blob: 73bb4d9ef9892c60d901ff47b71d011773464e53 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080037#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080052#include <linux/kprobes.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
Ingo Molnar48c08d32005-06-25 14:57:22 -0700173static unsigned int task_timeslice(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174{
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179}
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183/*
184 * These are the runqueue data structures:
185 */
186
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t;
190
191struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195};
196
197/*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700213 unsigned long cpu_load[3];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214#endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233#ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
Anton Blancharde9028b02006-03-23 02:59:20 -0800242 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700243#endif
244
245#ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263#endif
264};
265
266static DEFINE_PER_CPU(struct runqueue, runqueues);
267
Nick Piggin674311d2005-06-25 14:57:27 -0700268/*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700270 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275#define for_each_domain(cpu, domain) \
Nick Piggin674311d2005-06-25 14:57:27 -0700276for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277
278#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279#define this_rq() (&__get_cpu_var(runqueues))
280#define task_rq(p) cpu_rq(task_cpu(p))
281#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700284# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700286#ifndef finish_arch_switch
287# define finish_arch_switch(prev) do { } while (0)
288#endif
289
290#ifndef __ARCH_WANT_UNLOCKED_CTXSW
291static inline int task_running(runqueue_t *rq, task_t *p)
292{
293 return rq->curr == p;
294}
295
296static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297{
298}
299
300static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301{
Ingo Molnarda04c032005-09-13 11:17:59 +0200302#ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700306 spin_unlock_irq(&rq->lock);
307}
308
309#else /* __ARCH_WANT_UNLOCKED_CTXSW */
310static inline int task_running(runqueue_t *rq, task_t *p)
311{
312#ifdef CONFIG_SMP
313 return p->oncpu;
314#else
315 return rq->curr == p;
316#endif
317}
318
319static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320{
321#ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328#endif
329#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331#else
332 spin_unlock(&rq->lock);
333#endif
334}
335
336static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337{
338#ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346#endif
347#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
349#endif
350}
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352
353/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360{
361 struct runqueue *rq;
362
363repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372}
373
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376{
377 spin_unlock_irqrestore(&rq->lock, *flags);
378}
379
380#ifdef CONFIG_SCHEDSTATS
381/*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
Nick Piggin68767a02005-06-25 14:57:20 -0700385#define SCHEDSTAT_VERSION 12
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
387static int show_schedstat(struct seq_file *seq, void *v)
388{
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395#ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398#endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412#ifdef CONFIG_SMP
413 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700414 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
Nick Piggin68767a02005-06-25 14:57:20 -0700433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
Nick Piggin674311d2005-06-25 14:57:27 -0700439 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440#endif
441 }
442 return 0;
443}
444
445static int schedstat_open(struct inode *inode, struct file *file)
446{
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462}
463
464struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469};
470
471# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473#else /* !CONFIG_SCHEDSTATS */
474# define schedstat_inc(rq, field) do { } while (0)
475# define schedstat_add(rq, field, amt) do { } while (0)
476#endif
477
478/*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483{
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491}
492
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#ifdef CONFIG_SCHEDSTATS
494/*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509static inline void sched_info_dequeued(task_t *t)
510{
511 t->sched_info.last_queued = 0;
512}
513
514/*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
Arjan van de Ven858119e2006-01-14 13:20:43 -0800519static void sched_info_arrive(task_t *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520{
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536}
537
538/*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553static inline void sched_info_queued(task_t *t)
554{
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557}
558
559/*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563static inline void sched_info_depart(task_t *t)
564{
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572}
573
574/*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579static inline void sched_info_switch(task_t *prev, task_t *next)
580{
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593}
594#else
595#define sched_info_queued(t) do { } while (0)
596#define sched_info_switch(t, next) do { } while (0)
597#endif /* CONFIG_SCHEDSTATS */
598
599/*
600 * Adding/removing a task to/from a priority array:
601 */
602static void dequeue_task(struct task_struct *p, prio_array_t *array)
603{
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608}
609
610static void enqueue_task(struct task_struct *p, prio_array_t *array)
611{
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617}
618
619/*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623static void requeue_task(struct task_struct *p, prio_array_t *array)
624{
625 list_move_tail(&p->run_list, array->queue + p->prio);
626}
627
628static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650static int effective_prio(task_t *p)
651{
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665}
666
667/*
668 * __activate_task - move a task to the runqueue.
669 */
670static inline void __activate_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task(p, rq->active);
Nick Piggina2000572006-02-10 01:51:02 -0800673 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674}
675
676/*
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
678 */
679static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
680{
681 enqueue_task_head(p, rq->active);
Nick Piggina2000572006-02-10 01:51:02 -0800682 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683}
684
Chen Shanga3464a12005-06-25 14:57:31 -0700685static int recalc_task_prio(task_t *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686{
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
690
Ingo Molnarb0a94992006-01-14 13:20:41 -0800691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
698 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700699
700 if (likely(sleep_time > 0)) {
701 /*
702 * User tasks that sleep a long time are categorised as
Con Kolivase72ff0b2006-03-31 02:31:26 -0800703 * idle. They will only have their sleep_avg increased to a
704 * level that makes them just interactive priority to stay
705 * active yet prevent them suddenly becoming cpu hogs and
706 * starving other processes.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707 */
Con Kolivas51389302006-03-31 02:31:27 -0800708 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
Con Kolivase72ff0b2006-03-31 02:31:26 -0800709 unsigned long ceiling;
710
711 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
712 DEF_TIMESLICE);
713 if (p->sleep_avg < ceiling)
714 p->sleep_avg = ceiling;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715 } else {
716 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717 * Tasks waking from uninterruptible sleep are
718 * limited in their sleep_avg rise as they
719 * are likely to be waiting on I/O
720 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800721 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700722 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
723 sleep_time = 0;
724 else if (p->sleep_avg + sleep_time >=
725 INTERACTIVE_SLEEP(p)) {
726 p->sleep_avg = INTERACTIVE_SLEEP(p);
727 sleep_time = 0;
728 }
729 }
730
731 /*
732 * This code gives a bonus to interactive tasks.
733 *
734 * The boost works by updating the 'average sleep time'
735 * value here, based on ->timestamp. The more time a
736 * task spends sleeping, the higher the average gets -
737 * and the higher the priority boost gets as well.
738 */
739 p->sleep_avg += sleep_time;
740
741 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
742 p->sleep_avg = NS_MAX_SLEEP_AVG;
743 }
744 }
745
Chen Shanga3464a12005-06-25 14:57:31 -0700746 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700747}
748
749/*
750 * activate_task - move a task to the runqueue and do priority recalculation
751 *
752 * Update all the scheduling statistics stuff. (sleep average
753 * calculation, priority modifiers, etc.)
754 */
755static void activate_task(task_t *p, runqueue_t *rq, int local)
756{
757 unsigned long long now;
758
759 now = sched_clock();
760#ifdef CONFIG_SMP
761 if (!local) {
762 /* Compensate for drifting sched_clock */
763 runqueue_t *this_rq = this_rq();
764 now = (now - this_rq->timestamp_last_tick)
765 + rq->timestamp_last_tick;
766 }
767#endif
768
Chen, Kenneth Wa47ab932005-11-09 15:45:29 -0800769 if (!rt_task(p))
770 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700771
772 /*
773 * This checks to make sure it's not an uninterruptible task
774 * that is now waking up.
775 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800776 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777 /*
778 * Tasks which were woken up by interrupts (ie. hw events)
779 * are most likely of interactive nature. So we give them
780 * the credit of extending their sleep time to the period
781 * of time they spend on the runqueue, waiting for execution
782 * on a CPU, first time around:
783 */
784 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800785 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786 else {
787 /*
788 * Normal first-time wakeups get a credit too for
789 * on-runqueue time, but it will be weighted down:
790 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800791 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792 }
793 }
794 p->timestamp = now;
795
796 __activate_task(p, rq);
797}
798
799/*
800 * deactivate_task - remove a task from the runqueue.
801 */
802static void deactivate_task(struct task_struct *p, runqueue_t *rq)
803{
Nick Piggina2000572006-02-10 01:51:02 -0800804 rq->nr_running--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 dequeue_task(p, p->array);
806 p->array = NULL;
807}
808
809/*
810 * resched_task - mark a task 'to be rescheduled now'.
811 *
812 * On UP this means the setting of the need_resched flag, on SMP it
813 * might also involve a cross-CPU call to trigger the scheduler on
814 * the target CPU.
815 */
816#ifdef CONFIG_SMP
817static void resched_task(task_t *p)
818{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800819 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820
821 assert_spin_locked(&task_rq(p)->lock);
822
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800823 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
824 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700825
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800826 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
827
828 cpu = task_cpu(p);
829 if (cpu == smp_processor_id())
830 return;
831
832 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
833 smp_mb();
834 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
835 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700836}
837#else
838static inline void resched_task(task_t *p)
839{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800840 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 set_tsk_need_resched(p);
842}
843#endif
844
845/**
846 * task_curr - is this task currently executing on a CPU?
847 * @p: the task in question.
848 */
849inline int task_curr(const task_t *p)
850{
851 return cpu_curr(task_cpu(p)) == p;
852}
853
854#ifdef CONFIG_SMP
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855typedef struct {
856 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858 task_t *task;
859 int dest_cpu;
860
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861 struct completion done;
862} migration_req_t;
863
864/*
865 * The task's runqueue lock must be held.
866 * Returns true if you have to wait for migration thread.
867 */
868static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
869{
870 runqueue_t *rq = task_rq(p);
871
872 /*
873 * If the task is not on a runqueue (and not running), then
874 * it is sufficient to simply update the task's cpu field.
875 */
876 if (!p->array && !task_running(rq, p)) {
877 set_task_cpu(p, dest_cpu);
878 return 0;
879 }
880
881 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 req->task = p;
883 req->dest_cpu = dest_cpu;
884 list_add(&req->list, &rq->migration_queue);
885 return 1;
886}
887
888/*
889 * wait_task_inactive - wait for a thread to unschedule.
890 *
891 * The caller must ensure that the task *will* unschedule sometime soon,
892 * else this function might spin for a *long* time. This function can't
893 * be called with interrupts off, or it may introduce deadlock with
894 * smp_call_function() if an IPI is sent by the same process we are
895 * waiting to become inactive.
896 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -0700897void wait_task_inactive(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898{
899 unsigned long flags;
900 runqueue_t *rq;
901 int preempted;
902
903repeat:
904 rq = task_rq_lock(p, &flags);
905 /* Must be off runqueue entirely, not preempted. */
906 if (unlikely(p->array || task_running(rq, p))) {
907 /* If it's preempted, we yield. It could be a while. */
908 preempted = !task_running(rq, p);
909 task_rq_unlock(rq, &flags);
910 cpu_relax();
911 if (preempted)
912 yield();
913 goto repeat;
914 }
915 task_rq_unlock(rq, &flags);
916}
917
918/***
919 * kick_process - kick a running thread to enter/exit the kernel
920 * @p: the to-be-kicked thread
921 *
922 * Cause a process which is running on another CPU to enter
923 * kernel-mode, without any delay. (to get signals handled.)
924 *
925 * NOTE: this function doesnt have to take the runqueue lock,
926 * because all it wants to ensure is that the remote task enters
927 * the kernel. If the IPI races and the task has been migrated
928 * to another CPU then no harm is done and the purpose has been
929 * achieved as well.
930 */
931void kick_process(task_t *p)
932{
933 int cpu;
934
935 preempt_disable();
936 cpu = task_cpu(p);
937 if ((cpu != smp_processor_id()) && task_curr(p))
938 smp_send_reschedule(cpu);
939 preempt_enable();
940}
941
942/*
943 * Return a low guess at the load of a migration-source cpu.
944 *
945 * We want to under-estimate the load of migration sources, to
946 * balance conservatively.
947 */
Con Kolivasb9104722005-11-08 21:38:55 -0800948static inline unsigned long source_load(int cpu, int type)
949{
Nick Piggina2000572006-02-10 01:51:02 -0800950 runqueue_t *rq = cpu_rq(cpu);
951 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
952 if (type == 0)
953 return load_now;
954
955 return min(rq->cpu_load[type-1], load_now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956}
957
958/*
959 * Return a high guess at the load of a migration-target cpu
960 */
Con Kolivasb9104722005-11-08 21:38:55 -0800961static inline unsigned long target_load(int cpu, int type)
962{
Nick Piggina2000572006-02-10 01:51:02 -0800963 runqueue_t *rq = cpu_rq(cpu);
964 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
965 if (type == 0)
966 return load_now;
967
968 return max(rq->cpu_load[type-1], load_now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969}
970
Nick Piggin147cbb42005-06-25 14:57:19 -0700971/*
972 * find_idlest_group finds and returns the least busy CPU group within the
973 * domain.
974 */
975static struct sched_group *
976find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
977{
978 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
979 unsigned long min_load = ULONG_MAX, this_load = 0;
980 int load_idx = sd->forkexec_idx;
981 int imbalance = 100 + (sd->imbalance_pct-100)/2;
982
983 do {
984 unsigned long load, avg_load;
985 int local_group;
986 int i;
987
M.Baris Demirayda5a5522005-09-10 00:26:09 -0700988 /* Skip over this group if it has no CPUs allowed */
989 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
990 goto nextgroup;
991
Nick Piggin147cbb42005-06-25 14:57:19 -0700992 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -0700993
994 /* Tally up the load of all CPUs in the group */
995 avg_load = 0;
996
997 for_each_cpu_mask(i, group->cpumask) {
998 /* Bias balancing toward cpus of our domain */
999 if (local_group)
1000 load = source_load(i, load_idx);
1001 else
1002 load = target_load(i, load_idx);
1003
1004 avg_load += load;
1005 }
1006
1007 /* Adjust by relative CPU power of the group */
1008 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1009
1010 if (local_group) {
1011 this_load = avg_load;
1012 this = group;
1013 } else if (avg_load < min_load) {
1014 min_load = avg_load;
1015 idlest = group;
1016 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001017nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001018 group = group->next;
1019 } while (group != sd->groups);
1020
1021 if (!idlest || 100*this_load < imbalance*min_load)
1022 return NULL;
1023 return idlest;
1024}
1025
1026/*
1027 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1028 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001029static int
1030find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001031{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001032 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001033 unsigned long load, min_load = ULONG_MAX;
1034 int idlest = -1;
1035 int i;
1036
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001037 /* Traverse only the allowed CPUs */
1038 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1039
1040 for_each_cpu_mask(i, tmp) {
Nick Piggin147cbb42005-06-25 14:57:19 -07001041 load = source_load(i, 0);
1042
1043 if (load < min_load || (load == min_load && i == this_cpu)) {
1044 min_load = load;
1045 idlest = i;
1046 }
1047 }
1048
1049 return idlest;
1050}
1051
Nick Piggin476d1392005-06-25 14:57:29 -07001052/*
1053 * sched_balance_self: balance the current task (running on cpu) in domains
1054 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1055 * SD_BALANCE_EXEC.
1056 *
1057 * Balance, ie. select the least loaded group.
1058 *
1059 * Returns the target CPU number, or the same CPU if no balancing is needed.
1060 *
1061 * preempt must be disabled.
1062 */
1063static int sched_balance_self(int cpu, int flag)
1064{
1065 struct task_struct *t = current;
1066 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001067
Nick Piggin476d1392005-06-25 14:57:29 -07001068 for_each_domain(cpu, tmp)
1069 if (tmp->flags & flag)
1070 sd = tmp;
1071
1072 while (sd) {
1073 cpumask_t span;
1074 struct sched_group *group;
1075 int new_cpu;
1076 int weight;
1077
1078 span = sd->span;
1079 group = find_idlest_group(sd, t, cpu);
1080 if (!group)
1081 goto nextlevel;
1082
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001083 new_cpu = find_idlest_cpu(group, t, cpu);
Nick Piggin476d1392005-06-25 14:57:29 -07001084 if (new_cpu == -1 || new_cpu == cpu)
1085 goto nextlevel;
1086
1087 /* Now try balancing at a lower domain level */
1088 cpu = new_cpu;
1089nextlevel:
1090 sd = NULL;
1091 weight = cpus_weight(span);
1092 for_each_domain(cpu, tmp) {
1093 if (weight <= cpus_weight(tmp->span))
1094 break;
1095 if (tmp->flags & flag)
1096 sd = tmp;
1097 }
1098 /* while loop will break here if sd == NULL */
1099 }
1100
1101 return cpu;
1102}
1103
1104#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105
1106/*
1107 * wake_idle() will wake a task on an idle cpu if task->cpu is
1108 * not idle and an idle cpu is available. The span of cpus to
1109 * search starts with cpus closest then further out as needed,
1110 * so we always favor a closer, idle cpu.
1111 *
1112 * Returns the CPU we should wake onto.
1113 */
1114#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1115static int wake_idle(int cpu, task_t *p)
1116{
1117 cpumask_t tmp;
1118 struct sched_domain *sd;
1119 int i;
1120
1121 if (idle_cpu(cpu))
1122 return cpu;
1123
1124 for_each_domain(cpu, sd) {
1125 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001126 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001127 for_each_cpu_mask(i, tmp) {
1128 if (idle_cpu(i))
1129 return i;
1130 }
1131 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001132 else
1133 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134 }
1135 return cpu;
1136}
1137#else
1138static inline int wake_idle(int cpu, task_t *p)
1139{
1140 return cpu;
1141}
1142#endif
1143
1144/***
1145 * try_to_wake_up - wake up a thread
1146 * @p: the to-be-woken-up thread
1147 * @state: the mask of task states that can be woken
1148 * @sync: do a synchronous wakeup?
1149 *
1150 * Put it on the run-queue if it's not already there. The "current"
1151 * thread is always on the run-queue (except when the actual
1152 * re-schedule is in progress), and as such you're allowed to do
1153 * the simpler "current->state = TASK_RUNNING" to mark yourself
1154 * runnable without the overhead of this.
1155 *
1156 * returns failure only if the task is already active.
1157 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001158static int try_to_wake_up(task_t *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159{
1160 int cpu, this_cpu, success = 0;
1161 unsigned long flags;
1162 long old_state;
1163 runqueue_t *rq;
1164#ifdef CONFIG_SMP
1165 unsigned long load, this_load;
Nick Piggin78979862005-06-25 14:57:13 -07001166 struct sched_domain *sd, *this_sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 int new_cpu;
1168#endif
1169
1170 rq = task_rq_lock(p, &flags);
1171 old_state = p->state;
1172 if (!(old_state & state))
1173 goto out;
1174
1175 if (p->array)
1176 goto out_running;
1177
1178 cpu = task_cpu(p);
1179 this_cpu = smp_processor_id();
1180
1181#ifdef CONFIG_SMP
1182 if (unlikely(task_running(rq, p)))
1183 goto out_activate;
1184
Nick Piggin78979862005-06-25 14:57:13 -07001185 new_cpu = cpu;
1186
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187 schedstat_inc(rq, ttwu_cnt);
1188 if (cpu == this_cpu) {
1189 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001190 goto out_set_cpu;
1191 }
1192
1193 for_each_domain(this_cpu, sd) {
1194 if (cpu_isset(cpu, sd->span)) {
1195 schedstat_inc(sd, ttwu_wake_remote);
1196 this_sd = sd;
1197 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198 }
1199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200
Nick Piggin78979862005-06-25 14:57:13 -07001201 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 goto out_set_cpu;
1203
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 /*
Nick Piggin78979862005-06-25 14:57:13 -07001205 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 */
Nick Piggin78979862005-06-25 14:57:13 -07001207 if (this_sd) {
1208 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210
Nick Piggina3f21bc2005-06-25 14:57:15 -07001211 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1212
Nick Piggin78979862005-06-25 14:57:13 -07001213 load = source_load(cpu, idx);
1214 this_load = target_load(this_cpu, idx);
1215
Nick Piggin78979862005-06-25 14:57:13 -07001216 new_cpu = this_cpu; /* Wake to this CPU if we can */
1217
Nick Piggina3f21bc2005-06-25 14:57:15 -07001218 if (this_sd->flags & SD_WAKE_AFFINE) {
1219 unsigned long tl = this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001221 * If sync wakeup then subtract the (maximum possible)
1222 * effect of the currently running task from the load
1223 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001225 if (sync)
1226 tl -= SCHED_LOAD_SCALE;
1227
1228 if ((tl <= load &&
1229 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1230 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1231 /*
1232 * This domain has SD_WAKE_AFFINE and
1233 * p is cache cold in this domain, and
1234 * there is no bad imbalance.
1235 */
1236 schedstat_inc(this_sd, ttwu_move_affine);
1237 goto out_set_cpu;
1238 }
1239 }
1240
1241 /*
1242 * Start passive balancing when half the imbalance_pct
1243 * limit is reached.
1244 */
1245 if (this_sd->flags & SD_WAKE_BALANCE) {
1246 if (imbalance*this_load <= 100*load) {
1247 schedstat_inc(this_sd, ttwu_move_balance);
1248 goto out_set_cpu;
1249 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 }
1251 }
1252
1253 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1254out_set_cpu:
1255 new_cpu = wake_idle(new_cpu, p);
1256 if (new_cpu != cpu) {
1257 set_task_cpu(p, new_cpu);
1258 task_rq_unlock(rq, &flags);
1259 /* might preempt at this point */
1260 rq = task_rq_lock(p, &flags);
1261 old_state = p->state;
1262 if (!(old_state & state))
1263 goto out;
1264 if (p->array)
1265 goto out_running;
1266
1267 this_cpu = smp_processor_id();
1268 cpu = task_cpu(p);
1269 }
1270
1271out_activate:
1272#endif /* CONFIG_SMP */
1273 if (old_state == TASK_UNINTERRUPTIBLE) {
1274 rq->nr_uninterruptible--;
1275 /*
1276 * Tasks on involuntary sleep don't earn
1277 * sleep_avg beyond just interactive state.
1278 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001279 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001280 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281
1282 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001283 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001284 * woken up with their sleep average not weighted in an
1285 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001286 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001287 if (old_state & TASK_NONINTERACTIVE)
1288 p->sleep_type = SLEEP_NONINTERACTIVE;
1289
1290
1291 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001292 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 * Sync wakeups (i.e. those types of wakeups where the waker
1294 * has indicated that it will leave the CPU in short order)
1295 * don't trigger a preemption, if the woken up task will run on
1296 * this cpu. (in this case the 'I will reschedule' promise of
1297 * the waker guarantees that the freshly woken up task is going
1298 * to be considered on this CPU.)
1299 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300 if (!sync || cpu != this_cpu) {
1301 if (TASK_PREEMPTS_CURR(p, rq))
1302 resched_task(rq->curr);
1303 }
1304 success = 1;
1305
1306out_running:
1307 p->state = TASK_RUNNING;
1308out:
1309 task_rq_unlock(rq, &flags);
1310
1311 return success;
1312}
1313
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001314int fastcall wake_up_process(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315{
1316 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1317 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1318}
1319
1320EXPORT_SYMBOL(wake_up_process);
1321
1322int fastcall wake_up_state(task_t *p, unsigned int state)
1323{
1324 return try_to_wake_up(p, state, 0);
1325}
1326
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327/*
1328 * Perform scheduler related setup for a newly forked process p.
1329 * p is forked by current.
1330 */
Nick Piggin476d1392005-06-25 14:57:29 -07001331void fastcall sched_fork(task_t *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332{
Nick Piggin476d1392005-06-25 14:57:29 -07001333 int cpu = get_cpu();
1334
1335#ifdef CONFIG_SMP
1336 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1337#endif
1338 set_task_cpu(p, cpu);
1339
Linus Torvalds1da177e2005-04-16 15:20:36 -07001340 /*
1341 * We mark the process as running here, but have not actually
1342 * inserted it onto the runqueue yet. This guarantees that
1343 * nobody will actually run it, and a signal or other external
1344 * event cannot wake it up and insert it on the runqueue either.
1345 */
1346 p->state = TASK_RUNNING;
1347 INIT_LIST_HEAD(&p->run_list);
1348 p->array = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349#ifdef CONFIG_SCHEDSTATS
1350 memset(&p->sched_info, 0, sizeof(p->sched_info));
1351#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001352#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001353 p->oncpu = 0;
1354#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001355#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001356 /* Want to start with kernel preemption disabled. */
Al Viroa1261f542005-11-13 16:06:55 -08001357 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001358#endif
1359 /*
1360 * Share the timeslice between parent and child, thus the
1361 * total amount of pending timeslices in the system doesn't change,
1362 * resulting in more scheduling fairness.
1363 */
1364 local_irq_disable();
1365 p->time_slice = (current->time_slice + 1) >> 1;
1366 /*
1367 * The remainder of the first timeslice might be recovered by
1368 * the parent if the child exits early enough.
1369 */
1370 p->first_time_slice = 1;
1371 current->time_slice >>= 1;
1372 p->timestamp = sched_clock();
1373 if (unlikely(!current->time_slice)) {
1374 /*
1375 * This case is rare, it happens when the parent has only
1376 * a single jiffy left from its timeslice. Taking the
1377 * runqueue lock is not a problem.
1378 */
1379 current->time_slice = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380 scheduler_tick();
Nick Piggin476d1392005-06-25 14:57:29 -07001381 }
1382 local_irq_enable();
1383 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384}
1385
1386/*
1387 * wake_up_new_task - wake up a newly created task for the first time.
1388 *
1389 * This function will do some initial scheduler statistics housekeeping
1390 * that must be done for every newly created context, then puts the task
1391 * on the runqueue and wakes it.
1392 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001393void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001394{
1395 unsigned long flags;
1396 int this_cpu, cpu;
1397 runqueue_t *rq, *this_rq;
1398
1399 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001401 this_cpu = smp_processor_id();
1402 cpu = task_cpu(p);
1403
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404 /*
1405 * We decrease the sleep average of forking parents
1406 * and children as well, to keep max-interactive tasks
1407 * from forking tasks that are max-interactive. The parent
1408 * (current) is done further down, under its lock.
1409 */
1410 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1411 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1412
1413 p->prio = effective_prio(p);
1414
1415 if (likely(cpu == this_cpu)) {
1416 if (!(clone_flags & CLONE_VM)) {
1417 /*
1418 * The VM isn't cloned, so we're in a good position to
1419 * do child-runs-first in anticipation of an exec. This
1420 * usually avoids a lot of COW overhead.
1421 */
1422 if (unlikely(!current->array))
1423 __activate_task(p, rq);
1424 else {
1425 p->prio = current->prio;
1426 list_add_tail(&p->run_list, &current->run_list);
1427 p->array = current->array;
1428 p->array->nr_active++;
Nick Piggina2000572006-02-10 01:51:02 -08001429 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430 }
1431 set_need_resched();
1432 } else
1433 /* Run child last */
1434 __activate_task(p, rq);
1435 /*
1436 * We skip the following code due to cpu == this_cpu
1437 *
1438 * task_rq_unlock(rq, &flags);
1439 * this_rq = task_rq_lock(current, &flags);
1440 */
1441 this_rq = rq;
1442 } else {
1443 this_rq = cpu_rq(this_cpu);
1444
1445 /*
1446 * Not the local CPU - must adjust timestamp. This should
1447 * get optimised away in the !CONFIG_SMP case.
1448 */
1449 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1450 + rq->timestamp_last_tick;
1451 __activate_task(p, rq);
1452 if (TASK_PREEMPTS_CURR(p, rq))
1453 resched_task(rq->curr);
1454
1455 /*
1456 * Parent and child are on different CPUs, now get the
1457 * parent runqueue to update the parent's ->sleep_avg:
1458 */
1459 task_rq_unlock(rq, &flags);
1460 this_rq = task_rq_lock(current, &flags);
1461 }
1462 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1463 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1464 task_rq_unlock(this_rq, &flags);
1465}
1466
1467/*
1468 * Potentially available exiting-child timeslices are
1469 * retrieved here - this way the parent does not get
1470 * penalized for creating too many threads.
1471 *
1472 * (this cannot be used to 'generate' timeslices
1473 * artificially, because any timeslice recovered here
1474 * was given away by the parent in the first place.)
1475 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001476void fastcall sched_exit(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477{
1478 unsigned long flags;
1479 runqueue_t *rq;
1480
1481 /*
1482 * If the child was a (relative-) CPU hog then decrease
1483 * the sleep_avg of the parent as well.
1484 */
1485 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001486 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487 p->parent->time_slice += p->time_slice;
1488 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1489 p->parent->time_slice = task_timeslice(p);
1490 }
1491 if (p->sleep_avg < p->parent->sleep_avg)
1492 p->parent->sleep_avg = p->parent->sleep_avg /
1493 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1494 (EXIT_WEIGHT + 1);
1495 task_rq_unlock(rq, &flags);
1496}
1497
1498/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001499 * prepare_task_switch - prepare to switch tasks
1500 * @rq: the runqueue preparing to switch
1501 * @next: the task we are going to switch to.
1502 *
1503 * This is called with the rq lock held and interrupts off. It must
1504 * be paired with a subsequent finish_task_switch after the context
1505 * switch.
1506 *
1507 * prepare_task_switch sets up locking and calls architecture specific
1508 * hooks.
1509 */
1510static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1511{
1512 prepare_lock_switch(rq, next);
1513 prepare_arch_switch(next);
1514}
1515
1516/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001518 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 * @prev: the thread we just switched away from.
1520 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001521 * finish_task_switch must be called after the context switch, paired
1522 * with a prepare_task_switch call before the context switch.
1523 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1524 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525 *
1526 * Note that we may have delayed dropping an mm in context_switch(). If
1527 * so, we finish that here outside of the runqueue lock. (Doing it
1528 * with the lock held can cause deadlocks; see schedule() for
1529 * details.)
1530 */
Nick Piggin4866cde2005-06-25 14:57:23 -07001531static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 __releases(rq->lock)
1533{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 struct mm_struct *mm = rq->prev_mm;
1535 unsigned long prev_task_flags;
1536
1537 rq->prev_mm = NULL;
1538
1539 /*
1540 * A task struct has one reference for the use as "current".
1541 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1542 * calls schedule one last time. The schedule call will never return,
1543 * and the scheduled task must drop that reference.
1544 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1545 * still held, otherwise prev could be scheduled on another cpu, die
1546 * there before we look at prev->state, and then the reference would
1547 * be dropped twice.
1548 * Manfred Spraul <manfred@colorfullife.com>
1549 */
1550 prev_task_flags = prev->flags;
Nick Piggin4866cde2005-06-25 14:57:23 -07001551 finish_arch_switch(prev);
1552 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553 if (mm)
1554 mmdrop(mm);
bibo maoc6fd91f2006-03-26 01:38:20 -08001555 if (unlikely(prev_task_flags & PF_DEAD)) {
1556 /*
1557 * Remove function-return probe instances associated with this
1558 * task and put them back on the free list.
1559 */
1560 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001562 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563}
1564
1565/**
1566 * schedule_tail - first thing a freshly forked thread must call.
1567 * @prev: the thread we just switched away from.
1568 */
1569asmlinkage void schedule_tail(task_t *prev)
1570 __releases(rq->lock)
1571{
Nick Piggin4866cde2005-06-25 14:57:23 -07001572 runqueue_t *rq = this_rq();
1573 finish_task_switch(rq, prev);
1574#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1575 /* In this case, finish_task_switch does not reenable preemption */
1576 preempt_enable();
1577#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 if (current->set_child_tid)
1579 put_user(current->pid, current->set_child_tid);
1580}
1581
1582/*
1583 * context_switch - switch to the new MM and the new
1584 * thread's register state.
1585 */
1586static inline
1587task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1588{
1589 struct mm_struct *mm = next->mm;
1590 struct mm_struct *oldmm = prev->active_mm;
1591
1592 if (unlikely(!mm)) {
1593 next->active_mm = oldmm;
1594 atomic_inc(&oldmm->mm_count);
1595 enter_lazy_tlb(oldmm, next);
1596 } else
1597 switch_mm(oldmm, mm, next);
1598
1599 if (unlikely(!prev->mm)) {
1600 prev->active_mm = NULL;
1601 WARN_ON(rq->prev_mm);
1602 rq->prev_mm = oldmm;
1603 }
1604
1605 /* Here we just switch the register state and the stack. */
1606 switch_to(prev, next, prev);
1607
1608 return prev;
1609}
1610
1611/*
1612 * nr_running, nr_uninterruptible and nr_context_switches:
1613 *
1614 * externally visible scheduler statistics: current number of runnable
1615 * threads, current number of uninterruptible-sleeping threads, total
1616 * number of context switches performed since bootup.
1617 */
1618unsigned long nr_running(void)
1619{
1620 unsigned long i, sum = 0;
1621
1622 for_each_online_cpu(i)
1623 sum += cpu_rq(i)->nr_running;
1624
1625 return sum;
1626}
1627
1628unsigned long nr_uninterruptible(void)
1629{
1630 unsigned long i, sum = 0;
1631
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001632 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 sum += cpu_rq(i)->nr_uninterruptible;
1634
1635 /*
1636 * Since we read the counters lockless, it might be slightly
1637 * inaccurate. Do not allow it to go below zero though:
1638 */
1639 if (unlikely((long)sum < 0))
1640 sum = 0;
1641
1642 return sum;
1643}
1644
1645unsigned long long nr_context_switches(void)
1646{
1647 unsigned long long i, sum = 0;
1648
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001649 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650 sum += cpu_rq(i)->nr_switches;
1651
1652 return sum;
1653}
1654
1655unsigned long nr_iowait(void)
1656{
1657 unsigned long i, sum = 0;
1658
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001659 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1661
1662 return sum;
1663}
1664
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001665unsigned long nr_active(void)
1666{
1667 unsigned long i, running = 0, uninterruptible = 0;
1668
1669 for_each_online_cpu(i) {
1670 running += cpu_rq(i)->nr_running;
1671 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1672 }
1673
1674 if (unlikely((long)uninterruptible < 0))
1675 uninterruptible = 0;
1676
1677 return running + uninterruptible;
1678}
1679
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680#ifdef CONFIG_SMP
1681
1682/*
1683 * double_rq_lock - safely lock two runqueues
1684 *
Anton Blancharde9028b02006-03-23 02:59:20 -08001685 * We must take them in cpu order to match code in
1686 * dependent_sleeper and wake_dependent_sleeper.
1687 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001688 * Note this does not disable interrupts like task_rq_lock,
1689 * you need to do so manually before calling.
1690 */
1691static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1692 __acquires(rq1->lock)
1693 __acquires(rq2->lock)
1694{
1695 if (rq1 == rq2) {
1696 spin_lock(&rq1->lock);
1697 __acquire(rq2->lock); /* Fake it out ;) */
1698 } else {
Anton Blancharde9028b02006-03-23 02:59:20 -08001699 if (rq1->cpu < rq2->cpu) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700 spin_lock(&rq1->lock);
1701 spin_lock(&rq2->lock);
1702 } else {
1703 spin_lock(&rq2->lock);
1704 spin_lock(&rq1->lock);
1705 }
1706 }
1707}
1708
1709/*
1710 * double_rq_unlock - safely unlock two runqueues
1711 *
1712 * Note this does not restore interrupts like task_rq_unlock,
1713 * you need to do so manually after calling.
1714 */
1715static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1716 __releases(rq1->lock)
1717 __releases(rq2->lock)
1718{
1719 spin_unlock(&rq1->lock);
1720 if (rq1 != rq2)
1721 spin_unlock(&rq2->lock);
1722 else
1723 __release(rq2->lock);
1724}
1725
1726/*
1727 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1728 */
1729static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733{
1734 if (unlikely(!spin_trylock(&busiest->lock))) {
Anton Blancharde9028b02006-03-23 02:59:20 -08001735 if (busiest->cpu < this_rq->cpu) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736 spin_unlock(&this_rq->lock);
1737 spin_lock(&busiest->lock);
1738 spin_lock(&this_rq->lock);
1739 } else
1740 spin_lock(&busiest->lock);
1741 }
1742}
1743
1744/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001745 * If dest_cpu is allowed for this process, migrate the task to it.
1746 * This is accomplished by forcing the cpu_allowed mask to only
1747 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1748 * the cpu_allowed mask is restored.
1749 */
1750static void sched_migrate_task(task_t *p, int dest_cpu)
1751{
1752 migration_req_t req;
1753 runqueue_t *rq;
1754 unsigned long flags;
1755
1756 rq = task_rq_lock(p, &flags);
1757 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1758 || unlikely(cpu_is_offline(dest_cpu)))
1759 goto out;
1760
1761 /* force the process onto the specified CPU */
1762 if (migrate_task(p, dest_cpu, &req)) {
1763 /* Need to wait for migration thread (might exit: take ref). */
1764 struct task_struct *mt = rq->migration_thread;
1765 get_task_struct(mt);
1766 task_rq_unlock(rq, &flags);
1767 wake_up_process(mt);
1768 put_task_struct(mt);
1769 wait_for_completion(&req.done);
1770 return;
1771 }
1772out:
1773 task_rq_unlock(rq, &flags);
1774}
1775
1776/*
Nick Piggin476d1392005-06-25 14:57:29 -07001777 * sched_exec - execve() is a valuable balancing opportunity, because at
1778 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779 */
1780void sched_exec(void)
1781{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001783 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001785 if (new_cpu != this_cpu)
1786 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787}
1788
1789/*
1790 * pull_task - move a task from a remote runqueue to the local runqueue.
1791 * Both runqueues must be locked.
1792 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001793static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1795 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1796{
1797 dequeue_task(p, src_array);
Nick Piggina2000572006-02-10 01:51:02 -08001798 src_rq->nr_running--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799 set_task_cpu(p, this_cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001800 this_rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 enqueue_task(p, this_array);
1802 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1803 + this_rq->timestamp_last_tick;
1804 /*
1805 * Note that idle threads have a prio of MAX_PRIO, for this test
1806 * to be always true for them.
1807 */
1808 if (TASK_PREEMPTS_CURR(p, this_rq))
1809 resched_task(this_rq->curr);
1810}
1811
1812/*
1813 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1814 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001815static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001817 struct sched_domain *sd, enum idle_type idle,
1818 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819{
1820 /*
1821 * We do not migrate tasks that are:
1822 * 1) running (obviously), or
1823 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1824 * 3) are cache-hot on their current CPU.
1825 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001826 if (!cpu_isset(this_cpu, p->cpus_allowed))
1827 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07001828 *all_pinned = 0;
1829
1830 if (task_running(rq, p))
1831 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832
1833 /*
1834 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07001835 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 * 2) too many balance attempts have failed.
1837 */
1838
Nick Piggincafb20c2005-06-25 14:57:17 -07001839 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 return 1;
1841
1842 if (task_hot(p, rq->timestamp_last_tick, sd))
Nick Piggin81026792005-06-25 14:57:07 -07001843 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 return 1;
1845}
1846
1847/*
1848 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1849 * as part of a balancing operation within "domain". Returns the number of
1850 * tasks moved.
1851 *
1852 * Called with both runqueues locked.
1853 */
1854static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1855 unsigned long max_nr_move, struct sched_domain *sd,
Nick Piggin81026792005-06-25 14:57:07 -07001856 enum idle_type idle, int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857{
1858 prio_array_t *array, *dst_array;
1859 struct list_head *head, *curr;
Nick Piggin81026792005-06-25 14:57:07 -07001860 int idx, pulled = 0, pinned = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001861 task_t *tmp;
1862
Nick Piggin81026792005-06-25 14:57:07 -07001863 if (max_nr_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 goto out;
1865
Nick Piggin81026792005-06-25 14:57:07 -07001866 pinned = 1;
1867
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868 /*
1869 * We first consider expired tasks. Those will likely not be
1870 * executed in the near future, and they are most likely to
1871 * be cache-cold, thus switching CPUs has the least effect
1872 * on them.
1873 */
1874 if (busiest->expired->nr_active) {
1875 array = busiest->expired;
1876 dst_array = this_rq->expired;
1877 } else {
1878 array = busiest->active;
1879 dst_array = this_rq->active;
1880 }
1881
1882new_array:
1883 /* Start searching at priority 0: */
1884 idx = 0;
1885skip_bitmap:
1886 if (!idx)
1887 idx = sched_find_first_bit(array->bitmap);
1888 else
1889 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1890 if (idx >= MAX_PRIO) {
1891 if (array == busiest->expired && busiest->active->nr_active) {
1892 array = busiest->active;
1893 dst_array = this_rq->active;
1894 goto new_array;
1895 }
1896 goto out;
1897 }
1898
1899 head = array->queue + idx;
1900 curr = head->prev;
1901skip_queue:
1902 tmp = list_entry(curr, task_t, run_list);
1903
1904 curr = curr->prev;
1905
Nick Piggin81026792005-06-25 14:57:07 -07001906 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 if (curr != head)
1908 goto skip_queue;
1909 idx++;
1910 goto skip_bitmap;
1911 }
1912
1913#ifdef CONFIG_SCHEDSTATS
1914 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1915 schedstat_inc(sd, lb_hot_gained[idle]);
1916#endif
1917
1918 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1919 pulled++;
1920
1921 /* We only want to steal up to the prescribed number of tasks. */
1922 if (pulled < max_nr_move) {
1923 if (curr != head)
1924 goto skip_queue;
1925 idx++;
1926 goto skip_bitmap;
1927 }
1928out:
1929 /*
1930 * Right now, this is the only place pull_task() is called,
1931 * so we can safely collect pull_task() stats here rather than
1932 * inside pull_task().
1933 */
1934 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07001935
1936 if (all_pinned)
1937 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 return pulled;
1939}
1940
1941/*
1942 * find_busiest_group finds and returns the busiest CPU group within the
1943 * domain. It calculates and returns the number of tasks which should be
1944 * moved to restore balance via the imbalance parameter.
1945 */
1946static struct sched_group *
1947find_busiest_group(struct sched_domain *sd, int this_cpu,
Nick Piggin5969fe02005-09-10 00:26:19 -07001948 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949{
1950 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1951 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07001952 unsigned long max_pull;
Nick Piggin78979862005-06-25 14:57:13 -07001953 int load_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954
1955 max_load = this_load = total_load = total_pwr = 0;
Nick Piggin78979862005-06-25 14:57:13 -07001956 if (idle == NOT_IDLE)
1957 load_idx = sd->busy_idx;
1958 else if (idle == NEWLY_IDLE)
1959 load_idx = sd->newidle_idx;
1960 else
1961 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962
1963 do {
1964 unsigned long load;
1965 int local_group;
1966 int i;
1967
1968 local_group = cpu_isset(this_cpu, group->cpumask);
1969
1970 /* Tally up the load of all CPUs in the group */
1971 avg_load = 0;
1972
1973 for_each_cpu_mask(i, group->cpumask) {
Nick Piggin5969fe02005-09-10 00:26:19 -07001974 if (*sd_idle && !idle_cpu(i))
1975 *sd_idle = 0;
1976
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977 /* Bias balancing toward cpus of our domain */
1978 if (local_group)
Nick Piggina2000572006-02-10 01:51:02 -08001979 load = target_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001980 else
Nick Piggina2000572006-02-10 01:51:02 -08001981 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001982
1983 avg_load += load;
1984 }
1985
1986 total_load += avg_load;
1987 total_pwr += group->cpu_power;
1988
1989 /* Adjust by relative CPU power of the group */
1990 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1991
1992 if (local_group) {
1993 this_load = avg_load;
1994 this = group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001995 } else if (avg_load > max_load) {
1996 max_load = avg_load;
1997 busiest = group;
1998 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 group = group->next;
2000 } while (group != sd->groups);
2001
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002002 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 goto out_balanced;
2004
2005 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2006
2007 if (this_load >= avg_load ||
2008 100*max_load <= sd->imbalance_pct*this_load)
2009 goto out_balanced;
2010
2011 /*
2012 * We're trying to get all the cpus to the average_load, so we don't
2013 * want to push ourselves above the average load, nor do we wish to
2014 * reduce the max loaded cpu below the average load, as either of these
2015 * actions would just result in more rebalancing later, and ping-pong
2016 * tasks around. Thus we look for the minimum possible imbalance.
2017 * Negative imbalances (*we* are more loaded than anyone else) will
2018 * be counted as no imbalance for these purposes -- we can't fix that
2019 * by pulling tasks to us. Be careful of negative numbers as they'll
2020 * appear as very large values with unsigned longs.
2021 */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002022
2023 /* Don't want to pull so many tasks that a group would go idle */
2024 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2025
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002027 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028 (avg_load - this_load) * this->cpu_power)
2029 / SCHED_LOAD_SCALE;
2030
2031 if (*imbalance < SCHED_LOAD_SCALE) {
2032 unsigned long pwr_now = 0, pwr_move = 0;
2033 unsigned long tmp;
2034
2035 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2036 *imbalance = 1;
2037 return busiest;
2038 }
2039
2040 /*
2041 * OK, we don't have enough imbalance to justify moving tasks,
2042 * however we may be able to increase total CPU power used by
2043 * moving them.
2044 */
2045
2046 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2047 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2048 pwr_now /= SCHED_LOAD_SCALE;
2049
2050 /* Amount of load we'd subtract */
2051 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2052 if (max_load > tmp)
2053 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2054 max_load - tmp);
2055
2056 /* Amount of load we'd add */
2057 if (max_load*busiest->cpu_power <
2058 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2059 tmp = max_load*busiest->cpu_power/this->cpu_power;
2060 else
2061 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2062 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2063 pwr_move /= SCHED_LOAD_SCALE;
2064
2065 /* Move if we gain throughput */
2066 if (pwr_move <= pwr_now)
2067 goto out_balanced;
2068
2069 *imbalance = 1;
2070 return busiest;
2071 }
2072
2073 /* Get rid of the scaling factor, rounding down as we divide */
2074 *imbalance = *imbalance / SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075 return busiest;
2076
2077out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078
2079 *imbalance = 0;
2080 return NULL;
2081}
2082
2083/*
2084 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2085 */
Con Kolivasb9104722005-11-08 21:38:55 -08002086static runqueue_t *find_busiest_queue(struct sched_group *group,
2087 enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088{
2089 unsigned long load, max_load = 0;
2090 runqueue_t *busiest = NULL;
2091 int i;
2092
2093 for_each_cpu_mask(i, group->cpumask) {
Nick Piggina2000572006-02-10 01:51:02 -08002094 load = source_load(i, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095
2096 if (load > max_load) {
2097 max_load = load;
2098 busiest = cpu_rq(i);
2099 }
2100 }
2101
2102 return busiest;
2103}
2104
2105/*
Nick Piggin77391d72005-06-25 14:57:30 -07002106 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2107 * so long as it is large enough.
2108 */
2109#define MAX_PINNED_INTERVAL 512
2110
2111/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2113 * tasks if there is an imbalance.
2114 *
2115 * Called with this_rq unlocked.
2116 */
2117static int load_balance(int this_cpu, runqueue_t *this_rq,
2118 struct sched_domain *sd, enum idle_type idle)
2119{
2120 struct sched_group *group;
2121 runqueue_t *busiest;
2122 unsigned long imbalance;
Nick Piggin77391d72005-06-25 14:57:30 -07002123 int nr_moved, all_pinned = 0;
Nick Piggin81026792005-06-25 14:57:07 -07002124 int active_balance = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002125 int sd_idle = 0;
2126
2127 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2128 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130 schedstat_inc(sd, lb_cnt[idle]);
2131
Nick Piggin5969fe02005-09-10 00:26:19 -07002132 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002133 if (!group) {
2134 schedstat_inc(sd, lb_nobusyg[idle]);
2135 goto out_balanced;
2136 }
2137
Con Kolivasb9104722005-11-08 21:38:55 -08002138 busiest = find_busiest_queue(group, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139 if (!busiest) {
2140 schedstat_inc(sd, lb_nobusyq[idle]);
2141 goto out_balanced;
2142 }
2143
Nick Piggindb935db2005-06-25 14:57:11 -07002144 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145
2146 schedstat_add(sd, lb_imbalance[idle], imbalance);
2147
2148 nr_moved = 0;
2149 if (busiest->nr_running > 1) {
2150 /*
2151 * Attempt to move tasks. If find_busiest_group has found
2152 * an imbalance but busiest->nr_running <= 1, the group is
2153 * still unbalanced. nr_moved simply stays zero, so it is
2154 * correctly treated as an imbalance.
2155 */
Nick Piggine17224b2005-09-10 00:26:18 -07002156 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002158 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002159 double_rq_unlock(this_rq, busiest);
Nick Piggin81026792005-06-25 14:57:07 -07002160
2161 /* All tasks on this runqueue were pinned by CPU affinity */
2162 if (unlikely(all_pinned))
2163 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 }
Nick Piggin81026792005-06-25 14:57:07 -07002165
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166 if (!nr_moved) {
2167 schedstat_inc(sd, lb_failed[idle]);
2168 sd->nr_balance_failed++;
2169
2170 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171
2172 spin_lock(&busiest->lock);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002173
2174 /* don't kick the migration_thread, if the curr
2175 * task on busiest cpu can't be moved to this_cpu
2176 */
2177 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2178 spin_unlock(&busiest->lock);
2179 all_pinned = 1;
2180 goto out_one_pinned;
2181 }
2182
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183 if (!busiest->active_balance) {
2184 busiest->active_balance = 1;
2185 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002186 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187 }
2188 spin_unlock(&busiest->lock);
Nick Piggin81026792005-06-25 14:57:07 -07002189 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190 wake_up_process(busiest->migration_thread);
2191
2192 /*
2193 * We've kicked active balancing, reset the failure
2194 * counter.
2195 */
Nick Piggin39507452005-06-25 14:57:09 -07002196 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002197 }
Nick Piggin81026792005-06-25 14:57:07 -07002198 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 sd->nr_balance_failed = 0;
2200
Nick Piggin81026792005-06-25 14:57:07 -07002201 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 /* We were unbalanced, so reset the balancing interval */
2203 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002204 } else {
2205 /*
2206 * If we've begun active balancing, start to back off. This
2207 * case may not be covered by the all_pinned logic if there
2208 * is only 1 task on the busy runqueue (because we don't call
2209 * move_tasks).
2210 */
2211 if (sd->balance_interval < sd->max_interval)
2212 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 }
2214
Nick Piggin5969fe02005-09-10 00:26:19 -07002215 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2216 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 return nr_moved;
2218
2219out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002220 schedstat_inc(sd, lb_balanced[idle]);
2221
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002222 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002223
2224out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002226 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2227 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 sd->balance_interval *= 2;
2229
Nick Piggin5969fe02005-09-10 00:26:19 -07002230 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2231 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232 return 0;
2233}
2234
2235/*
2236 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2237 * tasks if there is an imbalance.
2238 *
2239 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2240 * this_rq is locked.
2241 */
2242static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2243 struct sched_domain *sd)
2244{
2245 struct sched_group *group;
2246 runqueue_t *busiest = NULL;
2247 unsigned long imbalance;
2248 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002249 int sd_idle = 0;
2250
2251 if (sd->flags & SD_SHARE_CPUPOWER)
2252 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253
2254 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002255 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002258 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 }
2260
Con Kolivasb9104722005-11-08 21:38:55 -08002261 busiest = find_busiest_queue(group, NEWLY_IDLE);
Nick Piggindb935db2005-06-25 14:57:11 -07002262 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002264 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265 }
2266
Nick Piggindb935db2005-06-25 14:57:11 -07002267 BUG_ON(busiest == this_rq);
2268
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002270
2271 nr_moved = 0;
2272 if (busiest->nr_running > 1) {
2273 /* Attempt to move tasks */
2274 double_lock_balance(this_rq, busiest);
2275 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggin81026792005-06-25 14:57:07 -07002276 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002277 spin_unlock(&busiest->lock);
2278 }
2279
Nick Piggin5969fe02005-09-10 00:26:19 -07002280 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002282 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2283 return -1;
2284 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002285 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286
Linus Torvalds1da177e2005-04-16 15:20:36 -07002287 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002288
2289out_balanced:
2290 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002291 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2292 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002293 sd->nr_balance_failed = 0;
2294 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295}
2296
2297/*
2298 * idle_balance is called by schedule() if this_cpu is about to become
2299 * idle. Attempts to pull tasks from other CPUs.
2300 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002301static void idle_balance(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302{
2303 struct sched_domain *sd;
2304
2305 for_each_domain(this_cpu, sd) {
2306 if (sd->flags & SD_BALANCE_NEWIDLE) {
2307 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2308 /* We've pulled tasks over so stop searching */
2309 break;
2310 }
2311 }
2312 }
2313}
2314
2315/*
2316 * active_load_balance is run by migration threads. It pushes running tasks
2317 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2318 * running on each physical CPU where possible, and avoids physical /
2319 * logical imbalances.
2320 *
2321 * Called with busiest_rq locked.
2322 */
2323static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2324{
2325 struct sched_domain *sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 runqueue_t *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002327 int target_cpu = busiest_rq->push_cpu;
2328
2329 if (busiest_rq->nr_running <= 1)
2330 /* no task to move */
2331 return;
2332
2333 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334
2335 /*
Nick Piggin39507452005-06-25 14:57:09 -07002336 * This condition is "impossible", if it occurs
2337 * we need to fix it. Originally reported by
2338 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339 */
Nick Piggin39507452005-06-25 14:57:09 -07002340 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002341
Nick Piggin39507452005-06-25 14:57:09 -07002342 /* move a task from busiest_rq to target_rq */
2343 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344
Nick Piggin39507452005-06-25 14:57:09 -07002345 /* Search for an sd spanning us and the target CPU. */
2346 for_each_domain(target_cpu, sd)
2347 if ((sd->flags & SD_LOAD_BALANCE) &&
2348 cpu_isset(busiest_cpu, sd->span))
2349 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350
Nick Piggin39507452005-06-25 14:57:09 -07002351 if (unlikely(sd == NULL))
2352 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353
Nick Piggin39507452005-06-25 14:57:09 -07002354 schedstat_inc(sd, alb_cnt);
2355
2356 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2357 schedstat_inc(sd, alb_pushed);
2358 else
2359 schedstat_inc(sd, alb_failed);
2360out:
2361 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362}
2363
2364/*
2365 * rebalance_tick will get called every timer tick, on every CPU.
2366 *
2367 * It checks each scheduling domain to see if it is due to be balanced,
2368 * and initiates a balancing operation if so.
2369 *
2370 * Balancing parameters are set up in arch_init_sched_domains.
2371 */
2372
2373/* Don't have all balancing operations going off at once */
2374#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2375
2376static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2377 enum idle_type idle)
2378{
2379 unsigned long old_load, this_load;
2380 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2381 struct sched_domain *sd;
Nick Piggin78979862005-06-25 14:57:13 -07002382 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002383
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
Nick Piggin78979862005-06-25 14:57:13 -07002385 /* Update our load */
2386 for (i = 0; i < 3; i++) {
2387 unsigned long new_load = this_load;
2388 int scale = 1 << i;
2389 old_load = this_rq->cpu_load[i];
2390 /*
2391 * Round up the averaging division if load is increasing. This
2392 * prevents us from getting stuck on 9 if the load is 10, for
2393 * example.
2394 */
2395 if (new_load > old_load)
2396 new_load += scale-1;
2397 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2398 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399
2400 for_each_domain(this_cpu, sd) {
2401 unsigned long interval;
2402
2403 if (!(sd->flags & SD_LOAD_BALANCE))
2404 continue;
2405
2406 interval = sd->balance_interval;
2407 if (idle != SCHED_IDLE)
2408 interval *= sd->busy_factor;
2409
2410 /* scale ms to jiffies */
2411 interval = msecs_to_jiffies(interval);
2412 if (unlikely(!interval))
2413 interval = 1;
2414
2415 if (j - sd->last_balance >= interval) {
2416 if (load_balance(this_cpu, this_rq, sd, idle)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002417 /*
2418 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002419 * longer idle, or one of our SMT siblings is
2420 * not idle.
2421 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422 idle = NOT_IDLE;
2423 }
2424 sd->last_balance += interval;
2425 }
2426 }
2427}
2428#else
2429/*
2430 * on UP we do not need to balance between CPUs:
2431 */
2432static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2433{
2434}
2435static inline void idle_balance(int cpu, runqueue_t *rq)
2436{
2437}
2438#endif
2439
2440static inline int wake_priority_sleeper(runqueue_t *rq)
2441{
2442 int ret = 0;
2443#ifdef CONFIG_SCHED_SMT
2444 spin_lock(&rq->lock);
2445 /*
2446 * If an SMT sibling task has been put to sleep for priority
2447 * reasons reschedule the idle task to see if it can now run.
2448 */
2449 if (rq->nr_running) {
2450 resched_task(rq->idle);
2451 ret = 1;
2452 }
2453 spin_unlock(&rq->lock);
2454#endif
2455 return ret;
2456}
2457
2458DEFINE_PER_CPU(struct kernel_stat, kstat);
2459
2460EXPORT_PER_CPU_SYMBOL(kstat);
2461
2462/*
2463 * This is called on clock ticks and on context switches.
2464 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2465 */
2466static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2467 unsigned long long now)
2468{
2469 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2470 p->sched_time += now - last;
2471}
2472
2473/*
2474 * Return current->sched_time plus any more ns on the sched_clock
2475 * that have not yet been banked.
2476 */
2477unsigned long long current_sched_time(const task_t *tsk)
2478{
2479 unsigned long long ns;
2480 unsigned long flags;
2481 local_irq_save(flags);
2482 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2483 ns = tsk->sched_time + (sched_clock() - ns);
2484 local_irq_restore(flags);
2485 return ns;
2486}
2487
2488/*
2489 * We place interactive tasks back into the active array, if possible.
2490 *
2491 * To guarantee that this does not starve expired tasks we ignore the
2492 * interactivity of a task if the first expired task had to wait more
2493 * than a 'reasonable' amount of time. This deadline timeout is
2494 * load-dependent, as the frequency of array switched decreases with
2495 * increasing number of running tasks. We also ignore the interactivity
2496 * if a better static_prio task has expired:
2497 */
2498#define EXPIRED_STARVING(rq) \
2499 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2500 (jiffies - (rq)->expired_timestamp >= \
2501 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2502 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2503
2504/*
2505 * Account user cpu time to a process.
2506 * @p: the process that the cpu time gets accounted to
2507 * @hardirq_offset: the offset to subtract from hardirq_count()
2508 * @cputime: the cpu time spent in user space since the last update
2509 */
2510void account_user_time(struct task_struct *p, cputime_t cputime)
2511{
2512 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2513 cputime64_t tmp;
2514
2515 p->utime = cputime_add(p->utime, cputime);
2516
2517 /* Add user time to cpustat. */
2518 tmp = cputime_to_cputime64(cputime);
2519 if (TASK_NICE(p) > 0)
2520 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2521 else
2522 cpustat->user = cputime64_add(cpustat->user, tmp);
2523}
2524
2525/*
2526 * Account system cpu time to a process.
2527 * @p: the process that the cpu time gets accounted to
2528 * @hardirq_offset: the offset to subtract from hardirq_count()
2529 * @cputime: the cpu time spent in kernel space since the last update
2530 */
2531void account_system_time(struct task_struct *p, int hardirq_offset,
2532 cputime_t cputime)
2533{
2534 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2535 runqueue_t *rq = this_rq();
2536 cputime64_t tmp;
2537
2538 p->stime = cputime_add(p->stime, cputime);
2539
2540 /* Add system time to cpustat. */
2541 tmp = cputime_to_cputime64(cputime);
2542 if (hardirq_count() - hardirq_offset)
2543 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2544 else if (softirq_count())
2545 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2546 else if (p != rq->idle)
2547 cpustat->system = cputime64_add(cpustat->system, tmp);
2548 else if (atomic_read(&rq->nr_iowait) > 0)
2549 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2550 else
2551 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2552 /* Account for system time used */
2553 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554}
2555
2556/*
2557 * Account for involuntary wait time.
2558 * @p: the process from which the cpu time has been stolen
2559 * @steal: the cpu time spent in involuntary wait
2560 */
2561void account_steal_time(struct task_struct *p, cputime_t steal)
2562{
2563 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2564 cputime64_t tmp = cputime_to_cputime64(steal);
2565 runqueue_t *rq = this_rq();
2566
2567 if (p == rq->idle) {
2568 p->stime = cputime_add(p->stime, steal);
2569 if (atomic_read(&rq->nr_iowait) > 0)
2570 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2571 else
2572 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2573 } else
2574 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2575}
2576
2577/*
2578 * This function gets called by the timer code, with HZ frequency.
2579 * We call it with interrupts disabled.
2580 *
2581 * It also gets called by the fork code, when changing the parent's
2582 * timeslices.
2583 */
2584void scheduler_tick(void)
2585{
2586 int cpu = smp_processor_id();
2587 runqueue_t *rq = this_rq();
2588 task_t *p = current;
2589 unsigned long long now = sched_clock();
2590
2591 update_cpu_clock(p, rq, now);
2592
2593 rq->timestamp_last_tick = now;
2594
2595 if (p == rq->idle) {
2596 if (wake_priority_sleeper(rq))
2597 goto out;
2598 rebalance_tick(cpu, rq, SCHED_IDLE);
2599 return;
2600 }
2601
2602 /* Task might have expired already, but not scheduled off yet */
2603 if (p->array != rq->active) {
2604 set_tsk_need_resched(p);
2605 goto out;
2606 }
2607 spin_lock(&rq->lock);
2608 /*
2609 * The task was running during this tick - update the
2610 * time slice counter. Note: we do not update a thread's
2611 * priority until it either goes to sleep or uses up its
2612 * timeslice. This makes it possible for interactive tasks
2613 * to use up their timeslices at their highest priority levels.
2614 */
2615 if (rt_task(p)) {
2616 /*
2617 * RR tasks need a special form of timeslice management.
2618 * FIFO tasks have no timeslices.
2619 */
2620 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2621 p->time_slice = task_timeslice(p);
2622 p->first_time_slice = 0;
2623 set_tsk_need_resched(p);
2624
2625 /* put it at the end of the queue: */
2626 requeue_task(p, rq->active);
2627 }
2628 goto out_unlock;
2629 }
2630 if (!--p->time_slice) {
2631 dequeue_task(p, rq->active);
2632 set_tsk_need_resched(p);
2633 p->prio = effective_prio(p);
2634 p->time_slice = task_timeslice(p);
2635 p->first_time_slice = 0;
2636
2637 if (!rq->expired_timestamp)
2638 rq->expired_timestamp = jiffies;
2639 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2640 enqueue_task(p, rq->expired);
2641 if (p->static_prio < rq->best_expired_prio)
2642 rq->best_expired_prio = p->static_prio;
2643 } else
2644 enqueue_task(p, rq->active);
2645 } else {
2646 /*
2647 * Prevent a too long timeslice allowing a task to monopolize
2648 * the CPU. We do this by splitting up the timeslice into
2649 * smaller pieces.
2650 *
2651 * Note: this does not mean the task's timeslices expire or
2652 * get lost in any way, they just might be preempted by
2653 * another task of equal priority. (one with higher
2654 * priority would have preempted this task already.) We
2655 * requeue this task to the end of the list on this priority
2656 * level, which is in essence a round-robin of tasks with
2657 * equal priority.
2658 *
2659 * This only applies to tasks in the interactive
2660 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2661 */
2662 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2663 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2664 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2665 (p->array == rq->active)) {
2666
2667 requeue_task(p, rq->active);
2668 set_tsk_need_resched(p);
2669 }
2670 }
2671out_unlock:
2672 spin_unlock(&rq->lock);
2673out:
2674 rebalance_tick(cpu, rq, NOT_IDLE);
2675}
2676
2677#ifdef CONFIG_SCHED_SMT
Con Kolivasfc38ed72005-09-10 00:26:08 -07002678static inline void wakeup_busy_runqueue(runqueue_t *rq)
2679{
2680 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2681 if (rq->curr == rq->idle && rq->nr_running)
2682 resched_task(rq->idle);
2683}
2684
Arjan van de Ven858119e2006-01-14 13:20:43 -08002685static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002686{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002687 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688 cpumask_t sibling_map;
2689 int i;
2690
Nick Piggin41c7ce92005-06-25 14:57:24 -07002691 for_each_domain(this_cpu, tmp)
2692 if (tmp->flags & SD_SHARE_CPUPOWER)
2693 sd = tmp;
2694
2695 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696 return;
2697
2698 /*
2699 * Unlock the current runqueue because we have to lock in
2700 * CPU order to avoid deadlocks. Caller knows that we might
2701 * unlock. We keep IRQs disabled.
2702 */
2703 spin_unlock(&this_rq->lock);
2704
2705 sibling_map = sd->span;
2706
2707 for_each_cpu_mask(i, sibling_map)
2708 spin_lock(&cpu_rq(i)->lock);
2709 /*
2710 * We clear this CPU from the mask. This both simplifies the
2711 * inner loop and keps this_rq locked when we exit:
2712 */
2713 cpu_clear(this_cpu, sibling_map);
2714
2715 for_each_cpu_mask(i, sibling_map) {
2716 runqueue_t *smt_rq = cpu_rq(i);
2717
Con Kolivasfc38ed72005-09-10 00:26:08 -07002718 wakeup_busy_runqueue(smt_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 }
2720
2721 for_each_cpu_mask(i, sibling_map)
2722 spin_unlock(&cpu_rq(i)->lock);
2723 /*
2724 * We exit with this_cpu's rq still held and IRQs
2725 * still disabled:
2726 */
2727}
2728
Ingo Molnar67f9a612005-09-10 00:26:16 -07002729/*
2730 * number of 'lost' timeslices this task wont be able to fully
2731 * utilize, if another task runs on a sibling. This models the
2732 * slowdown effect of other tasks running on siblings:
2733 */
2734static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2735{
2736 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2737}
2738
Arjan van de Ven858119e2006-01-14 13:20:43 -08002739static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002740{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002741 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 cpumask_t sibling_map;
2743 prio_array_t *array;
2744 int ret = 0, i;
2745 task_t *p;
2746
Nick Piggin41c7ce92005-06-25 14:57:24 -07002747 for_each_domain(this_cpu, tmp)
2748 if (tmp->flags & SD_SHARE_CPUPOWER)
2749 sd = tmp;
2750
2751 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 return 0;
2753
2754 /*
2755 * The same locking rules and details apply as for
2756 * wake_sleeping_dependent():
2757 */
2758 spin_unlock(&this_rq->lock);
2759 sibling_map = sd->span;
2760 for_each_cpu_mask(i, sibling_map)
2761 spin_lock(&cpu_rq(i)->lock);
2762 cpu_clear(this_cpu, sibling_map);
2763
2764 /*
2765 * Establish next task to be run - it might have gone away because
2766 * we released the runqueue lock above:
2767 */
2768 if (!this_rq->nr_running)
2769 goto out_unlock;
2770 array = this_rq->active;
2771 if (!array->nr_active)
2772 array = this_rq->expired;
2773 BUG_ON(!array->nr_active);
2774
2775 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2776 task_t, run_list);
2777
2778 for_each_cpu_mask(i, sibling_map) {
2779 runqueue_t *smt_rq = cpu_rq(i);
2780 task_t *smt_curr = smt_rq->curr;
2781
Con Kolivasfc38ed72005-09-10 00:26:08 -07002782 /* Kernel threads do not participate in dependent sleeping */
2783 if (!p->mm || !smt_curr->mm || rt_task(p))
2784 goto check_smt_task;
2785
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786 /*
2787 * If a user task with lower static priority than the
2788 * running task on the SMT sibling is trying to schedule,
2789 * delay it till there is proportionately less timeslice
2790 * left of the sibling task to prevent a lower priority
2791 * task from using an unfair proportion of the
2792 * physical cpu's resources. -ck
2793 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002794 if (rt_task(smt_curr)) {
2795 /*
2796 * With real time tasks we run non-rt tasks only
2797 * per_cpu_gain% of the time.
2798 */
2799 if ((jiffies % DEF_TIMESLICE) >
2800 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2801 ret = 1;
2802 } else
Ingo Molnar67f9a612005-09-10 00:26:16 -07002803 if (smt_curr->static_prio < p->static_prio &&
2804 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2805 smt_slice(smt_curr, sd) > task_timeslice(p))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002806 ret = 1;
2807
2808check_smt_task:
2809 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2810 rt_task(smt_curr))
2811 continue;
2812 if (!p->mm) {
2813 wakeup_busy_runqueue(smt_rq);
2814 continue;
2815 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002816
2817 /*
Con Kolivasfc38ed72005-09-10 00:26:08 -07002818 * Reschedule a lower priority task on the SMT sibling for
2819 * it to be put to sleep, or wake it up if it has been put to
2820 * sleep for priority reasons to see if it should run now.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002822 if (rt_task(p)) {
2823 if ((jiffies % DEF_TIMESLICE) >
2824 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2825 resched_task(smt_curr);
2826 } else {
Ingo Molnar67f9a612005-09-10 00:26:16 -07002827 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2828 smt_slice(p, sd) > task_timeslice(smt_curr))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002829 resched_task(smt_curr);
2830 else
2831 wakeup_busy_runqueue(smt_rq);
2832 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833 }
2834out_unlock:
2835 for_each_cpu_mask(i, sibling_map)
2836 spin_unlock(&cpu_rq(i)->lock);
2837 return ret;
2838}
2839#else
2840static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2841{
2842}
2843
2844static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2845{
2846 return 0;
2847}
2848#endif
2849
2850#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2851
2852void fastcall add_preempt_count(int val)
2853{
2854 /*
2855 * Underflow?
2856 */
Jesper Juhlbe5b4fb2005-06-23 00:09:09 -07002857 BUG_ON((preempt_count() < 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858 preempt_count() += val;
2859 /*
2860 * Spinlock count overflowing soon?
2861 */
2862 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2863}
2864EXPORT_SYMBOL(add_preempt_count);
2865
2866void fastcall sub_preempt_count(int val)
2867{
2868 /*
2869 * Underflow?
2870 */
2871 BUG_ON(val > preempt_count());
2872 /*
2873 * Is the spinlock portion underflowing?
2874 */
2875 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2876 preempt_count() -= val;
2877}
2878EXPORT_SYMBOL(sub_preempt_count);
2879
2880#endif
2881
Con Kolivas3dee3862006-03-31 02:31:23 -08002882static inline int interactive_sleep(enum sleep_type sleep_type)
2883{
2884 return (sleep_type == SLEEP_INTERACTIVE ||
2885 sleep_type == SLEEP_INTERRUPTED);
2886}
2887
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888/*
2889 * schedule() is the main scheduler function.
2890 */
2891asmlinkage void __sched schedule(void)
2892{
2893 long *switch_count;
2894 task_t *prev, *next;
2895 runqueue_t *rq;
2896 prio_array_t *array;
2897 struct list_head *queue;
2898 unsigned long long now;
2899 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07002900 int cpu, idx, new_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901
2902 /*
2903 * Test if we are atomic. Since do_exit() needs to call into
2904 * schedule() atomically, we ignore that path for now.
2905 * Otherwise, whine if we are scheduling when we should not be.
2906 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08002907 if (unlikely(in_atomic() && !current->exit_state)) {
2908 printk(KERN_ERR "BUG: scheduling while atomic: "
2909 "%s/0x%08x/%d\n",
2910 current->comm, preempt_count(), current->pid);
2911 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912 }
2913 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2914
2915need_resched:
2916 preempt_disable();
2917 prev = current;
2918 release_kernel_lock(prev);
2919need_resched_nonpreemptible:
2920 rq = this_rq();
2921
2922 /*
2923 * The idle thread is not allowed to schedule!
2924 * Remove this check after it has been exercised a bit.
2925 */
2926 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2927 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2928 dump_stack();
2929 }
2930
2931 schedstat_inc(rq, sched_cnt);
2932 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07002933 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07002935 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936 run_time = 0;
2937 } else
2938 run_time = NS_MAX_SLEEP_AVG;
2939
2940 /*
2941 * Tasks charged proportionately less run_time at high sleep_avg to
2942 * delay them losing their interactive status
2943 */
2944 run_time /= (CURRENT_BONUS(prev) ? : 1);
2945
2946 spin_lock_irq(&rq->lock);
2947
2948 if (unlikely(prev->flags & PF_DEAD))
2949 prev->state = EXIT_DEAD;
2950
2951 switch_count = &prev->nivcsw;
2952 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2953 switch_count = &prev->nvcsw;
2954 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2955 unlikely(signal_pending(prev))))
2956 prev->state = TASK_RUNNING;
2957 else {
2958 if (prev->state == TASK_UNINTERRUPTIBLE)
2959 rq->nr_uninterruptible++;
2960 deactivate_task(prev, rq);
2961 }
2962 }
2963
2964 cpu = smp_processor_id();
2965 if (unlikely(!rq->nr_running)) {
2966go_idle:
2967 idle_balance(cpu, rq);
2968 if (!rq->nr_running) {
2969 next = rq->idle;
2970 rq->expired_timestamp = 0;
2971 wake_sleeping_dependent(cpu, rq);
2972 /*
2973 * wake_sleeping_dependent() might have released
2974 * the runqueue, so break out if we got new
2975 * tasks meanwhile:
2976 */
2977 if (!rq->nr_running)
2978 goto switch_tasks;
2979 }
2980 } else {
2981 if (dependent_sleeper(cpu, rq)) {
2982 next = rq->idle;
2983 goto switch_tasks;
2984 }
2985 /*
2986 * dependent_sleeper() releases and reacquires the runqueue
2987 * lock, hence go into the idle loop if the rq went
2988 * empty meanwhile:
2989 */
2990 if (unlikely(!rq->nr_running))
2991 goto go_idle;
2992 }
2993
2994 array = rq->active;
2995 if (unlikely(!array->nr_active)) {
2996 /*
2997 * Switch the active and expired arrays.
2998 */
2999 schedstat_inc(rq, sched_switch);
3000 rq->active = rq->expired;
3001 rq->expired = array;
3002 array = rq->active;
3003 rq->expired_timestamp = 0;
3004 rq->best_expired_prio = MAX_PRIO;
3005 }
3006
3007 idx = sched_find_first_bit(array->bitmap);
3008 queue = array->queue + idx;
3009 next = list_entry(queue->next, task_t, run_list);
3010
Con Kolivas3dee3862006-03-31 02:31:23 -08003011 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003013 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014 delta = 0;
3015
Con Kolivas3dee3862006-03-31 02:31:23 -08003016 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003017 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3018
3019 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003020 new_prio = recalc_task_prio(next, next->timestamp + delta);
3021
3022 if (unlikely(next->prio != new_prio)) {
3023 dequeue_task(next, array);
3024 next->prio = new_prio;
3025 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003026 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003027 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003028 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003029switch_tasks:
3030 if (next == rq->idle)
3031 schedstat_inc(rq, sched_goidle);
3032 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003033 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034 clear_tsk_need_resched(prev);
3035 rcu_qsctr_inc(task_cpu(prev));
3036
3037 update_cpu_clock(prev, rq, now);
3038
3039 prev->sleep_avg -= run_time;
3040 if ((long)prev->sleep_avg <= 0)
3041 prev->sleep_avg = 0;
3042 prev->timestamp = prev->last_ran = now;
3043
3044 sched_info_switch(prev, next);
3045 if (likely(prev != next)) {
3046 next->timestamp = now;
3047 rq->nr_switches++;
3048 rq->curr = next;
3049 ++*switch_count;
3050
Nick Piggin4866cde2005-06-25 14:57:23 -07003051 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003052 prev = context_switch(rq, prev, next);
3053 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003054 /*
3055 * this_rq must be evaluated again because prev may have moved
3056 * CPUs since it called schedule(), thus the 'rq' on its stack
3057 * frame will be invalid.
3058 */
3059 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 } else
3061 spin_unlock_irq(&rq->lock);
3062
3063 prev = current;
3064 if (unlikely(reacquire_kernel_lock(prev) < 0))
3065 goto need_resched_nonpreemptible;
3066 preempt_enable_no_resched();
3067 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3068 goto need_resched;
3069}
3070
3071EXPORT_SYMBOL(schedule);
3072
3073#ifdef CONFIG_PREEMPT
3074/*
3075 * this is is the entry point to schedule() from in-kernel preemption
3076 * off of preempt_enable. Kernel preemptions off return from interrupt
3077 * occur there and call schedule directly.
3078 */
3079asmlinkage void __sched preempt_schedule(void)
3080{
3081 struct thread_info *ti = current_thread_info();
3082#ifdef CONFIG_PREEMPT_BKL
3083 struct task_struct *task = current;
3084 int saved_lock_depth;
3085#endif
3086 /*
3087 * If there is a non-zero preempt_count or interrupts are disabled,
3088 * we do not want to preempt the current task. Just return..
3089 */
3090 if (unlikely(ti->preempt_count || irqs_disabled()))
3091 return;
3092
3093need_resched:
3094 add_preempt_count(PREEMPT_ACTIVE);
3095 /*
3096 * We keep the big kernel semaphore locked, but we
3097 * clear ->lock_depth so that schedule() doesnt
3098 * auto-release the semaphore:
3099 */
3100#ifdef CONFIG_PREEMPT_BKL
3101 saved_lock_depth = task->lock_depth;
3102 task->lock_depth = -1;
3103#endif
3104 schedule();
3105#ifdef CONFIG_PREEMPT_BKL
3106 task->lock_depth = saved_lock_depth;
3107#endif
3108 sub_preempt_count(PREEMPT_ACTIVE);
3109
3110 /* we could miss a preemption opportunity between schedule and now */
3111 barrier();
3112 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3113 goto need_resched;
3114}
3115
3116EXPORT_SYMBOL(preempt_schedule);
3117
3118/*
3119 * this is is the entry point to schedule() from kernel preemption
3120 * off of irq context.
3121 * Note, that this is called and return with irqs disabled. This will
3122 * protect us against recursive calling from irq.
3123 */
3124asmlinkage void __sched preempt_schedule_irq(void)
3125{
3126 struct thread_info *ti = current_thread_info();
3127#ifdef CONFIG_PREEMPT_BKL
3128 struct task_struct *task = current;
3129 int saved_lock_depth;
3130#endif
3131 /* Catch callers which need to be fixed*/
3132 BUG_ON(ti->preempt_count || !irqs_disabled());
3133
3134need_resched:
3135 add_preempt_count(PREEMPT_ACTIVE);
3136 /*
3137 * We keep the big kernel semaphore locked, but we
3138 * clear ->lock_depth so that schedule() doesnt
3139 * auto-release the semaphore:
3140 */
3141#ifdef CONFIG_PREEMPT_BKL
3142 saved_lock_depth = task->lock_depth;
3143 task->lock_depth = -1;
3144#endif
3145 local_irq_enable();
3146 schedule();
3147 local_irq_disable();
3148#ifdef CONFIG_PREEMPT_BKL
3149 task->lock_depth = saved_lock_depth;
3150#endif
3151 sub_preempt_count(PREEMPT_ACTIVE);
3152
3153 /* we could miss a preemption opportunity between schedule and now */
3154 barrier();
3155 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3156 goto need_resched;
3157}
3158
3159#endif /* CONFIG_PREEMPT */
3160
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003161int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3162 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163{
Benjamin LaHaisec43dc2f2005-06-23 00:10:27 -07003164 task_t *p = curr->private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165 return try_to_wake_up(p, mode, sync);
3166}
3167
3168EXPORT_SYMBOL(default_wake_function);
3169
3170/*
3171 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3172 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3173 * number) then we wake all the non-exclusive tasks and one exclusive task.
3174 *
3175 * There are circumstances in which we can try to wake a task which has already
3176 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3177 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3178 */
3179static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3180 int nr_exclusive, int sync, void *key)
3181{
3182 struct list_head *tmp, *next;
3183
3184 list_for_each_safe(tmp, next, &q->task_list) {
3185 wait_queue_t *curr;
3186 unsigned flags;
3187 curr = list_entry(tmp, wait_queue_t, task_list);
3188 flags = curr->flags;
3189 if (curr->func(curr, mode, sync, key) &&
3190 (flags & WQ_FLAG_EXCLUSIVE) &&
3191 !--nr_exclusive)
3192 break;
3193 }
3194}
3195
3196/**
3197 * __wake_up - wake up threads blocked on a waitqueue.
3198 * @q: the waitqueue
3199 * @mode: which threads
3200 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003201 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 */
3203void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003204 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205{
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(&q->lock, flags);
3209 __wake_up_common(q, mode, nr_exclusive, 0, key);
3210 spin_unlock_irqrestore(&q->lock, flags);
3211}
3212
3213EXPORT_SYMBOL(__wake_up);
3214
3215/*
3216 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3217 */
3218void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3219{
3220 __wake_up_common(q, mode, 1, 0, NULL);
3221}
3222
3223/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003224 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003225 * @q: the waitqueue
3226 * @mode: which threads
3227 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3228 *
3229 * The sync wakeup differs that the waker knows that it will schedule
3230 * away soon, so while the target thread will be woken up, it will not
3231 * be migrated to another CPU - ie. the two threads are 'synchronized'
3232 * with each other. This can prevent needless bouncing between CPUs.
3233 *
3234 * On UP it can prevent extra preemption.
3235 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003236void fastcall
3237__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003238{
3239 unsigned long flags;
3240 int sync = 1;
3241
3242 if (unlikely(!q))
3243 return;
3244
3245 if (unlikely(!nr_exclusive))
3246 sync = 0;
3247
3248 spin_lock_irqsave(&q->lock, flags);
3249 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3250 spin_unlock_irqrestore(&q->lock, flags);
3251}
3252EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3253
3254void fastcall complete(struct completion *x)
3255{
3256 unsigned long flags;
3257
3258 spin_lock_irqsave(&x->wait.lock, flags);
3259 x->done++;
3260 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3261 1, 0, NULL);
3262 spin_unlock_irqrestore(&x->wait.lock, flags);
3263}
3264EXPORT_SYMBOL(complete);
3265
3266void fastcall complete_all(struct completion *x)
3267{
3268 unsigned long flags;
3269
3270 spin_lock_irqsave(&x->wait.lock, flags);
3271 x->done += UINT_MAX/2;
3272 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3273 0, 0, NULL);
3274 spin_unlock_irqrestore(&x->wait.lock, flags);
3275}
3276EXPORT_SYMBOL(complete_all);
3277
3278void fastcall __sched wait_for_completion(struct completion *x)
3279{
3280 might_sleep();
3281 spin_lock_irq(&x->wait.lock);
3282 if (!x->done) {
3283 DECLARE_WAITQUEUE(wait, current);
3284
3285 wait.flags |= WQ_FLAG_EXCLUSIVE;
3286 __add_wait_queue_tail(&x->wait, &wait);
3287 do {
3288 __set_current_state(TASK_UNINTERRUPTIBLE);
3289 spin_unlock_irq(&x->wait.lock);
3290 schedule();
3291 spin_lock_irq(&x->wait.lock);
3292 } while (!x->done);
3293 __remove_wait_queue(&x->wait, &wait);
3294 }
3295 x->done--;
3296 spin_unlock_irq(&x->wait.lock);
3297}
3298EXPORT_SYMBOL(wait_for_completion);
3299
3300unsigned long fastcall __sched
3301wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3302{
3303 might_sleep();
3304
3305 spin_lock_irq(&x->wait.lock);
3306 if (!x->done) {
3307 DECLARE_WAITQUEUE(wait, current);
3308
3309 wait.flags |= WQ_FLAG_EXCLUSIVE;
3310 __add_wait_queue_tail(&x->wait, &wait);
3311 do {
3312 __set_current_state(TASK_UNINTERRUPTIBLE);
3313 spin_unlock_irq(&x->wait.lock);
3314 timeout = schedule_timeout(timeout);
3315 spin_lock_irq(&x->wait.lock);
3316 if (!timeout) {
3317 __remove_wait_queue(&x->wait, &wait);
3318 goto out;
3319 }
3320 } while (!x->done);
3321 __remove_wait_queue(&x->wait, &wait);
3322 }
3323 x->done--;
3324out:
3325 spin_unlock_irq(&x->wait.lock);
3326 return timeout;
3327}
3328EXPORT_SYMBOL(wait_for_completion_timeout);
3329
3330int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3331{
3332 int ret = 0;
3333
3334 might_sleep();
3335
3336 spin_lock_irq(&x->wait.lock);
3337 if (!x->done) {
3338 DECLARE_WAITQUEUE(wait, current);
3339
3340 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341 __add_wait_queue_tail(&x->wait, &wait);
3342 do {
3343 if (signal_pending(current)) {
3344 ret = -ERESTARTSYS;
3345 __remove_wait_queue(&x->wait, &wait);
3346 goto out;
3347 }
3348 __set_current_state(TASK_INTERRUPTIBLE);
3349 spin_unlock_irq(&x->wait.lock);
3350 schedule();
3351 spin_lock_irq(&x->wait.lock);
3352 } while (!x->done);
3353 __remove_wait_queue(&x->wait, &wait);
3354 }
3355 x->done--;
3356out:
3357 spin_unlock_irq(&x->wait.lock);
3358
3359 return ret;
3360}
3361EXPORT_SYMBOL(wait_for_completion_interruptible);
3362
3363unsigned long fastcall __sched
3364wait_for_completion_interruptible_timeout(struct completion *x,
3365 unsigned long timeout)
3366{
3367 might_sleep();
3368
3369 spin_lock_irq(&x->wait.lock);
3370 if (!x->done) {
3371 DECLARE_WAITQUEUE(wait, current);
3372
3373 wait.flags |= WQ_FLAG_EXCLUSIVE;
3374 __add_wait_queue_tail(&x->wait, &wait);
3375 do {
3376 if (signal_pending(current)) {
3377 timeout = -ERESTARTSYS;
3378 __remove_wait_queue(&x->wait, &wait);
3379 goto out;
3380 }
3381 __set_current_state(TASK_INTERRUPTIBLE);
3382 spin_unlock_irq(&x->wait.lock);
3383 timeout = schedule_timeout(timeout);
3384 spin_lock_irq(&x->wait.lock);
3385 if (!timeout) {
3386 __remove_wait_queue(&x->wait, &wait);
3387 goto out;
3388 }
3389 } while (!x->done);
3390 __remove_wait_queue(&x->wait, &wait);
3391 }
3392 x->done--;
3393out:
3394 spin_unlock_irq(&x->wait.lock);
3395 return timeout;
3396}
3397EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3398
3399
3400#define SLEEP_ON_VAR \
3401 unsigned long flags; \
3402 wait_queue_t wait; \
3403 init_waitqueue_entry(&wait, current);
3404
3405#define SLEEP_ON_HEAD \
3406 spin_lock_irqsave(&q->lock,flags); \
3407 __add_wait_queue(q, &wait); \
3408 spin_unlock(&q->lock);
3409
3410#define SLEEP_ON_TAIL \
3411 spin_lock_irq(&q->lock); \
3412 __remove_wait_queue(q, &wait); \
3413 spin_unlock_irqrestore(&q->lock, flags);
3414
3415void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3416{
3417 SLEEP_ON_VAR
3418
3419 current->state = TASK_INTERRUPTIBLE;
3420
3421 SLEEP_ON_HEAD
3422 schedule();
3423 SLEEP_ON_TAIL
3424}
3425
3426EXPORT_SYMBOL(interruptible_sleep_on);
3427
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003428long fastcall __sched
3429interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430{
3431 SLEEP_ON_VAR
3432
3433 current->state = TASK_INTERRUPTIBLE;
3434
3435 SLEEP_ON_HEAD
3436 timeout = schedule_timeout(timeout);
3437 SLEEP_ON_TAIL
3438
3439 return timeout;
3440}
3441
3442EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3443
3444void fastcall __sched sleep_on(wait_queue_head_t *q)
3445{
3446 SLEEP_ON_VAR
3447
3448 current->state = TASK_UNINTERRUPTIBLE;
3449
3450 SLEEP_ON_HEAD
3451 schedule();
3452 SLEEP_ON_TAIL
3453}
3454
3455EXPORT_SYMBOL(sleep_on);
3456
3457long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3458{
3459 SLEEP_ON_VAR
3460
3461 current->state = TASK_UNINTERRUPTIBLE;
3462
3463 SLEEP_ON_HEAD
3464 timeout = schedule_timeout(timeout);
3465 SLEEP_ON_TAIL
3466
3467 return timeout;
3468}
3469
3470EXPORT_SYMBOL(sleep_on_timeout);
3471
3472void set_user_nice(task_t *p, long nice)
3473{
3474 unsigned long flags;
3475 prio_array_t *array;
3476 runqueue_t *rq;
3477 int old_prio, new_prio, delta;
3478
3479 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3480 return;
3481 /*
3482 * We have to be careful, if called from sys_setpriority(),
3483 * the task might be in the middle of scheduling on another CPU.
3484 */
3485 rq = task_rq_lock(p, &flags);
3486 /*
3487 * The RT priorities are set via sched_setscheduler(), but we still
3488 * allow the 'normal' nice value to be set - but as expected
3489 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08003490 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003491 */
3492 if (rt_task(p)) {
3493 p->static_prio = NICE_TO_PRIO(nice);
3494 goto out_unlock;
3495 }
3496 array = p->array;
Nick Piggina2000572006-02-10 01:51:02 -08003497 if (array)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498 dequeue_task(p, array);
3499
3500 old_prio = p->prio;
3501 new_prio = NICE_TO_PRIO(nice);
3502 delta = new_prio - old_prio;
3503 p->static_prio = NICE_TO_PRIO(nice);
3504 p->prio += delta;
3505
3506 if (array) {
3507 enqueue_task(p, array);
3508 /*
3509 * If the task increased its priority or is running and
3510 * lowered its priority, then reschedule its CPU:
3511 */
3512 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3513 resched_task(rq->curr);
3514 }
3515out_unlock:
3516 task_rq_unlock(rq, &flags);
3517}
3518
3519EXPORT_SYMBOL(set_user_nice);
3520
Matt Mackalle43379f2005-05-01 08:59:00 -07003521/*
3522 * can_nice - check if a task can reduce its nice value
3523 * @p: task
3524 * @nice: nice value
3525 */
3526int can_nice(const task_t *p, const int nice)
3527{
Matt Mackall024f4742005-08-18 11:24:19 -07003528 /* convert nice value [19,-20] to rlimit style value [1,40] */
3529 int nice_rlim = 20 - nice;
Matt Mackalle43379f2005-05-01 08:59:00 -07003530 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3531 capable(CAP_SYS_NICE));
3532}
3533
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534#ifdef __ARCH_WANT_SYS_NICE
3535
3536/*
3537 * sys_nice - change the priority of the current process.
3538 * @increment: priority increment
3539 *
3540 * sys_setpriority is a more generic, but much slower function that
3541 * does similar things.
3542 */
3543asmlinkage long sys_nice(int increment)
3544{
3545 int retval;
3546 long nice;
3547
3548 /*
3549 * Setpriority might change our priority at the same moment.
3550 * We don't have to worry. Conceptually one call occurs first
3551 * and we have a single winner.
3552 */
Matt Mackalle43379f2005-05-01 08:59:00 -07003553 if (increment < -40)
3554 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 if (increment > 40)
3556 increment = 40;
3557
3558 nice = PRIO_TO_NICE(current->static_prio) + increment;
3559 if (nice < -20)
3560 nice = -20;
3561 if (nice > 19)
3562 nice = 19;
3563
Matt Mackalle43379f2005-05-01 08:59:00 -07003564 if (increment < 0 && !can_nice(current, nice))
3565 return -EPERM;
3566
Linus Torvalds1da177e2005-04-16 15:20:36 -07003567 retval = security_task_setnice(current, nice);
3568 if (retval)
3569 return retval;
3570
3571 set_user_nice(current, nice);
3572 return 0;
3573}
3574
3575#endif
3576
3577/**
3578 * task_prio - return the priority value of a given task.
3579 * @p: the task in question.
3580 *
3581 * This is the priority value as seen by users in /proc.
3582 * RT tasks are offset by -200. Normal tasks are centered
3583 * around 0, value goes from -16 to +15.
3584 */
3585int task_prio(const task_t *p)
3586{
3587 return p->prio - MAX_RT_PRIO;
3588}
3589
3590/**
3591 * task_nice - return the nice value of a given task.
3592 * @p: the task in question.
3593 */
3594int task_nice(const task_t *p)
3595{
3596 return TASK_NICE(p);
3597}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599
3600/**
3601 * idle_cpu - is a given cpu idle currently?
3602 * @cpu: the processor in question.
3603 */
3604int idle_cpu(int cpu)
3605{
3606 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3607}
3608
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609/**
3610 * idle_task - return the idle task for a given cpu.
3611 * @cpu: the processor in question.
3612 */
3613task_t *idle_task(int cpu)
3614{
3615 return cpu_rq(cpu)->idle;
3616}
3617
3618/**
3619 * find_process_by_pid - find a process with a matching PID value.
3620 * @pid: the pid in question.
3621 */
3622static inline task_t *find_process_by_pid(pid_t pid)
3623{
3624 return pid ? find_task_by_pid(pid) : current;
3625}
3626
3627/* Actually do priority change: must hold rq lock. */
3628static void __setscheduler(struct task_struct *p, int policy, int prio)
3629{
3630 BUG_ON(p->array);
3631 p->policy = policy;
3632 p->rt_priority = prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003633 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
Steven Rostedtd46523e2005-07-25 16:28:39 -04003634 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003635 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003636 p->prio = p->static_prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003637 /*
3638 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3639 */
3640 if (policy == SCHED_BATCH)
3641 p->sleep_avg = 0;
3642 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003643}
3644
3645/**
3646 * sched_setscheduler - change the scheduling policy and/or RT priority of
3647 * a thread.
3648 * @p: the task in question.
3649 * @policy: new policy.
3650 * @param: structure containing the new RT priority.
3651 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003652int sched_setscheduler(struct task_struct *p, int policy,
3653 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003654{
3655 int retval;
3656 int oldprio, oldpolicy = -1;
3657 prio_array_t *array;
3658 unsigned long flags;
3659 runqueue_t *rq;
3660
3661recheck:
3662 /* double check policy once rq lock held */
3663 if (policy < 0)
3664 policy = oldpolicy = p->policy;
3665 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08003666 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3667 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 /*
3669 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08003670 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3671 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003672 */
3673 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003674 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04003675 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003676 return -EINVAL;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003677 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3678 != (param->sched_priority == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679 return -EINVAL;
3680
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003681 /*
3682 * Allow unprivileged RT tasks to decrease priority:
3683 */
3684 if (!capable(CAP_SYS_NICE)) {
Ingo Molnarb0a94992006-01-14 13:20:41 -08003685 /*
3686 * can't change policy, except between SCHED_NORMAL
3687 * and SCHED_BATCH:
3688 */
3689 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3690 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3691 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003692 return -EPERM;
3693 /* can't increase priority */
Ingo Molnarb0a94992006-01-14 13:20:41 -08003694 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003695 param->sched_priority > p->rt_priority &&
3696 param->sched_priority >
3697 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3698 return -EPERM;
3699 /* can't change other user's priorities */
3700 if ((current->euid != p->euid) &&
3701 (current->euid != p->uid))
3702 return -EPERM;
3703 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704
3705 retval = security_task_setscheduler(p, policy, param);
3706 if (retval)
3707 return retval;
3708 /*
3709 * To be able to change p->policy safely, the apropriate
3710 * runqueue lock must be held.
3711 */
3712 rq = task_rq_lock(p, &flags);
3713 /* recheck policy now with rq lock held */
3714 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3715 policy = oldpolicy = -1;
3716 task_rq_unlock(rq, &flags);
3717 goto recheck;
3718 }
3719 array = p->array;
3720 if (array)
3721 deactivate_task(p, rq);
3722 oldprio = p->prio;
3723 __setscheduler(p, policy, param->sched_priority);
3724 if (array) {
3725 __activate_task(p, rq);
3726 /*
3727 * Reschedule if we are currently running on this runqueue and
3728 * our priority decreased, or if we are not currently running on
3729 * this runqueue and our priority is higher than the current's
3730 */
3731 if (task_running(rq, p)) {
3732 if (p->prio > oldprio)
3733 resched_task(rq->curr);
3734 } else if (TASK_PREEMPTS_CURR(p, rq))
3735 resched_task(rq->curr);
3736 }
3737 task_rq_unlock(rq, &flags);
3738 return 0;
3739}
3740EXPORT_SYMBOL_GPL(sched_setscheduler);
3741
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003742static int
3743do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003744{
3745 int retval;
3746 struct sched_param lparam;
3747 struct task_struct *p;
3748
3749 if (!param || pid < 0)
3750 return -EINVAL;
3751 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3752 return -EFAULT;
3753 read_lock_irq(&tasklist_lock);
3754 p = find_process_by_pid(pid);
3755 if (!p) {
3756 read_unlock_irq(&tasklist_lock);
3757 return -ESRCH;
3758 }
3759 retval = sched_setscheduler(p, policy, &lparam);
3760 read_unlock_irq(&tasklist_lock);
3761 return retval;
3762}
3763
3764/**
3765 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3766 * @pid: the pid in question.
3767 * @policy: new policy.
3768 * @param: structure containing the new RT priority.
3769 */
3770asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3771 struct sched_param __user *param)
3772{
Jason Baronc21761f2006-01-18 17:43:03 -08003773 /* negative values for policy are not valid */
3774 if (policy < 0)
3775 return -EINVAL;
3776
Linus Torvalds1da177e2005-04-16 15:20:36 -07003777 return do_sched_setscheduler(pid, policy, param);
3778}
3779
3780/**
3781 * sys_sched_setparam - set/change the RT priority of a thread
3782 * @pid: the pid in question.
3783 * @param: structure containing the new RT priority.
3784 */
3785asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3786{
3787 return do_sched_setscheduler(pid, -1, param);
3788}
3789
3790/**
3791 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3792 * @pid: the pid in question.
3793 */
3794asmlinkage long sys_sched_getscheduler(pid_t pid)
3795{
3796 int retval = -EINVAL;
3797 task_t *p;
3798
3799 if (pid < 0)
3800 goto out_nounlock;
3801
3802 retval = -ESRCH;
3803 read_lock(&tasklist_lock);
3804 p = find_process_by_pid(pid);
3805 if (p) {
3806 retval = security_task_getscheduler(p);
3807 if (!retval)
3808 retval = p->policy;
3809 }
3810 read_unlock(&tasklist_lock);
3811
3812out_nounlock:
3813 return retval;
3814}
3815
3816/**
3817 * sys_sched_getscheduler - get the RT priority of a thread
3818 * @pid: the pid in question.
3819 * @param: structure containing the RT priority.
3820 */
3821asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3822{
3823 struct sched_param lp;
3824 int retval = -EINVAL;
3825 task_t *p;
3826
3827 if (!param || pid < 0)
3828 goto out_nounlock;
3829
3830 read_lock(&tasklist_lock);
3831 p = find_process_by_pid(pid);
3832 retval = -ESRCH;
3833 if (!p)
3834 goto out_unlock;
3835
3836 retval = security_task_getscheduler(p);
3837 if (retval)
3838 goto out_unlock;
3839
3840 lp.sched_priority = p->rt_priority;
3841 read_unlock(&tasklist_lock);
3842
3843 /*
3844 * This one might sleep, we cannot do it with a spinlock held ...
3845 */
3846 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3847
3848out_nounlock:
3849 return retval;
3850
3851out_unlock:
3852 read_unlock(&tasklist_lock);
3853 return retval;
3854}
3855
3856long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3857{
3858 task_t *p;
3859 int retval;
3860 cpumask_t cpus_allowed;
3861
3862 lock_cpu_hotplug();
3863 read_lock(&tasklist_lock);
3864
3865 p = find_process_by_pid(pid);
3866 if (!p) {
3867 read_unlock(&tasklist_lock);
3868 unlock_cpu_hotplug();
3869 return -ESRCH;
3870 }
3871
3872 /*
3873 * It is not safe to call set_cpus_allowed with the
3874 * tasklist_lock held. We will bump the task_struct's
3875 * usage count and then drop tasklist_lock.
3876 */
3877 get_task_struct(p);
3878 read_unlock(&tasklist_lock);
3879
3880 retval = -EPERM;
3881 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3882 !capable(CAP_SYS_NICE))
3883 goto out_unlock;
3884
3885 cpus_allowed = cpuset_cpus_allowed(p);
3886 cpus_and(new_mask, new_mask, cpus_allowed);
3887 retval = set_cpus_allowed(p, new_mask);
3888
3889out_unlock:
3890 put_task_struct(p);
3891 unlock_cpu_hotplug();
3892 return retval;
3893}
3894
3895static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3896 cpumask_t *new_mask)
3897{
3898 if (len < sizeof(cpumask_t)) {
3899 memset(new_mask, 0, sizeof(cpumask_t));
3900 } else if (len > sizeof(cpumask_t)) {
3901 len = sizeof(cpumask_t);
3902 }
3903 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3904}
3905
3906/**
3907 * sys_sched_setaffinity - set the cpu affinity of a process
3908 * @pid: pid of the process
3909 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3910 * @user_mask_ptr: user-space pointer to the new cpu mask
3911 */
3912asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3913 unsigned long __user *user_mask_ptr)
3914{
3915 cpumask_t new_mask;
3916 int retval;
3917
3918 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3919 if (retval)
3920 return retval;
3921
3922 return sched_setaffinity(pid, new_mask);
3923}
3924
3925/*
3926 * Represents all cpu's present in the system
3927 * In systems capable of hotplug, this map could dynamically grow
3928 * as new cpu's are detected in the system via any platform specific
3929 * method, such as ACPI for e.g.
3930 */
3931
Andi Kleen4cef0c62006-01-11 22:44:57 +01003932cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003933EXPORT_SYMBOL(cpu_present_map);
3934
3935#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01003936cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3937cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003938#endif
3939
3940long sched_getaffinity(pid_t pid, cpumask_t *mask)
3941{
3942 int retval;
3943 task_t *p;
3944
3945 lock_cpu_hotplug();
3946 read_lock(&tasklist_lock);
3947
3948 retval = -ESRCH;
3949 p = find_process_by_pid(pid);
3950 if (!p)
3951 goto out_unlock;
3952
3953 retval = 0;
Jack Steiner2f7016d2006-02-01 03:05:18 -08003954 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003955
3956out_unlock:
3957 read_unlock(&tasklist_lock);
3958 unlock_cpu_hotplug();
3959 if (retval)
3960 return retval;
3961
3962 return 0;
3963}
3964
3965/**
3966 * sys_sched_getaffinity - get the cpu affinity of a process
3967 * @pid: pid of the process
3968 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3969 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3970 */
3971asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3972 unsigned long __user *user_mask_ptr)
3973{
3974 int ret;
3975 cpumask_t mask;
3976
3977 if (len < sizeof(cpumask_t))
3978 return -EINVAL;
3979
3980 ret = sched_getaffinity(pid, &mask);
3981 if (ret < 0)
3982 return ret;
3983
3984 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3985 return -EFAULT;
3986
3987 return sizeof(cpumask_t);
3988}
3989
3990/**
3991 * sys_sched_yield - yield the current processor to other threads.
3992 *
3993 * this function yields the current CPU by moving the calling thread
3994 * to the expired array. If there are no other threads running on this
3995 * CPU then this function will return.
3996 */
3997asmlinkage long sys_sched_yield(void)
3998{
3999 runqueue_t *rq = this_rq_lock();
4000 prio_array_t *array = current->array;
4001 prio_array_t *target = rq->expired;
4002
4003 schedstat_inc(rq, yld_cnt);
4004 /*
4005 * We implement yielding by moving the task into the expired
4006 * queue.
4007 *
4008 * (special rule: RT tasks will just roundrobin in the active
4009 * array.)
4010 */
4011 if (rt_task(current))
4012 target = rq->active;
4013
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004014 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015 schedstat_inc(rq, yld_act_empty);
4016 if (!rq->expired->nr_active)
4017 schedstat_inc(rq, yld_both_empty);
4018 } else if (!rq->expired->nr_active)
4019 schedstat_inc(rq, yld_exp_empty);
4020
4021 if (array != target) {
4022 dequeue_task(current, array);
4023 enqueue_task(current, target);
4024 } else
4025 /*
4026 * requeue_task is cheaper so perform that if possible.
4027 */
4028 requeue_task(current, array);
4029
4030 /*
4031 * Since we are going to call schedule() anyway, there's
4032 * no need to preempt or enable interrupts:
4033 */
4034 __release(rq->lock);
4035 _raw_spin_unlock(&rq->lock);
4036 preempt_enable_no_resched();
4037
4038 schedule();
4039
4040 return 0;
4041}
4042
4043static inline void __cond_resched(void)
4044{
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004045 /*
4046 * The BKS might be reacquired before we have dropped
4047 * PREEMPT_ACTIVE, which could trigger a second
4048 * cond_resched() call.
4049 */
4050 if (unlikely(preempt_count()))
4051 return;
Linus Torvalds8ba7b0a2006-03-06 17:38:49 -08004052 if (unlikely(system_state != SYSTEM_RUNNING))
4053 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004054 do {
4055 add_preempt_count(PREEMPT_ACTIVE);
4056 schedule();
4057 sub_preempt_count(PREEMPT_ACTIVE);
4058 } while (need_resched());
4059}
4060
4061int __sched cond_resched(void)
4062{
4063 if (need_resched()) {
4064 __cond_resched();
4065 return 1;
4066 }
4067 return 0;
4068}
4069
4070EXPORT_SYMBOL(cond_resched);
4071
4072/*
4073 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4074 * call schedule, and on return reacquire the lock.
4075 *
4076 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4077 * operations here to prevent schedule() from being called twice (once via
4078 * spin_unlock(), once by hand).
4079 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004080int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004081{
Jan Kara6df3cec2005-06-13 15:52:32 -07004082 int ret = 0;
4083
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084 if (need_lockbreak(lock)) {
4085 spin_unlock(lock);
4086 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004087 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004088 spin_lock(lock);
4089 }
4090 if (need_resched()) {
4091 _raw_spin_unlock(lock);
4092 preempt_enable_no_resched();
4093 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004094 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004097 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098}
4099
4100EXPORT_SYMBOL(cond_resched_lock);
4101
4102int __sched cond_resched_softirq(void)
4103{
4104 BUG_ON(!in_softirq());
4105
4106 if (need_resched()) {
4107 __local_bh_enable();
4108 __cond_resched();
4109 local_bh_disable();
4110 return 1;
4111 }
4112 return 0;
4113}
4114
4115EXPORT_SYMBOL(cond_resched_softirq);
4116
4117
4118/**
4119 * yield - yield the current processor to other threads.
4120 *
4121 * this is a shortcut for kernel-space yielding - it marks the
4122 * thread runnable and calls sys_sched_yield().
4123 */
4124void __sched yield(void)
4125{
4126 set_current_state(TASK_RUNNING);
4127 sys_sched_yield();
4128}
4129
4130EXPORT_SYMBOL(yield);
4131
4132/*
4133 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4134 * that process accounting knows that this is a task in IO wait state.
4135 *
4136 * But don't do that if it is a deliberate, throttling IO wait (this task
4137 * has set its backing_dev_info: the queue against which it should throttle)
4138 */
4139void __sched io_schedule(void)
4140{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004141 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004142
4143 atomic_inc(&rq->nr_iowait);
4144 schedule();
4145 atomic_dec(&rq->nr_iowait);
4146}
4147
4148EXPORT_SYMBOL(io_schedule);
4149
4150long __sched io_schedule_timeout(long timeout)
4151{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004152 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004153 long ret;
4154
4155 atomic_inc(&rq->nr_iowait);
4156 ret = schedule_timeout(timeout);
4157 atomic_dec(&rq->nr_iowait);
4158 return ret;
4159}
4160
4161/**
4162 * sys_sched_get_priority_max - return maximum RT priority.
4163 * @policy: scheduling class.
4164 *
4165 * this syscall returns the maximum rt_priority that can be used
4166 * by a given scheduling class.
4167 */
4168asmlinkage long sys_sched_get_priority_max(int policy)
4169{
4170 int ret = -EINVAL;
4171
4172 switch (policy) {
4173 case SCHED_FIFO:
4174 case SCHED_RR:
4175 ret = MAX_USER_RT_PRIO-1;
4176 break;
4177 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004178 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004179 ret = 0;
4180 break;
4181 }
4182 return ret;
4183}
4184
4185/**
4186 * sys_sched_get_priority_min - return minimum RT priority.
4187 * @policy: scheduling class.
4188 *
4189 * this syscall returns the minimum rt_priority that can be used
4190 * by a given scheduling class.
4191 */
4192asmlinkage long sys_sched_get_priority_min(int policy)
4193{
4194 int ret = -EINVAL;
4195
4196 switch (policy) {
4197 case SCHED_FIFO:
4198 case SCHED_RR:
4199 ret = 1;
4200 break;
4201 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004202 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 ret = 0;
4204 }
4205 return ret;
4206}
4207
4208/**
4209 * sys_sched_rr_get_interval - return the default timeslice of a process.
4210 * @pid: pid of the process.
4211 * @interval: userspace pointer to the timeslice value.
4212 *
4213 * this syscall writes the default timeslice value of a given process
4214 * into the user-space timespec buffer. A value of '0' means infinity.
4215 */
4216asmlinkage
4217long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4218{
4219 int retval = -EINVAL;
4220 struct timespec t;
4221 task_t *p;
4222
4223 if (pid < 0)
4224 goto out_nounlock;
4225
4226 retval = -ESRCH;
4227 read_lock(&tasklist_lock);
4228 p = find_process_by_pid(pid);
4229 if (!p)
4230 goto out_unlock;
4231
4232 retval = security_task_getscheduler(p);
4233 if (retval)
4234 goto out_unlock;
4235
4236 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4237 0 : task_timeslice(p), &t);
4238 read_unlock(&tasklist_lock);
4239 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4240out_nounlock:
4241 return retval;
4242out_unlock:
4243 read_unlock(&tasklist_lock);
4244 return retval;
4245}
4246
4247static inline struct task_struct *eldest_child(struct task_struct *p)
4248{
4249 if (list_empty(&p->children)) return NULL;
4250 return list_entry(p->children.next,struct task_struct,sibling);
4251}
4252
4253static inline struct task_struct *older_sibling(struct task_struct *p)
4254{
4255 if (p->sibling.prev==&p->parent->children) return NULL;
4256 return list_entry(p->sibling.prev,struct task_struct,sibling);
4257}
4258
4259static inline struct task_struct *younger_sibling(struct task_struct *p)
4260{
4261 if (p->sibling.next==&p->parent->children) return NULL;
4262 return list_entry(p->sibling.next,struct task_struct,sibling);
4263}
4264
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004265static void show_task(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004266{
4267 task_t *relative;
4268 unsigned state;
4269 unsigned long free = 0;
4270 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4271
4272 printk("%-13.13s ", p->comm);
4273 state = p->state ? __ffs(p->state) + 1 : 0;
4274 if (state < ARRAY_SIZE(stat_nam))
4275 printk(stat_nam[state]);
4276 else
4277 printk("?");
4278#if (BITS_PER_LONG == 32)
4279 if (state == TASK_RUNNING)
4280 printk(" running ");
4281 else
4282 printk(" %08lX ", thread_saved_pc(p));
4283#else
4284 if (state == TASK_RUNNING)
4285 printk(" running task ");
4286 else
4287 printk(" %016lx ", thread_saved_pc(p));
4288#endif
4289#ifdef CONFIG_DEBUG_STACK_USAGE
4290 {
Al Viro10ebffd2005-11-13 16:06:56 -08004291 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292 while (!*n)
4293 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004294 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004295 }
4296#endif
4297 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4298 if ((relative = eldest_child(p)))
4299 printk("%5d ", relative->pid);
4300 else
4301 printk(" ");
4302 if ((relative = younger_sibling(p)))
4303 printk("%7d", relative->pid);
4304 else
4305 printk(" ");
4306 if ((relative = older_sibling(p)))
4307 printk(" %5d", relative->pid);
4308 else
4309 printk(" ");
4310 if (!p->mm)
4311 printk(" (L-TLB)\n");
4312 else
4313 printk(" (NOTLB)\n");
4314
4315 if (state != TASK_RUNNING)
4316 show_stack(p, NULL);
4317}
4318
4319void show_state(void)
4320{
4321 task_t *g, *p;
4322
4323#if (BITS_PER_LONG == 32)
4324 printk("\n"
4325 " sibling\n");
4326 printk(" task PC pid father child younger older\n");
4327#else
4328 printk("\n"
4329 " sibling\n");
4330 printk(" task PC pid father child younger older\n");
4331#endif
4332 read_lock(&tasklist_lock);
4333 do_each_thread(g, p) {
4334 /*
4335 * reset the NMI-timeout, listing all files on a slow
4336 * console might take alot of time:
4337 */
4338 touch_nmi_watchdog();
4339 show_task(p);
4340 } while_each_thread(g, p);
4341
4342 read_unlock(&tasklist_lock);
Ingo Molnarde5097c2006-01-09 15:59:21 -08004343 mutex_debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004344}
4345
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004346/**
4347 * init_idle - set up an idle thread for a given CPU
4348 * @idle: task in question
4349 * @cpu: cpu the idle task belongs to
4350 *
4351 * NOTE: this function does not set the idle thread's NEED_RESCHED
4352 * flag, to make booting more robust.
4353 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004354void __devinit init_idle(task_t *idle, int cpu)
4355{
4356 runqueue_t *rq = cpu_rq(cpu);
4357 unsigned long flags;
4358
Ingo Molnar81c29a82006-03-07 21:55:27 -08004359 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004360 idle->sleep_avg = 0;
4361 idle->array = NULL;
4362 idle->prio = MAX_PRIO;
4363 idle->state = TASK_RUNNING;
4364 idle->cpus_allowed = cpumask_of_cpu(cpu);
4365 set_task_cpu(idle, cpu);
4366
4367 spin_lock_irqsave(&rq->lock, flags);
4368 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004369#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4370 idle->oncpu = 1;
4371#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004372 spin_unlock_irqrestore(&rq->lock, flags);
4373
4374 /* Set the preempt count _outside_ the spinlocks! */
4375#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f542005-11-13 16:06:55 -08004376 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004377#else
Al Viroa1261f542005-11-13 16:06:55 -08004378 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004379#endif
4380}
4381
4382/*
4383 * In a system that switches off the HZ timer nohz_cpu_mask
4384 * indicates which cpus entered this state. This is used
4385 * in the rcu update to wait only for active cpus. For system
4386 * which do not switch off the HZ timer nohz_cpu_mask should
4387 * always be CPU_MASK_NONE.
4388 */
4389cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4390
4391#ifdef CONFIG_SMP
4392/*
4393 * This is how migration works:
4394 *
4395 * 1) we queue a migration_req_t structure in the source CPU's
4396 * runqueue and wake up that CPU's migration thread.
4397 * 2) we down() the locked semaphore => thread blocks.
4398 * 3) migration thread wakes up (implicitly it forces the migrated
4399 * thread off the CPU)
4400 * 4) it gets the migration request and checks whether the migrated
4401 * task is still in the wrong runqueue.
4402 * 5) if it's in the wrong runqueue then the migration thread removes
4403 * it and puts it into the right queue.
4404 * 6) migration thread up()s the semaphore.
4405 * 7) we wake up and the migration is done.
4406 */
4407
4408/*
4409 * Change a given task's CPU affinity. Migrate the thread to a
4410 * proper CPU and schedule it away if the CPU it's executing on
4411 * is removed from the allowed bitmask.
4412 *
4413 * NOTE: the caller must have a valid reference to the task, the
4414 * task must not exit() & deallocate itself prematurely. The
4415 * call is not atomic; no spinlocks may be held.
4416 */
4417int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4418{
4419 unsigned long flags;
4420 int ret = 0;
4421 migration_req_t req;
4422 runqueue_t *rq;
4423
4424 rq = task_rq_lock(p, &flags);
4425 if (!cpus_intersects(new_mask, cpu_online_map)) {
4426 ret = -EINVAL;
4427 goto out;
4428 }
4429
4430 p->cpus_allowed = new_mask;
4431 /* Can the task run on the task's current CPU? If so, we're done */
4432 if (cpu_isset(task_cpu(p), new_mask))
4433 goto out;
4434
4435 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4436 /* Need help from migration thread: drop lock and wait. */
4437 task_rq_unlock(rq, &flags);
4438 wake_up_process(rq->migration_thread);
4439 wait_for_completion(&req.done);
4440 tlb_migrate_finish(p->mm);
4441 return 0;
4442 }
4443out:
4444 task_rq_unlock(rq, &flags);
4445 return ret;
4446}
4447
4448EXPORT_SYMBOL_GPL(set_cpus_allowed);
4449
4450/*
4451 * Move (not current) task off this cpu, onto dest cpu. We're doing
4452 * this because either it can't run here any more (set_cpus_allowed()
4453 * away from this CPU, or CPU going down), or because we're
4454 * attempting to rebalance this task on exec (sched_exec).
4455 *
4456 * So we race with normal scheduler movements, but that's OK, as long
4457 * as the task is no longer on this CPU.
4458 */
4459static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4460{
4461 runqueue_t *rq_dest, *rq_src;
4462
4463 if (unlikely(cpu_is_offline(dest_cpu)))
4464 return;
4465
4466 rq_src = cpu_rq(src_cpu);
4467 rq_dest = cpu_rq(dest_cpu);
4468
4469 double_rq_lock(rq_src, rq_dest);
4470 /* Already moved. */
4471 if (task_cpu(p) != src_cpu)
4472 goto out;
4473 /* Affinity changed (again). */
4474 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4475 goto out;
4476
4477 set_task_cpu(p, dest_cpu);
4478 if (p->array) {
4479 /*
4480 * Sync timestamp with rq_dest's before activating.
4481 * The same thing could be achieved by doing this step
4482 * afterwards, and pretending it was a local activate.
4483 * This way is cleaner and logically correct.
4484 */
4485 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4486 + rq_dest->timestamp_last_tick;
4487 deactivate_task(p, rq_src);
4488 activate_task(p, rq_dest, 0);
4489 if (TASK_PREEMPTS_CURR(p, rq_dest))
4490 resched_task(rq_dest->curr);
4491 }
4492
4493out:
4494 double_rq_unlock(rq_src, rq_dest);
4495}
4496
4497/*
4498 * migration_thread - this is a highprio system thread that performs
4499 * thread migration by bumping thread off CPU then 'pushing' onto
4500 * another runqueue.
4501 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004502static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004503{
4504 runqueue_t *rq;
4505 int cpu = (long)data;
4506
4507 rq = cpu_rq(cpu);
4508 BUG_ON(rq->migration_thread != current);
4509
4510 set_current_state(TASK_INTERRUPTIBLE);
4511 while (!kthread_should_stop()) {
4512 struct list_head *head;
4513 migration_req_t *req;
4514
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07004515 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004516
4517 spin_lock_irq(&rq->lock);
4518
4519 if (cpu_is_offline(cpu)) {
4520 spin_unlock_irq(&rq->lock);
4521 goto wait_to_die;
4522 }
4523
4524 if (rq->active_balance) {
4525 active_load_balance(rq, cpu);
4526 rq->active_balance = 0;
4527 }
4528
4529 head = &rq->migration_queue;
4530
4531 if (list_empty(head)) {
4532 spin_unlock_irq(&rq->lock);
4533 schedule();
4534 set_current_state(TASK_INTERRUPTIBLE);
4535 continue;
4536 }
4537 req = list_entry(head->next, migration_req_t, list);
4538 list_del_init(head->next);
4539
Nick Piggin674311d2005-06-25 14:57:27 -07004540 spin_unlock(&rq->lock);
4541 __migrate_task(req->task, cpu, req->dest_cpu);
4542 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004543
4544 complete(&req->done);
4545 }
4546 __set_current_state(TASK_RUNNING);
4547 return 0;
4548
4549wait_to_die:
4550 /* Wait for kthread_stop */
4551 set_current_state(TASK_INTERRUPTIBLE);
4552 while (!kthread_should_stop()) {
4553 schedule();
4554 set_current_state(TASK_INTERRUPTIBLE);
4555 }
4556 __set_current_state(TASK_RUNNING);
4557 return 0;
4558}
4559
4560#ifdef CONFIG_HOTPLUG_CPU
4561/* Figure out where task on dead CPU should go, use force if neccessary. */
4562static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4563{
4564 int dest_cpu;
4565 cpumask_t mask;
4566
4567 /* On same node? */
4568 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4569 cpus_and(mask, mask, tsk->cpus_allowed);
4570 dest_cpu = any_online_cpu(mask);
4571
4572 /* On any allowed CPU? */
4573 if (dest_cpu == NR_CPUS)
4574 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4575
4576 /* No more Mr. Nice Guy. */
4577 if (dest_cpu == NR_CPUS) {
Paul Jacksonb39c4fa2005-05-20 13:59:15 -07004578 cpus_setall(tsk->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004579 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4580
4581 /*
4582 * Don't tell them about moving exiting tasks or
4583 * kernel threads (both mm NULL), since they never
4584 * leave kernel.
4585 */
4586 if (tsk->mm && printk_ratelimit())
4587 printk(KERN_INFO "process %d (%s) no "
4588 "longer affine to cpu%d\n",
4589 tsk->pid, tsk->comm, dead_cpu);
4590 }
4591 __migrate_task(tsk, dead_cpu, dest_cpu);
4592}
4593
4594/*
4595 * While a dead CPU has no uninterruptible tasks queued at this point,
4596 * it might still have a nonzero ->nr_uninterruptible counter, because
4597 * for performance reasons the counter is not stricly tracking tasks to
4598 * their home CPUs. So we just add the counter to another CPU's counter,
4599 * to keep the global sum constant after CPU-down:
4600 */
4601static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4602{
4603 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4604 unsigned long flags;
4605
4606 local_irq_save(flags);
4607 double_rq_lock(rq_src, rq_dest);
4608 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4609 rq_src->nr_uninterruptible = 0;
4610 double_rq_unlock(rq_src, rq_dest);
4611 local_irq_restore(flags);
4612}
4613
4614/* Run through task list and migrate tasks from the dead cpu. */
4615static void migrate_live_tasks(int src_cpu)
4616{
4617 struct task_struct *tsk, *t;
4618
4619 write_lock_irq(&tasklist_lock);
4620
4621 do_each_thread(t, tsk) {
4622 if (tsk == current)
4623 continue;
4624
4625 if (task_cpu(tsk) == src_cpu)
4626 move_task_off_dead_cpu(src_cpu, tsk);
4627 } while_each_thread(t, tsk);
4628
4629 write_unlock_irq(&tasklist_lock);
4630}
4631
4632/* Schedules idle task to be the next runnable task on current CPU.
4633 * It does so by boosting its priority to highest possible and adding it to
4634 * the _front_ of runqueue. Used by CPU offline code.
4635 */
4636void sched_idle_next(void)
4637{
4638 int cpu = smp_processor_id();
4639 runqueue_t *rq = this_rq();
4640 struct task_struct *p = rq->idle;
4641 unsigned long flags;
4642
4643 /* cpu has to be offline */
4644 BUG_ON(cpu_online(cpu));
4645
4646 /* Strictly not necessary since rest of the CPUs are stopped by now
4647 * and interrupts disabled on current cpu.
4648 */
4649 spin_lock_irqsave(&rq->lock, flags);
4650
4651 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4652 /* Add idle task to _front_ of it's priority queue */
4653 __activate_idle_task(p, rq);
4654
4655 spin_unlock_irqrestore(&rq->lock, flags);
4656}
4657
4658/* Ensures that the idle task is using init_mm right before its cpu goes
4659 * offline.
4660 */
4661void idle_task_exit(void)
4662{
4663 struct mm_struct *mm = current->active_mm;
4664
4665 BUG_ON(cpu_online(smp_processor_id()));
4666
4667 if (mm != &init_mm)
4668 switch_mm(mm, &init_mm, current);
4669 mmdrop(mm);
4670}
4671
4672static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4673{
4674 struct runqueue *rq = cpu_rq(dead_cpu);
4675
4676 /* Must be exiting, otherwise would be on tasklist. */
4677 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4678
4679 /* Cannot have done final schedule yet: would have vanished. */
4680 BUG_ON(tsk->flags & PF_DEAD);
4681
4682 get_task_struct(tsk);
4683
4684 /*
4685 * Drop lock around migration; if someone else moves it,
4686 * that's OK. No task can be added to this CPU, so iteration is
4687 * fine.
4688 */
4689 spin_unlock_irq(&rq->lock);
4690 move_task_off_dead_cpu(dead_cpu, tsk);
4691 spin_lock_irq(&rq->lock);
4692
4693 put_task_struct(tsk);
4694}
4695
4696/* release_task() removes task from tasklist, so we won't find dead tasks. */
4697static void migrate_dead_tasks(unsigned int dead_cpu)
4698{
4699 unsigned arr, i;
4700 struct runqueue *rq = cpu_rq(dead_cpu);
4701
4702 for (arr = 0; arr < 2; arr++) {
4703 for (i = 0; i < MAX_PRIO; i++) {
4704 struct list_head *list = &rq->arrays[arr].queue[i];
4705 while (!list_empty(list))
4706 migrate_dead(dead_cpu,
4707 list_entry(list->next, task_t,
4708 run_list));
4709 }
4710 }
4711}
4712#endif /* CONFIG_HOTPLUG_CPU */
4713
4714/*
4715 * migration_call - callback that gets triggered when a CPU is added.
4716 * Here we can start up the necessary migration thread for the new CPU.
4717 */
4718static int migration_call(struct notifier_block *nfb, unsigned long action,
4719 void *hcpu)
4720{
4721 int cpu = (long)hcpu;
4722 struct task_struct *p;
4723 struct runqueue *rq;
4724 unsigned long flags;
4725
4726 switch (action) {
4727 case CPU_UP_PREPARE:
4728 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4729 if (IS_ERR(p))
4730 return NOTIFY_BAD;
4731 p->flags |= PF_NOFREEZE;
4732 kthread_bind(p, cpu);
4733 /* Must be high prio: stop_machine expects to yield to it. */
4734 rq = task_rq_lock(p, &flags);
4735 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4736 task_rq_unlock(rq, &flags);
4737 cpu_rq(cpu)->migration_thread = p;
4738 break;
4739 case CPU_ONLINE:
4740 /* Strictly unneccessary, as first user will wake it. */
4741 wake_up_process(cpu_rq(cpu)->migration_thread);
4742 break;
4743#ifdef CONFIG_HOTPLUG_CPU
4744 case CPU_UP_CANCELED:
4745 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08004746 kthread_bind(cpu_rq(cpu)->migration_thread,
4747 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004748 kthread_stop(cpu_rq(cpu)->migration_thread);
4749 cpu_rq(cpu)->migration_thread = NULL;
4750 break;
4751 case CPU_DEAD:
4752 migrate_live_tasks(cpu);
4753 rq = cpu_rq(cpu);
4754 kthread_stop(rq->migration_thread);
4755 rq->migration_thread = NULL;
4756 /* Idle task back to normal (off runqueue, low prio) */
4757 rq = task_rq_lock(rq->idle, &flags);
4758 deactivate_task(rq->idle, rq);
4759 rq->idle->static_prio = MAX_PRIO;
4760 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4761 migrate_dead_tasks(cpu);
4762 task_rq_unlock(rq, &flags);
4763 migrate_nr_uninterruptible(rq);
4764 BUG_ON(rq->nr_running != 0);
4765
4766 /* No need to migrate the tasks: it was best-effort if
4767 * they didn't do lock_cpu_hotplug(). Just wake up
4768 * the requestors. */
4769 spin_lock_irq(&rq->lock);
4770 while (!list_empty(&rq->migration_queue)) {
4771 migration_req_t *req;
4772 req = list_entry(rq->migration_queue.next,
4773 migration_req_t, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004774 list_del_init(&req->list);
4775 complete(&req->done);
4776 }
4777 spin_unlock_irq(&rq->lock);
4778 break;
4779#endif
4780 }
4781 return NOTIFY_OK;
4782}
4783
4784/* Register at highest priority so that task migration (migrate_all_tasks)
4785 * happens before everything else.
4786 */
4787static struct notifier_block __devinitdata migration_notifier = {
4788 .notifier_call = migration_call,
4789 .priority = 10
4790};
4791
4792int __init migration_init(void)
4793{
4794 void *cpu = (void *)(long)smp_processor_id();
4795 /* Start one for boot CPU. */
4796 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4797 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4798 register_cpu_notifier(&migration_notifier);
4799 return 0;
4800}
4801#endif
4802
4803#ifdef CONFIG_SMP
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004804#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07004805#ifdef SCHED_DOMAIN_DEBUG
4806static void sched_domain_debug(struct sched_domain *sd, int cpu)
4807{
4808 int level = 0;
4809
Nick Piggin41c7ce92005-06-25 14:57:24 -07004810 if (!sd) {
4811 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4812 return;
4813 }
4814
Linus Torvalds1da177e2005-04-16 15:20:36 -07004815 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4816
4817 do {
4818 int i;
4819 char str[NR_CPUS];
4820 struct sched_group *group = sd->groups;
4821 cpumask_t groupmask;
4822
4823 cpumask_scnprintf(str, NR_CPUS, sd->span);
4824 cpus_clear(groupmask);
4825
4826 printk(KERN_DEBUG);
4827 for (i = 0; i < level + 1; i++)
4828 printk(" ");
4829 printk("domain %d: ", level);
4830
4831 if (!(sd->flags & SD_LOAD_BALANCE)) {
4832 printk("does not load-balance\n");
4833 if (sd->parent)
4834 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4835 break;
4836 }
4837
4838 printk("span %s\n", str);
4839
4840 if (!cpu_isset(cpu, sd->span))
4841 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4842 if (!cpu_isset(cpu, group->cpumask))
4843 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4844
4845 printk(KERN_DEBUG);
4846 for (i = 0; i < level + 2; i++)
4847 printk(" ");
4848 printk("groups:");
4849 do {
4850 if (!group) {
4851 printk("\n");
4852 printk(KERN_ERR "ERROR: group is NULL\n");
4853 break;
4854 }
4855
4856 if (!group->cpu_power) {
4857 printk("\n");
4858 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4859 }
4860
4861 if (!cpus_weight(group->cpumask)) {
4862 printk("\n");
4863 printk(KERN_ERR "ERROR: empty group\n");
4864 }
4865
4866 if (cpus_intersects(groupmask, group->cpumask)) {
4867 printk("\n");
4868 printk(KERN_ERR "ERROR: repeated CPUs\n");
4869 }
4870
4871 cpus_or(groupmask, groupmask, group->cpumask);
4872
4873 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4874 printk(" %s", str);
4875
4876 group = group->next;
4877 } while (group != sd->groups);
4878 printk("\n");
4879
4880 if (!cpus_equal(sd->span, groupmask))
4881 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4882
4883 level++;
4884 sd = sd->parent;
4885
4886 if (sd) {
4887 if (!cpus_subset(groupmask, sd->span))
4888 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4889 }
4890
4891 } while (sd);
4892}
4893#else
4894#define sched_domain_debug(sd, cpu) {}
4895#endif
4896
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004897static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07004898{
4899 if (cpus_weight(sd->span) == 1)
4900 return 1;
4901
4902 /* Following flags need at least 2 groups */
4903 if (sd->flags & (SD_LOAD_BALANCE |
4904 SD_BALANCE_NEWIDLE |
4905 SD_BALANCE_FORK |
4906 SD_BALANCE_EXEC)) {
4907 if (sd->groups != sd->groups->next)
4908 return 0;
4909 }
4910
4911 /* Following flags don't use groups */
4912 if (sd->flags & (SD_WAKE_IDLE |
4913 SD_WAKE_AFFINE |
4914 SD_WAKE_BALANCE))
4915 return 0;
4916
4917 return 1;
4918}
4919
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004920static int sd_parent_degenerate(struct sched_domain *sd,
Suresh Siddha245af2c2005-06-25 14:57:25 -07004921 struct sched_domain *parent)
4922{
4923 unsigned long cflags = sd->flags, pflags = parent->flags;
4924
4925 if (sd_degenerate(parent))
4926 return 1;
4927
4928 if (!cpus_equal(sd->span, parent->span))
4929 return 0;
4930
4931 /* Does parent contain flags not in child? */
4932 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4933 if (cflags & SD_WAKE_AFFINE)
4934 pflags &= ~SD_WAKE_BALANCE;
4935 /* Flags needing groups don't count if only 1 group in parent */
4936 if (parent->groups == parent->groups->next) {
4937 pflags &= ~(SD_LOAD_BALANCE |
4938 SD_BALANCE_NEWIDLE |
4939 SD_BALANCE_FORK |
4940 SD_BALANCE_EXEC);
4941 }
4942 if (~cflags & pflags)
4943 return 0;
4944
4945 return 1;
4946}
4947
Linus Torvalds1da177e2005-04-16 15:20:36 -07004948/*
4949 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4950 * hold the hotplug lock.
4951 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004952static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004954 runqueue_t *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07004955 struct sched_domain *tmp;
4956
4957 /* Remove the sched domains which do not contribute to scheduling. */
4958 for (tmp = sd; tmp; tmp = tmp->parent) {
4959 struct sched_domain *parent = tmp->parent;
4960 if (!parent)
4961 break;
4962 if (sd_parent_degenerate(tmp, parent))
4963 tmp->parent = parent->parent;
4964 }
4965
4966 if (sd && sd_degenerate(sd))
4967 sd = sd->parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004968
4969 sched_domain_debug(sd, cpu);
4970
Nick Piggin674311d2005-06-25 14:57:27 -07004971 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972}
4973
4974/* cpus with isolated domains */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004975static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976
4977/* Setup the mask of cpus configured for isolated domains */
4978static int __init isolated_cpu_setup(char *str)
4979{
4980 int ints[NR_CPUS], i;
4981
4982 str = get_options(str, ARRAY_SIZE(ints), ints);
4983 cpus_clear(cpu_isolated_map);
4984 for (i = 1; i <= ints[0]; i++)
4985 if (ints[i] < NR_CPUS)
4986 cpu_set(ints[i], cpu_isolated_map);
4987 return 1;
4988}
4989
4990__setup ("isolcpus=", isolated_cpu_setup);
4991
4992/*
4993 * init_sched_build_groups takes an array of groups, the cpumask we wish
4994 * to span, and a pointer to a function which identifies what group a CPU
4995 * belongs to. The return value of group_fn must be a valid index into the
4996 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4997 * keep track of groups covered with a cpumask_t).
4998 *
4999 * init_sched_build_groups will build a circular linked list of the groups
5000 * covered by the given span, and will set each group's ->cpumask correctly,
5001 * and ->cpu_power to 0.
5002 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005003static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5004 int (*group_fn)(int cpu))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005005{
5006 struct sched_group *first = NULL, *last = NULL;
5007 cpumask_t covered = CPU_MASK_NONE;
5008 int i;
5009
5010 for_each_cpu_mask(i, span) {
5011 int group = group_fn(i);
5012 struct sched_group *sg = &groups[group];
5013 int j;
5014
5015 if (cpu_isset(i, covered))
5016 continue;
5017
5018 sg->cpumask = CPU_MASK_NONE;
5019 sg->cpu_power = 0;
5020
5021 for_each_cpu_mask(j, span) {
5022 if (group_fn(j) != group)
5023 continue;
5024
5025 cpu_set(j, covered);
5026 cpu_set(j, sg->cpumask);
5027 }
5028 if (!first)
5029 first = sg;
5030 if (last)
5031 last->next = sg;
5032 last = sg;
5033 }
5034 last->next = first;
5035}
5036
John Hawkes9c1cfda2005-09-06 15:18:14 -07005037#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005038
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005039/*
5040 * Self-tuning task migration cost measurement between source and target CPUs.
5041 *
5042 * This is done by measuring the cost of manipulating buffers of varying
5043 * sizes. For a given buffer-size here are the steps that are taken:
5044 *
5045 * 1) the source CPU reads+dirties a shared buffer
5046 * 2) the target CPU reads+dirties the same shared buffer
5047 *
5048 * We measure how long they take, in the following 4 scenarios:
5049 *
5050 * - source: CPU1, target: CPU2 | cost1
5051 * - source: CPU2, target: CPU1 | cost2
5052 * - source: CPU1, target: CPU1 | cost3
5053 * - source: CPU2, target: CPU2 | cost4
5054 *
5055 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5056 * the cost of migration.
5057 *
5058 * We then start off from a small buffer-size and iterate up to larger
5059 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5060 * doing a maximum search for the cost. (The maximum cost for a migration
5061 * normally occurs when the working set size is around the effective cache
5062 * size.)
5063 */
5064#define SEARCH_SCOPE 2
5065#define MIN_CACHE_SIZE (64*1024U)
5066#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005067#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005068#define SIZE_THRESH 130
5069#define COST_THRESH 130
5070
5071/*
5072 * The migration cost is a function of 'domain distance'. Domain
5073 * distance is the number of steps a CPU has to iterate down its
5074 * domain tree to share a domain with the other CPU. The farther
5075 * two CPUs are from each other, the larger the distance gets.
5076 *
5077 * Note that we use the distance only to cache measurement results,
5078 * the distance value is not used numerically otherwise. When two
5079 * CPUs have the same distance it is assumed that the migration
5080 * cost is the same. (this is a simplification but quite practical)
5081 */
5082#define MAX_DOMAIN_DISTANCE 32
5083
5084static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005085 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5086/*
5087 * Architectures may override the migration cost and thus avoid
5088 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5089 * virtualized hardware:
5090 */
5091#ifdef CONFIG_DEFAULT_MIGRATION_COST
5092 CONFIG_DEFAULT_MIGRATION_COST
5093#else
5094 -1LL
5095#endif
5096};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005097
5098/*
5099 * Allow override of migration cost - in units of microseconds.
5100 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5101 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5102 */
5103static int __init migration_cost_setup(char *str)
5104{
5105 int ints[MAX_DOMAIN_DISTANCE+1], i;
5106
5107 str = get_options(str, ARRAY_SIZE(ints), ints);
5108
5109 printk("#ints: %d\n", ints[0]);
5110 for (i = 1; i <= ints[0]; i++) {
5111 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5112 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5113 }
5114 return 1;
5115}
5116
5117__setup ("migration_cost=", migration_cost_setup);
5118
5119/*
5120 * Global multiplier (divisor) for migration-cutoff values,
5121 * in percentiles. E.g. use a value of 150 to get 1.5 times
5122 * longer cache-hot cutoff times.
5123 *
5124 * (We scale it from 100 to 128 to long long handling easier.)
5125 */
5126
5127#define MIGRATION_FACTOR_SCALE 128
5128
5129static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5130
5131static int __init setup_migration_factor(char *str)
5132{
5133 get_option(&str, &migration_factor);
5134 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5135 return 1;
5136}
5137
5138__setup("migration_factor=", setup_migration_factor);
5139
5140/*
5141 * Estimated distance of two CPUs, measured via the number of domains
5142 * we have to pass for the two CPUs to be in the same span:
5143 */
5144static unsigned long domain_distance(int cpu1, int cpu2)
5145{
5146 unsigned long distance = 0;
5147 struct sched_domain *sd;
5148
5149 for_each_domain(cpu1, sd) {
5150 WARN_ON(!cpu_isset(cpu1, sd->span));
5151 if (cpu_isset(cpu2, sd->span))
5152 return distance;
5153 distance++;
5154 }
5155 if (distance >= MAX_DOMAIN_DISTANCE) {
5156 WARN_ON(1);
5157 distance = MAX_DOMAIN_DISTANCE-1;
5158 }
5159
5160 return distance;
5161}
5162
5163static unsigned int migration_debug;
5164
5165static int __init setup_migration_debug(char *str)
5166{
5167 get_option(&str, &migration_debug);
5168 return 1;
5169}
5170
5171__setup("migration_debug=", setup_migration_debug);
5172
5173/*
5174 * Maximum cache-size that the scheduler should try to measure.
5175 * Architectures with larger caches should tune this up during
5176 * bootup. Gets used in the domain-setup code (i.e. during SMP
5177 * bootup).
5178 */
5179unsigned int max_cache_size;
5180
5181static int __init setup_max_cache_size(char *str)
5182{
5183 get_option(&str, &max_cache_size);
5184 return 1;
5185}
5186
5187__setup("max_cache_size=", setup_max_cache_size);
5188
5189/*
5190 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5191 * is the operation that is timed, so we try to generate unpredictable
5192 * cachemisses that still end up filling the L2 cache:
5193 */
5194static void touch_cache(void *__cache, unsigned long __size)
5195{
5196 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5197 chunk2 = 2*size/3;
5198 unsigned long *cache = __cache;
5199 int i;
5200
5201 for (i = 0; i < size/6; i += 8) {
5202 switch (i % 6) {
5203 case 0: cache[i]++;
5204 case 1: cache[size-1-i]++;
5205 case 2: cache[chunk1-i]++;
5206 case 3: cache[chunk1+i]++;
5207 case 4: cache[chunk2-i]++;
5208 case 5: cache[chunk2+i]++;
5209 }
5210 }
5211}
5212
5213/*
5214 * Measure the cache-cost of one task migration. Returns in units of nsec.
5215 */
5216static unsigned long long measure_one(void *cache, unsigned long size,
5217 int source, int target)
5218{
5219 cpumask_t mask, saved_mask;
5220 unsigned long long t0, t1, t2, t3, cost;
5221
5222 saved_mask = current->cpus_allowed;
5223
5224 /*
5225 * Flush source caches to RAM and invalidate them:
5226 */
5227 sched_cacheflush();
5228
5229 /*
5230 * Migrate to the source CPU:
5231 */
5232 mask = cpumask_of_cpu(source);
5233 set_cpus_allowed(current, mask);
5234 WARN_ON(smp_processor_id() != source);
5235
5236 /*
5237 * Dirty the working set:
5238 */
5239 t0 = sched_clock();
5240 touch_cache(cache, size);
5241 t1 = sched_clock();
5242
5243 /*
5244 * Migrate to the target CPU, dirty the L2 cache and access
5245 * the shared buffer. (which represents the working set
5246 * of a migrated task.)
5247 */
5248 mask = cpumask_of_cpu(target);
5249 set_cpus_allowed(current, mask);
5250 WARN_ON(smp_processor_id() != target);
5251
5252 t2 = sched_clock();
5253 touch_cache(cache, size);
5254 t3 = sched_clock();
5255
5256 cost = t1-t0 + t3-t2;
5257
5258 if (migration_debug >= 2)
5259 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5260 source, target, t1-t0, t1-t0, t3-t2, cost);
5261 /*
5262 * Flush target caches to RAM and invalidate them:
5263 */
5264 sched_cacheflush();
5265
5266 set_cpus_allowed(current, saved_mask);
5267
5268 return cost;
5269}
5270
5271/*
5272 * Measure a series of task migrations and return the average
5273 * result. Since this code runs early during bootup the system
5274 * is 'undisturbed' and the average latency makes sense.
5275 *
5276 * The algorithm in essence auto-detects the relevant cache-size,
5277 * so it will properly detect different cachesizes for different
5278 * cache-hierarchies, depending on how the CPUs are connected.
5279 *
5280 * Architectures can prime the upper limit of the search range via
5281 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5282 */
5283static unsigned long long
5284measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5285{
5286 unsigned long long cost1, cost2;
5287 int i;
5288
5289 /*
5290 * Measure the migration cost of 'size' bytes, over an
5291 * average of 10 runs:
5292 *
5293 * (We perturb the cache size by a small (0..4k)
5294 * value to compensate size/alignment related artifacts.
5295 * We also subtract the cost of the operation done on
5296 * the same CPU.)
5297 */
5298 cost1 = 0;
5299
5300 /*
5301 * dry run, to make sure we start off cache-cold on cpu1,
5302 * and to get any vmalloc pagefaults in advance:
5303 */
5304 measure_one(cache, size, cpu1, cpu2);
5305 for (i = 0; i < ITERATIONS; i++)
5306 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5307
5308 measure_one(cache, size, cpu2, cpu1);
5309 for (i = 0; i < ITERATIONS; i++)
5310 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5311
5312 /*
5313 * (We measure the non-migrating [cached] cost on both
5314 * cpu1 and cpu2, to handle CPUs with different speeds)
5315 */
5316 cost2 = 0;
5317
5318 measure_one(cache, size, cpu1, cpu1);
5319 for (i = 0; i < ITERATIONS; i++)
5320 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5321
5322 measure_one(cache, size, cpu2, cpu2);
5323 for (i = 0; i < ITERATIONS; i++)
5324 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5325
5326 /*
5327 * Get the per-iteration migration cost:
5328 */
5329 do_div(cost1, 2*ITERATIONS);
5330 do_div(cost2, 2*ITERATIONS);
5331
5332 return cost1 - cost2;
5333}
5334
5335static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5336{
5337 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5338 unsigned int max_size, size, size_found = 0;
5339 long long cost = 0, prev_cost;
5340 void *cache;
5341
5342 /*
5343 * Search from max_cache_size*5 down to 64K - the real relevant
5344 * cachesize has to lie somewhere inbetween.
5345 */
5346 if (max_cache_size) {
5347 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5348 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5349 } else {
5350 /*
5351 * Since we have no estimation about the relevant
5352 * search range
5353 */
5354 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5355 size = MIN_CACHE_SIZE;
5356 }
5357
5358 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5359 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5360 return 0;
5361 }
5362
5363 /*
5364 * Allocate the working set:
5365 */
5366 cache = vmalloc(max_size);
5367 if (!cache) {
5368 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5369 return 1000000; // return 1 msec on very small boxen
5370 }
5371
5372 while (size <= max_size) {
5373 prev_cost = cost;
5374 cost = measure_cost(cpu1, cpu2, cache, size);
5375
5376 /*
5377 * Update the max:
5378 */
5379 if (cost > 0) {
5380 if (max_cost < cost) {
5381 max_cost = cost;
5382 size_found = size;
5383 }
5384 }
5385 /*
5386 * Calculate average fluctuation, we use this to prevent
5387 * noise from triggering an early break out of the loop:
5388 */
5389 fluct = abs(cost - prev_cost);
5390 avg_fluct = (avg_fluct + fluct)/2;
5391
5392 if (migration_debug)
5393 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5394 cpu1, cpu2, size,
5395 (long)cost / 1000000,
5396 ((long)cost / 100000) % 10,
5397 (long)max_cost / 1000000,
5398 ((long)max_cost / 100000) % 10,
5399 domain_distance(cpu1, cpu2),
5400 cost, avg_fluct);
5401
5402 /*
5403 * If we iterated at least 20% past the previous maximum,
5404 * and the cost has dropped by more than 20% already,
5405 * (taking fluctuations into account) then we assume to
5406 * have found the maximum and break out of the loop early:
5407 */
5408 if (size_found && (size*100 > size_found*SIZE_THRESH))
5409 if (cost+avg_fluct <= 0 ||
5410 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5411
5412 if (migration_debug)
5413 printk("-> found max.\n");
5414 break;
5415 }
5416 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01005417 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005418 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01005419 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005420 }
5421
5422 if (migration_debug)
5423 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5424 cpu1, cpu2, size_found, max_cost);
5425
5426 vfree(cache);
5427
5428 /*
5429 * A task is considered 'cache cold' if at least 2 times
5430 * the worst-case cost of migration has passed.
5431 *
5432 * (this limit is only listened to if the load-balancing
5433 * situation is 'nice' - if there is a large imbalance we
5434 * ignore it for the sake of CPU utilization and
5435 * processing fairness.)
5436 */
5437 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5438}
5439
5440static void calibrate_migration_costs(const cpumask_t *cpu_map)
5441{
5442 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5443 unsigned long j0, j1, distance, max_distance = 0;
5444 struct sched_domain *sd;
5445
5446 j0 = jiffies;
5447
5448 /*
5449 * First pass - calculate the cacheflush times:
5450 */
5451 for_each_cpu_mask(cpu1, *cpu_map) {
5452 for_each_cpu_mask(cpu2, *cpu_map) {
5453 if (cpu1 == cpu2)
5454 continue;
5455 distance = domain_distance(cpu1, cpu2);
5456 max_distance = max(max_distance, distance);
5457 /*
5458 * No result cached yet?
5459 */
5460 if (migration_cost[distance] == -1LL)
5461 migration_cost[distance] =
5462 measure_migration_cost(cpu1, cpu2);
5463 }
5464 }
5465 /*
5466 * Second pass - update the sched domain hierarchy with
5467 * the new cache-hot-time estimations:
5468 */
5469 for_each_cpu_mask(cpu, *cpu_map) {
5470 distance = 0;
5471 for_each_domain(cpu, sd) {
5472 sd->cache_hot_time = migration_cost[distance];
5473 distance++;
5474 }
5475 }
5476 /*
5477 * Print the matrix:
5478 */
5479 if (migration_debug)
5480 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5481 max_cache_size,
5482#ifdef CONFIG_X86
5483 cpu_khz/1000
5484#else
5485 -1
5486#endif
5487 );
Chuck Ebbertbd576c92006-02-04 23:27:42 -08005488 if (system_state == SYSTEM_BOOTING) {
5489 printk("migration_cost=");
5490 for (distance = 0; distance <= max_distance; distance++) {
5491 if (distance)
5492 printk(",");
5493 printk("%ld", (long)migration_cost[distance] / 1000);
5494 }
5495 printk("\n");
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005496 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005497 j1 = jiffies;
5498 if (migration_debug)
5499 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5500
5501 /*
5502 * Move back to the original CPU. NUMA-Q gets confused
5503 * if we migrate to another quad during bootup.
5504 */
5505 if (raw_smp_processor_id() != orig_cpu) {
5506 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5507 saved_mask = current->cpus_allowed;
5508
5509 set_cpus_allowed(current, mask);
5510 set_cpus_allowed(current, saved_mask);
5511 }
5512}
5513
John Hawkes9c1cfda2005-09-06 15:18:14 -07005514#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005515
John Hawkes9c1cfda2005-09-06 15:18:14 -07005516/**
5517 * find_next_best_node - find the next node to include in a sched_domain
5518 * @node: node whose sched_domain we're building
5519 * @used_nodes: nodes already in the sched_domain
5520 *
5521 * Find the next node to include in a given scheduling domain. Simply
5522 * finds the closest node not already in the @used_nodes map.
5523 *
5524 * Should use nodemask_t.
5525 */
5526static int find_next_best_node(int node, unsigned long *used_nodes)
5527{
5528 int i, n, val, min_val, best_node = 0;
5529
5530 min_val = INT_MAX;
5531
5532 for (i = 0; i < MAX_NUMNODES; i++) {
5533 /* Start at @node */
5534 n = (node + i) % MAX_NUMNODES;
5535
5536 if (!nr_cpus_node(n))
5537 continue;
5538
5539 /* Skip already used nodes */
5540 if (test_bit(n, used_nodes))
5541 continue;
5542
5543 /* Simple min distance search */
5544 val = node_distance(node, n);
5545
5546 if (val < min_val) {
5547 min_val = val;
5548 best_node = n;
5549 }
5550 }
5551
5552 set_bit(best_node, used_nodes);
5553 return best_node;
5554}
5555
5556/**
5557 * sched_domain_node_span - get a cpumask for a node's sched_domain
5558 * @node: node whose cpumask we're constructing
5559 * @size: number of nodes to include in this span
5560 *
5561 * Given a node, construct a good cpumask for its sched_domain to span. It
5562 * should be one that prevents unnecessary balancing, but also spreads tasks
5563 * out optimally.
5564 */
5565static cpumask_t sched_domain_node_span(int node)
5566{
5567 int i;
5568 cpumask_t span, nodemask;
5569 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5570
5571 cpus_clear(span);
5572 bitmap_zero(used_nodes, MAX_NUMNODES);
5573
5574 nodemask = node_to_cpumask(node);
5575 cpus_or(span, span, nodemask);
5576 set_bit(node, used_nodes);
5577
5578 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5579 int next_node = find_next_best_node(node, used_nodes);
5580 nodemask = node_to_cpumask(next_node);
5581 cpus_or(span, span, nodemask);
5582 }
5583
5584 return span;
5585}
5586#endif
5587
5588/*
5589 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5590 * can switch it on easily if needed.
5591 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005592#ifdef CONFIG_SCHED_SMT
5593static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5594static struct sched_group sched_group_cpus[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005595static int cpu_to_cpu_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005596{
5597 return cpu;
5598}
5599#endif
5600
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005601#ifdef CONFIG_SCHED_MC
5602static DEFINE_PER_CPU(struct sched_domain, core_domains);
5603static struct sched_group sched_group_core[NR_CPUS];
5604#endif
5605
5606#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5607static int cpu_to_core_group(int cpu)
5608{
5609 return first_cpu(cpu_sibling_map[cpu]);
5610}
5611#elif defined(CONFIG_SCHED_MC)
5612static int cpu_to_core_group(int cpu)
5613{
5614 return cpu;
5615}
5616#endif
5617
Linus Torvalds1da177e2005-04-16 15:20:36 -07005618static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5619static struct sched_group sched_group_phys[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005620static int cpu_to_phys_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005621{
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005622#if defined(CONFIG_SCHED_MC)
5623 cpumask_t mask = cpu_coregroup_map(cpu);
5624 return first_cpu(mask);
5625#elif defined(CONFIG_SCHED_SMT)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005626 return first_cpu(cpu_sibling_map[cpu]);
5627#else
5628 return cpu;
5629#endif
5630}
5631
5632#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005633/*
5634 * The init_sched_build_groups can't handle what we want to do with node
5635 * groups, so roll our own. Now each node has its own list of groups which
5636 * gets dynamically allocated.
5637 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005638static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005639static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005640
5641static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005642static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005643
5644static int cpu_to_allnodes_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005645{
5646 return cpu_to_node(cpu);
5647}
Siddha, Suresh B08069032006-03-27 01:15:23 -08005648static void init_numa_sched_groups_power(struct sched_group *group_head)
5649{
5650 struct sched_group *sg = group_head;
5651 int j;
5652
5653 if (!sg)
5654 return;
5655next_sg:
5656 for_each_cpu_mask(j, sg->cpumask) {
5657 struct sched_domain *sd;
5658
5659 sd = &per_cpu(phys_domains, j);
5660 if (j != first_cpu(sd->groups->cpumask)) {
5661 /*
5662 * Only add "power" once for each
5663 * physical package.
5664 */
5665 continue;
5666 }
5667
5668 sg->cpu_power += sd->groups->cpu_power;
5669 }
5670 sg = sg->next;
5671 if (sg != group_head)
5672 goto next_sg;
5673}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005674#endif
5675
Linus Torvalds1da177e2005-04-16 15:20:36 -07005676/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005677 * Build sched domains for a given set of cpus and attach the sched domains
5678 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005679 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005680void build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005681{
5682 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005683#ifdef CONFIG_NUMA
5684 struct sched_group **sched_group_nodes = NULL;
5685 struct sched_group *sched_group_allnodes = NULL;
5686
5687 /*
5688 * Allocate the per-node list of sched groups
5689 */
5690 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5691 GFP_ATOMIC);
5692 if (!sched_group_nodes) {
5693 printk(KERN_WARNING "Can not alloc sched group node list\n");
5694 return;
5695 }
5696 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5697#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005698
5699 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005700 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005701 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005702 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005703 int group;
5704 struct sched_domain *sd = NULL, *p;
5705 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5706
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005707 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005708
5709#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005710 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005711 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkesd1b55132005-09-06 15:18:14 -07005712 if (!sched_group_allnodes) {
5713 sched_group_allnodes
5714 = kmalloc(sizeof(struct sched_group)
5715 * MAX_NUMNODES,
5716 GFP_KERNEL);
5717 if (!sched_group_allnodes) {
5718 printk(KERN_WARNING
5719 "Can not alloc allnodes sched group\n");
5720 break;
5721 }
5722 sched_group_allnodes_bycpu[i]
5723 = sched_group_allnodes;
5724 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005725 sd = &per_cpu(allnodes_domains, i);
5726 *sd = SD_ALLNODES_INIT;
5727 sd->span = *cpu_map;
5728 group = cpu_to_allnodes_group(i);
5729 sd->groups = &sched_group_allnodes[group];
5730 p = sd;
5731 } else
5732 p = NULL;
5733
Linus Torvalds1da177e2005-04-16 15:20:36 -07005734 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005735 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005736 sd->span = sched_domain_node_span(cpu_to_node(i));
5737 sd->parent = p;
5738 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005739#endif
5740
5741 p = sd;
5742 sd = &per_cpu(phys_domains, i);
5743 group = cpu_to_phys_group(i);
5744 *sd = SD_CPU_INIT;
5745 sd->span = nodemask;
5746 sd->parent = p;
5747 sd->groups = &sched_group_phys[group];
5748
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005749#ifdef CONFIG_SCHED_MC
5750 p = sd;
5751 sd = &per_cpu(core_domains, i);
5752 group = cpu_to_core_group(i);
5753 *sd = SD_MC_INIT;
5754 sd->span = cpu_coregroup_map(i);
5755 cpus_and(sd->span, sd->span, *cpu_map);
5756 sd->parent = p;
5757 sd->groups = &sched_group_core[group];
5758#endif
5759
Linus Torvalds1da177e2005-04-16 15:20:36 -07005760#ifdef CONFIG_SCHED_SMT
5761 p = sd;
5762 sd = &per_cpu(cpu_domains, i);
5763 group = cpu_to_cpu_group(i);
5764 *sd = SD_SIBLING_INIT;
5765 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005766 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005767 sd->parent = p;
5768 sd->groups = &sched_group_cpus[group];
5769#endif
5770 }
5771
5772#ifdef CONFIG_SCHED_SMT
5773 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005774 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005775 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005776 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005777 if (i != first_cpu(this_sibling_map))
5778 continue;
5779
5780 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5781 &cpu_to_cpu_group);
5782 }
5783#endif
5784
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005785#ifdef CONFIG_SCHED_MC
5786 /* Set up multi-core groups */
5787 for_each_cpu_mask(i, *cpu_map) {
5788 cpumask_t this_core_map = cpu_coregroup_map(i);
5789 cpus_and(this_core_map, this_core_map, *cpu_map);
5790 if (i != first_cpu(this_core_map))
5791 continue;
5792 init_sched_build_groups(sched_group_core, this_core_map,
5793 &cpu_to_core_group);
5794 }
5795#endif
5796
5797
Linus Torvalds1da177e2005-04-16 15:20:36 -07005798 /* Set up physical groups */
5799 for (i = 0; i < MAX_NUMNODES; i++) {
5800 cpumask_t nodemask = node_to_cpumask(i);
5801
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005802 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005803 if (cpus_empty(nodemask))
5804 continue;
5805
5806 init_sched_build_groups(sched_group_phys, nodemask,
5807 &cpu_to_phys_group);
5808 }
5809
5810#ifdef CONFIG_NUMA
5811 /* Set up node groups */
John Hawkesd1b55132005-09-06 15:18:14 -07005812 if (sched_group_allnodes)
5813 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5814 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005815
5816 for (i = 0; i < MAX_NUMNODES; i++) {
5817 /* Set up node groups */
5818 struct sched_group *sg, *prev;
5819 cpumask_t nodemask = node_to_cpumask(i);
5820 cpumask_t domainspan;
5821 cpumask_t covered = CPU_MASK_NONE;
5822 int j;
5823
5824 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07005825 if (cpus_empty(nodemask)) {
5826 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005827 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07005828 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005829
5830 domainspan = sched_domain_node_span(i);
5831 cpus_and(domainspan, domainspan, *cpu_map);
5832
5833 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5834 sched_group_nodes[i] = sg;
5835 for_each_cpu_mask(j, nodemask) {
5836 struct sched_domain *sd;
5837 sd = &per_cpu(node_domains, j);
5838 sd->groups = sg;
5839 if (sd->groups == NULL) {
5840 /* Turn off balancing if we have no groups */
5841 sd->flags = 0;
5842 }
5843 }
5844 if (!sg) {
5845 printk(KERN_WARNING
5846 "Can not alloc domain group for node %d\n", i);
5847 continue;
5848 }
5849 sg->cpu_power = 0;
5850 sg->cpumask = nodemask;
5851 cpus_or(covered, covered, nodemask);
5852 prev = sg;
5853
5854 for (j = 0; j < MAX_NUMNODES; j++) {
5855 cpumask_t tmp, notcovered;
5856 int n = (i + j) % MAX_NUMNODES;
5857
5858 cpus_complement(notcovered, covered);
5859 cpus_and(tmp, notcovered, *cpu_map);
5860 cpus_and(tmp, tmp, domainspan);
5861 if (cpus_empty(tmp))
5862 break;
5863
5864 nodemask = node_to_cpumask(n);
5865 cpus_and(tmp, tmp, nodemask);
5866 if (cpus_empty(tmp))
5867 continue;
5868
5869 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5870 if (!sg) {
5871 printk(KERN_WARNING
5872 "Can not alloc domain group for node %d\n", j);
5873 break;
5874 }
5875 sg->cpu_power = 0;
5876 sg->cpumask = tmp;
5877 cpus_or(covered, covered, tmp);
5878 prev->next = sg;
5879 prev = sg;
5880 }
5881 prev->next = sched_group_nodes[i];
5882 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005883#endif
5884
5885 /* Calculate CPU power for physical packages and nodes */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005886 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005887 int power;
5888 struct sched_domain *sd;
5889#ifdef CONFIG_SCHED_SMT
5890 sd = &per_cpu(cpu_domains, i);
5891 power = SCHED_LOAD_SCALE;
5892 sd->groups->cpu_power = power;
5893#endif
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005894#ifdef CONFIG_SCHED_MC
5895 sd = &per_cpu(core_domains, i);
5896 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5897 * SCHED_LOAD_SCALE / 10;
5898 sd->groups->cpu_power = power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005899
5900 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005901
5902 /*
5903 * This has to be < 2 * SCHED_LOAD_SCALE
5904 * Lets keep it SCHED_LOAD_SCALE, so that
5905 * while calculating NUMA group's cpu_power
5906 * we can simply do
5907 * numa_group->cpu_power += phys_group->cpu_power;
5908 *
5909 * See "only add power once for each physical pkg"
5910 * comment below
5911 */
5912 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5913#else
5914 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005915 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5916 (cpus_weight(sd->groups->cpumask)-1) / 10;
5917 sd->groups->cpu_power = power;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005918#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005919 }
5920
John Hawkes9c1cfda2005-09-06 15:18:14 -07005921#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08005922 for (i = 0; i < MAX_NUMNODES; i++)
5923 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005924
Siddha, Suresh B08069032006-03-27 01:15:23 -08005925 init_numa_sched_groups_power(sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005926#endif
5927
Linus Torvalds1da177e2005-04-16 15:20:36 -07005928 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005929 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005930 struct sched_domain *sd;
5931#ifdef CONFIG_SCHED_SMT
5932 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005933#elif defined(CONFIG_SCHED_MC)
5934 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005935#else
5936 sd = &per_cpu(phys_domains, i);
5937#endif
5938 cpu_attach_domain(sd, i);
5939 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005940 /*
5941 * Tune cache-hot values:
5942 */
5943 calibrate_migration_costs(cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005944}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005945/*
5946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5947 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005948static void arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005949{
5950 cpumask_t cpu_default_map;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005951
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005952 /*
5953 * Setup mask for cpus without special case scheduling requirements.
5954 * For now this just excludes isolated cpus, but could be used to
5955 * exclude other special cases in the future.
5956 */
5957 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5958
5959 build_sched_domains(&cpu_default_map);
5960}
5961
5962static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005963{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005964#ifdef CONFIG_NUMA
5965 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005966 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005967
John Hawkesd1b55132005-09-06 15:18:14 -07005968 for_each_cpu_mask(cpu, *cpu_map) {
5969 struct sched_group *sched_group_allnodes
5970 = sched_group_allnodes_bycpu[cpu];
5971 struct sched_group **sched_group_nodes
5972 = sched_group_nodes_bycpu[cpu];
5973
5974 if (sched_group_allnodes) {
5975 kfree(sched_group_allnodes);
5976 sched_group_allnodes_bycpu[cpu] = NULL;
5977 }
5978
5979 if (!sched_group_nodes)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005980 continue;
5981
John Hawkesd1b55132005-09-06 15:18:14 -07005982 for (i = 0; i < MAX_NUMNODES; i++) {
5983 cpumask_t nodemask = node_to_cpumask(i);
5984 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5985
5986 cpus_and(nodemask, nodemask, *cpu_map);
5987 if (cpus_empty(nodemask))
5988 continue;
5989
5990 if (sg == NULL)
5991 continue;
5992 sg = sg->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005993next_sg:
John Hawkesd1b55132005-09-06 15:18:14 -07005994 oldsg = sg;
5995 sg = sg->next;
5996 kfree(oldsg);
5997 if (oldsg != sched_group_nodes[i])
5998 goto next_sg;
5999 }
6000 kfree(sched_group_nodes);
6001 sched_group_nodes_bycpu[cpu] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006002 }
6003#endif
6004}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006005
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006006/*
6007 * Detach sched domains from a group of cpus specified in cpu_map
6008 * These cpus will now be attached to the NULL domain
6009 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006010static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006011{
6012 int i;
6013
6014 for_each_cpu_mask(i, *cpu_map)
6015 cpu_attach_domain(NULL, i);
6016 synchronize_sched();
6017 arch_destroy_sched_domains(cpu_map);
6018}
6019
6020/*
6021 * Partition sched domains as specified by the cpumasks below.
6022 * This attaches all cpus from the cpumasks to the NULL domain,
6023 * waits for a RCU quiescent period, recalculates sched
6024 * domain information and then attaches them back to the
6025 * correct sched domains
6026 * Call with hotplug lock held
6027 */
6028void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6029{
6030 cpumask_t change_map;
6031
6032 cpus_and(*partition1, *partition1, cpu_online_map);
6033 cpus_and(*partition2, *partition2, cpu_online_map);
6034 cpus_or(change_map, *partition1, *partition2);
6035
6036 /* Detach sched domains from all of the affected cpus */
6037 detach_destroy_domains(&change_map);
6038 if (!cpus_empty(*partition1))
6039 build_sched_domains(partition1);
6040 if (!cpus_empty(*partition2))
6041 build_sched_domains(partition2);
6042}
6043
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044#ifdef CONFIG_HOTPLUG_CPU
6045/*
6046 * Force a reinitialization of the sched domains hierarchy. The domains
6047 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006048 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006049 * which will prevent rebalancing while the sched domains are recalculated.
6050 */
6051static int update_sched_domains(struct notifier_block *nfb,
6052 unsigned long action, void *hcpu)
6053{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006054 switch (action) {
6055 case CPU_UP_PREPARE:
6056 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006057 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006058 return NOTIFY_OK;
6059
6060 case CPU_UP_CANCELED:
6061 case CPU_DOWN_FAILED:
6062 case CPU_ONLINE:
6063 case CPU_DEAD:
6064 /*
6065 * Fall through and re-initialise the domains.
6066 */
6067 break;
6068 default:
6069 return NOTIFY_DONE;
6070 }
6071
6072 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006073 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006074
6075 return NOTIFY_OK;
6076}
6077#endif
6078
6079void __init sched_init_smp(void)
6080{
6081 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006082 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006083 unlock_cpu_hotplug();
6084 /* XXX: Theoretical race here - CPU may be hotplugged now */
6085 hotcpu_notifier(update_sched_domains, 0);
6086}
6087#else
6088void __init sched_init_smp(void)
6089{
6090}
6091#endif /* CONFIG_SMP */
6092
6093int in_sched_functions(unsigned long addr)
6094{
6095 /* Linker adds these: start and end of __sched functions */
6096 extern char __sched_text_start[], __sched_text_end[];
6097 return in_lock_functions(addr) ||
6098 (addr >= (unsigned long)__sched_text_start
6099 && addr < (unsigned long)__sched_text_end);
6100}
6101
6102void __init sched_init(void)
6103{
6104 runqueue_t *rq;
6105 int i, j, k;
6106
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006107 for_each_possible_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006108 prio_array_t *array;
6109
6110 rq = cpu_rq(i);
6111 spin_lock_init(&rq->lock);
Nick Piggin78979862005-06-25 14:57:13 -07006112 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006113 rq->active = rq->arrays;
6114 rq->expired = rq->arrays + 1;
6115 rq->best_expired_prio = MAX_PRIO;
6116
6117#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006118 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006119 for (j = 1; j < 3; j++)
6120 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006121 rq->active_balance = 0;
6122 rq->push_cpu = 0;
6123 rq->migration_thread = NULL;
6124 INIT_LIST_HEAD(&rq->migration_queue);
Anton Blancharde9028b02006-03-23 02:59:20 -08006125 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006126#endif
6127 atomic_set(&rq->nr_iowait, 0);
6128
6129 for (j = 0; j < 2; j++) {
6130 array = rq->arrays + j;
6131 for (k = 0; k < MAX_PRIO; k++) {
6132 INIT_LIST_HEAD(array->queue + k);
6133 __clear_bit(k, array->bitmap);
6134 }
6135 // delimiter for bitsearch
6136 __set_bit(MAX_PRIO, array->bitmap);
6137 }
6138 }
6139
6140 /*
6141 * The boot idle thread does lazy MMU switching as well:
6142 */
6143 atomic_inc(&init_mm.mm_count);
6144 enter_lazy_tlb(&init_mm, current);
6145
6146 /*
6147 * Make us the idle thread. Technically, schedule() should not be
6148 * called from this thread, however somewhere below it might be,
6149 * but because we are the idle thread, we just pick up running again
6150 * when this runqueue becomes "idle".
6151 */
6152 init_idle(current, smp_processor_id());
6153}
6154
6155#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6156void __might_sleep(char *file, int line)
6157{
6158#if defined(in_atomic)
6159 static unsigned long prev_jiffy; /* ratelimiting */
6160
6161 if ((in_atomic() || irqs_disabled()) &&
6162 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6163 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6164 return;
6165 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006166 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006167 " context at %s:%d\n", file, line);
6168 printk("in_atomic():%d, irqs_disabled():%d\n",
6169 in_atomic(), irqs_disabled());
6170 dump_stack();
6171 }
6172#endif
6173}
6174EXPORT_SYMBOL(__might_sleep);
6175#endif
6176
6177#ifdef CONFIG_MAGIC_SYSRQ
6178void normalize_rt_tasks(void)
6179{
6180 struct task_struct *p;
6181 prio_array_t *array;
6182 unsigned long flags;
6183 runqueue_t *rq;
6184
6185 read_lock_irq(&tasklist_lock);
6186 for_each_process (p) {
6187 if (!rt_task(p))
6188 continue;
6189
6190 rq = task_rq_lock(p, &flags);
6191
6192 array = p->array;
6193 if (array)
6194 deactivate_task(p, task_rq(p));
6195 __setscheduler(p, SCHED_NORMAL, 0);
6196 if (array) {
6197 __activate_task(p, task_rq(p));
6198 resched_task(rq->curr);
6199 }
6200
6201 task_rq_unlock(rq, &flags);
6202 }
6203 read_unlock_irq(&tasklist_lock);
6204}
6205
6206#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006207
6208#ifdef CONFIG_IA64
6209/*
6210 * These functions are only useful for the IA64 MCA handling.
6211 *
6212 * They can only be called when the whole system has been
6213 * stopped - every CPU needs to be quiescent, and no scheduling
6214 * activity can take place. Using them for anything else would
6215 * be a serious bug, and as a result, they aren't even visible
6216 * under any other configuration.
6217 */
6218
6219/**
6220 * curr_task - return the current task for a given cpu.
6221 * @cpu: the processor in question.
6222 *
6223 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6224 */
6225task_t *curr_task(int cpu)
6226{
6227 return cpu_curr(cpu);
6228}
6229
6230/**
6231 * set_curr_task - set the current task for a given cpu.
6232 * @cpu: the processor in question.
6233 * @p: the task pointer to set.
6234 *
6235 * Description: This function must only be used when non-maskable interrupts
6236 * are serviced on a separate stack. It allows the architecture to switch the
6237 * notion of the current task on a cpu in a non-blocking manner. This function
6238 * must be called with all CPU's synchronized, and interrupts disabled, the
6239 * and caller must save the original value of the current task (see
6240 * curr_task() above) and restore that value before reenabling interrupts and
6241 * re-starting the system.
6242 *
6243 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6244 */
6245void set_curr_task(int cpu, task_t *p)
6246{
6247 cpu_curr(cpu) = p;
6248}
6249
6250#endif