blob: 74c60021cdbcdf4ab27ef60cbd8059b9d2f3a1fb [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100206 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100243 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200244 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100292static struct list_head *
293ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
294{
295 if (event->attr.pinned)
296 return &ctx->pinned_groups;
297 else
298 return &ctx->flexible_groups;
299}
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301/*
302 * Add a event from the lists for its context.
303 * Must be called with ctx->mutex and ctx->lock held.
304 */
305static void
306list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307{
308 struct perf_event *group_leader = event->group_leader;
309
310 /*
311 * Depending on whether it is a standalone or sibling event,
312 * add it straight to the context's event list, or to the group
313 * leader's sibling list:
314 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100315 if (group_leader == event) {
316 struct list_head *list;
317
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100318 if (is_software_event(event))
319 event->group_flags |= PERF_GROUP_SOFTWARE;
320
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100321 list = ctx_group_list(event, ctx);
322 list_add_tail(&event->group_entry, list);
323 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 list_add_rcu(&event->event_entry, &ctx->event_list);
333 ctx->nr_events++;
334 if (event->attr.inherit_stat)
335 ctx->nr_stat++;
336}
337
338/*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342static void
343list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344{
345 struct perf_event *sibling, *tmp;
346
347 if (list_empty(&event->group_entry))
348 return;
349 ctx->nr_events--;
350 if (event->attr.inherit_stat)
351 ctx->nr_stat--;
352
353 list_del_init(&event->group_entry);
354 list_del_rcu(&event->event_entry);
355
356 if (event->group_leader != event)
357 event->group_leader->nr_siblings--;
358
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100359 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800360
361 /*
362 * If event was in error state, then keep it
363 * that way, otherwise bogus counts will be
364 * returned on read(). The only way to get out
365 * of error state is by explicit re-enabling
366 * of the event
367 */
368 if (event->state > PERF_EVENT_STATE_OFF)
369 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100370
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200371 /*
372 * If this was a group event with sibling events then
373 * upgrade the siblings to singleton events by adding them
374 * to the context list directly:
375 */
376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100377 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200378
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100379 list = ctx_group_list(event, ctx);
380 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200381 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100382
383 /* Inherit group flags from the previous leader */
384 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200385 }
386}
387
388static void
389event_sched_out(struct perf_event *event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 if (event->state != PERF_EVENT_STATE_ACTIVE)
394 return;
395
396 event->state = PERF_EVENT_STATE_INACTIVE;
397 if (event->pending_disable) {
398 event->pending_disable = 0;
399 event->state = PERF_EVENT_STATE_OFF;
400 }
401 event->tstamp_stopped = ctx->time;
402 event->pmu->disable(event);
403 event->oncpu = -1;
404
405 if (!is_software_event(event))
406 cpuctx->active_oncpu--;
407 ctx->nr_active--;
408 if (event->attr.exclusive || !cpuctx->active_oncpu)
409 cpuctx->exclusive = 0;
410}
411
412static void
413group_sched_out(struct perf_event *group_event,
414 struct perf_cpu_context *cpuctx,
415 struct perf_event_context *ctx)
416{
417 struct perf_event *event;
418
419 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 return;
421
422 event_sched_out(group_event, cpuctx, ctx);
423
424 /*
425 * Schedule out siblings (if any):
426 */
427 list_for_each_entry(event, &group_event->sibling_list, group_entry)
428 event_sched_out(event, cpuctx, ctx);
429
430 if (group_event->attr.exclusive)
431 cpuctx->exclusive = 0;
432}
433
434/*
435 * Cross CPU call to remove a performance event
436 *
437 * We disable the event on the hardware level first. After that we
438 * remove it from the context list.
439 */
440static void __perf_event_remove_from_context(void *info)
441{
442 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 struct perf_event *event = info;
444 struct perf_event_context *ctx = event->ctx;
445
446 /*
447 * If this is a task context, we need to check whether it is
448 * the current task context of this cpu. If not it has been
449 * scheduled out before the smp call arrived.
450 */
451 if (ctx->task && cpuctx->task_ctx != ctx)
452 return;
453
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100454 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200455 /*
456 * Protect the list operation against NMI by disabling the
457 * events on a global level.
458 */
459 perf_disable();
460
461 event_sched_out(event, cpuctx, ctx);
462
463 list_del_event(event, ctx);
464
465 if (!ctx->task) {
466 /*
467 * Allow more per task events with respect to the
468 * reservation:
469 */
470 cpuctx->max_pertask =
471 min(perf_max_events - ctx->nr_events,
472 perf_max_events - perf_reserved_percpu);
473 }
474
475 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100476 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200477}
478
479
480/*
481 * Remove the event from a task's (or a CPU's) list of events.
482 *
483 * Must be called with ctx->mutex held.
484 *
485 * CPU events are removed with a smp call. For task events we only
486 * call when the task is on a CPU.
487 *
488 * If event->ctx is a cloned context, callers must make sure that
489 * every task struct that event->ctx->task could possibly point to
490 * remains valid. This is OK when called from perf_release since
491 * that only calls us on the top-level context, which can't be a clone.
492 * When called from perf_event_exit_task, it's OK because the
493 * context has been detached from its task.
494 */
495static void perf_event_remove_from_context(struct perf_event *event)
496{
497 struct perf_event_context *ctx = event->ctx;
498 struct task_struct *task = ctx->task;
499
500 if (!task) {
501 /*
502 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200503 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504 */
505 smp_call_function_single(event->cpu,
506 __perf_event_remove_from_context,
507 event, 1);
508 return;
509 }
510
511retry:
512 task_oncpu_function_call(task, __perf_event_remove_from_context,
513 event);
514
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100515 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516 /*
517 * If the context is active we need to retry the smp call.
518 */
519 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100520 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200521 goto retry;
522 }
523
524 /*
525 * The lock prevents that this context is scheduled in so we
526 * can remove the event safely, if the call above did not
527 * succeed.
528 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100529 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200530 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100531 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200532}
533
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200534/*
535 * Update total_time_enabled and total_time_running for all events in a group.
536 */
537static void update_group_times(struct perf_event *leader)
538{
539 struct perf_event *event;
540
541 update_event_times(leader);
542 list_for_each_entry(event, &leader->sibling_list, group_entry)
543 update_event_times(event);
544}
545
546/*
547 * Cross CPU call to disable a performance event
548 */
549static void __perf_event_disable(void *info)
550{
551 struct perf_event *event = info;
552 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553 struct perf_event_context *ctx = event->ctx;
554
555 /*
556 * If this is a per-task event, need to check whether this
557 * event's task is the current task on this cpu.
558 */
559 if (ctx->task && cpuctx->task_ctx != ctx)
560 return;
561
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100562 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200563
564 /*
565 * If the event is on, turn it off.
566 * If it is in error state, leave it in error state.
567 */
568 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569 update_context_time(ctx);
570 update_group_times(event);
571 if (event == event->group_leader)
572 group_sched_out(event, cpuctx, ctx);
573 else
574 event_sched_out(event, cpuctx, ctx);
575 event->state = PERF_EVENT_STATE_OFF;
576 }
577
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200579}
580
581/*
582 * Disable a event.
583 *
584 * If event->ctx is a cloned context, callers must make sure that
585 * every task struct that event->ctx->task could possibly point to
586 * remains valid. This condition is satisifed when called through
587 * perf_event_for_each_child or perf_event_for_each because they
588 * hold the top-level event's child_mutex, so any descendant that
589 * goes to exit will block in sync_child_event.
590 * When called from perf_pending_event it's OK because event->ctx
591 * is the current context on this CPU and preemption is disabled,
592 * hence we can't get into perf_event_task_sched_out for this context.
593 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100594void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200595{
596 struct perf_event_context *ctx = event->ctx;
597 struct task_struct *task = ctx->task;
598
599 if (!task) {
600 /*
601 * Disable the event on the cpu that it's on
602 */
603 smp_call_function_single(event->cpu, __perf_event_disable,
604 event, 1);
605 return;
606 }
607
608 retry:
609 task_oncpu_function_call(task, __perf_event_disable, event);
610
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100611 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * If the event is still active, we need to retry the cross-call.
614 */
615 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100616 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200617 goto retry;
618 }
619
620 /*
621 * Since we have the lock this context can't be scheduled
622 * in, so we can change the state safely.
623 */
624 if (event->state == PERF_EVENT_STATE_INACTIVE) {
625 update_group_times(event);
626 event->state = PERF_EVENT_STATE_OFF;
627 }
628
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100629 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200630}
631
632static int
633event_sched_in(struct perf_event *event,
634 struct perf_cpu_context *cpuctx,
635 struct perf_event_context *ctx,
636 int cpu)
637{
638 if (event->state <= PERF_EVENT_STATE_OFF)
639 return 0;
640
641 event->state = PERF_EVENT_STATE_ACTIVE;
642 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
643 /*
644 * The new state must be visible before we turn it on in the hardware:
645 */
646 smp_wmb();
647
648 if (event->pmu->enable(event)) {
649 event->state = PERF_EVENT_STATE_INACTIVE;
650 event->oncpu = -1;
651 return -EAGAIN;
652 }
653
654 event->tstamp_running += ctx->time - event->tstamp_stopped;
655
656 if (!is_software_event(event))
657 cpuctx->active_oncpu++;
658 ctx->nr_active++;
659
660 if (event->attr.exclusive)
661 cpuctx->exclusive = 1;
662
663 return 0;
664}
665
666static int
667group_sched_in(struct perf_event *group_event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx,
670 int cpu)
671{
672 struct perf_event *event, *partial_group;
673 int ret;
674
675 if (group_event->state == PERF_EVENT_STATE_OFF)
676 return 0;
677
678 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 if (ret)
680 return ret < 0 ? ret : 0;
681
682 if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 return -EAGAIN;
684
685 /*
686 * Schedule in siblings as one group (if any):
687 */
688 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
689 if (event_sched_in(event, cpuctx, ctx, cpu)) {
690 partial_group = event;
691 goto group_error;
692 }
693 }
694
695 return 0;
696
697group_error:
698 /*
699 * Groups can be scheduled in as one unit only, so undo any
700 * partial group before returning:
701 */
702 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
703 if (event == partial_group)
704 break;
705 event_sched_out(event, cpuctx, ctx);
706 }
707 event_sched_out(group_event, cpuctx, ctx);
708
709 return -EAGAIN;
710}
711
712/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200713 * Work out whether we can put this event group on the CPU now.
714 */
715static int group_can_go_on(struct perf_event *event,
716 struct perf_cpu_context *cpuctx,
717 int can_add_hw)
718{
719 /*
720 * Groups consisting entirely of software events can always go on.
721 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100722 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200723 return 1;
724 /*
725 * If an exclusive group is already on, no other hardware
726 * events can go on.
727 */
728 if (cpuctx->exclusive)
729 return 0;
730 /*
731 * If this group is exclusive and there are already
732 * events on the CPU, it can't go on.
733 */
734 if (event->attr.exclusive && cpuctx->active_oncpu)
735 return 0;
736 /*
737 * Otherwise, try to add it if all previous groups were able
738 * to go on.
739 */
740 return can_add_hw;
741}
742
743static void add_event_to_ctx(struct perf_event *event,
744 struct perf_event_context *ctx)
745{
746 list_add_event(event, ctx);
747 event->tstamp_enabled = ctx->time;
748 event->tstamp_running = ctx->time;
749 event->tstamp_stopped = ctx->time;
750}
751
752/*
753 * Cross CPU call to install and enable a performance event
754 *
755 * Must be called with ctx->mutex held
756 */
757static void __perf_install_in_context(void *info)
758{
759 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 struct perf_event *event = info;
761 struct perf_event_context *ctx = event->ctx;
762 struct perf_event *leader = event->group_leader;
763 int cpu = smp_processor_id();
764 int err;
765
766 /*
767 * If this is a task context, we need to check whether it is
768 * the current task context of this cpu. If not it has been
769 * scheduled out before the smp call arrived.
770 * Or possibly this is the right context but it isn't
771 * on this cpu because it had no events.
772 */
773 if (ctx->task && cpuctx->task_ctx != ctx) {
774 if (cpuctx->task_ctx || ctx->task != current)
775 return;
776 cpuctx->task_ctx = ctx;
777 }
778
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100779 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780 ctx->is_active = 1;
781 update_context_time(ctx);
782
783 /*
784 * Protect the list operation against NMI by disabling the
785 * events on a global level. NOP for non NMI based events.
786 */
787 perf_disable();
788
789 add_event_to_ctx(event, ctx);
790
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100791 if (event->cpu != -1 && event->cpu != smp_processor_id())
792 goto unlock;
793
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200794 /*
795 * Don't put the event on if it is disabled or if
796 * it is in a group and the group isn't on.
797 */
798 if (event->state != PERF_EVENT_STATE_INACTIVE ||
799 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 goto unlock;
801
802 /*
803 * An exclusive event can't go on if there are already active
804 * hardware events, and no hardware event can go on if there
805 * is already an exclusive event on.
806 */
807 if (!group_can_go_on(event, cpuctx, 1))
808 err = -EEXIST;
809 else
810 err = event_sched_in(event, cpuctx, ctx, cpu);
811
812 if (err) {
813 /*
814 * This event couldn't go on. If it is in a group
815 * then we have to pull the whole group off.
816 * If the event group is pinned then put it in error state.
817 */
818 if (leader != event)
819 group_sched_out(leader, cpuctx, ctx);
820 if (leader->attr.pinned) {
821 update_group_times(leader);
822 leader->state = PERF_EVENT_STATE_ERROR;
823 }
824 }
825
826 if (!err && !ctx->task && cpuctx->max_pertask)
827 cpuctx->max_pertask--;
828
829 unlock:
830 perf_enable();
831
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100832 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200833}
834
835/*
836 * Attach a performance event to a context
837 *
838 * First we add the event to the list with the hardware enable bit
839 * in event->hw_config cleared.
840 *
841 * If the event is attached to a task which is on a CPU we use a smp
842 * call to enable it in the task context. The task might have been
843 * scheduled away, but we check this in the smp call again.
844 *
845 * Must be called with ctx->mutex held.
846 */
847static void
848perf_install_in_context(struct perf_event_context *ctx,
849 struct perf_event *event,
850 int cpu)
851{
852 struct task_struct *task = ctx->task;
853
854 if (!task) {
855 /*
856 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200857 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200858 */
859 smp_call_function_single(cpu, __perf_install_in_context,
860 event, 1);
861 return;
862 }
863
864retry:
865 task_oncpu_function_call(task, __perf_install_in_context,
866 event);
867
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100868 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200869 /*
870 * we need to retry the smp call.
871 */
872 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100873 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200874 goto retry;
875 }
876
877 /*
878 * The lock prevents that this context is scheduled in so we
879 * can add the event safely, if it the call above did not
880 * succeed.
881 */
882 if (list_empty(&event->group_entry))
883 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100884 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200885}
886
887/*
888 * Put a event into inactive state and update time fields.
889 * Enabling the leader of a group effectively enables all
890 * the group members that aren't explicitly disabled, so we
891 * have to update their ->tstamp_enabled also.
892 * Note: this works for group members as well as group leaders
893 * since the non-leader members' sibling_lists will be empty.
894 */
895static void __perf_event_mark_enabled(struct perf_event *event,
896 struct perf_event_context *ctx)
897{
898 struct perf_event *sub;
899
900 event->state = PERF_EVENT_STATE_INACTIVE;
901 event->tstamp_enabled = ctx->time - event->total_time_enabled;
902 list_for_each_entry(sub, &event->sibling_list, group_entry)
903 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 sub->tstamp_enabled =
905 ctx->time - sub->total_time_enabled;
906}
907
908/*
909 * Cross CPU call to enable a performance event
910 */
911static void __perf_event_enable(void *info)
912{
913 struct perf_event *event = info;
914 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 struct perf_event_context *ctx = event->ctx;
916 struct perf_event *leader = event->group_leader;
917 int err;
918
919 /*
920 * If this is a per-task event, need to check whether this
921 * event's task is the current task on this cpu.
922 */
923 if (ctx->task && cpuctx->task_ctx != ctx) {
924 if (cpuctx->task_ctx || ctx->task != current)
925 return;
926 cpuctx->task_ctx = ctx;
927 }
928
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100929 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200930 ctx->is_active = 1;
931 update_context_time(ctx);
932
933 if (event->state >= PERF_EVENT_STATE_INACTIVE)
934 goto unlock;
935 __perf_event_mark_enabled(event, ctx);
936
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100937 if (event->cpu != -1 && event->cpu != smp_processor_id())
938 goto unlock;
939
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200940 /*
941 * If the event is in a group and isn't the group leader,
942 * then don't put it on unless the group is on.
943 */
944 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945 goto unlock;
946
947 if (!group_can_go_on(event, cpuctx, 1)) {
948 err = -EEXIST;
949 } else {
950 perf_disable();
951 if (event == leader)
952 err = group_sched_in(event, cpuctx, ctx,
953 smp_processor_id());
954 else
955 err = event_sched_in(event, cpuctx, ctx,
956 smp_processor_id());
957 perf_enable();
958 }
959
960 if (err) {
961 /*
962 * If this event can't go on and it's part of a
963 * group, then the whole group has to come off.
964 */
965 if (leader != event)
966 group_sched_out(leader, cpuctx, ctx);
967 if (leader->attr.pinned) {
968 update_group_times(leader);
969 leader->state = PERF_EVENT_STATE_ERROR;
970 }
971 }
972
973 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100974 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200975}
976
977/*
978 * Enable a event.
979 *
980 * If event->ctx is a cloned context, callers must make sure that
981 * every task struct that event->ctx->task could possibly point to
982 * remains valid. This condition is satisfied when called through
983 * perf_event_for_each_child or perf_event_for_each as described
984 * for perf_event_disable.
985 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100986void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200987{
988 struct perf_event_context *ctx = event->ctx;
989 struct task_struct *task = ctx->task;
990
991 if (!task) {
992 /*
993 * Enable the event on the cpu that it's on
994 */
995 smp_call_function_single(event->cpu, __perf_event_enable,
996 event, 1);
997 return;
998 }
999
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001000 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001001 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 goto out;
1003
1004 /*
1005 * If the event is in error state, clear that first.
1006 * That way, if we see the event in error state below, we
1007 * know that it has gone back into error state, as distinct
1008 * from the task having been scheduled away before the
1009 * cross-call arrived.
1010 */
1011 if (event->state == PERF_EVENT_STATE_ERROR)
1012 event->state = PERF_EVENT_STATE_OFF;
1013
1014 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016 task_oncpu_function_call(task, __perf_event_enable, event);
1017
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001018 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001019
1020 /*
1021 * If the context is active and the event is still off,
1022 * we need to retry the cross-call.
1023 */
1024 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 goto retry;
1026
1027 /*
1028 * Since we have the lock this context can't be scheduled
1029 * in, so we can change the state safely.
1030 */
1031 if (event->state == PERF_EVENT_STATE_OFF)
1032 __perf_event_mark_enabled(event, ctx);
1033
1034 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001035 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001036}
1037
1038static int perf_event_refresh(struct perf_event *event, int refresh)
1039{
1040 /*
1041 * not supported on inherited events
1042 */
1043 if (event->attr.inherit)
1044 return -EINVAL;
1045
1046 atomic_add(refresh, &event->event_limit);
1047 perf_event_enable(event);
1048
1049 return 0;
1050}
1051
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001052enum event_type_t {
1053 EVENT_FLEXIBLE = 0x1,
1054 EVENT_PINNED = 0x2,
1055 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1056};
1057
1058static void ctx_sched_out(struct perf_event_context *ctx,
1059 struct perf_cpu_context *cpuctx,
1060 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001061{
1062 struct perf_event *event;
1063
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001064 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001065 ctx->is_active = 0;
1066 if (likely(!ctx->nr_events))
1067 goto out;
1068 update_context_time(ctx);
1069
1070 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001071 if (!ctx->nr_active)
1072 goto out_enable;
1073
1074 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001075 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1077
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001078 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001079 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001080 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001081
1082 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083 perf_enable();
1084 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001085 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001086}
1087
1088/*
1089 * Test whether two contexts are equivalent, i.e. whether they
1090 * have both been cloned from the same version of the same context
1091 * and they both have the same number of enabled events.
1092 * If the number of enabled events is the same, then the set
1093 * of enabled events should be the same, because these are both
1094 * inherited contexts, therefore we can't access individual events
1095 * in them directly with an fd; we can only enable/disable all
1096 * events via prctl, or enable/disable all events in a family
1097 * via ioctl, which will have the same effect on both contexts.
1098 */
1099static int context_equiv(struct perf_event_context *ctx1,
1100 struct perf_event_context *ctx2)
1101{
1102 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103 && ctx1->parent_gen == ctx2->parent_gen
1104 && !ctx1->pin_count && !ctx2->pin_count;
1105}
1106
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001107static void __perf_event_sync_stat(struct perf_event *event,
1108 struct perf_event *next_event)
1109{
1110 u64 value;
1111
1112 if (!event->attr.inherit_stat)
1113 return;
1114
1115 /*
1116 * Update the event value, we cannot use perf_event_read()
1117 * because we're in the middle of a context switch and have IRQs
1118 * disabled, which upsets smp_call_function_single(), however
1119 * we know the event must be on the current CPU, therefore we
1120 * don't need to use it.
1121 */
1122 switch (event->state) {
1123 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001124 event->pmu->read(event);
1125 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001126
1127 case PERF_EVENT_STATE_INACTIVE:
1128 update_event_times(event);
1129 break;
1130
1131 default:
1132 break;
1133 }
1134
1135 /*
1136 * In order to keep per-task stats reliable we need to flip the event
1137 * values when we flip the contexts.
1138 */
1139 value = atomic64_read(&next_event->count);
1140 value = atomic64_xchg(&event->count, value);
1141 atomic64_set(&next_event->count, value);
1142
1143 swap(event->total_time_enabled, next_event->total_time_enabled);
1144 swap(event->total_time_running, next_event->total_time_running);
1145
1146 /*
1147 * Since we swizzled the values, update the user visible data too.
1148 */
1149 perf_event_update_userpage(event);
1150 perf_event_update_userpage(next_event);
1151}
1152
1153#define list_next_entry(pos, member) \
1154 list_entry(pos->member.next, typeof(*pos), member)
1155
1156static void perf_event_sync_stat(struct perf_event_context *ctx,
1157 struct perf_event_context *next_ctx)
1158{
1159 struct perf_event *event, *next_event;
1160
1161 if (!ctx->nr_stat)
1162 return;
1163
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001164 update_context_time(ctx);
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 event = list_first_entry(&ctx->event_list,
1167 struct perf_event, event_entry);
1168
1169 next_event = list_first_entry(&next_ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 while (&event->event_entry != &ctx->event_list &&
1173 &next_event->event_entry != &next_ctx->event_list) {
1174
1175 __perf_event_sync_stat(event, next_event);
1176
1177 event = list_next_entry(event, event_entry);
1178 next_event = list_next_entry(next_event, event_entry);
1179 }
1180}
1181
1182/*
1183 * Called from scheduler to remove the events of the current task,
1184 * with interrupts disabled.
1185 *
1186 * We stop each event and update the event value in event->count.
1187 *
1188 * This does not protect us against NMI, but disable()
1189 * sets the disabled bit in the control field of event _before_
1190 * accessing the event control register. If a NMI hits, then it will
1191 * not restart the event.
1192 */
1193void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001194 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001195{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001196 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001197 struct perf_event_context *ctx = task->perf_event_ctxp;
1198 struct perf_event_context *next_ctx;
1199 struct perf_event_context *parent;
1200 struct pt_regs *regs;
1201 int do_switch = 1;
1202
1203 regs = task_pt_regs(task);
1204 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205
1206 if (likely(!ctx || !cpuctx->task_ctx))
1207 return;
1208
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001209 rcu_read_lock();
1210 parent = rcu_dereference(ctx->parent_ctx);
1211 next_ctx = next->perf_event_ctxp;
1212 if (parent && next_ctx &&
1213 rcu_dereference(next_ctx->parent_ctx) == parent) {
1214 /*
1215 * Looks like the two contexts are clones, so we might be
1216 * able to optimize the context switch. We lock both
1217 * contexts and check that they are clones under the
1218 * lock (including re-checking that neither has been
1219 * uncloned in the meantime). It doesn't matter which
1220 * order we take the locks because no other cpu could
1221 * be trying to lock both of these tasks.
1222 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001223 raw_spin_lock(&ctx->lock);
1224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001225 if (context_equiv(ctx, next_ctx)) {
1226 /*
1227 * XXX do we need a memory barrier of sorts
1228 * wrt to rcu_dereference() of perf_event_ctxp
1229 */
1230 task->perf_event_ctxp = next_ctx;
1231 next->perf_event_ctxp = ctx;
1232 ctx->task = next;
1233 next_ctx->task = task;
1234 do_switch = 0;
1235
1236 perf_event_sync_stat(ctx, next_ctx);
1237 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001238 raw_spin_unlock(&next_ctx->lock);
1239 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001240 }
1241 rcu_read_unlock();
1242
1243 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001244 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001245 cpuctx->task_ctx = NULL;
1246 }
1247}
1248
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249static void task_ctx_sched_out(struct perf_event_context *ctx,
1250 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1253
1254 if (!cpuctx->task_ctx)
1255 return;
1256
1257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1258 return;
1259
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261 cpuctx->task_ctx = NULL;
1262}
1263
1264/*
1265 * Called with IRQs disabled
1266 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001267static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001268{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001269 task_ctx_sched_out(ctx, EVENT_ALL);
1270}
1271
1272/*
1273 * Called with IRQs disabled
1274 */
1275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1276 enum event_type_t event_type)
1277{
1278 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001279}
1280
1281static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001282ctx_pinned_sched_in(struct perf_event_context *ctx,
1283 struct perf_cpu_context *cpuctx,
1284 int cpu)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285{
1286 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001288 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1289 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, 1))
1295 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296
1297 /*
1298 * If this pinned group hasn't been scheduled,
1299 * put it in error state.
1300 */
1301 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1302 update_group_times(event);
1303 event->state = PERF_EVENT_STATE_ERROR;
1304 }
1305 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001306}
1307
1308static void
1309ctx_flexible_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 int cpu)
1312{
1313 struct perf_event *event;
1314 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001315
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001316 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1317 /* Ignore events in OFF or ERROR state */
1318 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001319 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001320 /*
1321 * Listen to the 'cpu' scheduling filter constraint
1322 * of events:
1323 */
1324 if (event->cpu != -1 && event->cpu != cpu)
1325 continue;
1326
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001327 if (group_can_go_on(event, cpuctx, can_add_hw))
1328 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001329 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001330 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001331}
1332
1333static void
1334ctx_sched_in(struct perf_event_context *ctx,
1335 struct perf_cpu_context *cpuctx,
1336 enum event_type_t event_type)
1337{
1338 int cpu = smp_processor_id();
1339
1340 raw_spin_lock(&ctx->lock);
1341 ctx->is_active = 1;
1342 if (likely(!ctx->nr_events))
1343 goto out;
1344
1345 ctx->timestamp = perf_clock();
1346
1347 perf_disable();
1348
1349 /*
1350 * First go through the list and put on any pinned groups
1351 * in order to give them the best chance of going on.
1352 */
1353 if (event_type & EVENT_PINNED)
1354 ctx_pinned_sched_in(ctx, cpuctx, cpu);
1355
1356 /* Then walk through the lower prio flexible groups */
1357 if (event_type & EVENT_FLEXIBLE)
1358 ctx_flexible_sched_in(ctx, cpuctx, cpu);
1359
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360 perf_enable();
1361 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001362 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001363}
1364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1366 enum event_type_t event_type)
1367{
1368 struct perf_event_context *ctx = &cpuctx->ctx;
1369
1370 ctx_sched_in(ctx, cpuctx, event_type);
1371}
1372
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001373static void task_ctx_sched_in(struct task_struct *task,
1374 enum event_type_t event_type)
1375{
1376 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1377 struct perf_event_context *ctx = task->perf_event_ctxp;
1378
1379 if (likely(!ctx))
1380 return;
1381 if (cpuctx->task_ctx == ctx)
1382 return;
1383 ctx_sched_in(ctx, cpuctx, event_type);
1384 cpuctx->task_ctx = ctx;
1385}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001386/*
1387 * Called from scheduler to add the events of the current task
1388 * with interrupts disabled.
1389 *
1390 * We restore the event value and then enable it.
1391 *
1392 * This does not protect us against NMI, but enable()
1393 * sets the enabled bit in the control field of event _before_
1394 * accessing the event control register. If a NMI hits, then it will
1395 * keep the event running.
1396 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001397void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001399 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1400 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001401
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001402 if (likely(!ctx))
1403 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001404
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001405 if (cpuctx->task_ctx == ctx)
1406 return;
1407
1408 /*
1409 * We want to keep the following priority order:
1410 * cpu pinned (that don't need to move), task pinned,
1411 * cpu flexible, task flexible.
1412 */
1413 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1414
1415 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1416 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1417 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1418
1419 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001420}
1421
1422#define MAX_INTERRUPTS (~0ULL)
1423
1424static void perf_log_throttle(struct perf_event *event, int enable);
1425
Peter Zijlstraabd50712010-01-26 18:50:16 +01001426static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1427{
1428 u64 frequency = event->attr.sample_freq;
1429 u64 sec = NSEC_PER_SEC;
1430 u64 divisor, dividend;
1431
1432 int count_fls, nsec_fls, frequency_fls, sec_fls;
1433
1434 count_fls = fls64(count);
1435 nsec_fls = fls64(nsec);
1436 frequency_fls = fls64(frequency);
1437 sec_fls = 30;
1438
1439 /*
1440 * We got @count in @nsec, with a target of sample_freq HZ
1441 * the target period becomes:
1442 *
1443 * @count * 10^9
1444 * period = -------------------
1445 * @nsec * sample_freq
1446 *
1447 */
1448
1449 /*
1450 * Reduce accuracy by one bit such that @a and @b converge
1451 * to a similar magnitude.
1452 */
1453#define REDUCE_FLS(a, b) \
1454do { \
1455 if (a##_fls > b##_fls) { \
1456 a >>= 1; \
1457 a##_fls--; \
1458 } else { \
1459 b >>= 1; \
1460 b##_fls--; \
1461 } \
1462} while (0)
1463
1464 /*
1465 * Reduce accuracy until either term fits in a u64, then proceed with
1466 * the other, so that finally we can do a u64/u64 division.
1467 */
1468 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1469 REDUCE_FLS(nsec, frequency);
1470 REDUCE_FLS(sec, count);
1471 }
1472
1473 if (count_fls + sec_fls > 64) {
1474 divisor = nsec * frequency;
1475
1476 while (count_fls + sec_fls > 64) {
1477 REDUCE_FLS(count, sec);
1478 divisor >>= 1;
1479 }
1480
1481 dividend = count * sec;
1482 } else {
1483 dividend = count * sec;
1484
1485 while (nsec_fls + frequency_fls > 64) {
1486 REDUCE_FLS(nsec, frequency);
1487 dividend >>= 1;
1488 }
1489
1490 divisor = nsec * frequency;
1491 }
1492
1493 return div64_u64(dividend, divisor);
1494}
1495
Stephane Eraniand76a0812010-02-08 17:06:01 +02001496static void perf_event_stop(struct perf_event *event)
1497{
1498 if (!event->pmu->stop)
1499 return event->pmu->disable(event);
1500
1501 return event->pmu->stop(event);
1502}
1503
1504static int perf_event_start(struct perf_event *event)
1505{
1506 if (!event->pmu->start)
1507 return event->pmu->enable(event);
1508
1509 return event->pmu->start(event);
1510}
1511
Peter Zijlstraabd50712010-01-26 18:50:16 +01001512static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001513{
1514 struct hw_perf_event *hwc = &event->hw;
1515 u64 period, sample_period;
1516 s64 delta;
1517
Peter Zijlstraabd50712010-01-26 18:50:16 +01001518 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001519
1520 delta = (s64)(period - hwc->sample_period);
1521 delta = (delta + 7) / 8; /* low pass filter */
1522
1523 sample_period = hwc->sample_period + delta;
1524
1525 if (!sample_period)
1526 sample_period = 1;
1527
1528 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001529
1530 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1531 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001532 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001533 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001534 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001535 perf_enable();
1536 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001537}
1538
1539static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1540{
1541 struct perf_event *event;
1542 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001543 u64 interrupts, now;
1544 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001545
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001546 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001547 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001548 if (event->state != PERF_EVENT_STATE_ACTIVE)
1549 continue;
1550
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001551 if (event->cpu != -1 && event->cpu != smp_processor_id())
1552 continue;
1553
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001554 hwc = &event->hw;
1555
1556 interrupts = hwc->interrupts;
1557 hwc->interrupts = 0;
1558
1559 /*
1560 * unthrottle events on the tick
1561 */
1562 if (interrupts == MAX_INTERRUPTS) {
1563 perf_log_throttle(event, 1);
1564 event->pmu->unthrottle(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001565 }
1566
1567 if (!event->attr.freq || !event->attr.sample_freq)
1568 continue;
1569
Peter Zijlstraabd50712010-01-26 18:50:16 +01001570 event->pmu->read(event);
1571 now = atomic64_read(&event->count);
1572 delta = now - hwc->freq_count_stamp;
1573 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574
Peter Zijlstraabd50712010-01-26 18:50:16 +01001575 if (delta > 0)
1576 perf_adjust_period(event, TICK_NSEC, delta);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001577 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001579}
1580
1581/*
1582 * Round-robin a context's events:
1583 */
1584static void rotate_ctx(struct perf_event_context *ctx)
1585{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001586 if (!ctx->nr_events)
1587 return;
1588
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001589 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001590
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001591 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001592 list_rotate_left(&ctx->flexible_groups);
1593
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001594 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001595}
1596
Peter Zijlstra49f47432009-12-27 11:51:52 +01001597void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001598{
1599 struct perf_cpu_context *cpuctx;
1600 struct perf_event_context *ctx;
1601
1602 if (!atomic_read(&nr_events))
1603 return;
1604
Peter Zijlstra49f47432009-12-27 11:51:52 +01001605 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001606 ctx = curr->perf_event_ctxp;
1607
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001608 perf_disable();
1609
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001610 perf_ctx_adjust_freq(&cpuctx->ctx);
1611 if (ctx)
1612 perf_ctx_adjust_freq(ctx);
1613
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001614 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001615 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001616 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001617
1618 rotate_ctx(&cpuctx->ctx);
1619 if (ctx)
1620 rotate_ctx(ctx);
1621
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001622 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001623 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001624 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001625
1626 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001627}
1628
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001629static int event_enable_on_exec(struct perf_event *event,
1630 struct perf_event_context *ctx)
1631{
1632 if (!event->attr.enable_on_exec)
1633 return 0;
1634
1635 event->attr.enable_on_exec = 0;
1636 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1637 return 0;
1638
1639 __perf_event_mark_enabled(event, ctx);
1640
1641 return 1;
1642}
1643
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001644/*
1645 * Enable all of a task's events that have been marked enable-on-exec.
1646 * This expects task == current.
1647 */
1648static void perf_event_enable_on_exec(struct task_struct *task)
1649{
1650 struct perf_event_context *ctx;
1651 struct perf_event *event;
1652 unsigned long flags;
1653 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001654 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001655
1656 local_irq_save(flags);
1657 ctx = task->perf_event_ctxp;
1658 if (!ctx || !ctx->nr_events)
1659 goto out;
1660
1661 __perf_event_task_sched_out(ctx);
1662
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001663 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001664
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001665 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1666 ret = event_enable_on_exec(event, ctx);
1667 if (ret)
1668 enabled = 1;
1669 }
1670
1671 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1672 ret = event_enable_on_exec(event, ctx);
1673 if (ret)
1674 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001675 }
1676
1677 /*
1678 * Unclone this context if we enabled any event.
1679 */
1680 if (enabled)
1681 unclone_ctx(ctx);
1682
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001683 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001684
Peter Zijlstra49f47432009-12-27 11:51:52 +01001685 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001686 out:
1687 local_irq_restore(flags);
1688}
1689
1690/*
1691 * Cross CPU call to read the hardware event
1692 */
1693static void __perf_event_read(void *info)
1694{
1695 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1696 struct perf_event *event = info;
1697 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001698
1699 /*
1700 * If this is a task context, we need to check whether it is
1701 * the current task context of this cpu. If not it has been
1702 * scheduled out before the smp call arrived. In that case
1703 * event->count would have been updated to a recent sample
1704 * when the event was scheduled out.
1705 */
1706 if (ctx->task && cpuctx->task_ctx != ctx)
1707 return;
1708
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001709 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001710 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001711 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001712 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001713
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001714 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001715}
1716
1717static u64 perf_event_read(struct perf_event *event)
1718{
1719 /*
1720 * If event is enabled and currently active on a CPU, update the
1721 * value in the event structure:
1722 */
1723 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1724 smp_call_function_single(event->oncpu,
1725 __perf_event_read, event, 1);
1726 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001727 struct perf_event_context *ctx = event->ctx;
1728 unsigned long flags;
1729
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001730 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001731 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001732 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001733 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 }
1735
1736 return atomic64_read(&event->count);
1737}
1738
1739/*
1740 * Initialize the perf_event context in a task_struct:
1741 */
1742static void
1743__perf_event_init_context(struct perf_event_context *ctx,
1744 struct task_struct *task)
1745{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001746 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001747 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001748 INIT_LIST_HEAD(&ctx->pinned_groups);
1749 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001750 INIT_LIST_HEAD(&ctx->event_list);
1751 atomic_set(&ctx->refcount, 1);
1752 ctx->task = task;
1753}
1754
1755static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1756{
1757 struct perf_event_context *ctx;
1758 struct perf_cpu_context *cpuctx;
1759 struct task_struct *task;
1760 unsigned long flags;
1761 int err;
1762
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001763 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001764 /* Must be root to operate on a CPU event: */
1765 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1766 return ERR_PTR(-EACCES);
1767
Paul Mackerras0f624e72009-12-15 19:40:32 +11001768 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001769 return ERR_PTR(-EINVAL);
1770
1771 /*
1772 * We could be clever and allow to attach a event to an
1773 * offline CPU and activate it when the CPU comes up, but
1774 * that's for later.
1775 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001776 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001777 return ERR_PTR(-ENODEV);
1778
1779 cpuctx = &per_cpu(perf_cpu_context, cpu);
1780 ctx = &cpuctx->ctx;
1781 get_ctx(ctx);
1782
1783 return ctx;
1784 }
1785
1786 rcu_read_lock();
1787 if (!pid)
1788 task = current;
1789 else
1790 task = find_task_by_vpid(pid);
1791 if (task)
1792 get_task_struct(task);
1793 rcu_read_unlock();
1794
1795 if (!task)
1796 return ERR_PTR(-ESRCH);
1797
1798 /*
1799 * Can't attach events to a dying task.
1800 */
1801 err = -ESRCH;
1802 if (task->flags & PF_EXITING)
1803 goto errout;
1804
1805 /* Reuse ptrace permission checks for now. */
1806 err = -EACCES;
1807 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1808 goto errout;
1809
1810 retry:
1811 ctx = perf_lock_task_context(task, &flags);
1812 if (ctx) {
1813 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001814 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001815 }
1816
1817 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001818 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001819 err = -ENOMEM;
1820 if (!ctx)
1821 goto errout;
1822 __perf_event_init_context(ctx, task);
1823 get_ctx(ctx);
1824 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1825 /*
1826 * We raced with some other task; use
1827 * the context they set.
1828 */
1829 kfree(ctx);
1830 goto retry;
1831 }
1832 get_task_struct(task);
1833 }
1834
1835 put_task_struct(task);
1836 return ctx;
1837
1838 errout:
1839 put_task_struct(task);
1840 return ERR_PTR(err);
1841}
1842
Li Zefan6fb29152009-10-15 11:21:42 +08001843static void perf_event_free_filter(struct perf_event *event);
1844
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001845static void free_event_rcu(struct rcu_head *head)
1846{
1847 struct perf_event *event;
1848
1849 event = container_of(head, struct perf_event, rcu_head);
1850 if (event->ns)
1851 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001852 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001853 kfree(event);
1854}
1855
1856static void perf_pending_sync(struct perf_event *event);
1857
1858static void free_event(struct perf_event *event)
1859{
1860 perf_pending_sync(event);
1861
1862 if (!event->parent) {
1863 atomic_dec(&nr_events);
1864 if (event->attr.mmap)
1865 atomic_dec(&nr_mmap_events);
1866 if (event->attr.comm)
1867 atomic_dec(&nr_comm_events);
1868 if (event->attr.task)
1869 atomic_dec(&nr_task_events);
1870 }
1871
1872 if (event->output) {
1873 fput(event->output->filp);
1874 event->output = NULL;
1875 }
1876
1877 if (event->destroy)
1878 event->destroy(event);
1879
1880 put_ctx(event->ctx);
1881 call_rcu(&event->rcu_head, free_event_rcu);
1882}
1883
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001884int perf_event_release_kernel(struct perf_event *event)
1885{
1886 struct perf_event_context *ctx = event->ctx;
1887
1888 WARN_ON_ONCE(ctx->parent_ctx);
1889 mutex_lock(&ctx->mutex);
1890 perf_event_remove_from_context(event);
1891 mutex_unlock(&ctx->mutex);
1892
1893 mutex_lock(&event->owner->perf_event_mutex);
1894 list_del_init(&event->owner_entry);
1895 mutex_unlock(&event->owner->perf_event_mutex);
1896 put_task_struct(event->owner);
1897
1898 free_event(event);
1899
1900 return 0;
1901}
1902EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1903
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001904/*
1905 * Called when the last reference to the file is gone.
1906 */
1907static int perf_release(struct inode *inode, struct file *file)
1908{
1909 struct perf_event *event = file->private_data;
1910
1911 file->private_data = NULL;
1912
1913 return perf_event_release_kernel(event);
1914}
1915
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001916static int perf_event_read_size(struct perf_event *event)
1917{
1918 int entry = sizeof(u64); /* value */
1919 int size = 0;
1920 int nr = 1;
1921
1922 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1923 size += sizeof(u64);
1924
1925 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1926 size += sizeof(u64);
1927
1928 if (event->attr.read_format & PERF_FORMAT_ID)
1929 entry += sizeof(u64);
1930
1931 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1932 nr += event->group_leader->nr_siblings;
1933 size += sizeof(u64);
1934 }
1935
1936 size += entry * nr;
1937
1938 return size;
1939}
1940
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001941u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001942{
1943 struct perf_event *child;
1944 u64 total = 0;
1945
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001946 *enabled = 0;
1947 *running = 0;
1948
Peter Zijlstra6f105812009-11-20 22:19:56 +01001949 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001951 *enabled += event->total_time_enabled +
1952 atomic64_read(&event->child_total_time_enabled);
1953 *running += event->total_time_running +
1954 atomic64_read(&event->child_total_time_running);
1955
1956 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001957 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001958 *enabled += child->total_time_enabled;
1959 *running += child->total_time_running;
1960 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001961 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001962
1963 return total;
1964}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001965EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001966
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001967static int perf_event_read_group(struct perf_event *event,
1968 u64 read_format, char __user *buf)
1969{
1970 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001971 int n = 0, size = 0, ret = -EFAULT;
1972 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001973 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001974 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001975
Peter Zijlstra6f105812009-11-20 22:19:56 +01001976 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001977 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001978
1979 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001980 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1981 values[n++] = enabled;
1982 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1983 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001984 values[n++] = count;
1985 if (read_format & PERF_FORMAT_ID)
1986 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001987
1988 size = n * sizeof(u64);
1989
1990 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001991 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001992
Peter Zijlstra6f105812009-11-20 22:19:56 +01001993 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001994
1995 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001996 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001997
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001998 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001999 if (read_format & PERF_FORMAT_ID)
2000 values[n++] = primary_event_id(sub);
2001
2002 size = n * sizeof(u64);
2003
Stephane Eranian184d3da2009-11-23 21:40:49 -08002004 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002005 ret = -EFAULT;
2006 goto unlock;
2007 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002008
2009 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002010 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002011unlock:
2012 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002013
Peter Zijlstraabf48682009-11-20 22:19:49 +01002014 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002015}
2016
2017static int perf_event_read_one(struct perf_event *event,
2018 u64 read_format, char __user *buf)
2019{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002020 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002021 u64 values[4];
2022 int n = 0;
2023
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002024 values[n++] = perf_event_read_value(event, &enabled, &running);
2025 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2026 values[n++] = enabled;
2027 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2028 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002029 if (read_format & PERF_FORMAT_ID)
2030 values[n++] = primary_event_id(event);
2031
2032 if (copy_to_user(buf, values, n * sizeof(u64)))
2033 return -EFAULT;
2034
2035 return n * sizeof(u64);
2036}
2037
2038/*
2039 * Read the performance event - simple non blocking version for now
2040 */
2041static ssize_t
2042perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2043{
2044 u64 read_format = event->attr.read_format;
2045 int ret;
2046
2047 /*
2048 * Return end-of-file for a read on a event that is in
2049 * error state (i.e. because it was pinned but it couldn't be
2050 * scheduled on to the CPU at some point).
2051 */
2052 if (event->state == PERF_EVENT_STATE_ERROR)
2053 return 0;
2054
2055 if (count < perf_event_read_size(event))
2056 return -ENOSPC;
2057
2058 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002059 if (read_format & PERF_FORMAT_GROUP)
2060 ret = perf_event_read_group(event, read_format, buf);
2061 else
2062 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002063
2064 return ret;
2065}
2066
2067static ssize_t
2068perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2069{
2070 struct perf_event *event = file->private_data;
2071
2072 return perf_read_hw(event, buf, count);
2073}
2074
2075static unsigned int perf_poll(struct file *file, poll_table *wait)
2076{
2077 struct perf_event *event = file->private_data;
2078 struct perf_mmap_data *data;
2079 unsigned int events = POLL_HUP;
2080
2081 rcu_read_lock();
2082 data = rcu_dereference(event->data);
2083 if (data)
2084 events = atomic_xchg(&data->poll, 0);
2085 rcu_read_unlock();
2086
2087 poll_wait(file, &event->waitq, wait);
2088
2089 return events;
2090}
2091
2092static void perf_event_reset(struct perf_event *event)
2093{
2094 (void)perf_event_read(event);
2095 atomic64_set(&event->count, 0);
2096 perf_event_update_userpage(event);
2097}
2098
2099/*
2100 * Holding the top-level event's child_mutex means that any
2101 * descendant process that has inherited this event will block
2102 * in sync_child_event if it goes to exit, thus satisfying the
2103 * task existence requirements of perf_event_enable/disable.
2104 */
2105static void perf_event_for_each_child(struct perf_event *event,
2106 void (*func)(struct perf_event *))
2107{
2108 struct perf_event *child;
2109
2110 WARN_ON_ONCE(event->ctx->parent_ctx);
2111 mutex_lock(&event->child_mutex);
2112 func(event);
2113 list_for_each_entry(child, &event->child_list, child_list)
2114 func(child);
2115 mutex_unlock(&event->child_mutex);
2116}
2117
2118static void perf_event_for_each(struct perf_event *event,
2119 void (*func)(struct perf_event *))
2120{
2121 struct perf_event_context *ctx = event->ctx;
2122 struct perf_event *sibling;
2123
2124 WARN_ON_ONCE(ctx->parent_ctx);
2125 mutex_lock(&ctx->mutex);
2126 event = event->group_leader;
2127
2128 perf_event_for_each_child(event, func);
2129 func(event);
2130 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2131 perf_event_for_each_child(event, func);
2132 mutex_unlock(&ctx->mutex);
2133}
2134
2135static int perf_event_period(struct perf_event *event, u64 __user *arg)
2136{
2137 struct perf_event_context *ctx = event->ctx;
2138 unsigned long size;
2139 int ret = 0;
2140 u64 value;
2141
2142 if (!event->attr.sample_period)
2143 return -EINVAL;
2144
2145 size = copy_from_user(&value, arg, sizeof(value));
2146 if (size != sizeof(value))
2147 return -EFAULT;
2148
2149 if (!value)
2150 return -EINVAL;
2151
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002152 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002153 if (event->attr.freq) {
2154 if (value > sysctl_perf_event_sample_rate) {
2155 ret = -EINVAL;
2156 goto unlock;
2157 }
2158
2159 event->attr.sample_freq = value;
2160 } else {
2161 event->attr.sample_period = value;
2162 event->hw.sample_period = value;
2163 }
2164unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002165 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002166
2167 return ret;
2168}
2169
Li Zefan6fb29152009-10-15 11:21:42 +08002170static int perf_event_set_output(struct perf_event *event, int output_fd);
2171static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002172
2173static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2174{
2175 struct perf_event *event = file->private_data;
2176 void (*func)(struct perf_event *);
2177 u32 flags = arg;
2178
2179 switch (cmd) {
2180 case PERF_EVENT_IOC_ENABLE:
2181 func = perf_event_enable;
2182 break;
2183 case PERF_EVENT_IOC_DISABLE:
2184 func = perf_event_disable;
2185 break;
2186 case PERF_EVENT_IOC_RESET:
2187 func = perf_event_reset;
2188 break;
2189
2190 case PERF_EVENT_IOC_REFRESH:
2191 return perf_event_refresh(event, arg);
2192
2193 case PERF_EVENT_IOC_PERIOD:
2194 return perf_event_period(event, (u64 __user *)arg);
2195
2196 case PERF_EVENT_IOC_SET_OUTPUT:
2197 return perf_event_set_output(event, arg);
2198
Li Zefan6fb29152009-10-15 11:21:42 +08002199 case PERF_EVENT_IOC_SET_FILTER:
2200 return perf_event_set_filter(event, (void __user *)arg);
2201
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002202 default:
2203 return -ENOTTY;
2204 }
2205
2206 if (flags & PERF_IOC_FLAG_GROUP)
2207 perf_event_for_each(event, func);
2208 else
2209 perf_event_for_each_child(event, func);
2210
2211 return 0;
2212}
2213
2214int perf_event_task_enable(void)
2215{
2216 struct perf_event *event;
2217
2218 mutex_lock(&current->perf_event_mutex);
2219 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2220 perf_event_for_each_child(event, perf_event_enable);
2221 mutex_unlock(&current->perf_event_mutex);
2222
2223 return 0;
2224}
2225
2226int perf_event_task_disable(void)
2227{
2228 struct perf_event *event;
2229
2230 mutex_lock(&current->perf_event_mutex);
2231 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2232 perf_event_for_each_child(event, perf_event_disable);
2233 mutex_unlock(&current->perf_event_mutex);
2234
2235 return 0;
2236}
2237
2238#ifndef PERF_EVENT_INDEX_OFFSET
2239# define PERF_EVENT_INDEX_OFFSET 0
2240#endif
2241
2242static int perf_event_index(struct perf_event *event)
2243{
2244 if (event->state != PERF_EVENT_STATE_ACTIVE)
2245 return 0;
2246
2247 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2248}
2249
2250/*
2251 * Callers need to ensure there can be no nesting of this function, otherwise
2252 * the seqlock logic goes bad. We can not serialize this because the arch
2253 * code calls this from NMI context.
2254 */
2255void perf_event_update_userpage(struct perf_event *event)
2256{
2257 struct perf_event_mmap_page *userpg;
2258 struct perf_mmap_data *data;
2259
2260 rcu_read_lock();
2261 data = rcu_dereference(event->data);
2262 if (!data)
2263 goto unlock;
2264
2265 userpg = data->user_page;
2266
2267 /*
2268 * Disable preemption so as to not let the corresponding user-space
2269 * spin too long if we get preempted.
2270 */
2271 preempt_disable();
2272 ++userpg->lock;
2273 barrier();
2274 userpg->index = perf_event_index(event);
2275 userpg->offset = atomic64_read(&event->count);
2276 if (event->state == PERF_EVENT_STATE_ACTIVE)
2277 userpg->offset -= atomic64_read(&event->hw.prev_count);
2278
2279 userpg->time_enabled = event->total_time_enabled +
2280 atomic64_read(&event->child_total_time_enabled);
2281
2282 userpg->time_running = event->total_time_running +
2283 atomic64_read(&event->child_total_time_running);
2284
2285 barrier();
2286 ++userpg->lock;
2287 preempt_enable();
2288unlock:
2289 rcu_read_unlock();
2290}
2291
Peter Zijlstra906010b2009-09-21 16:08:49 +02002292static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002293{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002294 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002295}
2296
Peter Zijlstra906010b2009-09-21 16:08:49 +02002297#ifndef CONFIG_PERF_USE_VMALLOC
2298
2299/*
2300 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2301 */
2302
2303static struct page *
2304perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2305{
2306 if (pgoff > data->nr_pages)
2307 return NULL;
2308
2309 if (pgoff == 0)
2310 return virt_to_page(data->user_page);
2311
2312 return virt_to_page(data->data_pages[pgoff - 1]);
2313}
2314
2315static struct perf_mmap_data *
2316perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002317{
2318 struct perf_mmap_data *data;
2319 unsigned long size;
2320 int i;
2321
2322 WARN_ON(atomic_read(&event->mmap_count));
2323
2324 size = sizeof(struct perf_mmap_data);
2325 size += nr_pages * sizeof(void *);
2326
2327 data = kzalloc(size, GFP_KERNEL);
2328 if (!data)
2329 goto fail;
2330
2331 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2332 if (!data->user_page)
2333 goto fail_user_page;
2334
2335 for (i = 0; i < nr_pages; i++) {
2336 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2337 if (!data->data_pages[i])
2338 goto fail_data_pages;
2339 }
2340
Peter Zijlstra906010b2009-09-21 16:08:49 +02002341 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002342 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002343
Peter Zijlstra906010b2009-09-21 16:08:49 +02002344 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002345
2346fail_data_pages:
2347 for (i--; i >= 0; i--)
2348 free_page((unsigned long)data->data_pages[i]);
2349
2350 free_page((unsigned long)data->user_page);
2351
2352fail_user_page:
2353 kfree(data);
2354
2355fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002356 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002357}
2358
2359static void perf_mmap_free_page(unsigned long addr)
2360{
2361 struct page *page = virt_to_page((void *)addr);
2362
2363 page->mapping = NULL;
2364 __free_page(page);
2365}
2366
Peter Zijlstra906010b2009-09-21 16:08:49 +02002367static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002368{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369 int i;
2370
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002371 perf_mmap_free_page((unsigned long)data->user_page);
2372 for (i = 0; i < data->nr_pages; i++)
2373 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002374 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002375}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376
Peter Zijlstra906010b2009-09-21 16:08:49 +02002377#else
2378
2379/*
2380 * Back perf_mmap() with vmalloc memory.
2381 *
2382 * Required for architectures that have d-cache aliasing issues.
2383 */
2384
2385static struct page *
2386perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2387{
2388 if (pgoff > (1UL << data->data_order))
2389 return NULL;
2390
2391 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2392}
2393
2394static void perf_mmap_unmark_page(void *addr)
2395{
2396 struct page *page = vmalloc_to_page(addr);
2397
2398 page->mapping = NULL;
2399}
2400
2401static void perf_mmap_data_free_work(struct work_struct *work)
2402{
2403 struct perf_mmap_data *data;
2404 void *base;
2405 int i, nr;
2406
2407 data = container_of(work, struct perf_mmap_data, work);
2408 nr = 1 << data->data_order;
2409
2410 base = data->user_page;
2411 for (i = 0; i < nr + 1; i++)
2412 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2413
2414 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002415 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002416}
2417
2418static void perf_mmap_data_free(struct perf_mmap_data *data)
2419{
2420 schedule_work(&data->work);
2421}
2422
2423static struct perf_mmap_data *
2424perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2425{
2426 struct perf_mmap_data *data;
2427 unsigned long size;
2428 void *all_buf;
2429
2430 WARN_ON(atomic_read(&event->mmap_count));
2431
2432 size = sizeof(struct perf_mmap_data);
2433 size += sizeof(void *);
2434
2435 data = kzalloc(size, GFP_KERNEL);
2436 if (!data)
2437 goto fail;
2438
2439 INIT_WORK(&data->work, perf_mmap_data_free_work);
2440
2441 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2442 if (!all_buf)
2443 goto fail_all_buf;
2444
2445 data->user_page = all_buf;
2446 data->data_pages[0] = all_buf + PAGE_SIZE;
2447 data->data_order = ilog2(nr_pages);
2448 data->nr_pages = 1;
2449
2450 return data;
2451
2452fail_all_buf:
2453 kfree(data);
2454
2455fail:
2456 return NULL;
2457}
2458
2459#endif
2460
2461static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2462{
2463 struct perf_event *event = vma->vm_file->private_data;
2464 struct perf_mmap_data *data;
2465 int ret = VM_FAULT_SIGBUS;
2466
2467 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2468 if (vmf->pgoff == 0)
2469 ret = 0;
2470 return ret;
2471 }
2472
2473 rcu_read_lock();
2474 data = rcu_dereference(event->data);
2475 if (!data)
2476 goto unlock;
2477
2478 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2479 goto unlock;
2480
2481 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2482 if (!vmf->page)
2483 goto unlock;
2484
2485 get_page(vmf->page);
2486 vmf->page->mapping = vma->vm_file->f_mapping;
2487 vmf->page->index = vmf->pgoff;
2488
2489 ret = 0;
2490unlock:
2491 rcu_read_unlock();
2492
2493 return ret;
2494}
2495
2496static void
2497perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2498{
2499 long max_size = perf_data_size(data);
2500
2501 atomic_set(&data->lock, -1);
2502
2503 if (event->attr.watermark) {
2504 data->watermark = min_t(long, max_size,
2505 event->attr.wakeup_watermark);
2506 }
2507
2508 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002509 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002510
2511
2512 rcu_assign_pointer(event->data, data);
2513}
2514
2515static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2516{
2517 struct perf_mmap_data *data;
2518
2519 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2520 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002521}
2522
Peter Zijlstra906010b2009-09-21 16:08:49 +02002523static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002524{
2525 struct perf_mmap_data *data = event->data;
2526
2527 WARN_ON(atomic_read(&event->mmap_count));
2528
2529 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002530 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002531}
2532
2533static void perf_mmap_open(struct vm_area_struct *vma)
2534{
2535 struct perf_event *event = vma->vm_file->private_data;
2536
2537 atomic_inc(&event->mmap_count);
2538}
2539
2540static void perf_mmap_close(struct vm_area_struct *vma)
2541{
2542 struct perf_event *event = vma->vm_file->private_data;
2543
2544 WARN_ON_ONCE(event->ctx->parent_ctx);
2545 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002546 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002547 struct user_struct *user = current_user();
2548
Peter Zijlstra906010b2009-09-21 16:08:49 +02002549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002550 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002551 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002552 mutex_unlock(&event->mmap_mutex);
2553 }
2554}
2555
Alexey Dobriyanf0f37e2f2009-09-27 22:29:37 +04002556static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002557 .open = perf_mmap_open,
2558 .close = perf_mmap_close,
2559 .fault = perf_mmap_fault,
2560 .page_mkwrite = perf_mmap_fault,
2561};
2562
2563static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2564{
2565 struct perf_event *event = file->private_data;
2566 unsigned long user_locked, user_lock_limit;
2567 struct user_struct *user = current_user();
2568 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002569 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002570 unsigned long vma_size;
2571 unsigned long nr_pages;
2572 long user_extra, extra;
2573 int ret = 0;
2574
2575 if (!(vma->vm_flags & VM_SHARED))
2576 return -EINVAL;
2577
2578 vma_size = vma->vm_end - vma->vm_start;
2579 nr_pages = (vma_size / PAGE_SIZE) - 1;
2580
2581 /*
2582 * If we have data pages ensure they're a power-of-two number, so we
2583 * can do bitmasks instead of modulo.
2584 */
2585 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2586 return -EINVAL;
2587
2588 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2589 return -EINVAL;
2590
2591 if (vma->vm_pgoff != 0)
2592 return -EINVAL;
2593
2594 WARN_ON_ONCE(event->ctx->parent_ctx);
2595 mutex_lock(&event->mmap_mutex);
2596 if (event->output) {
2597 ret = -EINVAL;
2598 goto unlock;
2599 }
2600
2601 if (atomic_inc_not_zero(&event->mmap_count)) {
2602 if (nr_pages != event->data->nr_pages)
2603 ret = -EINVAL;
2604 goto unlock;
2605 }
2606
2607 user_extra = nr_pages + 1;
2608 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2609
2610 /*
2611 * Increase the limit linearly with more CPUs:
2612 */
2613 user_lock_limit *= num_online_cpus();
2614
2615 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2616
2617 extra = 0;
2618 if (user_locked > user_lock_limit)
2619 extra = user_locked - user_lock_limit;
2620
2621 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2622 lock_limit >>= PAGE_SHIFT;
2623 locked = vma->vm_mm->locked_vm + extra;
2624
2625 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2626 !capable(CAP_IPC_LOCK)) {
2627 ret = -EPERM;
2628 goto unlock;
2629 }
2630
2631 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002632
2633 data = perf_mmap_data_alloc(event, nr_pages);
2634 ret = -ENOMEM;
2635 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002636 goto unlock;
2637
Peter Zijlstra906010b2009-09-21 16:08:49 +02002638 ret = 0;
2639 perf_mmap_data_init(event, data);
2640
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002641 atomic_set(&event->mmap_count, 1);
2642 atomic_long_add(user_extra, &user->locked_vm);
2643 vma->vm_mm->locked_vm += extra;
2644 event->data->nr_locked = extra;
2645 if (vma->vm_flags & VM_WRITE)
2646 event->data->writable = 1;
2647
2648unlock:
2649 mutex_unlock(&event->mmap_mutex);
2650
2651 vma->vm_flags |= VM_RESERVED;
2652 vma->vm_ops = &perf_mmap_vmops;
2653
2654 return ret;
2655}
2656
2657static int perf_fasync(int fd, struct file *filp, int on)
2658{
2659 struct inode *inode = filp->f_path.dentry->d_inode;
2660 struct perf_event *event = filp->private_data;
2661 int retval;
2662
2663 mutex_lock(&inode->i_mutex);
2664 retval = fasync_helper(fd, filp, on, &event->fasync);
2665 mutex_unlock(&inode->i_mutex);
2666
2667 if (retval < 0)
2668 return retval;
2669
2670 return 0;
2671}
2672
2673static const struct file_operations perf_fops = {
2674 .release = perf_release,
2675 .read = perf_read,
2676 .poll = perf_poll,
2677 .unlocked_ioctl = perf_ioctl,
2678 .compat_ioctl = perf_ioctl,
2679 .mmap = perf_mmap,
2680 .fasync = perf_fasync,
2681};
2682
2683/*
2684 * Perf event wakeup
2685 *
2686 * If there's data, ensure we set the poll() state and publish everything
2687 * to user-space before waking everybody up.
2688 */
2689
2690void perf_event_wakeup(struct perf_event *event)
2691{
2692 wake_up_all(&event->waitq);
2693
2694 if (event->pending_kill) {
2695 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2696 event->pending_kill = 0;
2697 }
2698}
2699
2700/*
2701 * Pending wakeups
2702 *
2703 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2704 *
2705 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2706 * single linked list and use cmpxchg() to add entries lockless.
2707 */
2708
2709static void perf_pending_event(struct perf_pending_entry *entry)
2710{
2711 struct perf_event *event = container_of(entry,
2712 struct perf_event, pending);
2713
2714 if (event->pending_disable) {
2715 event->pending_disable = 0;
2716 __perf_event_disable(event);
2717 }
2718
2719 if (event->pending_wakeup) {
2720 event->pending_wakeup = 0;
2721 perf_event_wakeup(event);
2722 }
2723}
2724
2725#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2726
2727static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2728 PENDING_TAIL,
2729};
2730
2731static void perf_pending_queue(struct perf_pending_entry *entry,
2732 void (*func)(struct perf_pending_entry *))
2733{
2734 struct perf_pending_entry **head;
2735
2736 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2737 return;
2738
2739 entry->func = func;
2740
2741 head = &get_cpu_var(perf_pending_head);
2742
2743 do {
2744 entry->next = *head;
2745 } while (cmpxchg(head, entry->next, entry) != entry->next);
2746
2747 set_perf_event_pending();
2748
2749 put_cpu_var(perf_pending_head);
2750}
2751
2752static int __perf_pending_run(void)
2753{
2754 struct perf_pending_entry *list;
2755 int nr = 0;
2756
2757 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2758 while (list != PENDING_TAIL) {
2759 void (*func)(struct perf_pending_entry *);
2760 struct perf_pending_entry *entry = list;
2761
2762 list = list->next;
2763
2764 func = entry->func;
2765 entry->next = NULL;
2766 /*
2767 * Ensure we observe the unqueue before we issue the wakeup,
2768 * so that we won't be waiting forever.
2769 * -- see perf_not_pending().
2770 */
2771 smp_wmb();
2772
2773 func(entry);
2774 nr++;
2775 }
2776
2777 return nr;
2778}
2779
2780static inline int perf_not_pending(struct perf_event *event)
2781{
2782 /*
2783 * If we flush on whatever cpu we run, there is a chance we don't
2784 * need to wait.
2785 */
2786 get_cpu();
2787 __perf_pending_run();
2788 put_cpu();
2789
2790 /*
2791 * Ensure we see the proper queue state before going to sleep
2792 * so that we do not miss the wakeup. -- see perf_pending_handle()
2793 */
2794 smp_rmb();
2795 return event->pending.next == NULL;
2796}
2797
2798static void perf_pending_sync(struct perf_event *event)
2799{
2800 wait_event(event->waitq, perf_not_pending(event));
2801}
2802
2803void perf_event_do_pending(void)
2804{
2805 __perf_pending_run();
2806}
2807
2808/*
2809 * Callchain support -- arch specific
2810 */
2811
2812__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2813{
2814 return NULL;
2815}
2816
2817/*
2818 * Output
2819 */
2820static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2821 unsigned long offset, unsigned long head)
2822{
2823 unsigned long mask;
2824
2825 if (!data->writable)
2826 return true;
2827
Peter Zijlstra906010b2009-09-21 16:08:49 +02002828 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002829
2830 offset = (offset - tail) & mask;
2831 head = (head - tail) & mask;
2832
2833 if ((int)(head - offset) < 0)
2834 return false;
2835
2836 return true;
2837}
2838
2839static void perf_output_wakeup(struct perf_output_handle *handle)
2840{
2841 atomic_set(&handle->data->poll, POLL_IN);
2842
2843 if (handle->nmi) {
2844 handle->event->pending_wakeup = 1;
2845 perf_pending_queue(&handle->event->pending,
2846 perf_pending_event);
2847 } else
2848 perf_event_wakeup(handle->event);
2849}
2850
2851/*
2852 * Curious locking construct.
2853 *
2854 * We need to ensure a later event_id doesn't publish a head when a former
2855 * event_id isn't done writing. However since we need to deal with NMIs we
2856 * cannot fully serialize things.
2857 *
2858 * What we do is serialize between CPUs so we only have to deal with NMI
2859 * nesting on a single CPU.
2860 *
2861 * We only publish the head (and generate a wakeup) when the outer-most
2862 * event_id completes.
2863 */
2864static void perf_output_lock(struct perf_output_handle *handle)
2865{
2866 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002867 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002868
2869 handle->locked = 0;
2870
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002871 for (;;) {
2872 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2873 if (cur == -1) {
2874 handle->locked = 1;
2875 break;
2876 }
2877 if (cur == cpu)
2878 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002879
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002880 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002881 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002882}
2883
2884static void perf_output_unlock(struct perf_output_handle *handle)
2885{
2886 struct perf_mmap_data *data = handle->data;
2887 unsigned long head;
2888 int cpu;
2889
2890 data->done_head = data->head;
2891
2892 if (!handle->locked)
2893 goto out;
2894
2895again:
2896 /*
2897 * The xchg implies a full barrier that ensures all writes are done
2898 * before we publish the new head, matched by a rmb() in userspace when
2899 * reading this position.
2900 */
2901 while ((head = atomic_long_xchg(&data->done_head, 0)))
2902 data->user_page->data_head = head;
2903
2904 /*
2905 * NMI can happen here, which means we can miss a done_head update.
2906 */
2907
2908 cpu = atomic_xchg(&data->lock, -1);
2909 WARN_ON_ONCE(cpu != smp_processor_id());
2910
2911 /*
2912 * Therefore we have to validate we did not indeed do so.
2913 */
2914 if (unlikely(atomic_long_read(&data->done_head))) {
2915 /*
2916 * Since we had it locked, we can lock it again.
2917 */
2918 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2919 cpu_relax();
2920
2921 goto again;
2922 }
2923
2924 if (atomic_xchg(&data->wakeup, 0))
2925 perf_output_wakeup(handle);
2926out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002927 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002928}
2929
2930void perf_output_copy(struct perf_output_handle *handle,
2931 const void *buf, unsigned int len)
2932{
2933 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002934 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002935 unsigned int size;
2936 void **pages;
2937
2938 offset = handle->offset;
2939 pages_mask = handle->data->nr_pages - 1;
2940 pages = handle->data->data_pages;
2941
2942 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002943 unsigned long page_offset;
2944 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002945 int nr;
2946
2947 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002948 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2949 page_offset = offset & (page_size - 1);
2950 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002951
2952 memcpy(pages[nr] + page_offset, buf, size);
2953
2954 len -= size;
2955 buf += size;
2956 offset += size;
2957 } while (len);
2958
2959 handle->offset = offset;
2960
2961 /*
2962 * Check we didn't copy past our reservation window, taking the
2963 * possible unsigned int wrap into account.
2964 */
2965 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2966}
2967
2968int perf_output_begin(struct perf_output_handle *handle,
2969 struct perf_event *event, unsigned int size,
2970 int nmi, int sample)
2971{
2972 struct perf_event *output_event;
2973 struct perf_mmap_data *data;
2974 unsigned long tail, offset, head;
2975 int have_lost;
2976 struct {
2977 struct perf_event_header header;
2978 u64 id;
2979 u64 lost;
2980 } lost_event;
2981
2982 rcu_read_lock();
2983 /*
2984 * For inherited events we send all the output towards the parent.
2985 */
2986 if (event->parent)
2987 event = event->parent;
2988
2989 output_event = rcu_dereference(event->output);
2990 if (output_event)
2991 event = output_event;
2992
2993 data = rcu_dereference(event->data);
2994 if (!data)
2995 goto out;
2996
2997 handle->data = data;
2998 handle->event = event;
2999 handle->nmi = nmi;
3000 handle->sample = sample;
3001
3002 if (!data->nr_pages)
3003 goto fail;
3004
3005 have_lost = atomic_read(&data->lost);
3006 if (have_lost)
3007 size += sizeof(lost_event);
3008
3009 perf_output_lock(handle);
3010
3011 do {
3012 /*
3013 * Userspace could choose to issue a mb() before updating the
3014 * tail pointer. So that all reads will be completed before the
3015 * write is issued.
3016 */
3017 tail = ACCESS_ONCE(data->user_page->data_tail);
3018 smp_rmb();
3019 offset = head = atomic_long_read(&data->head);
3020 head += size;
3021 if (unlikely(!perf_output_space(data, tail, offset, head)))
3022 goto fail;
3023 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3024
3025 handle->offset = offset;
3026 handle->head = head;
3027
3028 if (head - tail > data->watermark)
3029 atomic_set(&data->wakeup, 1);
3030
3031 if (have_lost) {
3032 lost_event.header.type = PERF_RECORD_LOST;
3033 lost_event.header.misc = 0;
3034 lost_event.header.size = sizeof(lost_event);
3035 lost_event.id = event->id;
3036 lost_event.lost = atomic_xchg(&data->lost, 0);
3037
3038 perf_output_put(handle, lost_event);
3039 }
3040
3041 return 0;
3042
3043fail:
3044 atomic_inc(&data->lost);
3045 perf_output_unlock(handle);
3046out:
3047 rcu_read_unlock();
3048
3049 return -ENOSPC;
3050}
3051
3052void perf_output_end(struct perf_output_handle *handle)
3053{
3054 struct perf_event *event = handle->event;
3055 struct perf_mmap_data *data = handle->data;
3056
3057 int wakeup_events = event->attr.wakeup_events;
3058
3059 if (handle->sample && wakeup_events) {
3060 int events = atomic_inc_return(&data->events);
3061 if (events >= wakeup_events) {
3062 atomic_sub(wakeup_events, &data->events);
3063 atomic_set(&data->wakeup, 1);
3064 }
3065 }
3066
3067 perf_output_unlock(handle);
3068 rcu_read_unlock();
3069}
3070
3071static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3072{
3073 /*
3074 * only top level events have the pid namespace they were created in
3075 */
3076 if (event->parent)
3077 event = event->parent;
3078
3079 return task_tgid_nr_ns(p, event->ns);
3080}
3081
3082static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3083{
3084 /*
3085 * only top level events have the pid namespace they were created in
3086 */
3087 if (event->parent)
3088 event = event->parent;
3089
3090 return task_pid_nr_ns(p, event->ns);
3091}
3092
3093static void perf_output_read_one(struct perf_output_handle *handle,
3094 struct perf_event *event)
3095{
3096 u64 read_format = event->attr.read_format;
3097 u64 values[4];
3098 int n = 0;
3099
3100 values[n++] = atomic64_read(&event->count);
3101 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3102 values[n++] = event->total_time_enabled +
3103 atomic64_read(&event->child_total_time_enabled);
3104 }
3105 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3106 values[n++] = event->total_time_running +
3107 atomic64_read(&event->child_total_time_running);
3108 }
3109 if (read_format & PERF_FORMAT_ID)
3110 values[n++] = primary_event_id(event);
3111
3112 perf_output_copy(handle, values, n * sizeof(u64));
3113}
3114
3115/*
3116 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3117 */
3118static void perf_output_read_group(struct perf_output_handle *handle,
3119 struct perf_event *event)
3120{
3121 struct perf_event *leader = event->group_leader, *sub;
3122 u64 read_format = event->attr.read_format;
3123 u64 values[5];
3124 int n = 0;
3125
3126 values[n++] = 1 + leader->nr_siblings;
3127
3128 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3129 values[n++] = leader->total_time_enabled;
3130
3131 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3132 values[n++] = leader->total_time_running;
3133
3134 if (leader != event)
3135 leader->pmu->read(leader);
3136
3137 values[n++] = atomic64_read(&leader->count);
3138 if (read_format & PERF_FORMAT_ID)
3139 values[n++] = primary_event_id(leader);
3140
3141 perf_output_copy(handle, values, n * sizeof(u64));
3142
3143 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3144 n = 0;
3145
3146 if (sub != event)
3147 sub->pmu->read(sub);
3148
3149 values[n++] = atomic64_read(&sub->count);
3150 if (read_format & PERF_FORMAT_ID)
3151 values[n++] = primary_event_id(sub);
3152
3153 perf_output_copy(handle, values, n * sizeof(u64));
3154 }
3155}
3156
3157static void perf_output_read(struct perf_output_handle *handle,
3158 struct perf_event *event)
3159{
3160 if (event->attr.read_format & PERF_FORMAT_GROUP)
3161 perf_output_read_group(handle, event);
3162 else
3163 perf_output_read_one(handle, event);
3164}
3165
3166void perf_output_sample(struct perf_output_handle *handle,
3167 struct perf_event_header *header,
3168 struct perf_sample_data *data,
3169 struct perf_event *event)
3170{
3171 u64 sample_type = data->type;
3172
3173 perf_output_put(handle, *header);
3174
3175 if (sample_type & PERF_SAMPLE_IP)
3176 perf_output_put(handle, data->ip);
3177
3178 if (sample_type & PERF_SAMPLE_TID)
3179 perf_output_put(handle, data->tid_entry);
3180
3181 if (sample_type & PERF_SAMPLE_TIME)
3182 perf_output_put(handle, data->time);
3183
3184 if (sample_type & PERF_SAMPLE_ADDR)
3185 perf_output_put(handle, data->addr);
3186
3187 if (sample_type & PERF_SAMPLE_ID)
3188 perf_output_put(handle, data->id);
3189
3190 if (sample_type & PERF_SAMPLE_STREAM_ID)
3191 perf_output_put(handle, data->stream_id);
3192
3193 if (sample_type & PERF_SAMPLE_CPU)
3194 perf_output_put(handle, data->cpu_entry);
3195
3196 if (sample_type & PERF_SAMPLE_PERIOD)
3197 perf_output_put(handle, data->period);
3198
3199 if (sample_type & PERF_SAMPLE_READ)
3200 perf_output_read(handle, event);
3201
3202 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3203 if (data->callchain) {
3204 int size = 1;
3205
3206 if (data->callchain)
3207 size += data->callchain->nr;
3208
3209 size *= sizeof(u64);
3210
3211 perf_output_copy(handle, data->callchain, size);
3212 } else {
3213 u64 nr = 0;
3214 perf_output_put(handle, nr);
3215 }
3216 }
3217
3218 if (sample_type & PERF_SAMPLE_RAW) {
3219 if (data->raw) {
3220 perf_output_put(handle, data->raw->size);
3221 perf_output_copy(handle, data->raw->data,
3222 data->raw->size);
3223 } else {
3224 struct {
3225 u32 size;
3226 u32 data;
3227 } raw = {
3228 .size = sizeof(u32),
3229 .data = 0,
3230 };
3231 perf_output_put(handle, raw);
3232 }
3233 }
3234}
3235
3236void perf_prepare_sample(struct perf_event_header *header,
3237 struct perf_sample_data *data,
3238 struct perf_event *event,
3239 struct pt_regs *regs)
3240{
3241 u64 sample_type = event->attr.sample_type;
3242
3243 data->type = sample_type;
3244
3245 header->type = PERF_RECORD_SAMPLE;
3246 header->size = sizeof(*header);
3247
3248 header->misc = 0;
3249 header->misc |= perf_misc_flags(regs);
3250
3251 if (sample_type & PERF_SAMPLE_IP) {
3252 data->ip = perf_instruction_pointer(regs);
3253
3254 header->size += sizeof(data->ip);
3255 }
3256
3257 if (sample_type & PERF_SAMPLE_TID) {
3258 /* namespace issues */
3259 data->tid_entry.pid = perf_event_pid(event, current);
3260 data->tid_entry.tid = perf_event_tid(event, current);
3261
3262 header->size += sizeof(data->tid_entry);
3263 }
3264
3265 if (sample_type & PERF_SAMPLE_TIME) {
3266 data->time = perf_clock();
3267
3268 header->size += sizeof(data->time);
3269 }
3270
3271 if (sample_type & PERF_SAMPLE_ADDR)
3272 header->size += sizeof(data->addr);
3273
3274 if (sample_type & PERF_SAMPLE_ID) {
3275 data->id = primary_event_id(event);
3276
3277 header->size += sizeof(data->id);
3278 }
3279
3280 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3281 data->stream_id = event->id;
3282
3283 header->size += sizeof(data->stream_id);
3284 }
3285
3286 if (sample_type & PERF_SAMPLE_CPU) {
3287 data->cpu_entry.cpu = raw_smp_processor_id();
3288 data->cpu_entry.reserved = 0;
3289
3290 header->size += sizeof(data->cpu_entry);
3291 }
3292
3293 if (sample_type & PERF_SAMPLE_PERIOD)
3294 header->size += sizeof(data->period);
3295
3296 if (sample_type & PERF_SAMPLE_READ)
3297 header->size += perf_event_read_size(event);
3298
3299 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3300 int size = 1;
3301
3302 data->callchain = perf_callchain(regs);
3303
3304 if (data->callchain)
3305 size += data->callchain->nr;
3306
3307 header->size += size * sizeof(u64);
3308 }
3309
3310 if (sample_type & PERF_SAMPLE_RAW) {
3311 int size = sizeof(u32);
3312
3313 if (data->raw)
3314 size += data->raw->size;
3315 else
3316 size += sizeof(u32);
3317
3318 WARN_ON_ONCE(size & (sizeof(u64)-1));
3319 header->size += size;
3320 }
3321}
3322
3323static void perf_event_output(struct perf_event *event, int nmi,
3324 struct perf_sample_data *data,
3325 struct pt_regs *regs)
3326{
3327 struct perf_output_handle handle;
3328 struct perf_event_header header;
3329
3330 perf_prepare_sample(&header, data, event, regs);
3331
3332 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3333 return;
3334
3335 perf_output_sample(&handle, &header, data, event);
3336
3337 perf_output_end(&handle);
3338}
3339
3340/*
3341 * read event_id
3342 */
3343
3344struct perf_read_event {
3345 struct perf_event_header header;
3346
3347 u32 pid;
3348 u32 tid;
3349};
3350
3351static void
3352perf_event_read_event(struct perf_event *event,
3353 struct task_struct *task)
3354{
3355 struct perf_output_handle handle;
3356 struct perf_read_event read_event = {
3357 .header = {
3358 .type = PERF_RECORD_READ,
3359 .misc = 0,
3360 .size = sizeof(read_event) + perf_event_read_size(event),
3361 },
3362 .pid = perf_event_pid(event, task),
3363 .tid = perf_event_tid(event, task),
3364 };
3365 int ret;
3366
3367 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3368 if (ret)
3369 return;
3370
3371 perf_output_put(&handle, read_event);
3372 perf_output_read(&handle, event);
3373
3374 perf_output_end(&handle);
3375}
3376
3377/*
3378 * task tracking -- fork/exit
3379 *
3380 * enabled by: attr.comm | attr.mmap | attr.task
3381 */
3382
3383struct perf_task_event {
3384 struct task_struct *task;
3385 struct perf_event_context *task_ctx;
3386
3387 struct {
3388 struct perf_event_header header;
3389
3390 u32 pid;
3391 u32 ppid;
3392 u32 tid;
3393 u32 ptid;
3394 u64 time;
3395 } event_id;
3396};
3397
3398static void perf_event_task_output(struct perf_event *event,
3399 struct perf_task_event *task_event)
3400{
3401 struct perf_output_handle handle;
3402 int size;
3403 struct task_struct *task = task_event->task;
3404 int ret;
3405
3406 size = task_event->event_id.header.size;
3407 ret = perf_output_begin(&handle, event, size, 0, 0);
3408
3409 if (ret)
3410 return;
3411
3412 task_event->event_id.pid = perf_event_pid(event, task);
3413 task_event->event_id.ppid = perf_event_pid(event, current);
3414
3415 task_event->event_id.tid = perf_event_tid(event, task);
3416 task_event->event_id.ptid = perf_event_tid(event, current);
3417
3418 task_event->event_id.time = perf_clock();
3419
3420 perf_output_put(&handle, task_event->event_id);
3421
3422 perf_output_end(&handle);
3423}
3424
3425static int perf_event_task_match(struct perf_event *event)
3426{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003427 if (event->state != PERF_EVENT_STATE_ACTIVE)
3428 return 0;
3429
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003430 if (event->cpu != -1 && event->cpu != smp_processor_id())
3431 return 0;
3432
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003433 if (event->attr.comm || event->attr.mmap || event->attr.task)
3434 return 1;
3435
3436 return 0;
3437}
3438
3439static void perf_event_task_ctx(struct perf_event_context *ctx,
3440 struct perf_task_event *task_event)
3441{
3442 struct perf_event *event;
3443
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003444 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3445 if (perf_event_task_match(event))
3446 perf_event_task_output(event, task_event);
3447 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003448}
3449
3450static void perf_event_task_event(struct perf_task_event *task_event)
3451{
3452 struct perf_cpu_context *cpuctx;
3453 struct perf_event_context *ctx = task_event->task_ctx;
3454
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003455 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003456 cpuctx = &get_cpu_var(perf_cpu_context);
3457 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003458 if (!ctx)
3459 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3460 if (ctx)
3461 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003462 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003463 rcu_read_unlock();
3464}
3465
3466static void perf_event_task(struct task_struct *task,
3467 struct perf_event_context *task_ctx,
3468 int new)
3469{
3470 struct perf_task_event task_event;
3471
3472 if (!atomic_read(&nr_comm_events) &&
3473 !atomic_read(&nr_mmap_events) &&
3474 !atomic_read(&nr_task_events))
3475 return;
3476
3477 task_event = (struct perf_task_event){
3478 .task = task,
3479 .task_ctx = task_ctx,
3480 .event_id = {
3481 .header = {
3482 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3483 .misc = 0,
3484 .size = sizeof(task_event.event_id),
3485 },
3486 /* .pid */
3487 /* .ppid */
3488 /* .tid */
3489 /* .ptid */
3490 },
3491 };
3492
3493 perf_event_task_event(&task_event);
3494}
3495
3496void perf_event_fork(struct task_struct *task)
3497{
3498 perf_event_task(task, NULL, 1);
3499}
3500
3501/*
3502 * comm tracking
3503 */
3504
3505struct perf_comm_event {
3506 struct task_struct *task;
3507 char *comm;
3508 int comm_size;
3509
3510 struct {
3511 struct perf_event_header header;
3512
3513 u32 pid;
3514 u32 tid;
3515 } event_id;
3516};
3517
3518static void perf_event_comm_output(struct perf_event *event,
3519 struct perf_comm_event *comm_event)
3520{
3521 struct perf_output_handle handle;
3522 int size = comm_event->event_id.header.size;
3523 int ret = perf_output_begin(&handle, event, size, 0, 0);
3524
3525 if (ret)
3526 return;
3527
3528 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3529 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3530
3531 perf_output_put(&handle, comm_event->event_id);
3532 perf_output_copy(&handle, comm_event->comm,
3533 comm_event->comm_size);
3534 perf_output_end(&handle);
3535}
3536
3537static int perf_event_comm_match(struct perf_event *event)
3538{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003539 if (event->state != PERF_EVENT_STATE_ACTIVE)
3540 return 0;
3541
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003542 if (event->cpu != -1 && event->cpu != smp_processor_id())
3543 return 0;
3544
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003545 if (event->attr.comm)
3546 return 1;
3547
3548 return 0;
3549}
3550
3551static void perf_event_comm_ctx(struct perf_event_context *ctx,
3552 struct perf_comm_event *comm_event)
3553{
3554 struct perf_event *event;
3555
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003556 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3557 if (perf_event_comm_match(event))
3558 perf_event_comm_output(event, comm_event);
3559 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003560}
3561
3562static void perf_event_comm_event(struct perf_comm_event *comm_event)
3563{
3564 struct perf_cpu_context *cpuctx;
3565 struct perf_event_context *ctx;
3566 unsigned int size;
3567 char comm[TASK_COMM_LEN];
3568
3569 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003570 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003571 size = ALIGN(strlen(comm)+1, sizeof(u64));
3572
3573 comm_event->comm = comm;
3574 comm_event->comm_size = size;
3575
3576 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3577
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003578 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003579 cpuctx = &get_cpu_var(perf_cpu_context);
3580 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003581 ctx = rcu_dereference(current->perf_event_ctxp);
3582 if (ctx)
3583 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003584 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003585 rcu_read_unlock();
3586}
3587
3588void perf_event_comm(struct task_struct *task)
3589{
3590 struct perf_comm_event comm_event;
3591
3592 if (task->perf_event_ctxp)
3593 perf_event_enable_on_exec(task);
3594
3595 if (!atomic_read(&nr_comm_events))
3596 return;
3597
3598 comm_event = (struct perf_comm_event){
3599 .task = task,
3600 /* .comm */
3601 /* .comm_size */
3602 .event_id = {
3603 .header = {
3604 .type = PERF_RECORD_COMM,
3605 .misc = 0,
3606 /* .size */
3607 },
3608 /* .pid */
3609 /* .tid */
3610 },
3611 };
3612
3613 perf_event_comm_event(&comm_event);
3614}
3615
3616/*
3617 * mmap tracking
3618 */
3619
3620struct perf_mmap_event {
3621 struct vm_area_struct *vma;
3622
3623 const char *file_name;
3624 int file_size;
3625
3626 struct {
3627 struct perf_event_header header;
3628
3629 u32 pid;
3630 u32 tid;
3631 u64 start;
3632 u64 len;
3633 u64 pgoff;
3634 } event_id;
3635};
3636
3637static void perf_event_mmap_output(struct perf_event *event,
3638 struct perf_mmap_event *mmap_event)
3639{
3640 struct perf_output_handle handle;
3641 int size = mmap_event->event_id.header.size;
3642 int ret = perf_output_begin(&handle, event, size, 0, 0);
3643
3644 if (ret)
3645 return;
3646
3647 mmap_event->event_id.pid = perf_event_pid(event, current);
3648 mmap_event->event_id.tid = perf_event_tid(event, current);
3649
3650 perf_output_put(&handle, mmap_event->event_id);
3651 perf_output_copy(&handle, mmap_event->file_name,
3652 mmap_event->file_size);
3653 perf_output_end(&handle);
3654}
3655
3656static int perf_event_mmap_match(struct perf_event *event,
3657 struct perf_mmap_event *mmap_event)
3658{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003659 if (event->state != PERF_EVENT_STATE_ACTIVE)
3660 return 0;
3661
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003662 if (event->cpu != -1 && event->cpu != smp_processor_id())
3663 return 0;
3664
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003665 if (event->attr.mmap)
3666 return 1;
3667
3668 return 0;
3669}
3670
3671static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3672 struct perf_mmap_event *mmap_event)
3673{
3674 struct perf_event *event;
3675
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003676 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3677 if (perf_event_mmap_match(event, mmap_event))
3678 perf_event_mmap_output(event, mmap_event);
3679 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003680}
3681
3682static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3683{
3684 struct perf_cpu_context *cpuctx;
3685 struct perf_event_context *ctx;
3686 struct vm_area_struct *vma = mmap_event->vma;
3687 struct file *file = vma->vm_file;
3688 unsigned int size;
3689 char tmp[16];
3690 char *buf = NULL;
3691 const char *name;
3692
3693 memset(tmp, 0, sizeof(tmp));
3694
3695 if (file) {
3696 /*
3697 * d_path works from the end of the buffer backwards, so we
3698 * need to add enough zero bytes after the string to handle
3699 * the 64bit alignment we do later.
3700 */
3701 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3702 if (!buf) {
3703 name = strncpy(tmp, "//enomem", sizeof(tmp));
3704 goto got_name;
3705 }
3706 name = d_path(&file->f_path, buf, PATH_MAX);
3707 if (IS_ERR(name)) {
3708 name = strncpy(tmp, "//toolong", sizeof(tmp));
3709 goto got_name;
3710 }
3711 } else {
3712 if (arch_vma_name(mmap_event->vma)) {
3713 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3714 sizeof(tmp));
3715 goto got_name;
3716 }
3717
3718 if (!vma->vm_mm) {
3719 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3720 goto got_name;
3721 }
3722
3723 name = strncpy(tmp, "//anon", sizeof(tmp));
3724 goto got_name;
3725 }
3726
3727got_name:
3728 size = ALIGN(strlen(name)+1, sizeof(u64));
3729
3730 mmap_event->file_name = name;
3731 mmap_event->file_size = size;
3732
3733 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3734
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003735 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003736 cpuctx = &get_cpu_var(perf_cpu_context);
3737 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003738 ctx = rcu_dereference(current->perf_event_ctxp);
3739 if (ctx)
3740 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003741 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003742 rcu_read_unlock();
3743
3744 kfree(buf);
3745}
3746
3747void __perf_event_mmap(struct vm_area_struct *vma)
3748{
3749 struct perf_mmap_event mmap_event;
3750
3751 if (!atomic_read(&nr_mmap_events))
3752 return;
3753
3754 mmap_event = (struct perf_mmap_event){
3755 .vma = vma,
3756 /* .file_name */
3757 /* .file_size */
3758 .event_id = {
3759 .header = {
3760 .type = PERF_RECORD_MMAP,
3761 .misc = 0,
3762 /* .size */
3763 },
3764 /* .pid */
3765 /* .tid */
3766 .start = vma->vm_start,
3767 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003768 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003769 },
3770 };
3771
3772 perf_event_mmap_event(&mmap_event);
3773}
3774
3775/*
3776 * IRQ throttle logging
3777 */
3778
3779static void perf_log_throttle(struct perf_event *event, int enable)
3780{
3781 struct perf_output_handle handle;
3782 int ret;
3783
3784 struct {
3785 struct perf_event_header header;
3786 u64 time;
3787 u64 id;
3788 u64 stream_id;
3789 } throttle_event = {
3790 .header = {
3791 .type = PERF_RECORD_THROTTLE,
3792 .misc = 0,
3793 .size = sizeof(throttle_event),
3794 },
3795 .time = perf_clock(),
3796 .id = primary_event_id(event),
3797 .stream_id = event->id,
3798 };
3799
3800 if (enable)
3801 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3802
3803 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3804 if (ret)
3805 return;
3806
3807 perf_output_put(&handle, throttle_event);
3808 perf_output_end(&handle);
3809}
3810
3811/*
3812 * Generic event overflow handling, sampling.
3813 */
3814
3815static int __perf_event_overflow(struct perf_event *event, int nmi,
3816 int throttle, struct perf_sample_data *data,
3817 struct pt_regs *regs)
3818{
3819 int events = atomic_read(&event->event_limit);
3820 struct hw_perf_event *hwc = &event->hw;
3821 int ret = 0;
3822
3823 throttle = (throttle && event->pmu->unthrottle != NULL);
3824
3825 if (!throttle) {
3826 hwc->interrupts++;
3827 } else {
3828 if (hwc->interrupts != MAX_INTERRUPTS) {
3829 hwc->interrupts++;
3830 if (HZ * hwc->interrupts >
3831 (u64)sysctl_perf_event_sample_rate) {
3832 hwc->interrupts = MAX_INTERRUPTS;
3833 perf_log_throttle(event, 0);
3834 ret = 1;
3835 }
3836 } else {
3837 /*
3838 * Keep re-disabling events even though on the previous
3839 * pass we disabled it - just in case we raced with a
3840 * sched-in and the event got enabled again:
3841 */
3842 ret = 1;
3843 }
3844 }
3845
3846 if (event->attr.freq) {
3847 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003848 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003849
Peter Zijlstraabd50712010-01-26 18:50:16 +01003850 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003851
Peter Zijlstraabd50712010-01-26 18:50:16 +01003852 if (delta > 0 && delta < 2*TICK_NSEC)
3853 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003854 }
3855
3856 /*
3857 * XXX event_limit might not quite work as expected on inherited
3858 * events
3859 */
3860
3861 event->pending_kill = POLL_IN;
3862 if (events && atomic_dec_and_test(&event->event_limit)) {
3863 ret = 1;
3864 event->pending_kill = POLL_HUP;
3865 if (nmi) {
3866 event->pending_disable = 1;
3867 perf_pending_queue(&event->pending,
3868 perf_pending_event);
3869 } else
3870 perf_event_disable(event);
3871 }
3872
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003873 if (event->overflow_handler)
3874 event->overflow_handler(event, nmi, data, regs);
3875 else
3876 perf_event_output(event, nmi, data, regs);
3877
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003878 return ret;
3879}
3880
3881int perf_event_overflow(struct perf_event *event, int nmi,
3882 struct perf_sample_data *data,
3883 struct pt_regs *regs)
3884{
3885 return __perf_event_overflow(event, nmi, 1, data, regs);
3886}
3887
3888/*
3889 * Generic software event infrastructure
3890 */
3891
3892/*
3893 * We directly increment event->count and keep a second value in
3894 * event->hw.period_left to count intervals. This period event
3895 * is kept in the range [-sample_period, 0] so that we can use the
3896 * sign as trigger.
3897 */
3898
3899static u64 perf_swevent_set_period(struct perf_event *event)
3900{
3901 struct hw_perf_event *hwc = &event->hw;
3902 u64 period = hwc->last_period;
3903 u64 nr, offset;
3904 s64 old, val;
3905
3906 hwc->last_period = hwc->sample_period;
3907
3908again:
3909 old = val = atomic64_read(&hwc->period_left);
3910 if (val < 0)
3911 return 0;
3912
3913 nr = div64_u64(period + val, period);
3914 offset = nr * period;
3915 val -= offset;
3916 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3917 goto again;
3918
3919 return nr;
3920}
3921
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003922static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003923 int nmi, struct perf_sample_data *data,
3924 struct pt_regs *regs)
3925{
3926 struct hw_perf_event *hwc = &event->hw;
3927 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003928
3929 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003930 if (!overflow)
3931 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003932
3933 if (hwc->interrupts == MAX_INTERRUPTS)
3934 return;
3935
3936 for (; overflow; overflow--) {
3937 if (__perf_event_overflow(event, nmi, throttle,
3938 data, regs)) {
3939 /*
3940 * We inhibit the overflow from happening when
3941 * hwc->interrupts == MAX_INTERRUPTS.
3942 */
3943 break;
3944 }
3945 throttle = 1;
3946 }
3947}
3948
3949static void perf_swevent_unthrottle(struct perf_event *event)
3950{
3951 /*
3952 * Nothing to do, we already reset hwc->interrupts.
3953 */
3954}
3955
3956static void perf_swevent_add(struct perf_event *event, u64 nr,
3957 int nmi, struct perf_sample_data *data,
3958 struct pt_regs *regs)
3959{
3960 struct hw_perf_event *hwc = &event->hw;
3961
3962 atomic64_add(nr, &event->count);
3963
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003964 if (!regs)
3965 return;
3966
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003967 if (!hwc->sample_period)
3968 return;
3969
3970 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3971 return perf_swevent_overflow(event, 1, nmi, data, regs);
3972
3973 if (atomic64_add_negative(nr, &hwc->period_left))
3974 return;
3975
3976 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003977}
3978
3979static int perf_swevent_is_counting(struct perf_event *event)
3980{
3981 /*
3982 * The event is active, we're good!
3983 */
3984 if (event->state == PERF_EVENT_STATE_ACTIVE)
3985 return 1;
3986
3987 /*
3988 * The event is off/error, not counting.
3989 */
3990 if (event->state != PERF_EVENT_STATE_INACTIVE)
3991 return 0;
3992
3993 /*
3994 * The event is inactive, if the context is active
3995 * we're part of a group that didn't make it on the 'pmu',
3996 * not counting.
3997 */
3998 if (event->ctx->is_active)
3999 return 0;
4000
4001 /*
4002 * We're inactive and the context is too, this means the
4003 * task is scheduled out, we're counting events that happen
4004 * to us, like migration events.
4005 */
4006 return 1;
4007}
4008
Li Zefan6fb29152009-10-15 11:21:42 +08004009static int perf_tp_event_match(struct perf_event *event,
4010 struct perf_sample_data *data);
4011
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004012static int perf_exclude_event(struct perf_event *event,
4013 struct pt_regs *regs)
4014{
4015 if (regs) {
4016 if (event->attr.exclude_user && user_mode(regs))
4017 return 1;
4018
4019 if (event->attr.exclude_kernel && !user_mode(regs))
4020 return 1;
4021 }
4022
4023 return 0;
4024}
4025
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004026static int perf_swevent_match(struct perf_event *event,
4027 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004028 u32 event_id,
4029 struct perf_sample_data *data,
4030 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004031{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004032 if (event->cpu != -1 && event->cpu != smp_processor_id())
4033 return 0;
4034
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004035 if (!perf_swevent_is_counting(event))
4036 return 0;
4037
4038 if (event->attr.type != type)
4039 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004040
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004041 if (event->attr.config != event_id)
4042 return 0;
4043
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004044 if (perf_exclude_event(event, regs))
4045 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004046
Li Zefan6fb29152009-10-15 11:21:42 +08004047 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4048 !perf_tp_event_match(event, data))
4049 return 0;
4050
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004051 return 1;
4052}
4053
4054static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4055 enum perf_type_id type,
4056 u32 event_id, u64 nr, int nmi,
4057 struct perf_sample_data *data,
4058 struct pt_regs *regs)
4059{
4060 struct perf_event *event;
4061
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004062 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004063 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004064 perf_swevent_add(event, nr, nmi, data, regs);
4065 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004066}
4067
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004068int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004069{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004070 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4071 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004072
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004073 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004074 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004075 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004076 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004077 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004078 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004079 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004080 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004081
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004082 if (cpuctx->recursion[rctx]) {
4083 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004084 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004085 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004086
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004087 cpuctx->recursion[rctx]++;
4088 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004089
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004090 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004091}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004092EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004093
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004094void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004095{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004096 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4097 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004098 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004099 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004100}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004101EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004102
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004103static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4104 u64 nr, int nmi,
4105 struct perf_sample_data *data,
4106 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004107{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004108 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004109 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004110
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004111 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004112 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004113 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4114 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004115 /*
4116 * doesn't really matter which of the child contexts the
4117 * events ends up in.
4118 */
4119 ctx = rcu_dereference(current->perf_event_ctxp);
4120 if (ctx)
4121 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4122 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004123}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004124
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004125void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4126 struct pt_regs *regs, u64 addr)
4127{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004128 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004129 int rctx;
4130
4131 rctx = perf_swevent_get_recursion_context();
4132 if (rctx < 0)
4133 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004134
Ingo Molnara4234bf2009-11-23 10:57:59 +01004135 data.addr = addr;
4136 data.raw = NULL;
4137
4138 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004139
4140 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004141}
4142
4143static void perf_swevent_read(struct perf_event *event)
4144{
4145}
4146
4147static int perf_swevent_enable(struct perf_event *event)
4148{
4149 struct hw_perf_event *hwc = &event->hw;
4150
4151 if (hwc->sample_period) {
4152 hwc->last_period = hwc->sample_period;
4153 perf_swevent_set_period(event);
4154 }
4155 return 0;
4156}
4157
4158static void perf_swevent_disable(struct perf_event *event)
4159{
4160}
4161
4162static const struct pmu perf_ops_generic = {
4163 .enable = perf_swevent_enable,
4164 .disable = perf_swevent_disable,
4165 .read = perf_swevent_read,
4166 .unthrottle = perf_swevent_unthrottle,
4167};
4168
4169/*
4170 * hrtimer based swevent callback
4171 */
4172
4173static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4174{
4175 enum hrtimer_restart ret = HRTIMER_RESTART;
4176 struct perf_sample_data data;
4177 struct pt_regs *regs;
4178 struct perf_event *event;
4179 u64 period;
4180
4181 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4182 event->pmu->read(event);
4183
4184 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004185 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004186 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004187 regs = get_irq_regs();
4188 /*
4189 * In case we exclude kernel IPs or are somehow not in interrupt
4190 * context, provide the next best thing, the user IP.
4191 */
4192 if ((event->attr.exclude_kernel || !regs) &&
4193 !event->attr.exclude_user)
4194 regs = task_pt_regs(current);
4195
4196 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004197 if (!(event->attr.exclude_idle && current->pid == 0))
4198 if (perf_event_overflow(event, 0, &data, regs))
4199 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004200 }
4201
4202 period = max_t(u64, 10000, event->hw.sample_period);
4203 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4204
4205 return ret;
4206}
4207
Soeren Sandmann721a6692009-09-15 14:33:08 +02004208static void perf_swevent_start_hrtimer(struct perf_event *event)
4209{
4210 struct hw_perf_event *hwc = &event->hw;
4211
4212 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4213 hwc->hrtimer.function = perf_swevent_hrtimer;
4214 if (hwc->sample_period) {
4215 u64 period;
4216
4217 if (hwc->remaining) {
4218 if (hwc->remaining < 0)
4219 period = 10000;
4220 else
4221 period = hwc->remaining;
4222 hwc->remaining = 0;
4223 } else {
4224 period = max_t(u64, 10000, hwc->sample_period);
4225 }
4226 __hrtimer_start_range_ns(&hwc->hrtimer,
4227 ns_to_ktime(period), 0,
4228 HRTIMER_MODE_REL, 0);
4229 }
4230}
4231
4232static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4233{
4234 struct hw_perf_event *hwc = &event->hw;
4235
4236 if (hwc->sample_period) {
4237 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4238 hwc->remaining = ktime_to_ns(remaining);
4239
4240 hrtimer_cancel(&hwc->hrtimer);
4241 }
4242}
4243
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004244/*
4245 * Software event: cpu wall time clock
4246 */
4247
4248static void cpu_clock_perf_event_update(struct perf_event *event)
4249{
4250 int cpu = raw_smp_processor_id();
4251 s64 prev;
4252 u64 now;
4253
4254 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004255 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004256 atomic64_add(now - prev, &event->count);
4257}
4258
4259static int cpu_clock_perf_event_enable(struct perf_event *event)
4260{
4261 struct hw_perf_event *hwc = &event->hw;
4262 int cpu = raw_smp_processor_id();
4263
4264 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004265 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004266
4267 return 0;
4268}
4269
4270static void cpu_clock_perf_event_disable(struct perf_event *event)
4271{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004272 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004273 cpu_clock_perf_event_update(event);
4274}
4275
4276static void cpu_clock_perf_event_read(struct perf_event *event)
4277{
4278 cpu_clock_perf_event_update(event);
4279}
4280
4281static const struct pmu perf_ops_cpu_clock = {
4282 .enable = cpu_clock_perf_event_enable,
4283 .disable = cpu_clock_perf_event_disable,
4284 .read = cpu_clock_perf_event_read,
4285};
4286
4287/*
4288 * Software event: task time clock
4289 */
4290
4291static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4292{
4293 u64 prev;
4294 s64 delta;
4295
4296 prev = atomic64_xchg(&event->hw.prev_count, now);
4297 delta = now - prev;
4298 atomic64_add(delta, &event->count);
4299}
4300
4301static int task_clock_perf_event_enable(struct perf_event *event)
4302{
4303 struct hw_perf_event *hwc = &event->hw;
4304 u64 now;
4305
4306 now = event->ctx->time;
4307
4308 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004309
4310 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004311
4312 return 0;
4313}
4314
4315static void task_clock_perf_event_disable(struct perf_event *event)
4316{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004317 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004318 task_clock_perf_event_update(event, event->ctx->time);
4319
4320}
4321
4322static void task_clock_perf_event_read(struct perf_event *event)
4323{
4324 u64 time;
4325
4326 if (!in_nmi()) {
4327 update_context_time(event->ctx);
4328 time = event->ctx->time;
4329 } else {
4330 u64 now = perf_clock();
4331 u64 delta = now - event->ctx->timestamp;
4332 time = event->ctx->time + delta;
4333 }
4334
4335 task_clock_perf_event_update(event, time);
4336}
4337
4338static const struct pmu perf_ops_task_clock = {
4339 .enable = task_clock_perf_event_enable,
4340 .disable = task_clock_perf_event_disable,
4341 .read = task_clock_perf_event_read,
4342};
4343
Li Zefan07b139c2009-12-21 14:27:35 +08004344#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004345
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004346void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4347 int entry_size)
4348{
4349 struct perf_raw_record raw = {
4350 .size = entry_size,
4351 .data = record,
4352 };
4353
4354 struct perf_sample_data data = {
4355 .addr = addr,
4356 .raw = &raw,
4357 };
4358
4359 struct pt_regs *regs = get_irq_regs();
4360
4361 if (!regs)
4362 regs = task_pt_regs(current);
4363
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004364 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004365 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004366 &data, regs);
4367}
4368EXPORT_SYMBOL_GPL(perf_tp_event);
4369
Li Zefan6fb29152009-10-15 11:21:42 +08004370static int perf_tp_event_match(struct perf_event *event,
4371 struct perf_sample_data *data)
4372{
4373 void *record = data->raw->data;
4374
4375 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4376 return 1;
4377 return 0;
4378}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004379
4380static void tp_perf_event_destroy(struct perf_event *event)
4381{
4382 ftrace_profile_disable(event->attr.config);
4383}
4384
4385static const struct pmu *tp_perf_event_init(struct perf_event *event)
4386{
4387 /*
4388 * Raw tracepoint data is a severe data leak, only allow root to
4389 * have these.
4390 */
4391 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4392 perf_paranoid_tracepoint_raw() &&
4393 !capable(CAP_SYS_ADMIN))
4394 return ERR_PTR(-EPERM);
4395
4396 if (ftrace_profile_enable(event->attr.config))
4397 return NULL;
4398
4399 event->destroy = tp_perf_event_destroy;
4400
4401 return &perf_ops_generic;
4402}
Li Zefan6fb29152009-10-15 11:21:42 +08004403
4404static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4405{
4406 char *filter_str;
4407 int ret;
4408
4409 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4410 return -EINVAL;
4411
4412 filter_str = strndup_user(arg, PAGE_SIZE);
4413 if (IS_ERR(filter_str))
4414 return PTR_ERR(filter_str);
4415
4416 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4417
4418 kfree(filter_str);
4419 return ret;
4420}
4421
4422static void perf_event_free_filter(struct perf_event *event)
4423{
4424 ftrace_profile_free_filter(event);
4425}
4426
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004427#else
Li Zefan6fb29152009-10-15 11:21:42 +08004428
4429static int perf_tp_event_match(struct perf_event *event,
4430 struct perf_sample_data *data)
4431{
4432 return 1;
4433}
4434
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004435static const struct pmu *tp_perf_event_init(struct perf_event *event)
4436{
4437 return NULL;
4438}
Li Zefan6fb29152009-10-15 11:21:42 +08004439
4440static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4441{
4442 return -ENOENT;
4443}
4444
4445static void perf_event_free_filter(struct perf_event *event)
4446{
4447}
4448
Li Zefan07b139c2009-12-21 14:27:35 +08004449#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004450
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004451#ifdef CONFIG_HAVE_HW_BREAKPOINT
4452static void bp_perf_event_destroy(struct perf_event *event)
4453{
4454 release_bp_slot(event);
4455}
4456
4457static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4458{
4459 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004460
4461 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004462 if (err)
4463 return ERR_PTR(err);
4464
4465 bp->destroy = bp_perf_event_destroy;
4466
4467 return &perf_ops_bp;
4468}
4469
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004470void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004471{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004472 struct perf_sample_data sample;
4473 struct pt_regs *regs = data;
4474
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004475 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004476 sample.addr = bp->attr.bp_addr;
4477
4478 if (!perf_exclude_event(bp, regs))
4479 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004480}
4481#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004482static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4483{
4484 return NULL;
4485}
4486
4487void perf_bp_event(struct perf_event *bp, void *regs)
4488{
4489}
4490#endif
4491
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004492atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4493
4494static void sw_perf_event_destroy(struct perf_event *event)
4495{
4496 u64 event_id = event->attr.config;
4497
4498 WARN_ON(event->parent);
4499
4500 atomic_dec(&perf_swevent_enabled[event_id]);
4501}
4502
4503static const struct pmu *sw_perf_event_init(struct perf_event *event)
4504{
4505 const struct pmu *pmu = NULL;
4506 u64 event_id = event->attr.config;
4507
4508 /*
4509 * Software events (currently) can't in general distinguish
4510 * between user, kernel and hypervisor events.
4511 * However, context switches and cpu migrations are considered
4512 * to be kernel events, and page faults are never hypervisor
4513 * events.
4514 */
4515 switch (event_id) {
4516 case PERF_COUNT_SW_CPU_CLOCK:
4517 pmu = &perf_ops_cpu_clock;
4518
4519 break;
4520 case PERF_COUNT_SW_TASK_CLOCK:
4521 /*
4522 * If the user instantiates this as a per-cpu event,
4523 * use the cpu_clock event instead.
4524 */
4525 if (event->ctx->task)
4526 pmu = &perf_ops_task_clock;
4527 else
4528 pmu = &perf_ops_cpu_clock;
4529
4530 break;
4531 case PERF_COUNT_SW_PAGE_FAULTS:
4532 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4533 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4534 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4535 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004536 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4537 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004538 if (!event->parent) {
4539 atomic_inc(&perf_swevent_enabled[event_id]);
4540 event->destroy = sw_perf_event_destroy;
4541 }
4542 pmu = &perf_ops_generic;
4543 break;
4544 }
4545
4546 return pmu;
4547}
4548
4549/*
4550 * Allocate and initialize a event structure
4551 */
4552static struct perf_event *
4553perf_event_alloc(struct perf_event_attr *attr,
4554 int cpu,
4555 struct perf_event_context *ctx,
4556 struct perf_event *group_leader,
4557 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004558 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004559 gfp_t gfpflags)
4560{
4561 const struct pmu *pmu;
4562 struct perf_event *event;
4563 struct hw_perf_event *hwc;
4564 long err;
4565
4566 event = kzalloc(sizeof(*event), gfpflags);
4567 if (!event)
4568 return ERR_PTR(-ENOMEM);
4569
4570 /*
4571 * Single events are their own group leaders, with an
4572 * empty sibling list:
4573 */
4574 if (!group_leader)
4575 group_leader = event;
4576
4577 mutex_init(&event->child_mutex);
4578 INIT_LIST_HEAD(&event->child_list);
4579
4580 INIT_LIST_HEAD(&event->group_entry);
4581 INIT_LIST_HEAD(&event->event_entry);
4582 INIT_LIST_HEAD(&event->sibling_list);
4583 init_waitqueue_head(&event->waitq);
4584
4585 mutex_init(&event->mmap_mutex);
4586
4587 event->cpu = cpu;
4588 event->attr = *attr;
4589 event->group_leader = group_leader;
4590 event->pmu = NULL;
4591 event->ctx = ctx;
4592 event->oncpu = -1;
4593
4594 event->parent = parent_event;
4595
4596 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4597 event->id = atomic64_inc_return(&perf_event_id);
4598
4599 event->state = PERF_EVENT_STATE_INACTIVE;
4600
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004601 if (!overflow_handler && parent_event)
4602 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004603
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004604 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004605
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004606 if (attr->disabled)
4607 event->state = PERF_EVENT_STATE_OFF;
4608
4609 pmu = NULL;
4610
4611 hwc = &event->hw;
4612 hwc->sample_period = attr->sample_period;
4613 if (attr->freq && attr->sample_freq)
4614 hwc->sample_period = 1;
4615 hwc->last_period = hwc->sample_period;
4616
4617 atomic64_set(&hwc->period_left, hwc->sample_period);
4618
4619 /*
4620 * we currently do not support PERF_FORMAT_GROUP on inherited events
4621 */
4622 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4623 goto done;
4624
4625 switch (attr->type) {
4626 case PERF_TYPE_RAW:
4627 case PERF_TYPE_HARDWARE:
4628 case PERF_TYPE_HW_CACHE:
4629 pmu = hw_perf_event_init(event);
4630 break;
4631
4632 case PERF_TYPE_SOFTWARE:
4633 pmu = sw_perf_event_init(event);
4634 break;
4635
4636 case PERF_TYPE_TRACEPOINT:
4637 pmu = tp_perf_event_init(event);
4638 break;
4639
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004640 case PERF_TYPE_BREAKPOINT:
4641 pmu = bp_perf_event_init(event);
4642 break;
4643
4644
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004645 default:
4646 break;
4647 }
4648done:
4649 err = 0;
4650 if (!pmu)
4651 err = -EINVAL;
4652 else if (IS_ERR(pmu))
4653 err = PTR_ERR(pmu);
4654
4655 if (err) {
4656 if (event->ns)
4657 put_pid_ns(event->ns);
4658 kfree(event);
4659 return ERR_PTR(err);
4660 }
4661
4662 event->pmu = pmu;
4663
4664 if (!event->parent) {
4665 atomic_inc(&nr_events);
4666 if (event->attr.mmap)
4667 atomic_inc(&nr_mmap_events);
4668 if (event->attr.comm)
4669 atomic_inc(&nr_comm_events);
4670 if (event->attr.task)
4671 atomic_inc(&nr_task_events);
4672 }
4673
4674 return event;
4675}
4676
4677static int perf_copy_attr(struct perf_event_attr __user *uattr,
4678 struct perf_event_attr *attr)
4679{
4680 u32 size;
4681 int ret;
4682
4683 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4684 return -EFAULT;
4685
4686 /*
4687 * zero the full structure, so that a short copy will be nice.
4688 */
4689 memset(attr, 0, sizeof(*attr));
4690
4691 ret = get_user(size, &uattr->size);
4692 if (ret)
4693 return ret;
4694
4695 if (size > PAGE_SIZE) /* silly large */
4696 goto err_size;
4697
4698 if (!size) /* abi compat */
4699 size = PERF_ATTR_SIZE_VER0;
4700
4701 if (size < PERF_ATTR_SIZE_VER0)
4702 goto err_size;
4703
4704 /*
4705 * If we're handed a bigger struct than we know of,
4706 * ensure all the unknown bits are 0 - i.e. new
4707 * user-space does not rely on any kernel feature
4708 * extensions we dont know about yet.
4709 */
4710 if (size > sizeof(*attr)) {
4711 unsigned char __user *addr;
4712 unsigned char __user *end;
4713 unsigned char val;
4714
4715 addr = (void __user *)uattr + sizeof(*attr);
4716 end = (void __user *)uattr + size;
4717
4718 for (; addr < end; addr++) {
4719 ret = get_user(val, addr);
4720 if (ret)
4721 return ret;
4722 if (val)
4723 goto err_size;
4724 }
4725 size = sizeof(*attr);
4726 }
4727
4728 ret = copy_from_user(attr, uattr, size);
4729 if (ret)
4730 return -EFAULT;
4731
4732 /*
4733 * If the type exists, the corresponding creation will verify
4734 * the attr->config.
4735 */
4736 if (attr->type >= PERF_TYPE_MAX)
4737 return -EINVAL;
4738
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004739 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004740 return -EINVAL;
4741
4742 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4743 return -EINVAL;
4744
4745 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4746 return -EINVAL;
4747
4748out:
4749 return ret;
4750
4751err_size:
4752 put_user(sizeof(*attr), &uattr->size);
4753 ret = -E2BIG;
4754 goto out;
4755}
4756
Li Zefan6fb29152009-10-15 11:21:42 +08004757static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004758{
4759 struct perf_event *output_event = NULL;
4760 struct file *output_file = NULL;
4761 struct perf_event *old_output;
4762 int fput_needed = 0;
4763 int ret = -EINVAL;
4764
4765 if (!output_fd)
4766 goto set;
4767
4768 output_file = fget_light(output_fd, &fput_needed);
4769 if (!output_file)
4770 return -EBADF;
4771
4772 if (output_file->f_op != &perf_fops)
4773 goto out;
4774
4775 output_event = output_file->private_data;
4776
4777 /* Don't chain output fds */
4778 if (output_event->output)
4779 goto out;
4780
4781 /* Don't set an output fd when we already have an output channel */
4782 if (event->data)
4783 goto out;
4784
4785 atomic_long_inc(&output_file->f_count);
4786
4787set:
4788 mutex_lock(&event->mmap_mutex);
4789 old_output = event->output;
4790 rcu_assign_pointer(event->output, output_event);
4791 mutex_unlock(&event->mmap_mutex);
4792
4793 if (old_output) {
4794 /*
4795 * we need to make sure no existing perf_output_*()
4796 * is still referencing this event.
4797 */
4798 synchronize_rcu();
4799 fput(old_output->filp);
4800 }
4801
4802 ret = 0;
4803out:
4804 fput_light(output_file, fput_needed);
4805 return ret;
4806}
4807
4808/**
4809 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4810 *
4811 * @attr_uptr: event_id type attributes for monitoring/sampling
4812 * @pid: target pid
4813 * @cpu: target cpu
4814 * @group_fd: group leader event fd
4815 */
4816SYSCALL_DEFINE5(perf_event_open,
4817 struct perf_event_attr __user *, attr_uptr,
4818 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4819{
4820 struct perf_event *event, *group_leader;
4821 struct perf_event_attr attr;
4822 struct perf_event_context *ctx;
4823 struct file *event_file = NULL;
4824 struct file *group_file = NULL;
4825 int fput_needed = 0;
4826 int fput_needed2 = 0;
4827 int err;
4828
4829 /* for future expandability... */
4830 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4831 return -EINVAL;
4832
4833 err = perf_copy_attr(attr_uptr, &attr);
4834 if (err)
4835 return err;
4836
4837 if (!attr.exclude_kernel) {
4838 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4839 return -EACCES;
4840 }
4841
4842 if (attr.freq) {
4843 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4844 return -EINVAL;
4845 }
4846
4847 /*
4848 * Get the target context (task or percpu):
4849 */
4850 ctx = find_get_context(pid, cpu);
4851 if (IS_ERR(ctx))
4852 return PTR_ERR(ctx);
4853
4854 /*
4855 * Look up the group leader (we will attach this event to it):
4856 */
4857 group_leader = NULL;
4858 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4859 err = -EINVAL;
4860 group_file = fget_light(group_fd, &fput_needed);
4861 if (!group_file)
4862 goto err_put_context;
4863 if (group_file->f_op != &perf_fops)
4864 goto err_put_context;
4865
4866 group_leader = group_file->private_data;
4867 /*
4868 * Do not allow a recursive hierarchy (this new sibling
4869 * becoming part of another group-sibling):
4870 */
4871 if (group_leader->group_leader != group_leader)
4872 goto err_put_context;
4873 /*
4874 * Do not allow to attach to a group in a different
4875 * task or CPU context:
4876 */
4877 if (group_leader->ctx != ctx)
4878 goto err_put_context;
4879 /*
4880 * Only a group leader can be exclusive or pinned
4881 */
4882 if (attr.exclusive || attr.pinned)
4883 goto err_put_context;
4884 }
4885
4886 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004887 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004888 err = PTR_ERR(event);
4889 if (IS_ERR(event))
4890 goto err_put_context;
4891
Roland Dreier628ff7c2009-12-18 09:41:24 -08004892 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004893 if (err < 0)
4894 goto err_free_put_context;
4895
4896 event_file = fget_light(err, &fput_needed2);
4897 if (!event_file)
4898 goto err_free_put_context;
4899
4900 if (flags & PERF_FLAG_FD_OUTPUT) {
4901 err = perf_event_set_output(event, group_fd);
4902 if (err)
4903 goto err_fput_free_put_context;
4904 }
4905
4906 event->filp = event_file;
4907 WARN_ON_ONCE(ctx->parent_ctx);
4908 mutex_lock(&ctx->mutex);
4909 perf_install_in_context(ctx, event, cpu);
4910 ++ctx->generation;
4911 mutex_unlock(&ctx->mutex);
4912
4913 event->owner = current;
4914 get_task_struct(current);
4915 mutex_lock(&current->perf_event_mutex);
4916 list_add_tail(&event->owner_entry, &current->perf_event_list);
4917 mutex_unlock(&current->perf_event_mutex);
4918
4919err_fput_free_put_context:
4920 fput_light(event_file, fput_needed2);
4921
4922err_free_put_context:
4923 if (err < 0)
4924 kfree(event);
4925
4926err_put_context:
4927 if (err < 0)
4928 put_ctx(ctx);
4929
4930 fput_light(group_file, fput_needed);
4931
4932 return err;
4933}
4934
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004935/**
4936 * perf_event_create_kernel_counter
4937 *
4938 * @attr: attributes of the counter to create
4939 * @cpu: cpu in which the counter is bound
4940 * @pid: task to profile
4941 */
4942struct perf_event *
4943perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004944 pid_t pid,
4945 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004946{
4947 struct perf_event *event;
4948 struct perf_event_context *ctx;
4949 int err;
4950
4951 /*
4952 * Get the target context (task or percpu):
4953 */
4954
4955 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004956 if (IS_ERR(ctx)) {
4957 err = PTR_ERR(ctx);
4958 goto err_exit;
4959 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004960
4961 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004962 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004963 if (IS_ERR(event)) {
4964 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004965 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004966 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004967
4968 event->filp = NULL;
4969 WARN_ON_ONCE(ctx->parent_ctx);
4970 mutex_lock(&ctx->mutex);
4971 perf_install_in_context(ctx, event, cpu);
4972 ++ctx->generation;
4973 mutex_unlock(&ctx->mutex);
4974
4975 event->owner = current;
4976 get_task_struct(current);
4977 mutex_lock(&current->perf_event_mutex);
4978 list_add_tail(&event->owner_entry, &current->perf_event_list);
4979 mutex_unlock(&current->perf_event_mutex);
4980
4981 return event;
4982
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004983 err_put_context:
4984 put_ctx(ctx);
4985 err_exit:
4986 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004987}
4988EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4989
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004990/*
4991 * inherit a event from parent task to child task:
4992 */
4993static struct perf_event *
4994inherit_event(struct perf_event *parent_event,
4995 struct task_struct *parent,
4996 struct perf_event_context *parent_ctx,
4997 struct task_struct *child,
4998 struct perf_event *group_leader,
4999 struct perf_event_context *child_ctx)
5000{
5001 struct perf_event *child_event;
5002
5003 /*
5004 * Instead of creating recursive hierarchies of events,
5005 * we link inherited events back to the original parent,
5006 * which has a filp for sure, which we use as the reference
5007 * count:
5008 */
5009 if (parent_event->parent)
5010 parent_event = parent_event->parent;
5011
5012 child_event = perf_event_alloc(&parent_event->attr,
5013 parent_event->cpu, child_ctx,
5014 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005015 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005016 if (IS_ERR(child_event))
5017 return child_event;
5018 get_ctx(child_ctx);
5019
5020 /*
5021 * Make the child state follow the state of the parent event,
5022 * not its attr.disabled bit. We hold the parent's mutex,
5023 * so we won't race with perf_event_{en, dis}able_family.
5024 */
5025 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5026 child_event->state = PERF_EVENT_STATE_INACTIVE;
5027 else
5028 child_event->state = PERF_EVENT_STATE_OFF;
5029
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005030 if (parent_event->attr.freq) {
5031 u64 sample_period = parent_event->hw.sample_period;
5032 struct hw_perf_event *hwc = &child_event->hw;
5033
5034 hwc->sample_period = sample_period;
5035 hwc->last_period = sample_period;
5036
5037 atomic64_set(&hwc->period_left, sample_period);
5038 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005039
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005040 child_event->overflow_handler = parent_event->overflow_handler;
5041
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005042 /*
5043 * Link it up in the child's context:
5044 */
5045 add_event_to_ctx(child_event, child_ctx);
5046
5047 /*
5048 * Get a reference to the parent filp - we will fput it
5049 * when the child event exits. This is safe to do because
5050 * we are in the parent and we know that the filp still
5051 * exists and has a nonzero count:
5052 */
5053 atomic_long_inc(&parent_event->filp->f_count);
5054
5055 /*
5056 * Link this into the parent event's child list
5057 */
5058 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5059 mutex_lock(&parent_event->child_mutex);
5060 list_add_tail(&child_event->child_list, &parent_event->child_list);
5061 mutex_unlock(&parent_event->child_mutex);
5062
5063 return child_event;
5064}
5065
5066static int inherit_group(struct perf_event *parent_event,
5067 struct task_struct *parent,
5068 struct perf_event_context *parent_ctx,
5069 struct task_struct *child,
5070 struct perf_event_context *child_ctx)
5071{
5072 struct perf_event *leader;
5073 struct perf_event *sub;
5074 struct perf_event *child_ctr;
5075
5076 leader = inherit_event(parent_event, parent, parent_ctx,
5077 child, NULL, child_ctx);
5078 if (IS_ERR(leader))
5079 return PTR_ERR(leader);
5080 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5081 child_ctr = inherit_event(sub, parent, parent_ctx,
5082 child, leader, child_ctx);
5083 if (IS_ERR(child_ctr))
5084 return PTR_ERR(child_ctr);
5085 }
5086 return 0;
5087}
5088
5089static void sync_child_event(struct perf_event *child_event,
5090 struct task_struct *child)
5091{
5092 struct perf_event *parent_event = child_event->parent;
5093 u64 child_val;
5094
5095 if (child_event->attr.inherit_stat)
5096 perf_event_read_event(child_event, child);
5097
5098 child_val = atomic64_read(&child_event->count);
5099
5100 /*
5101 * Add back the child's count to the parent's count:
5102 */
5103 atomic64_add(child_val, &parent_event->count);
5104 atomic64_add(child_event->total_time_enabled,
5105 &parent_event->child_total_time_enabled);
5106 atomic64_add(child_event->total_time_running,
5107 &parent_event->child_total_time_running);
5108
5109 /*
5110 * Remove this event from the parent's list
5111 */
5112 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5113 mutex_lock(&parent_event->child_mutex);
5114 list_del_init(&child_event->child_list);
5115 mutex_unlock(&parent_event->child_mutex);
5116
5117 /*
5118 * Release the parent event, if this was the last
5119 * reference to it.
5120 */
5121 fput(parent_event->filp);
5122}
5123
5124static void
5125__perf_event_exit_task(struct perf_event *child_event,
5126 struct perf_event_context *child_ctx,
5127 struct task_struct *child)
5128{
5129 struct perf_event *parent_event;
5130
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005131 perf_event_remove_from_context(child_event);
5132
5133 parent_event = child_event->parent;
5134 /*
5135 * It can happen that parent exits first, and has events
5136 * that are still around due to the child reference. These
5137 * events need to be zapped - but otherwise linger.
5138 */
5139 if (parent_event) {
5140 sync_child_event(child_event, child);
5141 free_event(child_event);
5142 }
5143}
5144
5145/*
5146 * When a child task exits, feed back event values to parent events.
5147 */
5148void perf_event_exit_task(struct task_struct *child)
5149{
5150 struct perf_event *child_event, *tmp;
5151 struct perf_event_context *child_ctx;
5152 unsigned long flags;
5153
5154 if (likely(!child->perf_event_ctxp)) {
5155 perf_event_task(child, NULL, 0);
5156 return;
5157 }
5158
5159 local_irq_save(flags);
5160 /*
5161 * We can't reschedule here because interrupts are disabled,
5162 * and either child is current or it is a task that can't be
5163 * scheduled, so we are now safe from rescheduling changing
5164 * our context.
5165 */
5166 child_ctx = child->perf_event_ctxp;
5167 __perf_event_task_sched_out(child_ctx);
5168
5169 /*
5170 * Take the context lock here so that if find_get_context is
5171 * reading child->perf_event_ctxp, we wait until it has
5172 * incremented the context's refcount before we do put_ctx below.
5173 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005174 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005175 child->perf_event_ctxp = NULL;
5176 /*
5177 * If this context is a clone; unclone it so it can't get
5178 * swapped to another process while we're removing all
5179 * the events from it.
5180 */
5181 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005182 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005183 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005184
5185 /*
5186 * Report the task dead after unscheduling the events so that we
5187 * won't get any samples after PERF_RECORD_EXIT. We can however still
5188 * get a few PERF_RECORD_READ events.
5189 */
5190 perf_event_task(child, child_ctx, 0);
5191
5192 /*
5193 * We can recurse on the same lock type through:
5194 *
5195 * __perf_event_exit_task()
5196 * sync_child_event()
5197 * fput(parent_event->filp)
5198 * perf_release()
5199 * mutex_lock(&ctx->mutex)
5200 *
5201 * But since its the parent context it won't be the same instance.
5202 */
5203 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5204
5205again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005206 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5207 group_entry)
5208 __perf_event_exit_task(child_event, child_ctx, child);
5209
5210 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005211 group_entry)
5212 __perf_event_exit_task(child_event, child_ctx, child);
5213
5214 /*
5215 * If the last event was a group event, it will have appended all
5216 * its siblings to the list, but we obtained 'tmp' before that which
5217 * will still point to the list head terminating the iteration.
5218 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005219 if (!list_empty(&child_ctx->pinned_groups) ||
5220 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005221 goto again;
5222
5223 mutex_unlock(&child_ctx->mutex);
5224
5225 put_ctx(child_ctx);
5226}
5227
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005228static void perf_free_event(struct perf_event *event,
5229 struct perf_event_context *ctx)
5230{
5231 struct perf_event *parent = event->parent;
5232
5233 if (WARN_ON_ONCE(!parent))
5234 return;
5235
5236 mutex_lock(&parent->child_mutex);
5237 list_del_init(&event->child_list);
5238 mutex_unlock(&parent->child_mutex);
5239
5240 fput(parent->filp);
5241
5242 list_del_event(event, ctx);
5243 free_event(event);
5244}
5245
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005246/*
5247 * free an unexposed, unused context as created by inheritance by
5248 * init_task below, used by fork() in case of fail.
5249 */
5250void perf_event_free_task(struct task_struct *task)
5251{
5252 struct perf_event_context *ctx = task->perf_event_ctxp;
5253 struct perf_event *event, *tmp;
5254
5255 if (!ctx)
5256 return;
5257
5258 mutex_lock(&ctx->mutex);
5259again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005260 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5261 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005262
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5264 group_entry)
5265 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005266
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005267 if (!list_empty(&ctx->pinned_groups) ||
5268 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005269 goto again;
5270
5271 mutex_unlock(&ctx->mutex);
5272
5273 put_ctx(ctx);
5274}
5275
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005276static int
5277inherit_task_group(struct perf_event *event, struct task_struct *parent,
5278 struct perf_event_context *parent_ctx,
5279 struct task_struct *child,
5280 int *inherited_all)
5281{
5282 int ret;
5283 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5284
5285 if (!event->attr.inherit) {
5286 *inherited_all = 0;
5287 return 0;
5288 }
5289
5290 if (!child_ctx) {
5291 /*
5292 * This is executed from the parent task context, so
5293 * inherit events that have been marked for cloning.
5294 * First allocate and initialize a context for the
5295 * child.
5296 */
5297
5298 child_ctx = kzalloc(sizeof(struct perf_event_context),
5299 GFP_KERNEL);
5300 if (!child_ctx)
5301 return -ENOMEM;
5302
5303 __perf_event_init_context(child_ctx, child);
5304 child->perf_event_ctxp = child_ctx;
5305 get_task_struct(child);
5306 }
5307
5308 ret = inherit_group(event, parent, parent_ctx,
5309 child, child_ctx);
5310
5311 if (ret)
5312 *inherited_all = 0;
5313
5314 return ret;
5315}
5316
5317
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005318/*
5319 * Initialize the perf_event context in task_struct
5320 */
5321int perf_event_init_task(struct task_struct *child)
5322{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005323 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005324 struct perf_event_context *cloned_ctx;
5325 struct perf_event *event;
5326 struct task_struct *parent = current;
5327 int inherited_all = 1;
5328 int ret = 0;
5329
5330 child->perf_event_ctxp = NULL;
5331
5332 mutex_init(&child->perf_event_mutex);
5333 INIT_LIST_HEAD(&child->perf_event_list);
5334
5335 if (likely(!parent->perf_event_ctxp))
5336 return 0;
5337
5338 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005339 * If the parent's context is a clone, pin it so it won't get
5340 * swapped under us.
5341 */
5342 parent_ctx = perf_pin_task_context(parent);
5343
5344 /*
5345 * No need to check if parent_ctx != NULL here; since we saw
5346 * it non-NULL earlier, the only reason for it to become NULL
5347 * is if we exit, and since we're currently in the middle of
5348 * a fork we can't be exiting at the same time.
5349 */
5350
5351 /*
5352 * Lock the parent list. No need to lock the child - not PID
5353 * hashed yet and not running, so nobody can access it.
5354 */
5355 mutex_lock(&parent_ctx->mutex);
5356
5357 /*
5358 * We dont have to disable NMIs - we are only looking at
5359 * the list, not manipulating it:
5360 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005361 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5362 ret = inherit_task_group(event, parent, parent_ctx, child,
5363 &inherited_all);
5364 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005365 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005366 }
5367
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005368 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5369 ret = inherit_task_group(event, parent, parent_ctx, child,
5370 &inherited_all);
5371 if (ret)
5372 break;
5373 }
5374
5375 child_ctx = child->perf_event_ctxp;
5376
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005377 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005378 /*
5379 * Mark the child context as a clone of the parent
5380 * context, or of whatever the parent is a clone of.
5381 * Note that if the parent is a clone, it could get
5382 * uncloned at any point, but that doesn't matter
5383 * because the list of events and the generation
5384 * count can't have changed since we took the mutex.
5385 */
5386 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5387 if (cloned_ctx) {
5388 child_ctx->parent_ctx = cloned_ctx;
5389 child_ctx->parent_gen = parent_ctx->parent_gen;
5390 } else {
5391 child_ctx->parent_ctx = parent_ctx;
5392 child_ctx->parent_gen = parent_ctx->generation;
5393 }
5394 get_ctx(child_ctx->parent_ctx);
5395 }
5396
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005397 mutex_unlock(&parent_ctx->mutex);
5398
5399 perf_unpin_context(parent_ctx);
5400
5401 return ret;
5402}
5403
5404static void __cpuinit perf_event_init_cpu(int cpu)
5405{
5406 struct perf_cpu_context *cpuctx;
5407
5408 cpuctx = &per_cpu(perf_cpu_context, cpu);
5409 __perf_event_init_context(&cpuctx->ctx, NULL);
5410
5411 spin_lock(&perf_resource_lock);
5412 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5413 spin_unlock(&perf_resource_lock);
5414
5415 hw_perf_event_setup(cpu);
5416}
5417
5418#ifdef CONFIG_HOTPLUG_CPU
5419static void __perf_event_exit_cpu(void *info)
5420{
5421 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5422 struct perf_event_context *ctx = &cpuctx->ctx;
5423 struct perf_event *event, *tmp;
5424
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005425 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5426 __perf_event_remove_from_context(event);
5427 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005428 __perf_event_remove_from_context(event);
5429}
5430static void perf_event_exit_cpu(int cpu)
5431{
5432 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5433 struct perf_event_context *ctx = &cpuctx->ctx;
5434
5435 mutex_lock(&ctx->mutex);
5436 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5437 mutex_unlock(&ctx->mutex);
5438}
5439#else
5440static inline void perf_event_exit_cpu(int cpu) { }
5441#endif
5442
5443static int __cpuinit
5444perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5445{
5446 unsigned int cpu = (long)hcpu;
5447
5448 switch (action) {
5449
5450 case CPU_UP_PREPARE:
5451 case CPU_UP_PREPARE_FROZEN:
5452 perf_event_init_cpu(cpu);
5453 break;
5454
5455 case CPU_ONLINE:
5456 case CPU_ONLINE_FROZEN:
5457 hw_perf_event_setup_online(cpu);
5458 break;
5459
5460 case CPU_DOWN_PREPARE:
5461 case CPU_DOWN_PREPARE_FROZEN:
5462 perf_event_exit_cpu(cpu);
5463 break;
5464
5465 default:
5466 break;
5467 }
5468
5469 return NOTIFY_OK;
5470}
5471
5472/*
5473 * This has to have a higher priority than migration_notifier in sched.c.
5474 */
5475static struct notifier_block __cpuinitdata perf_cpu_nb = {
5476 .notifier_call = perf_cpu_notify,
5477 .priority = 20,
5478};
5479
5480void __init perf_event_init(void)
5481{
5482 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5483 (void *)(long)smp_processor_id());
5484 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5485 (void *)(long)smp_processor_id());
5486 register_cpu_notifier(&perf_cpu_nb);
5487}
5488
5489static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5490{
5491 return sprintf(buf, "%d\n", perf_reserved_percpu);
5492}
5493
5494static ssize_t
5495perf_set_reserve_percpu(struct sysdev_class *class,
5496 const char *buf,
5497 size_t count)
5498{
5499 struct perf_cpu_context *cpuctx;
5500 unsigned long val;
5501 int err, cpu, mpt;
5502
5503 err = strict_strtoul(buf, 10, &val);
5504 if (err)
5505 return err;
5506 if (val > perf_max_events)
5507 return -EINVAL;
5508
5509 spin_lock(&perf_resource_lock);
5510 perf_reserved_percpu = val;
5511 for_each_online_cpu(cpu) {
5512 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005513 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005514 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5515 perf_max_events - perf_reserved_percpu);
5516 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005517 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005518 }
5519 spin_unlock(&perf_resource_lock);
5520
5521 return count;
5522}
5523
5524static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5525{
5526 return sprintf(buf, "%d\n", perf_overcommit);
5527}
5528
5529static ssize_t
5530perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5531{
5532 unsigned long val;
5533 int err;
5534
5535 err = strict_strtoul(buf, 10, &val);
5536 if (err)
5537 return err;
5538 if (val > 1)
5539 return -EINVAL;
5540
5541 spin_lock(&perf_resource_lock);
5542 perf_overcommit = val;
5543 spin_unlock(&perf_resource_lock);
5544
5545 return count;
5546}
5547
5548static SYSDEV_CLASS_ATTR(
5549 reserve_percpu,
5550 0644,
5551 perf_show_reserve_percpu,
5552 perf_set_reserve_percpu
5553 );
5554
5555static SYSDEV_CLASS_ATTR(
5556 overcommit,
5557 0644,
5558 perf_show_overcommit,
5559 perf_set_overcommit
5560 );
5561
5562static struct attribute *perfclass_attrs[] = {
5563 &attr_reserve_percpu.attr,
5564 &attr_overcommit.attr,
5565 NULL
5566};
5567
5568static struct attribute_group perfclass_attr_group = {
5569 .attrs = perfclass_attrs,
5570 .name = "perf_events",
5571};
5572
5573static int __init perf_event_sysfs_init(void)
5574{
5575 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5576 &perfclass_attr_group);
5577}
5578device_initcall(perf_event_sysfs_init);