blob: e099650cd249a7fb728e00f409b9557d598ceb8f [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Frederic Weisbecker76e1d902010-04-05 15:35:57 +020019#include <linux/hash.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020020#include <linux/sysfs.h>
21#include <linux/dcache.h>
22#include <linux/percpu.h>
23#include <linux/ptrace.h>
24#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020025#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020026#include <linux/hardirq.h>
27#include <linux/rculist.h>
28#include <linux/uaccess.h>
29#include <linux/syscalls.h>
30#include <linux/anon_inodes.h>
31#include <linux/kernel_stat.h>
32#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080033#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020034#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020035
36#include <asm/irq_regs.h>
37
38/*
39 * Each CPU has a list of per CPU events:
40 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080041static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020042
43int perf_max_events __read_mostly = 1;
44static int perf_reserved_percpu __read_mostly;
45static int perf_overcommit __read_mostly = 1;
46
47static atomic_t nr_events __read_mostly;
48static atomic_t nr_mmap_events __read_mostly;
49static atomic_t nr_comm_events __read_mostly;
50static atomic_t nr_task_events __read_mostly;
51
52/*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59int sysctl_perf_event_paranoid __read_mostly = 1;
60
Ingo Molnarcdd6c482009-09-21 12:02:48 +020061int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63/*
64 * max perf event sample rate
65 */
66int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68static atomic64_t perf_event_id;
69
70/*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73static DEFINE_SPINLOCK(perf_resource_lock);
74
75/*
76 * Architecture provided APIs - weak aliases:
77 */
78extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79{
80 return NULL;
81}
82
83void __weak hw_perf_disable(void) { barrier(); }
84void __weak hw_perf_enable(void) { barrier(); }
85
Ingo Molnarcdd6c482009-09-21 12:02:48 +020086void __weak perf_event_print_debug(void) { }
87
88static DEFINE_PER_CPU(int, perf_disable_count);
89
Ingo Molnarcdd6c482009-09-21 12:02:48 +020090void perf_disable(void)
91{
Peter Zijlstra32975a42010-03-06 19:49:19 +010092 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +020094}
95
96void perf_enable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +020099 hw_perf_enable();
100}
101
102static void get_ctx(struct perf_event_context *ctx)
103{
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105}
106
107static void free_ctx(struct rcu_head *head)
108{
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113}
114
115static void put_ctx(struct perf_event_context *ctx)
116{
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124}
125
126static void unclone_ctx(struct perf_event_context *ctx)
127{
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132}
133
134/*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138static u64 primary_event_id(struct perf_event *event)
139{
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146}
147
148/*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153static struct perf_event_context *
154perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155{
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100172 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185}
186
187/*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193{
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200201 }
202 return ctx;
203}
204
205static void perf_unpin_context(struct perf_event_context *ctx)
206{
207 unsigned long flags;
208
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100209 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200210 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200212 put_ctx(ctx);
213}
214
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100215static inline u64 perf_clock(void)
216{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100217 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100218}
219
220/*
221 * Update the record of the current time in a context.
222 */
223static void update_context_time(struct perf_event_context *ctx)
224{
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229}
230
231/*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234static void update_event_times(struct perf_event *event)
235{
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256}
257
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200258/*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261static void update_group_times(struct perf_event *leader)
262{
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268}
269
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100270static struct list_head *
271ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272{
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277}
278
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200279/*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283static void
284list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285{
286 struct perf_event *group_leader = event->group_leader;
287
288 /*
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
292 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 if (group_leader == event) {
294 struct list_head *list;
295
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
298
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
308 }
309
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
314}
315
316/*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320static void
321list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322{
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200335 update_group_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800336
337 /*
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
343 */
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra050735b2010-05-11 11:51:53 +0200346}
347
348static void
349perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350{
351 struct perf_event *sibling, *tmp;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100352
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100359 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200360
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200363 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200367 }
368}
369
370static void
371event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374{
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392}
393
394static void
395group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398{
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414}
415
416/*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422static void __perf_event_remove_from_context(void *info)
423{
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100436 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100458 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200459}
460
461
462/*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477static void perf_event_remove_from_context(struct perf_event *event)
478{
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200485 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100497 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100502 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100511 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200512 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100513 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200514}
515
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200517 * Cross CPU call to disable a performance event
518 */
519static void __perf_event_disable(void *info)
520{
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
524
525 /*
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
528 */
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
531
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100532 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200533
534 /*
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
537 */
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
546 }
547
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100548 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200549}
550
551/*
552 * Disable a event.
553 *
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
563 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100564void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200565{
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
568
569 if (!task) {
570 /*
571 * Disable the event on the cpu that it's on
572 */
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
576 }
577
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
580
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100581 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200582 /*
583 * If the event is still active, we need to retry the cross-call.
584 */
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100586 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200587 goto retry;
588 }
589
590 /*
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
593 */
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
597 }
598
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100599 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200600}
601
602static int
603event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100605 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200606{
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
609
610 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100611 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * The new state must be visible before we turn it on in the hardware:
614 */
615 smp_wmb();
616
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
621 }
622
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
628
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
631
632 return 0;
633}
634
635static int
636group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100638 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200639{
Lin Ming6bde9b62010-04-23 13:56:00 +0800640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Lin Ming6bde9b62010-04-23 13:56:00 +0800648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
651
652 if (txn)
653 pmu->start_txn(pmu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200654
Peter Zijlstra6e377382010-02-11 13:21:58 +0100655 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200656 return -EAGAIN;
657
658 /*
659 * Schedule in siblings as one group (if any):
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100662 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200663 partial_group = event;
664 goto group_error;
665 }
666 }
667
Paul Mackerras6e851582010-05-08 20:58:00 +1000668 if (!txn)
669 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800670
Paul Mackerras6e851582010-05-08 20:58:00 +1000671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800675 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200676
677group_error:
Lin Ming6bde9b62010-04-23 13:56:00 +0800678 if (txn)
679 pmu->cancel_txn(pmu);
680
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200681 /*
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
684 */
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
689 }
690 event_sched_out(group_event, cpuctx, ctx);
691
692 return -EAGAIN;
693}
694
695/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200696 * Work out whether we can put this event group on the CPU now.
697 */
698static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
701{
702 /*
703 * Groups consisting entirely of software events can always go on.
704 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100705 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200706 return 1;
707 /*
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
710 */
711 if (cpuctx->exclusive)
712 return 0;
713 /*
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
716 */
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
719 /*
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
722 */
723 return can_add_hw;
724}
725
726static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
728{
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
733}
734
735/*
736 * Cross CPU call to install and enable a performance event
737 *
738 * Must be called with ctx->mutex held
739 */
740static void __perf_install_in_context(void *info)
741{
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200746 int err;
747
748 /*
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
754 */
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
759 }
760
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100761 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200762 ctx->is_active = 1;
763 update_context_time(ctx);
764
765 /*
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
768 */
769 perf_disable();
770
771 add_event_to_ctx(event, ctx);
772
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
775
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100792 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100814 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200839 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100850 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100855 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100866 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100911 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
921
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 /*
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
925 */
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
928
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100934 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200935 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100936 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200937 perf_enable();
938 }
939
940 if (err) {
941 /*
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
944 */
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
950 }
951 }
952
953 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100954 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200955}
956
957/*
958 * Enable a event.
959 *
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
965 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100966void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200967{
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
970
971 if (!task) {
972 /*
973 * Enable the event on the cpu that it's on
974 */
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
978 }
979
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100980 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
983
984 /*
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
990 */
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
993
994 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100995 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200996 task_oncpu_function_call(task, __perf_event_enable, event);
997
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100998 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200999
1000 /*
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1003 */
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1006
1007 /*
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1010 */
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1013
1014 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016}
1017
1018static int perf_event_refresh(struct perf_event *event, int refresh)
1019{
1020 /*
1021 * not supported on inherited events
1022 */
1023 if (event->attr.inherit)
1024 return -EINVAL;
1025
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1028
1029 return 0;
1030}
1031
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001032enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036};
1037
1038static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001041{
1042 struct perf_event *event;
1043
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001044 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1049
1050 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001051 if (!ctx->nr_active)
1052 goto out_enable;
1053
1054 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001058 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001060 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001061
1062 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001063 perf_enable();
1064 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001065 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066}
1067
1068/*
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1078 */
1079static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1081{
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1085}
1086
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001087static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1089{
1090 u64 value;
1091
1092 if (!event->attr.inherit_stat)
1093 return;
1094
1095 /*
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1101 */
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001104 event->pmu->read(event);
1105 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001106
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114
1115 /*
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1118 */
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1122
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1125
1126 /*
1127 * Since we swizzled the values, update the user visible data too.
1128 */
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1131}
1132
1133#define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1135
1136static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1138{
1139 struct perf_event *event, *next_event;
1140
1141 if (!ctx->nr_stat)
1142 return;
1143
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001144 update_context_time(ctx);
1145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1151
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1154
1155 __perf_event_sync_stat(event, next_event);
1156
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1159 }
1160}
1161
1162/*
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1165 *
1166 * We stop each event and update the event value in event->count.
1167 *
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1172 */
1173void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001174 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001175{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001180 int do_switch = 1;
1181
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001183
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1186
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1192 /*
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1200 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001203 if (context_equiv(ctx, next_ctx)) {
1204 /*
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1207 */
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1213
1214 perf_event_sync_stat(ctx, next_ctx);
1215 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218 }
1219 rcu_read_unlock();
1220
1221 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001223 cpuctx->task_ctx = NULL;
1224 }
1225}
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001229{
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232 if (!cpuctx->task_ctx)
1233 return;
1234
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1237
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001238 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001239 cpuctx->task_ctx = NULL;
1240}
1241
1242/*
1243 * Called with IRQs disabled
1244 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001245static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001247 task_ctx_sched_out(ctx, EVENT_ALL);
1248}
1249
1250/*
1251 * Called with IRQs disabled
1252 */
1253static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1255{
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001257}
1258
1259static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262{
1263 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001264
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001268 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001269 continue;
1270
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001271 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001272 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001273
1274 /*
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1277 */
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1281 }
1282 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001283}
1284
1285static void
1286ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001287 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001288{
1289 struct perf_event *event;
1290 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001300 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001301 continue;
1302
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001303 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001304 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001305 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001306 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001307}
1308
1309static void
1310ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1313{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1318
1319 ctx->timestamp = perf_clock();
1320
1321 perf_disable();
1322
1323 /*
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1326 */
1327 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001328 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001329
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001332 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001334 perf_enable();
1335 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001336 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001337}
1338
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001339static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1341{
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345}
1346
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001347static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1349{
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1359}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360/*
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1363 *
1364 * We restore the event value and then enable it.
1365 *
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1370 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001371void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001372{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001375
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001376 if (likely(!ctx))
1377 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001378
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001379 if (cpuctx->task_ctx == ctx)
1380 return;
1381
eranian@google.com9b33fa62010-03-10 22:26:05 -08001382 perf_disable();
1383
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001384 /*
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1388 */
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001396
1397 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398}
1399
1400#define MAX_INTERRUPTS (~0ULL)
1401
1402static void perf_log_throttle(struct perf_event *event, int enable);
1403
Peter Zijlstraabd50712010-01-26 18:50:16 +01001404static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405{
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1409
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1416
1417 /*
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1420 *
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1424 *
1425 */
1426
1427 /*
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1430 */
1431#define REDUCE_FLS(a, b) \
1432do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1439 } \
1440} while (0)
1441
1442 /*
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1445 */
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1449 }
1450
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1453
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1457 }
1458
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1462
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1466 }
1467
1468 divisor = nsec * frequency;
1469 }
1470
1471 return div64_u64(dividend, divisor);
1472}
1473
Stephane Eraniand76a0812010-02-08 17:06:01 +02001474static void perf_event_stop(struct perf_event *event)
1475{
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1478
1479 return event->pmu->stop(event);
1480}
1481
1482static int perf_event_start(struct perf_event *event)
1483{
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1486
1487 return event->pmu->start(event);
1488}
1489
Peter Zijlstraabd50712010-01-26 18:50:16 +01001490static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001491{
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1495
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001497
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1500
1501 sample_period = hwc->sample_period + delta;
1502
1503 if (!sample_period)
1504 sample_period = 1;
1505
1506 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001507
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001510 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001511 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001512 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513 perf_enable();
1514 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515}
1516
1517static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518{
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001521 u64 interrupts, now;
1522 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001523
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001524 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1528
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1531
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 hwc = &event->hw;
1533
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1536
1537 /*
1538 * unthrottle events on the tick
1539 */
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001542 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001543 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001544 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001545 }
1546
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1549
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001550 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555
Peter Zijlstraabd50712010-01-26 18:50:16 +01001556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001558 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001560 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561}
1562
1563/*
1564 * Round-robin a context's events:
1565 */
1566static void rotate_ctx(struct perf_event_context *ctx)
1567{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001568 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001569
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001570 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001571 list_rotate_left(&ctx->flexible_groups);
1572
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001573 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574}
1575
Peter Zijlstra49f47432009-12-27 11:51:52 +01001576void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001577{
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001580 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581
1582 if (!atomic_read(&nr_events))
1583 return;
1584
Peter Zijlstra49f47432009-12-27 11:51:52 +01001585 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001589
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001593
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001598 if (!rotate)
1599 return;
1600
1601 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001605
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1609
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001613 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001614}
1615
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001616static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1618{
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1621
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1625
1626 __perf_event_mark_enabled(event, ctx);
1627
1628 return 1;
1629}
1630
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001631/*
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1634 */
1635static void perf_event_enable_on_exec(struct task_struct *task)
1636{
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001641 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001642
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1647
1648 __perf_event_task_sched_out(ctx);
1649
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001650 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001651
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1656 }
1657
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 }
1663
1664 /*
1665 * Unclone this context if we enabled any event.
1666 */
1667 if (enabled)
1668 unclone_ctx(ctx);
1669
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001670 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001671
Peter Zijlstra49f47432009-12-27 11:51:52 +01001672 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001673 out:
1674 local_irq_restore(flags);
1675}
1676
1677/*
1678 * Cross CPU call to read the hardware event
1679 */
1680static void __perf_event_read(void *info)
1681{
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685
1686 /*
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1692 */
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1695
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001696 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001697 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001698 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001699 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001700
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001701 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001702}
1703
1704static u64 perf_event_read(struct perf_event *event)
1705{
1706 /*
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1709 */
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1716
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001717 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001718 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001719 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001721 }
1722
1723 return atomic64_read(&event->count);
1724}
1725
1726/*
1727 * Initialize the perf_event context in a task_struct:
1728 */
1729static void
1730__perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1732{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001733 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1740}
1741
1742static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743{
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1749
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001750 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1754
Paul Mackerras0f624e72009-12-15 19:40:32 +11001755 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001756 return ERR_PTR(-EINVAL);
1757
1758 /*
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1762 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001763 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001764 return ERR_PTR(-ENODEV);
1765
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1769
1770 return ctx;
1771 }
1772
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1781
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1784
1785 /*
1786 * Can't attach events to a dying task.
1787 */
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1791
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1796
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001802 }
1803
1804 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 /*
1813 * We raced with some other task; use
1814 * the context they set.
1815 */
1816 kfree(ctx);
1817 goto retry;
1818 }
1819 get_task_struct(task);
1820 }
1821
1822 put_task_struct(task);
1823 return ctx;
1824
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1828}
1829
Li Zefan6fb29152009-10-15 11:21:42 +08001830static void perf_event_free_filter(struct perf_event *event);
1831
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001832static void free_event_rcu(struct rcu_head *head)
1833{
1834 struct perf_event *event;
1835
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001839 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 kfree(event);
1841}
1842
1843static void perf_pending_sync(struct perf_event *event);
1844
1845static void free_event(struct perf_event *event)
1846{
1847 perf_pending_sync(event);
1848
1849 if (!event->parent) {
1850 atomic_dec(&nr_events);
1851 if (event->attr.mmap)
1852 atomic_dec(&nr_mmap_events);
1853 if (event->attr.comm)
1854 atomic_dec(&nr_comm_events);
1855 if (event->attr.task)
1856 atomic_dec(&nr_task_events);
1857 }
1858
1859 if (event->output) {
1860 fput(event->output->filp);
1861 event->output = NULL;
1862 }
1863
1864 if (event->destroy)
1865 event->destroy(event);
1866
1867 put_ctx(event->ctx);
1868 call_rcu(&event->rcu_head, free_event_rcu);
1869}
1870
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001871int perf_event_release_kernel(struct perf_event *event)
1872{
1873 struct perf_event_context *ctx = event->ctx;
1874
Peter Zijlstra050735b2010-05-11 11:51:53 +02001875 /*
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1878 */
1879 perf_event_disable(event);
1880
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001881 WARN_ON_ONCE(ctx->parent_ctx);
Peter Zijlstraa0507c82010-05-06 15:42:53 +02001882 /*
1883 * There are two ways this annotation is useful:
1884 *
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1887 *
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1893 */
1894 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
Peter Zijlstra050735b2010-05-11 11:51:53 +02001895 raw_spin_lock_irq(&ctx->lock);
1896 list_del_event(event, ctx);
1897 perf_destroy_group(event, ctx);
1898 raw_spin_unlock_irq(&ctx->lock);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001899 mutex_unlock(&ctx->mutex);
1900
1901 mutex_lock(&event->owner->perf_event_mutex);
1902 list_del_init(&event->owner_entry);
1903 mutex_unlock(&event->owner->perf_event_mutex);
1904 put_task_struct(event->owner);
1905
1906 free_event(event);
1907
1908 return 0;
1909}
1910EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001912/*
1913 * Called when the last reference to the file is gone.
1914 */
1915static int perf_release(struct inode *inode, struct file *file)
1916{
1917 struct perf_event *event = file->private_data;
1918
1919 file->private_data = NULL;
1920
1921 return perf_event_release_kernel(event);
1922}
1923
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001924static int perf_event_read_size(struct perf_event *event)
1925{
1926 int entry = sizeof(u64); /* value */
1927 int size = 0;
1928 int nr = 1;
1929
1930 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931 size += sizeof(u64);
1932
1933 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934 size += sizeof(u64);
1935
1936 if (event->attr.read_format & PERF_FORMAT_ID)
1937 entry += sizeof(u64);
1938
1939 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940 nr += event->group_leader->nr_siblings;
1941 size += sizeof(u64);
1942 }
1943
1944 size += entry * nr;
1945
1946 return size;
1947}
1948
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001949u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950{
1951 struct perf_event *child;
1952 u64 total = 0;
1953
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001954 *enabled = 0;
1955 *running = 0;
1956
Peter Zijlstra6f105812009-11-20 22:19:56 +01001957 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001958 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001959 *enabled += event->total_time_enabled +
1960 atomic64_read(&event->child_total_time_enabled);
1961 *running += event->total_time_running +
1962 atomic64_read(&event->child_total_time_running);
1963
1964 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001965 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001966 *enabled += child->total_time_enabled;
1967 *running += child->total_time_running;
1968 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001970
1971 return total;
1972}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001973EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001974
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001975static int perf_event_read_group(struct perf_event *event,
1976 u64 read_format, char __user *buf)
1977{
1978 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001979 int n = 0, size = 0, ret = -EFAULT;
1980 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001981 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001982 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001983
Peter Zijlstra6f105812009-11-20 22:19:56 +01001984 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001985 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001986
1987 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001992 values[n++] = count;
1993 if (read_format & PERF_FORMAT_ID)
1994 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996 size = n * sizeof(u64);
1997
1998 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001999 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002000
Peter Zijlstra6f105812009-11-20 22:19:56 +01002001 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01002004 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002006 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01002007 if (read_format & PERF_FORMAT_ID)
2008 values[n++] = primary_event_id(sub);
2009
2010 size = n * sizeof(u64);
2011
Stephane Eranian184d3da2009-11-23 21:40:49 -08002012 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002013 ret = -EFAULT;
2014 goto unlock;
2015 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002016
2017 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002018 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002019unlock:
2020 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002021
Peter Zijlstraabf48682009-11-20 22:19:49 +01002022 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002023}
2024
2025static int perf_event_read_one(struct perf_event *event,
2026 u64 read_format, char __user *buf)
2027{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002028 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002029 u64 values[4];
2030 int n = 0;
2031
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002032 values[n++] = perf_event_read_value(event, &enabled, &running);
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034 values[n++] = enabled;
2035 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002037 if (read_format & PERF_FORMAT_ID)
2038 values[n++] = primary_event_id(event);
2039
2040 if (copy_to_user(buf, values, n * sizeof(u64)))
2041 return -EFAULT;
2042
2043 return n * sizeof(u64);
2044}
2045
2046/*
2047 * Read the performance event - simple non blocking version for now
2048 */
2049static ssize_t
2050perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051{
2052 u64 read_format = event->attr.read_format;
2053 int ret;
2054
2055 /*
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2059 */
2060 if (event->state == PERF_EVENT_STATE_ERROR)
2061 return 0;
2062
2063 if (count < perf_event_read_size(event))
2064 return -ENOSPC;
2065
2066 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002067 if (read_format & PERF_FORMAT_GROUP)
2068 ret = perf_event_read_group(event, read_format, buf);
2069 else
2070 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002071
2072 return ret;
2073}
2074
2075static ssize_t
2076perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077{
2078 struct perf_event *event = file->private_data;
2079
2080 return perf_read_hw(event, buf, count);
2081}
2082
2083static unsigned int perf_poll(struct file *file, poll_table *wait)
2084{
2085 struct perf_event *event = file->private_data;
2086 struct perf_mmap_data *data;
2087 unsigned int events = POLL_HUP;
2088
2089 rcu_read_lock();
2090 data = rcu_dereference(event->data);
2091 if (data)
2092 events = atomic_xchg(&data->poll, 0);
2093 rcu_read_unlock();
2094
2095 poll_wait(file, &event->waitq, wait);
2096
2097 return events;
2098}
2099
2100static void perf_event_reset(struct perf_event *event)
2101{
2102 (void)perf_event_read(event);
2103 atomic64_set(&event->count, 0);
2104 perf_event_update_userpage(event);
2105}
2106
2107/*
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2112 */
2113static void perf_event_for_each_child(struct perf_event *event,
2114 void (*func)(struct perf_event *))
2115{
2116 struct perf_event *child;
2117
2118 WARN_ON_ONCE(event->ctx->parent_ctx);
2119 mutex_lock(&event->child_mutex);
2120 func(event);
2121 list_for_each_entry(child, &event->child_list, child_list)
2122 func(child);
2123 mutex_unlock(&event->child_mutex);
2124}
2125
2126static void perf_event_for_each(struct perf_event *event,
2127 void (*func)(struct perf_event *))
2128{
2129 struct perf_event_context *ctx = event->ctx;
2130 struct perf_event *sibling;
2131
2132 WARN_ON_ONCE(ctx->parent_ctx);
2133 mutex_lock(&ctx->mutex);
2134 event = event->group_leader;
2135
2136 perf_event_for_each_child(event, func);
2137 func(event);
2138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139 perf_event_for_each_child(event, func);
2140 mutex_unlock(&ctx->mutex);
2141}
2142
2143static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144{
2145 struct perf_event_context *ctx = event->ctx;
2146 unsigned long size;
2147 int ret = 0;
2148 u64 value;
2149
2150 if (!event->attr.sample_period)
2151 return -EINVAL;
2152
2153 size = copy_from_user(&value, arg, sizeof(value));
2154 if (size != sizeof(value))
2155 return -EFAULT;
2156
2157 if (!value)
2158 return -EINVAL;
2159
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002160 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002161 if (event->attr.freq) {
2162 if (value > sysctl_perf_event_sample_rate) {
2163 ret = -EINVAL;
2164 goto unlock;
2165 }
2166
2167 event->attr.sample_freq = value;
2168 } else {
2169 event->attr.sample_period = value;
2170 event->hw.sample_period = value;
2171 }
2172unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002173 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002174
2175 return ret;
2176}
2177
Li Zefan6fb29152009-10-15 11:21:42 +08002178static int perf_event_set_output(struct perf_event *event, int output_fd);
2179static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002180
2181static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182{
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2186
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2197
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2200
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2203
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2205 return perf_event_set_output(event, arg);
2206
Li Zefan6fb29152009-10-15 11:21:42 +08002207 case PERF_EVENT_IOC_SET_FILTER:
2208 return perf_event_set_filter(event, (void __user *)arg);
2209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002210 default:
2211 return -ENOTTY;
2212 }
2213
2214 if (flags & PERF_IOC_FLAG_GROUP)
2215 perf_event_for_each(event, func);
2216 else
2217 perf_event_for_each_child(event, func);
2218
2219 return 0;
2220}
2221
2222int perf_event_task_enable(void)
2223{
2224 struct perf_event *event;
2225
2226 mutex_lock(&current->perf_event_mutex);
2227 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228 perf_event_for_each_child(event, perf_event_enable);
2229 mutex_unlock(&current->perf_event_mutex);
2230
2231 return 0;
2232}
2233
2234int perf_event_task_disable(void)
2235{
2236 struct perf_event *event;
2237
2238 mutex_lock(&current->perf_event_mutex);
2239 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240 perf_event_for_each_child(event, perf_event_disable);
2241 mutex_unlock(&current->perf_event_mutex);
2242
2243 return 0;
2244}
2245
2246#ifndef PERF_EVENT_INDEX_OFFSET
2247# define PERF_EVENT_INDEX_OFFSET 0
2248#endif
2249
2250static int perf_event_index(struct perf_event *event)
2251{
2252 if (event->state != PERF_EVENT_STATE_ACTIVE)
2253 return 0;
2254
2255 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256}
2257
2258/*
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2262 */
2263void perf_event_update_userpage(struct perf_event *event)
2264{
2265 struct perf_event_mmap_page *userpg;
2266 struct perf_mmap_data *data;
2267
2268 rcu_read_lock();
2269 data = rcu_dereference(event->data);
2270 if (!data)
2271 goto unlock;
2272
2273 userpg = data->user_page;
2274
2275 /*
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2278 */
2279 preempt_disable();
2280 ++userpg->lock;
2281 barrier();
2282 userpg->index = perf_event_index(event);
2283 userpg->offset = atomic64_read(&event->count);
2284 if (event->state == PERF_EVENT_STATE_ACTIVE)
2285 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287 userpg->time_enabled = event->total_time_enabled +
2288 atomic64_read(&event->child_total_time_enabled);
2289
2290 userpg->time_running = event->total_time_running +
2291 atomic64_read(&event->child_total_time_running);
2292
2293 barrier();
2294 ++userpg->lock;
2295 preempt_enable();
2296unlock:
2297 rcu_read_unlock();
2298}
2299
Peter Zijlstra906010b2009-09-21 16:08:49 +02002300#ifndef CONFIG_PERF_USE_VMALLOC
2301
2302/*
2303 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2304 */
2305
2306static struct page *
2307perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2308{
2309 if (pgoff > data->nr_pages)
2310 return NULL;
2311
2312 if (pgoff == 0)
2313 return virt_to_page(data->user_page);
2314
2315 return virt_to_page(data->data_pages[pgoff - 1]);
2316}
2317
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002318static void *perf_mmap_alloc_page(int cpu)
2319{
2320 struct page *page;
2321 int node;
2322
2323 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2324 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2325 if (!page)
2326 return NULL;
2327
2328 return page_address(page);
2329}
2330
Peter Zijlstra906010b2009-09-21 16:08:49 +02002331static struct perf_mmap_data *
2332perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002333{
2334 struct perf_mmap_data *data;
2335 unsigned long size;
2336 int i;
2337
2338 WARN_ON(atomic_read(&event->mmap_count));
2339
2340 size = sizeof(struct perf_mmap_data);
2341 size += nr_pages * sizeof(void *);
2342
2343 data = kzalloc(size, GFP_KERNEL);
2344 if (!data)
2345 goto fail;
2346
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002347 data->user_page = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002348 if (!data->user_page)
2349 goto fail_user_page;
2350
2351 for (i = 0; i < nr_pages; i++) {
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002352 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353 if (!data->data_pages[i])
2354 goto fail_data_pages;
2355 }
2356
2357 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002358
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360
2361fail_data_pages:
2362 for (i--; i >= 0; i--)
2363 free_page((unsigned long)data->data_pages[i]);
2364
2365 free_page((unsigned long)data->user_page);
2366
2367fail_user_page:
2368 kfree(data);
2369
2370fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002371 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002372}
2373
2374static void perf_mmap_free_page(unsigned long addr)
2375{
2376 struct page *page = virt_to_page((void *)addr);
2377
2378 page->mapping = NULL;
2379 __free_page(page);
2380}
2381
Peter Zijlstra906010b2009-09-21 16:08:49 +02002382static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002383{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002384 int i;
2385
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002386 perf_mmap_free_page((unsigned long)data->user_page);
2387 for (i = 0; i < data->nr_pages; i++)
2388 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002389 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002390}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002391
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002392static inline int page_order(struct perf_mmap_data *data)
2393{
2394 return 0;
2395}
2396
Peter Zijlstra906010b2009-09-21 16:08:49 +02002397#else
2398
2399/*
2400 * Back perf_mmap() with vmalloc memory.
2401 *
2402 * Required for architectures that have d-cache aliasing issues.
2403 */
2404
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002405static inline int page_order(struct perf_mmap_data *data)
2406{
2407 return data->page_order;
2408}
2409
Peter Zijlstra906010b2009-09-21 16:08:49 +02002410static struct page *
2411perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2412{
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002413 if (pgoff > (1UL << page_order(data)))
Peter Zijlstra906010b2009-09-21 16:08:49 +02002414 return NULL;
2415
2416 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2417}
2418
2419static void perf_mmap_unmark_page(void *addr)
2420{
2421 struct page *page = vmalloc_to_page(addr);
2422
2423 page->mapping = NULL;
2424}
2425
2426static void perf_mmap_data_free_work(struct work_struct *work)
2427{
2428 struct perf_mmap_data *data;
2429 void *base;
2430 int i, nr;
2431
2432 data = container_of(work, struct perf_mmap_data, work);
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002433 nr = 1 << page_order(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002434
2435 base = data->user_page;
2436 for (i = 0; i < nr + 1; i++)
2437 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2438
2439 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002440 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002441}
2442
2443static void perf_mmap_data_free(struct perf_mmap_data *data)
2444{
2445 schedule_work(&data->work);
2446}
2447
2448static struct perf_mmap_data *
2449perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2450{
2451 struct perf_mmap_data *data;
2452 unsigned long size;
2453 void *all_buf;
2454
2455 WARN_ON(atomic_read(&event->mmap_count));
2456
2457 size = sizeof(struct perf_mmap_data);
2458 size += sizeof(void *);
2459
2460 data = kzalloc(size, GFP_KERNEL);
2461 if (!data)
2462 goto fail;
2463
2464 INIT_WORK(&data->work, perf_mmap_data_free_work);
2465
2466 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2467 if (!all_buf)
2468 goto fail_all_buf;
2469
2470 data->user_page = all_buf;
2471 data->data_pages[0] = all_buf + PAGE_SIZE;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002472 data->page_order = ilog2(nr_pages);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002473 data->nr_pages = 1;
2474
2475 return data;
2476
2477fail_all_buf:
2478 kfree(data);
2479
2480fail:
2481 return NULL;
2482}
2483
2484#endif
2485
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002486static unsigned long perf_data_size(struct perf_mmap_data *data)
2487{
2488 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2489}
2490
Peter Zijlstra906010b2009-09-21 16:08:49 +02002491static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2492{
2493 struct perf_event *event = vma->vm_file->private_data;
2494 struct perf_mmap_data *data;
2495 int ret = VM_FAULT_SIGBUS;
2496
2497 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2498 if (vmf->pgoff == 0)
2499 ret = 0;
2500 return ret;
2501 }
2502
2503 rcu_read_lock();
2504 data = rcu_dereference(event->data);
2505 if (!data)
2506 goto unlock;
2507
2508 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2509 goto unlock;
2510
2511 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2512 if (!vmf->page)
2513 goto unlock;
2514
2515 get_page(vmf->page);
2516 vmf->page->mapping = vma->vm_file->f_mapping;
2517 vmf->page->index = vmf->pgoff;
2518
2519 ret = 0;
2520unlock:
2521 rcu_read_unlock();
2522
2523 return ret;
2524}
2525
2526static void
2527perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2528{
2529 long max_size = perf_data_size(data);
2530
Peter Zijlstra906010b2009-09-21 16:08:49 +02002531 if (event->attr.watermark) {
2532 data->watermark = min_t(long, max_size,
2533 event->attr.wakeup_watermark);
2534 }
2535
2536 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002537 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002538
2539
2540 rcu_assign_pointer(event->data, data);
2541}
2542
2543static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2544{
2545 struct perf_mmap_data *data;
2546
2547 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2548 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002549}
2550
Peter Zijlstra906010b2009-09-21 16:08:49 +02002551static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002552{
2553 struct perf_mmap_data *data = event->data;
2554
2555 WARN_ON(atomic_read(&event->mmap_count));
2556
2557 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002558 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002559}
2560
2561static void perf_mmap_open(struct vm_area_struct *vma)
2562{
2563 struct perf_event *event = vma->vm_file->private_data;
2564
2565 atomic_inc(&event->mmap_count);
2566}
2567
2568static void perf_mmap_close(struct vm_area_struct *vma)
2569{
2570 struct perf_event *event = vma->vm_file->private_data;
2571
2572 WARN_ON_ONCE(event->ctx->parent_ctx);
2573 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002574 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002575 struct user_struct *user = current_user();
2576
Peter Zijlstra906010b2009-09-21 16:08:49 +02002577 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002578 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002579 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002580 mutex_unlock(&event->mmap_mutex);
2581 }
2582}
2583
Alexey Dobriyanf0f37e2f2009-09-27 22:29:37 +04002584static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002585 .open = perf_mmap_open,
2586 .close = perf_mmap_close,
2587 .fault = perf_mmap_fault,
2588 .page_mkwrite = perf_mmap_fault,
2589};
2590
2591static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2592{
2593 struct perf_event *event = file->private_data;
2594 unsigned long user_locked, user_lock_limit;
2595 struct user_struct *user = current_user();
2596 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002597 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002598 unsigned long vma_size;
2599 unsigned long nr_pages;
2600 long user_extra, extra;
2601 int ret = 0;
2602
Peter Zijlstrac7920612010-05-18 10:33:24 +02002603 /*
2604 * Don't allow mmap() of inherited per-task counters. This would
2605 * create a performance issue due to all children writing to the
2606 * same buffer.
2607 */
2608 if (event->cpu == -1 && event->attr.inherit)
2609 return -EINVAL;
2610
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002611 if (!(vma->vm_flags & VM_SHARED))
2612 return -EINVAL;
2613
2614 vma_size = vma->vm_end - vma->vm_start;
2615 nr_pages = (vma_size / PAGE_SIZE) - 1;
2616
2617 /*
2618 * If we have data pages ensure they're a power-of-two number, so we
2619 * can do bitmasks instead of modulo.
2620 */
2621 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2622 return -EINVAL;
2623
2624 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2625 return -EINVAL;
2626
2627 if (vma->vm_pgoff != 0)
2628 return -EINVAL;
2629
2630 WARN_ON_ONCE(event->ctx->parent_ctx);
2631 mutex_lock(&event->mmap_mutex);
2632 if (event->output) {
2633 ret = -EINVAL;
2634 goto unlock;
2635 }
2636
2637 if (atomic_inc_not_zero(&event->mmap_count)) {
2638 if (nr_pages != event->data->nr_pages)
2639 ret = -EINVAL;
2640 goto unlock;
2641 }
2642
2643 user_extra = nr_pages + 1;
2644 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2645
2646 /*
2647 * Increase the limit linearly with more CPUs:
2648 */
2649 user_lock_limit *= num_online_cpus();
2650
2651 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2652
2653 extra = 0;
2654 if (user_locked > user_lock_limit)
2655 extra = user_locked - user_lock_limit;
2656
Jiri Slaby78d7d402010-03-05 13:42:54 -08002657 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002658 lock_limit >>= PAGE_SHIFT;
2659 locked = vma->vm_mm->locked_vm + extra;
2660
2661 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2662 !capable(CAP_IPC_LOCK)) {
2663 ret = -EPERM;
2664 goto unlock;
2665 }
2666
2667 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002668
2669 data = perf_mmap_data_alloc(event, nr_pages);
2670 ret = -ENOMEM;
2671 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002672 goto unlock;
2673
Peter Zijlstra906010b2009-09-21 16:08:49 +02002674 ret = 0;
2675 perf_mmap_data_init(event, data);
2676
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002677 atomic_set(&event->mmap_count, 1);
2678 atomic_long_add(user_extra, &user->locked_vm);
2679 vma->vm_mm->locked_vm += extra;
2680 event->data->nr_locked = extra;
2681 if (vma->vm_flags & VM_WRITE)
2682 event->data->writable = 1;
2683
2684unlock:
2685 mutex_unlock(&event->mmap_mutex);
2686
2687 vma->vm_flags |= VM_RESERVED;
2688 vma->vm_ops = &perf_mmap_vmops;
2689
2690 return ret;
2691}
2692
2693static int perf_fasync(int fd, struct file *filp, int on)
2694{
2695 struct inode *inode = filp->f_path.dentry->d_inode;
2696 struct perf_event *event = filp->private_data;
2697 int retval;
2698
2699 mutex_lock(&inode->i_mutex);
2700 retval = fasync_helper(fd, filp, on, &event->fasync);
2701 mutex_unlock(&inode->i_mutex);
2702
2703 if (retval < 0)
2704 return retval;
2705
2706 return 0;
2707}
2708
2709static const struct file_operations perf_fops = {
Arnd Bergmann3326c1c2010-03-23 19:09:33 +01002710 .llseek = no_llseek,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002711 .release = perf_release,
2712 .read = perf_read,
2713 .poll = perf_poll,
2714 .unlocked_ioctl = perf_ioctl,
2715 .compat_ioctl = perf_ioctl,
2716 .mmap = perf_mmap,
2717 .fasync = perf_fasync,
2718};
2719
2720/*
2721 * Perf event wakeup
2722 *
2723 * If there's data, ensure we set the poll() state and publish everything
2724 * to user-space before waking everybody up.
2725 */
2726
2727void perf_event_wakeup(struct perf_event *event)
2728{
2729 wake_up_all(&event->waitq);
2730
2731 if (event->pending_kill) {
2732 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2733 event->pending_kill = 0;
2734 }
2735}
2736
2737/*
2738 * Pending wakeups
2739 *
2740 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2741 *
2742 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2743 * single linked list and use cmpxchg() to add entries lockless.
2744 */
2745
2746static void perf_pending_event(struct perf_pending_entry *entry)
2747{
2748 struct perf_event *event = container_of(entry,
2749 struct perf_event, pending);
2750
2751 if (event->pending_disable) {
2752 event->pending_disable = 0;
2753 __perf_event_disable(event);
2754 }
2755
2756 if (event->pending_wakeup) {
2757 event->pending_wakeup = 0;
2758 perf_event_wakeup(event);
2759 }
2760}
2761
2762#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2763
2764static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2765 PENDING_TAIL,
2766};
2767
2768static void perf_pending_queue(struct perf_pending_entry *entry,
2769 void (*func)(struct perf_pending_entry *))
2770{
2771 struct perf_pending_entry **head;
2772
2773 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2774 return;
2775
2776 entry->func = func;
2777
2778 head = &get_cpu_var(perf_pending_head);
2779
2780 do {
2781 entry->next = *head;
2782 } while (cmpxchg(head, entry->next, entry) != entry->next);
2783
2784 set_perf_event_pending();
2785
2786 put_cpu_var(perf_pending_head);
2787}
2788
2789static int __perf_pending_run(void)
2790{
2791 struct perf_pending_entry *list;
2792 int nr = 0;
2793
2794 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2795 while (list != PENDING_TAIL) {
2796 void (*func)(struct perf_pending_entry *);
2797 struct perf_pending_entry *entry = list;
2798
2799 list = list->next;
2800
2801 func = entry->func;
2802 entry->next = NULL;
2803 /*
2804 * Ensure we observe the unqueue before we issue the wakeup,
2805 * so that we won't be waiting forever.
2806 * -- see perf_not_pending().
2807 */
2808 smp_wmb();
2809
2810 func(entry);
2811 nr++;
2812 }
2813
2814 return nr;
2815}
2816
2817static inline int perf_not_pending(struct perf_event *event)
2818{
2819 /*
2820 * If we flush on whatever cpu we run, there is a chance we don't
2821 * need to wait.
2822 */
2823 get_cpu();
2824 __perf_pending_run();
2825 put_cpu();
2826
2827 /*
2828 * Ensure we see the proper queue state before going to sleep
2829 * so that we do not miss the wakeup. -- see perf_pending_handle()
2830 */
2831 smp_rmb();
2832 return event->pending.next == NULL;
2833}
2834
2835static void perf_pending_sync(struct perf_event *event)
2836{
2837 wait_event(event->waitq, perf_not_pending(event));
2838}
2839
2840void perf_event_do_pending(void)
2841{
2842 __perf_pending_run();
2843}
2844
2845/*
2846 * Callchain support -- arch specific
2847 */
2848
2849__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2850{
2851 return NULL;
2852}
2853
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002854__weak
2855void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2856{
2857}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002858
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002859
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002860/*
Zhang, Yanmin39447b32010-04-19 13:32:41 +08002861 * We assume there is only KVM supporting the callbacks.
2862 * Later on, we might change it to a list if there is
2863 * another virtualization implementation supporting the callbacks.
2864 */
2865struct perf_guest_info_callbacks *perf_guest_cbs;
2866
2867int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2868{
2869 perf_guest_cbs = cbs;
2870 return 0;
2871}
2872EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2873
2874int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2875{
2876 perf_guest_cbs = NULL;
2877 return 0;
2878}
2879EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2880
2881/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002882 * Output
2883 */
2884static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2885 unsigned long offset, unsigned long head)
2886{
2887 unsigned long mask;
2888
2889 if (!data->writable)
2890 return true;
2891
Peter Zijlstra906010b2009-09-21 16:08:49 +02002892 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002893
2894 offset = (offset - tail) & mask;
2895 head = (head - tail) & mask;
2896
2897 if ((int)(head - offset) < 0)
2898 return false;
2899
2900 return true;
2901}
2902
2903static void perf_output_wakeup(struct perf_output_handle *handle)
2904{
2905 atomic_set(&handle->data->poll, POLL_IN);
2906
2907 if (handle->nmi) {
2908 handle->event->pending_wakeup = 1;
2909 perf_pending_queue(&handle->event->pending,
2910 perf_pending_event);
2911 } else
2912 perf_event_wakeup(handle->event);
2913}
2914
2915/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002916 * We need to ensure a later event_id doesn't publish a head when a former
Peter Zijlstraef607772010-05-18 10:50:41 +02002917 * event isn't done writing. However since we need to deal with NMIs we
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002918 * cannot fully serialize things.
2919 *
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002920 * We only publish the head (and generate a wakeup) when the outer-most
Peter Zijlstraef607772010-05-18 10:50:41 +02002921 * event completes.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002922 */
Peter Zijlstraef607772010-05-18 10:50:41 +02002923static void perf_output_get_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002924{
2925 struct perf_mmap_data *data = handle->data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002926
Peter Zijlstraef607772010-05-18 10:50:41 +02002927 preempt_disable();
Peter Zijlstrafa588152010-05-18 10:54:20 +02002928 local_inc(&data->nest);
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02002929 handle->wakeup = local_read(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002930}
2931
Peter Zijlstraef607772010-05-18 10:50:41 +02002932static void perf_output_put_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002933{
2934 struct perf_mmap_data *data = handle->data;
2935 unsigned long head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002936
2937again:
Peter Zijlstrafa588152010-05-18 10:54:20 +02002938 head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002939
2940 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002941 * IRQ/NMI can happen here, which means we can miss a head update.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002942 */
2943
Peter Zijlstrafa588152010-05-18 10:54:20 +02002944 if (!local_dec_and_test(&data->nest))
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02002945 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002946
2947 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002948 * Publish the known good head. Rely on the full barrier implied
2949 * by atomic_dec_and_test() order the data->head read and this
2950 * write.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002951 */
Peter Zijlstraef607772010-05-18 10:50:41 +02002952 data->user_page->data_head = head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002953
Peter Zijlstraef607772010-05-18 10:50:41 +02002954 /*
2955 * Now check if we missed an update, rely on the (compiler)
2956 * barrier in atomic_dec_and_test() to re-read data->head.
2957 */
Peter Zijlstrafa588152010-05-18 10:54:20 +02002958 if (unlikely(head != local_read(&data->head))) {
2959 local_inc(&data->nest);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002960 goto again;
2961 }
2962
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02002963 if (handle->wakeup != local_read(&data->wakeup))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002964 perf_output_wakeup(handle);
Peter Zijlstraef607772010-05-18 10:50:41 +02002965
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02002966 out:
Peter Zijlstraef607772010-05-18 10:50:41 +02002967 preempt_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002968}
2969
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02002970__always_inline void perf_output_copy(struct perf_output_handle *handle,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002971 const void *buf, unsigned int len)
2972{
Peter Zijlstra5d967a82010-05-20 16:46:39 +02002973 do {
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02002974 unsigned long size = min_t(unsigned long, handle->size, len);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02002975
2976 memcpy(handle->addr, buf, size);
2977
2978 len -= size;
2979 handle->addr += size;
2980 handle->size -= size;
2981 if (!handle->size) {
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002982 struct perf_mmap_data *data = handle->data;
2983
Peter Zijlstra5d967a82010-05-20 16:46:39 +02002984 handle->page++;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002985 handle->page &= data->nr_pages - 1;
2986 handle->addr = data->data_pages[handle->page];
2987 handle->size = PAGE_SIZE << page_order(data);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02002988 }
2989 } while (len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002990}
2991
2992int perf_output_begin(struct perf_output_handle *handle,
2993 struct perf_event *event, unsigned int size,
2994 int nmi, int sample)
2995{
2996 struct perf_event *output_event;
2997 struct perf_mmap_data *data;
2998 unsigned long tail, offset, head;
2999 int have_lost;
3000 struct {
3001 struct perf_event_header header;
3002 u64 id;
3003 u64 lost;
3004 } lost_event;
3005
3006 rcu_read_lock();
3007 /*
3008 * For inherited events we send all the output towards the parent.
3009 */
3010 if (event->parent)
3011 event = event->parent;
3012
3013 output_event = rcu_dereference(event->output);
3014 if (output_event)
3015 event = output_event;
3016
3017 data = rcu_dereference(event->data);
3018 if (!data)
3019 goto out;
3020
3021 handle->data = data;
3022 handle->event = event;
3023 handle->nmi = nmi;
3024 handle->sample = sample;
3025
3026 if (!data->nr_pages)
Stephane Eranian00d1d0b2010-05-17 12:46:01 +02003027 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003028
Peter Zijlstrafa588152010-05-18 10:54:20 +02003029 have_lost = local_read(&data->lost);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003030 if (have_lost)
3031 size += sizeof(lost_event);
3032
Peter Zijlstraef607772010-05-18 10:50:41 +02003033 perf_output_get_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003034
3035 do {
3036 /*
3037 * Userspace could choose to issue a mb() before updating the
3038 * tail pointer. So that all reads will be completed before the
3039 * write is issued.
3040 */
3041 tail = ACCESS_ONCE(data->user_page->data_tail);
3042 smp_rmb();
Peter Zijlstrafa588152010-05-18 10:54:20 +02003043 offset = head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003044 head += size;
3045 if (unlikely(!perf_output_space(data, tail, offset, head)))
3046 goto fail;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003047 } while (local_cmpxchg(&data->head, offset, head) != offset);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003048
Peter Zijlstraadb8e112010-05-20 16:21:55 +02003049 if (head - local_read(&data->wakeup) > data->watermark)
3050 local_add(data->watermark, &data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003051
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003052 handle->page = offset >> (PAGE_SHIFT + page_order(data));
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003053 handle->page &= data->nr_pages - 1;
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003054 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003055 handle->addr = data->data_pages[handle->page];
3056 handle->addr += handle->size;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02003057 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003058
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003059 if (have_lost) {
3060 lost_event.header.type = PERF_RECORD_LOST;
3061 lost_event.header.misc = 0;
3062 lost_event.header.size = sizeof(lost_event);
3063 lost_event.id = event->id;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003064 lost_event.lost = local_xchg(&data->lost, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003065
3066 perf_output_put(handle, lost_event);
3067 }
3068
3069 return 0;
3070
3071fail:
Peter Zijlstrafa588152010-05-18 10:54:20 +02003072 local_inc(&data->lost);
Peter Zijlstraef607772010-05-18 10:50:41 +02003073 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003074out:
3075 rcu_read_unlock();
3076
3077 return -ENOSPC;
3078}
3079
3080void perf_output_end(struct perf_output_handle *handle)
3081{
3082 struct perf_event *event = handle->event;
3083 struct perf_mmap_data *data = handle->data;
3084
3085 int wakeup_events = event->attr.wakeup_events;
3086
3087 if (handle->sample && wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003088 int events = local_inc_return(&data->events);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003089 if (events >= wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003090 local_sub(wakeup_events, &data->events);
3091 local_inc(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003092 }
3093 }
3094
Peter Zijlstraef607772010-05-18 10:50:41 +02003095 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003096 rcu_read_unlock();
3097}
3098
3099static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3100{
3101 /*
3102 * only top level events have the pid namespace they were created in
3103 */
3104 if (event->parent)
3105 event = event->parent;
3106
3107 return task_tgid_nr_ns(p, event->ns);
3108}
3109
3110static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3111{
3112 /*
3113 * only top level events have the pid namespace they were created in
3114 */
3115 if (event->parent)
3116 event = event->parent;
3117
3118 return task_pid_nr_ns(p, event->ns);
3119}
3120
3121static void perf_output_read_one(struct perf_output_handle *handle,
3122 struct perf_event *event)
3123{
3124 u64 read_format = event->attr.read_format;
3125 u64 values[4];
3126 int n = 0;
3127
3128 values[n++] = atomic64_read(&event->count);
3129 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3130 values[n++] = event->total_time_enabled +
3131 atomic64_read(&event->child_total_time_enabled);
3132 }
3133 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3134 values[n++] = event->total_time_running +
3135 atomic64_read(&event->child_total_time_running);
3136 }
3137 if (read_format & PERF_FORMAT_ID)
3138 values[n++] = primary_event_id(event);
3139
3140 perf_output_copy(handle, values, n * sizeof(u64));
3141}
3142
3143/*
3144 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3145 */
3146static void perf_output_read_group(struct perf_output_handle *handle,
3147 struct perf_event *event)
3148{
3149 struct perf_event *leader = event->group_leader, *sub;
3150 u64 read_format = event->attr.read_format;
3151 u64 values[5];
3152 int n = 0;
3153
3154 values[n++] = 1 + leader->nr_siblings;
3155
3156 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3157 values[n++] = leader->total_time_enabled;
3158
3159 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3160 values[n++] = leader->total_time_running;
3161
3162 if (leader != event)
3163 leader->pmu->read(leader);
3164
3165 values[n++] = atomic64_read(&leader->count);
3166 if (read_format & PERF_FORMAT_ID)
3167 values[n++] = primary_event_id(leader);
3168
3169 perf_output_copy(handle, values, n * sizeof(u64));
3170
3171 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3172 n = 0;
3173
3174 if (sub != event)
3175 sub->pmu->read(sub);
3176
3177 values[n++] = atomic64_read(&sub->count);
3178 if (read_format & PERF_FORMAT_ID)
3179 values[n++] = primary_event_id(sub);
3180
3181 perf_output_copy(handle, values, n * sizeof(u64));
3182 }
3183}
3184
3185static void perf_output_read(struct perf_output_handle *handle,
3186 struct perf_event *event)
3187{
3188 if (event->attr.read_format & PERF_FORMAT_GROUP)
3189 perf_output_read_group(handle, event);
3190 else
3191 perf_output_read_one(handle, event);
3192}
3193
3194void perf_output_sample(struct perf_output_handle *handle,
3195 struct perf_event_header *header,
3196 struct perf_sample_data *data,
3197 struct perf_event *event)
3198{
3199 u64 sample_type = data->type;
3200
3201 perf_output_put(handle, *header);
3202
3203 if (sample_type & PERF_SAMPLE_IP)
3204 perf_output_put(handle, data->ip);
3205
3206 if (sample_type & PERF_SAMPLE_TID)
3207 perf_output_put(handle, data->tid_entry);
3208
3209 if (sample_type & PERF_SAMPLE_TIME)
3210 perf_output_put(handle, data->time);
3211
3212 if (sample_type & PERF_SAMPLE_ADDR)
3213 perf_output_put(handle, data->addr);
3214
3215 if (sample_type & PERF_SAMPLE_ID)
3216 perf_output_put(handle, data->id);
3217
3218 if (sample_type & PERF_SAMPLE_STREAM_ID)
3219 perf_output_put(handle, data->stream_id);
3220
3221 if (sample_type & PERF_SAMPLE_CPU)
3222 perf_output_put(handle, data->cpu_entry);
3223
3224 if (sample_type & PERF_SAMPLE_PERIOD)
3225 perf_output_put(handle, data->period);
3226
3227 if (sample_type & PERF_SAMPLE_READ)
3228 perf_output_read(handle, event);
3229
3230 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3231 if (data->callchain) {
3232 int size = 1;
3233
3234 if (data->callchain)
3235 size += data->callchain->nr;
3236
3237 size *= sizeof(u64);
3238
3239 perf_output_copy(handle, data->callchain, size);
3240 } else {
3241 u64 nr = 0;
3242 perf_output_put(handle, nr);
3243 }
3244 }
3245
3246 if (sample_type & PERF_SAMPLE_RAW) {
3247 if (data->raw) {
3248 perf_output_put(handle, data->raw->size);
3249 perf_output_copy(handle, data->raw->data,
3250 data->raw->size);
3251 } else {
3252 struct {
3253 u32 size;
3254 u32 data;
3255 } raw = {
3256 .size = sizeof(u32),
3257 .data = 0,
3258 };
3259 perf_output_put(handle, raw);
3260 }
3261 }
3262}
3263
3264void perf_prepare_sample(struct perf_event_header *header,
3265 struct perf_sample_data *data,
3266 struct perf_event *event,
3267 struct pt_regs *regs)
3268{
3269 u64 sample_type = event->attr.sample_type;
3270
3271 data->type = sample_type;
3272
3273 header->type = PERF_RECORD_SAMPLE;
3274 header->size = sizeof(*header);
3275
3276 header->misc = 0;
3277 header->misc |= perf_misc_flags(regs);
3278
3279 if (sample_type & PERF_SAMPLE_IP) {
3280 data->ip = perf_instruction_pointer(regs);
3281
3282 header->size += sizeof(data->ip);
3283 }
3284
3285 if (sample_type & PERF_SAMPLE_TID) {
3286 /* namespace issues */
3287 data->tid_entry.pid = perf_event_pid(event, current);
3288 data->tid_entry.tid = perf_event_tid(event, current);
3289
3290 header->size += sizeof(data->tid_entry);
3291 }
3292
3293 if (sample_type & PERF_SAMPLE_TIME) {
3294 data->time = perf_clock();
3295
3296 header->size += sizeof(data->time);
3297 }
3298
3299 if (sample_type & PERF_SAMPLE_ADDR)
3300 header->size += sizeof(data->addr);
3301
3302 if (sample_type & PERF_SAMPLE_ID) {
3303 data->id = primary_event_id(event);
3304
3305 header->size += sizeof(data->id);
3306 }
3307
3308 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3309 data->stream_id = event->id;
3310
3311 header->size += sizeof(data->stream_id);
3312 }
3313
3314 if (sample_type & PERF_SAMPLE_CPU) {
3315 data->cpu_entry.cpu = raw_smp_processor_id();
3316 data->cpu_entry.reserved = 0;
3317
3318 header->size += sizeof(data->cpu_entry);
3319 }
3320
3321 if (sample_type & PERF_SAMPLE_PERIOD)
3322 header->size += sizeof(data->period);
3323
3324 if (sample_type & PERF_SAMPLE_READ)
3325 header->size += perf_event_read_size(event);
3326
3327 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3328 int size = 1;
3329
3330 data->callchain = perf_callchain(regs);
3331
3332 if (data->callchain)
3333 size += data->callchain->nr;
3334
3335 header->size += size * sizeof(u64);
3336 }
3337
3338 if (sample_type & PERF_SAMPLE_RAW) {
3339 int size = sizeof(u32);
3340
3341 if (data->raw)
3342 size += data->raw->size;
3343 else
3344 size += sizeof(u32);
3345
3346 WARN_ON_ONCE(size & (sizeof(u64)-1));
3347 header->size += size;
3348 }
3349}
3350
3351static void perf_event_output(struct perf_event *event, int nmi,
3352 struct perf_sample_data *data,
3353 struct pt_regs *regs)
3354{
3355 struct perf_output_handle handle;
3356 struct perf_event_header header;
3357
3358 perf_prepare_sample(&header, data, event, regs);
3359
3360 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3361 return;
3362
3363 perf_output_sample(&handle, &header, data, event);
3364
3365 perf_output_end(&handle);
3366}
3367
3368/*
3369 * read event_id
3370 */
3371
3372struct perf_read_event {
3373 struct perf_event_header header;
3374
3375 u32 pid;
3376 u32 tid;
3377};
3378
3379static void
3380perf_event_read_event(struct perf_event *event,
3381 struct task_struct *task)
3382{
3383 struct perf_output_handle handle;
3384 struct perf_read_event read_event = {
3385 .header = {
3386 .type = PERF_RECORD_READ,
3387 .misc = 0,
3388 .size = sizeof(read_event) + perf_event_read_size(event),
3389 },
3390 .pid = perf_event_pid(event, task),
3391 .tid = perf_event_tid(event, task),
3392 };
3393 int ret;
3394
3395 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3396 if (ret)
3397 return;
3398
3399 perf_output_put(&handle, read_event);
3400 perf_output_read(&handle, event);
3401
3402 perf_output_end(&handle);
3403}
3404
3405/*
3406 * task tracking -- fork/exit
3407 *
3408 * enabled by: attr.comm | attr.mmap | attr.task
3409 */
3410
3411struct perf_task_event {
3412 struct task_struct *task;
3413 struct perf_event_context *task_ctx;
3414
3415 struct {
3416 struct perf_event_header header;
3417
3418 u32 pid;
3419 u32 ppid;
3420 u32 tid;
3421 u32 ptid;
3422 u64 time;
3423 } event_id;
3424};
3425
3426static void perf_event_task_output(struct perf_event *event,
3427 struct perf_task_event *task_event)
3428{
3429 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003430 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003431 int size, ret;
3432
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003433 size = task_event->event_id.header.size;
3434 ret = perf_output_begin(&handle, event, size, 0, 0);
3435
Peter Zijlstraef607772010-05-18 10:50:41 +02003436 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003437 return;
3438
3439 task_event->event_id.pid = perf_event_pid(event, task);
3440 task_event->event_id.ppid = perf_event_pid(event, current);
3441
3442 task_event->event_id.tid = perf_event_tid(event, task);
3443 task_event->event_id.ptid = perf_event_tid(event, current);
3444
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003445 perf_output_put(&handle, task_event->event_id);
3446
3447 perf_output_end(&handle);
3448}
3449
3450static int perf_event_task_match(struct perf_event *event)
3451{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003452 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003453 return 0;
3454
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003455 if (event->cpu != -1 && event->cpu != smp_processor_id())
3456 return 0;
3457
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003458 if (event->attr.comm || event->attr.mmap || event->attr.task)
3459 return 1;
3460
3461 return 0;
3462}
3463
3464static void perf_event_task_ctx(struct perf_event_context *ctx,
3465 struct perf_task_event *task_event)
3466{
3467 struct perf_event *event;
3468
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003469 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3470 if (perf_event_task_match(event))
3471 perf_event_task_output(event, task_event);
3472 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003473}
3474
3475static void perf_event_task_event(struct perf_task_event *task_event)
3476{
3477 struct perf_cpu_context *cpuctx;
3478 struct perf_event_context *ctx = task_event->task_ctx;
3479
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003480 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003481 cpuctx = &get_cpu_var(perf_cpu_context);
3482 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003483 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003484 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003485 if (ctx)
3486 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003487 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003488 rcu_read_unlock();
3489}
3490
3491static void perf_event_task(struct task_struct *task,
3492 struct perf_event_context *task_ctx,
3493 int new)
3494{
3495 struct perf_task_event task_event;
3496
3497 if (!atomic_read(&nr_comm_events) &&
3498 !atomic_read(&nr_mmap_events) &&
3499 !atomic_read(&nr_task_events))
3500 return;
3501
3502 task_event = (struct perf_task_event){
3503 .task = task,
3504 .task_ctx = task_ctx,
3505 .event_id = {
3506 .header = {
3507 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3508 .misc = 0,
3509 .size = sizeof(task_event.event_id),
3510 },
3511 /* .pid */
3512 /* .ppid */
3513 /* .tid */
3514 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003515 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003516 },
3517 };
3518
3519 perf_event_task_event(&task_event);
3520}
3521
3522void perf_event_fork(struct task_struct *task)
3523{
3524 perf_event_task(task, NULL, 1);
3525}
3526
3527/*
3528 * comm tracking
3529 */
3530
3531struct perf_comm_event {
3532 struct task_struct *task;
3533 char *comm;
3534 int comm_size;
3535
3536 struct {
3537 struct perf_event_header header;
3538
3539 u32 pid;
3540 u32 tid;
3541 } event_id;
3542};
3543
3544static void perf_event_comm_output(struct perf_event *event,
3545 struct perf_comm_event *comm_event)
3546{
3547 struct perf_output_handle handle;
3548 int size = comm_event->event_id.header.size;
3549 int ret = perf_output_begin(&handle, event, size, 0, 0);
3550
3551 if (ret)
3552 return;
3553
3554 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3555 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3556
3557 perf_output_put(&handle, comm_event->event_id);
3558 perf_output_copy(&handle, comm_event->comm,
3559 comm_event->comm_size);
3560 perf_output_end(&handle);
3561}
3562
3563static int perf_event_comm_match(struct perf_event *event)
3564{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003565 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003566 return 0;
3567
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003568 if (event->cpu != -1 && event->cpu != smp_processor_id())
3569 return 0;
3570
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003571 if (event->attr.comm)
3572 return 1;
3573
3574 return 0;
3575}
3576
3577static void perf_event_comm_ctx(struct perf_event_context *ctx,
3578 struct perf_comm_event *comm_event)
3579{
3580 struct perf_event *event;
3581
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003582 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3583 if (perf_event_comm_match(event))
3584 perf_event_comm_output(event, comm_event);
3585 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003586}
3587
3588static void perf_event_comm_event(struct perf_comm_event *comm_event)
3589{
3590 struct perf_cpu_context *cpuctx;
3591 struct perf_event_context *ctx;
3592 unsigned int size;
3593 char comm[TASK_COMM_LEN];
3594
3595 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003596 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003597 size = ALIGN(strlen(comm)+1, sizeof(u64));
3598
3599 comm_event->comm = comm;
3600 comm_event->comm_size = size;
3601
3602 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3603
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003604 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003605 cpuctx = &get_cpu_var(perf_cpu_context);
3606 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003607 ctx = rcu_dereference(current->perf_event_ctxp);
3608 if (ctx)
3609 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003610 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003611 rcu_read_unlock();
3612}
3613
3614void perf_event_comm(struct task_struct *task)
3615{
3616 struct perf_comm_event comm_event;
3617
3618 if (task->perf_event_ctxp)
3619 perf_event_enable_on_exec(task);
3620
3621 if (!atomic_read(&nr_comm_events))
3622 return;
3623
3624 comm_event = (struct perf_comm_event){
3625 .task = task,
3626 /* .comm */
3627 /* .comm_size */
3628 .event_id = {
3629 .header = {
3630 .type = PERF_RECORD_COMM,
3631 .misc = 0,
3632 /* .size */
3633 },
3634 /* .pid */
3635 /* .tid */
3636 },
3637 };
3638
3639 perf_event_comm_event(&comm_event);
3640}
3641
3642/*
3643 * mmap tracking
3644 */
3645
3646struct perf_mmap_event {
3647 struct vm_area_struct *vma;
3648
3649 const char *file_name;
3650 int file_size;
3651
3652 struct {
3653 struct perf_event_header header;
3654
3655 u32 pid;
3656 u32 tid;
3657 u64 start;
3658 u64 len;
3659 u64 pgoff;
3660 } event_id;
3661};
3662
3663static void perf_event_mmap_output(struct perf_event *event,
3664 struct perf_mmap_event *mmap_event)
3665{
3666 struct perf_output_handle handle;
3667 int size = mmap_event->event_id.header.size;
3668 int ret = perf_output_begin(&handle, event, size, 0, 0);
3669
3670 if (ret)
3671 return;
3672
3673 mmap_event->event_id.pid = perf_event_pid(event, current);
3674 mmap_event->event_id.tid = perf_event_tid(event, current);
3675
3676 perf_output_put(&handle, mmap_event->event_id);
3677 perf_output_copy(&handle, mmap_event->file_name,
3678 mmap_event->file_size);
3679 perf_output_end(&handle);
3680}
3681
3682static int perf_event_mmap_match(struct perf_event *event,
3683 struct perf_mmap_event *mmap_event)
3684{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003685 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003686 return 0;
3687
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003688 if (event->cpu != -1 && event->cpu != smp_processor_id())
3689 return 0;
3690
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003691 if (event->attr.mmap)
3692 return 1;
3693
3694 return 0;
3695}
3696
3697static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3698 struct perf_mmap_event *mmap_event)
3699{
3700 struct perf_event *event;
3701
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003702 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3703 if (perf_event_mmap_match(event, mmap_event))
3704 perf_event_mmap_output(event, mmap_event);
3705 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003706}
3707
3708static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3709{
3710 struct perf_cpu_context *cpuctx;
3711 struct perf_event_context *ctx;
3712 struct vm_area_struct *vma = mmap_event->vma;
3713 struct file *file = vma->vm_file;
3714 unsigned int size;
3715 char tmp[16];
3716 char *buf = NULL;
3717 const char *name;
3718
3719 memset(tmp, 0, sizeof(tmp));
3720
3721 if (file) {
3722 /*
3723 * d_path works from the end of the buffer backwards, so we
3724 * need to add enough zero bytes after the string to handle
3725 * the 64bit alignment we do later.
3726 */
3727 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3728 if (!buf) {
3729 name = strncpy(tmp, "//enomem", sizeof(tmp));
3730 goto got_name;
3731 }
3732 name = d_path(&file->f_path, buf, PATH_MAX);
3733 if (IS_ERR(name)) {
3734 name = strncpy(tmp, "//toolong", sizeof(tmp));
3735 goto got_name;
3736 }
3737 } else {
3738 if (arch_vma_name(mmap_event->vma)) {
3739 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3740 sizeof(tmp));
3741 goto got_name;
3742 }
3743
3744 if (!vma->vm_mm) {
3745 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3746 goto got_name;
3747 }
3748
3749 name = strncpy(tmp, "//anon", sizeof(tmp));
3750 goto got_name;
3751 }
3752
3753got_name:
3754 size = ALIGN(strlen(name)+1, sizeof(u64));
3755
3756 mmap_event->file_name = name;
3757 mmap_event->file_size = size;
3758
3759 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3760
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003761 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003762 cpuctx = &get_cpu_var(perf_cpu_context);
3763 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003764 ctx = rcu_dereference(current->perf_event_ctxp);
3765 if (ctx)
3766 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003767 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003768 rcu_read_unlock();
3769
3770 kfree(buf);
3771}
3772
3773void __perf_event_mmap(struct vm_area_struct *vma)
3774{
3775 struct perf_mmap_event mmap_event;
3776
3777 if (!atomic_read(&nr_mmap_events))
3778 return;
3779
3780 mmap_event = (struct perf_mmap_event){
3781 .vma = vma,
3782 /* .file_name */
3783 /* .file_size */
3784 .event_id = {
3785 .header = {
3786 .type = PERF_RECORD_MMAP,
Zhang, Yanmin39447b32010-04-19 13:32:41 +08003787 .misc = PERF_RECORD_MISC_USER,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003788 /* .size */
3789 },
3790 /* .pid */
3791 /* .tid */
3792 .start = vma->vm_start,
3793 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003794 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003795 },
3796 };
3797
3798 perf_event_mmap_event(&mmap_event);
3799}
3800
3801/*
3802 * IRQ throttle logging
3803 */
3804
3805static void perf_log_throttle(struct perf_event *event, int enable)
3806{
3807 struct perf_output_handle handle;
3808 int ret;
3809
3810 struct {
3811 struct perf_event_header header;
3812 u64 time;
3813 u64 id;
3814 u64 stream_id;
3815 } throttle_event = {
3816 .header = {
3817 .type = PERF_RECORD_THROTTLE,
3818 .misc = 0,
3819 .size = sizeof(throttle_event),
3820 },
3821 .time = perf_clock(),
3822 .id = primary_event_id(event),
3823 .stream_id = event->id,
3824 };
3825
3826 if (enable)
3827 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3828
3829 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3830 if (ret)
3831 return;
3832
3833 perf_output_put(&handle, throttle_event);
3834 perf_output_end(&handle);
3835}
3836
3837/*
3838 * Generic event overflow handling, sampling.
3839 */
3840
3841static int __perf_event_overflow(struct perf_event *event, int nmi,
3842 int throttle, struct perf_sample_data *data,
3843 struct pt_regs *regs)
3844{
3845 int events = atomic_read(&event->event_limit);
3846 struct hw_perf_event *hwc = &event->hw;
3847 int ret = 0;
3848
3849 throttle = (throttle && event->pmu->unthrottle != NULL);
3850
3851 if (!throttle) {
3852 hwc->interrupts++;
3853 } else {
3854 if (hwc->interrupts != MAX_INTERRUPTS) {
3855 hwc->interrupts++;
3856 if (HZ * hwc->interrupts >
3857 (u64)sysctl_perf_event_sample_rate) {
3858 hwc->interrupts = MAX_INTERRUPTS;
3859 perf_log_throttle(event, 0);
3860 ret = 1;
3861 }
3862 } else {
3863 /*
3864 * Keep re-disabling events even though on the previous
3865 * pass we disabled it - just in case we raced with a
3866 * sched-in and the event got enabled again:
3867 */
3868 ret = 1;
3869 }
3870 }
3871
3872 if (event->attr.freq) {
3873 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003874 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003875
Peter Zijlstraabd50712010-01-26 18:50:16 +01003876 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003877
Peter Zijlstraabd50712010-01-26 18:50:16 +01003878 if (delta > 0 && delta < 2*TICK_NSEC)
3879 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003880 }
3881
3882 /*
3883 * XXX event_limit might not quite work as expected on inherited
3884 * events
3885 */
3886
3887 event->pending_kill = POLL_IN;
3888 if (events && atomic_dec_and_test(&event->event_limit)) {
3889 ret = 1;
3890 event->pending_kill = POLL_HUP;
3891 if (nmi) {
3892 event->pending_disable = 1;
3893 perf_pending_queue(&event->pending,
3894 perf_pending_event);
3895 } else
3896 perf_event_disable(event);
3897 }
3898
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003899 if (event->overflow_handler)
3900 event->overflow_handler(event, nmi, data, regs);
3901 else
3902 perf_event_output(event, nmi, data, regs);
3903
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003904 return ret;
3905}
3906
3907int perf_event_overflow(struct perf_event *event, int nmi,
3908 struct perf_sample_data *data,
3909 struct pt_regs *regs)
3910{
3911 return __perf_event_overflow(event, nmi, 1, data, regs);
3912}
3913
3914/*
3915 * Generic software event infrastructure
3916 */
3917
3918/*
3919 * We directly increment event->count and keep a second value in
3920 * event->hw.period_left to count intervals. This period event
3921 * is kept in the range [-sample_period, 0] so that we can use the
3922 * sign as trigger.
3923 */
3924
3925static u64 perf_swevent_set_period(struct perf_event *event)
3926{
3927 struct hw_perf_event *hwc = &event->hw;
3928 u64 period = hwc->last_period;
3929 u64 nr, offset;
3930 s64 old, val;
3931
3932 hwc->last_period = hwc->sample_period;
3933
3934again:
3935 old = val = atomic64_read(&hwc->period_left);
3936 if (val < 0)
3937 return 0;
3938
3939 nr = div64_u64(period + val, period);
3940 offset = nr * period;
3941 val -= offset;
3942 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3943 goto again;
3944
3945 return nr;
3946}
3947
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003948static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003949 int nmi, struct perf_sample_data *data,
3950 struct pt_regs *regs)
3951{
3952 struct hw_perf_event *hwc = &event->hw;
3953 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003954
3955 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003956 if (!overflow)
3957 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003958
3959 if (hwc->interrupts == MAX_INTERRUPTS)
3960 return;
3961
3962 for (; overflow; overflow--) {
3963 if (__perf_event_overflow(event, nmi, throttle,
3964 data, regs)) {
3965 /*
3966 * We inhibit the overflow from happening when
3967 * hwc->interrupts == MAX_INTERRUPTS.
3968 */
3969 break;
3970 }
3971 throttle = 1;
3972 }
3973}
3974
3975static void perf_swevent_unthrottle(struct perf_event *event)
3976{
3977 /*
3978 * Nothing to do, we already reset hwc->interrupts.
3979 */
3980}
3981
3982static void perf_swevent_add(struct perf_event *event, u64 nr,
3983 int nmi, struct perf_sample_data *data,
3984 struct pt_regs *regs)
3985{
3986 struct hw_perf_event *hwc = &event->hw;
3987
3988 atomic64_add(nr, &event->count);
3989
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003990 if (!regs)
3991 return;
3992
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003993 if (!hwc->sample_period)
3994 return;
3995
3996 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3997 return perf_swevent_overflow(event, 1, nmi, data, regs);
3998
3999 if (atomic64_add_negative(nr, &hwc->period_left))
4000 return;
4001
4002 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004003}
4004
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004005static int perf_exclude_event(struct perf_event *event,
4006 struct pt_regs *regs)
4007{
4008 if (regs) {
4009 if (event->attr.exclude_user && user_mode(regs))
4010 return 1;
4011
4012 if (event->attr.exclude_kernel && !user_mode(regs))
4013 return 1;
4014 }
4015
4016 return 0;
4017}
4018
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004019static int perf_swevent_match(struct perf_event *event,
4020 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004021 u32 event_id,
4022 struct perf_sample_data *data,
4023 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004024{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025 if (event->attr.type != type)
4026 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004027
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004028 if (event->attr.config != event_id)
4029 return 0;
4030
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004031 if (perf_exclude_event(event, regs))
4032 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004033
4034 return 1;
4035}
4036
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004037static inline u64 swevent_hash(u64 type, u32 event_id)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004038{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004039 u64 val = event_id | (type << 32);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004040
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004041 return hash_64(val, SWEVENT_HLIST_BITS);
4042}
4043
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004044static inline struct hlist_head *
4045__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004046{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004047 u64 hash = swevent_hash(type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004048
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004049 return &hlist->heads[hash];
4050}
4051
4052/* For the read side: events when they trigger */
4053static inline struct hlist_head *
4054find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4055{
4056 struct swevent_hlist *hlist;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004057
4058 hlist = rcu_dereference(ctx->swevent_hlist);
4059 if (!hlist)
4060 return NULL;
4061
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004062 return __find_swevent_head(hlist, type, event_id);
4063}
4064
4065/* For the event head insertion and removal in the hlist */
4066static inline struct hlist_head *
4067find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4068{
4069 struct swevent_hlist *hlist;
4070 u32 event_id = event->attr.config;
4071 u64 type = event->attr.type;
4072
4073 /*
4074 * Event scheduling is always serialized against hlist allocation
4075 * and release. Which makes the protected version suitable here.
4076 * The context lock guarantees that.
4077 */
4078 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4079 lockdep_is_held(&event->ctx->lock));
4080 if (!hlist)
4081 return NULL;
4082
4083 return __find_swevent_head(hlist, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004084}
4085
4086static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4087 u64 nr, int nmi,
4088 struct perf_sample_data *data,
4089 struct pt_regs *regs)
4090{
4091 struct perf_cpu_context *cpuctx;
4092 struct perf_event *event;
4093 struct hlist_node *node;
4094 struct hlist_head *head;
4095
4096 cpuctx = &__get_cpu_var(perf_cpu_context);
4097
4098 rcu_read_lock();
4099
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004100 head = find_swevent_head_rcu(cpuctx, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004101
4102 if (!head)
4103 goto end;
4104
4105 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004106 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004107 perf_swevent_add(event, nr, nmi, data, regs);
4108 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004109end:
4110 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004111}
4112
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004113int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004114{
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004115 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004116 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004117
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004118 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004119 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004120 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004121 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004122 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004123 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004124 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004125 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004126
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004127 if (cpuctx->recursion[rctx])
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004128 return -1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004129
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004130 cpuctx->recursion[rctx]++;
4131 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004132
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004133 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004134}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004135EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004136
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004137void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004138{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004139 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4140 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004141 cpuctx->recursion[rctx]--;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004142}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004143EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004144
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004146void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4147 struct pt_regs *regs, u64 addr)
4148{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004149 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004150 int rctx;
4151
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004152 preempt_disable_notrace();
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004153 rctx = perf_swevent_get_recursion_context();
4154 if (rctx < 0)
4155 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004156
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004157 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004158
4159 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004160
4161 perf_swevent_put_recursion_context(rctx);
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004162 preempt_enable_notrace();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004163}
4164
4165static void perf_swevent_read(struct perf_event *event)
4166{
4167}
4168
4169static int perf_swevent_enable(struct perf_event *event)
4170{
4171 struct hw_perf_event *hwc = &event->hw;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004172 struct perf_cpu_context *cpuctx;
4173 struct hlist_head *head;
4174
4175 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004176
4177 if (hwc->sample_period) {
4178 hwc->last_period = hwc->sample_period;
4179 perf_swevent_set_period(event);
4180 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004181
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004182 head = find_swevent_head(cpuctx, event);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004183 if (WARN_ON_ONCE(!head))
4184 return -EINVAL;
4185
4186 hlist_add_head_rcu(&event->hlist_entry, head);
4187
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004188 return 0;
4189}
4190
4191static void perf_swevent_disable(struct perf_event *event)
4192{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004193 hlist_del_rcu(&event->hlist_entry);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004194}
4195
4196static const struct pmu perf_ops_generic = {
4197 .enable = perf_swevent_enable,
4198 .disable = perf_swevent_disable,
4199 .read = perf_swevent_read,
4200 .unthrottle = perf_swevent_unthrottle,
4201};
4202
4203/*
4204 * hrtimer based swevent callback
4205 */
4206
4207static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4208{
4209 enum hrtimer_restart ret = HRTIMER_RESTART;
4210 struct perf_sample_data data;
4211 struct pt_regs *regs;
4212 struct perf_event *event;
4213 u64 period;
4214
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004215 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004216 event->pmu->read(event);
4217
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004218 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004219 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004220 regs = get_irq_regs();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004221
Frederic Weisbeckerdf8290b2010-04-09 00:28:14 +02004222 if (regs && !perf_exclude_event(event, regs)) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004223 if (!(event->attr.exclude_idle && current->pid == 0))
4224 if (perf_event_overflow(event, 0, &data, regs))
4225 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004226 }
4227
4228 period = max_t(u64, 10000, event->hw.sample_period);
4229 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4230
4231 return ret;
4232}
4233
Soeren Sandmann721a6692009-09-15 14:33:08 +02004234static void perf_swevent_start_hrtimer(struct perf_event *event)
4235{
4236 struct hw_perf_event *hwc = &event->hw;
4237
4238 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4239 hwc->hrtimer.function = perf_swevent_hrtimer;
4240 if (hwc->sample_period) {
4241 u64 period;
4242
4243 if (hwc->remaining) {
4244 if (hwc->remaining < 0)
4245 period = 10000;
4246 else
4247 period = hwc->remaining;
4248 hwc->remaining = 0;
4249 } else {
4250 period = max_t(u64, 10000, hwc->sample_period);
4251 }
4252 __hrtimer_start_range_ns(&hwc->hrtimer,
4253 ns_to_ktime(period), 0,
4254 HRTIMER_MODE_REL, 0);
4255 }
4256}
4257
4258static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4259{
4260 struct hw_perf_event *hwc = &event->hw;
4261
4262 if (hwc->sample_period) {
4263 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4264 hwc->remaining = ktime_to_ns(remaining);
4265
4266 hrtimer_cancel(&hwc->hrtimer);
4267 }
4268}
4269
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004270/*
4271 * Software event: cpu wall time clock
4272 */
4273
4274static void cpu_clock_perf_event_update(struct perf_event *event)
4275{
4276 int cpu = raw_smp_processor_id();
4277 s64 prev;
4278 u64 now;
4279
4280 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004281 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004282 atomic64_add(now - prev, &event->count);
4283}
4284
4285static int cpu_clock_perf_event_enable(struct perf_event *event)
4286{
4287 struct hw_perf_event *hwc = &event->hw;
4288 int cpu = raw_smp_processor_id();
4289
4290 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004291 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004292
4293 return 0;
4294}
4295
4296static void cpu_clock_perf_event_disable(struct perf_event *event)
4297{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004298 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004299 cpu_clock_perf_event_update(event);
4300}
4301
4302static void cpu_clock_perf_event_read(struct perf_event *event)
4303{
4304 cpu_clock_perf_event_update(event);
4305}
4306
4307static const struct pmu perf_ops_cpu_clock = {
4308 .enable = cpu_clock_perf_event_enable,
4309 .disable = cpu_clock_perf_event_disable,
4310 .read = cpu_clock_perf_event_read,
4311};
4312
4313/*
4314 * Software event: task time clock
4315 */
4316
4317static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4318{
4319 u64 prev;
4320 s64 delta;
4321
4322 prev = atomic64_xchg(&event->hw.prev_count, now);
4323 delta = now - prev;
4324 atomic64_add(delta, &event->count);
4325}
4326
4327static int task_clock_perf_event_enable(struct perf_event *event)
4328{
4329 struct hw_perf_event *hwc = &event->hw;
4330 u64 now;
4331
4332 now = event->ctx->time;
4333
4334 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004335
4336 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004337
4338 return 0;
4339}
4340
4341static void task_clock_perf_event_disable(struct perf_event *event)
4342{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004343 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004344 task_clock_perf_event_update(event, event->ctx->time);
4345
4346}
4347
4348static void task_clock_perf_event_read(struct perf_event *event)
4349{
4350 u64 time;
4351
4352 if (!in_nmi()) {
4353 update_context_time(event->ctx);
4354 time = event->ctx->time;
4355 } else {
4356 u64 now = perf_clock();
4357 u64 delta = now - event->ctx->timestamp;
4358 time = event->ctx->time + delta;
4359 }
4360
4361 task_clock_perf_event_update(event, time);
4362}
4363
4364static const struct pmu perf_ops_task_clock = {
4365 .enable = task_clock_perf_event_enable,
4366 .disable = task_clock_perf_event_disable,
4367 .read = task_clock_perf_event_read,
4368};
4369
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004370/* Deref the hlist from the update side */
4371static inline struct swevent_hlist *
4372swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4373{
4374 return rcu_dereference_protected(cpuctx->swevent_hlist,
4375 lockdep_is_held(&cpuctx->hlist_mutex));
4376}
4377
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004378static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4379{
4380 struct swevent_hlist *hlist;
4381
4382 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4383 kfree(hlist);
4384}
4385
4386static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4387{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004388 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004389
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004390 if (!hlist)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004391 return;
4392
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004393 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4394 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4395}
4396
4397static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4398{
4399 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4400
4401 mutex_lock(&cpuctx->hlist_mutex);
4402
4403 if (!--cpuctx->hlist_refcount)
4404 swevent_hlist_release(cpuctx);
4405
4406 mutex_unlock(&cpuctx->hlist_mutex);
4407}
4408
4409static void swevent_hlist_put(struct perf_event *event)
4410{
4411 int cpu;
4412
4413 if (event->cpu != -1) {
4414 swevent_hlist_put_cpu(event, event->cpu);
4415 return;
4416 }
4417
4418 for_each_possible_cpu(cpu)
4419 swevent_hlist_put_cpu(event, cpu);
4420}
4421
4422static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4423{
4424 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4425 int err = 0;
4426
4427 mutex_lock(&cpuctx->hlist_mutex);
4428
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004429 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004430 struct swevent_hlist *hlist;
4431
4432 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4433 if (!hlist) {
4434 err = -ENOMEM;
4435 goto exit;
4436 }
4437 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4438 }
4439 cpuctx->hlist_refcount++;
4440 exit:
4441 mutex_unlock(&cpuctx->hlist_mutex);
4442
4443 return err;
4444}
4445
4446static int swevent_hlist_get(struct perf_event *event)
4447{
4448 int err;
4449 int cpu, failed_cpu;
4450
4451 if (event->cpu != -1)
4452 return swevent_hlist_get_cpu(event, event->cpu);
4453
4454 get_online_cpus();
4455 for_each_possible_cpu(cpu) {
4456 err = swevent_hlist_get_cpu(event, cpu);
4457 if (err) {
4458 failed_cpu = cpu;
4459 goto fail;
4460 }
4461 }
4462 put_online_cpus();
4463
4464 return 0;
4465 fail:
4466 for_each_possible_cpu(cpu) {
4467 if (cpu == failed_cpu)
4468 break;
4469 swevent_hlist_put_cpu(event, cpu);
4470 }
4471
4472 put_online_cpus();
4473 return err;
4474}
4475
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004476#ifdef CONFIG_EVENT_TRACING
4477
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004478static const struct pmu perf_ops_tracepoint = {
4479 .enable = perf_trace_enable,
4480 .disable = perf_trace_disable,
4481 .read = perf_swevent_read,
4482 .unthrottle = perf_swevent_unthrottle,
4483};
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004484
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004485static int perf_tp_filter_match(struct perf_event *event,
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004486 struct perf_sample_data *data)
4487{
4488 void *record = data->raw->data;
4489
4490 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4491 return 1;
4492 return 0;
4493}
4494
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004495static int perf_tp_event_match(struct perf_event *event,
4496 struct perf_sample_data *data,
4497 struct pt_regs *regs)
4498{
Peter Zijlstra580d6072010-05-20 20:54:31 +02004499 /*
4500 * All tracepoints are from kernel-space.
4501 */
4502 if (event->attr.exclude_kernel)
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004503 return 0;
4504
4505 if (!perf_tp_filter_match(event, data))
4506 return 0;
4507
4508 return 1;
4509}
4510
4511void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4512 struct pt_regs *regs, struct hlist_head *head)
4513{
4514 struct perf_sample_data data;
4515 struct perf_event *event;
4516 struct hlist_node *node;
4517
4518 struct perf_raw_record raw = {
4519 .size = entry_size,
4520 .data = record,
4521 };
4522
4523 perf_sample_data_init(&data, addr);
4524 data.raw = &raw;
4525
4526 rcu_read_lock();
4527 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4528 if (perf_tp_event_match(event, &data, regs))
4529 perf_swevent_add(event, count, 1, &data, regs);
4530 }
4531 rcu_read_unlock();
4532}
4533EXPORT_SYMBOL_GPL(perf_tp_event);
4534
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004535static void tp_perf_event_destroy(struct perf_event *event)
4536{
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004537 perf_trace_destroy(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004538}
4539
4540static const struct pmu *tp_perf_event_init(struct perf_event *event)
4541{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004542 int err;
4543
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004544 /*
4545 * Raw tracepoint data is a severe data leak, only allow root to
4546 * have these.
4547 */
4548 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4549 perf_paranoid_tracepoint_raw() &&
4550 !capable(CAP_SYS_ADMIN))
4551 return ERR_PTR(-EPERM);
4552
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004553 err = perf_trace_init(event);
4554 if (err)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004555 return NULL;
4556
4557 event->destroy = tp_perf_event_destroy;
4558
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004559 return &perf_ops_tracepoint;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004560}
Li Zefan6fb29152009-10-15 11:21:42 +08004561
4562static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4563{
4564 char *filter_str;
4565 int ret;
4566
4567 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4568 return -EINVAL;
4569
4570 filter_str = strndup_user(arg, PAGE_SIZE);
4571 if (IS_ERR(filter_str))
4572 return PTR_ERR(filter_str);
4573
4574 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4575
4576 kfree(filter_str);
4577 return ret;
4578}
4579
4580static void perf_event_free_filter(struct perf_event *event)
4581{
4582 ftrace_profile_free_filter(event);
4583}
4584
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004585#else
Li Zefan6fb29152009-10-15 11:21:42 +08004586
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004587static const struct pmu *tp_perf_event_init(struct perf_event *event)
4588{
4589 return NULL;
4590}
Li Zefan6fb29152009-10-15 11:21:42 +08004591
4592static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4593{
4594 return -ENOENT;
4595}
4596
4597static void perf_event_free_filter(struct perf_event *event)
4598{
4599}
4600
Li Zefan07b139c2009-12-21 14:27:35 +08004601#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004602
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004603#ifdef CONFIG_HAVE_HW_BREAKPOINT
4604static void bp_perf_event_destroy(struct perf_event *event)
4605{
4606 release_bp_slot(event);
4607}
4608
4609static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4610{
4611 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004612
4613 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004614 if (err)
4615 return ERR_PTR(err);
4616
4617 bp->destroy = bp_perf_event_destroy;
4618
4619 return &perf_ops_bp;
4620}
4621
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004622void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004623{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004624 struct perf_sample_data sample;
4625 struct pt_regs *regs = data;
4626
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004627 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004628
4629 if (!perf_exclude_event(bp, regs))
4630 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004631}
4632#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004633static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4634{
4635 return NULL;
4636}
4637
4638void perf_bp_event(struct perf_event *bp, void *regs)
4639{
4640}
4641#endif
4642
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004643atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4644
4645static void sw_perf_event_destroy(struct perf_event *event)
4646{
4647 u64 event_id = event->attr.config;
4648
4649 WARN_ON(event->parent);
4650
4651 atomic_dec(&perf_swevent_enabled[event_id]);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004652 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004653}
4654
4655static const struct pmu *sw_perf_event_init(struct perf_event *event)
4656{
4657 const struct pmu *pmu = NULL;
4658 u64 event_id = event->attr.config;
4659
4660 /*
4661 * Software events (currently) can't in general distinguish
4662 * between user, kernel and hypervisor events.
4663 * However, context switches and cpu migrations are considered
4664 * to be kernel events, and page faults are never hypervisor
4665 * events.
4666 */
4667 switch (event_id) {
4668 case PERF_COUNT_SW_CPU_CLOCK:
4669 pmu = &perf_ops_cpu_clock;
4670
4671 break;
4672 case PERF_COUNT_SW_TASK_CLOCK:
4673 /*
4674 * If the user instantiates this as a per-cpu event,
4675 * use the cpu_clock event instead.
4676 */
4677 if (event->ctx->task)
4678 pmu = &perf_ops_task_clock;
4679 else
4680 pmu = &perf_ops_cpu_clock;
4681
4682 break;
4683 case PERF_COUNT_SW_PAGE_FAULTS:
4684 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4685 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4686 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4687 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004688 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4689 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004690 if (!event->parent) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004691 int err;
4692
4693 err = swevent_hlist_get(event);
4694 if (err)
4695 return ERR_PTR(err);
4696
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004697 atomic_inc(&perf_swevent_enabled[event_id]);
4698 event->destroy = sw_perf_event_destroy;
4699 }
4700 pmu = &perf_ops_generic;
4701 break;
4702 }
4703
4704 return pmu;
4705}
4706
4707/*
4708 * Allocate and initialize a event structure
4709 */
4710static struct perf_event *
4711perf_event_alloc(struct perf_event_attr *attr,
4712 int cpu,
4713 struct perf_event_context *ctx,
4714 struct perf_event *group_leader,
4715 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004716 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004717 gfp_t gfpflags)
4718{
4719 const struct pmu *pmu;
4720 struct perf_event *event;
4721 struct hw_perf_event *hwc;
4722 long err;
4723
4724 event = kzalloc(sizeof(*event), gfpflags);
4725 if (!event)
4726 return ERR_PTR(-ENOMEM);
4727
4728 /*
4729 * Single events are their own group leaders, with an
4730 * empty sibling list:
4731 */
4732 if (!group_leader)
4733 group_leader = event;
4734
4735 mutex_init(&event->child_mutex);
4736 INIT_LIST_HEAD(&event->child_list);
4737
4738 INIT_LIST_HEAD(&event->group_entry);
4739 INIT_LIST_HEAD(&event->event_entry);
4740 INIT_LIST_HEAD(&event->sibling_list);
4741 init_waitqueue_head(&event->waitq);
4742
4743 mutex_init(&event->mmap_mutex);
4744
4745 event->cpu = cpu;
4746 event->attr = *attr;
4747 event->group_leader = group_leader;
4748 event->pmu = NULL;
4749 event->ctx = ctx;
4750 event->oncpu = -1;
4751
4752 event->parent = parent_event;
4753
4754 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4755 event->id = atomic64_inc_return(&perf_event_id);
4756
4757 event->state = PERF_EVENT_STATE_INACTIVE;
4758
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004759 if (!overflow_handler && parent_event)
4760 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004761
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004762 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004763
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004764 if (attr->disabled)
4765 event->state = PERF_EVENT_STATE_OFF;
4766
4767 pmu = NULL;
4768
4769 hwc = &event->hw;
4770 hwc->sample_period = attr->sample_period;
4771 if (attr->freq && attr->sample_freq)
4772 hwc->sample_period = 1;
4773 hwc->last_period = hwc->sample_period;
4774
4775 atomic64_set(&hwc->period_left, hwc->sample_period);
4776
4777 /*
4778 * we currently do not support PERF_FORMAT_GROUP on inherited events
4779 */
4780 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4781 goto done;
4782
4783 switch (attr->type) {
4784 case PERF_TYPE_RAW:
4785 case PERF_TYPE_HARDWARE:
4786 case PERF_TYPE_HW_CACHE:
4787 pmu = hw_perf_event_init(event);
4788 break;
4789
4790 case PERF_TYPE_SOFTWARE:
4791 pmu = sw_perf_event_init(event);
4792 break;
4793
4794 case PERF_TYPE_TRACEPOINT:
4795 pmu = tp_perf_event_init(event);
4796 break;
4797
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004798 case PERF_TYPE_BREAKPOINT:
4799 pmu = bp_perf_event_init(event);
4800 break;
4801
4802
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004803 default:
4804 break;
4805 }
4806done:
4807 err = 0;
4808 if (!pmu)
4809 err = -EINVAL;
4810 else if (IS_ERR(pmu))
4811 err = PTR_ERR(pmu);
4812
4813 if (err) {
4814 if (event->ns)
4815 put_pid_ns(event->ns);
4816 kfree(event);
4817 return ERR_PTR(err);
4818 }
4819
4820 event->pmu = pmu;
4821
4822 if (!event->parent) {
4823 atomic_inc(&nr_events);
4824 if (event->attr.mmap)
4825 atomic_inc(&nr_mmap_events);
4826 if (event->attr.comm)
4827 atomic_inc(&nr_comm_events);
4828 if (event->attr.task)
4829 atomic_inc(&nr_task_events);
4830 }
4831
4832 return event;
4833}
4834
4835static int perf_copy_attr(struct perf_event_attr __user *uattr,
4836 struct perf_event_attr *attr)
4837{
4838 u32 size;
4839 int ret;
4840
4841 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4842 return -EFAULT;
4843
4844 /*
4845 * zero the full structure, so that a short copy will be nice.
4846 */
4847 memset(attr, 0, sizeof(*attr));
4848
4849 ret = get_user(size, &uattr->size);
4850 if (ret)
4851 return ret;
4852
4853 if (size > PAGE_SIZE) /* silly large */
4854 goto err_size;
4855
4856 if (!size) /* abi compat */
4857 size = PERF_ATTR_SIZE_VER0;
4858
4859 if (size < PERF_ATTR_SIZE_VER0)
4860 goto err_size;
4861
4862 /*
4863 * If we're handed a bigger struct than we know of,
4864 * ensure all the unknown bits are 0 - i.e. new
4865 * user-space does not rely on any kernel feature
4866 * extensions we dont know about yet.
4867 */
4868 if (size > sizeof(*attr)) {
4869 unsigned char __user *addr;
4870 unsigned char __user *end;
4871 unsigned char val;
4872
4873 addr = (void __user *)uattr + sizeof(*attr);
4874 end = (void __user *)uattr + size;
4875
4876 for (; addr < end; addr++) {
4877 ret = get_user(val, addr);
4878 if (ret)
4879 return ret;
4880 if (val)
4881 goto err_size;
4882 }
4883 size = sizeof(*attr);
4884 }
4885
4886 ret = copy_from_user(attr, uattr, size);
4887 if (ret)
4888 return -EFAULT;
4889
4890 /*
4891 * If the type exists, the corresponding creation will verify
4892 * the attr->config.
4893 */
4894 if (attr->type >= PERF_TYPE_MAX)
4895 return -EINVAL;
4896
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304897 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004898 return -EINVAL;
4899
4900 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4901 return -EINVAL;
4902
4903 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4904 return -EINVAL;
4905
4906out:
4907 return ret;
4908
4909err_size:
4910 put_user(sizeof(*attr), &uattr->size);
4911 ret = -E2BIG;
4912 goto out;
4913}
4914
Li Zefan6fb29152009-10-15 11:21:42 +08004915static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004916{
4917 struct perf_event *output_event = NULL;
4918 struct file *output_file = NULL;
4919 struct perf_event *old_output;
4920 int fput_needed = 0;
4921 int ret = -EINVAL;
4922
Peter Zijlstra0f139302010-05-20 14:35:15 +02004923 /*
4924 * Don't allow output of inherited per-task events. This would
4925 * create performance issues due to cross cpu access.
4926 */
4927 if (event->cpu == -1 && event->attr.inherit)
4928 return -EINVAL;
4929
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004930 if (!output_fd)
4931 goto set;
4932
4933 output_file = fget_light(output_fd, &fput_needed);
4934 if (!output_file)
4935 return -EBADF;
4936
4937 if (output_file->f_op != &perf_fops)
4938 goto out;
4939
4940 output_event = output_file->private_data;
4941
4942 /* Don't chain output fds */
4943 if (output_event->output)
4944 goto out;
4945
4946 /* Don't set an output fd when we already have an output channel */
4947 if (event->data)
4948 goto out;
4949
Peter Zijlstra0f139302010-05-20 14:35:15 +02004950 /*
4951 * Don't allow cross-cpu buffers
4952 */
4953 if (output_event->cpu != event->cpu)
4954 goto out;
4955
4956 /*
4957 * If its not a per-cpu buffer, it must be the same task.
4958 */
4959 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
4960 goto out;
4961
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004962 atomic_long_inc(&output_file->f_count);
4963
4964set:
4965 mutex_lock(&event->mmap_mutex);
4966 old_output = event->output;
4967 rcu_assign_pointer(event->output, output_event);
4968 mutex_unlock(&event->mmap_mutex);
4969
4970 if (old_output) {
4971 /*
4972 * we need to make sure no existing perf_output_*()
4973 * is still referencing this event.
4974 */
4975 synchronize_rcu();
4976 fput(old_output->filp);
4977 }
4978
4979 ret = 0;
4980out:
4981 fput_light(output_file, fput_needed);
4982 return ret;
4983}
4984
4985/**
4986 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4987 *
4988 * @attr_uptr: event_id type attributes for monitoring/sampling
4989 * @pid: target pid
4990 * @cpu: target cpu
4991 * @group_fd: group leader event fd
4992 */
4993SYSCALL_DEFINE5(perf_event_open,
4994 struct perf_event_attr __user *, attr_uptr,
4995 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4996{
4997 struct perf_event *event, *group_leader;
4998 struct perf_event_attr attr;
4999 struct perf_event_context *ctx;
5000 struct file *event_file = NULL;
5001 struct file *group_file = NULL;
5002 int fput_needed = 0;
5003 int fput_needed2 = 0;
5004 int err;
5005
5006 /* for future expandability... */
5007 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5008 return -EINVAL;
5009
5010 err = perf_copy_attr(attr_uptr, &attr);
5011 if (err)
5012 return err;
5013
5014 if (!attr.exclude_kernel) {
5015 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5016 return -EACCES;
5017 }
5018
5019 if (attr.freq) {
5020 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5021 return -EINVAL;
5022 }
5023
5024 /*
5025 * Get the target context (task or percpu):
5026 */
5027 ctx = find_get_context(pid, cpu);
5028 if (IS_ERR(ctx))
5029 return PTR_ERR(ctx);
5030
5031 /*
5032 * Look up the group leader (we will attach this event to it):
5033 */
5034 group_leader = NULL;
5035 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5036 err = -EINVAL;
5037 group_file = fget_light(group_fd, &fput_needed);
5038 if (!group_file)
5039 goto err_put_context;
5040 if (group_file->f_op != &perf_fops)
5041 goto err_put_context;
5042
5043 group_leader = group_file->private_data;
5044 /*
5045 * Do not allow a recursive hierarchy (this new sibling
5046 * becoming part of another group-sibling):
5047 */
5048 if (group_leader->group_leader != group_leader)
5049 goto err_put_context;
5050 /*
5051 * Do not allow to attach to a group in a different
5052 * task or CPU context:
5053 */
5054 if (group_leader->ctx != ctx)
5055 goto err_put_context;
5056 /*
5057 * Only a group leader can be exclusive or pinned
5058 */
5059 if (attr.exclusive || attr.pinned)
5060 goto err_put_context;
5061 }
5062
5063 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005064 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005065 err = PTR_ERR(event);
5066 if (IS_ERR(event))
5067 goto err_put_context;
5068
Roland Dreier628ff7c2009-12-18 09:41:24 -08005069 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005070 if (err < 0)
5071 goto err_free_put_context;
5072
5073 event_file = fget_light(err, &fput_needed2);
5074 if (!event_file)
5075 goto err_free_put_context;
5076
5077 if (flags & PERF_FLAG_FD_OUTPUT) {
5078 err = perf_event_set_output(event, group_fd);
5079 if (err)
5080 goto err_fput_free_put_context;
5081 }
5082
5083 event->filp = event_file;
5084 WARN_ON_ONCE(ctx->parent_ctx);
5085 mutex_lock(&ctx->mutex);
5086 perf_install_in_context(ctx, event, cpu);
5087 ++ctx->generation;
5088 mutex_unlock(&ctx->mutex);
5089
5090 event->owner = current;
5091 get_task_struct(current);
5092 mutex_lock(&current->perf_event_mutex);
5093 list_add_tail(&event->owner_entry, &current->perf_event_list);
5094 mutex_unlock(&current->perf_event_mutex);
5095
5096err_fput_free_put_context:
5097 fput_light(event_file, fput_needed2);
5098
5099err_free_put_context:
5100 if (err < 0)
Tejun Heo048c8522010-05-01 10:11:35 +02005101 free_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005102
5103err_put_context:
5104 if (err < 0)
5105 put_ctx(ctx);
5106
5107 fput_light(group_file, fput_needed);
5108
5109 return err;
5110}
5111
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005112/**
5113 * perf_event_create_kernel_counter
5114 *
5115 * @attr: attributes of the counter to create
5116 * @cpu: cpu in which the counter is bound
5117 * @pid: task to profile
5118 */
5119struct perf_event *
5120perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005121 pid_t pid,
5122 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005123{
5124 struct perf_event *event;
5125 struct perf_event_context *ctx;
5126 int err;
5127
5128 /*
5129 * Get the target context (task or percpu):
5130 */
5131
5132 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005133 if (IS_ERR(ctx)) {
5134 err = PTR_ERR(ctx);
5135 goto err_exit;
5136 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005137
5138 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005139 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005140 if (IS_ERR(event)) {
5141 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005142 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005143 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005144
5145 event->filp = NULL;
5146 WARN_ON_ONCE(ctx->parent_ctx);
5147 mutex_lock(&ctx->mutex);
5148 perf_install_in_context(ctx, event, cpu);
5149 ++ctx->generation;
5150 mutex_unlock(&ctx->mutex);
5151
5152 event->owner = current;
5153 get_task_struct(current);
5154 mutex_lock(&current->perf_event_mutex);
5155 list_add_tail(&event->owner_entry, &current->perf_event_list);
5156 mutex_unlock(&current->perf_event_mutex);
5157
5158 return event;
5159
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005160 err_put_context:
5161 put_ctx(ctx);
5162 err_exit:
5163 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005164}
5165EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5166
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005167/*
5168 * inherit a event from parent task to child task:
5169 */
5170static struct perf_event *
5171inherit_event(struct perf_event *parent_event,
5172 struct task_struct *parent,
5173 struct perf_event_context *parent_ctx,
5174 struct task_struct *child,
5175 struct perf_event *group_leader,
5176 struct perf_event_context *child_ctx)
5177{
5178 struct perf_event *child_event;
5179
5180 /*
5181 * Instead of creating recursive hierarchies of events,
5182 * we link inherited events back to the original parent,
5183 * which has a filp for sure, which we use as the reference
5184 * count:
5185 */
5186 if (parent_event->parent)
5187 parent_event = parent_event->parent;
5188
5189 child_event = perf_event_alloc(&parent_event->attr,
5190 parent_event->cpu, child_ctx,
5191 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005192 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005193 if (IS_ERR(child_event))
5194 return child_event;
5195 get_ctx(child_ctx);
5196
5197 /*
5198 * Make the child state follow the state of the parent event,
5199 * not its attr.disabled bit. We hold the parent's mutex,
5200 * so we won't race with perf_event_{en, dis}able_family.
5201 */
5202 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5203 child_event->state = PERF_EVENT_STATE_INACTIVE;
5204 else
5205 child_event->state = PERF_EVENT_STATE_OFF;
5206
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005207 if (parent_event->attr.freq) {
5208 u64 sample_period = parent_event->hw.sample_period;
5209 struct hw_perf_event *hwc = &child_event->hw;
5210
5211 hwc->sample_period = sample_period;
5212 hwc->last_period = sample_period;
5213
5214 atomic64_set(&hwc->period_left, sample_period);
5215 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005216
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005217 child_event->overflow_handler = parent_event->overflow_handler;
5218
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005219 /*
5220 * Link it up in the child's context:
5221 */
5222 add_event_to_ctx(child_event, child_ctx);
5223
5224 /*
5225 * Get a reference to the parent filp - we will fput it
5226 * when the child event exits. This is safe to do because
5227 * we are in the parent and we know that the filp still
5228 * exists and has a nonzero count:
5229 */
5230 atomic_long_inc(&parent_event->filp->f_count);
5231
5232 /*
5233 * Link this into the parent event's child list
5234 */
5235 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5236 mutex_lock(&parent_event->child_mutex);
5237 list_add_tail(&child_event->child_list, &parent_event->child_list);
5238 mutex_unlock(&parent_event->child_mutex);
5239
5240 return child_event;
5241}
5242
5243static int inherit_group(struct perf_event *parent_event,
5244 struct task_struct *parent,
5245 struct perf_event_context *parent_ctx,
5246 struct task_struct *child,
5247 struct perf_event_context *child_ctx)
5248{
5249 struct perf_event *leader;
5250 struct perf_event *sub;
5251 struct perf_event *child_ctr;
5252
5253 leader = inherit_event(parent_event, parent, parent_ctx,
5254 child, NULL, child_ctx);
5255 if (IS_ERR(leader))
5256 return PTR_ERR(leader);
5257 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5258 child_ctr = inherit_event(sub, parent, parent_ctx,
5259 child, leader, child_ctx);
5260 if (IS_ERR(child_ctr))
5261 return PTR_ERR(child_ctr);
5262 }
5263 return 0;
5264}
5265
5266static void sync_child_event(struct perf_event *child_event,
5267 struct task_struct *child)
5268{
5269 struct perf_event *parent_event = child_event->parent;
5270 u64 child_val;
5271
5272 if (child_event->attr.inherit_stat)
5273 perf_event_read_event(child_event, child);
5274
5275 child_val = atomic64_read(&child_event->count);
5276
5277 /*
5278 * Add back the child's count to the parent's count:
5279 */
5280 atomic64_add(child_val, &parent_event->count);
5281 atomic64_add(child_event->total_time_enabled,
5282 &parent_event->child_total_time_enabled);
5283 atomic64_add(child_event->total_time_running,
5284 &parent_event->child_total_time_running);
5285
5286 /*
5287 * Remove this event from the parent's list
5288 */
5289 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5290 mutex_lock(&parent_event->child_mutex);
5291 list_del_init(&child_event->child_list);
5292 mutex_unlock(&parent_event->child_mutex);
5293
5294 /*
5295 * Release the parent event, if this was the last
5296 * reference to it.
5297 */
5298 fput(parent_event->filp);
5299}
5300
5301static void
5302__perf_event_exit_task(struct perf_event *child_event,
5303 struct perf_event_context *child_ctx,
5304 struct task_struct *child)
5305{
5306 struct perf_event *parent_event;
5307
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005308 perf_event_remove_from_context(child_event);
5309
5310 parent_event = child_event->parent;
5311 /*
5312 * It can happen that parent exits first, and has events
5313 * that are still around due to the child reference. These
5314 * events need to be zapped - but otherwise linger.
5315 */
5316 if (parent_event) {
5317 sync_child_event(child_event, child);
5318 free_event(child_event);
5319 }
5320}
5321
5322/*
5323 * When a child task exits, feed back event values to parent events.
5324 */
5325void perf_event_exit_task(struct task_struct *child)
5326{
5327 struct perf_event *child_event, *tmp;
5328 struct perf_event_context *child_ctx;
5329 unsigned long flags;
5330
5331 if (likely(!child->perf_event_ctxp)) {
5332 perf_event_task(child, NULL, 0);
5333 return;
5334 }
5335
5336 local_irq_save(flags);
5337 /*
5338 * We can't reschedule here because interrupts are disabled,
5339 * and either child is current or it is a task that can't be
5340 * scheduled, so we are now safe from rescheduling changing
5341 * our context.
5342 */
5343 child_ctx = child->perf_event_ctxp;
5344 __perf_event_task_sched_out(child_ctx);
5345
5346 /*
5347 * Take the context lock here so that if find_get_context is
5348 * reading child->perf_event_ctxp, we wait until it has
5349 * incremented the context's refcount before we do put_ctx below.
5350 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005351 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005352 child->perf_event_ctxp = NULL;
5353 /*
5354 * If this context is a clone; unclone it so it can't get
5355 * swapped to another process while we're removing all
5356 * the events from it.
5357 */
5358 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005359 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005360 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005361
5362 /*
5363 * Report the task dead after unscheduling the events so that we
5364 * won't get any samples after PERF_RECORD_EXIT. We can however still
5365 * get a few PERF_RECORD_READ events.
5366 */
5367 perf_event_task(child, child_ctx, 0);
5368
5369 /*
5370 * We can recurse on the same lock type through:
5371 *
5372 * __perf_event_exit_task()
5373 * sync_child_event()
5374 * fput(parent_event->filp)
5375 * perf_release()
5376 * mutex_lock(&ctx->mutex)
5377 *
5378 * But since its the parent context it won't be the same instance.
5379 */
Peter Zijlstraa0507c82010-05-06 15:42:53 +02005380 mutex_lock(&child_ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005381
5382again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005383 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5384 group_entry)
5385 __perf_event_exit_task(child_event, child_ctx, child);
5386
5387 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005388 group_entry)
5389 __perf_event_exit_task(child_event, child_ctx, child);
5390
5391 /*
5392 * If the last event was a group event, it will have appended all
5393 * its siblings to the list, but we obtained 'tmp' before that which
5394 * will still point to the list head terminating the iteration.
5395 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005396 if (!list_empty(&child_ctx->pinned_groups) ||
5397 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005398 goto again;
5399
5400 mutex_unlock(&child_ctx->mutex);
5401
5402 put_ctx(child_ctx);
5403}
5404
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005405static void perf_free_event(struct perf_event *event,
5406 struct perf_event_context *ctx)
5407{
5408 struct perf_event *parent = event->parent;
5409
5410 if (WARN_ON_ONCE(!parent))
5411 return;
5412
5413 mutex_lock(&parent->child_mutex);
5414 list_del_init(&event->child_list);
5415 mutex_unlock(&parent->child_mutex);
5416
5417 fput(parent->filp);
5418
5419 list_del_event(event, ctx);
5420 free_event(event);
5421}
5422
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005423/*
5424 * free an unexposed, unused context as created by inheritance by
5425 * init_task below, used by fork() in case of fail.
5426 */
5427void perf_event_free_task(struct task_struct *task)
5428{
5429 struct perf_event_context *ctx = task->perf_event_ctxp;
5430 struct perf_event *event, *tmp;
5431
5432 if (!ctx)
5433 return;
5434
5435 mutex_lock(&ctx->mutex);
5436again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005437 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5438 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005439
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005440 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5441 group_entry)
5442 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005443
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005444 if (!list_empty(&ctx->pinned_groups) ||
5445 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005446 goto again;
5447
5448 mutex_unlock(&ctx->mutex);
5449
5450 put_ctx(ctx);
5451}
5452
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005453static int
5454inherit_task_group(struct perf_event *event, struct task_struct *parent,
5455 struct perf_event_context *parent_ctx,
5456 struct task_struct *child,
5457 int *inherited_all)
5458{
5459 int ret;
5460 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5461
5462 if (!event->attr.inherit) {
5463 *inherited_all = 0;
5464 return 0;
5465 }
5466
5467 if (!child_ctx) {
5468 /*
5469 * This is executed from the parent task context, so
5470 * inherit events that have been marked for cloning.
5471 * First allocate and initialize a context for the
5472 * child.
5473 */
5474
5475 child_ctx = kzalloc(sizeof(struct perf_event_context),
5476 GFP_KERNEL);
5477 if (!child_ctx)
5478 return -ENOMEM;
5479
5480 __perf_event_init_context(child_ctx, child);
5481 child->perf_event_ctxp = child_ctx;
5482 get_task_struct(child);
5483 }
5484
5485 ret = inherit_group(event, parent, parent_ctx,
5486 child, child_ctx);
5487
5488 if (ret)
5489 *inherited_all = 0;
5490
5491 return ret;
5492}
5493
5494
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005495/*
5496 * Initialize the perf_event context in task_struct
5497 */
5498int perf_event_init_task(struct task_struct *child)
5499{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005500 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005501 struct perf_event_context *cloned_ctx;
5502 struct perf_event *event;
5503 struct task_struct *parent = current;
5504 int inherited_all = 1;
5505 int ret = 0;
5506
5507 child->perf_event_ctxp = NULL;
5508
5509 mutex_init(&child->perf_event_mutex);
5510 INIT_LIST_HEAD(&child->perf_event_list);
5511
5512 if (likely(!parent->perf_event_ctxp))
5513 return 0;
5514
5515 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005516 * If the parent's context is a clone, pin it so it won't get
5517 * swapped under us.
5518 */
5519 parent_ctx = perf_pin_task_context(parent);
5520
5521 /*
5522 * No need to check if parent_ctx != NULL here; since we saw
5523 * it non-NULL earlier, the only reason for it to become NULL
5524 * is if we exit, and since we're currently in the middle of
5525 * a fork we can't be exiting at the same time.
5526 */
5527
5528 /*
5529 * Lock the parent list. No need to lock the child - not PID
5530 * hashed yet and not running, so nobody can access it.
5531 */
5532 mutex_lock(&parent_ctx->mutex);
5533
5534 /*
5535 * We dont have to disable NMIs - we are only looking at
5536 * the list, not manipulating it:
5537 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005538 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5539 ret = inherit_task_group(event, parent, parent_ctx, child,
5540 &inherited_all);
5541 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005542 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005543 }
5544
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005545 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5546 ret = inherit_task_group(event, parent, parent_ctx, child,
5547 &inherited_all);
5548 if (ret)
5549 break;
5550 }
5551
5552 child_ctx = child->perf_event_ctxp;
5553
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005554 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005555 /*
5556 * Mark the child context as a clone of the parent
5557 * context, or of whatever the parent is a clone of.
5558 * Note that if the parent is a clone, it could get
5559 * uncloned at any point, but that doesn't matter
5560 * because the list of events and the generation
5561 * count can't have changed since we took the mutex.
5562 */
5563 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5564 if (cloned_ctx) {
5565 child_ctx->parent_ctx = cloned_ctx;
5566 child_ctx->parent_gen = parent_ctx->parent_gen;
5567 } else {
5568 child_ctx->parent_ctx = parent_ctx;
5569 child_ctx->parent_gen = parent_ctx->generation;
5570 }
5571 get_ctx(child_ctx->parent_ctx);
5572 }
5573
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005574 mutex_unlock(&parent_ctx->mutex);
5575
5576 perf_unpin_context(parent_ctx);
5577
5578 return ret;
5579}
5580
Paul Mackerras220b1402010-03-10 20:45:52 +11005581static void __init perf_event_init_all_cpus(void)
5582{
5583 int cpu;
5584 struct perf_cpu_context *cpuctx;
5585
5586 for_each_possible_cpu(cpu) {
5587 cpuctx = &per_cpu(perf_cpu_context, cpu);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005588 mutex_init(&cpuctx->hlist_mutex);
Paul Mackerras220b1402010-03-10 20:45:52 +11005589 __perf_event_init_context(&cpuctx->ctx, NULL);
5590 }
5591}
5592
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005593static void __cpuinit perf_event_init_cpu(int cpu)
5594{
5595 struct perf_cpu_context *cpuctx;
5596
5597 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005598
5599 spin_lock(&perf_resource_lock);
5600 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5601 spin_unlock(&perf_resource_lock);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005602
5603 mutex_lock(&cpuctx->hlist_mutex);
5604 if (cpuctx->hlist_refcount > 0) {
5605 struct swevent_hlist *hlist;
5606
5607 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5608 WARN_ON_ONCE(!hlist);
5609 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5610 }
5611 mutex_unlock(&cpuctx->hlist_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005612}
5613
5614#ifdef CONFIG_HOTPLUG_CPU
5615static void __perf_event_exit_cpu(void *info)
5616{
5617 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5618 struct perf_event_context *ctx = &cpuctx->ctx;
5619 struct perf_event *event, *tmp;
5620
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005621 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5622 __perf_event_remove_from_context(event);
5623 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005624 __perf_event_remove_from_context(event);
5625}
5626static void perf_event_exit_cpu(int cpu)
5627{
5628 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5629 struct perf_event_context *ctx = &cpuctx->ctx;
5630
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005631 mutex_lock(&cpuctx->hlist_mutex);
5632 swevent_hlist_release(cpuctx);
5633 mutex_unlock(&cpuctx->hlist_mutex);
5634
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005635 mutex_lock(&ctx->mutex);
5636 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5637 mutex_unlock(&ctx->mutex);
5638}
5639#else
5640static inline void perf_event_exit_cpu(int cpu) { }
5641#endif
5642
5643static int __cpuinit
5644perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5645{
5646 unsigned int cpu = (long)hcpu;
5647
5648 switch (action) {
5649
5650 case CPU_UP_PREPARE:
5651 case CPU_UP_PREPARE_FROZEN:
5652 perf_event_init_cpu(cpu);
5653 break;
5654
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005655 case CPU_DOWN_PREPARE:
5656 case CPU_DOWN_PREPARE_FROZEN:
5657 perf_event_exit_cpu(cpu);
5658 break;
5659
5660 default:
5661 break;
5662 }
5663
5664 return NOTIFY_OK;
5665}
5666
5667/*
5668 * This has to have a higher priority than migration_notifier in sched.c.
5669 */
5670static struct notifier_block __cpuinitdata perf_cpu_nb = {
5671 .notifier_call = perf_cpu_notify,
5672 .priority = 20,
5673};
5674
5675void __init perf_event_init(void)
5676{
Paul Mackerras220b1402010-03-10 20:45:52 +11005677 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005678 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5679 (void *)(long)smp_processor_id());
5680 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5681 (void *)(long)smp_processor_id());
5682 register_cpu_notifier(&perf_cpu_nb);
5683}
5684
Andi Kleenc9be0a32010-01-05 12:47:58 +01005685static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5686 struct sysdev_class_attribute *attr,
5687 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005688{
5689 return sprintf(buf, "%d\n", perf_reserved_percpu);
5690}
5691
5692static ssize_t
5693perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005694 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005695 const char *buf,
5696 size_t count)
5697{
5698 struct perf_cpu_context *cpuctx;
5699 unsigned long val;
5700 int err, cpu, mpt;
5701
5702 err = strict_strtoul(buf, 10, &val);
5703 if (err)
5704 return err;
5705 if (val > perf_max_events)
5706 return -EINVAL;
5707
5708 spin_lock(&perf_resource_lock);
5709 perf_reserved_percpu = val;
5710 for_each_online_cpu(cpu) {
5711 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005712 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005713 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5714 perf_max_events - perf_reserved_percpu);
5715 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005716 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005717 }
5718 spin_unlock(&perf_resource_lock);
5719
5720 return count;
5721}
5722
Andi Kleenc9be0a32010-01-05 12:47:58 +01005723static ssize_t perf_show_overcommit(struct sysdev_class *class,
5724 struct sysdev_class_attribute *attr,
5725 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005726{
5727 return sprintf(buf, "%d\n", perf_overcommit);
5728}
5729
5730static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005731perf_set_overcommit(struct sysdev_class *class,
5732 struct sysdev_class_attribute *attr,
5733 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005734{
5735 unsigned long val;
5736 int err;
5737
5738 err = strict_strtoul(buf, 10, &val);
5739 if (err)
5740 return err;
5741 if (val > 1)
5742 return -EINVAL;
5743
5744 spin_lock(&perf_resource_lock);
5745 perf_overcommit = val;
5746 spin_unlock(&perf_resource_lock);
5747
5748 return count;
5749}
5750
5751static SYSDEV_CLASS_ATTR(
5752 reserve_percpu,
5753 0644,
5754 perf_show_reserve_percpu,
5755 perf_set_reserve_percpu
5756 );
5757
5758static SYSDEV_CLASS_ATTR(
5759 overcommit,
5760 0644,
5761 perf_show_overcommit,
5762 perf_set_overcommit
5763 );
5764
5765static struct attribute *perfclass_attrs[] = {
5766 &attr_reserve_percpu.attr,
5767 &attr_overcommit.attr,
5768 NULL
5769};
5770
5771static struct attribute_group perfclass_attr_group = {
5772 .attrs = perfclass_attrs,
5773 .name = "perf_events",
5774};
5775
5776static int __init perf_event_sysfs_init(void)
5777{
5778 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5779 &perfclass_attr_group);
5780}
5781device_initcall(perf_event_sysfs_init);