirements under heavy CPU or
3370 * storage-device load. In more detail, in these scenarios, these
3371 * applications happen, only for limited time periods, to do I/O
3372 * slowly enough to meet all the requirements described so far,
3373 * including the filtering in above item (a). These slow-speed
3374 * time intervals are usually interspersed between other time
3375 * intervals during which these applications do I/O at a very high
3376 * speed. Fortunately, exactly because of the high speed of the
3377 * I/O in the high-speed intervals, the values returned by this
3378 * function happen to be so high, near the end of any such
3379 * high-speed interval, to be likely to fall *after* the end of
3380 * the low-speed time interval that follows. These high values are
3381 * stored in bfqq->soft_rt_next_start after each invocation of
3382 * this function. As a consequence, if the last value of
3383 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3384 * next value that this function may return, then, from the very
3385 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3386 * likely to be constantly kept so high that any I/O request
3387 * issued during the low-speed interval is considered as arriving
3388 * to soon for the application to be deemed as soft
3389 * real-time. Then, in the high-speed interval that follows, the
3390 * application will not be deemed as soft real-time, just because
3391 * it will do I/O at a high speed. And so on.
3392 *
3393 * Getting back to the filtering in item (a), in the following two
3394 * cases this filtering might be easily passed by a greedy
3395 * application, if the reference quantity was just
3396 * bfqd->bfq_slice_idle:
3397 * 1) HZ is so low that the duration of a jiffy is comparable to or
3398 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3399 * devices with HZ=100. The time granularity may be so coarse
3400 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3401 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003402 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3403 * for a while, then suddenly 'jump' by several units to recover the lost
3404 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003405 * To address this issue, in the filtering in (a) we do not use as a
3406 * reference time interval just bfqd->bfq_slice_idle, but
3407 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3408 * minimum number of jiffies for which the filter seems to be quite
3409 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003410 */
3411static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3412 struct bfq_queue *bfqq)
3413{
Paolo Valentea34b0242017-12-15 07:23:12 +01003414 return max3(bfqq->soft_rt_next_start,
3415 bfqq->last_idle_bklogged +
3416 HZ * bfqq->service_from_backlogged /
3417 bfqd->bfq_wr_max_softrt_rate,
3418 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003419}
3420
Paolo Valenteaee69d72017-04-19 08:29:02 -06003421/**
3422 * bfq_bfqq_expire - expire a queue.
3423 * @bfqd: device owning the queue.
3424 * @bfqq: the queue to expire.
3425 * @compensate: if true, compensate for the time spent idling.
3426 * @reason: the reason causing the expiration.
3427 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003428 * If the process associated with bfqq does slow I/O (e.g., because it
3429 * issues random requests), we charge bfqq with the time it has been
3430 * in service instead of the service it has received (see
3431 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3432 * a consequence, bfqq will typically get higher timestamps upon
3433 * reactivation, and hence it will be rescheduled as if it had
3434 * received more service than what it has actually received. In the
3435 * end, bfqq receives less service in proportion to how slowly its
3436 * associated process consumes its budgets (and hence how seriously it
3437 * tends to lower the throughput). In addition, this time-charging
3438 * strategy guarantees time fairness among slow processes. In
3439 * contrast, if the process associated with bfqq is not slow, we
3440 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003441 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003442 * Charging time to the first type of queues and the exact service to
3443 * the other has the effect of using the WF2Q+ policy to schedule the
3444 * former on a timeslice basis, without violating service domain
3445 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003446 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003447void bfq_bfqq_expire(struct bfq_data *bfqd,
3448 struct bfq_queue *bfqq,
3449 bool compensate,
3450 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003451{
3452 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003453 unsigned long delta = 0;
3454 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003455 int ref;
3456
3457 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003458 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003459 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003460 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003461
3462 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003463 * As above explained, charge slow (typically seeky) and
3464 * timed-out queues with the time and not the service
3465 * received, to favor sequential workloads.
3466 *
3467 * Processes doing I/O in the slower disk zones will tend to
3468 * be slow(er) even if not seeky. Therefore, since the
3469 * estimated peak rate is actually an average over the disk
3470 * surface, these processes may timeout just for bad luck. To
3471 * avoid punishing them, do not charge time to processes that
3472 * succeeded in consuming at least 2/3 of their budget. This
3473 * allows BFQ to preserve enough elasticity to still perform
3474 * bandwidth, and not time, distribution with little unlucky
3475 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003476 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003477 if (bfqq->wr_coeff == 1 &&
3478 (slow ||
3479 (reason == BFQQE_BUDGET_TIMEOUT &&
3480 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003481 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003482
3483 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003484 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003485 bfq_clear_bfqq_IO_bound(bfqq);
3486
Paolo Valente44e44a12017-04-12 18:23:12 +02003487 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3488 bfqq->last_wr_start_finish = jiffies;
3489
Paolo Valente77b7dce2017-04-12 18:23:13 +02003490 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3491 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3492 /*
3493 * If we get here, and there are no outstanding
3494 * requests, then the request pattern is isochronous
3495 * (see the comments on the function
3496 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003497 * soft_rt_next_start. And we do it, unless bfqq is in
3498 * interactive weight raising. We do not do it in the
3499 * latter subcase, for the following reason. bfqq may
3500 * be conveying the I/O needed to load a soft
3501 * real-time application. Such an application will
3502 * actually exhibit a soft real-time I/O pattern after
3503 * it finally starts doing its job. But, if
3504 * soft_rt_next_start is computed here for an
3505 * interactive bfqq, and bfqq had received a lot of
3506 * service before remaining with no outstanding
3507 * request (likely to happen on a fast device), then
3508 * soft_rt_next_start would be assigned such a high
3509 * value that, for a very long time, bfqq would be
3510 * prevented from being possibly considered as soft
3511 * real time.
3512 *
3513 * If, instead, the queue still has outstanding
3514 * requests, then we have to wait for the completion
3515 * of all the outstanding requests to discover whether
3516 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003517 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003518 if (bfqq->dispatched == 0 &&
3519 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003520 bfqq->soft_rt_next_start =
3521 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003522 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003523 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003524 * Schedule an update of soft_rt_next_start to when
3525 * the task may be discovered to be isochronous.
3526 */
3527 bfq_mark_bfqq_softrt_update(bfqq);
3528 }
3529 }
3530
Paolo Valenteaee69d72017-04-19 08:29:02 -06003531 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003532 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3533 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003534
3535 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01003536 * bfqq expired, so no total service time needs to be computed
3537 * any longer: reset state machine for measuring total service
3538 * times.
3539 */
3540 bfqd->rqs_injected = bfqd->wait_dispatch = false;
3541 bfqd->waited_rq = NULL;
3542
3543 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003544 * Increase, decrease or leave budget unchanged according to
3545 * reason.
3546 */
3547 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3548 ref = bfqq->ref;
3549 __bfq_bfqq_expire(bfqd, bfqq);
3550
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003551 if (ref == 1) /* bfqq is gone, no more actions on it */
3552 return;
3553
Paolo Valenteaee69d72017-04-19 08:29:02 -06003554 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003555 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003556 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003557 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003558 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003559 /*
3560 * Not setting service to 0, because, if the next rq
3561 * arrives in time, the queue will go on receiving
3562 * service with this same budget (as if it never expired)
3563 */
3564 } else
3565 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003566
3567 /*
3568 * Reset the received-service counter for every parent entity.
3569 * Differently from what happens with bfqq->entity.service,
3570 * the resetting of this counter never needs to be postponed
3571 * for parent entities. In fact, in case bfqq may have a
3572 * chance to go on being served using the last, partially
3573 * consumed budget, bfqq->entity.service needs to be kept,
3574 * because if bfqq then actually goes on being served using
3575 * the same budget, the last value of bfqq->entity.service is
3576 * needed to properly decrement bfqq->entity.budget by the
3577 * portion already consumed. In contrast, it is not necessary
3578 * to keep entity->service for parent entities too, because
3579 * the bubble up of the new value of bfqq->entity.budget will
3580 * make sure that the budgets of parent entities are correct,
3581 * even in case bfqq and thus parent entities go on receiving
3582 * service with the same budget.
3583 */
3584 entity = entity->parent;
3585 for_each_entity(entity)
3586 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003587}
3588
3589/*
3590 * Budget timeout is not implemented through a dedicated timer, but
3591 * just checked on request arrivals and completions, as well as on
3592 * idle timer expirations.
3593 */
3594static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3595{
Paolo Valente44e44a12017-04-12 18:23:12 +02003596 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003597}
3598
3599/*
3600 * If we expire a queue that is actively waiting (i.e., with the
3601 * device idled) for the arrival of a new request, then we may incur
3602 * the timestamp misalignment problem described in the body of the
3603 * function __bfq_activate_entity. Hence we return true only if this
3604 * condition does not hold, or if the queue is slow enough to deserve
3605 * only to be kicked off for preserving a high throughput.
3606 */
3607static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3608{
3609 bfq_log_bfqq(bfqq->bfqd, bfqq,
3610 "may_budget_timeout: wait_request %d left %d timeout %d",
3611 bfq_bfqq_wait_request(bfqq),
3612 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3613 bfq_bfqq_budget_timeout(bfqq));
3614
3615 return (!bfq_bfqq_wait_request(bfqq) ||
3616 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3617 &&
3618 bfq_bfqq_budget_timeout(bfqq);
3619}
3620
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003621static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
3622 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003623{
Paolo Valenteedaf9422017-08-04 07:35:11 +02003624 bool rot_without_queueing =
3625 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3626 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003627 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02003628
Paolo Valenteedaf9422017-08-04 07:35:11 +02003629 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3630 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3631
Paolo Valented5be3fe2017-08-04 07:35:10 +02003632 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003633 * The next variable takes into account the cases where idling
3634 * boosts the throughput.
3635 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003636 * The value of the variable is computed considering, first, that
3637 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003638 * (a) the device is not NCQ-capable and rotational, or
3639 * (b) regardless of the presence of NCQ, the device is rotational and
3640 * the request pattern for bfqq is I/O-bound and sequential, or
3641 * (c) regardless of whether it is rotational, the device is
3642 * not NCQ-capable and the request pattern for bfqq is
3643 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003644 *
3645 * Secondly, and in contrast to the above item (b), idling an
3646 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003647 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003648 * the throughput in proportion to how fast the device
3649 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003650 * above conditions (a), (b) or (c) is true, and, in
3651 * particular, happens to be false if bfqd is an NCQ-capable
3652 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003653 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003654 idling_boosts_thr = rot_without_queueing ||
3655 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3656 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003657
3658 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003659 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02003660 * idling_boosts_thr, unless a special case holds. In this
3661 * special case, described below, idling may cause problems to
3662 * weight-raised queues.
3663 *
3664 * When the request pool is saturated (e.g., in the presence
3665 * of write hogs), if the processes associated with
3666 * non-weight-raised queues ask for requests at a lower rate,
3667 * then processes associated with weight-raised queues have a
3668 * higher probability to get a request from the pool
3669 * immediately (or at least soon) when they need one. Thus
3670 * they have a higher probability to actually get a fraction
3671 * of the device throughput proportional to their high
3672 * weight. This is especially true with NCQ-capable drives,
3673 * which enqueue several requests in advance, and further
3674 * reorder internally-queued requests.
3675 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003676 * For this reason, we force to false the return value if
3677 * there are weight-raised busy queues. In this case, and if
3678 * bfqq is not weight-raised, this guarantees that the device
3679 * is not idled for bfqq (if, instead, bfqq is weight-raised,
3680 * then idling will be guaranteed by another variable, see
3681 * below). Combined with the timestamping rules of BFQ (see
3682 * [1] for details), this behavior causes bfqq, and hence any
3683 * sync non-weight-raised queue, to get a lower number of
3684 * requests served, and thus to ask for a lower number of
3685 * requests from the request pool, before the busy
3686 * weight-raised queues get served again. This often mitigates
3687 * starvation problems in the presence of heavy write
3688 * workloads and NCQ, thereby guaranteeing a higher
3689 * application and system responsiveness in these hostile
3690 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02003691 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003692 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02003693 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003694}
Paolo Valentecfd69712017-04-12 18:23:15 +02003695
Paolo Valente530c4cb2019-01-29 12:06:32 +01003696/*
Paolo Valentefb53ac62019-03-12 09:59:28 +01003697 * There is a case where idling does not have to be performed for
3698 * throughput concerns, but to preserve the throughput share of
3699 * the process associated with bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003700 *
3701 * To introduce this case, we can note that allowing the drive
3702 * to enqueue more than one request at a time, and hence
3703 * delegating de facto final scheduling decisions to the
3704 * drive's internal scheduler, entails loss of control on the
3705 * actual request service order. In particular, the critical
3706 * situation is when requests from different processes happen
3707 * to be present, at the same time, in the internal queue(s)
3708 * of the drive. In such a situation, the drive, by deciding
3709 * the service order of the internally-queued requests, does
3710 * determine also the actual throughput distribution among
3711 * these processes. But the drive typically has no notion or
3712 * concern about per-process throughput distribution, and
3713 * makes its decisions only on a per-request basis. Therefore,
3714 * the service distribution enforced by the drive's internal
Paolo Valentefb53ac62019-03-12 09:59:28 +01003715 * scheduler is likely to coincide with the desired throughput
3716 * distribution only in a completely symmetric, or favorably
3717 * skewed scenario where:
3718 * (i-a) each of these processes must get the same throughput as
3719 * the others,
3720 * (i-b) in case (i-a) does not hold, it holds that the process
3721 * associated with bfqq must receive a lower or equal
3722 * throughput than any of the other processes;
3723 * (ii) the I/O of each process has the same properties, in
3724 * terms of locality (sequential or random), direction
3725 * (reads or writes), request sizes, greediness
3726 * (from I/O-bound to sporadic), and so on;
3727
3728 * In fact, in such a scenario, the drive tends to treat the requests
3729 * of each process in about the same way as the requests of the
3730 * others, and thus to provide each of these processes with about the
3731 * same throughput. This is exactly the desired throughput
3732 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3733 * even more convenient distribution for (the process associated with)
3734 * bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003735 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003736 * In contrast, in any asymmetric or unfavorable scenario, device
3737 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3738 * that bfqq receives its assigned fraction of the device throughput
3739 * (see [1] for details).
3740 *
3741 * The problem is that idling may significantly reduce throughput with
3742 * certain combinations of types of I/O and devices. An important
3743 * example is sync random I/O on flash storage with command
3744 * queueing. So, unless bfqq falls in cases where idling also boosts
3745 * throughput, it is important to check conditions (i-a), i(-b) and
3746 * (ii) accurately, so as to avoid idling when not strictly needed for
3747 * service guarantees.
3748 *
3749 * Unfortunately, it is extremely difficult to thoroughly check
3750 * condition (ii). And, in case there are active groups, it becomes
3751 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3752 * if there are active groups, then, for conditions (i-a) or (i-b) to
3753 * become false 'indirectly', it is enough that an active group
3754 * contains more active processes or sub-groups than some other active
3755 * group. More precisely, for conditions (i-a) or (i-b) to become
3756 * false because of such a group, it is not even necessary that the
3757 * group is (still) active: it is sufficient that, even if the group
3758 * has become inactive, some of its descendant processes still have
3759 * some request already dispatched but still waiting for
3760 * completion. In fact, requests have still to be guaranteed their
3761 * share of the throughput even after being dispatched. In this
3762 * respect, it is easy to show that, if a group frequently becomes
3763 * inactive while still having in-flight requests, and if, when this
3764 * happens, the group is not considered in the calculation of whether
3765 * the scenario is asymmetric, then the group may fail to be
3766 * guaranteed its fair share of the throughput (basically because
3767 * idling may not be performed for the descendant processes of the
3768 * group, but it had to be). We address this issue with the following
3769 * bi-modal behavior, implemented in the function
3770 * bfq_asymmetric_scenario().
Paolo Valente530c4cb2019-01-29 12:06:32 +01003771 *
3772 * If there are groups with requests waiting for completion
3773 * (as commented above, some of these groups may even be
3774 * already inactive), then the scenario is tagged as
3775 * asymmetric, conservatively, without checking any of the
Paolo Valentefb53ac62019-03-12 09:59:28 +01003776 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003777 * This behavior matches also the fact that groups are created
3778 * exactly if controlling I/O is a primary concern (to
3779 * preserve bandwidth and latency guarantees).
3780 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003781 * On the opposite end, if there are no groups with requests waiting
3782 * for completion, then only conditions (i-a) and (i-b) are actually
3783 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3784 * idling is not performed, regardless of whether condition (ii)
3785 * holds. In other words, only if conditions (i-a) and (i-b) do not
3786 * hold, then idling is allowed, and the device tends to be prevented
3787 * from queueing many requests, possibly of several processes. Since
3788 * there are no groups with requests waiting for completion, then, to
3789 * control conditions (i-a) and (i-b) it is enough to check just
3790 * whether all the queues with requests waiting for completion also
3791 * have the same weight.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003792 *
3793 * Not checking condition (ii) evidently exposes bfqq to the
3794 * risk of getting less throughput than its fair share.
3795 * However, for queues with the same weight, a further
3796 * mechanism, preemption, mitigates or even eliminates this
3797 * problem. And it does so without consequences on overall
3798 * throughput. This mechanism and its benefits are explained
3799 * in the next three paragraphs.
3800 *
3801 * Even if a queue, say Q, is expired when it remains idle, Q
3802 * can still preempt the new in-service queue if the next
3803 * request of Q arrives soon (see the comments on
3804 * bfq_bfqq_update_budg_for_activation). If all queues and
3805 * groups have the same weight, this form of preemption,
3806 * combined with the hole-recovery heuristic described in the
3807 * comments on function bfq_bfqq_update_budg_for_activation,
3808 * are enough to preserve a correct bandwidth distribution in
3809 * the mid term, even without idling. In fact, even if not
3810 * idling allows the internal queues of the device to contain
3811 * many requests, and thus to reorder requests, we can rather
3812 * safely assume that the internal scheduler still preserves a
3813 * minimum of mid-term fairness.
3814 *
3815 * More precisely, this preemption-based, idleless approach
3816 * provides fairness in terms of IOPS, and not sectors per
3817 * second. This can be seen with a simple example. Suppose
3818 * that there are two queues with the same weight, but that
3819 * the first queue receives requests of 8 sectors, while the
3820 * second queue receives requests of 1024 sectors. In
3821 * addition, suppose that each of the two queues contains at
3822 * most one request at a time, which implies that each queue
3823 * always remains idle after it is served. Finally, after
3824 * remaining idle, each queue receives very quickly a new
3825 * request. It follows that the two queues are served
3826 * alternatively, preempting each other if needed. This
3827 * implies that, although both queues have the same weight,
3828 * the queue with large requests receives a service that is
3829 * 1024/8 times as high as the service received by the other
3830 * queue.
3831 *
3832 * The motivation for using preemption instead of idling (for
3833 * queues with the same weight) is that, by not idling,
3834 * service guarantees are preserved (completely or at least in
3835 * part) without minimally sacrificing throughput. And, if
3836 * there is no active group, then the primary expectation for
3837 * this device is probably a high throughput.
3838 *
3839 * We are now left only with explaining the additional
3840 * compound condition that is checked below for deciding
3841 * whether the scenario is asymmetric. To explain this
3842 * compound condition, we need to add that the function
Paolo Valentefb53ac62019-03-12 09:59:28 +01003843 * bfq_asymmetric_scenario checks the weights of only
Paolo Valente530c4cb2019-01-29 12:06:32 +01003844 * non-weight-raised queues, for efficiency reasons (see
3845 * comments on bfq_weights_tree_add()). Then the fact that
3846 * bfqq is weight-raised is checked explicitly here. More
3847 * precisely, the compound condition below takes into account
3848 * also the fact that, even if bfqq is being weight-raised,
3849 * the scenario is still symmetric if all queues with requests
3850 * waiting for completion happen to be
3851 * weight-raised. Actually, we should be even more precise
3852 * here, and differentiate between interactive weight raising
3853 * and soft real-time weight raising.
3854 *
3855 * As a side note, it is worth considering that the above
3856 * device-idling countermeasures may however fail in the
3857 * following unlucky scenario: if idling is (correctly)
3858 * disabled in a time period during which all symmetry
3859 * sub-conditions hold, and hence the device is allowed to
3860 * enqueue many requests, but at some later point in time some
3861 * sub-condition stops to hold, then it may become impossible
3862 * to let requests be served in the desired order until all
3863 * the requests already queued in the device have been served.
3864 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003865static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3866 struct bfq_queue *bfqq)
3867{
Paolo Valente530c4cb2019-01-29 12:06:32 +01003868 return (bfqq->wr_coeff > 1 &&
3869 bfqd->wr_busy_queues <
3870 bfq_tot_busy_queues(bfqd)) ||
Paolo Valentefb53ac62019-03-12 09:59:28 +01003871 bfq_asymmetric_scenario(bfqd, bfqq);
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003872}
3873
3874/*
3875 * For a queue that becomes empty, device idling is allowed only if
3876 * this function returns true for that queue. As a consequence, since
3877 * device idling plays a critical role for both throughput boosting
3878 * and service guarantees, the return value of this function plays a
3879 * critical role as well.
3880 *
3881 * In a nutshell, this function returns true only if idling is
3882 * beneficial for throughput or, even if detrimental for throughput,
3883 * idling is however necessary to preserve service guarantees (low
3884 * latency, desired throughput distribution, ...). In particular, on
3885 * NCQ-capable devices, this function tries to return false, so as to
3886 * help keep the drives' internal queues full, whenever this helps the
3887 * device boost the throughput without causing any service-guarantee
3888 * issue.
3889 *
3890 * Most of the issues taken into account to get the return value of
3891 * this function are not trivial. We discuss these issues in the two
3892 * functions providing the main pieces of information needed by this
3893 * function.
3894 */
3895static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3896{
3897 struct bfq_data *bfqd = bfqq->bfqd;
3898 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
3899
3900 if (unlikely(bfqd->strict_guarantees))
3901 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003902
3903 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003904 * Idling is performed only if slice_idle > 0. In addition, we
3905 * do not idle if
3906 * (a) bfqq is async
3907 * (b) bfqq is in the idle io prio class: in this case we do
3908 * not idle because we want to minimize the bandwidth that
3909 * queues in this class can steal to higher-priority queues
3910 */
3911 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3912 bfq_class_idle(bfqq))
3913 return false;
3914
3915 idling_boosts_thr_with_no_issue =
3916 idling_boosts_thr_without_issues(bfqd, bfqq);
3917
3918 idling_needed_for_service_guar =
3919 idling_needed_for_service_guarantees(bfqd, bfqq);
3920
3921 /*
3922 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02003923 * return value of the function, which is true only if idling
3924 * either boosts the throughput (without issues), or is
3925 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003926 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003927 return idling_boosts_thr_with_no_issue ||
3928 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003929}
3930
3931/*
Paolo Valente277a4a92018-06-25 21:55:37 +02003932 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06003933 * returns true, then:
3934 * 1) the queue must remain in service and cannot be expired, and
3935 * 2) the device must be idled to wait for the possible arrival of a new
3936 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02003937 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06003938 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02003939 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06003940 * returns true.
3941 */
3942static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3943{
Paolo Valente277a4a92018-06-25 21:55:37 +02003944 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003945}
3946
Paolo Valente2341d6622019-03-12 09:59:29 +01003947/*
3948 * This function chooses the queue from which to pick the next extra
3949 * I/O request to inject, if it finds a compatible queue. See the
3950 * comments on bfq_update_inject_limit() for details on the injection
3951 * mechanism, and for the definitions of the quantities mentioned
3952 * below.
3953 */
3954static struct bfq_queue *
3955bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02003956{
Paolo Valente2341d6622019-03-12 09:59:29 +01003957 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
3958 unsigned int limit = in_serv_bfqq->inject_limit;
3959 /*
3960 * If
3961 * - bfqq is not weight-raised and therefore does not carry
3962 * time-critical I/O,
3963 * or
3964 * - regardless of whether bfqq is weight-raised, bfqq has
3965 * however a long think time, during which it can absorb the
3966 * effect of an appropriate number of extra I/O requests
3967 * from other queues (see bfq_update_inject_limit for
3968 * details on the computation of this number);
3969 * then injection can be performed without restrictions.
3970 */
3971 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
3972 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02003973
3974 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01003975 * If
3976 * - the baseline total service time could not be sampled yet,
3977 * so the inject limit happens to be still 0, and
3978 * - a lot of time has elapsed since the plugging of I/O
3979 * dispatching started, so drive speed is being wasted
3980 * significantly;
3981 * then temporarily raise inject limit to one request.
3982 */
3983 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
3984 bfq_bfqq_wait_request(in_serv_bfqq) &&
3985 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
3986 bfqd->bfq_slice_idle)
3987 )
3988 limit = 1;
3989
3990 if (bfqd->rq_in_driver >= limit)
3991 return NULL;
3992
3993 /*
3994 * Linear search of the source queue for injection; but, with
3995 * a high probability, very few steps are needed to find a
3996 * candidate queue, i.e., a queue with enough budget left for
3997 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02003998 * - BFQ dynamically updates the budget of every queue so as
3999 * to accommodate the expected backlog of the queue;
4000 * - if a queue gets all its requests dispatched as injected
4001 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004002 * (and re-added only if it gets new requests, but then it
4003 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004004 */
4005 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4006 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004007 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004008 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004009 bfq_bfqq_budget_left(bfqq)) {
4010 /*
4011 * Allow for only one large in-flight request
4012 * on non-rotational devices, for the
4013 * following reason. On non-rotationl drives,
4014 * large requests take much longer than
4015 * smaller requests to be served. In addition,
4016 * the drive prefers to serve large requests
4017 * w.r.t. to small ones, if it can choose. So,
4018 * having more than one large requests queued
4019 * in the drive may easily make the next first
4020 * request of the in-service queue wait for so
4021 * long to break bfqq's service guarantees. On
4022 * the bright side, large requests let the
4023 * drive reach a very high throughput, even if
4024 * there is only one in-flight large request
4025 * at a time.
4026 */
4027 if (blk_queue_nonrot(bfqd->queue) &&
4028 blk_rq_sectors(bfqq->next_rq) >=
4029 BFQQ_SECT_THR_NONROT)
4030 limit = min_t(unsigned int, 1, limit);
4031 else
4032 limit = in_serv_bfqq->inject_limit;
4033
4034 if (bfqd->rq_in_driver < limit) {
4035 bfqd->rqs_injected = true;
4036 return bfqq;
4037 }
4038 }
Paolo Valented0edc242018-09-14 16:23:08 +02004039
4040 return NULL;
4041}
4042
Paolo Valenteaee69d72017-04-19 08:29:02 -06004043/*
4044 * Select a queue for service. If we have a current queue in service,
4045 * check whether to continue servicing it, or retrieve and set a new one.
4046 */
4047static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4048{
4049 struct bfq_queue *bfqq;
4050 struct request *next_rq;
4051 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4052
4053 bfqq = bfqd->in_service_queue;
4054 if (!bfqq)
4055 goto new_queue;
4056
4057 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4058
Paolo Valente4420b092018-06-25 21:55:35 +02004059 /*
4060 * Do not expire bfqq for budget timeout if bfqq may be about
4061 * to enjoy device idling. The reason why, in this case, we
4062 * prevent bfqq from expiring is the same as in the comments
4063 * on the case where bfq_bfqq_must_idle() returns true, in
4064 * bfq_completed_request().
4065 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004066 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004067 !bfq_bfqq_must_idle(bfqq))
4068 goto expire;
4069
4070check_queue:
4071 /*
4072 * This loop is rarely executed more than once. Even when it
4073 * happens, it is much more convenient to re-execute this loop
4074 * than to return NULL and trigger a new dispatch to get a
4075 * request served.
4076 */
4077 next_rq = bfqq->next_rq;
4078 /*
4079 * If bfqq has requests queued and it has enough budget left to
4080 * serve them, keep the queue, otherwise expire it.
4081 */
4082 if (next_rq) {
4083 if (bfq_serv_to_charge(next_rq, bfqq) >
4084 bfq_bfqq_budget_left(bfqq)) {
4085 /*
4086 * Expire the queue for budget exhaustion,
4087 * which makes sure that the next budget is
4088 * enough to serve the next request, even if
4089 * it comes from the fifo expired path.
4090 */
4091 reason = BFQQE_BUDGET_EXHAUSTED;
4092 goto expire;
4093 } else {
4094 /*
4095 * The idle timer may be pending because we may
4096 * not disable disk idling even when a new request
4097 * arrives.
4098 */
4099 if (bfq_bfqq_wait_request(bfqq)) {
4100 /*
4101 * If we get here: 1) at least a new request
4102 * has arrived but we have not disabled the
4103 * timer because the request was too small,
4104 * 2) then the block layer has unplugged
4105 * the device, causing the dispatch to be
4106 * invoked.
4107 *
4108 * Since the device is unplugged, now the
4109 * requests are probably large enough to
4110 * provide a reasonable throughput.
4111 * So we disable idling.
4112 */
4113 bfq_clear_bfqq_wait_request(bfqq);
4114 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4115 }
4116 goto keep_queue;
4117 }
4118 }
4119
4120 /*
4121 * No requests pending. However, if the in-service queue is idling
4122 * for a new request, or has requests waiting for a completion and
4123 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004124 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004125 * Yet, inject service from other queues if it boosts
4126 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004127 */
4128 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004129 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004130 struct bfq_queue *async_bfqq =
4131 bfqq->bic && bfqq->bic->bfqq[0] &&
4132 bfq_bfqq_busy(bfqq->bic->bfqq[0]) ?
4133 bfqq->bic->bfqq[0] : NULL;
4134
4135 /*
4136 * If the process associated with bfqq has also async
4137 * I/O pending, then inject it
4138 * unconditionally. Injecting I/O from the same
4139 * process can cause no harm to the process. On the
4140 * contrary, it can only increase bandwidth and reduce
4141 * latency for the process.
4142 */
4143 if (async_bfqq &&
4144 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4145 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4146 bfq_bfqq_budget_left(async_bfqq))
4147 bfqq = bfqq->bic->bfqq[0];
4148 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4149 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4150 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004151 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4152 else
4153 bfqq = NULL;
4154
Paolo Valenteaee69d72017-04-19 08:29:02 -06004155 goto keep_queue;
4156 }
4157
4158 reason = BFQQE_NO_MORE_REQUESTS;
4159expire:
4160 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4161new_queue:
4162 bfqq = bfq_set_in_service_queue(bfqd);
4163 if (bfqq) {
4164 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4165 goto check_queue;
4166 }
4167keep_queue:
4168 if (bfqq)
4169 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4170 else
4171 bfq_log(bfqd, "select_queue: no queue returned");
4172
4173 return bfqq;
4174}
4175
Paolo Valente44e44a12017-04-12 18:23:12 +02004176static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4177{
4178 struct bfq_entity *entity = &bfqq->entity;
4179
4180 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4181 bfq_log_bfqq(bfqd, bfqq,
4182 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4183 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4184 jiffies_to_msecs(bfqq->wr_cur_max_time),
4185 bfqq->wr_coeff,
4186 bfqq->entity.weight, bfqq->entity.orig_weight);
4187
4188 if (entity->prio_changed)
4189 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4190
4191 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004192 * If the queue was activated in a burst, or too much
4193 * time has elapsed from the beginning of this
4194 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004195 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004196 if (bfq_bfqq_in_large_burst(bfqq))
4197 bfq_bfqq_end_wr(bfqq);
4198 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4199 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004200 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4201 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004202 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02004203 bfq_bfqq_end_wr(bfqq);
4204 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004205 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004206 bfqq->entity.prio_changed = 1;
4207 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004208 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004209 if (bfqq->wr_coeff > 1 &&
4210 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4211 bfqq->service_from_wr > max_service_from_wr) {
4212 /* see comments on max_service_from_wr */
4213 bfq_bfqq_end_wr(bfqq);
4214 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004215 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004216 /*
4217 * To improve latency (for this or other queues), immediately
4218 * update weight both if it must be raised and if it must be
4219 * lowered. Since, entity may be on some active tree here, and
4220 * might have a pending change of its ioprio class, invoke
4221 * next function with the last parameter unset (see the
4222 * comments on the function).
4223 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004224 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004225 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4226 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004227}
4228
Paolo Valenteaee69d72017-04-19 08:29:02 -06004229/*
4230 * Dispatch next request from bfqq.
4231 */
4232static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4233 struct bfq_queue *bfqq)
4234{
4235 struct request *rq = bfqq->next_rq;
4236 unsigned long service_to_charge;
4237
4238 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4239
4240 bfq_bfqq_served(bfqq, service_to_charge);
4241
Paolo Valente2341d6622019-03-12 09:59:29 +01004242 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4243 bfqd->wait_dispatch = false;
4244 bfqd->waited_rq = rq;
4245 }
4246
Paolo Valenteaee69d72017-04-19 08:29:02 -06004247 bfq_dispatch_remove(bfqd->queue, rq);
4248
Paolo Valente2341d6622019-03-12 09:59:29 +01004249 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004250 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004251
Paolo Valente44e44a12017-04-12 18:23:12 +02004252 /*
4253 * If weight raising has to terminate for bfqq, then next
4254 * function causes an immediate update of bfqq's weight,
4255 * without waiting for next activation. As a consequence, on
4256 * expiration, bfqq will be timestamped as if has never been
4257 * weight-raised during this service slot, even if it has
4258 * received part or even most of the service as a
4259 * weight-raised queue. This inflates bfqq's timestamps, which
4260 * is beneficial, as bfqq is then more willing to leave the
4261 * device immediately to possible other weight-raised queues.
4262 */
4263 bfq_update_wr_data(bfqd, bfqq);
4264
Paolo Valenteaee69d72017-04-19 08:29:02 -06004265 /*
4266 * Expire bfqq, pretending that its budget expired, if bfqq
4267 * belongs to CLASS_IDLE and other queues are waiting for
4268 * service.
4269 */
Paolo Valente73d58112019-01-29 12:06:29 +01004270 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004271 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004272
Paolo Valenteaee69d72017-04-19 08:29:02 -06004273 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02004274
4275return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06004276 return rq;
4277}
4278
4279static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4280{
4281 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4282
4283 /*
4284 * Avoiding lock: a race on bfqd->busy_queues should cause at
4285 * most a call to dispatch for nothing
4286 */
4287 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01004288 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004289}
4290
4291static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4292{
4293 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4294 struct request *rq = NULL;
4295 struct bfq_queue *bfqq = NULL;
4296
4297 if (!list_empty(&bfqd->dispatch)) {
4298 rq = list_first_entry(&bfqd->dispatch, struct request,
4299 queuelist);
4300 list_del_init(&rq->queuelist);
4301
4302 bfqq = RQ_BFQQ(rq);
4303
4304 if (bfqq) {
4305 /*
4306 * Increment counters here, because this
4307 * dispatch does not follow the standard
4308 * dispatch flow (where counters are
4309 * incremented)
4310 */
4311 bfqq->dispatched++;
4312
4313 goto inc_in_driver_start_rq;
4314 }
4315
4316 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004317 * We exploit the bfq_finish_requeue_request hook to
4318 * decrement rq_in_driver, but
4319 * bfq_finish_requeue_request will not be invoked on
4320 * this request. So, to avoid unbalance, just start
4321 * this request, without incrementing rq_in_driver. As
4322 * a negative consequence, rq_in_driver is deceptively
4323 * lower than it should be while this request is in
4324 * service. This may cause bfq_schedule_dispatch to be
4325 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004326 *
4327 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004328 * bfq_finish_requeue_request hook, if defined, is
4329 * probably invoked also on this request. So, by
4330 * exploiting this hook, we could 1) increment
4331 * rq_in_driver here, and 2) decrement it in
4332 * bfq_finish_requeue_request. Such a solution would
4333 * let the value of the counter be always accurate,
4334 * but it would entail using an extra interface
4335 * function. This cost seems higher than the benefit,
4336 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004337 * requests very low.
4338 */
4339 goto start_rq;
4340 }
4341
Paolo Valente73d58112019-01-29 12:06:29 +01004342 bfq_log(bfqd, "dispatch requests: %d busy queues",
4343 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004344
Paolo Valente73d58112019-01-29 12:06:29 +01004345 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004346 goto exit;
4347
4348 /*
4349 * Force device to serve one request at a time if
4350 * strict_guarantees is true. Forcing this service scheme is
4351 * currently the ONLY way to guarantee that the request
4352 * service order enforced by the scheduler is respected by a
4353 * queueing device. Otherwise the device is free even to make
4354 * some unlucky request wait for as long as the device
4355 * wishes.
4356 *
4357 * Of course, serving one request at at time may cause loss of
4358 * throughput.
4359 */
4360 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4361 goto exit;
4362
4363 bfqq = bfq_select_queue(bfqd);
4364 if (!bfqq)
4365 goto exit;
4366
4367 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4368
4369 if (rq) {
4370inc_in_driver_start_rq:
4371 bfqd->rq_in_driver++;
4372start_rq:
4373 rq->rq_flags |= RQF_STARTED;
4374 }
4375exit:
4376 return rq;
4377}
4378
Paolo Valente9b25bd02017-12-04 11:42:05 +01004379#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4380static void bfq_update_dispatch_stats(struct request_queue *q,
4381 struct request *rq,
4382 struct bfq_queue *in_serv_queue,
4383 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004384{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004385 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004386
Paolo Valente24bfd192017-11-13 07:34:09 +01004387 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004388 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004389
4390 /*
4391 * rq and bfqq are guaranteed to exist until this function
4392 * ends, for the following reasons. First, rq can be
4393 * dispatched to the device, and then can be completed and
4394 * freed, only after this function ends. Second, rq cannot be
4395 * merged (and thus freed because of a merge) any longer,
4396 * because it has already started. Thus rq cannot be freed
4397 * before this function ends, and, since rq has a reference to
4398 * bfqq, the same guarantee holds for bfqq too.
4399 *
4400 * In addition, the following queue lock guarantees that
4401 * bfqq_group(bfqq) exists as well.
4402 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004403 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004404 if (idle_timer_disabled)
4405 /*
4406 * Since the idle timer has been disabled,
4407 * in_serv_queue contained some request when
4408 * __bfq_dispatch_request was invoked above, which
4409 * implies that rq was picked exactly from
4410 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4411 * therefore guaranteed to exist because of the above
4412 * arguments.
4413 */
4414 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4415 if (bfqq) {
4416 struct bfq_group *bfqg = bfqq_group(bfqq);
4417
4418 bfqg_stats_update_avg_queue_size(bfqg);
4419 bfqg_stats_set_start_empty_time(bfqg);
4420 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4421 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004422 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004423}
4424#else
4425static inline void bfq_update_dispatch_stats(struct request_queue *q,
4426 struct request *rq,
4427 struct bfq_queue *in_serv_queue,
4428 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01004429#endif
4430
Paolo Valente9b25bd02017-12-04 11:42:05 +01004431static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4432{
4433 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4434 struct request *rq;
4435 struct bfq_queue *in_serv_queue;
4436 bool waiting_rq, idle_timer_disabled;
4437
4438 spin_lock_irq(&bfqd->lock);
4439
4440 in_serv_queue = bfqd->in_service_queue;
4441 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4442
4443 rq = __bfq_dispatch_request(hctx);
4444
4445 idle_timer_disabled =
4446 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4447
4448 spin_unlock_irq(&bfqd->lock);
4449
4450 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4451 idle_timer_disabled);
4452
Paolo Valenteaee69d72017-04-19 08:29:02 -06004453 return rq;
4454}
4455
4456/*
4457 * Task holds one reference to the queue, dropped when task exits. Each rq
4458 * in-flight on this queue also holds a reference, dropped when rq is freed.
4459 *
4460 * Scheduler lock must be held here. Recall not to use bfqq after calling
4461 * this function on it.
4462 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004463void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004464{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004465#ifdef CONFIG_BFQ_GROUP_IOSCHED
4466 struct bfq_group *bfqg = bfqq_group(bfqq);
4467#endif
4468
Paolo Valenteaee69d72017-04-19 08:29:02 -06004469 if (bfqq->bfqd)
4470 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4471 bfqq, bfqq->ref);
4472
4473 bfqq->ref--;
4474 if (bfqq->ref)
4475 return;
4476
Paolo Valente99fead82017-10-09 13:11:23 +02004477 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004478 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004479 /*
4480 * Decrement also burst size after the removal, if the
4481 * process associated with bfqq is exiting, and thus
4482 * does not contribute to the burst any longer. This
4483 * decrement helps filter out false positives of large
4484 * bursts, when some short-lived process (often due to
4485 * the execution of commands by some service) happens
4486 * to start and exit while a complex application is
4487 * starting, and thus spawning several processes that
4488 * do I/O (and that *must not* be treated as a large
4489 * burst, see comments on bfq_handle_burst).
4490 *
4491 * In particular, the decrement is performed only if:
4492 * 1) bfqq is not a merged queue, because, if it is,
4493 * then this free of bfqq is not triggered by the exit
4494 * of the process bfqq is associated with, but exactly
4495 * by the fact that bfqq has just been merged.
4496 * 2) burst_size is greater than 0, to handle
4497 * unbalanced decrements. Unbalanced decrements may
4498 * happen in te following case: bfqq is inserted into
4499 * the current burst list--without incrementing
4500 * bust_size--because of a split, but the current
4501 * burst list is not the burst list bfqq belonged to
4502 * (see comments on the case of a split in
4503 * bfq_set_request).
4504 */
4505 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4506 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004507 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004508
Paolo Valenteaee69d72017-04-19 08:29:02 -06004509 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004510#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004511 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004512#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004513}
4514
Arianna Avanzini36eca892017-04-12 18:23:16 +02004515static void bfq_put_cooperator(struct bfq_queue *bfqq)
4516{
4517 struct bfq_queue *__bfqq, *next;
4518
4519 /*
4520 * If this queue was scheduled to merge with another queue, be
4521 * sure to drop the reference taken on that queue (and others in
4522 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4523 */
4524 __bfqq = bfqq->new_bfqq;
4525 while (__bfqq) {
4526 if (__bfqq == bfqq)
4527 break;
4528 next = __bfqq->new_bfqq;
4529 bfq_put_queue(__bfqq);
4530 __bfqq = next;
4531 }
4532}
4533
Paolo Valenteaee69d72017-04-19 08:29:02 -06004534static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4535{
4536 if (bfqq == bfqd->in_service_queue) {
4537 __bfq_bfqq_expire(bfqd, bfqq);
4538 bfq_schedule_dispatch(bfqd);
4539 }
4540
4541 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4542
Arianna Avanzini36eca892017-04-12 18:23:16 +02004543 bfq_put_cooperator(bfqq);
4544
Paolo Valenteaee69d72017-04-19 08:29:02 -06004545 bfq_put_queue(bfqq); /* release process reference */
4546}
4547
4548static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4549{
4550 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4551 struct bfq_data *bfqd;
4552
4553 if (bfqq)
4554 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4555
4556 if (bfqq && bfqd) {
4557 unsigned long flags;
4558
4559 spin_lock_irqsave(&bfqd->lock, flags);
4560 bfq_exit_bfqq(bfqd, bfqq);
4561 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004562 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004563 }
4564}
4565
4566static void bfq_exit_icq(struct io_cq *icq)
4567{
4568 struct bfq_io_cq *bic = icq_to_bic(icq);
4569
4570 bfq_exit_icq_bfqq(bic, true);
4571 bfq_exit_icq_bfqq(bic, false);
4572}
4573
4574/*
4575 * Update the entity prio values; note that the new values will not
4576 * be used until the next (re)activation.
4577 */
4578static void
4579bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4580{
4581 struct task_struct *tsk = current;
4582 int ioprio_class;
4583 struct bfq_data *bfqd = bfqq->bfqd;
4584
4585 if (!bfqd)
4586 return;
4587
4588 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4589 switch (ioprio_class) {
4590 default:
4591 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4592 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004593 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004594 case IOPRIO_CLASS_NONE:
4595 /*
4596 * No prio set, inherit CPU scheduling settings.
4597 */
4598 bfqq->new_ioprio = task_nice_ioprio(tsk);
4599 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4600 break;
4601 case IOPRIO_CLASS_RT:
4602 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4603 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4604 break;
4605 case IOPRIO_CLASS_BE:
4606 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4607 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4608 break;
4609 case IOPRIO_CLASS_IDLE:
4610 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4611 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004612 break;
4613 }
4614
4615 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4616 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4617 bfqq->new_ioprio);
4618 bfqq->new_ioprio = IOPRIO_BE_NR;
4619 }
4620
4621 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4622 bfqq->entity.prio_changed = 1;
4623}
4624
Paolo Valenteea25da42017-04-19 08:48:24 -06004625static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4626 struct bio *bio, bool is_sync,
4627 struct bfq_io_cq *bic);
4628
Paolo Valenteaee69d72017-04-19 08:29:02 -06004629static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4630{
4631 struct bfq_data *bfqd = bic_to_bfqd(bic);
4632 struct bfq_queue *bfqq;
4633 int ioprio = bic->icq.ioc->ioprio;
4634
4635 /*
4636 * This condition may trigger on a newly created bic, be sure to
4637 * drop the lock before returning.
4638 */
4639 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4640 return;
4641
4642 bic->ioprio = ioprio;
4643
4644 bfqq = bic_to_bfqq(bic, false);
4645 if (bfqq) {
4646 /* release process reference on this queue */
4647 bfq_put_queue(bfqq);
4648 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4649 bic_set_bfqq(bic, bfqq, false);
4650 }
4651
4652 bfqq = bic_to_bfqq(bic, true);
4653 if (bfqq)
4654 bfq_set_next_ioprio_data(bfqq, bic);
4655}
4656
4657static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4658 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4659{
4660 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4661 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004662 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004663
4664 bfqq->ref = 0;
4665 bfqq->bfqd = bfqd;
4666
4667 if (bic)
4668 bfq_set_next_ioprio_data(bfqq, bic);
4669
4670 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004671 /*
4672 * No need to mark as has_short_ttime if in
4673 * idle_class, because no device idling is performed
4674 * for queues in idle class
4675 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004676 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004677 /* tentatively mark as has_short_ttime */
4678 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004679 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004680 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004681 } else
4682 bfq_clear_bfqq_sync(bfqq);
4683
4684 /* set end request to minus infinity from now */
4685 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4686
4687 bfq_mark_bfqq_IO_bound(bfqq);
4688
4689 bfqq->pid = pid;
4690
4691 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004692 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004693 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004694
Paolo Valente44e44a12017-04-12 18:23:12 +02004695 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004696 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004697 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004698 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004699
4700 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004701 * To not forget the possibly high bandwidth consumed by a
4702 * process/queue in the recent past,
4703 * bfq_bfqq_softrt_next_start() returns a value at least equal
4704 * to the current value of bfqq->soft_rt_next_start (see
4705 * comments on bfq_bfqq_softrt_next_start). Set
4706 * soft_rt_next_start to now, to mean that bfqq has consumed
4707 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004708 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004709 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004710
Paolo Valenteaee69d72017-04-19 08:29:02 -06004711 /* first request is almost certainly seeky */
4712 bfqq->seek_history = 1;
4713}
4714
4715static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004716 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004717 int ioprio_class, int ioprio)
4718{
4719 switch (ioprio_class) {
4720 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004721 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004722 case IOPRIO_CLASS_NONE:
4723 ioprio = IOPRIO_NORM;
4724 /* fall through */
4725 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004726 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004727 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004728 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004729 default:
4730 return NULL;
4731 }
4732}
4733
4734static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4735 struct bio *bio, bool is_sync,
4736 struct bfq_io_cq *bic)
4737{
4738 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4739 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4740 struct bfq_queue **async_bfqq = NULL;
4741 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004742 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004743
4744 rcu_read_lock();
4745
Dennis Zhou0fe061b2018-12-05 12:10:26 -05004746 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004747 if (!bfqg) {
4748 bfqq = &bfqd->oom_bfqq;
4749 goto out;
4750 }
4751
Paolo Valenteaee69d72017-04-19 08:29:02 -06004752 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004753 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004754 ioprio);
4755 bfqq = *async_bfqq;
4756 if (bfqq)
4757 goto out;
4758 }
4759
4760 bfqq = kmem_cache_alloc_node(bfq_pool,
4761 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4762 bfqd->queue->node);
4763
4764 if (bfqq) {
4765 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4766 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004767 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004768 bfq_log_bfqq(bfqd, bfqq, "allocated");
4769 } else {
4770 bfqq = &bfqd->oom_bfqq;
4771 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4772 goto out;
4773 }
4774
4775 /*
4776 * Pin the queue now that it's allocated, scheduler exit will
4777 * prune it.
4778 */
4779 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004780 bfqq->ref++; /*
4781 * Extra group reference, w.r.t. sync
4782 * queue. This extra reference is removed
4783 * only if bfqq->bfqg disappears, to
4784 * guarantee that this queue is not freed
4785 * until its group goes away.
4786 */
4787 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004788 bfqq, bfqq->ref);
4789 *async_bfqq = bfqq;
4790 }
4791
4792out:
4793 bfqq->ref++; /* get a process reference to this queue */
4794 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4795 rcu_read_unlock();
4796 return bfqq;
4797}
4798
4799static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4800 struct bfq_queue *bfqq)
4801{
4802 struct bfq_ttime *ttime = &bfqq->ttime;
4803 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4804
4805 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4806
4807 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4808 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4809 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4810 ttime->ttime_samples);
4811}
4812
4813static void
4814bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4815 struct request *rq)
4816{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004817 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01004818 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004819}
4820
Paolo Valented5be3fe2017-08-04 07:35:10 +02004821static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4822 struct bfq_queue *bfqq,
4823 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004824{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004825 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004826
Paolo Valented5be3fe2017-08-04 07:35:10 +02004827 /*
4828 * No need to update has_short_ttime if bfqq is async or in
4829 * idle io prio class, or if bfq_slice_idle is zero, because
4830 * no device idling is performed for bfqq in this case.
4831 */
4832 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4833 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004834 return;
4835
Arianna Avanzini36eca892017-04-12 18:23:16 +02004836 /* Idle window just restored, statistics are meaningless. */
4837 if (time_is_after_eq_jiffies(bfqq->split_time +
4838 bfqd->bfq_wr_min_idle_time))
4839 return;
4840
Paolo Valented5be3fe2017-08-04 07:35:10 +02004841 /* Think time is infinite if no process is linked to
4842 * bfqq. Otherwise check average think time to
4843 * decide whether to mark as has_short_ttime
4844 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004845 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004846 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4847 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4848 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004849
Paolo Valented5be3fe2017-08-04 07:35:10 +02004850 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4851 has_short_ttime);
4852
4853 if (has_short_ttime)
4854 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004855 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004856 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004857}
4858
4859/*
4860 * Called when a new fs request (rq) is added to bfqq. Check if there's
4861 * something we should do about it.
4862 */
4863static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4864 struct request *rq)
4865{
4866 struct bfq_io_cq *bic = RQ_BIC(rq);
4867
4868 if (rq->cmd_flags & REQ_META)
4869 bfqq->meta_pending++;
4870
4871 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004872 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004873 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004874
4875 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004876 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4877 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004878
4879 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4880
4881 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4882 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4883 blk_rq_sectors(rq) < 32;
4884 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4885
4886 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004887 * There is just this request queued: if
4888 * - the request is small, and
4889 * - we are idling to boost throughput, and
4890 * - the queue is not to be expired,
4891 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004892 *
4893 * In this way, if the device is being idled to wait
4894 * for a new request from the in-service queue, we
4895 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004896 * device to serve just a small request. In contrast
4897 * we wait for the block layer to decide when to
4898 * unplug the device: hopefully, new requests will be
4899 * merged to this one quickly, then the device will be
4900 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004901 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004902 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
4903 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004904 return;
4905
4906 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004907 * A large enough request arrived, or idling is being
4908 * performed to preserve service guarantees, or
4909 * finally the queue is to be expired: in all these
4910 * cases disk idling is to be stopped, so clear
4911 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004912 */
4913 bfq_clear_bfqq_wait_request(bfqq);
4914 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4915
4916 /*
4917 * The queue is not empty, because a new request just
4918 * arrived. Hence we can safely expire the queue, in
4919 * case of budget timeout, without risking that the
4920 * timestamps of the queue are not updated correctly.
4921 * See [1] for more details.
4922 */
4923 if (budget_timeout)
4924 bfq_bfqq_expire(bfqd, bfqq, false,
4925 BFQQE_BUDGET_TIMEOUT);
4926 }
4927}
4928
Paolo Valente24bfd192017-11-13 07:34:09 +01004929/* returns true if it causes the idle timer to be disabled */
4930static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004931{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004932 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4933 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004934 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004935
4936 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02004937 /*
4938 * Release the request's reference to the old bfqq
4939 * and make sure one is taken to the shared queue.
4940 */
4941 new_bfqq->allocated++;
4942 bfqq->allocated--;
4943 new_bfqq->ref++;
4944 /*
4945 * If the bic associated with the process
4946 * issuing this request still points to bfqq
4947 * (and thus has not been already redirected
4948 * to new_bfqq or even some other bfq_queue),
4949 * then complete the merge and redirect it to
4950 * new_bfqq.
4951 */
4952 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4953 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4954 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004955
4956 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004957 /*
4958 * rq is about to be enqueued into new_bfqq,
4959 * release rq reference on bfqq
4960 */
4961 bfq_put_queue(bfqq);
4962 rq->elv.priv[1] = new_bfqq;
4963 bfqq = new_bfqq;
4964 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004965
Paolo Valente24bfd192017-11-13 07:34:09 +01004966 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004967 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004968 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004969
4970 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4971 list_add_tail(&rq->queuelist, &bfqq->fifo);
4972
4973 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004974
4975 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004976}
4977
Paolo Valente9b25bd02017-12-04 11:42:05 +01004978#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4979static void bfq_update_insert_stats(struct request_queue *q,
4980 struct bfq_queue *bfqq,
4981 bool idle_timer_disabled,
4982 unsigned int cmd_flags)
4983{
4984 if (!bfqq)
4985 return;
4986
4987 /*
4988 * bfqq still exists, because it can disappear only after
4989 * either it is merged with another queue, or the process it
4990 * is associated with exits. But both actions must be taken by
4991 * the same process currently executing this flow of
4992 * instructions.
4993 *
4994 * In addition, the following queue lock guarantees that
4995 * bfqq_group(bfqq) exists as well.
4996 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004997 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004998 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4999 if (idle_timer_disabled)
5000 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005001 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005002}
5003#else
5004static inline void bfq_update_insert_stats(struct request_queue *q,
5005 struct bfq_queue *bfqq,
5006 bool idle_timer_disabled,
5007 unsigned int cmd_flags) {}
5008#endif
5009
Paolo Valenteaee69d72017-04-19 08:29:02 -06005010static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5011 bool at_head)
5012{
5013 struct request_queue *q = hctx->queue;
5014 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02005015 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01005016 bool idle_timer_disabled = false;
5017 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005018
5019 spin_lock_irq(&bfqd->lock);
5020 if (blk_mq_sched_try_insert_merge(q, rq)) {
5021 spin_unlock_irq(&bfqd->lock);
5022 return;
5023 }
5024
5025 spin_unlock_irq(&bfqd->lock);
5026
5027 blk_mq_sched_request_inserted(rq);
5028
5029 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02005030 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005031 if (at_head || blk_rq_is_passthrough(rq)) {
5032 if (at_head)
5033 list_add(&rq->queuelist, &bfqd->dispatch);
5034 else
5035 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02005036 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01005037 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005038 /*
5039 * Update bfqq, because, if a queue merge has occurred
5040 * in __bfq_insert_request, then rq has been
5041 * redirected into a new queue.
5042 */
5043 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005044
5045 if (rq_mergeable(rq)) {
5046 elv_rqhash_add(q, rq);
5047 if (!q->last_merge)
5048 q->last_merge = rq;
5049 }
5050 }
5051
Paolo Valente24bfd192017-11-13 07:34:09 +01005052 /*
5053 * Cache cmd_flags before releasing scheduler lock, because rq
5054 * may disappear afterwards (for example, because of a request
5055 * merge).
5056 */
5057 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01005058
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005059 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005060
Paolo Valente9b25bd02017-12-04 11:42:05 +01005061 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5062 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005063}
5064
5065static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5066 struct list_head *list, bool at_head)
5067{
5068 while (!list_empty(list)) {
5069 struct request *rq;
5070
5071 rq = list_first_entry(list, struct request, queuelist);
5072 list_del_init(&rq->queuelist);
5073 bfq_insert_request(hctx, rq, at_head);
5074 }
5075}
5076
5077static void bfq_update_hw_tag(struct bfq_data *bfqd)
5078{
Paolo Valenteb3c34982019-01-29 12:06:36 +01005079 struct bfq_queue *bfqq = bfqd->in_service_queue;
5080
Paolo Valenteaee69d72017-04-19 08:29:02 -06005081 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5082 bfqd->rq_in_driver);
5083
5084 if (bfqd->hw_tag == 1)
5085 return;
5086
5087 /*
5088 * This sample is valid if the number of outstanding requests
5089 * is large enough to allow a queueing behavior. Note that the
5090 * sum is not exact, as it's not taking into account deactivated
5091 * requests.
5092 */
Paolo Valentea3c92562019-01-29 12:06:35 +01005093 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005094 return;
5095
Paolo Valenteb3c34982019-01-29 12:06:36 +01005096 /*
5097 * If active queue hasn't enough requests and can idle, bfq might not
5098 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5099 * case
5100 */
5101 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5102 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5103 BFQ_HW_QUEUE_THRESHOLD &&
5104 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5105 return;
5106
Paolo Valenteaee69d72017-04-19 08:29:02 -06005107 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5108 return;
5109
5110 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5111 bfqd->max_rq_in_driver = 0;
5112 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005113
5114 bfqd->nonrot_with_queueing =
5115 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005116}
5117
5118static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5119{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005120 u64 now_ns;
5121 u32 delta_us;
5122
Paolo Valenteaee69d72017-04-19 08:29:02 -06005123 bfq_update_hw_tag(bfqd);
5124
5125 bfqd->rq_in_driver--;
5126 bfqq->dispatched--;
5127
Paolo Valente44e44a12017-04-12 18:23:12 +02005128 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5129 /*
5130 * Set budget_timeout (which we overload to store the
5131 * time at which the queue remains with no backlog and
5132 * no outstanding request; used by the weight-raising
5133 * mechanism).
5134 */
5135 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005136
Paolo Valente04715592018-06-25 21:55:34 +02005137 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02005138 }
5139
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005140 now_ns = ktime_get_ns();
5141
5142 bfqq->ttime.last_end_request = now_ns;
5143
5144 /*
5145 * Using us instead of ns, to get a reasonable precision in
5146 * computing rate in next check.
5147 */
5148 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5149
5150 /*
5151 * If the request took rather long to complete, and, according
5152 * to the maximum request size recorded, this completion latency
5153 * implies that the request was certainly served at a very low
5154 * rate (less than 1M sectors/sec), then the whole observation
5155 * interval that lasts up to this time instant cannot be a
5156 * valid time interval for computing a new peak rate. Invoke
5157 * bfq_update_rate_reset to have the following three steps
5158 * taken:
5159 * - close the observation interval at the last (previous)
5160 * request dispatch or completion
5161 * - compute rate, if possible, for that observation interval
5162 * - reset to zero samples, which will trigger a proper
5163 * re-initialization of the observation interval on next
5164 * dispatch
5165 */
5166 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5167 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5168 1UL<<(BFQ_RATE_SHIFT - 10))
5169 bfq_update_rate_reset(bfqd, NULL);
5170 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005171
5172 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02005173 * If we are waiting to discover whether the request pattern
5174 * of the task associated with the queue is actually
5175 * isochronous, and both requisites for this condition to hold
5176 * are now satisfied, then compute soft_rt_next_start (see the
5177 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01005178 * do not compute soft_rt_next_start if bfqq is in interactive
5179 * weight raising (see the comments in bfq_bfqq_expire() for
5180 * an explanation). We schedule this delayed update when bfqq
5181 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005182 */
5183 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01005184 RB_EMPTY_ROOT(&bfqq->sort_list) &&
5185 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02005186 bfqq->soft_rt_next_start =
5187 bfq_bfqq_softrt_next_start(bfqd, bfqq);
5188
5189 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06005190 * If this is the in-service queue, check if it needs to be expired,
5191 * or if we want to idle in case it has no pending requests.
5192 */
5193 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02005194 if (bfq_bfqq_must_idle(bfqq)) {
5195 if (bfqq->dispatched == 0)
5196 bfq_arm_slice_timer(bfqd);
5197 /*
5198 * If we get here, we do not expire bfqq, even
5199 * if bfqq was in budget timeout or had no
5200 * more requests (as controlled in the next
5201 * conditional instructions). The reason for
5202 * not expiring bfqq is as follows.
5203 *
5204 * Here bfqq->dispatched > 0 holds, but
5205 * bfq_bfqq_must_idle() returned true. This
5206 * implies that, even if no request arrives
5207 * for bfqq before bfqq->dispatched reaches 0,
5208 * bfqq will, however, not be expired on the
5209 * completion event that causes bfqq->dispatch
5210 * to reach zero. In contrast, on this event,
5211 * bfqq will start enjoying device idling
5212 * (I/O-dispatch plugging).
5213 *
5214 * But, if we expired bfqq here, bfqq would
5215 * not have the chance to enjoy device idling
5216 * when bfqq->dispatched finally reaches
5217 * zero. This would expose bfqq to violation
5218 * of its reserved service guarantees.
5219 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005220 return;
5221 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5222 bfq_bfqq_expire(bfqd, bfqq, false,
5223 BFQQE_BUDGET_TIMEOUT);
5224 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5225 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02005226 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06005227 bfq_bfqq_expire(bfqd, bfqq, false,
5228 BFQQE_NO_MORE_REQUESTS);
5229 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08005230
5231 if (!bfqd->rq_in_driver)
5232 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005233}
5234
Paolo Valentea7877392018-02-07 22:19:20 +01005235static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005236{
5237 bfqq->allocated--;
5238
5239 bfq_put_queue(bfqq);
5240}
5241
Paolo Valentea7877392018-02-07 22:19:20 +01005242/*
Paolo Valente2341d6622019-03-12 09:59:29 +01005243 * The processes associated with bfqq may happen to generate their
5244 * cumulative I/O at a lower rate than the rate at which the device
5245 * could serve the same I/O. This is rather probable, e.g., if only
5246 * one process is associated with bfqq and the device is an SSD. It
5247 * results in bfqq becoming often empty while in service. In this
5248 * respect, if BFQ is allowed to switch to another queue when bfqq
5249 * remains empty, then the device goes on being fed with I/O requests,
5250 * and the throughput is not affected. In contrast, if BFQ is not
5251 * allowed to switch to another queue---because bfqq is sync and
5252 * I/O-dispatch needs to be plugged while bfqq is temporarily
5253 * empty---then, during the service of bfqq, there will be frequent
5254 * "service holes", i.e., time intervals during which bfqq gets empty
5255 * and the device can only consume the I/O already queued in its
5256 * hardware queues. During service holes, the device may even get to
5257 * remaining idle. In the end, during the service of bfqq, the device
5258 * is driven at a lower speed than the one it can reach with the kind
5259 * of I/O flowing through bfqq.
5260 *
5261 * To counter this loss of throughput, BFQ implements a "request
5262 * injection mechanism", which tries to fill the above service holes
5263 * with I/O requests taken from other queues. The hard part in this
5264 * mechanism is finding the right amount of I/O to inject, so as to
5265 * both boost throughput and not break bfqq's bandwidth and latency
5266 * guarantees. In this respect, the mechanism maintains a per-queue
5267 * inject limit, computed as below. While bfqq is empty, the injection
5268 * mechanism dispatches extra I/O requests only until the total number
5269 * of I/O requests in flight---i.e., already dispatched but not yet
5270 * completed---remains lower than this limit.
5271 *
5272 * A first definition comes in handy to introduce the algorithm by
5273 * which the inject limit is computed. We define as first request for
5274 * bfqq, an I/O request for bfqq that arrives while bfqq is in
5275 * service, and causes bfqq to switch from empty to non-empty. The
5276 * algorithm updates the limit as a function of the effect of
5277 * injection on the service times of only the first requests of
5278 * bfqq. The reason for this restriction is that these are the
5279 * requests whose service time is affected most, because they are the
5280 * first to arrive after injection possibly occurred.
5281 *
5282 * To evaluate the effect of injection, the algorithm measures the
5283 * "total service time" of first requests. We define as total service
5284 * time of an I/O request, the time that elapses since when the
5285 * request is enqueued into bfqq, to when it is completed. This
5286 * quantity allows the whole effect of injection to be measured. It is
5287 * easy to see why. Suppose that some requests of other queues are
5288 * actually injected while bfqq is empty, and that a new request R
5289 * then arrives for bfqq. If the device does start to serve all or
5290 * part of the injected requests during the service hole, then,
5291 * because of this extra service, it may delay the next invocation of
5292 * the dispatch hook of BFQ. Then, even after R gets eventually
5293 * dispatched, the device may delay the actual service of R if it is
5294 * still busy serving the extra requests, or if it decides to serve,
5295 * before R, some extra request still present in its queues. As a
5296 * conclusion, the cumulative extra delay caused by injection can be
5297 * easily evaluated by just comparing the total service time of first
5298 * requests with and without injection.
5299 *
5300 * The limit-update algorithm works as follows. On the arrival of a
5301 * first request of bfqq, the algorithm measures the total time of the
5302 * request only if one of the three cases below holds, and, for each
5303 * case, it updates the limit as described below:
5304 *
5305 * (1) If there is no in-flight request. This gives a baseline for the
5306 * total service time of the requests of bfqq. If the baseline has
5307 * not been computed yet, then, after computing it, the limit is
5308 * set to 1, to start boosting throughput, and to prepare the
5309 * ground for the next case. If the baseline has already been
5310 * computed, then it is updated, in case it results to be lower
5311 * than the previous value.
5312 *
5313 * (2) If the limit is higher than 0 and there are in-flight
5314 * requests. By comparing the total service time in this case with
5315 * the above baseline, it is possible to know at which extent the
5316 * current value of the limit is inflating the total service
5317 * time. If the inflation is below a certain threshold, then bfqq
5318 * is assumed to be suffering from no perceivable loss of its
5319 * service guarantees, and the limit is even tentatively
5320 * increased. If the inflation is above the threshold, then the
5321 * limit is decreased. Due to the lack of any hysteresis, this
5322 * logic makes the limit oscillate even in steady workload
5323 * conditions. Yet we opted for it, because it is fast in reaching
5324 * the best value for the limit, as a function of the current I/O
5325 * workload. To reduce oscillations, this step is disabled for a
5326 * short time interval after the limit happens to be decreased.
5327 *
5328 * (3) Periodically, after resetting the limit, to make sure that the
5329 * limit eventually drops in case the workload changes. This is
5330 * needed because, after the limit has gone safely up for a
5331 * certain workload, it is impossible to guess whether the
5332 * baseline total service time may have changed, without measuring
5333 * it again without injection. A more effective version of this
5334 * step might be to just sample the baseline, by interrupting
5335 * injection only once, and then to reset/lower the limit only if
5336 * the total service time with the current limit does happen to be
5337 * too large.
5338 *
5339 * More details on each step are provided in the comments on the
5340 * pieces of code that implement these steps: the branch handling the
5341 * transition from empty to non empty in bfq_add_request(), the branch
5342 * handling injection in bfq_select_queue(), and the function
5343 * bfq_choose_bfqq_for_injection(). These comments also explain some
5344 * exceptions, made by the injection mechanism in some special cases.
5345 */
5346static void bfq_update_inject_limit(struct bfq_data *bfqd,
5347 struct bfq_queue *bfqq)
5348{
5349 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5350 unsigned int old_limit = bfqq->inject_limit;
5351
5352 if (bfqq->last_serv_time_ns > 0) {
5353 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5354
5355 if (tot_time_ns >= threshold && old_limit > 0) {
5356 bfqq->inject_limit--;
5357 bfqq->decrease_time_jif = jiffies;
5358 } else if (tot_time_ns < threshold &&
5359 old_limit < bfqd->max_rq_in_driver<<1)
5360 bfqq->inject_limit++;
5361 }
5362
5363 /*
5364 * Either we still have to compute the base value for the
5365 * total service time, and there seem to be the right
5366 * conditions to do it, or we can lower the last base value
5367 * computed.
5368 */
5369 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 0) ||
5370 tot_time_ns < bfqq->last_serv_time_ns) {
5371 bfqq->last_serv_time_ns = tot_time_ns;
5372 /*
5373 * Now we certainly have a base value: make sure we
5374 * start trying injection.
5375 */
5376 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5377 }
5378
5379 /* update complete, not waiting for any request completion any longer */
5380 bfqd->waited_rq = NULL;
5381}
5382
5383/*
Paolo Valentea7877392018-02-07 22:19:20 +01005384 * Handle either a requeue or a finish for rq. The things to do are
5385 * the same in both cases: all references to rq are to be dropped. In
5386 * particular, rq is considered completed from the point of view of
5387 * the scheduler.
5388 */
5389static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005390{
Paolo Valentea7877392018-02-07 22:19:20 +01005391 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005392 struct bfq_data *bfqd;
5393
Paolo Valentea7877392018-02-07 22:19:20 +01005394 /*
5395 * Requeue and finish hooks are invoked in blk-mq without
5396 * checking whether the involved request is actually still
5397 * referenced in the scheduler. To handle this fact, the
5398 * following two checks make this function exit in case of
5399 * spurious invocations, for which there is nothing to do.
5400 *
5401 * First, check whether rq has nothing to do with an elevator.
5402 */
5403 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005404 return;
5405
Paolo Valentea7877392018-02-07 22:19:20 +01005406 /*
5407 * rq either is not associated with any icq, or is an already
5408 * requeued request that has not (yet) been re-inserted into
5409 * a bfq_queue.
5410 */
5411 if (!rq->elv.icq || !bfqq)
5412 return;
5413
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005414 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005415
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005416 if (rq->rq_flags & RQF_STARTED)
5417 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07005418 rq->start_time_ns,
5419 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005420 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005421
5422 if (likely(rq->rq_flags & RQF_STARTED)) {
5423 unsigned long flags;
5424
5425 spin_lock_irqsave(&bfqd->lock, flags);
5426
Paolo Valente2341d6622019-03-12 09:59:29 +01005427 if (rq == bfqd->waited_rq)
5428 bfq_update_inject_limit(bfqd, bfqq);
5429
Paolo Valenteaee69d72017-04-19 08:29:02 -06005430 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01005431 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005432
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005433 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005434 } else {
5435 /*
5436 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01005437 * in which case we need to remove it (this should
5438 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06005439 * defer such a check and removal, to avoid
5440 * inconsistencies in the time interval from the end
5441 * of this function to the start of the deferred work.
5442 * This situation seems to occur only in process
5443 * context, as a consequence of a merge. In the
5444 * current version of the code, this implies that the
5445 * lock is held.
5446 */
5447
Luca Miccio614822f2017-11-13 07:34:08 +01005448 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02005449 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005450 bfqg_stats_update_io_remove(bfqq_group(bfqq),
5451 rq->cmd_flags);
5452 }
Paolo Valentea7877392018-02-07 22:19:20 +01005453 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005454 }
5455
Paolo Valentea7877392018-02-07 22:19:20 +01005456 /*
5457 * Reset private fields. In case of a requeue, this allows
5458 * this function to correctly do nothing if it is spuriously
5459 * invoked again on this same request (see the check at the
5460 * beginning of the function). Probably, a better general
5461 * design would be to prevent blk-mq from invoking the requeue
5462 * or finish hooks of an elevator, for a request that is not
5463 * referred by that elevator.
5464 *
5465 * Resetting the following fields would break the
5466 * request-insertion logic if rq is re-inserted into a bfq
5467 * internal queue, without a re-preparation. Here we assume
5468 * that re-insertions of requeued requests, without
5469 * re-preparation, can happen only for pass_through or at_head
5470 * requests (which are not re-inserted into bfq internal
5471 * queues).
5472 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005473 rq->elv.priv[0] = NULL;
5474 rq->elv.priv[1] = NULL;
5475}
5476
5477/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02005478 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5479 * was the last process referring to that bfqq.
5480 */
5481static struct bfq_queue *
5482bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5483{
5484 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5485
5486 if (bfqq_process_refs(bfqq) == 1) {
5487 bfqq->pid = current->pid;
5488 bfq_clear_bfqq_coop(bfqq);
5489 bfq_clear_bfqq_split_coop(bfqq);
5490 return bfqq;
5491 }
5492
5493 bic_set_bfqq(bic, NULL, 1);
5494
5495 bfq_put_cooperator(bfqq);
5496
5497 bfq_put_queue(bfqq);
5498 return NULL;
5499}
5500
5501static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5502 struct bfq_io_cq *bic,
5503 struct bio *bio,
5504 bool split, bool is_sync,
5505 bool *new_queue)
5506{
5507 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5508
5509 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5510 return bfqq;
5511
5512 if (new_queue)
5513 *new_queue = true;
5514
5515 if (bfqq)
5516 bfq_put_queue(bfqq);
5517 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5518
5519 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005520 if (split && is_sync) {
5521 if ((bic->was_in_burst_list && bfqd->large_burst) ||
5522 bic->saved_in_large_burst)
5523 bfq_mark_bfqq_in_large_burst(bfqq);
5524 else {
5525 bfq_clear_bfqq_in_large_burst(bfqq);
5526 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02005527 /*
5528 * If bfqq was in the current
5529 * burst list before being
5530 * merged, then we have to add
5531 * it back. And we do not need
5532 * to increase burst_size, as
5533 * we did not decrement
5534 * burst_size when we removed
5535 * bfqq from the burst list as
5536 * a consequence of a merge
5537 * (see comments in
5538 * bfq_put_queue). In this
5539 * respect, it would be rather
5540 * costly to know whether the
5541 * current burst list is still
5542 * the same burst list from
5543 * which bfqq was removed on
5544 * the merge. To avoid this
5545 * cost, if bfqq was in a
5546 * burst list, then we add
5547 * bfqq to the current burst
5548 * list without any further
5549 * check. This can cause
5550 * inappropriate insertions,
5551 * but rarely enough to not
5552 * harm the detection of large
5553 * bursts significantly.
5554 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005555 hlist_add_head(&bfqq->burst_list_node,
5556 &bfqd->burst_list);
5557 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005558 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005559 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005560
5561 return bfqq;
5562}
5563
5564/*
Paolo Valente18e5a572018-05-04 19:17:01 +02005565 * Only reset private fields. The actual request preparation will be
5566 * performed by bfq_init_rq, when rq is either inserted or merged. See
5567 * comments on bfq_init_rq for the reason behind this delayed
5568 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005569 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005570static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005571{
Paolo Valente18e5a572018-05-04 19:17:01 +02005572 /*
5573 * Regardless of whether we have an icq attached, we have to
5574 * clear the scheduler pointers, as they might point to
5575 * previously allocated bic/bfqq structs.
5576 */
5577 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5578}
5579
5580/*
5581 * If needed, init rq, allocate bfq data structures associated with
5582 * rq, and increment reference counters in the destination bfq_queue
5583 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5584 * not associated with any bfq_queue.
5585 *
5586 * This function is invoked by the functions that perform rq insertion
5587 * or merging. One may have expected the above preparation operations
5588 * to be performed in bfq_prepare_request, and not delayed to when rq
5589 * is inserted or merged. The rationale behind this delayed
5590 * preparation is that, after the prepare_request hook is invoked for
5591 * rq, rq may still be transformed into a request with no icq, i.e., a
5592 * request not associated with any queue. No bfq hook is invoked to
5593 * signal this tranformation. As a consequence, should these
5594 * preparation operations be performed when the prepare_request hook
5595 * is invoked, and should rq be transformed one moment later, bfq
5596 * would end up in an inconsistent state, because it would have
5597 * incremented some queue counters for an rq destined to
5598 * transformation, without any chance to correctly lower these
5599 * counters back. In contrast, no transformation can still happen for
5600 * rq after rq has been inserted or merged. So, it is safe to execute
5601 * these preparation operations when rq is finally inserted or merged.
5602 */
5603static struct bfq_queue *bfq_init_rq(struct request *rq)
5604{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005605 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02005606 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005607 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02005608 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005609 const int is_sync = rq_is_sync(rq);
5610 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005611 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06005612 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005613
Paolo Valente18e5a572018-05-04 19:17:01 +02005614 if (unlikely(!rq->elv.icq))
5615 return NULL;
5616
Jens Axboe72961c42018-04-17 17:08:52 -06005617 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02005618 * Assuming that elv.priv[1] is set only if everything is set
5619 * for this rq. This holds true, because this function is
5620 * invoked only for insertion or merging, and, after such
5621 * events, a request cannot be manipulated any longer before
5622 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06005623 */
Paolo Valente18e5a572018-05-04 19:17:01 +02005624 if (rq->elv.priv[1])
5625 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06005626
Christoph Hellwig9f210732017-06-16 18:15:24 +02005627 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005628
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01005629 bfq_check_ioprio_change(bic, bio);
5630
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005631 bfq_bic_update_cgroup(bic, bio);
5632
Arianna Avanzini36eca892017-04-12 18:23:16 +02005633 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5634 &new_queue);
5635
5636 if (likely(!new_queue)) {
5637 /* If the queue was seeky for too long, break it apart. */
5638 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5639 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005640
5641 /* Update bic before losing reference to bfqq */
5642 if (bfq_bfqq_in_large_burst(bfqq))
5643 bic->saved_in_large_burst = true;
5644
Arianna Avanzini36eca892017-04-12 18:23:16 +02005645 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005646 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005647
5648 if (!bfqq)
5649 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5650 true, is_sync,
5651 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06005652 else
5653 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005654 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005655 }
5656
5657 bfqq->allocated++;
5658 bfqq->ref++;
5659 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5660 rq, bfqq, bfqq->ref);
5661
5662 rq->elv.priv[0] = bic;
5663 rq->elv.priv[1] = bfqq;
5664
Arianna Avanzini36eca892017-04-12 18:23:16 +02005665 /*
5666 * If a bfq_queue has only one process reference, it is owned
5667 * by only this bic: we can then set bfqq->bic = bic. in
5668 * addition, if the queue has also just been split, we have to
5669 * resume its state.
5670 */
5671 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5672 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005673 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005674 /*
5675 * The queue has just been split from a shared
5676 * queue: restore the idle window and the
5677 * possible weight raising period.
5678 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005679 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5680 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005681 }
5682 }
5683
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005684 if (unlikely(bfq_bfqq_just_created(bfqq)))
5685 bfq_handle_burst(bfqd, bfqq);
5686
Paolo Valente18e5a572018-05-04 19:17:01 +02005687 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005688}
5689
5690static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5691{
5692 struct bfq_data *bfqd = bfqq->bfqd;
5693 enum bfqq_expiration reason;
5694 unsigned long flags;
5695
5696 spin_lock_irqsave(&bfqd->lock, flags);
5697 bfq_clear_bfqq_wait_request(bfqq);
5698
5699 if (bfqq != bfqd->in_service_queue) {
5700 spin_unlock_irqrestore(&bfqd->lock, flags);
5701 return;
5702 }
5703
5704 if (bfq_bfqq_budget_timeout(bfqq))
5705 /*
5706 * Also here the queue can be safely expired
5707 * for budget timeout without wasting
5708 * guarantees
5709 */
5710 reason = BFQQE_BUDGET_TIMEOUT;
5711 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5712 /*
5713 * The queue may not be empty upon timer expiration,
5714 * because we may not disable the timer when the
5715 * first request of the in-service queue arrives
5716 * during disk idling.
5717 */
5718 reason = BFQQE_TOO_IDLE;
5719 else
5720 goto schedule_dispatch;
5721
5722 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5723
5724schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005725 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005726 bfq_schedule_dispatch(bfqd);
5727}
5728
5729/*
5730 * Handler of the expiration of the timer running if the in-service queue
5731 * is idling inside its time slice.
5732 */
5733static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5734{
5735 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5736 idle_slice_timer);
5737 struct bfq_queue *bfqq = bfqd->in_service_queue;
5738
5739 /*
5740 * Theoretical race here: the in-service queue can be NULL or
5741 * different from the queue that was idling if a new request
5742 * arrives for the current queue and there is a full dispatch
5743 * cycle that changes the in-service queue. This can hardly
5744 * happen, but in the worst case we just expire a queue too
5745 * early.
5746 */
5747 if (bfqq)
5748 bfq_idle_slice_timer_body(bfqq);
5749
5750 return HRTIMER_NORESTART;
5751}
5752
5753static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5754 struct bfq_queue **bfqq_ptr)
5755{
5756 struct bfq_queue *bfqq = *bfqq_ptr;
5757
5758 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5759 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005760 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5761
Paolo Valenteaee69d72017-04-19 08:29:02 -06005762 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5763 bfqq, bfqq->ref);
5764 bfq_put_queue(bfqq);
5765 *bfqq_ptr = NULL;
5766 }
5767}
5768
5769/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005770 * Release all the bfqg references to its async queues. If we are
5771 * deallocating the group these queues may still contain requests, so
5772 * we reparent them to the root cgroup (i.e., the only one that will
5773 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005774 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005775void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005776{
5777 int i, j;
5778
5779 for (i = 0; i < 2; i++)
5780 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005781 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005782
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005783 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005784}
5785
Jens Axboef0635b82018-05-09 13:27:21 -06005786/*
5787 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005788 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005789 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005790static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5791 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005792{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005793 unsigned int i, j, min_shallow = UINT_MAX;
5794
Jens Axboef0635b82018-05-09 13:27:21 -06005795 /*
5796 * In-word depths if no bfq_queue is being weight-raised:
5797 * leaving 25% of tags only for sync reads.
5798 *
5799 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005800 * (1U<<bt->sb.shift), instead of computing directly
5801 * (1U<<(bt->sb.shift - something)), to be robust against
5802 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005803 * limit 'something'.
5804 */
5805 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005806 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005807 /*
5808 * no more than 75% of tags for sync writes (25% extra tags
5809 * w.r.t. async I/O, to prevent async I/O from starving sync
5810 * writes)
5811 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005812 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005813
5814 /*
5815 * In-word depths in case some bfq_queue is being weight-
5816 * raised: leaving ~63% of tags for sync reads. This is the
5817 * highest percentage for which, in our tests, application
5818 * start-up times didn't suffer from any regression due to tag
5819 * shortage.
5820 */
5821 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005822 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005823 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005824 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005825
5826 for (i = 0; i < 2; i++)
5827 for (j = 0; j < 2; j++)
5828 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5829
5830 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005831}
5832
5833static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5834{
5835 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5836 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005837 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005838
Jens Axboe483b7bf2018-05-09 15:26:55 -06005839 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5840 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005841 return 0;
5842}
5843
Paolo Valenteaee69d72017-04-19 08:29:02 -06005844static void bfq_exit_queue(struct elevator_queue *e)
5845{
5846 struct bfq_data *bfqd = e->elevator_data;
5847 struct bfq_queue *bfqq, *n;
5848
5849 hrtimer_cancel(&bfqd->idle_slice_timer);
5850
5851 spin_lock_irq(&bfqd->lock);
5852 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005853 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005854 spin_unlock_irq(&bfqd->lock);
5855
5856 hrtimer_cancel(&bfqd->idle_slice_timer);
5857
Jens Axboe8abef102018-01-09 12:20:51 -07005858#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005859 /* release oom-queue reference to root group */
5860 bfqg_and_blkg_put(bfqd->root_group);
5861
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005862 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5863#else
5864 spin_lock_irq(&bfqd->lock);
5865 bfq_put_async_queues(bfqd, bfqd->root_group);
5866 kfree(bfqd->root_group);
5867 spin_unlock_irq(&bfqd->lock);
5868#endif
5869
Paolo Valenteaee69d72017-04-19 08:29:02 -06005870 kfree(bfqd);
5871}
5872
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005873static void bfq_init_root_group(struct bfq_group *root_group,
5874 struct bfq_data *bfqd)
5875{
5876 int i;
5877
5878#ifdef CONFIG_BFQ_GROUP_IOSCHED
5879 root_group->entity.parent = NULL;
5880 root_group->my_entity = NULL;
5881 root_group->bfqd = bfqd;
5882#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005883 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005884 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5885 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5886 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5887}
5888
Paolo Valenteaee69d72017-04-19 08:29:02 -06005889static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5890{
5891 struct bfq_data *bfqd;
5892 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005893
5894 eq = elevator_alloc(q, e);
5895 if (!eq)
5896 return -ENOMEM;
5897
5898 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5899 if (!bfqd) {
5900 kobject_put(&eq->kobj);
5901 return -ENOMEM;
5902 }
5903 eq->elevator_data = bfqd;
5904
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005905 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005906 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005907 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005908
Paolo Valenteaee69d72017-04-19 08:29:02 -06005909 /*
5910 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5911 * Grab a permanent reference to it, so that the normal code flow
5912 * will not attempt to free it.
5913 */
5914 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5915 bfqd->oom_bfqq.ref++;
5916 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5917 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5918 bfqd->oom_bfqq.entity.new_weight =
5919 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005920
5921 /* oom_bfqq does not participate to bursts */
5922 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5923
Paolo Valenteaee69d72017-04-19 08:29:02 -06005924 /*
5925 * Trigger weight initialization, according to ioprio, at the
5926 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5927 * class won't be changed any more.
5928 */
5929 bfqd->oom_bfqq.entity.prio_changed = 1;
5930
5931 bfqd->queue = q;
5932
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005933 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005934
5935 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5936 HRTIMER_MODE_REL);
5937 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5938
Paolo Valentefb53ac62019-03-12 09:59:28 +01005939 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01005940 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005941
Paolo Valenteaee69d72017-04-19 08:29:02 -06005942 INIT_LIST_HEAD(&bfqd->active_list);
5943 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005944 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005945
5946 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005947 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005948
5949 bfqd->bfq_max_budget = bfq_default_max_budget;
5950
5951 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5952 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5953 bfqd->bfq_back_max = bfq_back_max;
5954 bfqd->bfq_back_penalty = bfq_back_penalty;
5955 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005956 bfqd->bfq_timeout = bfq_timeout;
5957
5958 bfqd->bfq_requests_within_timer = 120;
5959
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005960 bfqd->bfq_large_burst_thresh = 8;
5961 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5962
Paolo Valente44e44a12017-04-12 18:23:12 +02005963 bfqd->low_latency = true;
5964
5965 /*
5966 * Trade-off between responsiveness and fairness.
5967 */
5968 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005969 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005970 bfqd->bfq_wr_max_time = 0;
5971 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5972 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005973 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5974 * Approximate rate required
5975 * to playback or record a
5976 * high-definition compressed
5977 * video.
5978 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005979 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005980
5981 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005982 * Begin by assuming, optimistically, that the device peak
5983 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005984 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005985 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5986 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5987 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005988
Paolo Valenteaee69d72017-04-19 08:29:02 -06005989 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005990
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005991 /*
5992 * The invocation of the next bfq_create_group_hierarchy
5993 * function is the head of a chain of function calls
5994 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5995 * blk_mq_freeze_queue) that may lead to the invocation of the
5996 * has_work hook function. For this reason,
5997 * bfq_create_group_hierarchy is invoked only after all
5998 * scheduler data has been initialized, apart from the fields
5999 * that can be initialized only after invoking
6000 * bfq_create_group_hierarchy. This, in particular, enables
6001 * has_work to correctly return false. Of course, to avoid
6002 * other inconsistencies, the blk-mq stack must then refrain
6003 * from invoking further scheduler hooks before this init
6004 * function is finished.
6005 */
6006 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6007 if (!bfqd->root_group)
6008 goto out_free;
6009 bfq_init_root_group(bfqd->root_group, bfqd);
6010 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6011
Luca Micciob5dc5d42017-10-09 16:27:21 +02006012 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006013 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006014
6015out_free:
6016 kfree(bfqd);
6017 kobject_put(&eq->kobj);
6018 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006019}
6020
6021static void bfq_slab_kill(void)
6022{
6023 kmem_cache_destroy(bfq_pool);
6024}
6025
6026static int __init bfq_slab_setup(void)
6027{
6028 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6029 if (!bfq_pool)
6030 return -ENOMEM;
6031 return 0;
6032}
6033
6034static ssize_t bfq_var_show(unsigned int var, char *page)
6035{
6036 return sprintf(page, "%u\n", var);
6037}
6038
Bart Van Assche2f791362017-08-30 11:42:09 -07006039static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006040{
6041 unsigned long new_val;
6042 int ret = kstrtoul(page, 10, &new_val);
6043
Bart Van Assche2f791362017-08-30 11:42:09 -07006044 if (ret)
6045 return ret;
6046 *var = new_val;
6047 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006048}
6049
6050#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6051static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6052{ \
6053 struct bfq_data *bfqd = e->elevator_data; \
6054 u64 __data = __VAR; \
6055 if (__CONV == 1) \
6056 __data = jiffies_to_msecs(__data); \
6057 else if (__CONV == 2) \
6058 __data = div_u64(__data, NSEC_PER_MSEC); \
6059 return bfq_var_show(__data, (page)); \
6060}
6061SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6062SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6063SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6064SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6065SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6066SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6067SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6068SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02006069SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006070#undef SHOW_FUNCTION
6071
6072#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6073static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6074{ \
6075 struct bfq_data *bfqd = e->elevator_data; \
6076 u64 __data = __VAR; \
6077 __data = div_u64(__data, NSEC_PER_USEC); \
6078 return bfq_var_show(__data, (page)); \
6079}
6080USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6081#undef USEC_SHOW_FUNCTION
6082
6083#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6084static ssize_t \
6085__FUNC(struct elevator_queue *e, const char *page, size_t count) \
6086{ \
6087 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006088 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006089 int ret; \
6090 \
6091 ret = bfq_var_store(&__data, (page)); \
6092 if (ret) \
6093 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006094 if (__data < __min) \
6095 __data = __min; \
6096 else if (__data > __max) \
6097 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006098 if (__CONV == 1) \
6099 *(__PTR) = msecs_to_jiffies(__data); \
6100 else if (__CONV == 2) \
6101 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6102 else \
6103 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08006104 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006105}
6106STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6107 INT_MAX, 2);
6108STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6109 INT_MAX, 2);
6110STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6111STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6112 INT_MAX, 0);
6113STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6114#undef STORE_FUNCTION
6115
6116#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6117static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6118{ \
6119 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006120 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006121 int ret; \
6122 \
6123 ret = bfq_var_store(&__data, (page)); \
6124 if (ret) \
6125 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006126 if (__data < __min) \
6127 __data = __min; \
6128 else if (__data > __max) \
6129 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006130 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08006131 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006132}
6133USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6134 UINT_MAX);
6135#undef USEC_STORE_FUNCTION
6136
Paolo Valenteaee69d72017-04-19 08:29:02 -06006137static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6138 const char *page, size_t count)
6139{
6140 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006141 unsigned long __data;
6142 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006143
Bart Van Assche2f791362017-08-30 11:42:09 -07006144 ret = bfq_var_store(&__data, (page));
6145 if (ret)
6146 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006147
6148 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006149 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006150 else {
6151 if (__data > INT_MAX)
6152 __data = INT_MAX;
6153 bfqd->bfq_max_budget = __data;
6154 }
6155
6156 bfqd->bfq_user_max_budget = __data;
6157
weiping zhang235f8da2017-08-25 01:11:33 +08006158 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006159}
6160
6161/*
6162 * Leaving this name to preserve name compatibility with cfq
6163 * parameters, but this timeout is used for both sync and async.
6164 */
6165static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6166 const char *page, size_t count)
6167{
6168 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006169 unsigned long __data;
6170 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006171
Bart Van Assche2f791362017-08-30 11:42:09 -07006172 ret = bfq_var_store(&__data, (page));
6173 if (ret)
6174 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006175
6176 if (__data < 1)
6177 __data = 1;
6178 else if (__data > INT_MAX)
6179 __data = INT_MAX;
6180
6181 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6182 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006183 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006184
weiping zhang235f8da2017-08-25 01:11:33 +08006185 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006186}
6187
6188static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6189 const char *page, size_t count)
6190{
6191 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006192 unsigned long __data;
6193 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006194
Bart Van Assche2f791362017-08-30 11:42:09 -07006195 ret = bfq_var_store(&__data, (page));
6196 if (ret)
6197 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006198
6199 if (__data > 1)
6200 __data = 1;
6201 if (!bfqd->strict_guarantees && __data == 1
6202 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6203 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6204
6205 bfqd->strict_guarantees = __data;
6206
weiping zhang235f8da2017-08-25 01:11:33 +08006207 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006208}
6209
Paolo Valente44e44a12017-04-12 18:23:12 +02006210static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6211 const char *page, size_t count)
6212{
6213 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006214 unsigned long __data;
6215 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006216
Bart Van Assche2f791362017-08-30 11:42:09 -07006217 ret = bfq_var_store(&__data, (page));
6218 if (ret)
6219 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02006220
6221 if (__data > 1)
6222 __data = 1;
6223 if (__data == 0 && bfqd->low_latency != 0)
6224 bfq_end_wr(bfqd);
6225 bfqd->low_latency = __data;
6226
weiping zhang235f8da2017-08-25 01:11:33 +08006227 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02006228}
6229
Paolo Valenteaee69d72017-04-19 08:29:02 -06006230#define BFQ_ATTR(name) \
6231 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6232
6233static struct elv_fs_entry bfq_attrs[] = {
6234 BFQ_ATTR(fifo_expire_sync),
6235 BFQ_ATTR(fifo_expire_async),
6236 BFQ_ATTR(back_seek_max),
6237 BFQ_ATTR(back_seek_penalty),
6238 BFQ_ATTR(slice_idle),
6239 BFQ_ATTR(slice_idle_us),
6240 BFQ_ATTR(max_budget),
6241 BFQ_ATTR(timeout_sync),
6242 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02006243 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06006244 __ATTR_NULL
6245};
6246
6247static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06006248 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01006249 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006250 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01006251 .requeue_request = bfq_finish_requeue_request,
6252 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006253 .exit_icq = bfq_exit_icq,
6254 .insert_requests = bfq_insert_requests,
6255 .dispatch_request = bfq_dispatch_request,
6256 .next_request = elv_rb_latter_request,
6257 .former_request = elv_rb_former_request,
6258 .allow_merge = bfq_allow_bio_merge,
6259 .bio_merge = bfq_bio_merge,
6260 .request_merge = bfq_request_merge,
6261 .requests_merged = bfq_requests_merged,
6262 .request_merged = bfq_request_merged,
6263 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06006264 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006265 .init_sched = bfq_init_queue,
6266 .exit_sched = bfq_exit_queue,
6267 },
6268
Paolo Valenteaee69d72017-04-19 08:29:02 -06006269 .icq_size = sizeof(struct bfq_io_cq),
6270 .icq_align = __alignof__(struct bfq_io_cq),
6271 .elevator_attrs = bfq_attrs,
6272 .elevator_name = "bfq",
6273 .elevator_owner = THIS_MODULE,
6274};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01006275MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06006276
6277static int __init bfq_init(void)
6278{
6279 int ret;
6280
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006281#ifdef CONFIG_BFQ_GROUP_IOSCHED
6282 ret = blkcg_policy_register(&blkcg_policy_bfq);
6283 if (ret)
6284 return ret;
6285#endif
6286
Paolo Valenteaee69d72017-04-19 08:29:02 -06006287 ret = -ENOMEM;
6288 if (bfq_slab_setup())
6289 goto err_pol_unreg;
6290
Paolo Valente44e44a12017-04-12 18:23:12 +02006291 /*
6292 * Times to load large popular applications for the typical
6293 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02006294 * comments before the definition of the next
6295 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02006296 * estimated peak rate tends to be smaller than the actual
6297 * peak rate. The reason for this last fact is that estimates
6298 * are computed over much shorter time intervals than the long
6299 * intervals typically used for benchmarking. Why? First, to
6300 * adapt more quickly to variations. Second, because an I/O
6301 * scheduler cannot rely on a peak-rate-evaluation workload to
6302 * be run for a long time.
6303 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006304 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6305 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02006306
Paolo Valenteaee69d72017-04-19 08:29:02 -06006307 ret = elv_register(&iosched_bfq_mq);
6308 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08006309 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006310
6311 return 0;
6312
weiping zhang37dcd652017-08-19 00:37:20 +08006313slab_kill:
6314 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06006315err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006316#ifdef CONFIG_BFQ_GROUP_IOSCHED
6317 blkcg_policy_unregister(&blkcg_policy_bfq);
6318#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006319 return ret;
6320}
6321
6322static void __exit bfq_exit(void)
6323{
6324 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006325#ifdef CONFIG_BFQ_GROUP_IOSCHED
6326 blkcg_policy_unregister(&blkcg_policy_bfq);
6327#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006328 bfq_slab_kill();
6329}
6330
6331module_init(bfq_init);
6332module_exit(bfq_exit);
6333
6334MODULE_AUTHOR("Paolo Valente");
6335MODULE_LICENSE("GPL");
6336MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");