blob: ff5d430d45a74d09898fe1fed399105baea83079 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Frederic Weisbecker76e1d902010-04-05 15:35:57 +020019#include <linux/hash.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020020#include <linux/sysfs.h>
21#include <linux/dcache.h>
22#include <linux/percpu.h>
23#include <linux/ptrace.h>
24#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020025#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020026#include <linux/hardirq.h>
27#include <linux/rculist.h>
28#include <linux/uaccess.h>
29#include <linux/syscalls.h>
30#include <linux/anon_inodes.h>
31#include <linux/kernel_stat.h>
32#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080033#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020034#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020035
36#include <asm/irq_regs.h>
37
38/*
39 * Each CPU has a list of per CPU events:
40 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080041static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020042
43int perf_max_events __read_mostly = 1;
44static int perf_reserved_percpu __read_mostly;
45static int perf_overcommit __read_mostly = 1;
46
47static atomic_t nr_events __read_mostly;
48static atomic_t nr_mmap_events __read_mostly;
49static atomic_t nr_comm_events __read_mostly;
50static atomic_t nr_task_events __read_mostly;
51
52/*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59int sysctl_perf_event_paranoid __read_mostly = 1;
60
Ingo Molnarcdd6c482009-09-21 12:02:48 +020061int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63/*
64 * max perf event sample rate
65 */
66int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68static atomic64_t perf_event_id;
69
70/*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73static DEFINE_SPINLOCK(perf_resource_lock);
74
75/*
76 * Architecture provided APIs - weak aliases:
77 */
78extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79{
80 return NULL;
81}
82
83void __weak hw_perf_disable(void) { barrier(); }
84void __weak hw_perf_enable(void) { barrier(); }
85
Ingo Molnarcdd6c482009-09-21 12:02:48 +020086void __weak perf_event_print_debug(void) { }
87
88static DEFINE_PER_CPU(int, perf_disable_count);
89
Ingo Molnarcdd6c482009-09-21 12:02:48 +020090void perf_disable(void)
91{
Peter Zijlstra32975a42010-03-06 19:49:19 +010092 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +020094}
95
96void perf_enable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +020099 hw_perf_enable();
100}
101
102static void get_ctx(struct perf_event_context *ctx)
103{
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105}
106
107static void free_ctx(struct rcu_head *head)
108{
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113}
114
115static void put_ctx(struct perf_event_context *ctx)
116{
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124}
125
126static void unclone_ctx(struct perf_event_context *ctx)
127{
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132}
133
134/*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138static u64 primary_event_id(struct perf_event *event)
139{
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146}
147
148/*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153static struct perf_event_context *
154perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155{
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100172 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185}
186
187/*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193{
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200201 }
202 return ctx;
203}
204
205static void perf_unpin_context(struct perf_event_context *ctx)
206{
207 unsigned long flags;
208
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100209 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200210 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200212 put_ctx(ctx);
213}
214
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100215static inline u64 perf_clock(void)
216{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100217 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100218}
219
220/*
221 * Update the record of the current time in a context.
222 */
223static void update_context_time(struct perf_event_context *ctx)
224{
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229}
230
231/*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234static void update_event_times(struct perf_event *event)
235{
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256}
257
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200258/*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261static void update_group_times(struct perf_event *leader)
262{
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268}
269
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100270static struct list_head *
271ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272{
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277}
278
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200279/*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283static void
284list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285{
286 struct perf_event *group_leader = event->group_leader;
287
288 /*
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
292 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 if (group_leader == event) {
294 struct list_head *list;
295
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
298
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
308 }
309
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
314}
315
316/*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320static void
321list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322{
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200335 update_group_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800336
337 /*
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
343 */
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra050735b2010-05-11 11:51:53 +0200346}
347
348static void
349perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350{
351 struct perf_event *sibling, *tmp;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100352
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100359 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200360
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200363 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200367 }
368}
369
370static void
371event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374{
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392}
393
394static void
395group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398{
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414}
415
416/*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422static void __perf_event_remove_from_context(void *info)
423{
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100436 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100458 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200459}
460
461
462/*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477static void perf_event_remove_from_context(struct perf_event *event)
478{
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200485 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100497 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100502 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100511 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200512 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100513 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200514}
515
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200517 * Cross CPU call to disable a performance event
518 */
519static void __perf_event_disable(void *info)
520{
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
524
525 /*
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
528 */
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
531
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100532 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200533
534 /*
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
537 */
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
546 }
547
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100548 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200549}
550
551/*
552 * Disable a event.
553 *
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
563 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100564void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200565{
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
568
569 if (!task) {
570 /*
571 * Disable the event on the cpu that it's on
572 */
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
576 }
577
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
580
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100581 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200582 /*
583 * If the event is still active, we need to retry the cross-call.
584 */
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100586 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200587 goto retry;
588 }
589
590 /*
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
593 */
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
597 }
598
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100599 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200600}
601
602static int
603event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100605 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200606{
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
609
610 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100611 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * The new state must be visible before we turn it on in the hardware:
614 */
615 smp_wmb();
616
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
621 }
622
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
628
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
631
632 return 0;
633}
634
635static int
636group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100638 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200639{
Lin Ming6bde9b62010-04-23 13:56:00 +0800640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Lin Ming6bde9b62010-04-23 13:56:00 +0800648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
651
652 if (txn)
653 pmu->start_txn(pmu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200654
Peter Zijlstra6e377382010-02-11 13:21:58 +0100655 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200656 return -EAGAIN;
657
658 /*
659 * Schedule in siblings as one group (if any):
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100662 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200663 partial_group = event;
664 goto group_error;
665 }
666 }
667
Paul Mackerras6e851582010-05-08 20:58:00 +1000668 if (!txn)
669 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800670
Paul Mackerras6e851582010-05-08 20:58:00 +1000671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800675 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200676
677group_error:
Lin Ming6bde9b62010-04-23 13:56:00 +0800678 if (txn)
679 pmu->cancel_txn(pmu);
680
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200681 /*
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
684 */
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
689 }
690 event_sched_out(group_event, cpuctx, ctx);
691
692 return -EAGAIN;
693}
694
695/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200696 * Work out whether we can put this event group on the CPU now.
697 */
698static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
701{
702 /*
703 * Groups consisting entirely of software events can always go on.
704 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100705 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200706 return 1;
707 /*
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
710 */
711 if (cpuctx->exclusive)
712 return 0;
713 /*
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
716 */
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
719 /*
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
722 */
723 return can_add_hw;
724}
725
726static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
728{
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
733}
734
735/*
736 * Cross CPU call to install and enable a performance event
737 *
738 * Must be called with ctx->mutex held
739 */
740static void __perf_install_in_context(void *info)
741{
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200746 int err;
747
748 /*
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
754 */
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
759 }
760
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100761 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200762 ctx->is_active = 1;
763 update_context_time(ctx);
764
765 /*
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
768 */
769 perf_disable();
770
771 add_event_to_ctx(event, ctx);
772
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
775
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100792 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100814 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200839 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100850 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100855 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100866 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100911 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
921
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 /*
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
925 */
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
928
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100934 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200935 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100936 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200937 perf_enable();
938 }
939
940 if (err) {
941 /*
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
944 */
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
950 }
951 }
952
953 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100954 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200955}
956
957/*
958 * Enable a event.
959 *
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
965 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100966void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200967{
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
970
971 if (!task) {
972 /*
973 * Enable the event on the cpu that it's on
974 */
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
978 }
979
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100980 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
983
984 /*
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
990 */
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
993
994 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100995 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200996 task_oncpu_function_call(task, __perf_event_enable, event);
997
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100998 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200999
1000 /*
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1003 */
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1006
1007 /*
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1010 */
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1013
1014 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016}
1017
1018static int perf_event_refresh(struct perf_event *event, int refresh)
1019{
1020 /*
1021 * not supported on inherited events
1022 */
1023 if (event->attr.inherit)
1024 return -EINVAL;
1025
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1028
1029 return 0;
1030}
1031
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001032enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036};
1037
1038static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001041{
1042 struct perf_event *event;
1043
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001044 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1049
1050 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001051 if (!ctx->nr_active)
1052 goto out_enable;
1053
1054 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001058 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001060 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001061
1062 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001063 perf_enable();
1064 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001065 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066}
1067
1068/*
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1078 */
1079static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1081{
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1085}
1086
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001087static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1089{
1090 u64 value;
1091
1092 if (!event->attr.inherit_stat)
1093 return;
1094
1095 /*
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1101 */
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001104 event->pmu->read(event);
1105 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001106
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114
1115 /*
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1118 */
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1122
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1125
1126 /*
1127 * Since we swizzled the values, update the user visible data too.
1128 */
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1131}
1132
1133#define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1135
1136static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1138{
1139 struct perf_event *event, *next_event;
1140
1141 if (!ctx->nr_stat)
1142 return;
1143
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001144 update_context_time(ctx);
1145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1151
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1154
1155 __perf_event_sync_stat(event, next_event);
1156
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1159 }
1160}
1161
1162/*
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1165 *
1166 * We stop each event and update the event value in event->count.
1167 *
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1172 */
1173void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001174 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001175{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001180 int do_switch = 1;
1181
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001183
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1186
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1192 /*
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1200 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001203 if (context_equiv(ctx, next_ctx)) {
1204 /*
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1207 */
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1213
1214 perf_event_sync_stat(ctx, next_ctx);
1215 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218 }
1219 rcu_read_unlock();
1220
1221 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001223 cpuctx->task_ctx = NULL;
1224 }
1225}
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001229{
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232 if (!cpuctx->task_ctx)
1233 return;
1234
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1237
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001238 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001239 cpuctx->task_ctx = NULL;
1240}
1241
1242/*
1243 * Called with IRQs disabled
1244 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001245static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001247 task_ctx_sched_out(ctx, EVENT_ALL);
1248}
1249
1250/*
1251 * Called with IRQs disabled
1252 */
1253static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1255{
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001257}
1258
1259static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262{
1263 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001264
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001268 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001269 continue;
1270
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001271 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001272 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001273
1274 /*
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1277 */
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1281 }
1282 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001283}
1284
1285static void
1286ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001287 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001288{
1289 struct perf_event *event;
1290 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001300 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001301 continue;
1302
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001303 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001304 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001305 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001306 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001307}
1308
1309static void
1310ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1313{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1318
1319 ctx->timestamp = perf_clock();
1320
1321 perf_disable();
1322
1323 /*
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1326 */
1327 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001328 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001329
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001332 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001334 perf_enable();
1335 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001336 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001337}
1338
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001339static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1341{
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345}
1346
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001347static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1349{
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1359}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360/*
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1363 *
1364 * We restore the event value and then enable it.
1365 *
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1370 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001371void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001372{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001375
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001376 if (likely(!ctx))
1377 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001378
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001379 if (cpuctx->task_ctx == ctx)
1380 return;
1381
eranian@google.com9b33fa62010-03-10 22:26:05 -08001382 perf_disable();
1383
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001384 /*
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1388 */
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001396
1397 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398}
1399
1400#define MAX_INTERRUPTS (~0ULL)
1401
1402static void perf_log_throttle(struct perf_event *event, int enable);
1403
Peter Zijlstraabd50712010-01-26 18:50:16 +01001404static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405{
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1409
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1416
1417 /*
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1420 *
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1424 *
1425 */
1426
1427 /*
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1430 */
1431#define REDUCE_FLS(a, b) \
1432do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1439 } \
1440} while (0)
1441
1442 /*
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1445 */
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1449 }
1450
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1453
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1457 }
1458
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1462
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1466 }
1467
1468 divisor = nsec * frequency;
1469 }
1470
1471 return div64_u64(dividend, divisor);
1472}
1473
Stephane Eraniand76a0812010-02-08 17:06:01 +02001474static void perf_event_stop(struct perf_event *event)
1475{
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1478
1479 return event->pmu->stop(event);
1480}
1481
1482static int perf_event_start(struct perf_event *event)
1483{
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1486
1487 return event->pmu->start(event);
1488}
1489
Peter Zijlstraabd50712010-01-26 18:50:16 +01001490static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001491{
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1495
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001497
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1500
1501 sample_period = hwc->sample_period + delta;
1502
1503 if (!sample_period)
1504 sample_period = 1;
1505
1506 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001507
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001510 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001511 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001512 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513 perf_enable();
1514 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515}
1516
1517static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518{
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001521 u64 interrupts, now;
1522 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001523
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001524 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1528
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1531
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 hwc = &event->hw;
1533
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1536
1537 /*
1538 * unthrottle events on the tick
1539 */
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001542 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001543 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001544 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001545 }
1546
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1549
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001550 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555
Peter Zijlstraabd50712010-01-26 18:50:16 +01001556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001558 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001560 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561}
1562
1563/*
1564 * Round-robin a context's events:
1565 */
1566static void rotate_ctx(struct perf_event_context *ctx)
1567{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001568 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001569
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001570 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001571 list_rotate_left(&ctx->flexible_groups);
1572
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001573 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574}
1575
Peter Zijlstra49f47432009-12-27 11:51:52 +01001576void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001577{
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001580 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581
1582 if (!atomic_read(&nr_events))
1583 return;
1584
Peter Zijlstra49f47432009-12-27 11:51:52 +01001585 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001589
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001593
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001598 if (!rotate)
1599 return;
1600
1601 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001605
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1609
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001613 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001614}
1615
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001616static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1618{
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1621
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1625
1626 __perf_event_mark_enabled(event, ctx);
1627
1628 return 1;
1629}
1630
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001631/*
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1634 */
1635static void perf_event_enable_on_exec(struct task_struct *task)
1636{
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001641 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001642
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1647
1648 __perf_event_task_sched_out(ctx);
1649
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001650 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001651
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1656 }
1657
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 }
1663
1664 /*
1665 * Unclone this context if we enabled any event.
1666 */
1667 if (enabled)
1668 unclone_ctx(ctx);
1669
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001670 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001671
Peter Zijlstra49f47432009-12-27 11:51:52 +01001672 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001673 out:
1674 local_irq_restore(flags);
1675}
1676
1677/*
1678 * Cross CPU call to read the hardware event
1679 */
1680static void __perf_event_read(void *info)
1681{
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685
1686 /*
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1692 */
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1695
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001696 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001697 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001698 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001699 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001700
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001701 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001702}
1703
1704static u64 perf_event_read(struct perf_event *event)
1705{
1706 /*
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1709 */
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1716
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001717 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001718 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001719 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001721 }
1722
1723 return atomic64_read(&event->count);
1724}
1725
1726/*
1727 * Initialize the perf_event context in a task_struct:
1728 */
1729static void
1730__perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1732{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001733 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1740}
1741
1742static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743{
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1749
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001750 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1754
Paul Mackerras0f624e72009-12-15 19:40:32 +11001755 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001756 return ERR_PTR(-EINVAL);
1757
1758 /*
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1762 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001763 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001764 return ERR_PTR(-ENODEV);
1765
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1769
1770 return ctx;
1771 }
1772
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1781
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1784
1785 /*
1786 * Can't attach events to a dying task.
1787 */
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1791
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1796
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001802 }
1803
1804 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 /*
1813 * We raced with some other task; use
1814 * the context they set.
1815 */
1816 kfree(ctx);
1817 goto retry;
1818 }
1819 get_task_struct(task);
1820 }
1821
1822 put_task_struct(task);
1823 return ctx;
1824
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1828}
1829
Li Zefan6fb29152009-10-15 11:21:42 +08001830static void perf_event_free_filter(struct perf_event *event);
1831
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001832static void free_event_rcu(struct rcu_head *head)
1833{
1834 struct perf_event *event;
1835
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001839 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 kfree(event);
1841}
1842
1843static void perf_pending_sync(struct perf_event *event);
1844
1845static void free_event(struct perf_event *event)
1846{
1847 perf_pending_sync(event);
1848
1849 if (!event->parent) {
1850 atomic_dec(&nr_events);
1851 if (event->attr.mmap)
1852 atomic_dec(&nr_mmap_events);
1853 if (event->attr.comm)
1854 atomic_dec(&nr_comm_events);
1855 if (event->attr.task)
1856 atomic_dec(&nr_task_events);
1857 }
1858
1859 if (event->output) {
1860 fput(event->output->filp);
1861 event->output = NULL;
1862 }
1863
1864 if (event->destroy)
1865 event->destroy(event);
1866
1867 put_ctx(event->ctx);
1868 call_rcu(&event->rcu_head, free_event_rcu);
1869}
1870
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001871int perf_event_release_kernel(struct perf_event *event)
1872{
1873 struct perf_event_context *ctx = event->ctx;
1874
Peter Zijlstra050735b2010-05-11 11:51:53 +02001875 /*
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1878 */
1879 perf_event_disable(event);
1880
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001881 WARN_ON_ONCE(ctx->parent_ctx);
Peter Zijlstraa0507c82010-05-06 15:42:53 +02001882 /*
1883 * There are two ways this annotation is useful:
1884 *
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1887 *
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1893 */
1894 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
Peter Zijlstra050735b2010-05-11 11:51:53 +02001895 raw_spin_lock_irq(&ctx->lock);
1896 list_del_event(event, ctx);
1897 perf_destroy_group(event, ctx);
1898 raw_spin_unlock_irq(&ctx->lock);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001899 mutex_unlock(&ctx->mutex);
1900
1901 mutex_lock(&event->owner->perf_event_mutex);
1902 list_del_init(&event->owner_entry);
1903 mutex_unlock(&event->owner->perf_event_mutex);
1904 put_task_struct(event->owner);
1905
1906 free_event(event);
1907
1908 return 0;
1909}
1910EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001912/*
1913 * Called when the last reference to the file is gone.
1914 */
1915static int perf_release(struct inode *inode, struct file *file)
1916{
1917 struct perf_event *event = file->private_data;
1918
1919 file->private_data = NULL;
1920
1921 return perf_event_release_kernel(event);
1922}
1923
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001924static int perf_event_read_size(struct perf_event *event)
1925{
1926 int entry = sizeof(u64); /* value */
1927 int size = 0;
1928 int nr = 1;
1929
1930 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931 size += sizeof(u64);
1932
1933 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934 size += sizeof(u64);
1935
1936 if (event->attr.read_format & PERF_FORMAT_ID)
1937 entry += sizeof(u64);
1938
1939 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940 nr += event->group_leader->nr_siblings;
1941 size += sizeof(u64);
1942 }
1943
1944 size += entry * nr;
1945
1946 return size;
1947}
1948
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001949u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950{
1951 struct perf_event *child;
1952 u64 total = 0;
1953
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001954 *enabled = 0;
1955 *running = 0;
1956
Peter Zijlstra6f105812009-11-20 22:19:56 +01001957 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001958 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001959 *enabled += event->total_time_enabled +
1960 atomic64_read(&event->child_total_time_enabled);
1961 *running += event->total_time_running +
1962 atomic64_read(&event->child_total_time_running);
1963
1964 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001965 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001966 *enabled += child->total_time_enabled;
1967 *running += child->total_time_running;
1968 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001970
1971 return total;
1972}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001973EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001974
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001975static int perf_event_read_group(struct perf_event *event,
1976 u64 read_format, char __user *buf)
1977{
1978 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001979 int n = 0, size = 0, ret = -EFAULT;
1980 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001981 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001982 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001983
Peter Zijlstra6f105812009-11-20 22:19:56 +01001984 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001985 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001986
1987 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001992 values[n++] = count;
1993 if (read_format & PERF_FORMAT_ID)
1994 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996 size = n * sizeof(u64);
1997
1998 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001999 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002000
Peter Zijlstra6f105812009-11-20 22:19:56 +01002001 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01002004 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002006 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01002007 if (read_format & PERF_FORMAT_ID)
2008 values[n++] = primary_event_id(sub);
2009
2010 size = n * sizeof(u64);
2011
Stephane Eranian184d3da2009-11-23 21:40:49 -08002012 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002013 ret = -EFAULT;
2014 goto unlock;
2015 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002016
2017 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002018 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002019unlock:
2020 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002021
Peter Zijlstraabf48682009-11-20 22:19:49 +01002022 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002023}
2024
2025static int perf_event_read_one(struct perf_event *event,
2026 u64 read_format, char __user *buf)
2027{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002028 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002029 u64 values[4];
2030 int n = 0;
2031
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002032 values[n++] = perf_event_read_value(event, &enabled, &running);
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034 values[n++] = enabled;
2035 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002037 if (read_format & PERF_FORMAT_ID)
2038 values[n++] = primary_event_id(event);
2039
2040 if (copy_to_user(buf, values, n * sizeof(u64)))
2041 return -EFAULT;
2042
2043 return n * sizeof(u64);
2044}
2045
2046/*
2047 * Read the performance event - simple non blocking version for now
2048 */
2049static ssize_t
2050perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051{
2052 u64 read_format = event->attr.read_format;
2053 int ret;
2054
2055 /*
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2059 */
2060 if (event->state == PERF_EVENT_STATE_ERROR)
2061 return 0;
2062
2063 if (count < perf_event_read_size(event))
2064 return -ENOSPC;
2065
2066 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002067 if (read_format & PERF_FORMAT_GROUP)
2068 ret = perf_event_read_group(event, read_format, buf);
2069 else
2070 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002071
2072 return ret;
2073}
2074
2075static ssize_t
2076perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077{
2078 struct perf_event *event = file->private_data;
2079
2080 return perf_read_hw(event, buf, count);
2081}
2082
2083static unsigned int perf_poll(struct file *file, poll_table *wait)
2084{
2085 struct perf_event *event = file->private_data;
2086 struct perf_mmap_data *data;
2087 unsigned int events = POLL_HUP;
2088
2089 rcu_read_lock();
2090 data = rcu_dereference(event->data);
2091 if (data)
2092 events = atomic_xchg(&data->poll, 0);
2093 rcu_read_unlock();
2094
2095 poll_wait(file, &event->waitq, wait);
2096
2097 return events;
2098}
2099
2100static void perf_event_reset(struct perf_event *event)
2101{
2102 (void)perf_event_read(event);
2103 atomic64_set(&event->count, 0);
2104 perf_event_update_userpage(event);
2105}
2106
2107/*
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2112 */
2113static void perf_event_for_each_child(struct perf_event *event,
2114 void (*func)(struct perf_event *))
2115{
2116 struct perf_event *child;
2117
2118 WARN_ON_ONCE(event->ctx->parent_ctx);
2119 mutex_lock(&event->child_mutex);
2120 func(event);
2121 list_for_each_entry(child, &event->child_list, child_list)
2122 func(child);
2123 mutex_unlock(&event->child_mutex);
2124}
2125
2126static void perf_event_for_each(struct perf_event *event,
2127 void (*func)(struct perf_event *))
2128{
2129 struct perf_event_context *ctx = event->ctx;
2130 struct perf_event *sibling;
2131
2132 WARN_ON_ONCE(ctx->parent_ctx);
2133 mutex_lock(&ctx->mutex);
2134 event = event->group_leader;
2135
2136 perf_event_for_each_child(event, func);
2137 func(event);
2138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139 perf_event_for_each_child(event, func);
2140 mutex_unlock(&ctx->mutex);
2141}
2142
2143static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144{
2145 struct perf_event_context *ctx = event->ctx;
2146 unsigned long size;
2147 int ret = 0;
2148 u64 value;
2149
2150 if (!event->attr.sample_period)
2151 return -EINVAL;
2152
2153 size = copy_from_user(&value, arg, sizeof(value));
2154 if (size != sizeof(value))
2155 return -EFAULT;
2156
2157 if (!value)
2158 return -EINVAL;
2159
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002160 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002161 if (event->attr.freq) {
2162 if (value > sysctl_perf_event_sample_rate) {
2163 ret = -EINVAL;
2164 goto unlock;
2165 }
2166
2167 event->attr.sample_freq = value;
2168 } else {
2169 event->attr.sample_period = value;
2170 event->hw.sample_period = value;
2171 }
2172unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002173 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002174
2175 return ret;
2176}
2177
Li Zefan6fb29152009-10-15 11:21:42 +08002178static int perf_event_set_output(struct perf_event *event, int output_fd);
2179static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002180
2181static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182{
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2186
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2197
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2200
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2203
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2205 return perf_event_set_output(event, arg);
2206
Li Zefan6fb29152009-10-15 11:21:42 +08002207 case PERF_EVENT_IOC_SET_FILTER:
2208 return perf_event_set_filter(event, (void __user *)arg);
2209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002210 default:
2211 return -ENOTTY;
2212 }
2213
2214 if (flags & PERF_IOC_FLAG_GROUP)
2215 perf_event_for_each(event, func);
2216 else
2217 perf_event_for_each_child(event, func);
2218
2219 return 0;
2220}
2221
2222int perf_event_task_enable(void)
2223{
2224 struct perf_event *event;
2225
2226 mutex_lock(&current->perf_event_mutex);
2227 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228 perf_event_for_each_child(event, perf_event_enable);
2229 mutex_unlock(&current->perf_event_mutex);
2230
2231 return 0;
2232}
2233
2234int perf_event_task_disable(void)
2235{
2236 struct perf_event *event;
2237
2238 mutex_lock(&current->perf_event_mutex);
2239 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240 perf_event_for_each_child(event, perf_event_disable);
2241 mutex_unlock(&current->perf_event_mutex);
2242
2243 return 0;
2244}
2245
2246#ifndef PERF_EVENT_INDEX_OFFSET
2247# define PERF_EVENT_INDEX_OFFSET 0
2248#endif
2249
2250static int perf_event_index(struct perf_event *event)
2251{
2252 if (event->state != PERF_EVENT_STATE_ACTIVE)
2253 return 0;
2254
2255 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256}
2257
2258/*
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2262 */
2263void perf_event_update_userpage(struct perf_event *event)
2264{
2265 struct perf_event_mmap_page *userpg;
2266 struct perf_mmap_data *data;
2267
2268 rcu_read_lock();
2269 data = rcu_dereference(event->data);
2270 if (!data)
2271 goto unlock;
2272
2273 userpg = data->user_page;
2274
2275 /*
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2278 */
2279 preempt_disable();
2280 ++userpg->lock;
2281 barrier();
2282 userpg->index = perf_event_index(event);
2283 userpg->offset = atomic64_read(&event->count);
2284 if (event->state == PERF_EVENT_STATE_ACTIVE)
2285 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287 userpg->time_enabled = event->total_time_enabled +
2288 atomic64_read(&event->child_total_time_enabled);
2289
2290 userpg->time_running = event->total_time_running +
2291 atomic64_read(&event->child_total_time_running);
2292
2293 barrier();
2294 ++userpg->lock;
2295 preempt_enable();
2296unlock:
2297 rcu_read_unlock();
2298}
2299
Peter Zijlstra906010b2009-09-21 16:08:49 +02002300static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002301{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002302 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002303}
2304
Peter Zijlstra906010b2009-09-21 16:08:49 +02002305#ifndef CONFIG_PERF_USE_VMALLOC
2306
2307/*
2308 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2309 */
2310
2311static struct page *
2312perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2313{
2314 if (pgoff > data->nr_pages)
2315 return NULL;
2316
2317 if (pgoff == 0)
2318 return virt_to_page(data->user_page);
2319
2320 return virt_to_page(data->data_pages[pgoff - 1]);
2321}
2322
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002323static void *perf_mmap_alloc_page(int cpu)
2324{
2325 struct page *page;
2326 int node;
2327
2328 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2329 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2330 if (!page)
2331 return NULL;
2332
2333 return page_address(page);
2334}
2335
Peter Zijlstra906010b2009-09-21 16:08:49 +02002336static struct perf_mmap_data *
2337perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002338{
2339 struct perf_mmap_data *data;
2340 unsigned long size;
2341 int i;
2342
2343 WARN_ON(atomic_read(&event->mmap_count));
2344
2345 size = sizeof(struct perf_mmap_data);
2346 size += nr_pages * sizeof(void *);
2347
2348 data = kzalloc(size, GFP_KERNEL);
2349 if (!data)
2350 goto fail;
2351
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002352 data->user_page = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353 if (!data->user_page)
2354 goto fail_user_page;
2355
2356 for (i = 0; i < nr_pages; i++) {
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002357 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002358 if (!data->data_pages[i])
2359 goto fail_data_pages;
2360 }
2361
Peter Zijlstra906010b2009-09-21 16:08:49 +02002362 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002363 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002364
Peter Zijlstra906010b2009-09-21 16:08:49 +02002365 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002366
2367fail_data_pages:
2368 for (i--; i >= 0; i--)
2369 free_page((unsigned long)data->data_pages[i]);
2370
2371 free_page((unsigned long)data->user_page);
2372
2373fail_user_page:
2374 kfree(data);
2375
2376fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002377 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002378}
2379
2380static void perf_mmap_free_page(unsigned long addr)
2381{
2382 struct page *page = virt_to_page((void *)addr);
2383
2384 page->mapping = NULL;
2385 __free_page(page);
2386}
2387
Peter Zijlstra906010b2009-09-21 16:08:49 +02002388static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002389{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002390 int i;
2391
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002392 perf_mmap_free_page((unsigned long)data->user_page);
2393 for (i = 0; i < data->nr_pages; i++)
2394 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002395 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002396}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002397
Peter Zijlstra906010b2009-09-21 16:08:49 +02002398#else
2399
2400/*
2401 * Back perf_mmap() with vmalloc memory.
2402 *
2403 * Required for architectures that have d-cache aliasing issues.
2404 */
2405
2406static struct page *
2407perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2408{
2409 if (pgoff > (1UL << data->data_order))
2410 return NULL;
2411
2412 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2413}
2414
2415static void perf_mmap_unmark_page(void *addr)
2416{
2417 struct page *page = vmalloc_to_page(addr);
2418
2419 page->mapping = NULL;
2420}
2421
2422static void perf_mmap_data_free_work(struct work_struct *work)
2423{
2424 struct perf_mmap_data *data;
2425 void *base;
2426 int i, nr;
2427
2428 data = container_of(work, struct perf_mmap_data, work);
2429 nr = 1 << data->data_order;
2430
2431 base = data->user_page;
2432 for (i = 0; i < nr + 1; i++)
2433 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2434
2435 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002436 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002437}
2438
2439static void perf_mmap_data_free(struct perf_mmap_data *data)
2440{
2441 schedule_work(&data->work);
2442}
2443
2444static struct perf_mmap_data *
2445perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2446{
2447 struct perf_mmap_data *data;
2448 unsigned long size;
2449 void *all_buf;
2450
2451 WARN_ON(atomic_read(&event->mmap_count));
2452
2453 size = sizeof(struct perf_mmap_data);
2454 size += sizeof(void *);
2455
2456 data = kzalloc(size, GFP_KERNEL);
2457 if (!data)
2458 goto fail;
2459
2460 INIT_WORK(&data->work, perf_mmap_data_free_work);
2461
2462 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2463 if (!all_buf)
2464 goto fail_all_buf;
2465
2466 data->user_page = all_buf;
2467 data->data_pages[0] = all_buf + PAGE_SIZE;
2468 data->data_order = ilog2(nr_pages);
2469 data->nr_pages = 1;
2470
2471 return data;
2472
2473fail_all_buf:
2474 kfree(data);
2475
2476fail:
2477 return NULL;
2478}
2479
2480#endif
2481
2482static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2483{
2484 struct perf_event *event = vma->vm_file->private_data;
2485 struct perf_mmap_data *data;
2486 int ret = VM_FAULT_SIGBUS;
2487
2488 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2489 if (vmf->pgoff == 0)
2490 ret = 0;
2491 return ret;
2492 }
2493
2494 rcu_read_lock();
2495 data = rcu_dereference(event->data);
2496 if (!data)
2497 goto unlock;
2498
2499 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2500 goto unlock;
2501
2502 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2503 if (!vmf->page)
2504 goto unlock;
2505
2506 get_page(vmf->page);
2507 vmf->page->mapping = vma->vm_file->f_mapping;
2508 vmf->page->index = vmf->pgoff;
2509
2510 ret = 0;
2511unlock:
2512 rcu_read_unlock();
2513
2514 return ret;
2515}
2516
2517static void
2518perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2519{
2520 long max_size = perf_data_size(data);
2521
2522 atomic_set(&data->lock, -1);
2523
2524 if (event->attr.watermark) {
2525 data->watermark = min_t(long, max_size,
2526 event->attr.wakeup_watermark);
2527 }
2528
2529 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002530 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002531
2532
2533 rcu_assign_pointer(event->data, data);
2534}
2535
2536static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2537{
2538 struct perf_mmap_data *data;
2539
2540 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2541 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002542}
2543
Peter Zijlstra906010b2009-09-21 16:08:49 +02002544static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002545{
2546 struct perf_mmap_data *data = event->data;
2547
2548 WARN_ON(atomic_read(&event->mmap_count));
2549
2550 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002551 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002552}
2553
2554static void perf_mmap_open(struct vm_area_struct *vma)
2555{
2556 struct perf_event *event = vma->vm_file->private_data;
2557
2558 atomic_inc(&event->mmap_count);
2559}
2560
2561static void perf_mmap_close(struct vm_area_struct *vma)
2562{
2563 struct perf_event *event = vma->vm_file->private_data;
2564
2565 WARN_ON_ONCE(event->ctx->parent_ctx);
2566 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002567 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002568 struct user_struct *user = current_user();
2569
Peter Zijlstra906010b2009-09-21 16:08:49 +02002570 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002571 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002572 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002573 mutex_unlock(&event->mmap_mutex);
2574 }
2575}
2576
Alexey Dobriyanf0f37e2f2009-09-27 22:29:37 +04002577static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002578 .open = perf_mmap_open,
2579 .close = perf_mmap_close,
2580 .fault = perf_mmap_fault,
2581 .page_mkwrite = perf_mmap_fault,
2582};
2583
2584static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2585{
2586 struct perf_event *event = file->private_data;
2587 unsigned long user_locked, user_lock_limit;
2588 struct user_struct *user = current_user();
2589 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002590 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002591 unsigned long vma_size;
2592 unsigned long nr_pages;
2593 long user_extra, extra;
2594 int ret = 0;
2595
Peter Zijlstrac7920612010-05-18 10:33:24 +02002596 /*
2597 * Don't allow mmap() of inherited per-task counters. This would
2598 * create a performance issue due to all children writing to the
2599 * same buffer.
2600 */
2601 if (event->cpu == -1 && event->attr.inherit)
2602 return -EINVAL;
2603
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002604 if (!(vma->vm_flags & VM_SHARED))
2605 return -EINVAL;
2606
2607 vma_size = vma->vm_end - vma->vm_start;
2608 nr_pages = (vma_size / PAGE_SIZE) - 1;
2609
2610 /*
2611 * If we have data pages ensure they're a power-of-two number, so we
2612 * can do bitmasks instead of modulo.
2613 */
2614 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2615 return -EINVAL;
2616
2617 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2618 return -EINVAL;
2619
2620 if (vma->vm_pgoff != 0)
2621 return -EINVAL;
2622
2623 WARN_ON_ONCE(event->ctx->parent_ctx);
2624 mutex_lock(&event->mmap_mutex);
2625 if (event->output) {
2626 ret = -EINVAL;
2627 goto unlock;
2628 }
2629
2630 if (atomic_inc_not_zero(&event->mmap_count)) {
2631 if (nr_pages != event->data->nr_pages)
2632 ret = -EINVAL;
2633 goto unlock;
2634 }
2635
2636 user_extra = nr_pages + 1;
2637 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2638
2639 /*
2640 * Increase the limit linearly with more CPUs:
2641 */
2642 user_lock_limit *= num_online_cpus();
2643
2644 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2645
2646 extra = 0;
2647 if (user_locked > user_lock_limit)
2648 extra = user_locked - user_lock_limit;
2649
Jiri Slaby78d7d402010-03-05 13:42:54 -08002650 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002651 lock_limit >>= PAGE_SHIFT;
2652 locked = vma->vm_mm->locked_vm + extra;
2653
2654 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2655 !capable(CAP_IPC_LOCK)) {
2656 ret = -EPERM;
2657 goto unlock;
2658 }
2659
2660 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002661
2662 data = perf_mmap_data_alloc(event, nr_pages);
2663 ret = -ENOMEM;
2664 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002665 goto unlock;
2666
Peter Zijlstra906010b2009-09-21 16:08:49 +02002667 ret = 0;
2668 perf_mmap_data_init(event, data);
2669
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002670 atomic_set(&event->mmap_count, 1);
2671 atomic_long_add(user_extra, &user->locked_vm);
2672 vma->vm_mm->locked_vm += extra;
2673 event->data->nr_locked = extra;
2674 if (vma->vm_flags & VM_WRITE)
2675 event->data->writable = 1;
2676
2677unlock:
2678 mutex_unlock(&event->mmap_mutex);
2679
2680 vma->vm_flags |= VM_RESERVED;
2681 vma->vm_ops = &perf_mmap_vmops;
2682
2683 return ret;
2684}
2685
2686static int perf_fasync(int fd, struct file *filp, int on)
2687{
2688 struct inode *inode = filp->f_path.dentry->d_inode;
2689 struct perf_event *event = filp->private_data;
2690 int retval;
2691
2692 mutex_lock(&inode->i_mutex);
2693 retval = fasync_helper(fd, filp, on, &event->fasync);
2694 mutex_unlock(&inode->i_mutex);
2695
2696 if (retval < 0)
2697 return retval;
2698
2699 return 0;
2700}
2701
2702static const struct file_operations perf_fops = {
Arnd Bergmann3326c1c2010-03-23 19:09:33 +01002703 .llseek = no_llseek,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002704 .release = perf_release,
2705 .read = perf_read,
2706 .poll = perf_poll,
2707 .unlocked_ioctl = perf_ioctl,
2708 .compat_ioctl = perf_ioctl,
2709 .mmap = perf_mmap,
2710 .fasync = perf_fasync,
2711};
2712
2713/*
2714 * Perf event wakeup
2715 *
2716 * If there's data, ensure we set the poll() state and publish everything
2717 * to user-space before waking everybody up.
2718 */
2719
2720void perf_event_wakeup(struct perf_event *event)
2721{
2722 wake_up_all(&event->waitq);
2723
2724 if (event->pending_kill) {
2725 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2726 event->pending_kill = 0;
2727 }
2728}
2729
2730/*
2731 * Pending wakeups
2732 *
2733 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2734 *
2735 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2736 * single linked list and use cmpxchg() to add entries lockless.
2737 */
2738
2739static void perf_pending_event(struct perf_pending_entry *entry)
2740{
2741 struct perf_event *event = container_of(entry,
2742 struct perf_event, pending);
2743
2744 if (event->pending_disable) {
2745 event->pending_disable = 0;
2746 __perf_event_disable(event);
2747 }
2748
2749 if (event->pending_wakeup) {
2750 event->pending_wakeup = 0;
2751 perf_event_wakeup(event);
2752 }
2753}
2754
2755#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2756
2757static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2758 PENDING_TAIL,
2759};
2760
2761static void perf_pending_queue(struct perf_pending_entry *entry,
2762 void (*func)(struct perf_pending_entry *))
2763{
2764 struct perf_pending_entry **head;
2765
2766 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2767 return;
2768
2769 entry->func = func;
2770
2771 head = &get_cpu_var(perf_pending_head);
2772
2773 do {
2774 entry->next = *head;
2775 } while (cmpxchg(head, entry->next, entry) != entry->next);
2776
2777 set_perf_event_pending();
2778
2779 put_cpu_var(perf_pending_head);
2780}
2781
2782static int __perf_pending_run(void)
2783{
2784 struct perf_pending_entry *list;
2785 int nr = 0;
2786
2787 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2788 while (list != PENDING_TAIL) {
2789 void (*func)(struct perf_pending_entry *);
2790 struct perf_pending_entry *entry = list;
2791
2792 list = list->next;
2793
2794 func = entry->func;
2795 entry->next = NULL;
2796 /*
2797 * Ensure we observe the unqueue before we issue the wakeup,
2798 * so that we won't be waiting forever.
2799 * -- see perf_not_pending().
2800 */
2801 smp_wmb();
2802
2803 func(entry);
2804 nr++;
2805 }
2806
2807 return nr;
2808}
2809
2810static inline int perf_not_pending(struct perf_event *event)
2811{
2812 /*
2813 * If we flush on whatever cpu we run, there is a chance we don't
2814 * need to wait.
2815 */
2816 get_cpu();
2817 __perf_pending_run();
2818 put_cpu();
2819
2820 /*
2821 * Ensure we see the proper queue state before going to sleep
2822 * so that we do not miss the wakeup. -- see perf_pending_handle()
2823 */
2824 smp_rmb();
2825 return event->pending.next == NULL;
2826}
2827
2828static void perf_pending_sync(struct perf_event *event)
2829{
2830 wait_event(event->waitq, perf_not_pending(event));
2831}
2832
2833void perf_event_do_pending(void)
2834{
2835 __perf_pending_run();
2836}
2837
2838/*
2839 * Callchain support -- arch specific
2840 */
2841
2842__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2843{
2844 return NULL;
2845}
2846
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002847__weak
2848void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2849{
2850}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002851
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002852
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002853/*
Zhang, Yanmin39447b32010-04-19 13:32:41 +08002854 * We assume there is only KVM supporting the callbacks.
2855 * Later on, we might change it to a list if there is
2856 * another virtualization implementation supporting the callbacks.
2857 */
2858struct perf_guest_info_callbacks *perf_guest_cbs;
2859
2860int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2861{
2862 perf_guest_cbs = cbs;
2863 return 0;
2864}
2865EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2866
2867int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2868{
2869 perf_guest_cbs = NULL;
2870 return 0;
2871}
2872EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2873
2874/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002875 * Output
2876 */
2877static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2878 unsigned long offset, unsigned long head)
2879{
2880 unsigned long mask;
2881
2882 if (!data->writable)
2883 return true;
2884
Peter Zijlstra906010b2009-09-21 16:08:49 +02002885 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002886
2887 offset = (offset - tail) & mask;
2888 head = (head - tail) & mask;
2889
2890 if ((int)(head - offset) < 0)
2891 return false;
2892
2893 return true;
2894}
2895
2896static void perf_output_wakeup(struct perf_output_handle *handle)
2897{
2898 atomic_set(&handle->data->poll, POLL_IN);
2899
2900 if (handle->nmi) {
2901 handle->event->pending_wakeup = 1;
2902 perf_pending_queue(&handle->event->pending,
2903 perf_pending_event);
2904 } else
2905 perf_event_wakeup(handle->event);
2906}
2907
2908/*
2909 * Curious locking construct.
2910 *
2911 * We need to ensure a later event_id doesn't publish a head when a former
2912 * event_id isn't done writing. However since we need to deal with NMIs we
2913 * cannot fully serialize things.
2914 *
2915 * What we do is serialize between CPUs so we only have to deal with NMI
2916 * nesting on a single CPU.
2917 *
2918 * We only publish the head (and generate a wakeup) when the outer-most
2919 * event_id completes.
2920 */
2921static void perf_output_lock(struct perf_output_handle *handle)
2922{
2923 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002924 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002925
2926 handle->locked = 0;
2927
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002928 for (;;) {
2929 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2930 if (cur == -1) {
2931 handle->locked = 1;
2932 break;
2933 }
2934 if (cur == cpu)
2935 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002936
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002937 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002938 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002939}
2940
2941static void perf_output_unlock(struct perf_output_handle *handle)
2942{
2943 struct perf_mmap_data *data = handle->data;
2944 unsigned long head;
2945 int cpu;
2946
2947 data->done_head = data->head;
2948
2949 if (!handle->locked)
2950 goto out;
2951
2952again:
2953 /*
2954 * The xchg implies a full barrier that ensures all writes are done
2955 * before we publish the new head, matched by a rmb() in userspace when
2956 * reading this position.
2957 */
2958 while ((head = atomic_long_xchg(&data->done_head, 0)))
2959 data->user_page->data_head = head;
2960
2961 /*
2962 * NMI can happen here, which means we can miss a done_head update.
2963 */
2964
2965 cpu = atomic_xchg(&data->lock, -1);
2966 WARN_ON_ONCE(cpu != smp_processor_id());
2967
2968 /*
2969 * Therefore we have to validate we did not indeed do so.
2970 */
2971 if (unlikely(atomic_long_read(&data->done_head))) {
2972 /*
2973 * Since we had it locked, we can lock it again.
2974 */
2975 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2976 cpu_relax();
2977
2978 goto again;
2979 }
2980
2981 if (atomic_xchg(&data->wakeup, 0))
2982 perf_output_wakeup(handle);
2983out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002984 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002985}
2986
2987void perf_output_copy(struct perf_output_handle *handle,
2988 const void *buf, unsigned int len)
2989{
2990 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002991 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002992 unsigned int size;
2993 void **pages;
2994
2995 offset = handle->offset;
2996 pages_mask = handle->data->nr_pages - 1;
2997 pages = handle->data->data_pages;
2998
2999 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02003000 unsigned long page_offset;
3001 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003002 int nr;
3003
3004 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02003005 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
3006 page_offset = offset & (page_size - 1);
3007 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003008
3009 memcpy(pages[nr] + page_offset, buf, size);
3010
3011 len -= size;
3012 buf += size;
3013 offset += size;
3014 } while (len);
3015
3016 handle->offset = offset;
3017
3018 /*
3019 * Check we didn't copy past our reservation window, taking the
3020 * possible unsigned int wrap into account.
3021 */
3022 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
3023}
3024
3025int perf_output_begin(struct perf_output_handle *handle,
3026 struct perf_event *event, unsigned int size,
3027 int nmi, int sample)
3028{
3029 struct perf_event *output_event;
3030 struct perf_mmap_data *data;
3031 unsigned long tail, offset, head;
3032 int have_lost;
3033 struct {
3034 struct perf_event_header header;
3035 u64 id;
3036 u64 lost;
3037 } lost_event;
3038
3039 rcu_read_lock();
3040 /*
3041 * For inherited events we send all the output towards the parent.
3042 */
3043 if (event->parent)
3044 event = event->parent;
3045
3046 output_event = rcu_dereference(event->output);
3047 if (output_event)
3048 event = output_event;
3049
3050 data = rcu_dereference(event->data);
3051 if (!data)
3052 goto out;
3053
3054 handle->data = data;
3055 handle->event = event;
3056 handle->nmi = nmi;
3057 handle->sample = sample;
3058
3059 if (!data->nr_pages)
Stephane Eranian00d1d0b2010-05-17 12:46:01 +02003060 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003061
3062 have_lost = atomic_read(&data->lost);
3063 if (have_lost)
3064 size += sizeof(lost_event);
3065
3066 perf_output_lock(handle);
3067
3068 do {
3069 /*
3070 * Userspace could choose to issue a mb() before updating the
3071 * tail pointer. So that all reads will be completed before the
3072 * write is issued.
3073 */
3074 tail = ACCESS_ONCE(data->user_page->data_tail);
3075 smp_rmb();
3076 offset = head = atomic_long_read(&data->head);
3077 head += size;
3078 if (unlikely(!perf_output_space(data, tail, offset, head)))
3079 goto fail;
3080 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3081
3082 handle->offset = offset;
3083 handle->head = head;
3084
3085 if (head - tail > data->watermark)
3086 atomic_set(&data->wakeup, 1);
3087
3088 if (have_lost) {
3089 lost_event.header.type = PERF_RECORD_LOST;
3090 lost_event.header.misc = 0;
3091 lost_event.header.size = sizeof(lost_event);
3092 lost_event.id = event->id;
3093 lost_event.lost = atomic_xchg(&data->lost, 0);
3094
3095 perf_output_put(handle, lost_event);
3096 }
3097
3098 return 0;
3099
3100fail:
3101 atomic_inc(&data->lost);
3102 perf_output_unlock(handle);
3103out:
3104 rcu_read_unlock();
3105
3106 return -ENOSPC;
3107}
3108
3109void perf_output_end(struct perf_output_handle *handle)
3110{
3111 struct perf_event *event = handle->event;
3112 struct perf_mmap_data *data = handle->data;
3113
3114 int wakeup_events = event->attr.wakeup_events;
3115
3116 if (handle->sample && wakeup_events) {
3117 int events = atomic_inc_return(&data->events);
3118 if (events >= wakeup_events) {
3119 atomic_sub(wakeup_events, &data->events);
3120 atomic_set(&data->wakeup, 1);
3121 }
3122 }
3123
3124 perf_output_unlock(handle);
3125 rcu_read_unlock();
3126}
3127
3128static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3129{
3130 /*
3131 * only top level events have the pid namespace they were created in
3132 */
3133 if (event->parent)
3134 event = event->parent;
3135
3136 return task_tgid_nr_ns(p, event->ns);
3137}
3138
3139static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3140{
3141 /*
3142 * only top level events have the pid namespace they were created in
3143 */
3144 if (event->parent)
3145 event = event->parent;
3146
3147 return task_pid_nr_ns(p, event->ns);
3148}
3149
3150static void perf_output_read_one(struct perf_output_handle *handle,
3151 struct perf_event *event)
3152{
3153 u64 read_format = event->attr.read_format;
3154 u64 values[4];
3155 int n = 0;
3156
3157 values[n++] = atomic64_read(&event->count);
3158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3159 values[n++] = event->total_time_enabled +
3160 atomic64_read(&event->child_total_time_enabled);
3161 }
3162 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3163 values[n++] = event->total_time_running +
3164 atomic64_read(&event->child_total_time_running);
3165 }
3166 if (read_format & PERF_FORMAT_ID)
3167 values[n++] = primary_event_id(event);
3168
3169 perf_output_copy(handle, values, n * sizeof(u64));
3170}
3171
3172/*
3173 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3174 */
3175static void perf_output_read_group(struct perf_output_handle *handle,
3176 struct perf_event *event)
3177{
3178 struct perf_event *leader = event->group_leader, *sub;
3179 u64 read_format = event->attr.read_format;
3180 u64 values[5];
3181 int n = 0;
3182
3183 values[n++] = 1 + leader->nr_siblings;
3184
3185 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3186 values[n++] = leader->total_time_enabled;
3187
3188 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3189 values[n++] = leader->total_time_running;
3190
3191 if (leader != event)
3192 leader->pmu->read(leader);
3193
3194 values[n++] = atomic64_read(&leader->count);
3195 if (read_format & PERF_FORMAT_ID)
3196 values[n++] = primary_event_id(leader);
3197
3198 perf_output_copy(handle, values, n * sizeof(u64));
3199
3200 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3201 n = 0;
3202
3203 if (sub != event)
3204 sub->pmu->read(sub);
3205
3206 values[n++] = atomic64_read(&sub->count);
3207 if (read_format & PERF_FORMAT_ID)
3208 values[n++] = primary_event_id(sub);
3209
3210 perf_output_copy(handle, values, n * sizeof(u64));
3211 }
3212}
3213
3214static void perf_output_read(struct perf_output_handle *handle,
3215 struct perf_event *event)
3216{
3217 if (event->attr.read_format & PERF_FORMAT_GROUP)
3218 perf_output_read_group(handle, event);
3219 else
3220 perf_output_read_one(handle, event);
3221}
3222
3223void perf_output_sample(struct perf_output_handle *handle,
3224 struct perf_event_header *header,
3225 struct perf_sample_data *data,
3226 struct perf_event *event)
3227{
3228 u64 sample_type = data->type;
3229
3230 perf_output_put(handle, *header);
3231
3232 if (sample_type & PERF_SAMPLE_IP)
3233 perf_output_put(handle, data->ip);
3234
3235 if (sample_type & PERF_SAMPLE_TID)
3236 perf_output_put(handle, data->tid_entry);
3237
3238 if (sample_type & PERF_SAMPLE_TIME)
3239 perf_output_put(handle, data->time);
3240
3241 if (sample_type & PERF_SAMPLE_ADDR)
3242 perf_output_put(handle, data->addr);
3243
3244 if (sample_type & PERF_SAMPLE_ID)
3245 perf_output_put(handle, data->id);
3246
3247 if (sample_type & PERF_SAMPLE_STREAM_ID)
3248 perf_output_put(handle, data->stream_id);
3249
3250 if (sample_type & PERF_SAMPLE_CPU)
3251 perf_output_put(handle, data->cpu_entry);
3252
3253 if (sample_type & PERF_SAMPLE_PERIOD)
3254 perf_output_put(handle, data->period);
3255
3256 if (sample_type & PERF_SAMPLE_READ)
3257 perf_output_read(handle, event);
3258
3259 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3260 if (data->callchain) {
3261 int size = 1;
3262
3263 if (data->callchain)
3264 size += data->callchain->nr;
3265
3266 size *= sizeof(u64);
3267
3268 perf_output_copy(handle, data->callchain, size);
3269 } else {
3270 u64 nr = 0;
3271 perf_output_put(handle, nr);
3272 }
3273 }
3274
3275 if (sample_type & PERF_SAMPLE_RAW) {
3276 if (data->raw) {
3277 perf_output_put(handle, data->raw->size);
3278 perf_output_copy(handle, data->raw->data,
3279 data->raw->size);
3280 } else {
3281 struct {
3282 u32 size;
3283 u32 data;
3284 } raw = {
3285 .size = sizeof(u32),
3286 .data = 0,
3287 };
3288 perf_output_put(handle, raw);
3289 }
3290 }
3291}
3292
3293void perf_prepare_sample(struct perf_event_header *header,
3294 struct perf_sample_data *data,
3295 struct perf_event *event,
3296 struct pt_regs *regs)
3297{
3298 u64 sample_type = event->attr.sample_type;
3299
3300 data->type = sample_type;
3301
3302 header->type = PERF_RECORD_SAMPLE;
3303 header->size = sizeof(*header);
3304
3305 header->misc = 0;
3306 header->misc |= perf_misc_flags(regs);
3307
3308 if (sample_type & PERF_SAMPLE_IP) {
3309 data->ip = perf_instruction_pointer(regs);
3310
3311 header->size += sizeof(data->ip);
3312 }
3313
3314 if (sample_type & PERF_SAMPLE_TID) {
3315 /* namespace issues */
3316 data->tid_entry.pid = perf_event_pid(event, current);
3317 data->tid_entry.tid = perf_event_tid(event, current);
3318
3319 header->size += sizeof(data->tid_entry);
3320 }
3321
3322 if (sample_type & PERF_SAMPLE_TIME) {
3323 data->time = perf_clock();
3324
3325 header->size += sizeof(data->time);
3326 }
3327
3328 if (sample_type & PERF_SAMPLE_ADDR)
3329 header->size += sizeof(data->addr);
3330
3331 if (sample_type & PERF_SAMPLE_ID) {
3332 data->id = primary_event_id(event);
3333
3334 header->size += sizeof(data->id);
3335 }
3336
3337 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3338 data->stream_id = event->id;
3339
3340 header->size += sizeof(data->stream_id);
3341 }
3342
3343 if (sample_type & PERF_SAMPLE_CPU) {
3344 data->cpu_entry.cpu = raw_smp_processor_id();
3345 data->cpu_entry.reserved = 0;
3346
3347 header->size += sizeof(data->cpu_entry);
3348 }
3349
3350 if (sample_type & PERF_SAMPLE_PERIOD)
3351 header->size += sizeof(data->period);
3352
3353 if (sample_type & PERF_SAMPLE_READ)
3354 header->size += perf_event_read_size(event);
3355
3356 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3357 int size = 1;
3358
3359 data->callchain = perf_callchain(regs);
3360
3361 if (data->callchain)
3362 size += data->callchain->nr;
3363
3364 header->size += size * sizeof(u64);
3365 }
3366
3367 if (sample_type & PERF_SAMPLE_RAW) {
3368 int size = sizeof(u32);
3369
3370 if (data->raw)
3371 size += data->raw->size;
3372 else
3373 size += sizeof(u32);
3374
3375 WARN_ON_ONCE(size & (sizeof(u64)-1));
3376 header->size += size;
3377 }
3378}
3379
3380static void perf_event_output(struct perf_event *event, int nmi,
3381 struct perf_sample_data *data,
3382 struct pt_regs *regs)
3383{
3384 struct perf_output_handle handle;
3385 struct perf_event_header header;
3386
3387 perf_prepare_sample(&header, data, event, regs);
3388
3389 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3390 return;
3391
3392 perf_output_sample(&handle, &header, data, event);
3393
3394 perf_output_end(&handle);
3395}
3396
3397/*
3398 * read event_id
3399 */
3400
3401struct perf_read_event {
3402 struct perf_event_header header;
3403
3404 u32 pid;
3405 u32 tid;
3406};
3407
3408static void
3409perf_event_read_event(struct perf_event *event,
3410 struct task_struct *task)
3411{
3412 struct perf_output_handle handle;
3413 struct perf_read_event read_event = {
3414 .header = {
3415 .type = PERF_RECORD_READ,
3416 .misc = 0,
3417 .size = sizeof(read_event) + perf_event_read_size(event),
3418 },
3419 .pid = perf_event_pid(event, task),
3420 .tid = perf_event_tid(event, task),
3421 };
3422 int ret;
3423
3424 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3425 if (ret)
3426 return;
3427
3428 perf_output_put(&handle, read_event);
3429 perf_output_read(&handle, event);
3430
3431 perf_output_end(&handle);
3432}
3433
3434/*
3435 * task tracking -- fork/exit
3436 *
3437 * enabled by: attr.comm | attr.mmap | attr.task
3438 */
3439
3440struct perf_task_event {
3441 struct task_struct *task;
3442 struct perf_event_context *task_ctx;
3443
3444 struct {
3445 struct perf_event_header header;
3446
3447 u32 pid;
3448 u32 ppid;
3449 u32 tid;
3450 u32 ptid;
3451 u64 time;
3452 } event_id;
3453};
3454
3455static void perf_event_task_output(struct perf_event *event,
3456 struct perf_task_event *task_event)
3457{
3458 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003459 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003460 unsigned long flags;
3461 int size, ret;
3462
3463 /*
3464 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3465 * in perf_output_lock() from interrupt context, it's game over.
3466 */
3467 local_irq_save(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003468
3469 size = task_event->event_id.header.size;
3470 ret = perf_output_begin(&handle, event, size, 0, 0);
3471
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003472 if (ret) {
3473 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003474 return;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003475 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003476
3477 task_event->event_id.pid = perf_event_pid(event, task);
3478 task_event->event_id.ppid = perf_event_pid(event, current);
3479
3480 task_event->event_id.tid = perf_event_tid(event, task);
3481 task_event->event_id.ptid = perf_event_tid(event, current);
3482
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003483 perf_output_put(&handle, task_event->event_id);
3484
3485 perf_output_end(&handle);
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003486 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003487}
3488
3489static int perf_event_task_match(struct perf_event *event)
3490{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003491 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003492 return 0;
3493
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003494 if (event->cpu != -1 && event->cpu != smp_processor_id())
3495 return 0;
3496
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003497 if (event->attr.comm || event->attr.mmap || event->attr.task)
3498 return 1;
3499
3500 return 0;
3501}
3502
3503static void perf_event_task_ctx(struct perf_event_context *ctx,
3504 struct perf_task_event *task_event)
3505{
3506 struct perf_event *event;
3507
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003508 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3509 if (perf_event_task_match(event))
3510 perf_event_task_output(event, task_event);
3511 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003512}
3513
3514static void perf_event_task_event(struct perf_task_event *task_event)
3515{
3516 struct perf_cpu_context *cpuctx;
3517 struct perf_event_context *ctx = task_event->task_ctx;
3518
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003519 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003520 cpuctx = &get_cpu_var(perf_cpu_context);
3521 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003522 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003523 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003524 if (ctx)
3525 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003526 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003527 rcu_read_unlock();
3528}
3529
3530static void perf_event_task(struct task_struct *task,
3531 struct perf_event_context *task_ctx,
3532 int new)
3533{
3534 struct perf_task_event task_event;
3535
3536 if (!atomic_read(&nr_comm_events) &&
3537 !atomic_read(&nr_mmap_events) &&
3538 !atomic_read(&nr_task_events))
3539 return;
3540
3541 task_event = (struct perf_task_event){
3542 .task = task,
3543 .task_ctx = task_ctx,
3544 .event_id = {
3545 .header = {
3546 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3547 .misc = 0,
3548 .size = sizeof(task_event.event_id),
3549 },
3550 /* .pid */
3551 /* .ppid */
3552 /* .tid */
3553 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003554 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003555 },
3556 };
3557
3558 perf_event_task_event(&task_event);
3559}
3560
3561void perf_event_fork(struct task_struct *task)
3562{
3563 perf_event_task(task, NULL, 1);
3564}
3565
3566/*
3567 * comm tracking
3568 */
3569
3570struct perf_comm_event {
3571 struct task_struct *task;
3572 char *comm;
3573 int comm_size;
3574
3575 struct {
3576 struct perf_event_header header;
3577
3578 u32 pid;
3579 u32 tid;
3580 } event_id;
3581};
3582
3583static void perf_event_comm_output(struct perf_event *event,
3584 struct perf_comm_event *comm_event)
3585{
3586 struct perf_output_handle handle;
3587 int size = comm_event->event_id.header.size;
3588 int ret = perf_output_begin(&handle, event, size, 0, 0);
3589
3590 if (ret)
3591 return;
3592
3593 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3594 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3595
3596 perf_output_put(&handle, comm_event->event_id);
3597 perf_output_copy(&handle, comm_event->comm,
3598 comm_event->comm_size);
3599 perf_output_end(&handle);
3600}
3601
3602static int perf_event_comm_match(struct perf_event *event)
3603{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003604 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003605 return 0;
3606
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003607 if (event->cpu != -1 && event->cpu != smp_processor_id())
3608 return 0;
3609
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003610 if (event->attr.comm)
3611 return 1;
3612
3613 return 0;
3614}
3615
3616static void perf_event_comm_ctx(struct perf_event_context *ctx,
3617 struct perf_comm_event *comm_event)
3618{
3619 struct perf_event *event;
3620
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003621 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3622 if (perf_event_comm_match(event))
3623 perf_event_comm_output(event, comm_event);
3624 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003625}
3626
3627static void perf_event_comm_event(struct perf_comm_event *comm_event)
3628{
3629 struct perf_cpu_context *cpuctx;
3630 struct perf_event_context *ctx;
3631 unsigned int size;
3632 char comm[TASK_COMM_LEN];
3633
3634 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003635 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003636 size = ALIGN(strlen(comm)+1, sizeof(u64));
3637
3638 comm_event->comm = comm;
3639 comm_event->comm_size = size;
3640
3641 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3642
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003643 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003644 cpuctx = &get_cpu_var(perf_cpu_context);
3645 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003646 ctx = rcu_dereference(current->perf_event_ctxp);
3647 if (ctx)
3648 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003649 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003650 rcu_read_unlock();
3651}
3652
3653void perf_event_comm(struct task_struct *task)
3654{
3655 struct perf_comm_event comm_event;
3656
3657 if (task->perf_event_ctxp)
3658 perf_event_enable_on_exec(task);
3659
3660 if (!atomic_read(&nr_comm_events))
3661 return;
3662
3663 comm_event = (struct perf_comm_event){
3664 .task = task,
3665 /* .comm */
3666 /* .comm_size */
3667 .event_id = {
3668 .header = {
3669 .type = PERF_RECORD_COMM,
3670 .misc = 0,
3671 /* .size */
3672 },
3673 /* .pid */
3674 /* .tid */
3675 },
3676 };
3677
3678 perf_event_comm_event(&comm_event);
3679}
3680
3681/*
3682 * mmap tracking
3683 */
3684
3685struct perf_mmap_event {
3686 struct vm_area_struct *vma;
3687
3688 const char *file_name;
3689 int file_size;
3690
3691 struct {
3692 struct perf_event_header header;
3693
3694 u32 pid;
3695 u32 tid;
3696 u64 start;
3697 u64 len;
3698 u64 pgoff;
3699 } event_id;
3700};
3701
3702static void perf_event_mmap_output(struct perf_event *event,
3703 struct perf_mmap_event *mmap_event)
3704{
3705 struct perf_output_handle handle;
3706 int size = mmap_event->event_id.header.size;
3707 int ret = perf_output_begin(&handle, event, size, 0, 0);
3708
3709 if (ret)
3710 return;
3711
3712 mmap_event->event_id.pid = perf_event_pid(event, current);
3713 mmap_event->event_id.tid = perf_event_tid(event, current);
3714
3715 perf_output_put(&handle, mmap_event->event_id);
3716 perf_output_copy(&handle, mmap_event->file_name,
3717 mmap_event->file_size);
3718 perf_output_end(&handle);
3719}
3720
3721static int perf_event_mmap_match(struct perf_event *event,
3722 struct perf_mmap_event *mmap_event)
3723{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003724 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003725 return 0;
3726
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003727 if (event->cpu != -1 && event->cpu != smp_processor_id())
3728 return 0;
3729
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003730 if (event->attr.mmap)
3731 return 1;
3732
3733 return 0;
3734}
3735
3736static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3737 struct perf_mmap_event *mmap_event)
3738{
3739 struct perf_event *event;
3740
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003741 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3742 if (perf_event_mmap_match(event, mmap_event))
3743 perf_event_mmap_output(event, mmap_event);
3744 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745}
3746
3747static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3748{
3749 struct perf_cpu_context *cpuctx;
3750 struct perf_event_context *ctx;
3751 struct vm_area_struct *vma = mmap_event->vma;
3752 struct file *file = vma->vm_file;
3753 unsigned int size;
3754 char tmp[16];
3755 char *buf = NULL;
3756 const char *name;
3757
3758 memset(tmp, 0, sizeof(tmp));
3759
3760 if (file) {
3761 /*
3762 * d_path works from the end of the buffer backwards, so we
3763 * need to add enough zero bytes after the string to handle
3764 * the 64bit alignment we do later.
3765 */
3766 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3767 if (!buf) {
3768 name = strncpy(tmp, "//enomem", sizeof(tmp));
3769 goto got_name;
3770 }
3771 name = d_path(&file->f_path, buf, PATH_MAX);
3772 if (IS_ERR(name)) {
3773 name = strncpy(tmp, "//toolong", sizeof(tmp));
3774 goto got_name;
3775 }
3776 } else {
3777 if (arch_vma_name(mmap_event->vma)) {
3778 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3779 sizeof(tmp));
3780 goto got_name;
3781 }
3782
3783 if (!vma->vm_mm) {
3784 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3785 goto got_name;
3786 }
3787
3788 name = strncpy(tmp, "//anon", sizeof(tmp));
3789 goto got_name;
3790 }
3791
3792got_name:
3793 size = ALIGN(strlen(name)+1, sizeof(u64));
3794
3795 mmap_event->file_name = name;
3796 mmap_event->file_size = size;
3797
3798 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3799
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003800 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003801 cpuctx = &get_cpu_var(perf_cpu_context);
3802 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003803 ctx = rcu_dereference(current->perf_event_ctxp);
3804 if (ctx)
3805 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003806 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003807 rcu_read_unlock();
3808
3809 kfree(buf);
3810}
3811
3812void __perf_event_mmap(struct vm_area_struct *vma)
3813{
3814 struct perf_mmap_event mmap_event;
3815
3816 if (!atomic_read(&nr_mmap_events))
3817 return;
3818
3819 mmap_event = (struct perf_mmap_event){
3820 .vma = vma,
3821 /* .file_name */
3822 /* .file_size */
3823 .event_id = {
3824 .header = {
3825 .type = PERF_RECORD_MMAP,
Zhang, Yanmin39447b32010-04-19 13:32:41 +08003826 .misc = PERF_RECORD_MISC_USER,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003827 /* .size */
3828 },
3829 /* .pid */
3830 /* .tid */
3831 .start = vma->vm_start,
3832 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003833 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003834 },
3835 };
3836
3837 perf_event_mmap_event(&mmap_event);
3838}
3839
3840/*
3841 * IRQ throttle logging
3842 */
3843
3844static void perf_log_throttle(struct perf_event *event, int enable)
3845{
3846 struct perf_output_handle handle;
3847 int ret;
3848
3849 struct {
3850 struct perf_event_header header;
3851 u64 time;
3852 u64 id;
3853 u64 stream_id;
3854 } throttle_event = {
3855 .header = {
3856 .type = PERF_RECORD_THROTTLE,
3857 .misc = 0,
3858 .size = sizeof(throttle_event),
3859 },
3860 .time = perf_clock(),
3861 .id = primary_event_id(event),
3862 .stream_id = event->id,
3863 };
3864
3865 if (enable)
3866 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3867
3868 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3869 if (ret)
3870 return;
3871
3872 perf_output_put(&handle, throttle_event);
3873 perf_output_end(&handle);
3874}
3875
3876/*
3877 * Generic event overflow handling, sampling.
3878 */
3879
3880static int __perf_event_overflow(struct perf_event *event, int nmi,
3881 int throttle, struct perf_sample_data *data,
3882 struct pt_regs *regs)
3883{
3884 int events = atomic_read(&event->event_limit);
3885 struct hw_perf_event *hwc = &event->hw;
3886 int ret = 0;
3887
3888 throttle = (throttle && event->pmu->unthrottle != NULL);
3889
3890 if (!throttle) {
3891 hwc->interrupts++;
3892 } else {
3893 if (hwc->interrupts != MAX_INTERRUPTS) {
3894 hwc->interrupts++;
3895 if (HZ * hwc->interrupts >
3896 (u64)sysctl_perf_event_sample_rate) {
3897 hwc->interrupts = MAX_INTERRUPTS;
3898 perf_log_throttle(event, 0);
3899 ret = 1;
3900 }
3901 } else {
3902 /*
3903 * Keep re-disabling events even though on the previous
3904 * pass we disabled it - just in case we raced with a
3905 * sched-in and the event got enabled again:
3906 */
3907 ret = 1;
3908 }
3909 }
3910
3911 if (event->attr.freq) {
3912 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003913 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003914
Peter Zijlstraabd50712010-01-26 18:50:16 +01003915 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003916
Peter Zijlstraabd50712010-01-26 18:50:16 +01003917 if (delta > 0 && delta < 2*TICK_NSEC)
3918 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003919 }
3920
3921 /*
3922 * XXX event_limit might not quite work as expected on inherited
3923 * events
3924 */
3925
3926 event->pending_kill = POLL_IN;
3927 if (events && atomic_dec_and_test(&event->event_limit)) {
3928 ret = 1;
3929 event->pending_kill = POLL_HUP;
3930 if (nmi) {
3931 event->pending_disable = 1;
3932 perf_pending_queue(&event->pending,
3933 perf_pending_event);
3934 } else
3935 perf_event_disable(event);
3936 }
3937
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003938 if (event->overflow_handler)
3939 event->overflow_handler(event, nmi, data, regs);
3940 else
3941 perf_event_output(event, nmi, data, regs);
3942
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003943 return ret;
3944}
3945
3946int perf_event_overflow(struct perf_event *event, int nmi,
3947 struct perf_sample_data *data,
3948 struct pt_regs *regs)
3949{
3950 return __perf_event_overflow(event, nmi, 1, data, regs);
3951}
3952
3953/*
3954 * Generic software event infrastructure
3955 */
3956
3957/*
3958 * We directly increment event->count and keep a second value in
3959 * event->hw.period_left to count intervals. This period event
3960 * is kept in the range [-sample_period, 0] so that we can use the
3961 * sign as trigger.
3962 */
3963
3964static u64 perf_swevent_set_period(struct perf_event *event)
3965{
3966 struct hw_perf_event *hwc = &event->hw;
3967 u64 period = hwc->last_period;
3968 u64 nr, offset;
3969 s64 old, val;
3970
3971 hwc->last_period = hwc->sample_period;
3972
3973again:
3974 old = val = atomic64_read(&hwc->period_left);
3975 if (val < 0)
3976 return 0;
3977
3978 nr = div64_u64(period + val, period);
3979 offset = nr * period;
3980 val -= offset;
3981 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3982 goto again;
3983
3984 return nr;
3985}
3986
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003987static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003988 int nmi, struct perf_sample_data *data,
3989 struct pt_regs *regs)
3990{
3991 struct hw_perf_event *hwc = &event->hw;
3992 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003993
3994 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003995 if (!overflow)
3996 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003997
3998 if (hwc->interrupts == MAX_INTERRUPTS)
3999 return;
4000
4001 for (; overflow; overflow--) {
4002 if (__perf_event_overflow(event, nmi, throttle,
4003 data, regs)) {
4004 /*
4005 * We inhibit the overflow from happening when
4006 * hwc->interrupts == MAX_INTERRUPTS.
4007 */
4008 break;
4009 }
4010 throttle = 1;
4011 }
4012}
4013
4014static void perf_swevent_unthrottle(struct perf_event *event)
4015{
4016 /*
4017 * Nothing to do, we already reset hwc->interrupts.
4018 */
4019}
4020
4021static void perf_swevent_add(struct perf_event *event, u64 nr,
4022 int nmi, struct perf_sample_data *data,
4023 struct pt_regs *regs)
4024{
4025 struct hw_perf_event *hwc = &event->hw;
4026
4027 atomic64_add(nr, &event->count);
4028
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004029 if (!regs)
4030 return;
4031
Peter Zijlstra0cff7842009-11-20 22:19:44 +01004032 if (!hwc->sample_period)
4033 return;
4034
4035 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4036 return perf_swevent_overflow(event, 1, nmi, data, regs);
4037
4038 if (atomic64_add_negative(nr, &hwc->period_left))
4039 return;
4040
4041 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004042}
4043
Li Zefan6fb29152009-10-15 11:21:42 +08004044static int perf_tp_event_match(struct perf_event *event,
4045 struct perf_sample_data *data);
4046
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004047static int perf_exclude_event(struct perf_event *event,
4048 struct pt_regs *regs)
4049{
4050 if (regs) {
4051 if (event->attr.exclude_user && user_mode(regs))
4052 return 1;
4053
4054 if (event->attr.exclude_kernel && !user_mode(regs))
4055 return 1;
4056 }
4057
4058 return 0;
4059}
4060
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004061static int perf_swevent_match(struct perf_event *event,
4062 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004063 u32 event_id,
4064 struct perf_sample_data *data,
4065 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004066{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004067 if (event->attr.type != type)
4068 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004069
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004070 if (event->attr.config != event_id)
4071 return 0;
4072
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004073 if (perf_exclude_event(event, regs))
4074 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004075
Li Zefan6fb29152009-10-15 11:21:42 +08004076 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4077 !perf_tp_event_match(event, data))
4078 return 0;
4079
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004080 return 1;
4081}
4082
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004083static inline u64 swevent_hash(u64 type, u32 event_id)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004084{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004085 u64 val = event_id | (type << 32);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004086
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004087 return hash_64(val, SWEVENT_HLIST_BITS);
4088}
4089
4090static struct hlist_head *
4091find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4092{
4093 u64 hash;
4094 struct swevent_hlist *hlist;
4095
4096 hash = swevent_hash(type, event_id);
4097
4098 hlist = rcu_dereference(ctx->swevent_hlist);
4099 if (!hlist)
4100 return NULL;
4101
4102 return &hlist->heads[hash];
4103}
4104
4105static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4106 u64 nr, int nmi,
4107 struct perf_sample_data *data,
4108 struct pt_regs *regs)
4109{
4110 struct perf_cpu_context *cpuctx;
4111 struct perf_event *event;
4112 struct hlist_node *node;
4113 struct hlist_head *head;
4114
4115 cpuctx = &__get_cpu_var(perf_cpu_context);
4116
4117 rcu_read_lock();
4118
4119 head = find_swevent_head(cpuctx, type, event_id);
4120
4121 if (!head)
4122 goto end;
4123
4124 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004125 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004126 perf_swevent_add(event, nr, nmi, data, regs);
4127 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004128end:
4129 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004130}
4131
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004132int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004133{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004134 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4135 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004136
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004137 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004138 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004139 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004140 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004141 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004142 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004143 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004144 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004145
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004146 if (cpuctx->recursion[rctx]) {
4147 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004148 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004149 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004150
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004151 cpuctx->recursion[rctx]++;
4152 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004153
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004154 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004155}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004156EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004157
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004158void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004159{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004160 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4161 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004162 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004163 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004164}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004165EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004166
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004167
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004168void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4169 struct pt_regs *regs, u64 addr)
4170{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004171 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004172 int rctx;
4173
4174 rctx = perf_swevent_get_recursion_context();
4175 if (rctx < 0)
4176 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004177
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004178 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004179
4180 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004181
4182 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004183}
4184
4185static void perf_swevent_read(struct perf_event *event)
4186{
4187}
4188
4189static int perf_swevent_enable(struct perf_event *event)
4190{
4191 struct hw_perf_event *hwc = &event->hw;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004192 struct perf_cpu_context *cpuctx;
4193 struct hlist_head *head;
4194
4195 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004196
4197 if (hwc->sample_period) {
4198 hwc->last_period = hwc->sample_period;
4199 perf_swevent_set_period(event);
4200 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004201
4202 head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4203 if (WARN_ON_ONCE(!head))
4204 return -EINVAL;
4205
4206 hlist_add_head_rcu(&event->hlist_entry, head);
4207
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004208 return 0;
4209}
4210
4211static void perf_swevent_disable(struct perf_event *event)
4212{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004213 hlist_del_rcu(&event->hlist_entry);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004214}
4215
4216static const struct pmu perf_ops_generic = {
4217 .enable = perf_swevent_enable,
4218 .disable = perf_swevent_disable,
4219 .read = perf_swevent_read,
4220 .unthrottle = perf_swevent_unthrottle,
4221};
4222
4223/*
4224 * hrtimer based swevent callback
4225 */
4226
4227static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4228{
4229 enum hrtimer_restart ret = HRTIMER_RESTART;
4230 struct perf_sample_data data;
4231 struct pt_regs *regs;
4232 struct perf_event *event;
4233 u64 period;
4234
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004235 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004236 event->pmu->read(event);
4237
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004238 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004239 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004240 regs = get_irq_regs();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004241
Frederic Weisbeckerdf8290b2010-04-09 00:28:14 +02004242 if (regs && !perf_exclude_event(event, regs)) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004243 if (!(event->attr.exclude_idle && current->pid == 0))
4244 if (perf_event_overflow(event, 0, &data, regs))
4245 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004246 }
4247
4248 period = max_t(u64, 10000, event->hw.sample_period);
4249 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4250
4251 return ret;
4252}
4253
Soeren Sandmann721a6692009-09-15 14:33:08 +02004254static void perf_swevent_start_hrtimer(struct perf_event *event)
4255{
4256 struct hw_perf_event *hwc = &event->hw;
4257
4258 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4259 hwc->hrtimer.function = perf_swevent_hrtimer;
4260 if (hwc->sample_period) {
4261 u64 period;
4262
4263 if (hwc->remaining) {
4264 if (hwc->remaining < 0)
4265 period = 10000;
4266 else
4267 period = hwc->remaining;
4268 hwc->remaining = 0;
4269 } else {
4270 period = max_t(u64, 10000, hwc->sample_period);
4271 }
4272 __hrtimer_start_range_ns(&hwc->hrtimer,
4273 ns_to_ktime(period), 0,
4274 HRTIMER_MODE_REL, 0);
4275 }
4276}
4277
4278static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4279{
4280 struct hw_perf_event *hwc = &event->hw;
4281
4282 if (hwc->sample_period) {
4283 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4284 hwc->remaining = ktime_to_ns(remaining);
4285
4286 hrtimer_cancel(&hwc->hrtimer);
4287 }
4288}
4289
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004290/*
4291 * Software event: cpu wall time clock
4292 */
4293
4294static void cpu_clock_perf_event_update(struct perf_event *event)
4295{
4296 int cpu = raw_smp_processor_id();
4297 s64 prev;
4298 u64 now;
4299
4300 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004301 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004302 atomic64_add(now - prev, &event->count);
4303}
4304
4305static int cpu_clock_perf_event_enable(struct perf_event *event)
4306{
4307 struct hw_perf_event *hwc = &event->hw;
4308 int cpu = raw_smp_processor_id();
4309
4310 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004311 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004312
4313 return 0;
4314}
4315
4316static void cpu_clock_perf_event_disable(struct perf_event *event)
4317{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004318 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004319 cpu_clock_perf_event_update(event);
4320}
4321
4322static void cpu_clock_perf_event_read(struct perf_event *event)
4323{
4324 cpu_clock_perf_event_update(event);
4325}
4326
4327static const struct pmu perf_ops_cpu_clock = {
4328 .enable = cpu_clock_perf_event_enable,
4329 .disable = cpu_clock_perf_event_disable,
4330 .read = cpu_clock_perf_event_read,
4331};
4332
4333/*
4334 * Software event: task time clock
4335 */
4336
4337static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4338{
4339 u64 prev;
4340 s64 delta;
4341
4342 prev = atomic64_xchg(&event->hw.prev_count, now);
4343 delta = now - prev;
4344 atomic64_add(delta, &event->count);
4345}
4346
4347static int task_clock_perf_event_enable(struct perf_event *event)
4348{
4349 struct hw_perf_event *hwc = &event->hw;
4350 u64 now;
4351
4352 now = event->ctx->time;
4353
4354 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004355
4356 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004357
4358 return 0;
4359}
4360
4361static void task_clock_perf_event_disable(struct perf_event *event)
4362{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004363 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004364 task_clock_perf_event_update(event, event->ctx->time);
4365
4366}
4367
4368static void task_clock_perf_event_read(struct perf_event *event)
4369{
4370 u64 time;
4371
4372 if (!in_nmi()) {
4373 update_context_time(event->ctx);
4374 time = event->ctx->time;
4375 } else {
4376 u64 now = perf_clock();
4377 u64 delta = now - event->ctx->timestamp;
4378 time = event->ctx->time + delta;
4379 }
4380
4381 task_clock_perf_event_update(event, time);
4382}
4383
4384static const struct pmu perf_ops_task_clock = {
4385 .enable = task_clock_perf_event_enable,
4386 .disable = task_clock_perf_event_disable,
4387 .read = task_clock_perf_event_read,
4388};
4389
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004390static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4391{
4392 struct swevent_hlist *hlist;
4393
4394 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4395 kfree(hlist);
4396}
4397
4398static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4399{
4400 struct swevent_hlist *hlist;
4401
4402 if (!cpuctx->swevent_hlist)
4403 return;
4404
4405 hlist = cpuctx->swevent_hlist;
4406 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4407 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4408}
4409
4410static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4411{
4412 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4413
4414 mutex_lock(&cpuctx->hlist_mutex);
4415
4416 if (!--cpuctx->hlist_refcount)
4417 swevent_hlist_release(cpuctx);
4418
4419 mutex_unlock(&cpuctx->hlist_mutex);
4420}
4421
4422static void swevent_hlist_put(struct perf_event *event)
4423{
4424 int cpu;
4425
4426 if (event->cpu != -1) {
4427 swevent_hlist_put_cpu(event, event->cpu);
4428 return;
4429 }
4430
4431 for_each_possible_cpu(cpu)
4432 swevent_hlist_put_cpu(event, cpu);
4433}
4434
4435static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4436{
4437 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4438 int err = 0;
4439
4440 mutex_lock(&cpuctx->hlist_mutex);
4441
4442 if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4443 struct swevent_hlist *hlist;
4444
4445 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4446 if (!hlist) {
4447 err = -ENOMEM;
4448 goto exit;
4449 }
4450 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4451 }
4452 cpuctx->hlist_refcount++;
4453 exit:
4454 mutex_unlock(&cpuctx->hlist_mutex);
4455
4456 return err;
4457}
4458
4459static int swevent_hlist_get(struct perf_event *event)
4460{
4461 int err;
4462 int cpu, failed_cpu;
4463
4464 if (event->cpu != -1)
4465 return swevent_hlist_get_cpu(event, event->cpu);
4466
4467 get_online_cpus();
4468 for_each_possible_cpu(cpu) {
4469 err = swevent_hlist_get_cpu(event, cpu);
4470 if (err) {
4471 failed_cpu = cpu;
4472 goto fail;
4473 }
4474 }
4475 put_online_cpus();
4476
4477 return 0;
4478 fail:
4479 for_each_possible_cpu(cpu) {
4480 if (cpu == failed_cpu)
4481 break;
4482 swevent_hlist_put_cpu(event, cpu);
4483 }
4484
4485 put_online_cpus();
4486 return err;
4487}
4488
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004489#ifdef CONFIG_EVENT_TRACING
4490
4491void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004492 int entry_size, struct pt_regs *regs, void *event)
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004493{
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004494 const int type = PERF_TYPE_TRACEPOINT;
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004495 struct perf_sample_data data;
4496 struct perf_raw_record raw = {
4497 .size = entry_size,
4498 .data = record,
4499 };
4500
4501 perf_sample_data_init(&data, addr);
4502 data.raw = &raw;
4503
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004504 if (!event) {
4505 do_perf_sw_event(type, event_id, count, 1, &data, regs);
4506 return;
4507 }
4508
4509 if (perf_swevent_match(event, type, event_id, &data, regs))
4510 perf_swevent_add(event, count, 1, &data, regs);
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004511}
4512EXPORT_SYMBOL_GPL(perf_tp_event);
4513
4514static int perf_tp_event_match(struct perf_event *event,
4515 struct perf_sample_data *data)
4516{
4517 void *record = data->raw->data;
4518
4519 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4520 return 1;
4521 return 0;
4522}
4523
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004524static void tp_perf_event_destroy(struct perf_event *event)
4525{
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004526 perf_trace_disable(event->attr.config);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004527 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004528}
4529
4530static const struct pmu *tp_perf_event_init(struct perf_event *event)
4531{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004532 int err;
4533
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004534 /*
4535 * Raw tracepoint data is a severe data leak, only allow root to
4536 * have these.
4537 */
4538 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4539 perf_paranoid_tracepoint_raw() &&
4540 !capable(CAP_SYS_ADMIN))
4541 return ERR_PTR(-EPERM);
4542
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004543 if (perf_trace_enable(event->attr.config, event))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004544 return NULL;
4545
4546 event->destroy = tp_perf_event_destroy;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004547 err = swevent_hlist_get(event);
4548 if (err) {
4549 perf_trace_disable(event->attr.config);
4550 return ERR_PTR(err);
4551 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004552
4553 return &perf_ops_generic;
4554}
Li Zefan6fb29152009-10-15 11:21:42 +08004555
4556static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4557{
4558 char *filter_str;
4559 int ret;
4560
4561 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4562 return -EINVAL;
4563
4564 filter_str = strndup_user(arg, PAGE_SIZE);
4565 if (IS_ERR(filter_str))
4566 return PTR_ERR(filter_str);
4567
4568 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4569
4570 kfree(filter_str);
4571 return ret;
4572}
4573
4574static void perf_event_free_filter(struct perf_event *event)
4575{
4576 ftrace_profile_free_filter(event);
4577}
4578
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004579#else
Li Zefan6fb29152009-10-15 11:21:42 +08004580
4581static int perf_tp_event_match(struct perf_event *event,
4582 struct perf_sample_data *data)
4583{
4584 return 1;
4585}
4586
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004587static const struct pmu *tp_perf_event_init(struct perf_event *event)
4588{
4589 return NULL;
4590}
Li Zefan6fb29152009-10-15 11:21:42 +08004591
4592static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4593{
4594 return -ENOENT;
4595}
4596
4597static void perf_event_free_filter(struct perf_event *event)
4598{
4599}
4600
Li Zefan07b139c2009-12-21 14:27:35 +08004601#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004602
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004603#ifdef CONFIG_HAVE_HW_BREAKPOINT
4604static void bp_perf_event_destroy(struct perf_event *event)
4605{
4606 release_bp_slot(event);
4607}
4608
4609static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4610{
4611 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004612
4613 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004614 if (err)
4615 return ERR_PTR(err);
4616
4617 bp->destroy = bp_perf_event_destroy;
4618
4619 return &perf_ops_bp;
4620}
4621
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004622void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004623{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004624 struct perf_sample_data sample;
4625 struct pt_regs *regs = data;
4626
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004627 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004628
4629 if (!perf_exclude_event(bp, regs))
4630 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004631}
4632#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004633static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4634{
4635 return NULL;
4636}
4637
4638void perf_bp_event(struct perf_event *bp, void *regs)
4639{
4640}
4641#endif
4642
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004643atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4644
4645static void sw_perf_event_destroy(struct perf_event *event)
4646{
4647 u64 event_id = event->attr.config;
4648
4649 WARN_ON(event->parent);
4650
4651 atomic_dec(&perf_swevent_enabled[event_id]);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004652 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004653}
4654
4655static const struct pmu *sw_perf_event_init(struct perf_event *event)
4656{
4657 const struct pmu *pmu = NULL;
4658 u64 event_id = event->attr.config;
4659
4660 /*
4661 * Software events (currently) can't in general distinguish
4662 * between user, kernel and hypervisor events.
4663 * However, context switches and cpu migrations are considered
4664 * to be kernel events, and page faults are never hypervisor
4665 * events.
4666 */
4667 switch (event_id) {
4668 case PERF_COUNT_SW_CPU_CLOCK:
4669 pmu = &perf_ops_cpu_clock;
4670
4671 break;
4672 case PERF_COUNT_SW_TASK_CLOCK:
4673 /*
4674 * If the user instantiates this as a per-cpu event,
4675 * use the cpu_clock event instead.
4676 */
4677 if (event->ctx->task)
4678 pmu = &perf_ops_task_clock;
4679 else
4680 pmu = &perf_ops_cpu_clock;
4681
4682 break;
4683 case PERF_COUNT_SW_PAGE_FAULTS:
4684 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4685 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4686 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4687 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004688 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4689 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004690 if (!event->parent) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004691 int err;
4692
4693 err = swevent_hlist_get(event);
4694 if (err)
4695 return ERR_PTR(err);
4696
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004697 atomic_inc(&perf_swevent_enabled[event_id]);
4698 event->destroy = sw_perf_event_destroy;
4699 }
4700 pmu = &perf_ops_generic;
4701 break;
4702 }
4703
4704 return pmu;
4705}
4706
4707/*
4708 * Allocate and initialize a event structure
4709 */
4710static struct perf_event *
4711perf_event_alloc(struct perf_event_attr *attr,
4712 int cpu,
4713 struct perf_event_context *ctx,
4714 struct perf_event *group_leader,
4715 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004716 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004717 gfp_t gfpflags)
4718{
4719 const struct pmu *pmu;
4720 struct perf_event *event;
4721 struct hw_perf_event *hwc;
4722 long err;
4723
4724 event = kzalloc(sizeof(*event), gfpflags);
4725 if (!event)
4726 return ERR_PTR(-ENOMEM);
4727
4728 /*
4729 * Single events are their own group leaders, with an
4730 * empty sibling list:
4731 */
4732 if (!group_leader)
4733 group_leader = event;
4734
4735 mutex_init(&event->child_mutex);
4736 INIT_LIST_HEAD(&event->child_list);
4737
4738 INIT_LIST_HEAD(&event->group_entry);
4739 INIT_LIST_HEAD(&event->event_entry);
4740 INIT_LIST_HEAD(&event->sibling_list);
4741 init_waitqueue_head(&event->waitq);
4742
4743 mutex_init(&event->mmap_mutex);
4744
4745 event->cpu = cpu;
4746 event->attr = *attr;
4747 event->group_leader = group_leader;
4748 event->pmu = NULL;
4749 event->ctx = ctx;
4750 event->oncpu = -1;
4751
4752 event->parent = parent_event;
4753
4754 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4755 event->id = atomic64_inc_return(&perf_event_id);
4756
4757 event->state = PERF_EVENT_STATE_INACTIVE;
4758
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004759 if (!overflow_handler && parent_event)
4760 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004761
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004762 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004763
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004764 if (attr->disabled)
4765 event->state = PERF_EVENT_STATE_OFF;
4766
4767 pmu = NULL;
4768
4769 hwc = &event->hw;
4770 hwc->sample_period = attr->sample_period;
4771 if (attr->freq && attr->sample_freq)
4772 hwc->sample_period = 1;
4773 hwc->last_period = hwc->sample_period;
4774
4775 atomic64_set(&hwc->period_left, hwc->sample_period);
4776
4777 /*
4778 * we currently do not support PERF_FORMAT_GROUP on inherited events
4779 */
4780 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4781 goto done;
4782
4783 switch (attr->type) {
4784 case PERF_TYPE_RAW:
4785 case PERF_TYPE_HARDWARE:
4786 case PERF_TYPE_HW_CACHE:
4787 pmu = hw_perf_event_init(event);
4788 break;
4789
4790 case PERF_TYPE_SOFTWARE:
4791 pmu = sw_perf_event_init(event);
4792 break;
4793
4794 case PERF_TYPE_TRACEPOINT:
4795 pmu = tp_perf_event_init(event);
4796 break;
4797
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004798 case PERF_TYPE_BREAKPOINT:
4799 pmu = bp_perf_event_init(event);
4800 break;
4801
4802
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004803 default:
4804 break;
4805 }
4806done:
4807 err = 0;
4808 if (!pmu)
4809 err = -EINVAL;
4810 else if (IS_ERR(pmu))
4811 err = PTR_ERR(pmu);
4812
4813 if (err) {
4814 if (event->ns)
4815 put_pid_ns(event->ns);
4816 kfree(event);
4817 return ERR_PTR(err);
4818 }
4819
4820 event->pmu = pmu;
4821
4822 if (!event->parent) {
4823 atomic_inc(&nr_events);
4824 if (event->attr.mmap)
4825 atomic_inc(&nr_mmap_events);
4826 if (event->attr.comm)
4827 atomic_inc(&nr_comm_events);
4828 if (event->attr.task)
4829 atomic_inc(&nr_task_events);
4830 }
4831
4832 return event;
4833}
4834
4835static int perf_copy_attr(struct perf_event_attr __user *uattr,
4836 struct perf_event_attr *attr)
4837{
4838 u32 size;
4839 int ret;
4840
4841 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4842 return -EFAULT;
4843
4844 /*
4845 * zero the full structure, so that a short copy will be nice.
4846 */
4847 memset(attr, 0, sizeof(*attr));
4848
4849 ret = get_user(size, &uattr->size);
4850 if (ret)
4851 return ret;
4852
4853 if (size > PAGE_SIZE) /* silly large */
4854 goto err_size;
4855
4856 if (!size) /* abi compat */
4857 size = PERF_ATTR_SIZE_VER0;
4858
4859 if (size < PERF_ATTR_SIZE_VER0)
4860 goto err_size;
4861
4862 /*
4863 * If we're handed a bigger struct than we know of,
4864 * ensure all the unknown bits are 0 - i.e. new
4865 * user-space does not rely on any kernel feature
4866 * extensions we dont know about yet.
4867 */
4868 if (size > sizeof(*attr)) {
4869 unsigned char __user *addr;
4870 unsigned char __user *end;
4871 unsigned char val;
4872
4873 addr = (void __user *)uattr + sizeof(*attr);
4874 end = (void __user *)uattr + size;
4875
4876 for (; addr < end; addr++) {
4877 ret = get_user(val, addr);
4878 if (ret)
4879 return ret;
4880 if (val)
4881 goto err_size;
4882 }
4883 size = sizeof(*attr);
4884 }
4885
4886 ret = copy_from_user(attr, uattr, size);
4887 if (ret)
4888 return -EFAULT;
4889
4890 /*
4891 * If the type exists, the corresponding creation will verify
4892 * the attr->config.
4893 */
4894 if (attr->type >= PERF_TYPE_MAX)
4895 return -EINVAL;
4896
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304897 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004898 return -EINVAL;
4899
4900 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4901 return -EINVAL;
4902
4903 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4904 return -EINVAL;
4905
4906out:
4907 return ret;
4908
4909err_size:
4910 put_user(sizeof(*attr), &uattr->size);
4911 ret = -E2BIG;
4912 goto out;
4913}
4914
Li Zefan6fb29152009-10-15 11:21:42 +08004915static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004916{
4917 struct perf_event *output_event = NULL;
4918 struct file *output_file = NULL;
4919 struct perf_event *old_output;
4920 int fput_needed = 0;
4921 int ret = -EINVAL;
4922
4923 if (!output_fd)
4924 goto set;
4925
4926 output_file = fget_light(output_fd, &fput_needed);
4927 if (!output_file)
4928 return -EBADF;
4929
4930 if (output_file->f_op != &perf_fops)
4931 goto out;
4932
4933 output_event = output_file->private_data;
4934
4935 /* Don't chain output fds */
4936 if (output_event->output)
4937 goto out;
4938
4939 /* Don't set an output fd when we already have an output channel */
4940 if (event->data)
4941 goto out;
4942
4943 atomic_long_inc(&output_file->f_count);
4944
4945set:
4946 mutex_lock(&event->mmap_mutex);
4947 old_output = event->output;
4948 rcu_assign_pointer(event->output, output_event);
4949 mutex_unlock(&event->mmap_mutex);
4950
4951 if (old_output) {
4952 /*
4953 * we need to make sure no existing perf_output_*()
4954 * is still referencing this event.
4955 */
4956 synchronize_rcu();
4957 fput(old_output->filp);
4958 }
4959
4960 ret = 0;
4961out:
4962 fput_light(output_file, fput_needed);
4963 return ret;
4964}
4965
4966/**
4967 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4968 *
4969 * @attr_uptr: event_id type attributes for monitoring/sampling
4970 * @pid: target pid
4971 * @cpu: target cpu
4972 * @group_fd: group leader event fd
4973 */
4974SYSCALL_DEFINE5(perf_event_open,
4975 struct perf_event_attr __user *, attr_uptr,
4976 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4977{
4978 struct perf_event *event, *group_leader;
4979 struct perf_event_attr attr;
4980 struct perf_event_context *ctx;
4981 struct file *event_file = NULL;
4982 struct file *group_file = NULL;
4983 int fput_needed = 0;
4984 int fput_needed2 = 0;
4985 int err;
4986
4987 /* for future expandability... */
4988 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4989 return -EINVAL;
4990
4991 err = perf_copy_attr(attr_uptr, &attr);
4992 if (err)
4993 return err;
4994
4995 if (!attr.exclude_kernel) {
4996 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4997 return -EACCES;
4998 }
4999
5000 if (attr.freq) {
5001 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5002 return -EINVAL;
5003 }
5004
5005 /*
5006 * Get the target context (task or percpu):
5007 */
5008 ctx = find_get_context(pid, cpu);
5009 if (IS_ERR(ctx))
5010 return PTR_ERR(ctx);
5011
5012 /*
5013 * Look up the group leader (we will attach this event to it):
5014 */
5015 group_leader = NULL;
5016 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5017 err = -EINVAL;
5018 group_file = fget_light(group_fd, &fput_needed);
5019 if (!group_file)
5020 goto err_put_context;
5021 if (group_file->f_op != &perf_fops)
5022 goto err_put_context;
5023
5024 group_leader = group_file->private_data;
5025 /*
5026 * Do not allow a recursive hierarchy (this new sibling
5027 * becoming part of another group-sibling):
5028 */
5029 if (group_leader->group_leader != group_leader)
5030 goto err_put_context;
5031 /*
5032 * Do not allow to attach to a group in a different
5033 * task or CPU context:
5034 */
5035 if (group_leader->ctx != ctx)
5036 goto err_put_context;
5037 /*
5038 * Only a group leader can be exclusive or pinned
5039 */
5040 if (attr.exclusive || attr.pinned)
5041 goto err_put_context;
5042 }
5043
5044 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005045 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005046 err = PTR_ERR(event);
5047 if (IS_ERR(event))
5048 goto err_put_context;
5049
Roland Dreier628ff7c2009-12-18 09:41:24 -08005050 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005051 if (err < 0)
5052 goto err_free_put_context;
5053
5054 event_file = fget_light(err, &fput_needed2);
5055 if (!event_file)
5056 goto err_free_put_context;
5057
5058 if (flags & PERF_FLAG_FD_OUTPUT) {
5059 err = perf_event_set_output(event, group_fd);
5060 if (err)
5061 goto err_fput_free_put_context;
5062 }
5063
5064 event->filp = event_file;
5065 WARN_ON_ONCE(ctx->parent_ctx);
5066 mutex_lock(&ctx->mutex);
5067 perf_install_in_context(ctx, event, cpu);
5068 ++ctx->generation;
5069 mutex_unlock(&ctx->mutex);
5070
5071 event->owner = current;
5072 get_task_struct(current);
5073 mutex_lock(&current->perf_event_mutex);
5074 list_add_tail(&event->owner_entry, &current->perf_event_list);
5075 mutex_unlock(&current->perf_event_mutex);
5076
5077err_fput_free_put_context:
5078 fput_light(event_file, fput_needed2);
5079
5080err_free_put_context:
5081 if (err < 0)
Tejun Heo048c8522010-05-01 10:11:35 +02005082 free_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005083
5084err_put_context:
5085 if (err < 0)
5086 put_ctx(ctx);
5087
5088 fput_light(group_file, fput_needed);
5089
5090 return err;
5091}
5092
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005093/**
5094 * perf_event_create_kernel_counter
5095 *
5096 * @attr: attributes of the counter to create
5097 * @cpu: cpu in which the counter is bound
5098 * @pid: task to profile
5099 */
5100struct perf_event *
5101perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005102 pid_t pid,
5103 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005104{
5105 struct perf_event *event;
5106 struct perf_event_context *ctx;
5107 int err;
5108
5109 /*
5110 * Get the target context (task or percpu):
5111 */
5112
5113 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005114 if (IS_ERR(ctx)) {
5115 err = PTR_ERR(ctx);
5116 goto err_exit;
5117 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005118
5119 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005120 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005121 if (IS_ERR(event)) {
5122 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005123 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005124 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005125
5126 event->filp = NULL;
5127 WARN_ON_ONCE(ctx->parent_ctx);
5128 mutex_lock(&ctx->mutex);
5129 perf_install_in_context(ctx, event, cpu);
5130 ++ctx->generation;
5131 mutex_unlock(&ctx->mutex);
5132
5133 event->owner = current;
5134 get_task_struct(current);
5135 mutex_lock(&current->perf_event_mutex);
5136 list_add_tail(&event->owner_entry, &current->perf_event_list);
5137 mutex_unlock(&current->perf_event_mutex);
5138
5139 return event;
5140
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005141 err_put_context:
5142 put_ctx(ctx);
5143 err_exit:
5144 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005145}
5146EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5147
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005148/*
5149 * inherit a event from parent task to child task:
5150 */
5151static struct perf_event *
5152inherit_event(struct perf_event *parent_event,
5153 struct task_struct *parent,
5154 struct perf_event_context *parent_ctx,
5155 struct task_struct *child,
5156 struct perf_event *group_leader,
5157 struct perf_event_context *child_ctx)
5158{
5159 struct perf_event *child_event;
5160
5161 /*
5162 * Instead of creating recursive hierarchies of events,
5163 * we link inherited events back to the original parent,
5164 * which has a filp for sure, which we use as the reference
5165 * count:
5166 */
5167 if (parent_event->parent)
5168 parent_event = parent_event->parent;
5169
5170 child_event = perf_event_alloc(&parent_event->attr,
5171 parent_event->cpu, child_ctx,
5172 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005173 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005174 if (IS_ERR(child_event))
5175 return child_event;
5176 get_ctx(child_ctx);
5177
5178 /*
5179 * Make the child state follow the state of the parent event,
5180 * not its attr.disabled bit. We hold the parent's mutex,
5181 * so we won't race with perf_event_{en, dis}able_family.
5182 */
5183 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5184 child_event->state = PERF_EVENT_STATE_INACTIVE;
5185 else
5186 child_event->state = PERF_EVENT_STATE_OFF;
5187
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005188 if (parent_event->attr.freq) {
5189 u64 sample_period = parent_event->hw.sample_period;
5190 struct hw_perf_event *hwc = &child_event->hw;
5191
5192 hwc->sample_period = sample_period;
5193 hwc->last_period = sample_period;
5194
5195 atomic64_set(&hwc->period_left, sample_period);
5196 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005197
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005198 child_event->overflow_handler = parent_event->overflow_handler;
5199
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005200 /*
5201 * Link it up in the child's context:
5202 */
5203 add_event_to_ctx(child_event, child_ctx);
5204
5205 /*
5206 * Get a reference to the parent filp - we will fput it
5207 * when the child event exits. This is safe to do because
5208 * we are in the parent and we know that the filp still
5209 * exists and has a nonzero count:
5210 */
5211 atomic_long_inc(&parent_event->filp->f_count);
5212
5213 /*
5214 * Link this into the parent event's child list
5215 */
5216 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5217 mutex_lock(&parent_event->child_mutex);
5218 list_add_tail(&child_event->child_list, &parent_event->child_list);
5219 mutex_unlock(&parent_event->child_mutex);
5220
5221 return child_event;
5222}
5223
5224static int inherit_group(struct perf_event *parent_event,
5225 struct task_struct *parent,
5226 struct perf_event_context *parent_ctx,
5227 struct task_struct *child,
5228 struct perf_event_context *child_ctx)
5229{
5230 struct perf_event *leader;
5231 struct perf_event *sub;
5232 struct perf_event *child_ctr;
5233
5234 leader = inherit_event(parent_event, parent, parent_ctx,
5235 child, NULL, child_ctx);
5236 if (IS_ERR(leader))
5237 return PTR_ERR(leader);
5238 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5239 child_ctr = inherit_event(sub, parent, parent_ctx,
5240 child, leader, child_ctx);
5241 if (IS_ERR(child_ctr))
5242 return PTR_ERR(child_ctr);
5243 }
5244 return 0;
5245}
5246
5247static void sync_child_event(struct perf_event *child_event,
5248 struct task_struct *child)
5249{
5250 struct perf_event *parent_event = child_event->parent;
5251 u64 child_val;
5252
5253 if (child_event->attr.inherit_stat)
5254 perf_event_read_event(child_event, child);
5255
5256 child_val = atomic64_read(&child_event->count);
5257
5258 /*
5259 * Add back the child's count to the parent's count:
5260 */
5261 atomic64_add(child_val, &parent_event->count);
5262 atomic64_add(child_event->total_time_enabled,
5263 &parent_event->child_total_time_enabled);
5264 atomic64_add(child_event->total_time_running,
5265 &parent_event->child_total_time_running);
5266
5267 /*
5268 * Remove this event from the parent's list
5269 */
5270 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5271 mutex_lock(&parent_event->child_mutex);
5272 list_del_init(&child_event->child_list);
5273 mutex_unlock(&parent_event->child_mutex);
5274
5275 /*
5276 * Release the parent event, if this was the last
5277 * reference to it.
5278 */
5279 fput(parent_event->filp);
5280}
5281
5282static void
5283__perf_event_exit_task(struct perf_event *child_event,
5284 struct perf_event_context *child_ctx,
5285 struct task_struct *child)
5286{
5287 struct perf_event *parent_event;
5288
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005289 perf_event_remove_from_context(child_event);
5290
5291 parent_event = child_event->parent;
5292 /*
5293 * It can happen that parent exits first, and has events
5294 * that are still around due to the child reference. These
5295 * events need to be zapped - but otherwise linger.
5296 */
5297 if (parent_event) {
5298 sync_child_event(child_event, child);
5299 free_event(child_event);
5300 }
5301}
5302
5303/*
5304 * When a child task exits, feed back event values to parent events.
5305 */
5306void perf_event_exit_task(struct task_struct *child)
5307{
5308 struct perf_event *child_event, *tmp;
5309 struct perf_event_context *child_ctx;
5310 unsigned long flags;
5311
5312 if (likely(!child->perf_event_ctxp)) {
5313 perf_event_task(child, NULL, 0);
5314 return;
5315 }
5316
5317 local_irq_save(flags);
5318 /*
5319 * We can't reschedule here because interrupts are disabled,
5320 * and either child is current or it is a task that can't be
5321 * scheduled, so we are now safe from rescheduling changing
5322 * our context.
5323 */
5324 child_ctx = child->perf_event_ctxp;
5325 __perf_event_task_sched_out(child_ctx);
5326
5327 /*
5328 * Take the context lock here so that if find_get_context is
5329 * reading child->perf_event_ctxp, we wait until it has
5330 * incremented the context's refcount before we do put_ctx below.
5331 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005332 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005333 child->perf_event_ctxp = NULL;
5334 /*
5335 * If this context is a clone; unclone it so it can't get
5336 * swapped to another process while we're removing all
5337 * the events from it.
5338 */
5339 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005340 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005341 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005342
5343 /*
5344 * Report the task dead after unscheduling the events so that we
5345 * won't get any samples after PERF_RECORD_EXIT. We can however still
5346 * get a few PERF_RECORD_READ events.
5347 */
5348 perf_event_task(child, child_ctx, 0);
5349
5350 /*
5351 * We can recurse on the same lock type through:
5352 *
5353 * __perf_event_exit_task()
5354 * sync_child_event()
5355 * fput(parent_event->filp)
5356 * perf_release()
5357 * mutex_lock(&ctx->mutex)
5358 *
5359 * But since its the parent context it won't be the same instance.
5360 */
Peter Zijlstraa0507c82010-05-06 15:42:53 +02005361 mutex_lock(&child_ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005362
5363again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005364 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5365 group_entry)
5366 __perf_event_exit_task(child_event, child_ctx, child);
5367
5368 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005369 group_entry)
5370 __perf_event_exit_task(child_event, child_ctx, child);
5371
5372 /*
5373 * If the last event was a group event, it will have appended all
5374 * its siblings to the list, but we obtained 'tmp' before that which
5375 * will still point to the list head terminating the iteration.
5376 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005377 if (!list_empty(&child_ctx->pinned_groups) ||
5378 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005379 goto again;
5380
5381 mutex_unlock(&child_ctx->mutex);
5382
5383 put_ctx(child_ctx);
5384}
5385
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005386static void perf_free_event(struct perf_event *event,
5387 struct perf_event_context *ctx)
5388{
5389 struct perf_event *parent = event->parent;
5390
5391 if (WARN_ON_ONCE(!parent))
5392 return;
5393
5394 mutex_lock(&parent->child_mutex);
5395 list_del_init(&event->child_list);
5396 mutex_unlock(&parent->child_mutex);
5397
5398 fput(parent->filp);
5399
5400 list_del_event(event, ctx);
5401 free_event(event);
5402}
5403
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005404/*
5405 * free an unexposed, unused context as created by inheritance by
5406 * init_task below, used by fork() in case of fail.
5407 */
5408void perf_event_free_task(struct task_struct *task)
5409{
5410 struct perf_event_context *ctx = task->perf_event_ctxp;
5411 struct perf_event *event, *tmp;
5412
5413 if (!ctx)
5414 return;
5415
5416 mutex_lock(&ctx->mutex);
5417again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005418 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5419 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005420
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005421 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5422 group_entry)
5423 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005424
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005425 if (!list_empty(&ctx->pinned_groups) ||
5426 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005427 goto again;
5428
5429 mutex_unlock(&ctx->mutex);
5430
5431 put_ctx(ctx);
5432}
5433
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005434static int
5435inherit_task_group(struct perf_event *event, struct task_struct *parent,
5436 struct perf_event_context *parent_ctx,
5437 struct task_struct *child,
5438 int *inherited_all)
5439{
5440 int ret;
5441 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5442
5443 if (!event->attr.inherit) {
5444 *inherited_all = 0;
5445 return 0;
5446 }
5447
5448 if (!child_ctx) {
5449 /*
5450 * This is executed from the parent task context, so
5451 * inherit events that have been marked for cloning.
5452 * First allocate and initialize a context for the
5453 * child.
5454 */
5455
5456 child_ctx = kzalloc(sizeof(struct perf_event_context),
5457 GFP_KERNEL);
5458 if (!child_ctx)
5459 return -ENOMEM;
5460
5461 __perf_event_init_context(child_ctx, child);
5462 child->perf_event_ctxp = child_ctx;
5463 get_task_struct(child);
5464 }
5465
5466 ret = inherit_group(event, parent, parent_ctx,
5467 child, child_ctx);
5468
5469 if (ret)
5470 *inherited_all = 0;
5471
5472 return ret;
5473}
5474
5475
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005476/*
5477 * Initialize the perf_event context in task_struct
5478 */
5479int perf_event_init_task(struct task_struct *child)
5480{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005481 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005482 struct perf_event_context *cloned_ctx;
5483 struct perf_event *event;
5484 struct task_struct *parent = current;
5485 int inherited_all = 1;
5486 int ret = 0;
5487
5488 child->perf_event_ctxp = NULL;
5489
5490 mutex_init(&child->perf_event_mutex);
5491 INIT_LIST_HEAD(&child->perf_event_list);
5492
5493 if (likely(!parent->perf_event_ctxp))
5494 return 0;
5495
5496 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005497 * If the parent's context is a clone, pin it so it won't get
5498 * swapped under us.
5499 */
5500 parent_ctx = perf_pin_task_context(parent);
5501
5502 /*
5503 * No need to check if parent_ctx != NULL here; since we saw
5504 * it non-NULL earlier, the only reason for it to become NULL
5505 * is if we exit, and since we're currently in the middle of
5506 * a fork we can't be exiting at the same time.
5507 */
5508
5509 /*
5510 * Lock the parent list. No need to lock the child - not PID
5511 * hashed yet and not running, so nobody can access it.
5512 */
5513 mutex_lock(&parent_ctx->mutex);
5514
5515 /*
5516 * We dont have to disable NMIs - we are only looking at
5517 * the list, not manipulating it:
5518 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005519 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5520 ret = inherit_task_group(event, parent, parent_ctx, child,
5521 &inherited_all);
5522 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005523 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005524 }
5525
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005526 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5527 ret = inherit_task_group(event, parent, parent_ctx, child,
5528 &inherited_all);
5529 if (ret)
5530 break;
5531 }
5532
5533 child_ctx = child->perf_event_ctxp;
5534
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005535 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005536 /*
5537 * Mark the child context as a clone of the parent
5538 * context, or of whatever the parent is a clone of.
5539 * Note that if the parent is a clone, it could get
5540 * uncloned at any point, but that doesn't matter
5541 * because the list of events and the generation
5542 * count can't have changed since we took the mutex.
5543 */
5544 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5545 if (cloned_ctx) {
5546 child_ctx->parent_ctx = cloned_ctx;
5547 child_ctx->parent_gen = parent_ctx->parent_gen;
5548 } else {
5549 child_ctx->parent_ctx = parent_ctx;
5550 child_ctx->parent_gen = parent_ctx->generation;
5551 }
5552 get_ctx(child_ctx->parent_ctx);
5553 }
5554
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005555 mutex_unlock(&parent_ctx->mutex);
5556
5557 perf_unpin_context(parent_ctx);
5558
5559 return ret;
5560}
5561
Paul Mackerras220b1402010-03-10 20:45:52 +11005562static void __init perf_event_init_all_cpus(void)
5563{
5564 int cpu;
5565 struct perf_cpu_context *cpuctx;
5566
5567 for_each_possible_cpu(cpu) {
5568 cpuctx = &per_cpu(perf_cpu_context, cpu);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005569 mutex_init(&cpuctx->hlist_mutex);
Paul Mackerras220b1402010-03-10 20:45:52 +11005570 __perf_event_init_context(&cpuctx->ctx, NULL);
5571 }
5572}
5573
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005574static void __cpuinit perf_event_init_cpu(int cpu)
5575{
5576 struct perf_cpu_context *cpuctx;
5577
5578 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005579
5580 spin_lock(&perf_resource_lock);
5581 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5582 spin_unlock(&perf_resource_lock);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005583
5584 mutex_lock(&cpuctx->hlist_mutex);
5585 if (cpuctx->hlist_refcount > 0) {
5586 struct swevent_hlist *hlist;
5587
5588 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5589 WARN_ON_ONCE(!hlist);
5590 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5591 }
5592 mutex_unlock(&cpuctx->hlist_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005593}
5594
5595#ifdef CONFIG_HOTPLUG_CPU
5596static void __perf_event_exit_cpu(void *info)
5597{
5598 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5599 struct perf_event_context *ctx = &cpuctx->ctx;
5600 struct perf_event *event, *tmp;
5601
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005602 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5603 __perf_event_remove_from_context(event);
5604 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005605 __perf_event_remove_from_context(event);
5606}
5607static void perf_event_exit_cpu(int cpu)
5608{
5609 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5610 struct perf_event_context *ctx = &cpuctx->ctx;
5611
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005612 mutex_lock(&cpuctx->hlist_mutex);
5613 swevent_hlist_release(cpuctx);
5614 mutex_unlock(&cpuctx->hlist_mutex);
5615
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005616 mutex_lock(&ctx->mutex);
5617 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5618 mutex_unlock(&ctx->mutex);
5619}
5620#else
5621static inline void perf_event_exit_cpu(int cpu) { }
5622#endif
5623
5624static int __cpuinit
5625perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5626{
5627 unsigned int cpu = (long)hcpu;
5628
5629 switch (action) {
5630
5631 case CPU_UP_PREPARE:
5632 case CPU_UP_PREPARE_FROZEN:
5633 perf_event_init_cpu(cpu);
5634 break;
5635
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005636 case CPU_DOWN_PREPARE:
5637 case CPU_DOWN_PREPARE_FROZEN:
5638 perf_event_exit_cpu(cpu);
5639 break;
5640
5641 default:
5642 break;
5643 }
5644
5645 return NOTIFY_OK;
5646}
5647
5648/*
5649 * This has to have a higher priority than migration_notifier in sched.c.
5650 */
5651static struct notifier_block __cpuinitdata perf_cpu_nb = {
5652 .notifier_call = perf_cpu_notify,
5653 .priority = 20,
5654};
5655
5656void __init perf_event_init(void)
5657{
Paul Mackerras220b1402010-03-10 20:45:52 +11005658 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005659 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5660 (void *)(long)smp_processor_id());
5661 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5662 (void *)(long)smp_processor_id());
5663 register_cpu_notifier(&perf_cpu_nb);
5664}
5665
Andi Kleenc9be0a32010-01-05 12:47:58 +01005666static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5667 struct sysdev_class_attribute *attr,
5668 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005669{
5670 return sprintf(buf, "%d\n", perf_reserved_percpu);
5671}
5672
5673static ssize_t
5674perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005675 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005676 const char *buf,
5677 size_t count)
5678{
5679 struct perf_cpu_context *cpuctx;
5680 unsigned long val;
5681 int err, cpu, mpt;
5682
5683 err = strict_strtoul(buf, 10, &val);
5684 if (err)
5685 return err;
5686 if (val > perf_max_events)
5687 return -EINVAL;
5688
5689 spin_lock(&perf_resource_lock);
5690 perf_reserved_percpu = val;
5691 for_each_online_cpu(cpu) {
5692 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005693 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005694 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5695 perf_max_events - perf_reserved_percpu);
5696 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005697 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005698 }
5699 spin_unlock(&perf_resource_lock);
5700
5701 return count;
5702}
5703
Andi Kleenc9be0a32010-01-05 12:47:58 +01005704static ssize_t perf_show_overcommit(struct sysdev_class *class,
5705 struct sysdev_class_attribute *attr,
5706 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005707{
5708 return sprintf(buf, "%d\n", perf_overcommit);
5709}
5710
5711static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005712perf_set_overcommit(struct sysdev_class *class,
5713 struct sysdev_class_attribute *attr,
5714 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005715{
5716 unsigned long val;
5717 int err;
5718
5719 err = strict_strtoul(buf, 10, &val);
5720 if (err)
5721 return err;
5722 if (val > 1)
5723 return -EINVAL;
5724
5725 spin_lock(&perf_resource_lock);
5726 perf_overcommit = val;
5727 spin_unlock(&perf_resource_lock);
5728
5729 return count;
5730}
5731
5732static SYSDEV_CLASS_ATTR(
5733 reserve_percpu,
5734 0644,
5735 perf_show_reserve_percpu,
5736 perf_set_reserve_percpu
5737 );
5738
5739static SYSDEV_CLASS_ATTR(
5740 overcommit,
5741 0644,
5742 perf_show_overcommit,
5743 perf_set_overcommit
5744 );
5745
5746static struct attribute *perfclass_attrs[] = {
5747 &attr_reserve_percpu.attr,
5748 &attr_overcommit.attr,
5749 NULL
5750};
5751
5752static struct attribute_group perfclass_attr_group = {
5753 .attrs = perfclass_attrs,
5754 .name = "perf_events",
5755};
5756
5757static int __init perf_event_sysfs_init(void)
5758{
5759 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5760 &perfclass_attr_group);
5761}
5762device_initcall(perf_event_sysfs_init);